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Summary 

The gram negative bacterium Pseudomonas aeruginosa represents a major burden in public 

health. It causes a wide range of infections, from urogenital tract to blood stream infections. 

Broad metabolic capabilities, several antibiotic resistances and virulence factors complicate 

treatment of P. aeruginosa infection. Therefore novel diagnostic methods and drug targets for 

improved therapy are needed. The ERA-Net Pathomics project aims to find such novel 

diagnostic strategies and targets by combining different approaches. This work was part of 

metabolomics studies on different P. aeruginosa infection models. 

Metabolomics, the global investigation on a organisms or systems metabolism, is from all 

“omics”-levels closest to the observed phenotype and allows to elucidate direct effects of 

infection on a hosts metabolism. 

Different non-targeted metabolomics methods, including ICR-FT/MS and UHPLC-UHR-ToF-

MS have been developed and applied two different infection models. On the one hand 

Caenorhabditis elegans, a convenient model for studying host-pathogen interactions was used. 

Within this infection model two different strains of this nematode, daf-2 and fer-15 have been 

challenged with fully virulent or attenuated P. aeruginosa and Salmonella enterica. Analysis of 

obtained data revealed specific metabolic response for each condition. Especially energy 

metabolism was heavily influenced by infection. On the contrary, HeLa cells infected with P. 

aeruginosa showed a specific profile in the cells lipid signature. Lastly, to study the influence of 

the bacterial virulence factor ExoY, cells expressing this protein were subjected to metabolome 

analysis. Similar to the C. elegans model a big influence on the central carbon metabolism was 

found. 

Integration of data from all models showed that P. aeruginosa infection greatly influences 

the host’s metabolism. Results from the used non-targeted metabolomics platforms provided 

novel hypothesis, which have to be proven in more sophisticated setups. In conclusion, 

metabolomics holds great opportunities in infection research as diagnostic tool or for 

elucidation of drug targets. 
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Zusammenfassung 

Das gram-negative Bakterium Pseudomonas aeruginosa repräsentiert ein großes Problem 

für die allgemeine Gesundheit und versucht eine breite Palette von Infektionen, von 

urogenitalen bis zu Infektionen der Blutbahn. Ein breites, metabolisches Potential, Resistenz zu 

vielen Antibiotikan und verschiedenste Virulenzfaktoren erschweren eine erfolgreiche 

Behandlung. Deshalb werden neue Wege zur Diagnose und neue Ansatzpunkte für 

Medikamente benötigt. Das ERA-Net Pathomics Projekt zielt darauf ab diese neuen Strategien 

durch verschiedenste Herangehensweisen zu entwickeln. Diese Arbeit war Teil von 

metabolomischen Studien an verschiedenen P. aeruginosa Infektionsmodellen. 

Metabolomik, die globale Analyse des Stoffwechsels eines Organismus oder Systems, ist 

von allen “Omics”-Ebenen dem Phänotyp am nächsten and ermöglicht direkte Effekte einer 

Infektion auf den Metabolismus zu identifizieren. 

Verschiedene nicht-zielgerichtete Metabolomanalysenmethoden, inclusive ICR-FT/MS und 

UHPLC-UHR-ToF-MS wurden entwickelt und zur Analyse von zwei verschiedenen 

Infektionsmodellen angewandt. Auf der einen Seite wurde Caenorhabditis elegans, ein 

praktischer Modelorganismus für die Studie von Wirt-Pathogen-Interaktionen, benutzt. Zwei 

verschiedene Nematodenlinien, daf-2 und fer-15 wurden entweder mit virulenten oder in der 

Virulenz abgeschwächten P. aeruginosa und Salmonella enterica infiziert. Analyse der 

erhaltenen Daten zeigte, dass für jeden Zustand ein spezifisches, metabolisches Muster 

vorhanden ist, wobei besonders der Energiestoffwechsel während der Infektion beeinträchtigt 

ist. Zum anderen zeigten mit P. aeruginosa infizierte HeLa-Zellen ein verändertes Lipidprofil. 

Zuletzt wurden HeLa-Zellen die den bakteriellen Virulenzfaktor ExoY expremieren 

Metabolomeanalysen unterzogen, um den Effekt dieses Proteins isoliert zu studieren. Ähnlich 

den Ergebnissen des C. elegans-Model war ein erheblicher Einfluss auf den zentralen 

Kohlenstoffwechsel zu sehen. 

Integration aller erhaltenen Daten zeigte wie Infektion mit P. aeruignosa den Stoffwechsel 

des Wirts beeinträchtigt. Ergebnisse der verwendeten nicht-zielgerichteten 

Stoffwechselanalyse zeigten neue Hypothesen auf, welche mit spezialisierten Experimenten 

bewiesen werden müssen. Zusammenfassend lässt sich sagen, dass die Metabolomik ein 

hervorragend geeignetes Werkzeug für die Diagnostik und das Auffinden neuer Ansatzpunkte 

für Wirkstoffe darstellt. 
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1 Introduction 

 

 

1. Introduction 

Abstract 

Metabolomics is the newest offspring of the “omics”-technologies. It is based on the 

systematic investigation of an organism’s metabolism and uses high-end analytical chemistry 

methods, like UHPLC-MS, ICR-FT/MS or NMR. Different analytical methods used in 

metabolomics are introduced. Furthermore the organisms used in this work, Pseudomonas 

aeruginosa, Caenorhabditis elegans and HeLa cells are introduced and metabolomics work 

carried out on them is shortly reviewed. Lastly, project objectives and aims are presented. 

Parts of this chapter were published in: 

Witting M., Lucio M., Tziotis D., Schmitt-Kopplin P., Ultrahigh Resolution Mass Spectrometry 

Based Non-targeted Microbial Metabolomics, in Suhre “Genetics meets Metabolomics”, 

Springer (2012) 
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1.1 Metabolomics - Integrated studies of metabolism 

1.1.1 Life, Biochemistry, Metabolism and Metabolomics 

Five attributes define life: motility, growth, testiness, reproduction and metabolism, 

whereas the last mentioned is the most important because it supplies energy and substances 

needed for all other attributes. Studying metabolism was the first objective in biochemistry 

and is a major part of it since decades, analyzing single enzymatic catalyzed reactions or 

substance classes. Through the last ten years paradigm changed to a systematic investigation 

of metabolism, not least analytical technologies became more powerful and “classical” 

biochemistry therefore was rediscovered [1]. Scientists realized that genes, transcripts or 

proteins cannot tell the whole story and metabolism plays a bigger role than just supplying 

energy and chemical building blocks. Figure 1 illustrates the central role of metabolites in 

different biological processes. 

 

Figure 1: Metabolites play a central role in all biological processes. 
Adapted with permission from PD Wolfgang Eisenreich, Faszination Forschung 8/11. Metabolites play a central role 
in life. They supply energy and chemical building blocks for all others attributes that define life. Furthermore they 
play essential role in different regulatory motif and in signal transduction. 

The word metabolism derives from the Greek word “Μεταβολισμός”, which means change. 

Santorio Santorio was the first scientist doing systematic research on metabolism beginning in 

the year 1611. He weighed himself, the meals he ate, his urine and feces over a period of thirty 

years. He showed that the weight of his feces was smaller than what he ate, suggesting the 

theory of insensible perspiration for compensating this difference [2]. Louis Pasteur studied the 

fermentation of sugar to alcohol by yeast in the 19th century. He concluded that the conversion 

was performed by substances within the yeast cell he called “ferments”. Together with the 

publication of the synthesis of urea by Wöhler in 1824 it was shown that life is underlying the 
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same principles known from chemistry [3]. Another pioneer of metabolism research was Hans 

Krebs discovering the tricarboxylic acid cycle (TCA cycle), which is also named after him (Krebs 

cycle) [4]. A further breakthrough was the discovery of the regulation of the cholesterol and 

fatty acids metabolism, by Feodor Lynen [5]. Since this time several new metabolic pathways 

have been discovered in different species. One of the recent discoveries was the reverse TCA 

cycle found in bacteria acting as reductive CO2 fixation [6]. 

Generally metabolism can be divided into two branches, anabolic, the up building, and 

catabolic, the degrading metabolism. Anabolic reactions deliver chemical building blocks for 

biological macromolecules like DNA, RNA and proteins and other molecules need for cellular 

functions like lipids or co-enzymes. Catabolic metabolism breaks down bigger molecules to 

obtain energy and precursors for anabolic metabolism and detoxifies xenobiotic substances 

[7]. Metabolites can be divided in several chemical classes, like sugars, small organic acids, 

amino acids, fatty acids, lipids, nucleotides and many more. Chemical reactions, catalyzed by 

enzymes, converting metabolites into each other are grouped in biochemical pathways, which 

again form a dense network. Examples for central pathways of metabolism in most organisms 

are glycolysis, the TCA cycle and the pentose phosphate pathway. All together supply energy 

and precursors for several amino acids and nucleotides. Furthermore the TCA cycle delivers 

redox equivalents in form of NADH and FADH2 needed for the synthesis of adenosine 

triphosphate (ATP), the universal energy currency of cells. The pentose phosphate pathway 

delivers NADPH needed for biosynthesis of molecules. Excessive energy is stored in form of 

fats, which can be degraded if needed and fed into the TCA cycle. Several more pathways e.g. 

for the synthesis of purines and pyrimidine’s, amino acids, lipids, hormones and many more 

metabolites are known. Major metabolic pathway are shared over a broad range of organisms, 

but each organism or organism group poses specific biosynthetic routes for secondary 

metabolites, which fulfill specific functions adapted to the ecological niche an organism lives 

in. Furthermore different species have different capabilities in degrading xenobiotics or 

pollutants. 

 

Figure 2: Catabolic and anabolic metabolism is interwoven through ATP and redox factors, like NADH or NADPH. 
Adapted with permission from [8]. 
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Anabolic and catabolic metabolisms are tightly coupled through availability of energy and 

redox factors, as shown in Figure 2. The cell as smallest way of life tightly regulates internal 

conditions through feedback loops and other regulatory motifs to stabilize health and function 

regardless of external conditions. This phenomenon is known as cellular homeostasis. This 

makes the analysis of metabolism an interesting field, as the cell is reordering metabolic fluxes 

as reaction to an external stimulus like infection or depletion of nutrients. Analysis of 

metabolism with analytical chemistry techniques is nowadays called metabolomics, growing 

fast, compromising to close the gap between genotype and phenotype [9, 10]. 

Fluxes in the metabolism are directed using regulatory enzymes. These enzymes are mostly 

catalyzing a rate-limiting or committed step, like early steps in a pathway or steps were energy 

is required. Regulatory mechanisms in metabolism can be divided into three categories: Non-

covalent interactions, covalent interactions and changes in the abundance of an enzyme 

Non-covalent interactions include availability of substrates and allosteric activation or 

inhibition. Allosteric acting molecules are either end products of a pathway (feedback 

inhibition), substrates of a pathway (feed-forward activation) or indicators of the cells energy 

status (e.g. ATP). Also protein-protein interactions are part of this category. Examples for 

covalent interactions are phosphorylation and dephosphorylation regulating enzyme activity. 

This signal is often transduced using cascades of enzymes. In the case of changing abundance 

gene expression of a specific enzyme is altered according to an external stimulus through a 

receptor or a cellular signal. Enzymes can be divided into constitutively expressed or inducible 

enzymes. Constitute enzymes normally have housekeeping functions like catalyzing steps in 

the glycolysis pathway [7]. 

These regulatory events cannot be deduced from the genome or the transcriptome. 

Methods closer to the phenotype of a cell or organism are needed. Proteomics for examples is 

able to identify post-translational modified proteins, whereas metabolomics is capable of 

measuring metabolite levels and metabolic fluxes. 

A reasonable question is why the analysis of small molecules got its warranty beside other 

“omics” technologies. The following points may answer this question [11]. 

 Many clinical assays target small molecules, from glucose in diabetes to 

triacylglycerol’s or cholesterol 

 Most of all known drugs are small molecules and a big proportion of them derive from 

preexisting metabolites. 

 A big proportion of the identified genetic disorders involve diseases of metabolism. 
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 Metabolites serve as important cofactors, ligands and signaling molecules for 

thousands of proteins. 

Although metabolomics may be still in its infancy it is rapidly catching up to the other 

“omics” sciences. 

1.1.2 Metabolomics and other “omics”-science 

Metabolomics is defined as the systematic study of metabolites in a biological system. It is 

the youngest approach in the “omics” family, including genomics, transcriptomics and 

proteomics. The metabolome is defined as the sum of all metabolites given in a biological 

system under particular physiological conditions. It can be divided into the exometabolome 

(metabolites outside the cell) and the endometabolome (intracellular metabolites). The term 

metabonomics was defined by Jeremy Nicholson in 1999 as "the quantitative measurement of 

the dynamic multiparametric metabolic response of living systems to pathophysiological 

stimuli or genetic modification" [12]. First measurements of metabolites in body fluids have 

already been carried out earlier without calling it metabolomics, e.g. the pioneering work of 

Linus Pauling [13]. In contrast to transcripts and proteins, metabolites are not encoded in the 

genome and are highly dependent on the surrounding environment, making it complicated to 

give definite numbers of metabolites present in an organism. 

Metabolomics is applied in different research areas, from fundamental research to medical 

science. Metabolites are measured on routine basis from different origins like different body 

fluids, bacterial or cell cultures, tissues, microbiomes or even ocean water. Urine and plasma 

are the most employed body fluids in medical metabolomics and are used for diabetes or 

nutrition research, for example. Toxicological studies, biomarker and target discovery, clinical 

trials and studies are other topics of interest. Beside these applied areas, research in plant and 

bacterial physiology are occupying a big part of metabolomics science. 

In the classical biological view information flows from genes via transcripts to proteins 

which are finally carrying out cellular functions, like metabolism. By this metabolomics is 

closest of all levels to an observed phenotype [9]. Redirection of metabolic fluxes takes 

normally seconds, while the expression of a protein from a gene ranges from several minutes 

to hours. Compared to the genome the metabolome is relatively small, ranging from several 

hundred different metabolites in simple bacteria to ten thousands in plants (Figure 3). By far 

not all metabolites and metabolic pathways are known yet, as functions of several genes are 

unknown and possible secondary functions of enzymes exist. Metabolomics gains more and 

more attention as a tool able to supply biomarkers for improved diagnostics and deeper 



 

  

6  

insight in pathophysiological states. Furthermore integration of all “omics”-sciences to create a 

model of a living system is the ultimate goal of system biology. This joining of data provides 

insight in transcriptional regulation, regulation on protein and metabolite level. Lastly, biology 

is dynamic and doesn´t separate between this man-made levels. 

Table 1 gives a short overview on common definition of “omics” sciences and related 

objects. Currently, several sub groups out of these disciplines are evolving, like lipidomics, 

which is discussed later or glycomics, peptidomics and others. Normally these refer to the 

analysis of a certain metabolite subgroup like sugars or peptides. 

Table 1: Definition of "omics"-sciences and related objects 
Adapted with permission from [14]. 

Term Definition 
Genome Whole set of genes of an organism. 

Transcriptome 
Set of all RNA molecules of a cell, organ or organism, including mRNA, 
tRNA, rRNA and non-coding RNA. 

Proteome 
Set of all proteins expressed in a cell, organ or organism under specific 
conditions at a given time. 

Metabolite 
Small molecules (low-molecular-weight (<1500)) that participate in 
general metabolic reactions and that are required for the 
maintenance, growth and normal function of a cell 

Metabolome 

The total sums of metabolites of a given biological system under 
particular physiological conditions. The metabolome is divided into 
exometabolome (metabolites outside the cell) and endometabolome 
(intracellular metabolites) 

Metabonome 
The sums, products and interactions of all the individual 
compartments/metabolomes (including extra-genomic sources) 
dispersed in a complex organism; the “Global” System. (J. Nicholson) 

Metabolite 
Small molecules (low-molecular-weight (<1500)) that participate in 
general metabolic reactions and that are required for the 
maintenance, growth and normal function of a cell 

Metabolomics 
Identification and quantification of all metabolites in specified cellular, 
biofluid or tissue section. 

Metabonomics 

The quantitative measurement of the time related multi-parametric 
metabolic response of living system to pathophysiological stimuli or 
genetic modification [12]. It evaluates tissue and biological fluids for 
changes in endogenous metabolite levels effects of a disease or a 
therapeutic treatment. 

Metabolic profiling 

Quantitative analysis of set of metabolites or derivative products 
(identify or unknown) in a selected biochemical pathway or specific 
class of compounds. This includes target analysis, the analysis of a 
very limited number of metabolites, e.g. single analytes as precursors 
or products of specific biochemical reactions. 

Metabolic 
fingerprinting 

Unbiased, global screening approach to classify samples based on 
metabolite patterns or “fingerprints” that change in response to 
disease, environmental or genetic perturbations with the ultimate goal 
to identify discriminating metabolites. 

Metabolic 
footprinting 

Called also exometabolomics, it is the observation of what a cell or 
system excretes under controlled conditions [15] 
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Against the classical view, nowadays interaction between all layers is thought to be tighter. 

Metabolites are involved in several regulatory motifs, not only in metabolism. For example 

polyunsaturated fatty acids play important roles in immune response of mammals and other 

animals [16, 17]. The goal of systems biology to understand the network of all molecules that 

make up life is today reachable. Next generation sequencing allows the sequencing of 

complete genomes in days. Transcriptomes can be determined using expression arrays, RT-

qPCR and also next generation sequencing of transcripts in quantitative manner. Today, the 

major bottleneck in genomics is the annotation of genes, which is mostly based on homology 

comparison with known genes. With this approach only 40-60% of a genome can be 

annotated, because for a big number of genes function is unknown or no homologues exist. 

Metabolomics holds the opportunity to assign possible functions to orphan genes. One way to 

assign functions to unknown genes is the generation of knock-out mutants and the 

measurement of their respective metabolome. This can be repeated for all genes an organism 

carries and the data can be integrated in a holistic gene-metabolite correlation network, which 

allow the creation of hypothesis about a gene function [18]. 

 

Figure 3: Genes, transcripts, proteins and metabolites are acting together in a tight network to build up life. 
Adapted with permission from [19]. Information flows from genes via transcripts and proteins to metabolites, 
whereas several feedback loops are possible. While the number of genes, transcripts or proteins is bigger than the 
number of metabolites, these are more chemically diverse than the others. The right column illustrates different 
methods used today for measurement of the different “omics”-levels. 

The same is true for the metabolites themselves. From metabolomics experiments 

maximum 30% of the signals can be annotated to known compounds. Some of the remaining 

70% may consist of other adducts, neutral losses, homo- or heterodimers or fragments. Still, 

taking all this possibilities into consideration, a big proportion remains unknown. At this point 
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ultra-high resolution analytics come to the fore, allowing more precise separation, detection 

and interpretation of this unknowns. 

1.1.3 Non-targeted and targeted metabolomics 

The terms metabolomics and metabonomics are often used synonymous in literature. To 

avoid any confusion the expressions non-targeted and targeted metabolomics are widely used. 

Non-targeted metabolomics refers to hypothesis-free elucidation of metabolism. The aim in 

non-targeted metabolomics is to detect as much metabolic features from different metabolite 

classes as possible. The major goal is to identify metabolic alterations and pattern that 

correlate with a certain physiological state. Non-targeted metabolomics approaches are data 

and work intensive, mostly generating hypothesis during analysis, which has to be proven 

afterwards. The counterpart is targeted metabolomics, which is analyzing and quantifying only 

a subset of metabolites, e.g. compounds belonging to energy metabolism. Several analytical 

techniques are used in both approaches. Non-targeted metabolomics is mostly based on high 

or ultrahigh-resolution mass spectrometric methods, like Q-ToF-MS or ICR-FT/MS, or NMR, 

whereas targeted metabolomics prefers very sensitive and fast techniques, like triple 

quadrupole MS. The border between both is blurring. 

1.1.4 Lipidomics 

Lipids fulfill several cellular functions, from storage of energy, building blocks of 

membranes to signaling molecules. Phospholipids serve as integral parts of the membrane for 

separation and compartmentalization of cells; moreover these membranes serve as scaffolds 

for interactions along membrane-associated moieties. Also for host-pathogen interactions 

membranes play crucial roles, because they are the first line of defense against pathogens. 

Several lipids act as second messengers of signal transduction for example lysolipids, 

phosphoinositides and steroids. Phosphatidylcholines represent the major species of lipids in 

eukaryotes and they are building the lipid bilayer of membranes. An overview on different lipid 

classes can be found in Figure 4. 

The complementary method to metabolomics measuring lipids of a system is called 

lipidomics. This is a challenging task, because virtually thousand to ten-thousand different 

lipids exist. Phospholipids for example are built out of different building blocks, like different 

head groups and length of fatty acids. Additionally the first side chain can be linked through an 

ester, enol ether or ether bond. Number and position of double bonds further boosts the 

chemical space of lipids. For a systematic classification of lipids the LIPIDMAPS classification 

system is the most used system. It divides lipids in the major classes fatty acyls (FA), 

glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids 
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(PR), saccharolipids (SL) and polyketides (PK) with several subclasses. A comprehensive 

database has been accumulated by the LIPIDMAPS consortium and is accessible via the web 

(www.lipidmaps.org) [20]. Several lipids have similar physicochemical properties, which 

complicates their analysis. Nowadays two different type’s lipid analyses are performed: lipid 

profiling or shotgun lipidomics. The later uses the raw lipid extract directly infused into MS and 

data dependent acquisition for precise quantification of lipid species. Normally this type of 

analysis is carried out on ion trap MS using MSn. For selection of lipid species, neutral losses 

corresponding to the different head groups are used and the resulting fragment is further 

fragmented to obtain fatty acid chain composition. The major drawback is that this method 

cannot separate isomeric species. Lipid profiling uses chromatographic separation of lipid 

species followed by mass spectrometric detection and allows differentiation of isomeric lipid 

species. Several chromatographic methods exist, for example HILIC or normal phase 

chromatography for separation of different lipid classes or reversed phase separation for 

detection of single species. A common lipid profiling method uses C8 reversed phase columns 

and ACN/iPrOH gradient [21]. This method allows detection of phospho- and glycerolipids in 

one single run. 

 

Figure 4: Examples for different lipid classes found in biological samples 
(A) Fatty acids are the simplest lipids and serve as building blocks for phospholipids and glycerolipids. (B) 
Triacylglycerol’s are highly effective energy storage molecules. (C) Different classes of phospholipid exist. They are 
separated by their different head groups attached to the diacylglycerol backbone. The side chain at sn1 can be 
bound by and ester enol-ether or ether bond. (D) Sterols, sterol ester and their derivates present a further highly 
unipolar lipid group 
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Sterols, sterol ester and derivates of them have a special roles and are used as hormones 

and integral membrane constituents. These molecules are highly non-polar and hard to ionize 

in ESI. Special ionization methods like APCI or APPI are needed to analyze them. Steroidomics 

is subcategory of lipidomics focusing on the analysis of steroid molecules. The term was 

created by William Griffiths [22]. 

1.2 Analytical approaches – Towards ultrahigh resolution 

metabolomics and lipidomics 

To explore the metabolome or lipidome of a given organism several analytical techniques 

are needed. Today no method is able to cover the full metabolome. Using ultrahigh resolution 

analytical approaches can help to minimize the effort for metabolite identification. Current 

methods used in metabolomics are shortly reviewed in the following paragraphs. 

1.2.1 Ion cyclotron resonance – Fourier transform mass spectrometry (ICR-FT/MS) 

Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS), having a 

resolution up to 1,000,000 and more and a mass accuracy <0.1 ppm, is used as profiling 

technique in metabolomics. It allows annotation of potential metabolites and calculation of 

possible elemental formulas using exact mass information. The first time ICR-FT/MS was 

described for non-targeted metabolomics was published by Asaph Aharoni in 2002. His group 

investigated the changes in ripening strawberries. The high resolution made it possible to see 

different metabolites between green and red strawberries even in a window of 0.1 Da [23]. 

Since this time a whole bunch of paper describes the use of ICR-FT/MS for metabolomics 

studies, which are reviewed elsewhere. Automation of data acquisition is easily accessible 

using autosamplers for flow injection or automated robotic devices, like the Advion TriVersa 

Nanomate, for sample infusion [24-26]. 

ICR-FT/MS is a mass analyzer based on cyclotron motion of ions in a homogenous high 

magnetic fields [27]. After ionization of the analytes by electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI), atmospheric pressure photo ionization (APPI) 

or matrix assisted laser desorption ionization (MALDI) as either positively or negatively charged 

ions they are focused by ion lenses transferred into the magnetic field of a superconducting 

magnet, where an oscillating electric field excites the ions to higher trajectories. The masses 

are then resolved by their different cyclotron (rotational) frequency of the ion rotation in the 

magnetic field. If a moving molecule with a mass m and an electric charge q (q=n∙e) is 

transferred into a magnetic field B which is orthogonal to the ion's velocity v, the Lorentz force 

FL acts on the ion. 



 

  

11 Introduction 

         

Equation 1: Lorentz force 
The equation describes the Lorentz force that acts on point charge q the passes a magnetic field B with the velocity 
ν. FL = Lorentz force. q = charge. ν = velocity. B = magnetic field. 

In the homogenous magnetic field, the moving charge has a constant velocity and moves on 

a stable circular trajectory with the radius r. Their by the centrifugal force equilibrates the 

magnetic force. 

    

 
            

 

 
 
   

 
 

Equation 2: Equilibrium between centrifugal and Lorentz force 
Against the Lorentz force works the centrifugal force, which rule out each other. m = mass. ν = velocity. r = radius of 
trajectory movement. q = charge. B = magnetic field. 

The angular velocity ωc, also called as cyclotron frequency is only a function of m/z-ratio 

and the magnetic field strength B. Because of the right-hand rule positive and negative ions 

have contrary courses. 

   
   

 
     

 

   
 

Equation 3: Angular velocity 
The angular velocity ωc is only a function of the mass-to-charge ration m/z and the magnetic field strength. ωc = 
angular velocity. q = charge. B = magnetic field strength. m = mass. 

An additional alternating electric field orthogonal to the magnetic field causes the cyclotron 

resonance of a certain m/z-ratio. This field is applied between a pair of plates, called excitation 

plates. If the electromagnetic wave has the same frequency as a certain ion in the cyclotron 

cell, the resonance (absorption of energy) as consequence increases the ion’s kinetic energy 

hence increase the radius of its trajectory. The excited oscillating ions are detected with a 

second pair of plates, rotated 90° to the excitation plates. The passing ions induce an 

alternating current between the detection plates. This so called image current is a 

superimposition of several frequencies caused by several ions of different masses. Fast Fourier 

transformation is used to convert it to a mass spectrum. 

ICR-FT/MS can reach high mass resolutions R, sometimes also referred as resolving power. 

  
 

  
 

Equation 4: Definition of mass resolution 
R = resolution. M = mass. ΔM = peak width at 50% of the peak height. 

M is the mass of an ion and ∆M is typically the peak width at 50% of the peak height, also 

called full width at half maximum (FWHM). But not only resolving power is important, mass 
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accuracy plays a crucial role for identification of metabolites. The mass error is often reported 

in ppm, meaning error in part per million. 

     
                       

         
        

Equation 5: Definition of ppm error 
The ppm error is a relative mass error used in mass spectrometry. 

Working with high-resolution instruments it is needed to take also the mass of a electron 

(5.485799∙10-4 u) into account. At 200 Da, 400 Da and 800 Da, the mass of an electron would 

yield errors of 2.74, 1.37 and 0.69 ppm, respectively. 

The determined exact masses can be used to calculate possible elemental formulas. 

Chemical formulas can be understood as linear combination of elements with distinct 

monoisotopic masses, following several chemical rules [28]. Using these rules, it is possible to 

calculate formulas out of exact masses obtained from ICR-FT/MS. Due to the high resolving 

power only a few different formulas fit the exact mass, which narrows down the list of 

potential candidates. Additionally isotopic information can be used to confirm the predicted 

formulas. 

