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Abstract

Background: Mathematical models are nowadays widely used to describe biochemical reaction networks. One of
the main reasons for this is that models facilitate the integration of a multitude of different data and data types
using parameter estimation. Thereby, models allow for a holistic understanding of biological processes. However,
due to measurement noise and the limited amount of data, uncertainties in the model parameters should be
considered when conclusions are drawn from estimated model attributes, such as reaction fluxes or transient
dynamics of biological species.

Methods and results: We developed the visual analytics system iVUN that supports uncertainty-aware analysis of
static and dynamic attributes of biochemical reaction networks modeled by ordinary differential equations. The
multivariate graph of the network is visualized as a node-link diagram, and statistics of the attributes are mapped
to the color of nodes and links of the graph. In addition, the graph view is linked with several views, such as line
plots, scatter plots, and correlation matrices, to support locating uncertainties and the analysis of their time
dependencies. As demonstration, we use iVUN to quantitatively analyze the dynamics of a model for Epo-induced
JAK2/STAT5 signaling.

Conclusion: Our case study showed that iVUN can be used to perform an in-depth study of biochemical reaction
networks, including attribute uncertainties, correlations between these attributes and their uncertainties as well as
the attribute dynamics. In particular, the linking of different visualization options turned out to be highly beneficial
for the complex analysis tasks that come with the biological systems as presented here.

Background
Biomolecules, such as genes, RNAs and proteins, are the
building blocks of cells. Via different modes of interaction,
these biomolecules (also called biochemical species) form
gene regulatory, signaling and metabolic pathways. In sys-
tems biology, biochemical reaction network (BRN) models
are used to describe the structure of these pathways and
the interaction between biochemical species [1,2]. As BRN

models can be employed to summarize all available infor-
mation, they are a powerful tool that can be used to gain a
holistic understanding of cellular processes and their
crosstalk.
A variety of approaches are available to model BRNs. In

particular ordinary differential equations (ODEs) are
widely used. ODE models allow for the description of the
time evolution of the concentrations of the chemical spe-
cies based upon knowledge of the reactions, their rates
constants and other parameters. While the set of possible
reactions is often known, the parameters can in general
not be measured. To ensure reliability and predictive
power of the BRN models, the unknown parameters have
to be estimated from the available measurement data.
Due to the limited availability of data and the ubiquity of
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measurement noise, the parameter estimation does in gen-
eral not yield a unambiguous result, i.e., the parameters
remain uncertain. To analyze the uncertainty of the para-
meters as well as the model prediction, often a sample of
parameters is collected for which model simulations and
data agree reasonably well [3-5]. To draw grounded con-
clusions about the systems’ behavior, the uncertainties
encoded in this sample have to be studied. Although there
are various tools available that help simulating and visua-
lizing BRN models, hardly any tool exists that supports
the visual analysis of uncertainties in BRN models.
In the following, we present our visual analytics sys-

tem iVUN. iVUN supports an in-depth study of BRNs
with uncertain properties. We compute the uncertainties
of parameters and model predictions using a Bayesian esti-
mation approach, which provides the statistics of model
attributes (parameters, reaction fluxes and states) in form
of a sample. Given this sample, iVUN facilitates the study
of attribute uncertainties and their time-dependence by
visualizing them in the graph view, a node-link diagram.
Biochemical species and reaction related attributes are
mapped to the color of the nodes and links, respectively.
Furthermore, a multitude of linked views, such as line
plots, scatter plots, and correlation matrices, are available
to enable the user to explore the BRN model and its
uncertainties. We note that this manuscript is based on

a conference paper we published at the 2nd IEEE Sympo-
sium on Biological Data Visualization [6] and uses original
material thereof. In contrast to this visualization paper,
here, we focus on the application to biological data
obtained from experiments and included an extensive case
study. Furthermore, iVUN has been extended to analyze
the dynamics of measured quantities of the BRNs, which
are neither states nor fluxes, within one and across differ-
ent experimental conditions. This allows for the direct
comparison of model predictions and measurement data,
as well as the comparison of different experimental condi-
tions. To improve the visual analytics capabilities of iVUN,
we also introduced additional links between the available
views.
In the next section, we provide a brief review on ODE-

based modeling approaches for BRNs. Furthermore, we
introduce Bayesian parameter estimation and uncertainty
analysis methods for ODEs (see Figure 1). Based upon
these backgrounds, we define the aims of the analysis and
hence visualization requirements.

Computational modeling of biochemical reaction
networks
Biochemical reaction networks
BRNs are defined by sets of biochemical species
(X1, X2, . . . , Xnx ) and biochemical reactions (R1, R2, . . . , Rnr ).

Figure 1 Workflow of model development. Answering a biological question using data-driven mechanistic modeling requires at least four
essential steps: collection of measurement data (left, bottom); derivation of ODE model (left, top); estimation of the parameters of the ODE model
using the measurement data (middle); and analysis of the fitted model, including the parameter and prediction uncertainties (right). Depending on
the complexity of the problem, theses steps have to be iterated.
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Biochemical species are ensembles of chemically identical
molecular entities, e.g., RNAs and proteins [7]. Reactions
are processes which result in the interconversion of
some biochemical species (reactants, r) in some others
(products, p), and can be written as:

Rj :
nx∑
i=1

s(r)
ij Xi →

nx∑
i=1

s(p)
ij Xi, j = 1, . . . , nr.