 

Figure 5: Principles of ICR-FT/MS 
(A) Principle of ICR-FT/MS as explained in the text. E = excitation plates, D = detection plates. B = magnetic field (B) 
Influence of resolution on measurement accuracy. In red, a snapshot of a mass spectrum of a bacterial extract from 
Pseudomonas aeruginosa PA14 measured in positive ionization mode with a resolution of >100,000 is shown. In 
blue, the same spectrum down scaled to a resolution of 10,000. (C) Typical ICR-FT/MS instrument. 

To take advantage of the high resolving power and mass accuracy of an ICR-FT/MS in 

metabolomics, it is mostly utilized in direct infusion (DI) mode without prior metabolite 

separation using chromatographic or electrophoretic methods. This technique has some 

drawbacks, as isomeric, like hexoses for example, and isobaric substances can´t be separated. 

A second disadvantage is ion suppression often observed in DI-MS. Despite this, DI-ICR-FT/MS 

is a very robust and sensitive technique, being high-throughput capable and sample 
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consumption is minimal. To overcome the effects of ion suppression and to separate isomeric 

substances the ICR-FT/MS can be coupled at-line to a chromatographic separation. The crude 

metabolite extract is separated with a suitable chromatographic method and fractions are 

collected over the whole chromatographic run, which are in second step conducted to DI-ICR-

FT/MS [29]. 

1.2.2 Hyphenated ultrahigh resolution Time of Flight Mass Spectrometry 

Time of Flight (ToF) mass spectrometers provide high mass resolution and are fast enough 

for online coupling of different separation techniques. The newest generation of ToF 

instruments delivers resolutions up to 60,000 and mass accuracies smaller 2 ppm. 

Despite gas chromatography – mass spectrometry (GC-MS), liquid chromatography – mass 

spectrometry (LC-MS) is widely used in metabolomics. Metabolites are separated with a 

suitable chromatographic method, mostly reversed phase (RP) or hydrophilic liquid interaction 

chromatography (HILIC), which is coupled to a MS [30-32]. Classical high-performance liquid 

chromatography (HPLC) is more and more replaced by ultrahigh-performance liquid 

chromatography (UHPLC). The most frequent used MS are triple quadrupole MS (QQQ-MS), for 

targeted and quadrupole-Time of Flight MS (Q-ToF-MS) for non-targeted metabolomics. 

UHPLC-MS allow high resolution separations of molecules using sub-2µm particles in the 

chromatographic bed. The analysis time can be significantly reduced and separation improved. 

It is ideally suited for complex matrices used in metabolomics. Furthermore, no or reduced ion 

suppression is observed in UHPLC-MS allowing more precise quantification of metabolites 

compared to DI-MS. A second promising approach for metabolomics is the use of two 

dimensional chromatographic separations, with orthogonal chemistries, increasing peak 

capacity dramatically [33]. In proteomics a combination of ion-exchange and RP 

chromatography or RPxRP (two RP separations at different pH) is used for the separation of 

intact proteins or peptides from protein digests. The separation can be carried out off-line, 

collecting fractions from the first dimension and re-injecting them on the second or on-line 

using valve systems and trapping loops or columns. In both cases, analysis is time consuming 

and the application is rather suited for in-depth exploration of metabolomes than high-

throughput analysis. 

Chromatographic separation of metabolites offers several advantages over direct infusion, 

although they are more time consuming. Separation improves ionization yields, due to 

reduced ion suppression. This allows better quantification of metabolites. Furthermore, 

isobaric and isomeric molecules can be separated. Moreover, using fractionation strategies 

purification of unknown, novel metabolites is feasible. 
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Different modes of separation are employed, depending on the application. Reversed phase 

chromatography (RP) is the most used separation type. A non-polar stationary phase like C8 or 

C18 and mobile phase gradients from water to an organic solvent like methanol or acetonitrile 

are used. Typically mid- to non-polar metabolites are separated on RP columns. The use of ion 

pairing reagents allows also the separation of highly polar metabolites on RP columns [34]. 

Lipid species can be separated on a C8 column with an isopropanol gradient [21]. For 

chromatography of polar metabolites hydrophilic liquid interaction chromatography (HILIC) 

with bare silica or chemically hydrophilic modified silica columns and gradients from organic 

solvents to water are used. This method is not as widespread as RP, but application of 

metabolite separation using HILIC is growing [30]. 

Major problems with chromatography are overlapping peaks and retention time shifts, 

which can be overcome by deconvolution, addition of retention time marker and alignment of 

the obtained data. For this purpose several open source software like mzMine, metalign and 

other or commercial software like Genedata Expressionist Refiner MS or MarkerLynx exist [35, 

36]. All software work in similar ways and produce data matrices with samples, 

chromatographic features and a response value, for example peak area or maximum intensity, 

which are suitable for further analysis by uni- and multivariate statistics. 

 

Figure 6: Principals of Q-ToF-MS 
(A) Typical UHPLC-UHR-ToF-MS instrument. (B) Schematic drawing of a Q-ToF instrument. The first quadrupole 
serves as mass filter, the second as collision cell for MS/MS experiments and ion masses are detected in the ToF 
part. (C) Typical 3D chromatogram obtained from a metabolomic experiment. 

Separation of ionic metabolites can be achieved by the use of capillary electrophoresis 

mass spectrometry (CE-MS). Buffer filled fused silica capillaries (30-100 cm long) are conducted 

to high voltages in the range of 10-50 kV. Metabolites are separated based on their 

electrophoretic mobility. Additionally the charged capillary wall induced an electro osmotic 

flow. Electrophoretic mobility depends on charge, size and the applied voltage; moreover 
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temperature, pH and ionic strength are factors influencing migration. Several pre-

concentration techniques are known in CE, together with the coupling to a mass spectrometer 

it allows a very sensitive detection, down to nanomolar concentrations [37, 38]. Up to now it is 

not widely used, due to problems with performance stability. Great care must be taken of 

reagents, buffers and methods. If this can be guaranteed, CE-MS is a highly sensitive and 

powerful technique, especially for the analysis of energy and central carbon metabolism [37]. 

 

Figure 7: Principals of CE 
(A) Typical CE instrument (B) Separation principle of CE. The high voltage applied to the capillary induces an electro 
osmotic flow, which affect all molecules, independent of their charge. The electrophoretic separation is achieved by 
different ion migration in the electric field. Together, electrophoretic and electro osmotic effects separate the ions. 

1.2.3 Nuclear magnetic resonance (NMR) 

Nuclear magnetic resonance (NMR) is used since decades as profiling method in medicine, 

mostly for urine and plasma. It allows the identification and quantification of the most 

abundant metabolites. The physical basis of this method is the measurement of the relaxation 

of resonating nuclei in a magnetic field. In metabolomics mostly 1H-, 13C-, 15N- and sometimes 

also 31P-NMR for phosphorylated compounds are used. A typical NMR experiment consists of 

two distinct steps; first magnetic nuclear spins are polarized with an external constant 

magnetic field. In the second step an electromagnetic pulse is applied to perturb the 

polarization. The frequency for this perturbation is specific for each nuclei and is called 

resonance frequency which directly proportional to the magnetic field strength. Magnets used 

in NMR are categorized according to the frequency of the proton. In a 21 T magnet a proton 

would have resonance frequency of 900 MHz, so that this magnet would be referred as 900 

MHz magnet. The resonance frequency is influenced by the chemical environment of nuclei 

which shields the magnetic field to a certain extent, yielding an effective magnetic field Beff. 

With this every nucleus in a molecule is affected by a slightly different magnetic field and has 

his special resonance frequency, a fact which allows determining structures of molecules. The 

obtained resonance frequencies are relativized to a standard compound, like tetramethylsilane 
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(TMS) and normalized on the operating frequency of the NMR. The normalized variable is 

called chemical shift δ and is measured in parts per million (ppm). 

 (   )  
  (  )

          (   )
 

Equation 6: Definition of chemical shift 
The chemical shift is relativized to standard compound, like TMS. 

13C- and 15N-NMR are insensitive techniques as both nuclei have a low natural abundance 

(1.11% for 13C, 0.37% for 15N), but both are readily applied for structure determination of 

organic molecules. Sensitivity can be enhanced by labeling molecules with 13C or 15N. An 

example was published by An et al., which used in vivo labeling of C. elegans and 13C 

heteronuclear multidimensional NMR for metabotyping of sir-2.1 mutants. The work showed 

that with their developed workflow significantly enhanced sensitivity of about 2 orders of 

magnitude [39]. 

 

Figure 8: A) NMR B) construction 
(A) Typical NMR instrument. (B) 2D-NMR experiments give more information on metabolite structures. An overlay 
of COSY (blue) and TOCSY (red) from a C. elegans extract is shown. COSY is based on spin-spin coupling and is 
certainly useful if in a 1D-NMR spectra are overlapping. TOCSY is also based on spin-spin coupling, but gives more 
information than COSY. 

NMR is most likely to be the perfect profiling method; it is non-destructive, gives 

quantitative and qualitative information and can be easily automated. The major drawback 

compared to MS is its insensitivity, detecting only the most abundant metabolites. As peak 

shifts can overlap, a clear identification is not always possible. In metabolomics NMR people 

are shifting towards 2D NMR, which includes also information of spin-spin coupling. This is 

possible due to technical advances in NMR technology like higher magnetic fields, shortening 

measurement time for 2D NMR spectra. 
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Besides profiling, NMR is also used for structure elucidation of purified metabolites. 

Together with MS it allows a confirmation of possibly annotated metabolites or de novo 

description of novel metabolites. 

The newest approach using NMR is a system together with LC and MS offered by Bruker as 

Metabolic profiler®. This system allows the fully automated collection of LC runs, MS and NMR 

information for complete metabolic profiling. Furthermore a recent study showed that the 

deuterated solvents used in NMR are not interfering with subsequent MS analysis, opening the 

field for combined approaches [40]. 

1.2.4 Comparison of the single methods 

Each of the presented methods has its own advantages and disadvantages, which are 

summarized in Table 2. 

Table 2: Advantages and Disadvantages of different metabolomics methods 
The present methods have different advantages and disadvantages, making them useful for different questions. 
Today no ultimate solution, allowing unambiguous identification and quantification of all metabolites is available. 
Different methods have to be combined to enhance the coverage of the metabolome. 

Method Advantage Disadvantage 

DI-ICR-FT/MS 

- Fast 
- High resolution(> 500.000) 

and mass accuracy 
(<0.2ppm) 

- High sensitivity 

- No separation of isobaric 
and isomeric substances 

UHPLC-UHR-ToF-
MS 

- High resolution (>50000) 
and mass accuracy (<3 
ppm) 

- High sensitivity 
- Separation of isobaric and 

isomeric substances 
possible 

- Slow (gradients from 10 
minutes to several hours 
possible) 

GC-MS 
- High sensitivity 
- Excellent chromatographic 

separation 

- Derivatisation needed 

CE-MS 
- Excellent separation of 

ionic species 
- High sensitivity 

- Unstable compared to LC-
MS 

NMR 

- qualitative (structure) and 
quantitative 
(concentration) 
information in one 
technique 

- Non-destructive 

- Low sensitivity 

 

In this work DI-ICR-FT/MS and UHPLC-UHR-ToF-MS were utilized. Their high resolution and 

mass accuracy enable more precise metabolite annotation than the other methods. Compared 
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to GC and CE, UHPLC offers the advantage of a highly stable separation, even for hundreds of 

injections and no need for derivatisation. The combination of DI-ICR-FT/MS and UHPLC-UHR-

ToF-MS offers several opportunities, which are discussed in chapter 4. 

1.3 Pseudomonas aeruginosa – An opportunistic human pathogen 

1.3.1 General overview on Pseudomonas aeruginosa 

Pseudomonads are with over 50 different species one of the most diverse bacterial groups. 

The high degree of genomic variability and genetic adaptability is a great reason that they can 

be found in nearly every ecological niche. This proteobacterial genus was first described by the 

German botanist Walter Migula [41]. The genus belongs to the family of the 

Pseudomonadaceae, the order Pseudomonadales and the class Gammaproteobacteria. 

Pseudomonas aeruginosa differs from all other species of the genus, because it is an 

opportunistic pathogen of plants and animals [42]. The rod-shaped, gram-negative, aerobe 

bacterium is a major burden in public health. In immunocompromised individuals it causes 

several diseases like pneumonia, urinary tract, surgical wound or bloodstream infections [43-

45]. Furthermore P. aeruginosa is the most lethal gram-negative nosocomial pathogen. In 2000 

the genome sequence of P. aeruginosa PAO1 was published. The 6.3 Mbp long genome 

contains over 5500 open reading frames [46]. Several other Pseudomonas genomes were 

sequenced since this time, including one of the most lethal strains P. aeruginosa UCBPP-PA14 

[47]. 

Table 3: Genome size of several Pseudomonas species 
Data taken from www.pseudomonas.com [48] 

Organism Genome Size (bp) No. genes Year of seq. 

P. aeruginosa PAO1 6,264,404 5683 2000 
P. aeruginosa UCBPP-PA14 6,537,648 5965 2006 
P. aeruginosa PA7 6,588,339 6369 2010 
P. putida F1 5,959,964 5403 2005 
P. stutzeri A1501 4,567,418 4210 2008 
P. fluorescens Pf-5 7,074,893 6233 2005 
P. syringae pv. phaseolicola 1448A 5,928,787 5227 2005 
P. syringae pv. syringae B728a 6,093,698 5172 2005 
P. syringae pv. tomato str. DC3000 6,397,126 5685 2003 

 

A genome wide metabolic reconstruction of the P. aeruginosa PAO1 metabolic network 

showed the broad capabilities of this pathogen. Totally 1056 genes, 1030 proteins and 883 

reactions are used in this reconstruction, whereby 839 were gene-associated and 44 non gene-

associated [49]. These broad metabolic capabilities together with several efflux pumps yields 
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in a strong resistance to antibiotics. Moreover it can even grow anaerobic on nitrate or 

arginine as terminal electron acceptors. P. aeruginosa infections are often found in patients 

suffering from cystic fibrosis (CF). A mutation in the CF transmembrane conductance regulator 

(CFTR) gene leads to a malfunction in the mucociliary clearance of inhaled microorganisms. P. 

aeruginosa is able to establish a chronic infection in the lungs of CF patients. It grows in a 

biofilm encapsulated by an exopolysaccharide called alginate. Beside this P. aeruginosa 

harbors several virulence factors used in infection. Table 4 gives a summary about different 

pathophysiological states caused by P. aeruginosa. One of the most studied P. aeruginosa 

strains is P. aeruginosa UCBPP-PA14. A genetic region, showing only partial similarity to other 

strains, called pathogenicity island 1 (PAPI-1), which contains a cluster of more than 100 genes 

could be the reason. This region is highly mobile and is maybe a reason for the evolution of 

variants with enhanced pathogenicity [50]. 

Table 4: Range of P. aeruginosa infections in man 
Table taken from [51] 

Organ Infection Acute/chronic Origin Prevention 

Eye 
Contact lense 
keratitis 

Acute Water hygiene 

Skin 

Follicolitis 
wound/ulcer 
infection 
Burn infections 

Acute Water hygiene 

Ear External otitis Acute/chronic Water? hygiene 

Nasal sinuses Sinusitis Chronic Water? ? 

Urine bladder 
Urinary tract 
infection 

Acute/chronic ? ? 

Bones 
Diabetic 
osteomylistis in 
feet 

Chronic Water? Hygiene 

Lungs/bronchi 

Ventilator-
associated 
pneunomia 
endobronchiolitis, 
cystic fibrosis, 
bronchiectasis 

Acute 
 
 
Chronic 

Nosocomial 
humdifiers 
 
Nosocomial 
environment 

Hygiene 
 
 
Hygiene, early 
antibiotic 
eradication 
therapy of 
intermittent 
colonization 

Blood 
Sepsis, 
neutropenic 
patients 

Acute ? Antibiotic 
prophylaxis 
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1.3.2 P. aeruginosa virulence factors 

Pathogenic bacteria are using different protein secretion systems to inject effector proteins 

in their surrounding environment or a host cell. Six different secretion systems have been 

described so far [52]. P. aeruginosa carries five of this six and some of them also in several 

copies. The most prominent system is the type three secretion system or T3SS, which is shared 

between several pathogens, like Chlamydia sp., Yersinia enterocolitica, Salmonella enterica or 

Shigella flexneri [53]. The induction of T3SS can be triggered in vitro by Ca2+ chelation in the 

medium, upon effectors are released into the medium. Different strains of P. aeruginosa carry 

different combinations of T3SS effectors, separating cytotoxic from invasive strains. Cytotoxic 

strains carry exoU, exoT and sometimes exoY, an example is P. aeruginosa UCBPP-PA14, 

whereas invasive strains carry exoS, exoT and often exoY, e.g. P. aeruginosa PAO1 [54]. ExoY, 

an adenylate cyclase, converting cellular ATP to cyclic AMP (cAMP) is one of the most potent 

cellular toxins and will be discussed in chapter 5 in more detail [55]. ExoU is a potent 

phospholipase A2, ExoS and ExoT are bifunctional enzymes with GTPase activating function (N-

terminus) and ADP-ribosyltransferaseactivity (C-terminus) [56-58]. An important point for all 

these effectors is that they need a eukaryotic interaction partner for activity, underlying their 

function as effectors in eukaryotic host cells. 

 

Figure 9: P. aeruginosa secretion systems 
Figure adapted with permission from [59]. Five of the six secretion pathways found in Gram-negative bacteria are 
present in P. aeruginosa. Protein transport across the bacterial envelope can be subdivided into Sec-independent 
and Sec/Tat-dependent pathways. Type II (T2SS)-and type V (T5SS)-secreted exoproteins are firstly exported to the 
periplasm by the Sec or the Tat system before crossing the outer membrane by their dedicated secretion pathway. 
In contrast, type I, type III, and type VI (T1SS, T3SS, T6SS) exoproteins are directly taken over in the cytoplasm by 
their cognate secretion machinery. 
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A second major virulence factor in chronic infections, for example in CF patients, is the 

establishment of biofilms avoiding contact of P. aeruginosa with the immune system or 

antibiotic treatment. Biofilms are made of an exopolysaccharide called alginate, composed of 

mannuronic acid and guluronic acid. 

Most of the virulence factors are controlled in population density dependent manner. 

Effectors are released and injected into the host cell after the bacterial community reached a 

certain density. The coordinated gene expression is regulated by a system called quorum 

sensing. Quorum sensing (QS) uses small, diffusible compounds as signaling molecules to 

coordinate certain behavior, like infection. In Gram-negative bacteria acyl homoserine lactones 

(AHL) serve as major signaling compounds. Biofilm formation, swarming motility and 

exopolysaccharide production are quorum sensing dependent in P. aeruginosa. A second 

quorum sensing system beside the AHL system exists and is based on a quinolones and 

regulates the T3SS. 

 

Figure 10: Infection cycle of P. aeruginosa 
P. aeruginosa is able to attach via its pili to a surface, which is followed by an irreversible attachment, loss of the pili 
and proliferation. The growing colony is encapsulated by an alginate matrix and the biofilm matures. After a certain 
time, cell death can occur within the biofilm and cells are changing to free swimming lifestyle again to repeat the 
cycle. 

1.3.3 Metabolomics studies on Pseudomonas 

Several studies focusing on the metabolism of different Pseudomonas species have been 

carried out. Some are focusing on the metabolic capabilities of P. aeruginosa and other on 

differences between planktonic and biofilm growth or on production of QS molecules or other 

secondary metabolites. 

A recent study from E. Frimmersdorf et al. used GC-MS to elucidate how P. aeruginosa 

adapts to different environments. Two different P. aeruginosa strains, PA01 and TBCF10839, 

were grown on either minimal medium with different carbon sources or a complex medium 

containing tryptone. During the exponential phase, metabolites directly available as carbon 
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sources and metabolites belonging to the central carbon metabolism were found in higher 

concentrations, whereas in the stationary phase metabolites connected to production of 

exopolysaccharides, development of biofilms and rhamnolipids were found [60]. A major 

feature of P. aeruginosa associated with CF patients is the change to a mucoid phenotype, 

showing overproduction of the extracellular polysaccharide alginate. The loss-of-function 

mutation of the anti-sigma factor MucA is commonly observed. In a NMR based metabolomics 

study, Behrends et al. showed that MucA modulates osmotic stress tolerance. The mucA22 

gene was mutated in P. aeruginosa PAO1 and supernatants and cell extracts of wildtype and 

mutant were subjected to NMR analysis. Higher levels of valine, methionine and the 

osmoprotectant glycine-betaine in supernatants are correlated with mucA22 mutation. The 

mucA22 mutants was also shown to be more susceptible to osmotic stress than the wild-type 

[61]. The study of biofilms in comparison with planktonic lifestyle was subject of the work of 

Gjersing et al. Also here NMR was employed. 1H HRMAS NMR was used to profile biofilm and 

planktonic cells. PCA revealed differences between both, but significant metabolites were not 

further identified [62]. 

1.4 Model Systems for Host-Pathogen interactions 

1.4.1 HeLa and other mammalian cell culture models 

HeLa cells are immortal cells derived from cervical cancer cells taken from Henrietta Lacks. 

George Otto Gey propagated the cells and provided them to scientific community. The cells 

are widely used in science; over 500,000 articles refer to their use. One of the first uses was 

the testing of a polio vaccine by Jonas Salk in the 1950´s. Beside HeLa cells several other cell 

types are in culture and are used for host-pathogen interactions. Human epithelia airway cells 

are often used for infection models of P. aeruginosa for example. 

In a first work 1986, HeLa cells were used to assess the toxicity of P. aeruginosa culture 

supernatants. It was shown that toxicity of this supernatants is based on high molecular weight 

components [63]. Since this time several other studies using mammalian cell cultures have 

been carried out. One of these studies evaluated the cell internalization of the normally 

extracellular pathogen P. aeruginosa. Ha and Jin showed that invasion of HeLa cells by the 

invasive strain P. aeruginosa PAK is growth phase dependent and suggest that a difference in 

the regulatory mechanism of the T3SS [56]. Until now, no analysis of the effect of P. 

aeruginosa infection on mammalian cell metabolism using metabolomics has been carried out. 
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1.4.2 Metabolomics research in mammalian cell cultures 

Although most applications in human and mammalian metabolomics are focusing on 

matrices like urine, plasma or even CSF, different mammalian cell lines have been used for 

metabolomics research. Most of them evaluate different quenching and extraction methods. A 

recent work by Lorenz et al. describes the comparison of different extraction methods for 

adherent cell cultures. The group used a rapid water rinse step prior to quenching with liquid 

nitrogen to remove remaining components of the culture medium. This rinse step together 

with MeOH/CHCl3 extraction yielded metabolite extracts well suitable for further analysis with 

LC-MS. A closer look was taken especially to metabolites of the central carbon metabolism and 

labile species like ATP, GTP or NADH [64]. Beside this work, several other studies on optimized 

sample extraction for adherent mammalian cell cultures have been carried out. Some of them 

are reviewed in the previous mentioned work. 

A further example for the use of mammalian cells in metabolomics was described by 

Sugimoto et al. In their work the used CE-ToF-MS based metabolites to identify metabolites 

secreted by macrophages upon stimulation with Lipopolysaccharides. Macrophages play an 

important role in inflammatory conditions, for example in periodontal diseases, where they 

lead to destruction of the infected periodontal tissue. It was shown that beside increased 

production of nitric oxide, TNF-α and prostaglandins, glycolysis and TCA cycle activities are 

increased [65]. 

1.4.3 Caenorhabditis elegans 

Caenorhabditis elegans is a widely used model organism in biology. The 65 µm diameter 

and 1 mm long translucent nematode was introduced as model organism by Sydney Brenner in 

the 1960´s. The second major breakthrough was the development of a technique for safe 

freezing and thawing of the worm by John Sulston, 1969. The genome was sequenced in 1998 

and was the first of a multicellular species. Additionally 2003 the genome of the close related 

C. briggsae was sequenced. The C. elegans genome consists of six chromosomes, is 

100,281,426 base pairs long and has over 20,000 genes. The nematode is of hermaphroditic 

nature, only a small number of males exist. This makes genetic modifications easy as they can 

be propagated through generations. Each hermaphrodite consists of exactly 959 and males of 

1031 somatic cells. The normal life cycle of C. elegans consists of four larval stages, named L1 

to L4, and an adult stage. Adult hermaphrodites can lay up to 300 eggs. Under unfavorable 

environmental conditions like low food availability or high population density L1 larvae can 

enter an alternative developmental stage called the dauer stage. This dauer stage is able to 

survive several months without food. If the dauer comes again to contact with food it develops 
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to a L4 larvae (Figure 11). C. elegans can be cultivated on agar plates with bacterial lawns or in 

liquid cultures with Escherichia coli OP50 or HB101 as normal food under laboratory 

conditions. A recent review , compared C. elegans against other widely used model organisms 

[66]. Table 5 summarizes all in the review mentioned advantages. 

Sydney Brenner together with H. Robert Horvitz and John E. Sulston awarded 2002 the 

Nobel Prize for Medicine for their discovery of the programmed cell death using C. elegans. 

Two more Nobel Prizes were awarded using C. elegans, the exploration of RNA interference 

(2006) and the invention of the Green fluorescence protein (GFP) (2008). 

Table 5: Advantages and Disadvantages of C. elegans as model organism 
Table taken partly from [66] 

(+) Advantages and (-) disadvantages of C. elegans as model organism 

(+) Inexpensive/easy to grow 
(+) Genome is available 
(+) Straightforward genetic tools exist 
(+) Short generation time: 2-3 week 
(+) Small; exactly 959 somatic cells 
(+) Invariant development 
(+) Transparent 
(+) Has organs/differentiated tissues 
(+) Mutants can be frozen 
(+)/(-) 50-80% of worm genes homologous to human genes 

 

 

Figure 11: C. elegans is a widely used model organism with a short life cycle. 
(A) Microscopic picture of C. elegans. Taken from [67]. (B) Developmental cycle of C. elegans is made up of four 
larval stages (L1-L4), an alternative dauer stage and the adult stage. 

A lot of C. elegans genes show homology to mammal and human genes, which makes it an 

interesting model organism. For C. elegans the complete cell lineage is known. Nowadays it is 

used in biologic fields like physiology, ecology, genomics, neurobiology, evolutionary biology or 

cell biology. The nematode is also employed in pathogen-host interactions. It is known that 

several pathogens, including P. aeruginosa are able to kill C. elegans. For P. aeruginosa PA14 
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two different modes of killing C. elegans are known, depending on the cultivation medium. 

Bacteria grown on full medium show a “fast killing” of C. elegans by phenanzine poisoning, 

leading to death in 3 to 24 hours, grown on minimal medium, they show a “slow killing” of the 

host with a persistent infection leading to death after a few days. Additionally two more ways 

of killing C. elegans are known from P. aeruginosa PAO1, lethal paralysis, leading to death 

within hours and “red death”, which is observed in response to PAO1 grown on phosphate 

depleted medium in conjunction with physiological stress on the nematodes. It is proven that 

certain virulence factors needed for infection in C. elegans have also important roles in 

infections in mammals. Mutation in daf-2, an insulin like receptor, leads to longevity and 

bacterial resistance. It has been shown that P. aeruginosa is able to suppress the initiate 

immune response of C. elegans by up-regulating daf-2 [68]. 

Table 6: Essential and non-essential amino acids in C. elegans and humans 
Taken from [66, 69] C. elegans has similar nutritional needs on amino acids compared to humans. E = essential. NE = 
non-essential. 

Amino acid C. elegans Humans 

alanine NE NE 
arginine E E in development 
asparagine NE NE 
aspartic acid NE NE 
cysteine NE E in development 
glutamic acid NE NE 
glutamine NE NE 
glycine NE NE 
histidine E E 
isoleucine E E 
leucine E E 
lysine E E 
methionine E E 
phenylalanine E E 
proline NE NE 
serine NE NE 
threonine E E 
tryptophan E E 
tyrosine NE E in development 
valine E E 

 

The genome of the worm contains genes for enzymes of fundamental metabolic pathways 

like glycolysis, TCA cycle, β-oxidation of fatty acids, electron transport chain and ATP synthesis. 

Moreover C. elegans is capable of ethanolic fermentation and malate dismutation, but it is not 

able to synthesize sterols de novo. Several amino acids are essential to C. elegans; Table 6 

compares the essential and non-essential amino acids in the nematode and humans. At least 

for amino acids nutritional needs are similar between C. elegans and humans. Interestingly C. 
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elegans is able to synthesis branched chain fatty acids and uses it together with mono- and 

polyunsaturated fatty acids. Although C. elegans can be raised and maintained on a chemically 

defined medium, most laboratories prefer to feed the worm on bacteria. It has to be taken 

into account, especially when comparing results from C. elegans fed on different bacteria, that 

each of the different bacteria fed have nutritional differences. Metabolic capabilities and a 

draft metabolic reconstruction of C. elegans are discussed in chapter 2. 

1.4.4 Metabolomics research on C. elegans 

Several metabolomics studies using C. elegans have been carried out, mostly using NMR. As 

C. elegans has a hard cuticle disruption is a key issue in metabolite extraction. Standard lysis 

methods like the alkaline lysis method used for DNA extraction interfere with metabolite 

analysis. Basic experiments for optimization of metabolite extraction were carried out by Geier 

et al. Two different extraction solvent systems and six different disruption methods were 

tested with GC-MS, UHPLC-MS or NMR. They group concluded that 80% MeOH with bead 

beating is a good trade-off between extraction efficiency and stability [70]. One widely used 

method in C. elegans metabolomics is MAS-NMR using whole animal cultures. This method is 

simple and robust in sample preparation. A major work showed the capability of 1H-MAS-NMR 

to reveal latent phenotypes in C. elegans mutants showing no change in morphology. The 

study used sod-1 mutants to map the consequences of oxidative stress on the metabolome 

[71]. Major work was investigated in elucidating the metabolome of long-lived worms. A first 

work compared dauer larvae, worms with mutations in the insulin/insulin-like signaling 

pathway and translation-defective mutants. In this work it was shown that these three types of 

worms share a metabolic profile. Moreover dauer larvae showed higher levels of 

phosphoserine, hydroxyproline and choline, which can be an indication that autophagy plays a 

role in survival of dauers [72]. The group around Martin et al. employed different mutants in a 

1H-NMR study. Different combinations of daf-2, daf-16 and pept-1 mutants and their culture 

supernatant were profiled to evaluate their alterations of insulin/insulin-like signaling pathway 

and the amino acid absorption. Alterations in BCAA metabolism were the dominant features 

found in long-lived daf-2 or daf-2;pept-1 mutants, being consistent with the results from Fuchs 

et al. Moreover they show peculiar choline and acetate metabolism, which speaks for a dauer 

like metabolism with, increased autophagy. Lastly decreased one carbon pool metabolism is 

descriptive for pept-1 mutants [73]. Butler et al. used HPLC and PCA to discriminate the 

differences between long-lived and short lived mitochondrial electron transport chain 

mutants. Metabolites were separated by HPLC with PDA detection, followed by fraction 

collection. Identity of metabolites was confirmed using LC-ESI-MS/MS. This approach showed 
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that pyruvate is enriched in long-lived mutants and lactate, α-ketoglutarate and Gly-Pro in 

short-lived mutants [74]. 

Other work used 2D-NMR spectroscopy to identify small signaling molecules. The group of 

Frank Schröder identified 3 known and 4 previously unknown ascarosides. These molecules, 

glycosides of different hydroxy fatty acids, are important signaling molecules in C. elegans 

biology. They serve as attractants and are responsible hormones for the entry into the dauer 

phase. Wild-type and daf-22 worms were compared on the secreted metabolites. One of the 

novel identified ascarosides contained previously not described para-aminobenzoic moiety 

[75]. In a further work biogenesis of the ascarosides was evaluated. For this purpose several 

mutants were grown and subjected to LC-MS/MS analysis. The ascarosides undergo 

peroxisomal β-oxidation to yield different carbon side chain length. Afterwards the molecules 

are selectively derivatized with different moieties of varied biogenetic origin, for example with 

indol-3-carboxylic acid as degradation product of tryptophan. Summing up ascarosides are 

built from a modular library with building blocks from sugar metabolism, peroxisomal β-

oxidation and amino acid metabolism [76]. 

Beside the here mentioned articles, several other metabolomic work was carried out on C. 

elegans, but until now, no work has been described focusing on the influence of pathogens on 

the C. elegans metabolism. 
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1.5 Pathomics project aims and objectives 

The goal of the Pathomics project was to develop novel biomarkers and drug target 

candidates of two different pathogenic bacteria. On the one hand, the obligate intracellular 

pathogens Chlamydiae and on the other hand P. aeruginosa, an opportunistic extracellular 

human pathogen, were investigated. Both pathogens share a common principle for host-

pathogen interaction: secretion of effector proteins in their host cells. To achieve this aims the 

Pathomics project was separated into three work packages (WP): 

WP1: Transcriptional context 

WP2: Host-pathogen interactome 

WP3: Host-pathogen metabolome 

 

Figure 12: Project structure of Pathomics Project 
The three different work packages will be integrated in a complete model of the host-pathogen interactions of P. 
aeruginosa and chlamydia. Metabolomics plays a central role, because in the “omics” hierarchy it is the closest to 
the observed phenotype. 

WP1 focused on studying the bacterial transcriptome during infection and used Next 

Generation sequencing of transcripts. In the second work package (WP2) different methods 

were used to identify interaction partner of bacterial effector proteins, based on yeast two 

hybrid screens, protein pull downs and bioinformatics prediction. WP3 uses metabolomics to 

identify metabolic alterations occurring in the host-pathogen system during infection. 

This work was settled in WP3. To reach the goal different host-pathogen systems were 

used. On the one side a cell culture model using HeLa cells as host and on the other C. elegans, 

a widely used model organism for host-pathogen interactions was used to study the influence 
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of P. aeruginosa on the host metabolism. Additionally to the analysis of the interactions this 

work also focused on the metabolism of different Pseudomonads to reveal their metabolic 

capabilities. 

For this, several sample preparation, mass spectrometric and chromatographic methods 

were developed and used on routine basis for elucidation of metabolic alterations during 

infection. Furthermore novel and improved data analysis techniques were conducted for 

improved metabolite annotation, especially in the context of host-pathogen interactions. 
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1.6 Thesis structure 

To achieve the aims different analytical methods were implemented and used on a routine 

basis. The existing MassTRIX web server for metabolite annotation was further optimized for 

more comfortable use and a joined analysis of metabolome and transcriptome data. Simple 

metabolic reconstructions helped to understand the capabilities of the studied organisms. This 

work is presented in chapter 2. Chapter 3 discusses metabolomes of different closely related 

Pseudomonas species. This data is compared to the metabolic reconstructions obtained in 

chapter 2. Beside the bioinformatic tools from chapter 2, chemoinformatic methods were 

implemented for further false positive filtering of metabolite annotations. These tools are 

presented in chapter 4, together with the used C. elegans infection model on which they were 

developed. This chapter also includes the biological interpretation of the obtained data. For a 

HeLa cell based infection model methods for sample preparation and extraction had to be 

developed. Results from this development are depicted in chapter 5 together with results from 

this infection model. Furthermore the bacterial effector ExoY and its effects on the host 

metabolism were studied in HeLa cells. The final conclusion in chapter 6 compares the two 

different infection models and lists their similarities and differences. Additionally further ways 

of optimization and topics for future investigations are demonstrated. 

 

Figure 13: Overview on thesis structure 
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2. Data analysis tools for Host-Pathogen metabolomics 

Abstract 

For the analysis of data obtained from high-resolution analytical platforms new methods 

and computing solutions are needed. A major bottleneck in metabolomics data analysis is the 

identification of metabolites. The in-house developed and maintained MassTRIX server allows 

annotation of possible metabolites based on exact mass information from ICR-FT/MS. 

Moreover metabolic reconstructions from both, host and pathogen, allowed deciphering 

common and specialized pathways and metabolites. 

Parts of this chapter were published in: 

Wägele B., Witting M., Schmitt-Kopplin P. and Suhre K., MassTRIX Reloaded: Combined 

Analysis and Visualization of Transcriptome and Metabolome Data. PLoS One, 2012. 7(7): p. 

e39860.  
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2.1 Bio- and Chemoinformatics to assist metabolomics research 

Metabolomics like other “omics” data sets tend to be rich in both information and size. On 

instrumental side a lot of effort has been carried out to automate sample preparation and data 

acquisition. On the side of data analysis several software solutions were developed for 

workflow based preprocessing of MS and NMR data. For biological interpretation of measured 

data only a small amount of software is available, mostly being free-ware and webservers 

programmed by research groups due to their own needs. 

More groups facing the problem of identification of novel metabolites in large datasets. In 

this case bio- and chemoinformatics can help. On the one side bioinformatics helps to explore 

and understand the metabolic capabilities of a studied organism. Several biological databases 

contain information on enzymes, metabolites and their relation, e.g. KEGG, MetaCyc or 

BRENDA [77-79]. These can be used to predict in silico metabolomes, which can be compared 

against real measurement data. On the other side chemoinformatics can help in data 

interpretation of measured data. One of the easiest cases is the calculation of possible 

formulas for a given mass. Other examples are prediction of physical and chemical properties 

of novel structures, like pKa, logP or isoelectric point. 

The two most wide-spread programing languages in bio- and chemoinformatics are Perl 

and Java. Perl is a platform-independent and interpreted language and is the most used 

language in bioinformatics. Perl was developed in the 1980´s by Larry Wall and has influences 

from Awk, BASIC-PLUS, C, C++, Python and many more. It is flexible enough to be used also for 

bigger projects. The basic Perl distribution can be expanded with several modules, stored in 

central resource called CPAN (Comprehensive Perl Archive Network). The second language, 

Java, is an object oriented programing language and was developed by Sun Microsystems, 

which belongs to Oracle since 2010. It is robust, safe, portable, easy to interpret and highly 

dynamic. Several API´s (application programming interface) for chemoinformatics exist, 

whereas ChemAxon delivers on of the biggest, which is also used by several pharmaceutical 

companies, e.g. GlaxoSmithKline. ChemAxon includes programs and an API for prediction of 

several chemical and physical properties, as well as clustering of chemical structures [80-82]. 

Additionally it includes possibilities for warehousing of chemical structures in databases like 

MySQL or Oracle. 

2.1.1 Review on chemo and bioinformatics research in metabolomics 

A first paper dealing with chemoinformatics approaches in metabolomics was published 

2003 by Nobeli et al. In their work they predicted several physicochemical properties for the 

Escherichia coli metabolome. 745 two-dimensional structures were taken from BioCyc and 



 

  

35 Data analysis tools for Host-Pathogen metabolomics 

KEGG and characterized on their molecular properties. Most metabolites have a molecular 

weight smaller than 500 Da and 80% a logP smaller than 0. Additionally a library of 57 

fragment structures has been used to further characterize the metabolome [83]. Such 

approaches can be used in the process of unknown identification. Knowledge about chemical 

building blocks occurring in organisms reduces possibilities for structures of unknown 

molecules. Indeed chemical fingerprinting was used in conjunction with tandem mass 

spectrometry to develop a tool for querying large chemical databases for identification of 

unknown molecules [84]. 

A common approach to identify unknown molecules is the calculation of possible elemental 

formulas. Kind and Fiehn developed a set of filters known as the seven golden rules to 

minimize false positive formulas. These rules include restricting numbers of elements (rule 1), 

following the LEWIS and SENIOR chemical rules for valency checks (rule 2), isotopic pattern 

(rule 3), hydrogen/carbon ratios (rule 4), elemental ratios of nitrogen, phosphorous, sulfur and 

oxygen against carbon (rule 5), element ratio probabilities (rule 6) and presence of 

trimethylsylilated compounds for GC-MS (rule 7). These rules were derived from 68237 

existing chemical formulas and checked for consistency using different chemical databases 

[28]. To overcome the major bottleneck, the identification of unknown compounds, Wolf et al. 

presented an in silico fragmentation approach. The MetFrag suite searches for candidates in 

different compound databases and ranks them by the agreement between measured and in 

silico fragments. The calculation of in silico fragments is based on bond disconnection and 

produces all possible topological fragments of a candidate. Run times for a single compound 

are typically less than one second. This fast implementation enables to screen large databases 

for possible candidates [85]. 

These are examples for the effort of the metabolomics research community to make data 

analysis easier. However, the proposed methods are used for annotation and identification of 

metabolites. Calculation of molecular formulas is useful, but for most of the calculated 

formulas no or hits with low biological significance will be found in the public chemical 

databases like PubChem or ChemSpider [8, 86]. A usual first step in data analysis is the 

annotation of known metabolites from different biological databases, like KEGG, LipidMaps or 

HMDB [20, 77, 87, 88]. Although useful, two of the three mentioned databases have no 

interface for a mass spectrometry based search of metabolites. HMDB allows the user to enter 

masses, tandem mass spectra, GC-MS and 1D and 2D NMR data for metabolite search. KEGG 

only offers a formula based search and LipidMaps a prediction tools for mass spectrometry. 

To overcome this issue, the MassTRIX webserver has been developed. 
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2.2 MassTRIX: A web-based metabolite annotation tool 

MassTRIX is a webserver for direct annotation of ICR-FT/MS data to metabolic pathways 

originally developed by Karsten Suhre and Philippe Schmitt-Kopplin [89]. The newest version 

was updated to allow the combined analysis of transcriptome and metabolome data. 

2.2.1 Annotation of mass spectrometric data 

The core functionality uses a given mass list and compares it against theoretical masses of 

adducts of metabolites from a chosen database within a certain error range. Table 7 shows the 

mass spectrometric adducts that are covered by MassTRIX. 

Table 7: MS adducts covered by MassTRIX 
All possible adduct masses are calculated based on exact atomic masses. For atoms with significantly abundant 
isotopes all isotopes were included (e- = 5.48579 × 10−4 u) 

Scan mode Adduct calculation 

Negative 

[M-H]- M- 1.007825037-e- 

[M+Br]- 
M+78.9183361+e- (79Br, 50.69%) 
M+80.91629+e- (80Br, 49.31%) 

[M+Cl]- 
M+34.96885273+e- (35Cl, 75.77%) 
M+ 36.96590262+e- (37Cl, 24.23%) 

 
Neutral 
 

[M] M 

Positive 

[M+H]+ M+ 1.007825037-e- 

[M+Na]+ M+ 22.9897697-e- 

[M+K]+ 
M+ 38.9637079-e- (39K, 93.26%) 
M+ 40.9618254-e- (41K, 6.73%) 

 

Metabolites from different databases are used by MassTRIX for the annotation process. The 

monoisotopic masses were recalculated based on exact atomic masses using the molecular 

formulas stored in the respective database [90]. At the moment databases supported by 

MassTRIX are: KEGG, HMDB, LIPIDMAPS and MetaCyc [20, 77, 78, 88] in different 

combinations. Also metabolomic databases are growing fast, not all known metabolites are 

inventoried. Several signaling molecules from C. elegans for example or plant secondary 

cannot be found in KEGG for example [77]. To overcome this circumstance in the analysis of 

metabolomics data, the new version of MassTRIX includes the possibility to upload a list of 

own molecules as pre-calculated adducts, which will be included in the annotation process. If 

KEGG ID´s are supplied with this list, pathway mapping of these compounds is possible. 

Moreover with this function adducts not covered by MassTRIX, e.g. [M+H-H2O]+ or [M+2H]2+, 

can be included. Uploaded masses are matched against the theoretical adduct mass of 

metabolites from the chosen database within a certain error range, usually expressed in ppm. 

A maximum error up to 3 ppm is possible, for instruments with lower resolution an absolute 
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error range has been added in the new version. Several elements of this adducts have isotopes 

with significant natural abundances. To avoid false positive annotations, adducts are filtered 

according to isotopes. Bromine for example has two different isotopes (79Br and 81Br) with a 

natural abundance of about 50%. Peaks identified as [M+Br]- adduct are only kept if both 

isotopes were found. Isotopic filtering is also applied to 13C, 15N, 18O and 34S species in 

molecules, meaning an isotope peak is consider as true if the corresponding monoisotopic 

peaks is also found. Figure 14 shows the main workflow of MassTRIX. As alternative a list of 

KEGG compound ID´s can be submitted, bypassing the whole annotation procedure. 

2.2.2 Analysis of transcriptomic data 

Transcriptomic data can be submitted to MassTRIX in two different formats, either a self-

annotated file or .cel files for Affymetrix gene chips. The first one contains KEGG ID´s, KEGG KO 

numbers, EC number or gene identifiers and a foldchange or UP and DOWN as keywords. The 

submitted values are used for coloring of the respective enzyme on pathways metabolic 

pathway maps together with annotated compounds. This format allows the use of non 

Affymetrix gene expression chips or other techniques like serial analysis of gene expression 

(SAGE) or next generation sequencing of transcripts (NGS). In the second variant two .cel-files 

as output of Affymetrix gene expression chips are submitted. One serves as reference file and 

the other is specific for the sample state. The data is analyzed with the GCRMA package in R. 

Gene chip robust multi array averaging (GCRMA) is an improved version of the robust multi 

array (RMA) method of normalization and summarization. GCRMA uses sequence specific 

probe affinities of gene chip probes for more accurate gene expression values. Results from 

this analysis are fully downloadable for further investigations. 

2.2.3 Visualization of metabolomics and transcriptomic data on KEGG pathways 

KEGG provides a programmatic access to their database via an API. The KEGG API is a SOAP 

based webservice, which can be used to submit a list of KEGG compound ID´s, KEGG KO 

numbers, EC numbers or gene identifier together with a list of colors to obtain colored 

pathway maps of a chosen organism. MassTRIX uses the KEGG API to visualize results from the 

compound annotation and transcriptomic data analysis on metabolic pathway maps. The 

displayed maps are fully clickable, different result pages are cross-linked and ID´s are linked 

out to the respective pathway. Because the step of pathway mapping is the slowest in the 

whole process, by default only the “Glycolysis and Gluconeogenesis” pathway (map00010) is 

used by MassTRIX to save calculation time. If other additional pathway should be colored this 

has to be pointed out in the input window by giving the corresponding pathway numbers. It 

should be noted, even if only the default is used, that all metabolite-pathway relationships are 
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included in the download files. Current limitations are the missing multicoloring and 

multiplexing in the KEGG API. Due to this fact, more complex data, e.g. combination of 

transcriptomics, proteomic and metabolomics data cannot be performed without own 

programing work. Several visualization tools rely on custom rewritten SVG and XML files, 

Paintomics for example [91]. This may allow a more complex data representation, but the 

creation of these files is a tedious work, especially if newer version of a map is released, 

everything has to be changed. It would be a promising feature if KEGG would provide an 

interface for more complex data, like pathway tools from BioCyc. This tool allows to map e.g. 

bar plots to the MetaCyc pathways. 

 

Figure 14: Principal workflow and outputs of MassTRIX. 
(A) Workflow for metabolomics and transcriptomic data. Results from both data types are mapped together on 
metabolic pathways obtained from KEGG. (B) Pathway section of a MassTRIX job, showing number of annotated 
metabolites per pathway map. (C) Compound section showing annotated compounds. Green entries were found on 
minimum one of the selected pathways. 

2.2.4 Comparison of different jobs 

Different MassTRIX jobs can be compared on either pathway or metabolite level. This 

allows the analysis of time series experiments or different experimental conditions. The 

pathway comparison tool uses the 5 digit numbers of pathway maps in KEGG, without 

organism information. This enables interorganismic comparison and it is especially useful for 
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host-pathogen metabolomics. The comparison on pathway level gives a quick overview on 

metabolic pathways that are possibly up- or down regulated in pathophysiological state. This 

approach has been used in several publications to obtain a first overview on altered pathway 

in certain sample state [92, 93], e.g. diseased or treated. 

 

Figure 15 Possible comparisons between jobs in MassTRIX 
(A) Screen shot from the “Compare jobs” functionality and the obtained result page comparing jobs on pathway 
level. (B) Result from comparing 3 different jobs on pathway level represented in a barplot. X-Axis represents the 
different pathway maps and Y-Axis the number of annotated compounds on this pathway. (C) Result from 
comparing 3 different jobs on compound level. The file can directly be downloaded and opened in MS Excel. 
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2.2.5 Comparison against other existing resources 

Beside MassTRIX several other solutions for annotation of mass spectrometric data exist. 

Two examples are the Pathos webserver (http://motif.gla.ac.uk/Pathos/pathos.html) [94] and 

Paintomics (www.paintomics.org) [91]. Pathos principally is based on the same functionality as 

MassTRIX and is written in Java and uses an underlying MySQL databases. It annotates possible 

metabolites within an error range to experimental masses. To compare both, a list of 25644 

masses from a C. elegans metabolome extract measured on a Bruker solariX ICR-FT/MS were 

subjected to the two webservers. Search was carried out in positive mode with correction for 

[M+H]+ and [M+Na]+ adducts and 3 ppm maximum error. Pathos is capable to correct for all 

adducts listed in [24]. Pathos annotated 1229 metabolites from the input masses in two 

minutes. Colored pathway maps are created on demand, after the annotation process. 

However this pathway maps are not cross-linked with other result pages like in MassTRIX. 

Additionally submitted jobs are not stored on server and have to be recalculated every time 

from the beginning. A basic comparison between different samples states is possible, mapping 

masses from different samples with different colors on the pathways. With Pathos no joined 

analysis and visualization of metabolomics and transcriptomics data is possible. MassTRIX 

needed for the same calculation 15 minutes and yielded 7412 annotated masses. Because 

Pathos is only using masses occurring on metabolic pathways it is limited to a certain subset of 

KEGG. MassTRIX uses a flat file database, which slows down performance compared to Pathos. 

Transcriptomic data was not included in the MassTRIX analysis to have similar demands on 

calculation and only the default settings for pathway mapping are used. To obtain additional 

colored pathways, two to three minutes more per pathway are needed, due to connection via 

the KEGG API to the KEGG database. Additional transcriptome data will just need several 

minutes more for calculation. The last webserver, Paintomics, only allows the joint 

visualization of pre-analyzed and identified metabolites and genes, making it different from 

the two previous webserver. Representations based on the KEGG pathways are completely 

rewritten with XML and SVG technology to allow a multiplexed data representation. This is the 

big advantage of Paintomics. 

Summing up, MassTRIX is a valuable resource for a first glance analysis of mass 

spectrometric data. In terms of speed it is out performed by Pathos, but the data obtained is 

more comprehensive. Changing the underlying database of MassTRIX from flat file to a SQL 

based database would greatly improve speed. 
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2.3 Metabolic reconstructions as basis for host-pathogen 

metabolomics 

Metabolic reconstructions are using genomic data to retrieve information about enzymes 

and regulatory motifs occurring in an organism. They allow the determination of metabolic 

reaction networks to obtain organism specific metabolite information, which can be certainly 

useful in host-pathogen metabolomics. Often it cannot be determined if a metabolites origin is 

the host or the pathogen. Metabolic reconstructions can, for known metabolites, show if an 

organism is able to synthetize such a metabolite. In case of novel unknown metabolites it can 

deliver cues about a possible synthesis pathways and which enzymes may be involved. For 

several organisms metabolic reconstructions already exist and are stored in databases like 

MetaCyc [78] or Model SEED [95]. 

Basis for a metabolic reconstruction is a fully annotated genome. Mostly, data stored in the 

KEGG database is used. Information about genes is converted to proteins and protein 

complexes and their enzymatic function. Here BRENDA (Braunschweig Enzyme database), 

beside other databases, is one of the most utilized [79]. The only major drawback is that it is 

not as comprehensive as other databases like KEGG. Possible substrates, products and 

cofactors are added to the network. Until this point the reconstruction can be completely 

automated. This reconstruction can contain several false positives, due to assignment of 

metabolites to enzymes that are not present in the studied organism, but present in other 

organisms stored in the used database. To overcome this, an expert has to evaluate the 

automatically created draft reconstruction. In most of the cases this is the time limiting step, 

because primary literature is used to refine the model. One example for Pseudomonas 

aeruginosa PAO1 reconstruction has been already mentioned in the introduction [49]. 

Reconstructions in this work should rather help to understand the metabolic capabilities 

and possible metabolic interactions between the studied organisms than to represent a 100% 

correct model for in silico predictions. Pathogenic bacteria infect host for their own survival. A 

host represents an ecological, nutrient rich niche, in which a pathogen can grow. Sometimes 

pathogens are completely dependent on the host metabolism. An extreme example is the 

missing biosynthetic pathway for tryptophan in Chlamydia pneumonia [96]. To unravel 

metabolic interactions, metabolic reconstructions can help to understand the interplay 

between host and pathogen. P. aeruginosa is a special case, because it has broad metabolic 

capabilities and survives in broad range of ecological niches. In this case nutrient supply may 

be not the first reason to infect higher organisms, but the host may synthesize different 

metabolites easier than the bacteria itself. Additionally, energy resources of the host and not 
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the pathogen own are used for synthesis. Virulence factors secreted by P. aeruginosa need to 

be highly potent in re-ordering metabolic fluxes or to perturb pathways. Here highly effective 

effectors are needed to disturb the cell homeostasis, because the pathogen can only 

synthesize a limited amount of effector and these have to lead a maximum effect. 

2.3.1 Metabolic reconstruction of Pseudomonas species 

The genus Pseudomonas is a very diverse branch of the bacterial clade. All Pseudomonas sp. 

are extracellular bacteria, including human, animal and plant pathogens. This leads to the 

suggestion that the metabolic capabilities in this genus are very broad. 

An approach to compare metabolic capabilities was published by Kastenmüller et al., which 

originally was used to compare the metabolic capabilities of the 214 sequenced genomes and 

to compare different environmental conditions and diseases. Analysis showed clusters of 

metabolically similar microbes deriving from similar ecological niches [97]. The same analysis 

was carried out on the Pseudomonas genomes stored in the KEGG database. This analysis 

showed a cluster of the three strains of the human pathogen P. aeruginosa, which make this 

pathogen different from the other species. To uncover metabolic traits special to the pathogen 

metabolic reconstructions of different Pseudomonas species were compared. 

 

Figure 16: Metabolic capabilities of different Pseudomonas species 
Different Pseudomonas species were compared on their metabolic capabilities as described in [97]. Blue color 
represents a low score, red color a high score on the respective pathway module. P. aeruginosa and P. putida form 
clear species specific cluster, whereas all other species are spread over the dendrogram. 

To generate a first overview data set, KEGG database was used. Draft reconstructions were 

created for all Pseudomonas species listed in Table 8. These different strains and species are 

also present in BioCyc and Pathosystems Resource Integration Center (PATRIC) [98]. Genes for 

each species were collected from the genome part of KEGG using the KEGG API, together with 

associated EC numbers. From these compounds linked to the corresponding enzymes were 

obtained and all information were stored in one flat file per organism. Metabolite information 

of all available Pseudomonas species was integrated in one table containing all metabolites 

and species. Presence or absence of a metabolite in one species is indicated with 1 and 0. This 
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table was used to compute an overview on the in silico pan and core metabolome. A core 

metabolome represents metabolites that are present in all studied species, whereas the pan 

metabolome are all metabolites of all species. The terms were borrowed from genomics, were 

they are referred to core and pan genomes. 

Table 8: Number of genes of different Pseudomonas species 
Data was directly taken from PATRIC, KEGG and BioCyc. Between PATRIC and KEGG numbers only differ slightly, 
whereas BioCyc shows bigger differences. 