Here, s(r)
ij ∈ N0 and s(p)

ij ∈ N0 are the stoichiometric
coefficients of species i in reaction j, which denote the
number of molecules consumed and produced when the
reaction takes place [1], respectively. The overall reac-
tion stoichiometry is

Sij = s(p)
ij − s(r)

ij for i = 1, . . . , nx, and j = 1, . . . , nr,

in which S = {Sij} ∈ Z
nx×nr.

The species and reactions of a BRN can be interpreted
as vertices and edges of a graph. This graph contains two
types of edges: regular directed edges representing the
interconversions between species (these vertices are
encoded in the stoichiometric matrix S); and directed
hyper-edges from a species to a reaction. The hyper-edges
describe dependencies of the reaction rates on biochemical
species (often called modifiers) which are not consumed
by the reaction.
Ordinary differential equation models of BRNs
The dynamics of BRNs can be described using many dif-
ferent approaches. In this manuscript we considered ODE
models of BRNs which are commonly written as:

ẋ = Sv(x, θ , u), x(0) = x0(θ , u), (1)

in which x(t) ∈ R
nx
+ is the state at time t, with xi being

the concentration of the chemical species Xi. Further-
more, x0(θ , u) ∈ R

nx
+ is the parameter and experiment

dependent initial condition, S ∈ Z
nx×nr is the stoichio-

metric matrix, v(x, θ , u) ∈ R
nr
+ is the flux vector, and

θ ∈ R
nθ
+ is the parameter vector. The potentially time-

dependent function u(t) ∈ R
nu describes the experimen-

tal setup (see explanation below).
The state x(t) is the current condition of the system,

whereas the flux v(x, θ, u) determines the change of the
state with time. The flux vj(x, θ, u) corresponds to the fre-
quency with which reaction Rj takes place. If mass action
kinetics [1] are assumed, we obtain

vj(x, θ , u) = κj

nx∏
i=1

x
s(r)
ij

i , j = 1, . . . , nr.

In this case, the parameters θ = (κ1, . . . , κnr )
T are reac-

tion rate coefficients (e.g., affinities) and exactly one
parameter is associated with each reaction. If more

complex flux models are used, such as Michaelis-Men-
ten or Hill-kinetics [1], several parameters can be asso-
ciated with one reaction. A simple example is the
enzymatic conversion of Xi into Xi*by the enzyme
XiE , Xi + XiE → Xi∗ + XiE, often described using the
Michaelis-Menten kinetics,

vj(x, θ , u) =
κj,maxxi

κj + xi
.

In this case, two parameters are assigned to reaction j:
�j,max and �j.
In a graph theoretical context, the time-dependent states

xi(t) are attributes of the vertices and the time-dependent
fluxes vj(x(t), θ, u(t)) as well as the fixed parameters θj are
attributes of the edges.
ODE-based modeling of BRN is flexible and allows for

the description of many metabolic, signal transduction,
and gene regulation processes. However, like most other
modeling approaches it suffers from one major problem.
Due to experimental constraints, the parameters θj can-
not be measured directly, but have to be estimated.
Bayesian parameter estimation
To estimate the parameters θj, measurement data have to
be collected. The measured quantities y(t) ∈ R

ny
+ (also

called measurands, observables, or outputs),

yk = hk(x, θ), k = 1, . . . , ny, (2)

are typically individual states (hk(x, θ) = xi), sums of
states (hk(x) = xi1 + xi2), or quantities that are proportional
to one of the aforementioned ones. As the measurements
are corrupted by noise, the available data are:

D = {(y(tl), tl)}nt
l=1 with yk(tl) = yk(tl) + εk(tl),

in which tl ∈ R+, ȳ(tl) ∈ R
ny
+ , and ε(tl) ∈ R

ny denote the
time at which the measurement was performed, the noise-
affected output, and the measurement noise, respectively.
In a graph context, the measured quantities yk represent

an additional layer. This layer contains the different out-
puts, hk(x, θ), as elements with the two time-dependent
attributes: the simulated output trajectories yk(t; θ) for
particular parameter values; and the discrete measured
quantities ȳk(tl). The measured quantities depend on one
or more states (concentrations) in the network but do not
interact with these components. Thus, the measured
quantities represent sets of vertices of the chemical reac-
tion network, where these sets contain all chemical species

Xi with
∂

∂xi
hk(x, θ) �= 0.

Measurement data are in general available for different
experimental conditions. The experimental conditions
are described using the function u(t), which might be
time-dependent. The experiment description ue(t) of the
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e-th experiment can account for different interventions,
e.g., silencing or over-expression of genes, stimuli, and
medium changes. Thus, it alters the reactions rates. As
ue(t) differs for the individual experiment, so do the time-
dependent outputs ye(t), measured outputs ȳe(t), states
xe(t), and fluxes ve(x(t), θ , ue(t)). Furthermore, the data
used for parameter estimation are the union of the data
obtained from the individual experiments, D = ∪eD e. As
all statements hold for all experiments, in the following we
skip the superscript e to simplify the notation. Given the
data D , the parameters are estimated. For this purpose,
different methods can be employed. One commonly used
method is Bayesian parameter estimation [4,8], which
relies on Bayes’ theorem,

p(θ |D) =
p(D |θ)p(θ)

p(D)
. (3)

The expression on the right hand side of (3) provides
the posterior probability p(θ |D) ∈ R+ of a parameter vec-
tor θ, given the data D . Here, the conditional probability
to observe the data p(D |θ) ∈ R+, the prior knowledge of
the parameters p(θ) ∈ R+, and the prior probability of
the data p(D) ∈ R+ are taken into account. In the case
of independent normally distributed measurement
noise, εk(tl) ∼ N (ε|0, σ 2

k (tl)), the conditional probability
becomes

p(D |θ) =
ny∏

k=1

nt∏
l=1

1√
2πσk(tl)

exp

(
−1

2

(
ȳk(tl) − ȳk(tl; θ)