 Number of genes 
Organism PATRIC KEGG BioCyc 

Pseudomonas aeruginosa PAO1 5836 5571 5646 

Pseudomonas aeruginosa UCBPP-PA14 6022 5892 5964 

Pseudomonas aeruginosa PA7 6064 6286 6361 

Pseudomonas aeruginosa LESB58 6137 5925 6005 

Pseudomonas fluorescens Pf-5 6363 6108 6274 

Pseudomonas fluorescens Pf0-1 5763 5722 5827 

Pseudomonas fluorescens SBW25 6256 6395 6475 

Pseudomonas putida GB-1 5438 5408 5529 

Pseudomonas putida F1 5377 5250 5345 

Pseudomonas putida W619 5246 5182 5279 

Pseudomonas putida KT2440 5777 5350 5516 

Pseudomonas syringae pv. syringae B728a 5293 5089 5169 

Pseudomonas stutzeri A1501 4203 4128 4209 

 

The BioCyc database allows the direct download of compounds predicted to be 

metabolized in a given species. This information was directly used and combined in a single 

table. Reconstructions stored in the BioCyc database collection are generated by the 

PathoLogic program, meaning that has not undergone any manual curation [99, 100]. A major 

advantage of BioCyc over KEGG is the storage of secondary metabolites and the linkage to a 

respective organism. KEGG also stores several secondary metabolites, but missing linkage to 

producing organisms makes this information for this purpose useless. 

A reconstruction from PATRIC was created by downloading genes and their corresponding 

EC numbers. For annotation of genomes PATRIC uses the SEED with its annotation server RAST 

[101]. Corresponding compounds to the EC numbers were downloaded from KEGG via the 

KEGG API. 
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In general, metabolite lists from KEGG contain more compounds than the corresponding 

lists obtained from BioCyc and reconstruction from PATRIC contains always the most 

metabolites. This might be due to the fact that KEGG is a more general database and many 

more compounds are linked to a single enzyme, whereas BioCyc is more focused on bacterial 

metabolism, with a few exceptions, like HumanCyc or AraCyc. Beside its general usability and 

size, the KEGG database contains several errors, possibly due to the automated generations of 

the single organism databases. An example is an incomplete TCA cycle in P. aeruginosa UCBPP-

PA14 in KEGG. The last reaction converting malate to oxaloacetate and closing the cycle is 

missing in the KEGG database. In contrast, BioCyc contains this reaction and refers to a gene 

(PA14_19190) that has the same annotation in PATRIC. However searching for this gene in 

KEGG, the system returns the right annotation and EC number, but it is not linked to the 

respective pathway map. Figure 17 shows a comparison of the core and pan metabolome of 

the data obtained from BioCyc. 

 

Figure 17: Comparison of the in silico metabolomes downloaded from BioCyc. 
Data was compared on basis of metabolome size and occurrence of metabolites in the different species. Core 
metabolites are defined as metabolites that are found across all species. The pan metabolome are all compounds in 
all species, which are totally 1755. Novel metabolites are defined as metabolites that were not found in previous 
species. 

The core metabolome represents central carbon metabolites, like glucose, intermediates of 

glycolysis and TCA cycle, amino acids, nucleotides and nucleosides etc. The pan metabolome 

includes mainly secondary metabolites like pyochelin or pyocyanin. The core metabolome 

counts 527 metabolites for BioCyc, 932 for KEGG and 1966 for PATRIC respectively. It is 

interesting that with PATRIC the number is surprisingly high. P. aeruginosa UCBPP-PA14 was 

used to compare results from KEGG and PATRIC. Most of the metabolites using the gene 

annotation stored in KEGG for reconstruction overlap with PATRIC. Only 99 were unique for 
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KEGG and 1100 for PATRIC. These 1100 were mapped onto pathways and results 

corresponded mostly to secondary metabolites biosynthesis, ubiquinone and other terpenoid-

quinone biosynthesis. 

Although the metabolite lists from PATRIC are similar, they are most comprehensive 

overview on metabolites that can be generated automatically. However this created lists may 

still contain metabolites that are not present in the respective species. Table 9 compares the 

metabolome sizes of the different Pseudomonas species. PATRIC is specialized to pathogens 

and therefore contains the better annotation than KEGG or BioCyc. The other possibility is that 

in KEGG or BioCyc assignments of the gene to its respective EC number are missing. 

Table 9: Metabolome sizes of different Pseudomonas species 
In silico metabolomes were produced from three different sources, whereby data in BioCyc was prestored and 
metabolomes for KEGG and PATRIC have to be predicted with own tools. 

 Metabolome size 
Organism PATRIC KEGG BioCyc 

Pseudomonas aeruginosa PAO1 2352 1316 873 

Pseudomonas aeruginosa UCBPP-PA14 2353 1342 1018 

Pseudomonas aeruginosa PA7 2356 1381 1075 

Pseudomonas aeruginosa LESB58 2355 1331 994 

Pseudomonas fluorescens Pf-5 2473 1358 1044 

Pseudomonas fluorescens Pf0-1 2333 1330 1042 

Pseudomonas fluorescens SBW25 2372 1375 1102 

Pseudomonas putida GB-1 2301 1304 1028 

Pseudomonas putida F1 2344 1307 1060 

Pseudomonas putida W619 2294 1297 1089 

Pseudomonas putida KT2440 2280 1261 1041 

Pseudomonas syringae pv. syringae B728a 2186 1284 1021 

Pseudomonas stutzeri A1501 2141 1221 975 

 

It should be mentioned that not only presence or absence of a metabolite is important, but 

also its amount. Additionally several metabolic pathways will be only active under certain 

conditions and possibly play only a minor role. The obtained data is used in chapter 3 to 

compare real life metabolomics data with the predictions for P. aeruginosa UCBPP-PA14. 

2.3.2 Metabolic reconstruction of Caenorhabditis elegans 

A reconstruction from genes stored in the KEGG database was generated as described 

above. Using the genome from C. elegans stored in KEGG 1363 compounds were found that 
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could be metabolized. Some reactions described in C. elegans are missing in KEGG, for example 

the glyoxylate cycle. The nematode carries one bifunctional enzyme having both acitvities 

(isocitrate lyase and malate synthase) needed for this reaction. In embryos the activity of this 

enzyme is high, because it is needed to break down storage lipids for energy production. A 

second example is the missing phosphoethanolamine methylation pathway in the 

glycerophospholipid metabolism pathway. C. elegans has two functional 

phosphoethanolamine methyltransfereases. The first one PMT-1, catalyzes the methylation of 

phosphoethanolamine to N-methylphosphoethanolamine and the second, PMT-2, catalyzes 

the subsequent methylation to phosphocholine [102]. These are just two examples, where 

automated reconstructions need an expert judging on the obtained data. Furthermore the 

complete family of ascaroside signaling molecules are absent in the KEGG database. 154 

metabolites were added from SMID database, to close this gap. Still not all biosynthetic routes 

for building blocks of the ascarosides are known, so still major gaps are present in the 

metabolite list for C. elegans. 

2.3.3 Metabolic reconstruction of HeLa cells 

For human metabolites the major resource is the human metabolome database 

(www.hmdb.ca). It includes chemical, clinical and molecular biology data for over 40,000 

metabolites, including lipids [88, 103]. Several thousand entries have been measured and were 

detected with one or more methods at the Metabolomics Innovation Centre in Canada. 

Although, this database is comprehensive and useful tool, it includes not only endogenous, but 

also exogenous small molecules like drugs or food additives, which are commonly detected in 

human samples. Because in HeLa cells used in this work will not contain most of these 

metabolites, an automated draft reconstruction using KEGG was carried out. The 

reconstruction yielded 1902 compounds on all major pathways. Some metabolites present in 

this dataset are non-endogenous metabolites like chlorinated compounds or entries containing 

an R-group in the formula. These unphysiological compounds were removed from the KEGG 

list to obtain an overview on the HeLa cell metabolome. Totally 1383 compounds remain after 

filtering. 

The Small Molecule Pathway Database (SMPDB) is a sub database of HMDB. Metabolites 

present in this database were included into the dataset [104]. SMPDB states that more than 

2/3 of the stored pathways are not found in any other pathway databases. Therefore, 

metabolites found in this database were downloaded and unique metabolites should be 

included into the metabolic reconstruction. Totally 798 unique metabolites were found in the 

SMPDB. From this 682 overlap with the metabolites obtained from KEGG. The final list 
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contains 1499 unique metabolites. In HumanCyc, a second major resource of metabolic 

networks of humans, totally 1321 metabolites are stored for the human metabolism. Out of 

this 1321, 819 had a corresponding KEGG identifier and 580 are overlapping with metabolites 

from the KEGG and SMPDB reconstruction. Interestingly, the overlap between this two 

databases is surprisingly low. Recently, Stobbe et al. evaluated the overlap of metabolic 

network databases on human metabolism: Edinburgh Human Metabolic Network (EHMN), 

KEGG, Reactome, HumanCyc and BiGG. They found that the consensus for metabolites 

between the five databases is only 9% [105]. 

2.3.4 Improvements of reconstructions 

Although metabolite databases are growing fast and reconstructions of sequenced 

organisms are improved on a regular basis, they only can cover a small part of real 

metabolomes. Using the MassTRIX server for annotation of ICR-FT/MS data only up to maximal 

30% of the obtained signals can be annotated to metabolites. This shows that still major 

knowledge about metabolism is missing. In case of Pseudomonas species, different secondary 

metabolites, described in literature are missing. This data has to be extracted from primary 

literature and mapped to the respective organism. Additionally data from metabolomics 

experiments has to be evaluated to identify possible unknown secondary metabolites. An 

example is Myxobase, a database of secondary metabolites from myxobacteria at the 

Helmholtz Zentrum für Infektionsforschung in Braunschweig. This database contains 

information on more than 1000 samples. Unfortuanally, this database is not public accessible. 

In all cases harmonization of database content is needed. Unique and up-to-date identifiers 

for metabolites are needed. The IUPAC representation for chemical structures, the InChI key is 

machine readable and unique for each molecule, thus providing opportunity to be used in 

metabolomics. 

2.3.5 Use of reconstructions in host-pathogen metabolomics 

In silico predicted metabolomes can be applied to metabolomics datasets to determine the 

possible origin of a metabolite. Generally, metabolites from central metabolic pathways will be 

present in both, the host and the pathogen. For example precursors of branched chain amino 

acids will be present in bacterial samples, but not in C. elegans or human samples. If such 

metabolites are present they possibly derive from the ingested bacterial food or the infecting 

bacteria. Figure 18 shows a combined pathway map of P. aeruginosa UCBPP-PA14 (red) and C. 

elegans (green). Reactions present in both are marked in blue. To mark examples of errors 

present in KEGG, data obtained from this database was used for the comparison in Figure 18. 
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Although still gaps are present in the KEGG database for further work it was used due to 

possibility to generated colored maps of the obtained results. Where no results were found in 

KEGG, other databases were used. 

 

Figure 18: Combined metabolic pathway map obtained directly from KEGG for P. aeruginosa PA14 and C. elegans 
Arrows indicated two errors mentioned in the text. First the missing last reaction converting malate to oxaloacetate 
and closing the cycle in P. aeruginosa PA14 (red) and the missing Glyoxylate shunt in C. elegans (green) 

The obtained in silico metabolomes can be compared against real life data to determine 

origin of a metabolite. Indeed, such comparisons are used quite often in this work in the 

following chapters. Additionally, chapter 3 compares different Pseudomonads grown in 

different medium based on their metabolomes to determine core and pan metabolomes of 

this genus. 
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3. Taxonomy based metabolomics of Pseudomonas species 

 

Abstract 

Pseudomonads are ubiquitous bacteria, which can be found in nearly every ecological 

niche. Different metabolic capabilities allow adaptation to the niche a species lives in. To 

reveal lineage of different species phylogenetic and taxonomic methods are applied. Different 

species of the genus Pseudomonas were grown in different growth conditions and subjected to 

metabolic profiling using UHPLC-UHR-ToF-MS. Results were used to compute trees of 

functional relationships based on metabolome data. Such a methodology can be a useful 

adding to traditional taxonomic methods. 
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3.1 Phylogenetics, bacterial identification and metabolomics 

Phylogenetics is used to group bacteria and other organisms and their evolutionary 

relation. Phylogenetic trees are based on genetic data, like 16sRNA, in contrast to taxonomy 

which groups organism by their similar phenotype. For identification of bacteria in routine 

analysis, the so called multicolored row is used. This row uses different color reaction and 

visible observations to identify several metabolic pathways. The Kligler agar for example is 

used for the presence of lactases, fermentation and formation of H2S. Other tests include the 

formation of indole from trypthophan, motility, presences of ornithine decarboxylase or the 

possibility to use Citrate as energy source. The obtained information is used to identify or at 

least group a bacterial isolate into a genus. A system offered by the BiOLOG company uses 71 

carbon sources and 23 chemical sensitivity assays in parallel in a 96 well plate to identify 

bacteria. If a bacterium can grow under a certain condition it produces a color from a color 

reaction and this used as read-out for identification. 

A newer method for identification of bacteria is the MALDI Biotyper®, developed and 

distributed by Bruker. The instrument is based on a MALDI-ToF-MS to produce unique 

molecular fingerprints of an organism. Similarity between fingerprints measured and stored in 

a database allows the identification of different bacteria. This method is faster than the 

traditional methods and already widely used. 

Metabolomics can be understood and used as future development of the multicolored row, 

not only testing single reaction, but testing for the whole metabolism. Comparison of different 

closely related yeast species based on their lipidome was recently carried out. The work 

showed that genetically closer species have similar patterns in their glycerophospholipids 

[106]. Although, very interesting this study did not target the central metabolism or major 

precursors or building blocks. In order to compare different species also abundance and usage 

of central metabolites play an important role. Furthermore, secondary metabolites are 

important in separating different species. One example is the in the introduction mentioned 

study from E. Frimmersdorf et al., which used GC-MS to elucidate how P. aeruginosa adapts to 

different environments. However only two strains were compared [60]. 

The comparison of the metabolome from the halophilic bacterium Salinibacter ruber using 

ICR-FT/MS was investigated by Rossello-Mora et al. to determine a geographical discrimination 

between different isolates. S. ruber can found in different parts of the world. Totally 28 

isolates, 10 Mediterranean, 13 Atlantic and 5 Peruvian, were cultivated under same conditions 

and both supernatants and cell pellets were analyzed on a Bruker APEX Qe ICR-FT/MS with 12 

T superconducting magnet and Apollo II ESI source. Multivariate statistical analysis revealed a 
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good separation of three different isolation regions. Furthermore, PLS-DA was able to separate 

the Mediterranean stains into their different origin locations. Several sulfonolipid species were 

shown to be differentially present, according to the region of isolation [107]. A closer look at 

two Mediterranean strains, M8 and M31 showed that 10% of the genes encoded in M8 are 

absent in M31. Moreover metabolomic analysis, phage susceptibility and competition 

experiments revealed that these differences are not neutral [108]. The most recent work 

focused on the response of these two strains to environmental changes. ICR-FT/MS, together 

with multivariate statistics, separated different growth states and assigned significantly 

different metabolites. For the stationary phase, for example, metabolites belonging to the 

aminosugar, glycerolipid and glycerophospholipid metabolism showed decrease or increase 

[109]. 

Table 10: Pseudomonas strains used in this work 
Five different Pseudomonas species were selected. The table indicates the different used strains and their origin of 
isolation. Most of the species are clinical isolates. Type strains are indicated in bold. 

species strain origin 

P. aeruginosa 

CCUG 551 type strain 

PA14 clinical, wound isolate 

CHA clinical, CF isolate 

PA103 clinical 

P. fluorescens 

CCUG 1253 type strain 

CCUG 58749 clinical 

CCUG 61063 clinical 

P. putida 

CCUG 12690 type strain 

CCUG 2480 = ATCC 23973 soil 

CCUG 33664 plant 

P. syringae 

CCUG 14279 type strain 

CCUG 1826 plant 

CCUG 14280 plant 

P. stutzeri CCUG 11256 gv 1 clinical 

 

Different strains and species have different metabolic capabilities as shown in chapter 2. 

These different capabilities are evaluated in two different ways. First, common metabolites, 

like amino acids, sugars or metabolites of the central carbon metabolism are compared 

between the different species to reveal how good each species can adapt to the given growth 

conditions. Second, chromatograms, especially results from the reversed phase separation are 

searched for precursor of secondary metabolites and the secondary metabolites themselves to 

find species specific metabolic features. The review article by Gross and Loper gives nice hints 

on the possibilities of secondary metabolite production in P. aeruginosa, P. entomophila, P. 

fluorescencs and P. syringae [110]. Secondary metabolites include non-ribosomal peptides and 
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amino acid derived molecules, polyketides, lipopeptides and others. Only a small portion of 

these metabolites are stored in major metabolomics databases like KEGG or MetaCyc. To 

overcome this issue the Dictionary of Natural Products (DNP) was utilized. Free text search 

found 953 entries associated with the query “Pseudomonas”. Out of these 687 were 

metabolites with a unique sum formula were selected. By far not all secondary metabolites are 

stored in databases; most of them have to be curated from primary literature. 

A major question is how a bacterium adapts to its surrounding environment. This is 

especially important for pathogens, like P. aeruginosa. To evaluate metabolic adaptation of 

different Pseudomonas species (Table 10) were compared them based on their metabolomes 

in different growth conditions. Bacteria were grown on either LB medium, representing a rich 

medium, or M9 buffer with glucose as sole carbon source. The selected strains range from 

clinical to environmental isolates, also isolated from extreme environments, like hydrothermal 

vents. Totally 13 different species and strains were compared. The obtained data was used to 

calculate phylogenetic trees based on metabolic phenotypes, afterwards referred as 

“phylometabolomic trees”. 

3.2 Cultivation and extraction of bacteria 

3.2.1 Bacterial cultivation and extraction 

M9 and M9 with glucose were prepared from the stock solution depicted in Table 11. When 

all the solutions are cold, the stocks solutions are mixed in sterile water as followed. For 1000 

ml M9 870 ml sterile water, 100 ml solution A, 10 ml solution B, 10 ml solution C, 10 ml 

solution D and for 1000 ml M9 with glucose mix 860 ml sterile water, 100 ml solution A, 10 ml 

solution B, 10 ml solution C, 710 ml solution D and 10 ml solution E were mixed. 

Table 11: M9 stock solutions 
All solutions were prepared freshly. 

Solution Preparation 

Solution A 60 g Na2HPO4 , 30 g KH2PO4, 5g NaCl , 10g 
NH4Cl in 1l water; sterilize at 121Cº/ 15min 

Solution B 2.46 g MgSO4.7H2O (0.1M) in 100ml water; 
sterilize separately at 121Cº/ 15min 

Solution C 0.11 g CaCl2 (0.01M) g in 100 ml water; 
sterilize separately at 121Cº/ 15min 

Solution D 0.47 g FeSO4.7H2O (0.017 M) in 100ml water; 
sterilize separately by filtration (Millipore 0.22 
µm filter) 

Solution E 20% of carbon source (glucose): 20g/100 ml 
water, sterilize separately at 121ºC  
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For LB medium 5 g yeast extract were dissolved together with 10 g tryptone and 10 g NaCl 

in 900 ml ddH2O and pH was adjusted to 7. ddH2O was added to make up 1 L and the solution 

was autoclaved for 20 minutes at 121°C. 

Different Pseudomonas strains were obtained from CNRS Marseille, Universidad Illes de 

Balears (UIB) and the Culture Collection University of Göteborg (CCUG). Lysogeny broth (LB) 

medium and M9 buffer with glucose were prepared as described in the literature. All 

Pseudomonas aeruginosa strains were grown in LB medium at 30 and 37°C and additionally in 

M9 with glucose at 30°C. All other strains were grown in LB medium and M9 with glucose at 

30°C. Samples were collected at OD=1. From each sample biological duplicates were created. 

Bacterial pellets were collected by centrifugation, washed with M9 buffer and 2 ml of the 

supernatant of the original medium and the pellet were snap frozen in liquid nitrogen. All 

samples were stored at -80°C prior to extraction. Metabolites were extracted from the 

bacterial pellets with 50% MeOH. Concentration was adjusted to yield 1e9 cells / ml. After 

vigorous vortexing to suspend the pellet, the sample was sonicated for 20 minutes in an ice-

cold sonic bath. After centrifugation at 4°C and 14,000 rpm the supernatant was transferred to 

an autosampler vial. 

Data was obtained from reversed phase separation on BEH C8 column and positive mode 

ionization and HILIC separation on a BEH Amide column with positive and negative ionization. 

All measurements and data-preprocessing steps were carried out as described in the appendix. 

3.3 Results 

3.3.1 Statistical analysis 

Statistical analysis was performed with Genedata Expressionist for Mass Spectrometry 7.6. 

Several PLS models were built to reveal species and condition specific metabolites. A 

metabolite was concerned as significant, if the VIP score of the corresponding model was 

bigger than 1 and the p-value < 0.05. All species grown in M9 buffer were compared against all 

grown in LB medium at 30°C. To reveal species specific patterns, always one species was 

compared against all others in the same growth condition. Lastly the effect of growth 

temperature was evaluated by comparing P. aeruginosa grown in LB medium at 30°C and 37°C. 

3.3.2 Bacterial strains compared on a metabolomic level 

HCA and PCA show that the obtained data is first clustered by the growth medium and 

temperature and afterwards by species. These results serve as basis for different PLS models. 

In a first attempt samples were compared on growth medium independent of single species. 
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Several amino acids were found in higher amounts in bacteria grown in LB medium. The 

four most significant were aspartate, leucine, threonine and valine, which are also in the top 

twenty of most significantly changed metabolites in the BEH Amide dataset with negative 

ionization. The amino acids are intracellular, because remaining LB medium was washed away 

with M9 buffer. Levels of threonine, leucine and valine are linked through the biosynthesis of 

valine, leucine and isoleucine pathway. However, amino acids are not the limiting factor of 

growth in LB medium, because they are readily available. It is especially useful to take up these 

amino acids directly from the medium instead of synthesizing them de novo. In contrast, 

bacteria grown in M9 medium have to synthesize these amino acids for protein synthesis. A 

closer look was taken to the biosynthetic precursors of leucine and valine. Unfortunally, most 

of the biosynthetic precursors can be also found on the respective degradation pathways. 

Most of these metabolites showed significant higher levels in bacteria grown in LB medium. An 

exception from this is (S)-2-acetolactate, which is only found on the biosynthetic route to 

valine and leucine. It is significantly higher in M9 grown bacteria (p-value = 7.87e-10). The 

enzyme acetolactate synthase is highly feedback regulated by branched chain amino acids. 

This suggests that in M9 grown bacteria the biosynthetic route is active, whereas in LB medium 

grown bacteria utilize excessive branched chain amino acids. Furthermore in LB grown 

Pseudomonads increased levels of metabolites belonging to the arginine metabolism were 

found. N-acetyl-ornithine, ornithine, aspartate, argininosuccinate and arginine were 

significantly increased, suggesting that excessive nitrogen is bound to arginine. Lastly arginine 

and ornithine are needed for synthesis of the siderophore pyoverdine. 

In contrast to this, pyochelin, another iron siderophore was found in higher levels in 

bacteria grown in M9 buffer with glucose. From the structural point of view, pyochelin is the 

simpler siderophore. Bacteria grown in M9 buffer possibly prefer pyochelin over pyoverdine 

for iron acquisition, to safe valuable amino acids. Interestingly, P. fluorescens CHA0 was shown 

to produce enantio-pyochelin, the optical antipode of pyochelin [111]. Because no chiral 

separation was employed it could not be determined if the detected peak corresponds to 

pyochelin or its optical isomer. 

Further examples of metabolites found higher in M9 grown bacteria are D-glucose-6 sulfate 

(p-value = 0.004) or nicotinurate (p-value = 4.80e-07). Several more markers for either LB 

medium or M9 buffer with glucose grown bacteria were found, but a big proportion of them 

had no putative annotation. 
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Figure 19: Scores plots of Principal component analysis of BEH C8 separation 
After filtering, data was processed with principal component analysis (PCA). The first two principal components 
were able to roughly separate the bacterial pellets by the used growth medium. 

Using Metlin several unknown masses found higher in Pseudomonads derived from LB 

medium, could be annotated as peptides, possibly ingested from the rich culture medium. 

Because in the used methods, metabolites from the central carbon metabolism like citrate are 

only rarely detected, no information on the different metabolic fluxes between bacteria grown 

in rich LB medium or minimal M9 buffer can be given. Results like the degradation of branched 

chain amino acids above show that LB medium grown bacteria directly utilize uptaken 

nutrients, whereas bacteria grown in M9 have to synthesize all metabolites de novo. This 

suggests that growing bacteria in M9 generally gives a good overview on metabolomic lineages 

of different species concerning the core metabolism. In contrast, LB medium grown ones give 

information about species relationship on secondary metabolism. 

3.3.3 Different growth temperatures influence the metabolome  

P. aeruginosa strains grown in LB medium at two different temperatures were used to 

evaluate the influence of growth temperature on the cellular metabolome. PCA analysis 

showed a good separation of the two temperatures along the first principal component. A PLS 
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model was used to identify masses contributing to the group separation. Several masses 

having a VIP score > 1 and p-values < 0.05 were identified. 

Bacteria grown at 30°C show higher levels of tryptophan metabolites, like anthranilate (p-

value = 0.001), indole-3-acetate (p-value = 0.004), indolpyruvate (p-value = 7.2e-06) and 

kynurenine (p-value = 0.03). No accumulation of tryptophan in bacteria grown at 37°C was 

observed. Still, results suggest that tryptophan metabolism is only active at lower 

temperatures. 

Interestingly, intracellular pyochelin showed also a temperature-dependency, with higher 

levels at 30°C. Again several unknowns were found to be different along the two used 

temperatures with low p-values, but no clear evidence for redirection of metabolic fluxes 

except for tryptophan were found. Possibly the temperature difference is too small. Going to 

deeper or higher temperature will induce a more different metabolism. Also growth in M9 

buffer can give better insights on the changed metabolism upon different temperatures. 

 

Figure 20: Different growth temperatures lead to differences in the intracellular metabolome 
(A) Scores plot of principal component analysis of BEH C8 data. The first principal component was able to separate 
bacteria grown at different temperatures, whereas the second separated different strains of P. aeruginosa from 
each other. (B) Examples of two masses significant for bacteria grown at 30°C or 37°C. 

Lastly, a lipidomics approach can tell if lipid composition changes with temperature. This 

could be of particular interest to understand how bacteria are adapting to changing 

environments and how thermophile bacteria can survive elevated temperatures. 

3.3.4 Core and pan metabolome of the genus Pseudomonas 

In order to reveal species specific metabolite patterns, data was split into single datasets 

according to growth medium. PCA was used to reveal group separations based on the 
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metabolomes. Figure 21 shows the first three principal components obtained from the BEH C8 

separation with positive mode ionization from the LB medium dataset. The first two principal 

components nicely separate P. aeruginosa from all other species. The additional third 

component showed a cluster of P. aeruginosa samples that are different from the remaining. 

This cluster corresponds to the strain PA14. Furthermore a mixed cluster of P. putida 

CCUG12690 and P. stutzeri CCUG11256gv1 was revealed. 

 

Figure 21: PCA scores plots from BEH C8 separation of bacterial pellets grown in LB medium 
In the first two principal components, three different clusters are visible. The first one corresponds only to P. 
aeruginosa strains, whereas the second is a mixture of P. putida and P. stutzeri and the third a mixture of P. putida, 
P. syringae and P. fluorescens. The second and third principal component show that P. putida CCUG12690, P. 
stutzeri CCUG11256gv1 and P. aeruginosa PA14 are different from all other strains. 

Overall separation was good enough to build PLS models. Within a single dataset always 

one species was compared against the remaining. Although several masses could be annotated 

to a putative metabolite, most of the specific metabolites have no possible annotation using 

MassTRIX. Central carbon metabolites were shown to be different between bacteria grown in 

M9 buffer with glucose or LB medium. However, some amino acids and other metabolites 

showed higher levels in some species, suggesting a better adaptation to the surrounding 

environment. For example P. fluorescens showed in M9 buffer higher levels of aspartate (p-

value = 0.04) and glutamate (p-value = 0.0004). Both amino acids are directly deriving from 
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acids present in the TCA cycle. Levels of glutamine remained unchanged. Aspartate is an 

important precursor for the synthesis of lysine, methionine, threonine and isoleucine. O-

succinylhomoserine (p-value = 0.0005), a further precursor of methionine was found higher in 

P. fluorescens, together with threonine (p-value = 0.002) and leucine (p-value = 0.02). Analysis 

of metabolic capabilities carried out according to Kastenmüller et al. showed higher 

capabilities in methionine synthesis for P. fluorescens Pf-5. This suggests that P. fluorescens is 

well adapted for growth in minimal medium. 

In contrast to this, in LB medium grown bacteria most of the metabolites significant for a 

species are belonging to unknowns of the higher mass range with masses > 500 Da. These 

masses are possibly belonging to secondary metabolites or alginate precursors for biofilm 

formation. A metabolite separating P. putida from all other species is intracellular pyocheline. 

Figure 22 shows the different levels of intracellular pyocheline and 2,4-diacetylphloroglucinol 

(DAPG). DAPG is a known secondary metabolite from P. fluorescens with antiobiotic properties 

and major determinant in biological control of plant diseases [112]. 

A metabolome based tree was constructed based on the obtained data, for each method. 

Intensities of masses occurring in more than 2 samples per condition were averaged and data 

was split into a LB medium and M9 medium dataset. Based on the averaged intensities 

distance between the single species was calculated and a tree was plotted based on the 

calculated distances to show functional relationships between the different species. Most 

metabolites from the intermediary metabolism, like amino acid precursors were detected in 

BEH Amide separation with negative ionization. Together with bacteria grown in M9 buffer this 

method seems to be suitable to derive a tree based on the central metabolic pathways. The 

tree derived from this method showed a good separation of P. aeruginosa from all other 

species. Also in the prediction of metabolic capabilities P. aeruginosa showed a subcluster 

different from all other. However the subcluster of P. putida species could not be found in the 

tree. Interestingly on a metabolomic level the type strains of P. stutzeri and P. putida (P. 

stutzeri CCUG11256gv1 and P. putida CCUG12690), cluster together, away from all other 

strains. 
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Figure 22: Levels of intracellular pyochelin and 2,4-diacetylphloroglucinol 
Pyochelin is found in higher amounts in bacteria grown in M9 medium, whereas P. aeruginosa seems to be an 
exception, with similar or lower levels compared to LB medium. 2,4-diacetylphloroglucinal is a secondary 
metabolite found in P. fluorescens. It was detected in LB medium grown bacteria, with highest levels in P. 
fluorescens, followed by P. syringae and P. putida. 

Compared to the 16sRNA lineage, the metabolome derived lineage is substantially 

different. Ribosomal RNA was probably one the first parts of early life on earth and is present 

in cells of all organisms. This makes it a good marker for evolution of species. A metabolome 

based tree present more a functional rather than an evolutionary relationship. Although the 

metabolome coverage of the used method is incomplete, they can provide first idea; how a 

metabolomics based taxonomy approach can look like. Methods that cover more parts of the 

central carbon metabolomics can give a better insight on adaptation of different species to 

different growth conditions. Additionally is was shown that not only ICR-FT/MS metabolic 

profiling as used by Rosella-Mora et al., but also UHPLC-UHR-ToF-MS is able to separate 

different species and strains from each other. 
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Figure 23: Distances of different Pseudomonas species based on metabolome 
Data from BEH Amide separation with negative ionization was used to compute distances between the different 
species. All measured species from P. aeruginosa clustered together, whereas no clear clusters were observed for 
all other species 

A further approach that could be possibly tested in future is to use lipidomics. A widely 

used method in microbiology for typing bacterial cultures is the use of fatty acid profiles 

obtained by GC analysis. Lipidomics approaches could go a step beyond and also reveals how 

these fatty acids are used in different lipid species. The above mentioned article from Hein et 

al. using different yeast strains proofed this concept. 

3.3.5 Comparison against in silico metabolomes 

Annotated metabolites from the different methods were used for comparison against the 

in silico metabolomes obtained from PATRIC, described in Chapter 2. A list of unique KEGG 

identifiers of annotated metabolites from all methods was created, which included 5596 

unique metabolites. The theoretical list from PATRIC contained 2353 metabolites. Overlap 

between both was 818. From these 818, 383 could be mapped on the main metabolic pathway 

map of P. aeruginosa PA14 and included amino acids, some central carbon metabolites, 

several breakdown products and precursor metabolites and secondary metabolites. However, 

most detected metabolites could not be mapped to a pathway and represent possibly 

secondary metabolites. On the side of the prediction, 1535 metabolites could not be found in 

any method, including metabolites from the TCA cycle, Pentose phosphate pathway and 

energy metabolites like ATP. Furthermore the prediction included metabolites not amenable 

to mass spectrometry, like acetate, sulfate or other inorganic ions. From the remaining 

detected metabolites a big proportion could be mapped to the KEGG secondary metabolite 
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pathway, but in branches not present in P. aeruginosa. These metabolites represent an 

interesting target for identification and structural characterization, because they are possibly 

novel secondary metabolites. 

 

Figure 24: Metabolites found in measurements, but not in prediction 
Metabolites that were not found in the prediction could be mapped mainly onto secondary metabolite pathways. 
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4. C. elegans – P. aeruginosa infection model 

Abstract 

The nematode C. elegans, is well recognized as relevant for the study of bacterial 

pathogenesis in vivo. The human pathogens P. aeruginosa and Salmonella enterica, already 

shown to affect C. elegans, use virulence factors linked to human disease to infect and kill the 

nematode. Despite much research and many advances in this field, almost nothing is known 

regarding the metabolic response to infection in the worm. fer-15 and daf-2 worms were 

challenged with different bacterial pathogens to reveal metabolic alterations during infection. 

Parts of this chapter were published in: 

Witting M., Lucio M., Tziotis D., Wägele B., Suhre K., Voulhoux R., Garvis S. and Schmitt-

Kopplin P., A metabolomics approach to study bacterial virulence in C. elegans. PLoS One (in 

revision) 
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4.1 C. elegans infection model 

There remains a need for robust and simple animal models of infection to allow for better 

understanding of host-microbe interactions, bacterial pathogenesis as well as development of 

antimicrobial therapies. An attractive model is the invertebrate nematode C. elegans, now well 

recognized as relevant for the study of bacterial pathogenesis as well as a model for other 

conditions. The worm C. elegans is susceptible to a number of bacterial pathogens, which are 

able to kill or induce a range of symptoms of disease. Human pathogens already known to 

affect C. elegans include Gram-negative bacteria such as, Pseudomonas and Salmonella as well 

as a number of Gram-positive bacteria such as Enterococcus and Staphylococcus. Many of 

these are able to colonize the worm intestine, and the pathogenic effect can be measured by 

marking the decrease in lifespan of the nematode. Several studies have already been 

undertaken in which mutant libraries of a bacterial pathogen have been tested in the worm to 

identify candidate virulence genes [113]. C. elegans also offers researchers a simpler model for 

analysis of the host side of pathogen-host interactions. Genetic analysis of the host is relatively 

straight forward, for example by screening for worm mutants either more resistant or 

hypersensitive to a given pathogen. 

To proof that non-targeted metabolomics is a useful tool in host-pathogen research a set of 

experiments using the C. elegans strains fer-15 and daf-2 cultivated either on bacterial lawns 

of E. coli OP50, P. aeruginosa PA14wt, P. aeruginosa PA14∆gacA, Salmonella enterica subsp. 

enterica or without food for 24 hours to exploit the effect of P. aeruginosa infection on the 

host metabolome of C. elegans was performed. P. aeruginosa PA14∆gacA is highly attenuated 

in killing C. elegans under slow killing conditions (Figure 36). gacA encodes for the global 

activator protein A (GacA), the response regulator of the GacA/GacS two-component 

regulatory system. It has been demonstrated that GacA positively regulates the production of 

several virulence factor in P. aeruginosa and is needed for full virulence in mammals and C. 

elegans [114]. Furthermore, infection with S. enterica subsp. enterica leads to a different gene 

expression pattern in the host compared with P. aeruginosa, leading to the idea, that also the 

metabolome will be affected differentially. Mutants of C. elegans lacking daf-2, the only 

homolog of a mammalian insulin/IGF-1-family receptor in the genome, were indicated to be 

resistant to bacterial pathogens [115]. P. aeruginosa is able to suppress host immunity by 

activating the daf-2 signaling pathway, which also regulates metabolism [68, 116]. Starvation 

was chosen as second kind of stress, other than infection, to put the metabolome in a more 

general picture. An additional sample set containing daf-2 and fer-15 worms fed with P. 

aeruginosa PA14wt, P. aeruginosa PA14ΔgacA and P. aeruginosa PA14Δpec7 was included for 

lipidome analysis. 
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Metabolic profiling on these samples was carried out using DI-ICR-FT/MS and UHPLC-UHR-

ToF-MS. The used methods included reversed phase and HILIC separation for metabolite 

extracts and a reversed phase separation of lipids and are described in the appendix. This 

comprehensive data collection was used for development and application of data analysis 

tools for filtering of false positive annotations, based on chemo- and bioinformatics 

approaches, which are presented in the first part of this chapter. 

Retention time modeling for false positive filtering of metabolite annotation and lipid 

separation was subjected to data dependent acquisition of MS/MS spectra together with in 

silico fragmentation for lipid identification. Mass difference networking was used to obtain 

novel putative formulas for unknown masses in the ICR-FT/MS datasets. Finally UHPLC-UHR-

ToF-MS and DI-ICR-FT/MS datasets were aligned, to combine exact mass and retention time 

information. 

All results were combined in a comprehensive metabolite map, which was used for 

biological interpretation of the infection model presented in the second part of this chapter. 

4.2 Known and unknowns – False positive filtering of metabolite 

annotations 

A major problem in metabolomics using mass spectrometry is the annotation and 

identification of masses. With currently used databases and approaches only up to 30% of all 

masses can be annotated with a putative metabolite. The remaining 70% may correspond to 

adducts not covered by the used data analysis tool, homo- or heterodimers, fragments or 

novel metabolites. Especially in direct infusion mass spectrometry identification of fragments 

is a difficult task, due to missing chromatographic separation. In this situation, masses cannot 

be assigned as fragment to one single mass. Chromatographic separation greatly enhances 

metabolite annotation and identification. First reduced ion suppression enhances sensitivity 

for low abundant molecules. Second, chromatographic retention gives information about 

different physicochemical properties of the detected masses and allows filtering of possible 

false positive annotations. In reversed phase separations, molecules are eluting according to 

the hydrophobicity, starting with the most hydrophilic substances in the mixture. If, for 

example, carnitine, a small tertiary amine is detected at higher retention times, this may be 

due to wrong annotation of the mass or it corresponds to a fragment of a more hydrophobic 

molecule, e.g. a long-chained Acyl-carnitine. To improve identification, one possible approach 

is to measure retention time of single metabolites as pure chemical standard to obtain 

information about correct retention time and possible fragment and adducts. This is virtually 

impossible due to several reasons. Not all metabolites that might be present in a sample can 
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be obtained as pure chemical standard. Moreover buying all this standards consumes a lot of 

money and would be not feasible for most metabolomics laboratories. To overcome 

limitations several approaches are used. First MS/MS of a mass can help to identify a 

metabolite or at least to reduce the number of possible candidates. For final identification the 

fragmentation pattern of the metabolite detected in the sample should be compared to a 

chemical standard. If this is not possible, in silico calculation of theoretical fragmentation can 

help. Several fragmentation rules of organic compounds are known and can be used for such in 

silico approaches. This is implemented in commercial products like ACD/MS Fragmenter or 

Mass Frontier [117, 118]. However calculations can take up to several hours for complex 

molecules. A promising tool to enable fast calculations is the bond disconnection algorithm 

implemented in MetFrag [85]. This algorithm not always produces mechanistically correct 

fragments, but most fragments produced can be found in tandem mass spectra. MetFrag is 

implemented as webserver (http://msbi.ipb-halle.de/MetFrag/) or can be downloaded as 

command-line tool. Furthermore the complete source code, written in Java, can be 

downloaded and used the under GNU license. 

 

Figure 25 Complex mass spectrometric patterns can arise from a single metabolite species, including fragments, 
isotopes and adducts, which complicates data analysis. 
Adapted with permission from [119]. A single metabolite not always produces a single signal. First different isotopic 
species will be also detected. Second, the ionization process can not only produce a single pseudo molecular ion, 
but also other adducts. One of the most detected adduct is the [M+Na]+ adduct in positive ionization mode. Finally, 
under certain settings in-source fragmentation can occur. 

Another method to filter false positive assignment is the calculation of a quantitative 

structure retention relationship (QSRR). Physicochemical properties of molecules are used to 

predict retention time. This method exists for a long time for GC-MS, based on different 

retention indices. Kumari et al. used in silico derivatisation and retention time prediction to 

identify unknown substances measured on exact mass CI-GC-MS [120]. Recently QSRR was 

adapted by Creek et al. for removal of false positive assignment of metabolite annotation. The 

model is based on the measurement of 120 authentic standard substances on a ZIC-HILIC 
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column with positive/negative ionization switching Orbitrap-MS. The retention time model 

was able to filter out 40% of false positive annotations [121]. 

The Metabolomics Standards Iniative published several levels of confidence of identity, 

which serve as guideline of metabolite identification. The different levels are shown in Table 

12. Bowen and Northen used in their work the term metabolite atlas to describe a matrix of 

several experiments using the same method. This metabolite atlas can be used to reveal 

common artifacts like adducts or fragments across all biological samples [119]. Using global 

correlation analysis such features can identified and separated from biologic entities. 

Furthermore mass difference can be used to compute possible neutral losses or building blocks 

[122]. 

Table 12: The four levels of metabolite identification confidence defined by the Metabolomics Standards Iniative 
(Sumner et al. 2007) 
Taken from [123] 

Level Confidence of identity Level of evidence 

1 Confidently identified compounds 

Comparison of two or more 
orthogonal properties with an 
authentic chemical standard 
analyzed under identical 
analytical conditions 

2 Putatively annotated compounds 

Based upon physicochemical 
properties and/or spectral 
similarity with public/commercial 
spectral libraries, without 
reference to authentic chemical 
standards 

3 Putatively annotated compound classes 

Based upon characteristic 
physicochemical properties of a 
chemical class of compounds, or 
by spectral similarity to known 
compounds of a chemical class 

4 Unknown compounds 

Although unidentified and 
unclassified, these metabolites 
can still be differentiated and 
quantified based upon spectral 
data 

 

For more accurate annotation and identification of metabolites and lipids of the in this 

work used C. elegans infection model different approaches were employed. Quantitative 

structure retention relationship models (QSRR) were built for the chromatographic separations 

used and lipid identification was achieved by using a data-dependent acquisition approach 

based on the AutoMSn algorithm of Bruker. 
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4.2.1 Prediction of chemical properties to build retention time models 

Identification of metabolites is a key issue in metabolomics. To unambiguously identify a 

metabolite, reference standard compounds are needed for comparison. This is virtually 

impossible, because not all metabolites are available as pure standard. Even if standards for all 

metabolites would be available, for most laboratories it is not feasible to run standards of all 

metabolites with each chromatographic sample batch due to tremendous costs. One way to 

improve the identification is MS/MS during chromatography and subsequent comparison 

against tandem MS databases. This works well for pure peaks of sufficient length to obtain 

good MS/MS spectra. If chromatographic peaks are overlaying problems can arise, that the 

mass underlying the first peak is still fragmented and the second peak will be overseen. 

Summing up this approach is more useful for targeted metabolomics, where metabolites that 

should be profiled are already known and reference standards exist. 

A second approach offers bigger flexibility in annotation of metabolites. Beside the mass 

and/or fragmentation patterns information on physicochemical parameters of a metabolite 

are used to predict retention behavior. The work of Creek et al. brought this approach from 

pharmaceutical application to metabolomics. In their publication they modeled the retention 

behavior on a ZIC-HILIC column with positive/negative polarity switching Orbitrap-MS. This 

work was used a basis for the calculation of a QSRR model for the metabolite cartography of C. 

elegans. The used analytical platform consisted of UHPLC-UHR-ToF-MS measurements on a 

BEH C8 and a BEH Amide column to increase the metabolome coverage with the usage of 

these orthogonal methods. Both methods offer different selectivity and allow a 

comprehensive snapshot of the C. elegans metabolome, whereas BEH Amide separation is well 

suited for central metabolites like amino acids and other and BEH C8 separates more lipophilic 

substances. The reversed phase method was able to separate over 20 different acylcarnitines, 

whereas chromatography on the BEH Amide column could resolve L-Isoleucine and L-Leucine. 

Several compounds were tested on these methods. Problems arise specifically from polyacids 

like Citrate or phosphorylated compounds like ATP, which are interacting strongly with the 

stationary phase and give distorted peaks or no signal. Overall, the metabolome coverage was 

good, with annotations on all major pathways. To filter false positive annotations a QSRR 

model was calculated. 

4.2.1.1 Characteristics of the C. elegans in silico metabolome 

To get an overview on the physicochemical properties of the C. elegans metabolome, 

several parameters were predicted for the in silico metabolome described in chapter 2. This 

list included 1363 metabolites from KEGG and 154 secondary metabolites from SMID database 
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For prediction of several parameters SMILES strings were imported to MS Excel from a group 

internal database. Using JChem for Excel these SMILES were converted to structures and 

standardized using the Standardizer Plugin. From this standardized structures different 

physicochemical parameters were predicted. All calculations were carried out in MS Excel with 

JChem for Excel. 

Following parameter comparably to Peironcely et al. were calculated: count of C, H, O, N, S 

and P atoms, heavy atom count, molecular weight, logP, logD at pH 7.2 (approximate pH of 

cytoplasm), number of H acceptors and donors, number of rings, number of rings with 

heteroatoms, rotatable bonds and number of aromatic rings [124]. logP and logD values give 

information about the hydrophobicity of a molecule. The logP value accounts the 

octanol/water partition coefficient for a unionized molecule, whereas the logD give the 

partition coefficient for ionization at a certain pH. Equations for the definition of both values 

are given in the equations 7 and 8. 
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Equation 7: Definition of logP 
The octanol/water partition coefficient is a measure of the hydrophobicity of a molecule 
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Equation 8: Definition of logD 
The logD value takes also the micro species of a molecule at a certain pH into account. 

The logP for metabolites from the C. elegans metabolic reconstruction are ranging between 

-15 and 15. Figure 26 shows a density plot of the logP and logD values. ATP for examples, a 

very polar metabolite and universal energy currency of cells shows a logP value of -6.2. The 

opposite range can be represented by Cholesterol with a value of 7.11. A second important 

value for the description of a metabolome in silico, especially when MS should be used for 

analysis, is the molecular weight. Most of the C. elegans metabolites have a mass below 500 

Da, as shown in Figure 27A. Different lipid species are not included in the analysis and present 

a special case, discussed in a later part of this chapter. With different carbon chain length and 

combination of different fatty acid moieties in PC´s, PE´s, TG and other lipid classes several 

thousand to ten thousands of lipids would be possible, especially as C. elegans is able to 

synthesis branched chain fatty acids de novo. 
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Figure 26: logP and logD values of the C. elegans in silico metabolome 
logP values are ranging from -15 to 15, whereas logD values show a shift towards lower values., which is reasonable, 
because most metabolites have an ionizable group. 

The number of carbon atom for metabolites ranges between 2 and over 50, where most 

metabolites have 30 or lower. Interestingly the metabolites show low counts of nitrogen and 

sulfur, but a proportion of them showed higher counts on phosphor and oxygen. Peroceilyn et 

al. compared the HMDB against ZINC, a database for non-metabolites, finding that the most 

metabolites have lower counts in nitrogen and sulfur, but high proportion of phosphor and 

oxygen. Second, the number of rings and rotatable bonds was lower for metabolites compared 

to non-metabolites, showing that metabolites tend to have simpler structures. A maximum 

ring count of eleven was found in the C. elegans metabolite dataset. The most complex 

aromatic ring systems were found in FAD and heme. Also a lower number of rotatable bonds 

were found. Metabolites tend to have a more rigid structure compared to pharmaceuticals. 

Exceptions from this are fatty acids and aliphatic molecules like lipids. 

Figure 26 shows the shift of hydrophobicity of C. elegans metabolites towards hydrophilic 

part of the diagram, when using the logP instead of the logD value. From this it can be 

concluded that the logD value is much more valuable for metabolite prediction and building of 

a structure retention time model, because most metabolites have ionizable groups. The 

different parameters have also a high relevance for mass spectrometry, because they influence 

the ionization in an ion source. Molecules like Cholesterol with no ionizable group will be hard 

to ionize under ESI conditions and can possibly only be observed as [M+Na]+ adduct, whereas it 

should be readily ionized using APCI or APPI. A high content of nitrogen will make a molecule 

amenable to positive ionization mode. Contrary, metabolites containing a phosphate group 

have a high prevalence to be detected under negative ionization conditions. Other parameter 

like the number of rotatable bonds will influence the chromatographic behavior. 



 

  

73 C. elegans – P. aeruginosa infection model 

 

Figure 27: Physicochemical properties of the C. elegans in silico metabolome 
(A) Masses of metabolites are ranging until 1500. Most metabolites have a mass below 500 Da. (B) Atomic counts 
show that the majority of the metabolites have lower than 15 carbon atoms and between 0 and 10 oxygen atoms. 
The second heteroatom found is nitrogen followed by phosphor and sulfur. (C) Also rings and aromatic rings play 
together with the number of rotatable bond an important role. Especially nucleosides and related molecules have 
several rings. Normally metabolites are very rigid with a low number of free rotatable bonds. Exceptions from this 
are fatty acids, which usually have higher amounts of such bonds. 

To reveal building blocks of the metabolome, the maximum common substructure (MCS) of 

the C. elegans metabolome was searched using the Library MCS tool from ChemAxon. Figure 

28A shows the most common substructures in the used dataset. It included phosphate groups, 

the chiral center of amino acids, dicarboxylic acids and β-keto acids for example. To further 

evaluate building blocks the FRAG57 library from Nobeli et al. was used to search for other 

building blocks, they used for the structural anatomy of the E. coli metabolome [83]. The most 
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detected fragments were C-C bonds, C-O bonds, C=O double bonds and the C-N bond. These 

fragments themselves carry no information because they are basic connections between 

atoms. The following ones are more useful for elucidation of chemical building blocks. They 

included the carboxyl group, phosphate groups and glycine, which is the common substructure 

of all amino acids. Results are similar to the results obtained from the Library MCS tool. 

Furthermore Nobeli et al. used the Tanimoto coefficient to rate the degree of similarity for 

metabolites present on the same pathway. The Tanimoto coefficient is a measure of the 

chemical similarity between compounds. Generally, metabolites belonging to the same 

pathway have high similarity and thus should elute in similar regions of a chromatogram. 

Exemplarily, Figure 29 shows a heatmap of similarity coefficients of metabolites on the C. 

elegans phenylalanine metabolism pathway. 

 

Figure 28: Building blocks of the C. elegans in silico metabolome  
(A) Examples of common substructures found using LibMCS (B) Frequency of the FRAG57 fragments in C. elegans 
metabolome. 

Two clusters are visible, metabolites with the aromatic ring and metabolites with the 

opened ring. The smaller molecules become, the higher is their similarity to metabolites from 

the TCA cycle, because they are fed into it for energy generation. Central metabolites show 

high similarity and the more far away a metabolite is from the central carbon metabolism it 
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becomes more dissimilar. This information can be used for identification of novel biosynthetic 

routes. If a novel metabolite is identified with its chemical structure, calculation of similarity to 

known metabolites can possibly reveal biosynthetic precursor and building blocks. In C. 

elegans Ascaroside signaling molecules are made up of building from different metabolic 

pathways. For example the indole-3-carbonyl unit in indole containing ascarosides may derive 

from tryptophan, while the p-hydroxybenzoic acid residue derives from tyrosine metabolism. 

However this approach can be only used for molecules with an appropriate size. In bigger 

molecules for example heme or related species it can be hard to detect precursors. 

 

Figure 29: Metabolites on the same metabolic pathway show chemical similarity 
(A) Common degradation pathway of phenylalanine via tyrosine in C. elegans. The pathway can be split into two 
parts. The first contains molecules with intact aromatic ring, whereas the second contains ring-opened molecules. 
(B) Heatmap of chemical similarity based on the Tanimoto coefficient (similarity = 1-Tanimoto). The two parts of the 
pathway can be seen in the heatmap. 

All these parameters influence the retention of molecule in a chromatographic system. For 

a meaningful retention time model the most significant have to be discovered. 

4.2.1.2 Quantitative structure retention relationship for C. elegans metabolites 

Creek et al. reported a QSRR model based on measurement of 120 authentic standards on a 

ZIC-HILIC column. The average prediction error of this model was around 10-40%. 

57 Standards were measured under RP and HILIC conditions to determine their retention to 

build a retention time model. To avoid possible overlap of isobaric substances or molecules 

that can generate similar MS patterns, all metabolites were distributed into six standard 

mixtures. The same model used by Creek et al. was used for prediction of retention times on 
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the BEH Amide column. For reversed phase separation a simple regression against the logD 

value was carried out. The buffers used with BEH Amide had a pH of 6.0 and 4.2, for buffer A 

and B respectively. For calculation of the physicochemical properties the mean of 5.1 was 

chosen. 

Table 13: Used standards with retention times under RP and HILIC conditions 
Standard compounds were injected in six different standard mixes to avoid isobaric and isomeric substance, which 
could lead to misinterpretation. Retention times were determined by creating EIC traces for each metabolite and 
taking the time at the peak apex. 

Metabolite 
Std. 
mix 

RT BEH C8 RT BEH Amide 

alanine 

A 

1.5(+)/n.d.(-) 10.71(+)/n.d.(-) 

arginine 1.4(+)/1.3(-) 12.93(+)/12.97(-) 

asparagine 1.5(+)/1.4.(-) 11.62(+)/11.64(-) 

glutamate 1.5(+)/1.4.(-) 11.60(+)/11.54(-) 

glycine n.d. n.d. 

histidine 1.4(+)/1.3(-) 12.98(+)/12.97(-) 

leucine 2.6(+)/2.5(-) 8.78(+)/8.73(-) 

serine 1.5(+)/1.4(-) 11.50(+)/11.51(-) 

tryptophan 5.1(+)/4.9(-) 8.73(+)/8.69(-) 

tyrosine 1.9(+)/1.9(-) 9.98(+)/9.84(-) 

aspartate 

B 

1.5(+)/1.5(-) 12.30(+)/12.26(-) 

isoleucine 2.4(+)/2.3(-) 9.00(+)/8.95(-) 

lysine 1.5(+)/1.3(-) 13.12(+)/13.14(-) 

methionine 1.7(+)/1.7(-) 9.17(+)/9.16(-) 

phenylalanine 3.4(+)/3.3(-) 8.67(+)/8.86(-) 

proline 1.5(+)/1.5(-) 12.28(+)/n.d.(-) 

valine n.d.(+)/1.6(-) 9.95(+)/9.84(-) 

(S)-malate 

C 

n.d.(+)/1.7(-) 10.65(-) 

2,3-pyrazinedicarboxylic acid n.d.(+)/n.d.(-) n.d. 

benzoylformic acid n.d.(+)/4.9(-) n.d. 

citrate 1.9(+)/1.9(-) n.d. 

cumarin 3-carbonic acid 7.6(+)/7.5(-) 2.75(-) 

malic acid n.d.(+)/1.7(-) 10.43 

fumarate n.d.(+)/2.2(-) n.d. 

glutaconic acid 3.2(+)/3.3(-) 9.28(-) 

glutaric acid 4.4(+)/2.9(-) 8.66(-) 

maleic acid n.d.(+)/2.2(-) n.d. 

mesaconic acid 3.2(+)/3.3(-) 9.28(-) 

meso-tartaric acid n.d.(+)/n.d.(-) n.d. 

oxalic acid n.d.(+)/1.8(-) n.d. 

pyruvate n.d.(+)/1.7(-) n.d. 

succinate n.d.(+)/2.2(-) n.d. 

tartronic acid n.d. n.d. 