σk(tl)

)2
)

,

in which yk(tl; θ) = hk(x(tl; θ), θ) is the simulated output
of the model (1) and (2). The conditional probability and
thus the posterior probability is large, if the distance
between measurement and data is small. A high value of
p(D |θ) indicates that the considered parameter vector θ is
plausible and might be close to the true parameter of the
biological process.
Uncertainties of parameters, fluxes, and states
In general, the parameters θj cannot be determined pre-
cisely but remain uncertain. This uncertainty is encoded
in the shape of the posterior probability p(θ |D). Large
uncertainty is indicated by a broad distribution, while, e.g.,
dependencies between a subset of the parameters might
result in a narrowing of distributions in certain subspaces
or manifolds. As the number of unknown parameters θ is
often large, nθ ≫ 1, the analysis of p(θ |D) is challenging.
To analyze the uncertainty, a sample {θ (α)}ns

α=1 is generated
from p(θ |D), using Markov chain Monte Carlo (MCMC)
sampling [9]. Associated with this parameter sample, we
have a flux sample {v(α)(t)}ns

α=1 and a state sample

{x(α)(t)}ns
α=1. The individual members of this sample are

flux trajectories v(α)(t) = v(x(α)(t), θ (α), u(t)) and state tra-
jectories xα (t), respectively. These trajectories are obtained

by simulating the model (1) for parameter θα. The samples
{θ (α)}ns

α=1, {v(α)(t)}ns
α=1, and {x(α)(t)}ns

α=1 carry the statistical
properties of p(θ |D) as well as its image in flux and con-
centration space. Hence, the samples can be used to gain
insight into the parameter and prediction uncertainties.

Analysis goals: understanding uncertainty and process
dynamics
Understanding the parameter and prediction uncertain-
ties is crucial to ensure a good understanding of the
model and its limitations, and to support the comparison
of performed experiments as well as the selection of
future experiments. Unfortunately, the in-depth analysis
of model uncertainty is ambitious because it requires the
analysis of hidden dependencies between the static and
dynamic attributes of the model. While these dependen-
cies could theoretically be detected algorithmically, the
fact that the interesting features—the things we are look-
ing for during the exploration phase—are not known a
priori, complicates algorithmic searches in practice.
Visualization in combination with human perception has
proven to be more powerful for exploration tasks [10]
than algorithmic approaches.
So far, mainly tables, scatter plots, and line plots of

existing systems have been used by domain experts to
investigate parameter, flux and state samples. Using such
visualizations independently, it is not possible to obtain a
detailed view of the distributions and, hence, it is hard to
detect complex patterns within the data. In contrast,
using linked visualizations for the analysis of individual
attributes of the BRN model allows to achieve this analy-
sis goal. In particular, exploration approaches, which
allow the user to subsequently focus on different aspects
of interest, are essential ingredients. These include the
assessment of relatively high uncertainties and the identi-
fication of uncertainty hubs. Besides, the analysis of time
dependence of outputs, fluxes, and states and their time-
dependent uncertainties as well as localizing hubs
involved in fast or slow process dynamics is of interest.
Furthermore, it is necessary to characterize correlations
between attributes, e.g., between parameters, fluxes, or
states. Finally, the comparison of uncertain fluxes, states,
and outputs between different experimental conditions is
important to understand how particular aspects of the
dynamics are altered.

Related work
BRNs are usually displayed as node-link diagrams, where
chemical species (vertices) are represented as nodes and
reactions (directed edges) by links with arrow heads con-
necting the nodes. The vertices and edges of a network
carry domain-specific attributes; here parameters, fluxes,
and states. These can be mapped to visual attributes of
nodes and links, such as their thickness, brightness, shape,
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or color [11]. While the structure of BRNs is static, attri-
butes attached to vertices (states) and edges (fluxes) may
be dynamic. There are three common approaches to inte-
grate the evolution of multi-dimensional information into
graph visualizations [12]: small multiples [13], animation,
and complex glyphs, such as small charts embedded into
the graph.
Although there is a large number of visualization tools

for BRNs, only few of them support the visualization and
the visual comparison of dynamic node attributes of experi-
mental data collected under different experimental condi-
tions. For the simultaneous visualization of gene regulatory
networks and their states at different time points Cerebral
[14], Pathline [15], GENeVis [16], VANTED [17] and the
Pathway Tools software [18], can be used. Cerebral and
Pathline exploit small multiple views of the graph or line
charts of the time-series data, respectively. GENeVis and
VANTED make use of small charts embedded into the ver-
tices. All these visualization approaches perform well if the
number of time points is small, however, they do not scale
well. Furthermore, small multiples and small embedded
charts do not allow for the comparison of the time series of
different fluxes or different states for one experimental con-
dition. To avoid some of these problems, in the Pathway
Tools software the attribute dynamics are visualized using
animation instead of a static representation. However, this
does not facilitate the analysis of dynamic attributes across
different experimental conditions.
Beyond the visual analysis of time dependencies of

BRN attributes, also the attribute uncertainties have to be
studied to assess the reliability of model predictions.
Unfortunately, hardly any tool exists that can visualize
the uncertainties associated with the graphs attributes.
Commonly used tools like COPASI [19] and CellDesigner
[20] support the simulation of BRN models and visualiza-
tion of model predictions for a given parameter value,
however, they do not provide visualizations of the predic-
tion uncertainties. In addition, the available tools do
neither support a visual exploration of the dynamics and
uncertainties, nor link the information with the underly-
ing graph structure of the BRN.
The visualization of uncertainties has been recognized as

one of the key challenges in scientific visualization [21].
Therefore, in different scientific disciplines, e.g., flow field
visualization and surface representations [22,23], much
research has been carried out on uncertainty visualization.
In contrast, little work has been done on visualizing the
uncertainties of graph attributes. To study multiple static
node attributes Cesario et al. [24] introduced a method
which employs spatial layouts in combination with differ-
ent linked views including parallel coordinates, scatter
plots, comparative columns and bullseyes. To visualize
structural uncertainties of graphs, Lee et al. [25] developed
CandidTree. We are not aware of tools that visualize

attribute uncertainties, quantified in terms of standard
deviation, percentiles or other uncertainty measures,
directly within the graph. This could by achieved by
animation, adding glyphs or geometry to the rendered
scene, modifying geometry, or addressing other human
senses [26].

Methods
We developed the visual analytics system iVUN, a JAVA
based tool facilitating the interactive visualization of
uncertain BRNs. iVUN has been developed in a participa-
tory design process together with two target users. To
assess the utility of the individual visualization approaches
and multiple linked views of iVUN, a qualitative user
study with 10 domain experts was performed. A more
detailed description of the design process as well as the
design and results of the qualitative user study can be
found in our previous work on the uncertainty-aware
visual analysis of BRNs [6].

Overview about iVUN
iVUN imports the BRN from an xml file following the spe-
cifications SBML [27]. The BRN is visualized as a node-
link diagram (graph view), where nodes represent species
and links (arrows) represent reactions (see Figure 2: graph
view).
As presented in the section Computational Modeling

of Biochemical Reaction Networks, the BRNs have different
attributes. MCMC sampling does not only provide
a sample of the parameters {θ (α)}ns

α=1, but also of the

outputs {y(α)(t)}ns
α=1, the states {x(α)(t)}ns

α=1, and the fluxes

{v(α)(t)}ns
α=1. The individual samples can be imported from

text files in txt or csv format as described in the tutorial.
The output, state, and flux samples depend on the experi-
mental condition u(e). This experimental context has to
be conserved.
As mentioned in section Bayesian Parameter Estimation,

outputs are typically individual state variables or sums of
states and can therefore be assigned to one or more species
and hence nodes in the graph. Thus, the outputs are visua-
lized using convex hulls that surround the respective nodes.
To analyze the uncertainty of static parameters (θ) and

experiment-dependent dynamic properties—utputs (y),
states (x, also referred to as concentrations), and fluxes
(v)—iVUN offers multiple linked views showing informa-
tion at different levels of granularity. Brushing and linking
techniques are used to connect views that share the same
data attributes [28], i.e., to visually link the elements in the
different views. A change in selection within one view by
brushing directly results in the highlighting of the respec-
tive elements within all views. In particular, the elements
are first highlighted by short flashing to attract the users
attention before they stay highlighted.
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An overview of the summary statistics of samples, like
mean and standard deviation, can be obtained from the
graph view by mapping them to visual attributes of the
graph but also in a linked table view. Further linked views
support the analysis of the distribution of values within
samples, the dynamic change of samples as well as correla-
tions between sample members or time courses (see
Figure 2). In addition, iVUN supports the comparison of

different experiments and hence sets of outputs, flux sam-
ples, and state samples.
In the following subsection, we present the visualiza-

tion methods included in iVUN:

• Histograms and color mapping in the graph view
and table views for the analysis of parameter
uncertainties.

Figure 2 Conceptual overview of iVUN functionality. The central component of iVUN is the graph view of the BRN, with which all static and
dynamic attributes are associated. From a modeling perspective, this graph has several layers. The dynamic attributes v, x, and y are associated
with the flux layer (links), state layer (nodes), and the output layer (a subset of nodes), respectively. These layers are connected, i.e., an output (e.
g., y1) is associated with a set of states (here, y1 represents the sum of x1, x2, and x3) and each state depends on one or more fluxes (here, x1
depends on v1 and v2). Conversely, a flux vj influences one or more states xi, which may be part of one or more outputs yk. To obtain an
overview of the attribute dynamics, iVUN can map the numerical value of attributes to the color of the respective components in the BRN and
animate the time dependence (illustration: top right). In addition, line plots can be used to gain further insight into the dynamic behavior and
to compare time series. iVUN supports within- experiment comparison (line plots: left) and between-experiment comparison (line plot: top
center) of time series. Besides the analysis of dynamics, the analysis of statistics of single attributes (bottom center) and correlations (right) is
supported at different levels of granularity. In this conceptual overview, colors are used to identify the dynamic attributes in the line plots as well
as the static parameters in the statistic and correlation views with the corresponding components of the graph. In the actual visual analytics tool
iVUN, correspondence of elements in the different views is shown by brushing and linking as well as labeling. In this way, color can be used for
encoding of other values. Screenshot of iVUN in action can be found at www.vis.uni-stuttgart.de/iVUN.
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• Different types of line plots and animation of the
graph view for the analysis of attribute dynamics.
• Scatter plots and correlation matrices for the ana-
lysis of attribute correlations.
• Combinations of different tools and the linking bet-
ween them to explore complex, hidden dependencies.

The different visualization methods have been combined
to meet the aforementioned analysis goals.