D-glucose 

D 

12.2(+)/n.d.(-) 7.15/7.94(+)/9.35(-) 

D-glucose 6-phosphate 1.5(+)/1.5(-) 13.53(-) 

D-ribose n.d.(+)/.1.5(-) n.d.(+)/5.70(-) 

rhamnose 13.7(+)/1.5(-) 8.86(+)/6.12(-) 

arachidic acid( C20:0) E 15.6(+)/15.5(-) 1.50(-) 



 

  

77 C. elegans – P. aeruginosa infection model 

Metabolite 
Std. 
mix 

RT BEH C8 RT BEH Amide 

capric acid (C10:0) 

E 

13.1(+)/13.0(-) 1.54(-) 

caprylic acid (C8:0) 11.9(+)/11.8(-) 1.55(-) 

cholesterol n.d. 1.54(-) 

heneicosanoic acid (C21:0) 15.7(-) 1.50(-) 

lauric acid (C12:0) 13.9(+)/13.8(-) 1.52(-) 

myristic acid (C14:0) 14.5(+)/14.4(-) 1.52(-) 

palmitic acid (C16:0) 15.0(+)/14.9(-) 1.52(-) 

perlagonic acid (C9:0) 12.5(-) 1.54(-) 

stearic acid (C18:0) 15.3(+)/15.2(-) 1.52(-) 

undecanoic acid (C11:0) 13.4(-) 1.54(-) 

biotin 

F 

6.7(+)/6.7(-) 2.94(+)/3.20(-) 
cytosine 1.2(+) n.d. 

D-fructose 12.2.(+)/1.5(-) 9.28(-) 

folate 5.6(+)/5.6(-) 
9.33/10.34(+)/ 
9.26/10.26(-) 

carnitine 1.4(+) 9.35/10.17(+) 
nicotinamide 1.8(+) n.d. 

ortophosphate n.d. n.d. 
phenol n.d. n.d. 

spermidine 1.2(+)/1.5(-) n.d. 

 

Major problems during chromatography arise from poly acid, like citrate, which shows a 

broad peak over almost two thirds of the chromatogram. This retention behavior can be 

explained by having a closer look of the micro species present at a certain pH. At a pH of 5.1 

used for the calculation of parameters for the BEH Amide separation, citrate has six different 

micro species, three of them in significant amounts. Out of the measured 57, 41 could be used 

for calculation of a QSRR model. For modeling the parameter and equation used by Creek et al. 

was used. They determined the most significant properties using multi linear regression. Out of 

11 physicochemical parameters, the following 6 were the most significant. The logD values 

describes the polarity of a molecule, Neg and Pos indicate the charge of a molecule at the pH 

used for modeling, Rot specifies the number of rotatable bond and Phos the number of 

phosphate groups. The last parameter HBD/MS is an indicator for the molecule to cater 

hydrogen bond [121]. 

   (  )    (    )    (   )    (   )    (   )    (    )    (
   

  
)    

Equation 9: Model equation of QSRR model used by Creek et al. 
The equation is taken from [121]. RF = retention factor. Neg/Pos = negative or positive charge at the given pH. Rot = 
number of rotatable bonds. Phos = number of phosphate groups. HBD = hydrogen bond donors. MS = mass. 
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Parameter coefficients k1 to k6 and the constant c were optimized using the Solver plugin in 

Excel and square sum minimization. With the optimized model equation retention times for all 

metabolites found in the C. elegans metabolic reconstruction were predicted. 

Table 14: Calculated parameter for model equation 9 for the BEH Amide separation 
Similar parameters as described by Creek et al. [121] were used and optimal solution was found using the Excel 
Solver function. 

parameter BEH Amide 

k1 -0.162619663 
k2 0.238574045 
k3 -0.004186964 
k4 -0.077000521 
k5 -0.387499906 
k6 3.412526988 
c 0.148447755 

 

Mean error between predicted and real retention of the used standards was lower than 

5%. However for filtering of annotations an error of maximum 25% was assumed, due to the 

relatively low number of standards used. 

For the RP separation regression of the retention time against the logD value at a pH of 3.5 

was carried out. R² was 0.88 and the mean error between real and predicted retention was 

around 35%. Higher errors can be explained by missing metabolites in the middle range of the 

chromatogram. For further optimization more standards eluting in the region between 5 and 

15 minutes have to be included. 

All in all, this method was used as additional filter to avoid false positive annotations. It was 

used for filtering of potential biomarker candidates, were indicated in the further work. 

Nevertheless, for final identification retention time matching against an available reference 

standard was used if possible. 

4.2.2 Identification of fragments, adducts and isotopes 

To further identify possible adducts, neutral losses or fragments correlation analysis was 

carried out. Data was exported to R and Pearson correlation coefficients were calculated 

between all detected features. Signal arising from the same metabolite should have a positive 

correlation coefficient. Features with a correlation coefficient >0.9 and the same retention 

time were further considered. Mass differences between the related masses were calculated 

to compare them against theoretical mass differences of neutral losses and adducts. The most 

frequent observed mass difference were 1.003 Da and 21.982 (± 0.005 Da), which are related 

to 13C isotopes and sodium adducts in positive mode. Other common neutral losses, like loss of 
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water, CO2, phosphoric acid or acetyl groups were found. Figure 30 shows an example. 

Histidine was detected at two different retention times in the BEH Amide separation with 

negative ionization. The peaks were compared against an authentic standard of histidine, 

which showed that only the second peak corresponds to histidine. Correlation analysis showed 

that the first peak highly correlates with several other peaks, annotated as N-acetyl-histidine, 

N-acetylhistamine and histamine and their isotopes. Mass differences between the peaks are 

identified as neutral losses of C2H2O (loss of acetyl group) or loss of CO2 (decarboxylation). All 

fragments showed intensities lower than the first isotopic peak of N-acetyl-histidine. 

 

Figure 30: Example of cluster found using correlation analysis and RT filtering 
(A) Paired scatterplots of different peaks show high correlation. (B) In source fragmentation with different neutral 
losses yields different ion species originating from the same metabolite. (C) Chromatograms of N-acetylhistidine and 
associated fragment peaks and an authentic histidine standard. 

4.2.3 Lipid identification with AutoMSn and in silico fragmentation 

A major problem in lipidomics is the identification of different lipid species, isomers and 

isobars. One possible way to reduce the candidate structures for identification is to analyze the 

complete dataset and select a number of markers after statistical analysis, which are subjected 

to further analysis. A second approach is the identification of as much as possible lipid species 

in time with the first analysis. This is possible by using a so called data dependent approaches. 

Here detected peaks meeting certain criteria are directly selected and fragmented between 

normal MS scans. 
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A special attention has to be drawn to the two different lipid class’s phosphatidylcholine 

(PC) and phosphatidylethanolamine (PE) species, because between them several isobaric 

molecules exist, as shown in Figure 31. In C. elegans also monomethyl (PE-NME) and dimethyl 

(PE-NME2) phosphatidylethanolamines can occur as intermediates of PC synthesis. A second 

important class of lipids are triacylglycerols (TG), which serve as energy storage. In the 

LipidMaps database totally 6878 different TG species are listed, which have in total 300 

different formulas. Diversity is achieved by different fatty acid composition and positional 

isomers. The maximum number of isomers and isobars for one formula was determined to be 

C59H104O6, with totally 73 different species. 

 

Figure 31: Isomeric and isobaric lipid species complicate analysis of lipidome data 
(A) Venn diagram showing overlap of unique formulas from PE´s, PE-NMe´s, PE-NMe2´s and PC´s. PE-NMe´s and PE-
NMe2´s are intermediates of one PC synthesis pathway in C. elegans (B) Difference between isomers and isobars 
explained across three different PE species. All molecules have the same exact mass. 

If a chromatographic separation is used prior to mass spectrometry, retention time can be 

used as second filter to reduce false positive assignments. On a reversed phase column lipids 

elute based on their hydrophobicity, caused by different fatty acid chain length. Number and 

position of double bonds further influence retention behavior. Generally the effect of one 

double bond is a little bit weaker than difference based one carbon atom in the side chain. 

For data dependent acquisition of MS/MS the AutoMSn algorithm was used. This algorithm, 

build in Bruker microTOF control, enables automated generation of MS/MS spectra during a 

chromatographic separation or direct infusion. The algorithm first records a survey MS scan. 

From this spectrum the n highest mass are selected as precursor for MS/MS experiments. In 

the next n scans these masses are fragmented starting with the most intense. After 

fragmentation already used masses are excluded for a selected time range, usually the typical 

width of a chromatographic peak. After this the cycle starts again. AutoMSn was used to 

identify major lipid species in conjunction with MetFrag. Lipid species are identified based on 
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characteristic fragments and neutral losses. In positive mode fragmentation of 

phosphocholines yields a characteristic mass of 184.1 Da, representing the phosphocholine 

headgroup. Another example is the neutral loss of a fatty acid side chain plus ammonium, 

which is detected when fragmenting [M+NH4]+ adducts of triacylglycerols [125]. 

Samples of the C. elegans infection model with P. aeruginosa PA14wt, P. aeruginosa 

PA14ΔgacA and P. aeruginosa PA14Δpec7 was used to test the applicability of the AutoMSn 

algorithm build in the Bruker microTOF control software. Totally 78 injection in positive mode 

were performed. 

Automated fragmentation was carried out on all samples in this C. elegans infection model. 

Totally 30276 MS/MS spectra were collected. After removing duplicate spectra from duplicate 

chromatographic features 24563 remained. If such an approach would be only carried out on 

QC samples only 2362 MS/MS spectra would be collected. Due to intensity differences of the 

same species in different samples, in several cases it meets the criteria for fragmentation and 

in others not. This yields in much higher number of MS/MS spectra, based on the natural 

sample inhomogeneity and differences between sample states. 

Lipid identification was achieved by using the MetFrag batch client on a grid computing 

system at the IBP Halle. LipidMaps served as input for molecule structures. A search with 0.005 

Da maximum error was carried out and MassTRIX was used for preliminary annotation of lipids 

to the precursor masses and neutral masses needed for MetFrag were obtained from the 

corresponding annotation. From 19214 subjected MS/MS spectra, 6185 could be matched 

against a theoretical fragmentation pattern. For each subjected and matched MS/MS 

spectrum, MetFrag returns an .sdf file. The files were merged into a single .sdf file, which was 

imported into Excel using JChem for Excel. MetFrag scores ranged from 0 to 0.94. Totally 4388 

MS/MS spectra could be used for identification with a MetFrag score >= 0.75. Results from 

randomly selected spectra were manually inspected and most obtained hits were correctly 

assigned. The identified lipids included 439 PC´s, 223 PE´s and 109 PS´s possible species. The 

most common fragments detected were head groups and their respective loss, e.g. 184.1 and 

M-183 for PC species. 

For most phospholipids several MS/MS spectra at different retention time were found, 

which correspond to different isomers eluting at different time points. In total 2 to 6 different 

isomers were detected. An example can be seen in Figure 32A, where 5 different peaks were 

detected in the retention time region corresponding to phospholipids. The mass is 

corresponding to PC(40:6). 
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Triacylglycerols were mainly detected as [M+NH4]+ adducts, which are not covered in 

MassTRIX. Theoretical adduct masses of all TG´s covered by LipidMaps were calculated and 

used for the annotation process. Totally 1006 different peaks were annotated in C. elegans 

samples as TG´s, with carbon counts from 37 to 66 and up to 15 double bonds. The longest 

detected homologous series contained 46 carbon atoms in the side chain. Most isomers were 

detected with the TG(46:1). Interestingly 27 peaks were annotated as TG(46:1) but only 24 are 

listed in LipidMaps. TG´s containing for example alicyclic fatty acids are not listed in LipidMaps, 

but C. elegans is known to use them from the ingested bacteria. TG´s containing 46 carbons in 

the side chain were used to exploit retention behavior. From the obtained MS/MS spectra 128 

had a putative annotation as TG and were subjected to MetFrag for in silico fragmentation. 

Most of the subjected mass spectra could be used for identification and confirmation of the 

annotation. 

 

Figure 32: The AutoMSn algorithm is a data dependent algorithm for the automated acquisition of MS/MS spectra 
during a chromatographic run 
(A) Extracted ion chromatogram of mass 834.6066, which is possible corresponding to PC(40:6). For this mass 4 
different chromatographic peaks in the region where phospholipids are eluting are found. The arrow indicates the 
time point where the MS/MS spectra shown in panel B were obtained. (B) MS and MS/MS obtained by the AutoMSn 
algorithm. The first panel shows the survey MS scan with the masses which are fragmented in the 4 upcoming scans 
in red. MS/MS scan are depicted in the lower four panels, whereas the third corresponds to PC(40:6), showing the 
typical 184.1 fragment special for PC. 

Visual inspection of a retention time versus mass plot of all peaks annotated with 46 

carbons in the side chain showed a linear trend with increasing double bonds. One additional 

double bond shifts retention of about 0.4 minutes. The effect of an additional carbon atom in 

the side chain was similar. Figure 33 shows exemplary the retention behavior of selected TG 
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species. This methodology allows finding corner points from which a possible fatty acid 

composition can be deduced. In several cases, at the cross points of the double and carbon 

line, two instead of one point exist, which are shifted left and right from the expected position. 

In this cases possibly cis- and trans or positional isomers are separated. Due to the short 

gradient time of 20 minutes, this separation is only visible in certain rare cases and mostly 

these isomers elute at the same time. Bird et al showed separation of cis-trans Phospholipid 

isomers with an established lipid separation method and high resolution mass spectrometry 

[126]. 

 

Figure 33: Retention time shifts and mass differences allow identification of members of homologous series. 
(A) Mass difference of 2 Da indicates an additional double bond, which leads to a retention time shift of 0.4 
minutes. Increasing carbon numbers have a mass difference of 14 Da for each additional carbon atom, which also 
leads to a retention time shift of 0.4 minutes. Members of homologous series can be found on straight lines in the 
2D chromatogram. (B) Sometimes for different peaks of the same molecule are found in a narrow retention time 
range. The figure shows and extracted ion chromatogram of TG(55:6). The small peak in the front and the shoulder 
at the end are possibly due to partial separation of cis-trans lipid isomers. (C) GC-FID analysis of total fatty acids 
showed that C17:0∆ is the major fatty acid species in C. elegans. 

To obtain a starting point for identification normally lipid species not occurring in the 

studied organism are used as internal standards, e.g. PC(17:0/17:0) or TG(17:0/17:0/17:0) in 

human cells. Because C. elegans is able to synthesize these molecules on its own or they are 

taken up from bacterial food, these standards cannot be used. Total fatty acid profiling using 

GC-FID showed C17:0 as the predominant fatty acid in C. elegans followed by C18:1n7 and 
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C20:4n6. Suitable alternatives for these standards could be heavy isotope labeled analogues, 

e.g. molecules where hydrogen atoms of the carbon backbone are exchanged with deuterium. 

Although a high amount of initial MS/MS spectra were obtained, only a small fraction of 

them could be finally used for identification. From initially 19214 subjected spectra only 4388 

returned a usable result, which is about 23%. Due to the relative high isolation window for 

fragmentation, possibly substance with a similar mass and retention time are fragmented at 

the same time, which would lead to a mixed MS/MS spectrum and possible confusion in data 

interpretation. Also a longer chromatography method would lead to better results and 

separation of interfering molecules. 

Summing up, even though more optimization work is needed the AutoMSn algorithm 

together with MetFrag is a useful tool for on-the-fly identification of lipid species. It allowed 

the identification of several hundred different lipids from different classes. For the non-

targeted approach lipidomics approach used in this work, this was certainly useful to confirm 

at least partly the annotations from MassTRIX. For final identification of a lipid species and the 

correct isomer, pure chemical standards are needed. Currently only a limited number of such 

standards are available. 

4.2.4 Mass difference networking for improved metabolite annotation 

Using MassTRIX for annotation of ICR-FT/MS masses about 30% of all peaks could be 

annotated as either [M+H]+ or [M+Na]+ adduct in positive or [M-H]- in negative ionization 

mode. The mean annotation error was 0.03 and 0.13 ppm for negative and positive ionization 

mode, respectively. Metabolites from all major pathways known to be present in C. elegans 

were annotated. 

To obtain chemical formulas, which can be used for searching chemical databases like 

PubChem or Chemspider masses were subjected to mass difference networking described by 

Tziotis et al. using NetCalc, an in-house written MatLab script for calculating mass difference 

networks [127]. Mass differences according to Table 15 were used for the calculation of 

formulas. Main network graphs were visualized using yED (version 3.8, 

http://www.yworks.com/en/products_yed_about.html) and network characteristics were 

calculated using Cytoscape (version 2.8.2, http://www.cytoscape.org). These network 

characteristics include node degree, number of neighbors and path length. Overall data shows 

the calculated networks are not random, which has already been shown for natural organic 

matter by Tziotis et al. 
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Totally 1184 and 778 additional formulas for positive and negative ionization mode 

respectively could be annotated to the MassTRIX formulas in the main network. Several sub 

networks disconnected from the main graph exist, suggesting that the input mass differences 

may be incomplete or insufficient to cover all metabolic transformations or novel not known 

mass transformations. Only basic transformations like oxidation can be represented in mass 

differences, special cases like condensation or cleavage reaction are not amenable to this 

approach. Frequencies of individual transformations together with shapes of the main 

networks from positive and negative ionization mode can be found in Figure 34. Highest 

frequencies were found within homologous series, oxidation either by gaining an oxygen or 

loss of H2, hydration/dehydration and decarboxylation. Many metabolic pathways like β-

oxidation rely on these reactions. 

Table 15: Mass differences used for network calculation 
The mass differences correspond to homologous series, which can be found between different fatty acid in lipids, or 
common metabolic transformations. In positive mode the mass difference between the [M+H]

+
 and [M+Na]

+
 adduct 

were added to identify possible sodium adducts. 

difference formula Biological meaning mass difference ionization mode 

CH2 

Homologous series 

14.0156501 +/- 

C2H4 28.0313001 +/- 

C3H6 42.0469502 +/- 

C4H8 56.0626003 +/- 

C5H8O4 

O-linked sugars 

132.042259 +/- 

C6H10O5 162.052823 +/- 

C7H12O6 192.063388 +/- 

O Oxidation (O) 15.9949146 +/- 

H2 Reduction/oxidation (H2) 2.01565006 +/- 

H2O Loss / gain of water 18.0105647 +/- 

H3ON transamination 1.03163448 +/- 

Na ESI sodium adduct 21.9819442 + 

HO N-hydroxylation 17.0027397 +/- 

HO3P Phosphate ester/ anhydride 79.9663305 +/- 

O3S Sulfate ester / anhydride 79.9568149 +/- 

C5H8O2N2 glutamine 128.058578 +/- 

C2H3ON glycine 57.0214637 +/- 

CO2 decarboxylation 43.9898292 +/- 
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Table 16: Overview on masses in main network and the annotation of new formulas 
The NetCalc approach was able to predict several new formulas that were not found before in the used databases. 
These formulas can be used to query bigger databases like Pubchem or Chemspider or serve as basis for de novo 
structure elucidation. 

Features Pos Neg 

No of total features 13080 11738 

No of features in main network 2497 1301 
No of MassTRIX annotation in main network 1313 523 
Novel formulas (NetCalc) 1184 778 

 

 

Figure 34: Overview on NetCalc networks 
(A) Counts of different mass differences observed in the main networks from negative and positive ionization mode. 
(B) Main network from positive ionization mode (C) Main network from negative ionization mode 

4.2.5 Alignment of ICR-FT/MS and UHPLC-UHR-ToF-MS data 

ICR-FT/MS and UHPLC-UHR-ToF-MS data were aligned with a custom written Perl script. 

The advantage of this alignment is to have also exact masses for unknown entities in the 
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chromatograms, without utilizing an online coupling of ICR-FT/MS. To find optimum alignment 

conditions, different errors from 1 to 15 ppm were tested and numbers of hits were counted. 

Due to the lower resolution of UHR-ToF-MS several ICR-FT/MS masses can correspond to a 

single chromatographic feature. The mass with the lowest error was chosen as the true mass 

and the number of different possible masses was stored. Figure 35 gives an overview on the 

alignment of BEH Amide separation with negative ionization as example. 

 

Figure 35: Results of ICR-FT/MS and UHPLC-UHR-ToF-MS alignment 
(A) Number of LC masses that have a corresponding FT mass as function of the ppm error. Different lines show 
counts of masses that have either 1 hit, 2 hits 3 hits or more (black line). (B) Percentage of masses with no, 1, 2 3 or 
more hits at 10 ppm. 

Interestingly, 59% of the observed LC peaks had no corresponding FT mass at 10 ppm error. 

Because mass ranges were different, masses out of the ICR-FT/MS mass range were removed, 

but still 57% had no FT mass. Over 50% of theses masses have a mass small than 500 Da. For all 

UHPLC-UHR-ToF-MS post-processing steps a mass error of 0.005 Da was used, including 

annotation using MassTRIX. For masses lower than 500 Da this would yield an error > 10 ppm. 

Because metabolic profiling was carried out with a large mass range, calibration of UHPLC-

UHR-ToF-MS data was only optimal for the middle of the mass range. Most biological relevant 

molecules have a mass below 500 Da. For this purpose alignment of ICR-FT/MS and UHPLC-

UHR-ToF-MS was repeated with an absolute error 0.005 Da. Using an absolute error of 0.005 

Da for alignment enhanced performance for masses lower than 500 Da. In the higher mass 

range this error didn´t perform as good as the relative ppm scale. These results are valid for all 

other used methods. For further work a 10 ppm error was chosen, being aware that below 500 

Da possibly more hits exist with an absolute error below 0.005 Da. 
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Splitting the mass ranges of both methods into two methods, one for low masses until 500 

Da and for masses >500 Da can be a suitable solution to overcome the calibration problem. 

However, this would double the effort for measurement and data analysis time. 

4.3 Biological interpretation of the C. elegans infection model 

The metabolite maps obtained from the first part of this chapter were subjected to 

statistical evaluation to reveal metabolites significant for each sample condition. This 

evaluation is based on non-supervised and supervised multivariate statistics. Results from the 

different methods are group together according to their biological interpretation. 

4.3.1 Statistical data analysis 

4.3.1.1 DI-ICR-FT/MS 

HCA and PCA were performed in R or SIMCA-P 9.0 and used to reveal group separation and 

data quality. To assess the class separation different orthogonal partial least square models 

(OPLS/O2PLS-DA) have been built up in SIMCA-P 11.5. The contribution of the masses in the 

separation of the different groups has been evaluated through the examination of the 

different S-PLOT. Always one group of a given genotype was compared against the remaining 

four. Masses with the highest magnitude in covariation and correlation were chosen as 

potential candidates for the class separation. P-values were calculated using Welch´s t-test and 

results were combined in MS Excel for further analysis. 

4.3.1.2 UHPLC-UHR-ToF-MS 

Data analysis of UHPLC-UHR-ToF-MS data was carried out in Genedata Analyst 7.5. In the 

case of BEH Amide separation with positive ionization for some chromatograms no data was 

obtained. Visual inspection of sample vials showed no remaining sample. Possibly no sample 

was injected. To overcome the problem of missing values, these were replaced with the 

arithmetic mean of the remaining values of a group. To test if this interferes with further 

analysis, PCA using the non-filled data without the chromatograms and the filled data was 

carried out. Data filling did not lead to a distortion of the data, because group separation was 

similar between the two datasets. For further analysis the mean filled data set was used. 

Several PLS models, comparing always one condition of a genotype were compared against 

the remaining four. Importance for the group separation in the models was evaluated by a VIP 

score>1. All results were combined in MS Excel for further analysis. Results were tested for 

significant differences between the sample groups using Welch´s t-test. Changes with a p-

value<0.05 were considered as significant. 
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4.3.2 Survival of C. elegans challenged with different pathogens 

The nematode strains used in this work were provided by the Caenorhabditis Genetics 

Center, which is funded by the NIH National Center for Research Resources (NCRR). The Strains 

fer-15 (b26) and daf-2 (e1370) of C. elegans were used in this work. Worms were cultured as 

described previously [128]. Eggs were isolated by hypochlorite treatment of gravid adults and 

hatched on NGM at 25°C to obtain synchronized sterile worms for use in the slow killing and 

feeding studies. The P. aeruginosa strain PA14, Salmonella enterica serovar Typhimurium strain 

12023 and Escherichia coli OP50 have been described. The P. aeruginosa PA14∆gacA mutant 

was generated using the vector pKNG101 as described [129]. Media for routine bacterial 

culture and maintenance was Luria–Bertani broth. Bacteria were cultured on nematode 

growth medium (NGM) as described below for nematode feeding and killing assays. The slow 

killing assay was performed as described previously [130]. Each independent assay consisted of 

three replicates. E. coli OP50 was used as a negative control. L4 stage C. elegans were picked 

onto plates containing overnight growth of each bacterial strain, and on a daily basis worms 

were evaluated for viability. Worms were considered dead when they no longer responded to 

physical stimuli. The statistical analyses indicated were carried out using the Graph Pad Prism 4 

software. 

 

Figure 36: Typical killing curves obtained from C. elegans fed on different pathogenic bacteria. 
L4 C. elegans grown on E. coli OP50 were switched to a pathogenic diet and were evaluated on a daily basis worms 
for viability. Worms were considered dead when they no longer responded to physical stimuli. Pathogenic bacteria 
significantly reduce lifespan of the nematode. 

Under standard laboratory conditions C. elegans is fed on different strains of E. coli, like 

OP50, a uracil auxotroph, which was chosen by Sydney Brenner, because it grows as thin layers 

on a solid surface. However if diet is switched to pathogenic bacteria survival is greatly 
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reduced. When a population of fer-15 C. elegans is raised on E coli OP50, the median survival 

of the group is 10 days, for P. aeruginosa PA14wt the median survival is reduced 3.5 days, for 

the P. aeruginosa PA14∆gacA mutant the survival to 7 days and for Salmonella enterica 12023 

the median survival to 5.5 days. These results reflect previously obtained results and 

demonstrate that each of the pathogens used is able to kill C. elegans. Typical killing curves are 

depicted in Figure 36. For daf-2 worms survival was similar to the literature. 

4.3.3 ICR-FT/MS metabolic profiling separates different sample conditions 

The obtained ICR-FT/MS datasets were first evaluated by unsupervised statistical methods 

like PCA and HCA. In PCA no clear separation of the ten different groups was obtained, so data 

was split into two data sets, according to the genetic background of C. elegans. 

In the fer-15 data set the first principal component (PC1) separated E. coli OP50 (OP50) and 

P. aeruginosa PA14wt (PA14wt) fed and starved worms from S. enterica (S. ent) and P. 

aeruginosa PA14∆gacA (PA14∆gacA) fed worms. The second principal component (PC2) 

separates starvation, PA14wt and PA14∆gacA fed worms from nematodes fed with OP50 and 

S. ent. Because infection of C. elegans with PA14wt is dependent on daf-2, this clustering 

suggests a separation according to daf-2 dependency of the metabolic phenotypes. Also, 

PA14wt and PA14∆gacA are grouped together with starvation separated from the remaining 

two groups from, making them similar to the starvation response. Looking into the scores plot 

of the daf-2 dataset, group separation was different. PC1 separates starved, PA14wt and 

PA14∆gacA fed worms from S. ent and OP50 fed worms. Furthermore, S. ent and OP50 are 

separated along PC2. A similar pattern was found also in positive mode analysis with ICR-

FT/MS and BEH C8 separation with positive ionization. 