Visualization of statistics of attribute samples
One analysis task is the localization of large uncertainties
and uncertainty hubs in the BRN. To support this, statisti-
cal properties of the parameter sample {θ (α)}ns

α=1, the flux
sample {v(α)(t)}ns

α=1, and state sample {x(α)(t)}ns
α=1 can be

color-coded in the graph. iVUN supports the mapping of
the mean and standard deviation of the samples to the
color of links (for parameters and fluxes) and nodes (for
states). As edges possess two attributes, the user can select
whether the parameters or the fluxes are visualized.
For kinetic rate laws with several parameters, the links

are split into the respective number of segments. Each seg-
ment is colored according to the statistical properties of
one parameter: starting with the first parameter of the
kinetic law at the starting point of the edge and ending
with the last parameter of the kinetic law at the arrow-
head. A disadvantage of this approach is the fact that the
number of parameters as well as the link length can differ
for different reactions. For that reason, the length of indi-
vidual link segments is not necessarily uniform. Neverthe-
less, this approach enables the simultaneous assessment of
the uncertainty of all parameters and avoids the switching
between different parameters. Therefore, it is possible to
perceive whether all parameters of a reaction are (un-)cer-
tain or whether the uncertainties differ for the different
parameters of the reaction. For an individual mapping of
mean values or standard deviations, iVUN offers different
colormaps created with ColorBrewer [29]. Based on these
color maps, users can identify relatively low and high
values. For the simultaneous visualization of mean and
standard deviation, bivariate multi-hue colormaps are pro-
vided. If several experiments are imported with different
output, state, and flux samples, nodes and links are
colored based on the statistical attributes of the currently
selected experiment.
In addition to the graph-based visualization, means and

standard deviations of the parameters are summarized in a
table view. This table is linked to the graph view. All reac-
tions associated with the parameter selected in the table
view are highlighted in the graph view. Furthermore, when
selecting a reaction, all associated parameters are high-
lighted in the table view. The cells of the table are colored
using the same color maps as used for the links to visualize

mean values and standard deviations. Hence, the lowest
and highest mean values and standard deviations for the
parameters of the system can be identified at a glance. This
supports the assessment of relatively low and high
uncertainties.
For the detailed investigation of the parameter distribu-

tions, iVUN provides a histogram view. This view includes
the histograms for all selected parameters (see Figure 2:
statistics). The histograms of the different parameters are
comparable as they are computed with the same bin
width.

Visualization of the attribute dynamics
BRNs are dynamical systems and therefore fluxes, states,
and outputs are time-dependent. These time-dependent
attributes have to be compared within and across experi-
ments to understand the systems’ behavior. In addition,
outputs, states, and fluxes are intertwined: the fluxes
determine the states, and the states determine the outputs.
This hierarchical structure of BRNs is exploited by iVUN,
which is why we study the flux, the state, and the output
layers. iVUN incorporates animation and linked line plots
to visualize attribute dynamics (see Figure 2: dynamics).
The animation allows the user to obtain an overview, e.g.,
to detect drastic changes, and to identify hubs of similar
dynamics [6]. Thereby, the time-dependent means or stan-
dard deviations of the sample {v(α)(t)}ns

α=1({x(α)(t)}ns
α=1) are

mapped to the color of the respective link (node). iVUN
supports a navigation through time either stepwise using
the forward or backward button or rapidly with the help
of a slider. Continuous animation is obtained by keeping
these buttons pressed.
Animation poses a natural way to convey dynamic data,

whereas at the same time its effectiveness is limited due to
perceptual and cognitive limitations in the processing of
changing visual presentations [30]. To improve the per-
ception during the continuous animation, drastic changes
of the mean or standard deviation of the samples are auto-
matically detected and respective links (nodes) are briefly
highlighted within the graph view [31]. While this yields
some improvement, it still does not allow for a detailed
analysis and a quantitative comparison of all time series
for fluxes or states. Therefore, we visualize the dynamic
behavior of outputs {x(α)(t)}ns

α=1, states {x(α)(t)}ns
α=1, and

fluxes {v(α)(t)}ns
α=1 in separate line plots. Each line within

the respective plot represents the time-dependent median
of one output, one state, or one flux. To visualize the
uncertainties, we frame the lines corresponding to the
medians by a semitransparent area those boundaries are
the time-dependent percentiles of the respective sample
(by default the 5th-percentile, P5, and the 95th-percentile,
P95). The use of the median and the percentile intervals
allows for the study of asymmetries in the distribution.
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For the outputs, median and percentile intervals of the
simulated trajectories as well as the measured data are
included in the line plot. As the measured values ȳk(tl) are
only available at discrete time points, they are depicted as
dots. The colors of simulated trajectories yk(t) and mea-
sured points ȳk(tl) are identical. To visually link the out-
puts in the line plot with the respective set of nodes
(convex hull) in the graph view, the same color is also
used for the convex hull. One essential feature of iVUN
that supports the analysis of complex networks is that line
plots and graph view are directly linked. A selection in a
line plot results in the highlighting of the corresponding
nodes or links in the graph view, and vice versa. As out-
puts are in general weighted sums of states and hence
associated with more than one species, several species
(nodes) are highlighted. Conversely, the selection of a spe-
cies that belongs to several outputs, results in the high-
lighting of all these outputs in the line plot.
As the number of species and reactions increases for

more complex BRNs, the line plots for states, outputs, and
fluxes become cluttered. Furthermore, if the number of
lines is greater 10, the corresponding colors become diffi-
cult to distinguish. Therefore, instead of just highlighting
selected elements to focus on fluxes, states, or outputs of
interest, lines can be faded out using check boxes.
For all dynamic attributes, two types of line plots are

available: a line plot to compare time series of different
attributes for the currently selected experiment (see
Figure 2: within-experiment comparison line plots); and
a line plot to compare the currently selected attributes
for all experimental conditions (see Figure 2: between-
experiment comparison line plots). With these views,
users can investigate and compare uncertainties and
dynamics under different experimental conditions.

Visualization of correlations between attributes
The uncertainty of one attribute often comes along with
uncertainties in some other attributes. Furthermore, the
values of two attributes, e.g., two parameters in {θ (α)}ns

α=1,
might be correlated. Identifying these interdependencies
is essential to understand the behavior of the system.
Therefore, iVUN supports the identification of correla-
tions between uncertain attributes.
Two different matrix views are available that can be used

to investigate dependencies of or correlation between dif-
ferent dimensions of the parameter sample {θ (α)}ns

α=1: an
eigenvalue-ratio-matrix and a correlation matrix. The for-
mer is based on principal component analysis (PCA),
whereas the latter provides the Pearson’s correlation coef-
ficients for all pairwise combinations of parameters. For
dynamic attributes, the correlation matrix displays the
pairwise Pearson’s correlation coefficients between the
sample members of the currently selected time point or
between time courses of either mean values or standard

deviations. The cells within this matrix include the numer-
ical values and are colored with respect to the sign and
absolute value of the ratio (see Figure 3B).
Similar to the line plots, also the matrix views are linked

to the graph view. If a cell within a matrix is selected, the
two respective elements within the graph as well as the
respective columns within the table and lines within the
line plots are highlighted. Vice versa, if the user selects a
set of elements (θ, v, or x) within the graph, all pairwise
combinations and hence respective cells within the matrix
views are highlighted.
While correlation matrices allow for an overview of

occurring correlations, scatter plots can be used to gain
further insights into the type of correlation and the prop-
erties of the distribution (see Figure 2: correlations and
Figure 3B and 3C). To facilitate the exploration, the scat-
ter plot of two elements can be obtained by selecting
either the respective elements in the graph or the respec-
tive cell in the matrix. For fluxes and states, the sample
for the currently selected time point tk is visualized
within the scatter plot.
For more details on the visualization tools and the

implementation, we refer to the documentation of iVUN
(http://www.vis.uni-stuttgart.de/iVUN) and our previous
publication [6].

Results and discussion
JAK2/STAT5 signaling pathway
For this case study, we consider the Epo-induced JAK2/
STAT5 signaling pathway. The hormone Erythropoietin
(Epo) regulates the production of red blood cells. Initially,
Epo binds to the Epo-receptor inducing a rapid phos-
phorylation of JAK2. Phosphorylated JAK2 activates the
transcription factor STAT5 by phosphorylation. Phos-
phorylated STAT5, pSTAT5, can be translocated from
the cytosol to the nucleus where it induces the transcrip-
tion of CIS and SOCS, two inhibitors of JAK2 and
STAT5 phosphorylation. The dual feedback loop estab-
lished by CIS and SOCS adjusts STAT5 phosphorylation
levels over the entire range of Epo concentrations. This is
essential as in vivo a broad dynamic range of Epo concen-
tration is observed [32] and STAT5 influences the cell
fate. It has been shown that pSTAT5 promotes the survi-
val of erythroid progenitor cells [33].
In the following, we consider the ODE model of the

Epo-induced JAK2/STAT5 signaling pathway introduced
by Bachmann et al. [33] (see Figure 3A). This model
describes the time-dependent concentrations of 25 che-
mical species under 24 experimental conditions. It is
highly nonlinear and possesses 113 unknown parameters.
Due to the high dimensionality of the parameter space,
Bayesian parameter estimation for this problem is chal-
lenging. Recently, a novel adaptive hierarchical MCMC
sampling scheme suited for this high-dimension problem
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was proposed [34]. Using the resulting MCMC sample, the
uncertainty of the individual parameters and the predic-
tion uncertainty of the concentration of nuclear pSTAT5
and SOCS3 was evaluated using classical approaches.
Here, we use the same MCMC sample to study the uncer-
tainties and correlations of parameters, fluxes, states, and

outputs in more detail. To simplify the analysis slightly, we
focus on the 27 dynamic parameters and initial conditions
that influence the biochemical process. The 86 nuisance
parameters, which are necessary to compare the model
with the experimental data, are not analyzed in detail
because this does not promise additional biological insight.

Figure 3 Analysis of parameter correlations in the JAK2/STAT5 signaling pathway. By linking the graph view (A) with the Pearson
correlation matrix (B), scatter plots and histograms (C), our visual analytics systems iVUN allowed for a step-by-step exploration of the MCMC
sample obtained for the JAK2/STAT5 signaling pathway [34]. The graph view (A) shows the reactions (links), states (nodes), and outputs (subsets
of nodes surrounded by a semitransparent area). The sample mean of fluxes and states is mapped to the color of links and nodes respectively.
The Pearson correlation matrix (B) facilitates the efficient search for pairs of strongly correlated parameters. The selection of individual parameter
pairs in the Pearson correlation matrix followed by the automatic highlighting of associated edges in the graph view (A) allows for the
identification of these parameters in the BRN. In the JAK2/STAT5 signaling pathway, pairs of strongly correlated parameters in general influence
similar states and outputs of the network. In addition, there are some parameters that alter several reaction fluxes, e.g., ‘SOC3Inh’, and which
therefore correlate with many parameters. This yields clusters of strong parameter-wise correlations, which are recognizable in the matrix view.
Beyond the analysis of linear correlations using the Pearson correlation matrix, scatter plots (C) reveal nonlinear correlation structures as shown
for ‘SOCS3RNADelay’ and ‘SOCS3RNATurn’. The parameter sample for the JAK2/STAT5 signaling pathway shows only few strongly nonlinear
correlations, although histograms (C) reveal that, e.g., the distribution for the parameter ‘SOCS3RNATurn’ is bimodal.
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Note that the outputs of the model are log-transforms of
concentrations and can thus be negative. The log-transfor-
mation is necessary to account for the noise distributions
observed in biological systems. As the logarithmic scale is
a natural choices for the strictly positive physical quanti-
ties [35], such as reaction rates, we analyze the logarithmic
values of the parameters, log10(θ), and their statistics
throughout this section.