A major feature of P. aeruginosa infection in C. elegans is the up-regulation of daf-2. This 

event is abolished in daf-2 mutants and PA14wt and PA14ΔgacA responses are becoming more 

similar, so that in the daf-2 mutant, the first PC separates PA14 fed and starved worms form 

OP50 and S. ent fed C. elegans. However, the responses between PA14wt and PA14ΔgacA can 

still not be the same, because PA14wt is still able to secrete protein effectors. This makes a 

comparison of the responses of the two different genotypes interesting, because it is possible 

to differentiate between the metabolic responses according to daf-2 up-regulation and the 

response due to bacterial effectors. 
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Figure 37: Principal component analysis of negative ICR-FT/MS dataset 
(A) In the fer-15 genetic background the first principal component separates E. coli OP50 and P. aeruginosa PA14 wt 
fed and starved worms from PA14ΔgacA and S. ent. fed ones. The second principal component separates E. coli 
OP50 and S. ent. fed C. elegans from the remaining groups. (B) In the daf-2 mutants, a similar separation across the 
first principal component was observed as with the second one in the fer-15 worms, suggesting this separation is 
becoming more important. 

Masses were uploaded group specific to MassTRIX to obtain counts of metabolites per 

pathway to get a first idea about altered metabolic pathways. Masses occurring four or more 

times in one group were uploaded per group and different conditions were compared on 

pathway level using the compare function in MassTRIX. Interestingly, fer-15 worms fed with 

OP50 have the highest counts in most amino acid metabolism pathways. Amino acid 

metabolism may be down regulated in all kind of stress, like infection or starvation. However, 

also daf-2 mutants fed with E. coli OP50 have lower counts on these pathways. 

 

Figure 38: Pathway comparison from positive ionization ICR-FT/MS data 
fer-15 C. elegans fed with OP50 show the highest count of annotated metabolites for most amino acid metabolic 
pathways, whereas all other have lower counts, including daf-2 worms fed with OP50. 
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To reveal metabolites significant for the separate groups several orthogonal partial least 

square models (OPLS/O2PLS-DA) were built. Always one group of a genotype was compared 

against the remaining four. As an illustration of this, in OP50 fed worms, degradation products 

of phenylalanine like phenyl pyruvate, phenyl lactate, and 2-hydroxy-3-phenylpropanoate 

were found to be significantly higher than in worms in the other feeding schemes. This is in 

agreement with the counts of annotated metabolites on the phenylalanine metabolism 

pathway. The pathway map in Figure 39 shows a cut-out of phenylalanine metabolism with 

markers for OP50 fed fer-15 nematodes mapped in green color and non-specific metabolites in 

gray color. Some of these metabolites might be of bacterial origin, from ingested E. coli OP50, 

as C. elegans lacks enzymes for their production (green frame in figure 3B). Further, the data 

shows the linked metabolic pathway of Tyrosine metabolism is also affected. Additionally 

tryptophan, histidine, glutamine and glutathione were found with significantly higher 

intensities with OP50 diet, suggesting a large scale down regulation in amino acid metabolism 

in C. elegans during bacterial infection and starvation. In case of daf-2 worms it is known that 

they have a down-regulated amino acid metabolism and elevated amino acid levels. However, 

down-regulation of amino acid metabolism seems to be common to all infections, suggesting 

that it is possible a response to pathogen associated patterns (PAMP´s). Because no elevated 

levels of amino acids are found, these are possibly used for protein biosynthesis or they are 

excreted. 

 

Figure 39: Several metabolites of phenylalanine were found significant for fer-15 worms fed with E. coli OP50 
Green dots correspond to metabolites found to significant for fer-15 C. elegans fed with E. coli OP50, whereas grey 
ones where detected, but not specific for any group. Several of these hits are laying a part of phenylalanine 
metabolism pathway map, not present in C. elegans, represented by the green shading. Enzymes marked in red are 
present in E. coli, suggesting that these metabolites originate from ingested bacteria. 

The glycolysis and the TCA cycle are the central metabolic pathways and many metabolites 

derive from molecules present in these pathways. Negative ICR-FT/MS data was used to 
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evaluate the effect of infection on these central pathways. Figure 40 compares the level of the 

9 detected metabolites. Out of these 9 metabolites, 8 had a p-value < 0.01, with higher levels 

in PA14∆gacA and one had a p-value < 0.05. All of the detected metabolites show lower 

intensities in PA14wt worms, which could be an indicator for low consumption of these 

metabolites. If this would be the case, oxaloacetate and the precursor malate would possibly 

accumulate in the cells. Oxaloacetate, was not detected, possibly because to decarboxylation 

in the ESI spray. Malate the direct precursor has also lower intensities in infected C. elegans. 

However, oxaloacetate is a strong inhibitor of complex II, converting succinate to fumarate. 

Feasibly it is converted to aspartate to overcome inhibition, but no changes in aspartate were 

detected. A more quantitative method like UHPLC-MS is needed to better reveal changes in 

amino acids, like aspartate. Additionally, search for the molecular formula of aspartate showed 

several isobaric species and the intensity profile in ICR-FT/MS may show a superimposition of 

more than one molecule. Lastly, C. elegans is capable of performing ethanolic fermentation, 

which could be the preferred pathway for generation of energy during infection. fer-15 C. 

elegans fed with S. ent show high level comparable to OP50 or PA14∆gacA., showing that 

down regulation of the TCA cycle is a PA14wt specific event. All this effects are erased in daf-2 

worms, where most of the levels are similar, independent of food. Fuchs et al. showed that in 

daf-2 mutants the glycoxylate shunt, gluconeogenesis and starch metabolism are up regulated 

and glycolysis and TCA cycle are down regulated [72]. 

In contrast to P. aeruginosa infection, in S. enterica infected worms significant masses were 

annotated on starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism 

and galactose metabolism. Glycogen (as listed in KEGG, C00182), glucose, sucrose, and glucose 

6-phosphate show higher intensities in the spectra of S. enterica fed worms. Higher levels of 

these metabolites suggests that C. elegans is mobilizing energy to fight the infection. A recent 

study by Antunes et al. used a mouse model to evaluate effects of Salmonella infection on the 

host metabolome [92]. In this study the authors reported a predominant effect on the host 

hormone metabolism; they also found lower levels of these energy utilization metabolites. The 

group used a significantly longer infection time before sampling, which can explain lower 

levels. The authors also hypothesize about a general energy mobilization response to infection, 

which could well be preserved during evolution. 

To examine if the metabolome data of P. aeruginosa infected worms obtained by ICR-

FT/MS is consistent with previously reported data, it was overlaid with gene expression data 

obtained from Troemel et al. [131]. 
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Figure 40: Metabolites from Glycolysis and TCA cycle detected in negative ICR-FT/MS analysis 
Several metabolites could be detected, but most were below the mass range of the ICR-FT/MS. From the detected 
all show significantly lower levels in fer-15 worms infected with PA14wt, whereas S. ent infected worms have similar 
levels to OP50 and PA14∆gacA. In daf-2 worms this response is erased. 

An example consistent with previous results is the down regulation of hsd-1 (Y6B3B.11) in 

P. aeruginosa infected worms. hsd-1 encodes for a hydroxysteroid dehydrogenase, which 

converts cholesterol to 4-cholesten-3-one, a precursor of ∆4-dafachronic acid, a major 

signaling molecule regulating C. elegans development and lifespan. For PA14wt, PA14∆gacA 

and S. ent infected worms intensities for 4-cholesten-3-one are lower and for starved worms 

slightly higher compared to OP50 fed worms (PA14wt p-value = 0.04, PA14ΔgacA p-value = 

0.03, S. ent. p-value = 0.02). daf-2 mutants generally have lower levels of 4-cholesten-3-one. 

Furthermore other sterols and sterol derivates were found in significantly higher levels in 

starved worms, confirming the role that steroid hormone signaling plays in C. elegans during 

the stress of starvation. 

These examples show how non-targeted metabolic profiling using DI-ICR-FT/MS is able to 

separate different metabolic phenotypes. Nevertheless, ion suppression is a major problem in 

direct infusion experiments and methods for better quantification are needed. Furthermore, 

isobaric and isomeric substances cannot be separated. Both facts are possibly leading to false 
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positive results. For confirmation or rejection of this results non-targeted metabolomics using 

UHPLC-UHR-ToF-MS was additionally employed. 

4.3.4 Infection with P. aeruginosa leads to increased β-oxidation 

Statistical analysis of the UHPLC-UHR-ToF-MS revealed higher levels of l-carnitine in fer-15 

worms infected with P. aeruginosa PA14 wt. This led to the suggestion that infection may 

interfere with fatty acid metabolism. In reversed phase separation with positive mode 

ionization, several acylcarnitines were detected. Levels of C2 to C17 acylcarnitines are 

significantly lower (p<0.05) in PA14 wt infected worms compared to PA14ΔgacA fed ones, 

independent of the worms genotype, shown in Figure 41. The only exceptions are C12 and C16 

acylcarnitine in daf-2 mutants. Acylcarnitines are the transport form of fatty acids across the 

membrane of mitochondria, where β-oxidation takes place. To generate energy from lipid 

storage, fatty acids are first released from triglycerides by a lipase. After activation with 

coenzyme A, fatty acids are transferred to carnitine to yield acylcarnitines. These are 

transported across the mitochondrial membrane. Inside the mitochondria they are transferred 

back to Acyl-CoA´s and undergo β-oxidation. The free carnitine is transported back to cytosol, 

by antiport with the acylcarnitines. Higher levels of carnitine may be explained by increased β-

oxidation. Indeed gene expression analysis carried out by another group, showed that several 

genes corresponding to β-oxidation are up-regulated in worms fed with PA14 wt compared to 

PA14ΔgacA [131]. Up-regulated genes include fatty acid CoA synthetases, generating acyl-

CoA´s from free fatty acids and 3-hydroxyacyl-CoA dehydrogenases, which are enzymes of the 

β-oxidation. Furthermore, as mentioned before, PA14 wt is able to up regulate daf-2. Since 

levels of acylcarntines are comparable between daf-2 and fer-15 worms, this seems to be a 

daf-2 independent event. 

To further follow this idea, the lipidome data was searched for indicators for increased β-

oxidation. Levels of Triglycerides were compared between PA14wt and PA14ΔgacA fed worms. 

Totally 100 peaks, that correspond to Triglycerides were found in significantly lower levels 

(p<0.05) in infected worms. Taken together, these results imply that infection with PA14wt 

results in increased β-oxidation for energy generation. 

If β-oxidation dominates, ketone bodies are built out of excessive acetyl-CoA. Two acetyl-

CoA´s are condensed to build acetacetyl-CoA. In a further reaction acetoacetate is reduced to 

D-3-hydroxybutyrate or decarboxylates spontaneous to acetone. Acetoacetate was not 

detected, but D-3-hydroxybutyrate and its carnitine conjugate. Both are lower during 

infection, suggesting that β-oxidation is taking place beside normal energy metabolism. 

Triacylglycerides are mobilized in a cAMP dependent manner during starvation or conditions 
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with low amount of other nutrients available. Possibly, this is a reaction of C. elegans to 

increased damage of the intestine and accumulation of bacteria in the gut. However, 

comparison of gene expression showed only a partial overlap with starvation induced 

expression alteration. It is more likely that this is an effect of the bacterial effector ExoY, a 

potent adenylate cyclase, increasing the intracellular cAMP level, which increased activity of 

cAMP dependent lipases and increased carnitine synthesis. 

 

Figure 41: Acylcarnitines are affected by infection independent of C. elegans genotype 
Carnitine was found in higher levels in P. aeruginosa PA14 wt infected fer-15 worms, whereas acylcarnitines are 
lower compared to PA14 ∆gacA fed worms. Also starvation shows lower levels of acylcarnitines. 

Additionally to acylcarnitines with saturated fatty acids, species with unsaturated chains 

were detected. Most of them were not significantly different, except two C18:3 species. These 

two species, corresponding to α- and γ-linolenyl-carnitine, could be base line separated and 

show different behavior. While the γ-isoform is higher in infection, the α-isoform is lower. 



 

  

97 C. elegans – P. aeruginosa infection model 

Nandakumar et al previously showed that γ-linolenic acid together with stearidonic acid is 

needed in C. elegans for immunity against P. aeruginosa. Stearidonyl carnitine was also 

detected, being lower in infected C. elegans. 

 

Figure 42: Two different isomers of C18:3 Carnitine were detected 
(A) Extracted ion chromatogram corresponding to C18:3-carnitine, showing baseline separation of the two isomers. 
The γ-isomer elutes first due to its more bended fatty acid side chain, compared to the α-isomer. (B) Peak areas of 
the two different isomers. The γ-isomer has higher levels in infected worms compared to the α-isomer, which is 
showing the opposite pattern. (** p-value <0.01) 

Finally, the biosynthesis and degradation of carnitine was target of further investigations. 

All precursors from trimethyl lysine, hydroxytrimethyl lysine, 4-trimethylammoniumbutanal 

and 4-trimethylammoniumbutanoate were detected. From the degradation products, 3-

dehydrocarnitine could be found. Some metabolites show different levels, but exact patterns 

could not be explained. Markly, the direct precursor of carnitine, 4-

trimethylammoniumbutanoate is higher in PA14 wt infected worms. It seems that during 

infection C. elegans synthesizes more carnitine to further enhance the transport of fatty acids. 

In E. coli it was shown that cAMP mediates the induction of carnitine biosynthesis [132, 133]. 

Possibly this is also the case in C. elegans. 3-Dehydrocarnitine is a degradation product of 

carnitine that can be found in prokaryotes. It is further metabolized to glycinebetaine and 

finally to glycine. It could be detected in C. elegans suggesting that the nematode has a 

functional carnitine dehydrogenase, which has been until now not described in C. elegans. 

Using the BLAST tool on the Wormbase homepage, several candidates for a possible 

carnitine dehydrogenase could be identified. One of the best homologies was found to the 

carnitine 3-dehydrogenase from Burkholderia sp. KJ006. Two isoforms a and b of the protein 

Y71F9B.9 were found with an E-value of 5e-32. Both amino acid sequences were search for 

domains using the Pfam database. The two domains 3HCDH_N and 3HCDH, also present in the 

carnitine 3-dehydrogenase from Burkholderia sp. KJ006 were found in both isoforms. Looking 

to the corresponding gene in KEGG, it is annotated as hypothetical protein and possible l-



 

  

98  

gulonate 3-dehydrogenase. Anyway, all evidences indicated a possible 3-dehydrogenase 

activity, which may also convert carnitine to 3-dehydrocarnitine. More experiments, for 

example creation of a deletion mutant and/or purification of the protein are needed to 

confirm this activity, but was out of the scope of this work. 

In contrast to this, S. enterica infected worms have higher levels of sugar metabolites and 

breakdown products of glycogen and similar levels of acylcarnitines to PA14∆gacA or OP50 fed 

worms. The above mentioned work of Antunes et al. suggested energy mobilization from sugar 

and glycogen storages during infection with S. enterica [92]. The obtained data confirms this 

idea, because lipid storages were not affected. Statistical analysis showed furthermore higher 

levels of D-glucose and D-ribose, glycerone phosphate and dihydroxyacetone phosphate in fer-

15 worms infected with S. ent. UDP-glucose as major precursor of glycogen, showed no 

changes, suggesting that higher levels of sucrose and glycogen are derived from degradation of 

storage sugars. These are broken down and fed into the TCA cycle via the glycolysis pathway as 

shown in 4.3.3. 

 

Figure 43: Carnitine synthesis and degradation pathways in C. elegans 
L-carnitine is synthesized from trimethyllysine, obtained from degraded proteins. No specific pattern for infection 
was observed until the direct precursor of 4-trimethylammoniobutanoate, which is significantly higher PA14wt 
infected worms. The degradation product 3-dehydrocarnitine is lower in fer-15 worms infected with PA14wt, in 
contrast to daf-2 worms, which possible indicates a daf-2 dependent degradation of l-carnitine. 

4.3.5 Synthesis of phospholipid species during Pseudomonas infection 

Beside lower levels of triacylglycerols, lipidomics analysis showed that PA14wt infected 

worms have lower amount of phosphocholine lipid species, whereas phosphoethanolamine 

and phosphoserine lipids remained unchanged. In both, daf-2 and fer-15 worms, the PC/PE 
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ratio changed from PC´s a predominant species in PA14ΔgacA fed to PE´s in PA14wt fed C. 

elegans. PC species are possibly cleaved by ExoU, a phospholipase A2 enzyme secreted by P. 

aeruginosa or synthesis of PC species is altered during infection. 

 

Figure 44: Synthesis of different phospholipid species in C. elegans 
In C. elegans three different pathways for the synthesis of PC´s exist. The Kennedy pathway uses Choline from the 
nutrition and couples it to CDP-DAG. The Bremer-Greenberg pathway subsequently methylates PE to PC. The 
phosphobase methylation pathway methylates Phosphoethanolamine to Phosphocholine, which is afterwards 
coupled to CDP-DAG. The obtained data suggest a cut-off of the phosphobase methylation pathway at the last step 
during P. aeruginosa infection. Choline levels were unchanged. PE species are synthesized normally. This leads to a 
shifted PC/PE ratio during infection. 

C. elegans has three different pathways for the synthesis of PC´s. The easiest is the Kennedy 

pathway which uses choline from dietary intake and couples it to DAG via activation with CDP. 

The other two pathways rely on methylation of ethanolamine, either before or after its 

reaction with DAG. The reactions are catalyzed by two enzymes, PMT-1 and PMT-2. Several 

metabolites found in the synthesis of PC species were found in BEH Amide separation with 

positive and negative ionization. The obtained results suggest a cut-off of the phosphobase 

methylation pathway during the last methylation step to yield phosphocholine. In contrast 

synthesis of PE species is enhanced in infected worms. Choline is lower in daf-2 and fer-15 

worms infected with PA14wt, possibly due to lower uptake during infection. Trends for all 

other metabolites are similar between daf-2 and fer-15 worms, whereby in the daf-2 mutants, 

all effects seem to be damped. To proof that this shift is valid, lipids have to be quantified to 

calculate molar ratios of single lipid classes. However, levels of lipid precursor strengthen this 
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theory. This lipid remodeling possibly aims to change properties of the C. elegans cell 

membranes for easier injection of bacterial effectors or infiltration of deeper tissues. 

4.3.6 Metabolic markers of increased autophagy 

Autophagy, the process known as self-eating, is an essential part of cellular remodeling and 

energy generation during starvation. Jia et al. discovered that autophagy is required for 

protection against the intracellular pathogen Salmonella typhimurium [134]. Addtionally 

Irazoqui et al. found abnormal autophagosomal activity after 48 h of infection with P. 

aeruginosa PA14 [135]. Common markers for autophagy are modified amino acids like l-

hydroxyproline or o-phosphoserine. The posttranslational modifications occur in the protein 

and levels of corresponding free amino acids can indicate increased autophagy. One of the first 

hits found was glycylprolylhydroxyproline, which was discovered to have higher levels in S. ent. 

fed fer-15 worms (p-value = 8.4E-05), whereas levels in PA14 wt and PA14ΔgacA were similar. 

A common motif found in the amino acid sequence is Gly-Pro-X and Gly-X-Hyp (X = any other 

amino acid except glycine, proline or hydroxyproline, Hyp = hydroxyproline). Glycine is the 

most common amino acid in collagen. Several unknown masses significantly higher in S. ent. 

fed worms were annotated as possible glycine containing tri-peptides using Metlin. A second 

indicator for increased autophagy can be choline, derived from PC´s. Again fer-15 worms fed 

with S. ent have significantly higher levels (p-value = 0.00051). Lastly spermidine had increased 

levels in S. ent. fed fer-15 worms (p-value = 0.0003). Spermidine is known to induce autophagy 

in C. elegans and is possibly a mediating molecule to signal increased autophagy. In daf-2 

worms most of these effects are lost. daf-2 worms generally have higher autophagic activity 

[136], where possibly all this metabolites are further degraded, which is not the case in fer-15 

animals. Hansen et al. described that autophagy and DAF-16/FOXO are needed for lifespan 

extension. Because autophagy still takes place in a daf-2/daf-16 double mutants, daf-16 seems 

not be directly involved in autophagy. However for lifespan extension DAF-16/FOXO is needed 

and is possibly involved in further breakdown and recycling of degradation products [137]. 

No increase of metabolic autophagy marker where found in PA14wt fed worms, which is 

conform with the results from Irazoqui et al., which observed autophagosomes at 48 h post 

infection [135]. 

4.3.7 Resistance of daf-2 worms to infection 

One of the major questions is the resistance of daf-2 worms to P. aeruginosa. Metabolites 

that show a dependency on daf-2 are good candidates to mediate the resistance. To identify 

such metabolites peaks with opposite behavior in fer-15 and daf-2 nematodes fed on PA14 wt 

were searched in all datasets. Because daf-2 is up regulated in PA14wt infected C. elegans, 
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metabolites that are daf-2 dependent are either repressed or induced in infection. This effect 

is erased in daf-2 deletion mutants. fer-15 worms fed with PA14∆gacA serve as control. 

Furthermore metabolites found in high concentrations in daf-2 worms infected with PA14wt 

and lower in daf-2 mutants fed with PA14ΔgacA and fer-15 worms fed with either PA14 wt or 

PA14ΔgacA possibly mediates pathogen resistance. Totally in BEH Amide separation with 

positive and negative ionization 3235 and 1536 and in BEH C8 separation 8682 and 581 

showed this behavior respectively. 

One of the metabolites identified by this analysis is adenosine. P. aeruginosa fed worms 

have low levels of adenosine except daf-2 worms fed on PA14wt. The used QSRR model 

predicted a retention time of 5.4±1.5 minutes for adenosine, the real retention time in the 

samples was 6.8 minutes. An extracted ion chromatogram corresponding to adenosine is 

shown in Figure 45. Retention time was confirmed with an authentic standard. Indeed it was 

shown that adenosine disturbs biofilm formation of P. aeruginosa PA14. Furthermore it 

reduces pyocyanin, extracellular polysaccharide, quinolone signaling and siderophore 

production. The gene expression response of P. aeruginosa to adenosine shows repression of 

79 genes involved in iron acquisition. Although it was thought that adenosine might bind to 

the Ferric uptake regulator (Fur), this is not the case, as shown by EMSA [138]. It is possible 

that adenosine is secreted into the lumen of C. elegans. Markly only PA14wt fed worms show 

higher levels, which suggests that deletion of daf-2 together with another response to 

infection is needed. Consistent with this, daf-2 mutants fed on S.enterica have also higher 

adenosine levels than fer-15 worms. 

 

Figure 45: Adenosine possibly mediates resistance in daf-2 worms 
(A) Extracted ion chromatogram of adenosine. The peak is distorted at the beginning; this shape is also seen by 
injecting an authentic standard. The distortion is maybe due to different protonation, at a pH of 5.1 adenosine 
shows 3 different micro species. (B) Mass spectrum of adenosine at peak apex (upper panel) compared to 
theoretical isotopic pattern (lower panel). (C) Peak areas of adenosine in worms fed with P. aeruginosa show higher 
levels in daf-2 mutants infected with PA14wt. 
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The question that arises from this data is if adenosine is synthesized de novo in a higher 

rate or it originates from AMP for example. Looking again into gene expression data from 

Ausubel et al. the first reaction forming 5-phosphoribosylamine from l-glutamine and 5-

phospho-alpha-D-ribose 1-diphosphate is repressed. Gene expressions of all other enzymatic 

genes seem not to be altered. So it is likely that adenosine is produced from AMP. 

Unfortunally, the precursors of adenosine were not detected or were close the noise. Beside 

its known disruption of P. aeruginosa biofilms, adenosine is more generally known as danger 

signal, signaling tissue and cell disruption. 

4.3.8 Potential infection biomarker 

ICR-FT/MS and BEH C8 analysis with negative ionization revealed a mass (470.23136), which 

is specifically increased in C. elegans fed with pathogens. No corresponding mass was detected 

in positive ionization mode, which is a hint for a structure with highly negative groups. No 

annotation for this mass was found by MassTRIX or Metlin. Using the NetCalc approach the 

putative formula of C23H38NO7P (neutral molecule) could be annotated to this mass. Searches 

in Pubchem and ChemSpider revealed N-arachidonoyl-phospho-l-serine as possible chemical 

structure. This molecule shares a common substructure with N-acylethanolamines, which have 

been shown to mediate the effect of diet on lifespan of C. elegans [139]. 

N-arachidonoyl-phospho-l-serine is not commercially available and was synthesized from 

arachidonic acid and phospho-l-serine for confirmation. First, arachidonic acid was activated 

with N-hydroxysuccinimide (NHS) and dicyclohexylcarbodiimide (DCC). 500 mg arachidonic 

acid were added to a solution of 239 mg NHS in 10 ml dry ethyl acetate. After five minutes of 

stirring 438 mg DCC in 2 ml dry ethyl acetate were added and the mixture was stirred 

overnight under a N2 atmosphere. During the reaction the solution became turbid due to 

precipitation of dicyclohexylurea. After filtration and evaporation the residue was dissolved in 

CHCl3 and chromatographed on a custom made glass column filled with 5g Silica gel 60. 

Fractions were checked for purity using TLC. Pure fractions were mixed and CHCl3 was 

evaporated under a gentle nitrogen steam to yield a colorless oil. The oil was dissolved in 1.5 

ml THF and added to 911 mg phospho-l-serine in 8.5 ml 0.1 M Na2CO3 / 0.1 M NaHCO3. The 

mixture was allowed to react to overnight under N2 atmosphere. The reaction mixtures was 

dried to a volume of about 5 ml and acidified to pH = 1 with 1 N HCl. The product was 

extracted two times with 10 ml dichloromethane. Solvent was evaporated with a gentle 

stream of nitrogen and the residue was dissolved in MeOH and purified on a Waters BEH C8 

column with a MeOH gradient. Fractions corresponding to N-arachidonoyl-phospho-l-serine 

were collected and solvent was evaporated in a Speed Vac vacuum concentrator. 
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Figure 46: Intensity pattern of unknown mass 470.23132 in DI-ICR-FT/MS experiments 
(A) The mass possibly corresponding to N-arachidonoyl-phospho-l-serine shows high intensities in infected worms. 
Asterisks indicate level of significance ** p-value < 0.01 (B) The measured mass spectra of the corresponding peaks 
were compared with a simulated isotopic pattern, which showed low difference between measured and simulated 
masses. 

Retention time was matched with the sample and tandem mass spectra were compared 

during chromatography. The mass was fragmented with an isolation window of 10 Da and 

30eV fragmentation energy. For the synthesized standard compound a MS/MS pattern was 

generated with direct infusion. Several major fragments were observed, a first corresponds to 

the neutral loss of phosphate (m/z = 372) and a second to a subsequent loss of CO2 from the 

first fragment (m/z = 328). Furthermore arachidonic acid (m/z = 303) was found as 

characteristic fragment, which is product of a possible intramolecular rearrangement and a 

neutral loss of 167. Major fragments observed from the synthesized standard are 303, 328 and 

372. The standard was subjected to the same method used for metabolic profiling on the BEH 

C8 column and a pooled sample of extracts of fer-15 worms fed with PA14wt and S. ent. was 

measured in parallel. In the sample extract the peak co-elutes with a second mass of 466.23, 

which is in the range of the isolation window. Most fragment peaks in the tandem mass 

spectra are related to this peak, which could be identified as PE(O-18:0/0). If the isolation 
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window was set to a smaller window, ion transmission was not sufficient to obtain a clear 

tandem mass spectrum. However, even if fragments of PE(O-18:0/0) are major masses 

detected, also peaks corresponding to N-arachidonoyl-phospho-l-serine could be found (m/z 

328 and 372). For the standard a retention time of 14.5 minutes was determined, whereas the 

corresponding peak in the sample showed a retention time of 15.0 minutes. Because the 

metabolite extract represents a highly complex matrix and retention time can differ from pure 

chemical substances, the standard was spiked into the sample. The spiked sample showed two 

peaks with a similar fragmentation pattern at 14.5 and 15.0 minutes, suggesting that the peak 

observed in the samples is not N-arachidonoyl-phospho-l-serine. Because retention time 

differs only slightly and MS/MS pattern are similar, a similar structure with an isomeric C20:4 

fatty acid side chain could be the true structure. 