Analysis of parameter uncertainties and correlations
To improve our understanding of inter-dependencies and
correlations of the unknown parameters, we investigated
the graph view of the BRN, the Pearson correlation
matrix, and the scatter plots. The Pearson correlation
matrix provides a rough overview of the correlation
structure, whereas the linking to the graph view—reac-
tions associated to selected parameter pairs are high-
lighted—allows us to locate the parameters in the BRN.
Using this linking, we can analyze visually whether
strongly correlated parameters are in proximity to each
other—as one would expect. This is an essential advan-
tage of the linking as the model equations are complex
and the parameter names are not fully intuitive.
Furthermore, for this system several states and reaction

rates have been scaled to circumvent structural non-iden-
tifiability. This increases the model complexity and renders
the identification of parameters in the BRN, without the
need to study the model equations, a powerful feature.
For the JAK2/STAT5 pathway, our analysis using the

graph view in combination with the correlation matrices
and scatter plots indeed revealed that most of the strongly
correlated parameters are in close proximity to each other,
influencing, e.g., the in- and outflux in one state (positive
correlation) or two influxes (negative correlation). In
Figure 3(A) one such parameter pair is highlighted. Using
iVUN, we could easily detect several existing “correlation
clusters” that are a result of the strong, localized correla-
tions. Figure 3B depicts these correlation clusters which
determine: the modulation of STAT5 phosphorylation via
CIS (cluster 1); the inhibition of JAK2 phosphorylation by
SOCS3 (cluster 2); and the STAT5 activation by different
forms of the receptor (cluster 3). In addition to these
correlation clusters, there are some parameters, e.g.,
‘SOC3Inh’, which influence many reaction rates and are
therefore correlated with many reaction rates.
Beyond the analysis of the Pearson correlation matrix,

we employed scatter plots and histograms to assess a few
interesting parameter combinations, e.g., parameters that
belong to different mechanisms. One interesting example
is the pair of ‘SOCS3RNADelay’ and ‘SOCS3RNATurn’,
which shows medium negative correlation. The scatter
plot reveals that the dependence between these parameters
is highly nonlinear, and the histogram shows that the dis-
tribution of ‘SOCS3RNATurn’ is indeed bimodal. This has

also been observed in [34] and analyzed using support vec-
tor machines, but our visual exploration requires less time
and is in this regard advantageous.

Analysis of output, state and flux dynamics and
uncertainties
In most systems biology projects, the prediction of the
response of a process, e.g., a signaling pathway, to altered
experimental conditions is of primary interest. This
requires the analysis of the dynamics attributes: outputs,
states, and fluxes. The uncertainties of these three time-
dependent quantities are expected to be significantly dif-
ferent. As the outputs have been measured at different
discrete points, the uncertainty in the simulated output
trajectories should be small. In contrast, states and fluxes
are not directly measured but merely constrained by
their relation to the output. Since one output is in gen-
eral a weighted sum of several states, and only the sum of
these states has to agree with the measured data, we
expect that the uncertainty in the state trajectories is lar-
ger than in the output trajectories. Accordingly, the com-
bination of several fluxes determines the time-evolution
of the states, which can result in a further increase of the
uncertainty.
To assess these hypotheses, we analyzed the different

layers of the JAK2/STAT5 pathway using a zooming app-
roach. Starting with the animated graph view (Figure 4A)
to gain an overview of the attribute dynamics, iVUN
allows a step-by-step exploration of the output, state, and
flux layers. Therefore, the corresponding line plots are
linked. The selection of an output trajectory in the out-
put line plot (Figure 4B) results in highlighting of the
corresponding state trajectories in the state line plot
(Figure 4C). Similarly, states and flux trajectories are
linked (Figure 4D). Finally, the scatter plot of the flux can
be depicted for different time points.
Using this zooming approach, we gained the impression

that for the JAK2/STAT5 pathway the output uncertainty
is indeed small compared to the uncertainty in the state
trajectories. However, the state uncertainty appeared to be
compatible with the flux uncertainty. This has also been
confirmed using a numerical evaluation. We argue that
the uncertainties of the fluxes are not larger than the
uncertainties of the states, as most biological species are
conserved. This provides an additional restriction on the
fluxes. Furthermore, the highest node degree is 5 and
most nodes have degrees 2 or 3. This small node degree
limits the uncertainty of the fluxes further and results in
significant correlations between fluxes, as illustrated in
Figure 4E.
To compare the dynamics observed for different

experimental conditions, iVUN allows for a “between-
experiment comparison” of measurement data and simu-
lation results using line plots. The line plots can directly
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Figure 4 Hierarchical analysis of the uncertain dynamics of the JAK2/STAT5 signaling pathway. We made use of the linking between
the graph view and the line plots, as well as the linking between different line plots, to perform a hierarchical analysis of the dynamic
attributes of the JAK2/STAT5 signaling pathway (A). We studied the three layers of the BRN: the output layer (B), which includes the
measured quantities; the state layer (C), which includes the states of the different chemical species; and the flux layer (D), which uniquely
describes the changes in the states and the dynamics of outputs. The stack of graph views (A) illustrates the animation of the graph, where
the states and fluxes at a particular time point are mapped to the color of the nodes and links respectively. The line plots (B)-(E) depict the
median (full line) and the 90% Bayesian confidence interval (semitransparent area). Starting from the animation, the hierarchical analysis
reveals that the output trajectories (B), which are fitted to the experimental data (dots), are the most well determined properties of the
systems. The uncertainties in the states (C) that determine a certain output are in general much larger. Furthermore, different combinations
of fluxes can yield roughly the same state trajectories, which in general results in a further increase of the uncertainties in the fluxes (D).
However, for the JAK2/STAT5 signaling pathway this increase in uncertainty cannot be observed, probably, because the fluxes are
constrained by molecular conservation laws. Variations in one flux must be compensated by another flux, resulting in significant flux-flux
correlation (E). Complementary to the analysis of individual experimental data, the comparison across experiments provides information
about the relative importance and role of certain mechanisms.
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reveal differences in: concentrations, slower/faster
dynamics, peak concentrations and timing. In combination
with the 90% confidence interval, we can furthermore con-
clude that, e.g., the pSTAT5 concentration varies signifi-
cantly for different experimental conditions (Figure 4F).
A detailed description of how all plots for the case study

were obtained can be found on the iVUN web page:
http://www.vis.uni-stuttgart.de/iVUN.

Conclusions
In this manuscript, we introduced the visual analytics sys-
tem iVUN. iVUN has been devised to allow for the analy-
sis of static and dynamic properties of BRNs described by
ODEs. In many projects, the amount of available data is
limited and the data are affected by noise. Therefore, the
parameters, fluxes, states, and outputs of BRNs are not
fully determined. A rigorous analysis requires the consid-
eration of the limitation of the model. Therefore, iVUN
supports an uncertainty-aware visualization by providing
visualizations to study the statistics of uncertain para-
meters and confidence intervals for uncertain model pre-
dictions. These statistics are extracted from MCMC
samples of parameters and the associated flux, state, and
output trajectories.
The visualization of model uncertainties is one of two

key advantages of iVUN compared to existing tools. The
second key advantage is the linking of many different
views (see Figure 2). iVUN provides a graph view to
visualize the BRN, as well as secondary views depicting
the time-dependence of samples (line plots), correlations
between samples (scatter plot, correlation matrix), and
statistics of samples (tables containing mean and var-
iances). As the selection of elements in the secondary
plots results in highlighting of the respective elements in
the graph view, the user can explore the model properties
without going forward and backward between plots and
model equations. This allows for an improved under-
standing and a faster perception of the properties. A user
study proved that a variety of questions can be answered
using iVUN while accounting for the preferences of the
individual users [6].
As illustrated in the case study of Epo-induced JAK2/

STAT5 signaling, also new insight can be gained using
iVUN. Concerning the parameters, one finding is that
strong pairwise correlations occur mainly between para-
meters which are in close proximity to each other in the
graph. With respect to output, state, and flux uncertain-
ties, we could improve the understanding of uncertainty
propagation across the layers in the presence of conserva-
tion relations.
Furthermore, due to its extensions compared to the

previous version [6], iVUN allows for a detailed analysis
of the agreement of model and data, as well as for the

comparison of dynamic properties across different
experimental conditions.
Beyond the analysis of BRNs governed by ODEs, iVUN

is also capable of supporting the analysis of stochastic
dynamics. iVUN merely requires a representative set of
trajectories to evaluate the statistics. This set can also ori-
ginate from a stochastic description of the BRN using, e.g.,
stochastic differential equation [36] or continuous time
Markov processes [37], or a combination of parameter
uncertainties and stochastic effects. Furthermore, besides
sample-based Bayesian confidence intervals also other
types of confidence intervals can be considered, e.g., pro-
file likelihoods based confidence intervals [38,39].
In the future, we plan to extend the capabilities of iVUN

even further toward a comprehensive analysis tool for
BRNs. We want to allow for the abstraction of signaling
pathways by aggregating subnetworks. To this end, the
users will be enabled to define supernodes that represent
these subnetworks. This is crucial as models become more
and more complex. In addition to this coarsening, we want
to allow for the assignment of detailed meta-information,
e.g., references to the different species and reactions.
Furthermore, additional views are planned for the assess-
ment of high-dimensional dependencies, e.g., parallel coor-
dinate plots, and we are awaiting the feedback of additional
users. In summary, this paper introduced the software tool
iVUN which has been devised for the study of graphs with
uncertain, dynamic attributes. Using a model of the Epo-
induced JAK2/STAT5 signaling pathway, the advantages of
visual analytic approaches for the analysis of BRNs has
been demonstrated on a real-world problem. While the
tool is certainly not limited to this application, there is a
particular need for uncertainty-aware visualizations. To
inspire other researches to work on this problem and to
test their methods, we propose the Epo-induced JAK2/
STAT5 signaling pathway as a benchmark problem and
provide all data at http://www.vis.uni-stuttgart.de/iVUN.

Availability and requirements
iVUN is implemented in the Java™ programming lan-
guage. For the network visualization, the Java Universal
Network/Graph Framework Version 2.0.1 [40] is used. As
basis for the diverse plots, including line plots, histograms
and scatter plots, we use the Java library JMathTools [41].
The software and detailed documentation are available at
www.vis.uni-stuttgart.de/iVUN. Furthermore, this web
page provides all data for the case study and a description
of how the plots shown in ‘Results and Discussion’ were
obtained.
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