Further work has to be carried out, to reveal the true structure of this unknown. However, 

retention time and MS/MS pattern show that the synthesized N-arachidonoyl-phospho-l-

serine is close to the real structure. Possible other side chains are 5(E)-arachidonic acid or ω-3-

arachidonic acid. Finally, in the synthesized standard, a small peak at the retention time of the 

unknown substance is visible, which possibly derives from another C20:4 fatty acid impurity in 

the used arachidonic acid. Another possibility for structure determination is purification from 

raw C. elegans extracts using preparative chromatography. For this approach not enough 

material to obtain an amount sufficient for NMR analysis was available. 

After final structural elucidation of the true structure, possible biosynthetic routes have to 

be elucidated. Fatty acid amides can be obtained by the condensation of an amine with a fatty 

acid, but mostly they are produced by condensation of fatty acids with the terminal nitrogen of 

a PE or PS and subsequent cleavage of the ester bond to the phosphate group. Possibly also 

this molecule is synthesized by the second pathway. The major question is, if the phosphate 

group is derived from the phospholipid or is added after cleavage. 
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Figure 47: Synthesis strategy and results from N-arachidonoyl-phospho-l-serine synthesis 
(A) Reaction scheme of the synthesis strategy. In the first step arachidonic acid was activated as NHS-Ester with the 
help of DCC. Phospho-l-serine was coupled to arachidonic acid NHS-Ester in a basic buffer to deprotonate all 
functional groups and to form N-arachidonoyl-phosho-l-serine. (B) Chromatogram and tandem mass spectra reveal 
that the unknown peak is not N-arachidonoyl-phospho-l-serine, although MS/MS pattern are similar. In the pooled 
sample, the ionization is suppressed by the co-eluting PE(O-18:0/0). Most of the fragments correspond to this 
molecule. Direct infusion experiments of the synthesized standard showed that the main fragments of N-
arachidonoyl-phospho-l-serine are 303, 328 and 372. All of them could be detected in the pooled sample. 

4.3.9 Metabolic signatures in long-lived C. elegans 

An experiment which was carried out several times in literature using NMR was the 

comparison of long-lived daf-2 mutants versus wildtype C. elegans. The experimental setup of 

this work allowed comparing daf-2 and fer-15 worms fed on E. coli OP50 to find metabolic 

signatures of long life using mass spectrometry, beside the original topic of finding metabolic 

alterations in P. aeruginosa infection. One of the most significant changes is found in branched 

chain amino acids leucine, isoleucine and valine, which is already known from previous work 

[72, 73]. In contrast to these publications, which were carried out with NMR detecting only the 

most abundant metabolites, the used mass spectrometric approach allowed a deeper 
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understanding. Interestingly, daf-2 worms have higher levels of biosynthetic precursors of 

these branched amino acids and almost no degradation products. Since C. elegans, like other 

animals is not able to synthesize these amino acids [140], the precursors have to originate 

from E. coli OP50 and were ingested. 

The endogenous polyamine spermidine has been described to promote longevity by the 

induction of autophagy. In the work of Eisenberg et al. C. elegans had an enhance survival rate 

of about 15% with a p-value < 0.0001, when fed additionally with 0.2 mM spermidine in the 

medium. However, this effect was abolished in bec-1 RNAi animals, deficient in autophagy 

induction [141]. Spermidine is synthesized from ornithine via putrescine. Ornithine and N-

acetylputrescine, together with two other polyamines agmatine and cadaverine, were found in 

lower levels in daf-2 worms. Putrescine was unchanged and spermidine was found in higher 

levels. Possibly, higher levels of spermidine may contribute to the longevity of daf-2 mutants. 

Generally, daf-2 worms are described in literature to have a lower metabolism and 

increased fat storage. From the lipidomic data set, it could be seen that daf-2 worms have 

higher levels of triacylglycerols. 

4.3.10 Role of P. aeruginosa pec7 during infection 

The gene pec7 was discovered by Rafat Zrieq at the Heinrich Heine University in Düsseldorf 

in the Pathomics project as possible new effector gene by screening the whole P. aeruginosa 

PA14 genome for abnormal growth of yeast [personal communication]. Totally 54 genes were 

identified using this approach, out of this 8 were selected for further experiments (pec1 to 

pec8). The encoded protein Pec7 is probably a SUFU-like protein, responsible for expression of 

diverse genes in the nucleus. Das et al. discovered a SUFU-like protein in Neisseria 

gonorrhoeae [142]. Until now, no clue about the function of Pec7 in P. aeruginosa exists. 

However, using a C. elegans slow killing assay showed a significant reduced pathogenicity of a 

PA14Δpec-7 mutant, but the effect was not a strong as with PA14ΔgacA. Furthermore, co-

localization of Pec7 with lipid droplets was shown by Rafat Zrieq [personal communication]. 

Due to this fact, a lipidomics analysis was carried out on daf-2 and fer-15 C. elegans fed with 

PA14wt, PA14ΔgacA or PA14Δpec7. In PCA analysis the PA14Δpec7 fed worms clustered close 

to PA14wt fed ones independent of the worm genotype, as shown in Figure 48. First analysis 

showed that the observed shift in the PE/PC ratio between PA14ΔgacA and PA14wt, is still 

valid between PA14ΔgacA and PA14Δpec7. 
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Figure 48: Pec7 is a possible novel bacterial effector or protein needed for virulence 
(A) Co-localization of Pec7 and lipid droplets shown by confocal microscopy. Pec7 was expressed as mCherry-tagged 
protein and lipid droplets were visualized with BODIPY (picture courtesy of Dr. Rafat Zrieq, HHU Düsseldorf) (B) 
Killing curve of slow killing assay comparing PA14wt, PA14∆gacA and PA14∆pec7. PA14∆pec7 fed worm’s significant 
enhanced survival compared to PA14wt, but the effect is not as pronounced as for PA14∆gacA (C) PCA from positive 
ionization lipidome data shows that PA14∆pec7 behaves like the wildtype (D) Example of one lipid that was found 
different between PA14wt and PA14∆pec7. However no clear differences or direction was found for to discriminate 
between the two. 

To reveal differences between PA14wt and PA14Δpec7 levels of lipid were compared based 

on their log-foldchange and p-value. 1134 features showed a significant difference between 

the two sample states. One example is shown in Figure 48D. However, the different masses 

gave no clear trend, because annotations were from across all lipid species and levels were at 

lower range of the intensity scale. It is likely that these results are observed by chance. Still the 

question is open, why Pec7 does co-localize with lipid droplets. The C. elegans model might be 

the wrong approach to test possible alterations in lipid droplet composition, because lipid 

droplets disappear fast during infection. This is also the case for the PA14Δpec7 mutant, 

allowing no comparison of TG composition. A better approach would be to express pec7 in 

HeLa or yeast cells to determine their lipid composition. 

4.3.11 Probiotic bacteria protects C. elegans from P. aeruginosa infection 

Probiotic bacteria are known to offer positive effects in different diseases. C. elegans 

recently entered the field of probiotics research. B. subtillis for example is known to enhance 
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the lifespan of the nematode. An example was published by Wang et al., where C. elegans was 

used to preselect Lactobacillus isolates to control Salmonella typhimurium infection in piglets 

[143]. This work led to the suggestion that probiotic bacteria can offer positive effects in P. 

aeruginosa infection. 32 probiotic strains were provided from Winclove Industries in the 

Netherlands, to test them in C. elegans slow killing assays. 

 

Figure 49: Killing curves of C. elegans pre-fed with probiotics 
C. elegans were grown on E. coli OP50 and afterwards fed for 24 hours on probiotic strains. After this time, diet was 
switched to P. aeruginosa PA14 and survival was monitored. For all four strains, survival was significantly different 
from E. coli OP50 with p-values < 0.01. 

C. elegans were grown on E. coli OP50 until adulthood and switched to the different 

probiotic strains for 24 hours. After this pre-feeding, C. elegans food was changed to the 

pathogenic P. aeruginosa PA14 and survival was evaluated as described in chapter 4.3.2. Out 

of the tested strains one, Bacillus breve, showed a negative effect and three, Lactobacillus 

plantarum, Bacillus animalis and Enterococcus faecium significantly enhanced C. elegans 

survival on P. aeruginosa. 
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5. Development of extraction methods for non-targeted 

metabolomics of the HeLa-P. aeruginosa host-pathogen model 

Abstract 

Optimal sample extraction is a key point in metabolomics. Because metabolism is highly 

dynamic and metabolomics aims to obtain an instantaneous snapshot of a cells physiology, 

quenching and metabolite extraction are key points. In the case of host-pathogen 

metabolomics it is getting even more complicated, due to mixture of two different organisms, 

the eukaryotic host cell and the prokaryotic pathogen. Methods for the extraction of 

metabolites from both were developed, with the aim to obtain a broad snapshot of the 

metabolism in host-pathogen interactions. Using ICR-FT/MS differences in lipid composition 

were found, which were further evaluated using UHPLC-UHR-ToF-MS. To clarify the possible 

role of ExoY, HeLa cells were transfected to express this virulence factor and subsequent 

metabolome analysis was used. 
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5.1 HeLa cells as host organism for P. aeruginosa infection 

To examine metabolic effects of infection on HeLa cells ICR-FT/MS was conducted for non-

targeted profiling. For this purpose a metabolite extraction procedure was developed for both 

HeLa cells and P. aeruginosa. In parallel Steve Garvis developed a dedicated sample 

preparation to separate both organisms after infection and reducing the bacterial load in HeLa 

cell samples. HeLa cells were infected with Pseudomonas aeruginosa PA14 for a half hour. 

Because P. aeruginosa PA14 belongs to the cytotoxic strains of P. aeruginosa and cell lysis is 

observed fast after infection. After the infection a mixture of bacteria, lysed and unlysed HeLa 

cells are found in the medium. The final method for clean-up is a good compromise between 

fast sample preparation needed in metabolomics and the reduction of bacteria in the sample. 

In the second part of this chapter HeLa cells expressing ExoY, a T3SS effector of P. 

aeruginosa were subjected to metabolic profiling to reveal metabolic alterations caused by this 

enzyme. 

5.2 Sampling and sample preparation 

Following passage discuss the needs for a sample preparation in metabolomics. Care was 

taken to apply all this needs to the developed method. 

5.2.1 Prequisite for metabolomics samples 

Like for all other analytical chemistry applications, also in metabolomics sample preparation 

and clean-up is the essential first step. Most metabolomics applications are starting from cell 

pellets or a piece of tissue. Protocols for sample preparation are dependent on the cell-

structure of the biological sample. Plant cell walls need a different treatment than a 

mammalian cell culture sample. One fact is similar for all protocols: After sample preparation 

the sample should be highly enriched and pure in the targeted analytes. For metabolomics, 

especially non-targeted metabolomics, this is a tough task, as different classes of molecules 

will be analyzed simultaneously and each shows different physicochemical parameters and 

concentrations, which are ranging over several orders of magnitude from pico- to millimolar. It 

should be mentioned that a truly non-targeted extraction doesn´t exist, as an extraction 

system is always more discriminant for some metabolite class as for another. Lastly, an optimal 

sample preparation method should include only as minimal steps that are needed to achieve 

this goal, to keep the samples as close as possible to its native state. 

Major task in metabolomics sample preparation are quenching of metabolism, lysis of cells, 

extraction of metabolites and removal of interfering substances, e.g. proteins and salts. 
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5.2.2 Quenching of metabolism 

Metabolome analysis can be compared to a photo, which is a static picture of a dynamic 

environment. Metabolism is highly variable and time and condition dependent. Metabolites 

from the primary metabolism are produced and consumed with high turnover rates, e.g. 1.5 

mM/s for ATP [144, 145], whereas secondary metabolites accumulate in the cell or are 

excreted. To obtain a snapshot of a system physiology, metabolism has to be stopped quickly, 

meaning inactivation of metabolic enzymes. This can be carried out by using organic solvent 

(hot or cold), extreme pH conditions (pH<3 or pH>11) or snap-freezing in liquid nitrogen. A 

problem is the separation of intra- and extracellular matrix. Methods used in microbial 

metabolomics, like spraying culture into cold methanol leads to mixture of both matrices. This 

is especially complicated if rich culture media with unknown exact formulation are used. These 

can contaminate the sample too much, which makes a reliable data interpretation impossible. 

Separation by centrifugation or filtration may alter the cellular metabolome. A trade-off has to 

found between both possibilities. 

5.2.3 Cell lysis techniques and metabolite extraction 

After the metabolism has been stopped cells have to been lysed to get access to the 

intracellular metabolites. Different protocols exist for this. Roughly separated mechanical and 

non-mechanical methods exist, including ultrasonic, grinding, enzymatic or chemical lysis or 

osmotic shock. During the whole process attention to temperature in the sample should be 

given. Most mechanical methods heat the samples up, so lysis has to be carried on dry ice or 

ice. In case of chemical lysis some metabolites classes will be degraded or converted to other 

forms [145]. Together with the lysis often metabolites are directly extracted into an 

appropriate solvent. For metabolites from primary metabolism and polar to mid polar 

secondary metabolites solvent mixtures of water and a miscible organic solvent are used with 

concentrations >=50% organic. Commonly methanol, ethanol, acetonitrile or isopropanol are 

used. Using organic solvents precipitates proteins, a major interference in metabolomics 

studies. If more non-polar substances like lipids should be extracted isopropanol, chloroform 

or methyl-tert-butyl ether (MTBE) can be used. A method to obtain a total lipid extract from 

solid material was described by Folch using a chloroform/methanol (2/1) mixture [146], while 

the Bligh and Dyer method is used for lipid extraction from aqueous samples [147]. Both 

methods are using chloroform for extraction, meaning the lipid rich layer after centrifugation 

will be the lower phase, making it hard to automate this procedure. An alternative was 

described by Matyash using MTBE. In this method the organic solvent forms the upper layer is 

useful for automation on robotic system. Extraction yields are comparable to the other 

mentioned methods [148]. 
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5.2.4 Solid phase extraction and sample concentration 

Bacteria and mammalian cells are normally cultivated in nutrient rich and highly salty 

media. If the exometabolome of an organism should be studied this can lead to problems, 

especially in DI-MS. Precipitating salts or proteins can cause clogging of the ESI sprayer yielding 

an unstable spray current and non-reproducible measurements. Therefore interfering salts and 

other substances have to be removed from the sample. Such a clean-up can be performed 

with solid phase extraction (SPE). The principal is similar to chromatography and is based on 

the distribution of analytes between a solid and mobile phase. Analytes of interest are trapped 

on a suitable solid phase and interfering substances are washed away. Afterwards compounds 

are eluted with a suitable organic solvent. Several materials for SPE exist, including reversed-

phase materials, ion exchanger and mixed mode. As base material mostly silica gel is used, but 

polymer based material are spreading more and more. SPE is not only useful for removal of 

interfering salts, but also for targeted analysis and clean-up of the targeted compounds and 

their concentration by using a smaller elution volume compared to original applied sample 

volume. Also other methods for concentration of a sample can be used if necessary, e.g. 

lyophilisation, gentle streams of nitrogen or vacuum centrifuges to remove solvents. Attention 

has to be drawn to this step, because some analytes my get lost during this procedure. With 

this method also starting conditions of a sample can be optimized for a specific analytical 

method, e.g. the change to deuterated solvents for NMR. Also sensitivity is increased if the 

final volume is smaller than the previous sample volume. 

5.3 Development of an extraction method for a HeLa cell infection 

model 

5.3.1 Metabolite extraction from bacterial pellets 

For metabolite extraction several different extraction solvent were tested. All samples were 

prepared from aliquots of the same P. aeruginosa culture. Residual medium was removed by 

washing with 1 ml water in three steps. After addition of 400 µl extraction solvent, samples 

were sonicated in an ice-cold sonic bath for 15 minutes. After centrifugation with 14,000 rpm 

at 4°C for 20 minutes, supernatant was transferred to a fresh eppendorf cup. To make 

different extraction solvents comparable, solvent was evaporated and the residue was 

reconstituted in 400 µl 70% MeOH and stored at -80°C until analysis. 

5.3.2 Metabolite extraction from cell culture medium containing HeLa cells 

Different SPE materials were tested for metabolite extraction from medium. 1 ml cell 

culture medium was subjected to pre-washed 1 ml SPE column. Salts were washed away with 
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1 ml water and metabolites were eluted with 500 µl solvent. Solvent was evaporated and the 

residue was reconstituted in 250 µl 70% MeOH. 

5.3.3 Results 

A major problem working with host-pathogen system is the mixture of two different 

organisms. For transcriptomics analysis this is no problem as specificity is achieved through 

differences in sequences. In metabolomics such a differentiation is not possible, as long as no 

isotopic labeling of one species is used. This is a difficult task, because different isotopomers 

would increase the number potential features and data annotation and identification of 

metabolites, especially of unknown masses would become increasingly complex. Chapter 2 

showed that several parts of the metabolism are shared between P. aeruginosa and humans, 

but also that each of the organism has special metabolic pathways. Problems arise from the 

shared metabolic pathways and unknown entities, yet measurement of independent cultures 

of both organisms separately under same conditions can help in data analysis to exploit the 

possible origin of an unknown metabolite. 

A second problem arises from the used host-pathogen system. The used P. aeruginosa 

strain PA14 belongs to the cytolytic strains and HeLa cells are lysed quickly after contact with 

the bacteria. After the infection time, the cell culture contains a mixture of unlysed and lysed 

HeLa cells, bacteria and the culture medium. This mixture can be separated into two fractions 

by low speed centrifugation, the medium containing the HeLa cells and cell debris and a 

bacterial pellet. For each of this fraction a metabolite extraction procedure was developed. 

5.3.4 Metabolite extraction from P. aeruginosa pellets 

Following solvents and mixtures were tested for extraction of metabolites from P. 

aeruginosa: 100% water, 100% MeOH, 100% ACN, 50% MeOH and 50% ACN. To avoid 

differences based on different ionization, all samples were evaporated to dryness and 

reconstituted in 70% MeOH. The different extraction methods were compared using DI-ICR-

FT/MS as described in the appendix. Table 17 gives an overview on the number of detected 

masses in the different extraction solvents and their overlap with other extraction solvents. 

100% ACN yielded in both, positive and negative ionization the most features. Interestingly, 

100% water has the highest count in unique features. Inspection of van-Krevelen diagrams 

showed that 100% ACN extracts mostly mid- to non-polar metabolites. To extract more polar 

metabolites, water has to be added to the extraction solvent. 50% MeOH showed the lowest 

overlap with 100% ACN, suggesting that a two-step extraction procedure with first 50% MeOH 

followed by 100% ACN is a suitable solution. Indeed 50% MeOH is able to extract metabolites 
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from the central carbon metabolism and other important biological pathways. This result is 

valid for both ionization modes. 

Table 17: Detected masses in the different tested extraction solvents 
The different extraction solvents were compared based on the total number of peaks in positive and negative 
ionization mode and on their overlap with other extraction solvents. Numbers in bold represent the highest 
numbers in total or unique peaks and underlined numbers the overlap between 100% ACN and 50% MeOH. 

ion 
mode 

Solvent 
Total 
peaks 

Unique 
peaks 

50% 
ACN 

50% 
MeOH 

100% 
ACN 

100% 
MeOH 

100% 
water 

pos 

50% ACN 3590 299 -     
50% MeOH 3447 340 1456 -    
100% ACN 3644 393 1351 1307 -   

100% MeOH 3027 366 1061 950 1204 -  
100% water 2903 448 1035 919 955 800 - 

neg 

50% ACN 2820 265 -     

50% MeOH 2672 435 1523 -    

100% ACN 4378 531 1645 1476 -   

100% MeOH 3653 394 1157 1177 2930 -  

100% water 2578 664 1262 995 1161 940 - 

 

5.3.5 Metabolite extraction from HeLa cells 

After infection, HeLa cells are recovered as lysed and unlysed cells in the cell culture 

medium and the sample has to be homogenized. The sample was homogenized by lysing 

remaining intact HeLa cells using either sonic finger or sonic bath. The sonic finger was found 

to heat the samples too much; even when they were chilled on ice during cell lysis. Therefore 

it was excluded from further investigation and HeLa cells were lysed in an ice-cold sonic bath. 

Four different SPE phases, C2, C8, C18 and HLB, were tested for desalting of medium samples 

containing lysed HeLa cells. Again DI-ICR-FT/MS was used for comparison of the different 

methods. Table 18 compares the characteristics of these materials. C18, C8 and C2 are silica 

based reversed phase materials used in routine analysis and HLB is hydrophilic-hydrophobic 

balanced co-polymer. All phases were washed and pretreated in the same way. For elution 

either MeOH or ACN was used. A similar comparison like for the optimization of pellet 

extraction method was used. Figure 50 shows a comparison of the masses detected in the 

different methods for positive ionization mode. Similar results were obtained from negative 

mode. 

Although the C18 phases yielded the highest amount of masses with MeOH elution, the 

HLB material with ACN elution was chosen for further work, due to two reasons. First, looking 

into van-Krevelen diagrams of the detected masses, the HLB material showed a higher 

dispersion of the polarity range and covered more metabolite classes than the C18 phase, 

which retained mainly lipophilic compounds. Second the HLB copolymer is allowed to dry out 
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between subsequent washing and elution steps, which mean that previous applied solvents 

can be removed more efficiently from the sorbent. 

Table 18: Characteristics of used SPE materials 
EC = end capping 

Brand 
Functional 
group 

Base-
material 

Carbon 
load EC

? Surface 
area (m2/g) 

Particle 
size 
(µm) 
and 
shape 

Mean 
pore size 
(Å) 

Varian 
Bond Elut 

C18 
C18 Silica 17.4 y 500 

40, 
irregular 

60 

Varian 
Bond Elut 

C8 
C8 Silica 12.1 y 500 

40, 
irregular 

60 

Varian 
Bond Elut 

C2 
C2 Silica 5.6 y 500 

40, 
irregular 

60 

Waters 
Oasis HLB 

HLB 
(hydrophilic
-lipophilic 
balance) 

Co-
polymer 

- - - 30 80 

 

5.3.6 Final methods 

The described methods were optimized on single samples of each organism. In a real 

infection model, these organisms are mixed to mimic and infection. A method for separation 

of bacteria and HeLa cells was developed by Steve Garvis at the CNRS in Marseille and is 

depicted in the appendix. The method was finally applied to these samples and consisted of a 

two-step extraction with 50% MeOH, followed by 100% ACN for bacterial pellets and SPE using 

the HLB material with ACN elution for the HeLa cells. Because later analysis showed that lipids 

are mainly affected by infection, a lipid extraction was used as described in the appendix. 
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Figure 50: Results of method optimization for HeLa cell preparation 
(A) Barplot of number of masses obtained in positive ICR-FT/MS analysis from elution with MeOH. (B) Barplot of 
number of masses obtained in positive ICR-FT/MS analysis from elution with ACN. (C) Structures of the used SPE 
material. C18, C8 and C2 are silica based material, whereas HLB is a copolymer. (D) Van-Krevelen diagram of HeLa 
extract eluted from HLB material with ACN. Green points represent CHO, blue CHOS and red CHON molecules. Gray 
points represent data from the KEGG database. 

5.4 Infection with P. aeruginosa affects the HeLa cell lipidome 

To mimic infection of human cells, HeLa cells and P. aeruginosa has to been in contact. For 

practical reasons this means co-cultivation. Problems arising from this co-cultivation are 

contamination of HeLa cell preparations with bacteria. A dedicated sample preparation 

reduces the bacterial load in the samples for metabolome analysis, but a 100% clean sample 

cannot be produced. To evaluate if bacterial lipids are interfering with analysis of the HeLa cell 

lipidome, extracts of both species separately were subjected to lipidome analysis and the 

overlap of peaks was determined. Major membrane lipids in P. aeruginosa are PE, whereas it 

can also contain several percent of PC. Little or no contamination was observed for 

phospholipid or triacylglycerol (TG) regions in the chromatogram. This is in good agreement 

with literature, as TG have only rarely described in bacteria, mainly in actinomycetes [149]. 

Figure 51 shows the overlap of the different lipidomes. 
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Figure 51: Overlap of HeLa and P. aeruginosa lipidome 
Features overlapping between HeLa and P. aeruginosa. Features in blue are found in both organisms, whereas 
green are on found in HeLa cells and red only in PA14. 

Analysis of the obtained ICR-FT/MS spectra showed that in infected HeLa cells more LysoPC 

and LysoPE species are found. This is possibly caused by ExoU activity. ExoU is a potent 

phospholipase A2. ExoU may alter lipid composition to lyse host cells. exoU is found together 

with exoT and exoY in cytotoxic strains. 

To identify lipids altered during infection HeLa cells infected with P. aeruginosa PA14ΔgacA 

were compared against P. aeruginosa PA14wt infected ones. The foldchange was calculated 

and significant features with a p-value < 0.05 were further evaluated. Several triacylglycerols 

are lower in PA14 wt. This is agreement with the results obtained from C. elegans, which also 

showed lower TG levels during infection. 

In contrast to this, diacylglycerols and ceramides were found in higher levels. Interestingly 

both molecules are linked to apoptosis. Ceramides are enriched in distinct parts of the 

membrane called lipid rafts. Lipid rafts play important roles in infection of mammalian cells 

with P. aeruginosa, N. gonorrhoeae or S. aureus. Riethmüller et al. showed that infection with 

P. aeruginosa leads to activation of acid sphingomyelinase. The ceramide enriched lipid rafts 

are possibly needed for bacterial internalization [150]. Furthermore acid sphingomyelinase is 

linked to redox signaling in P. aeruginosa induced apoptosis of macrophages [151]. Figure 52A 

shows a barplot of Cer(d18:1/25:0) as example. 

Lastly, PA14 wt infected cells had different levels of phospholipids with saturated fatty acid 

side chains, whereas lipids significant for PA14∆gacA included phospholipids with highly 

unsaturated side chains. Unfortunally, lysophospholipids were not readily detected in this 

sample set. It seems that ExoU has a preference for lipids with highly unsaturated side chains. 



 

  

120  

In fact, ExoU increases intracellular levels of unsaturated fatty acids from which prostaglandins 

are produced. The group of Plotkowski et al. recently reported the ability of ExoU to induce 

overproduction of prostaglandin E2 in airway epithelial cell [152] 

 

Figure 52: Several Ceramides were found in higher amount in P. aeruginosa infected HeLa cells. 
(A) Cer(d18:1/25:0) was found in higher levels along with other Ceramide species in PA14 wt infected HeLa cells (B) 
Ceramides are produced from sphingolipids by the enzyme acid sphingomyelinase, which is up regulated in P. 
aeruginosa infection. 

From the used infection model only small numbers of HeLa cells, in the range of 9e4 to 2e5 

cells, could be recovered from the culture plates. Probably most cells are lysed and lost during 

the washing step to remove bacteria. After extraction in the appropriate extraction medium, 

either with SPE or lipid extraction only small amounts of extract of with about 50 to 100 µl 

could be obtained. Due to high sensitivity of ICR-FT/MS the amount is sufficient for direct 

infusion experiments. For UHPLC-UHR-ToF-MS analysis the obtained amount was not optimal. 

One solution to overcome this problem would be to avoid the step of washing away bacteria 

and prepare an extract from the whole system. This yields an extract containing metabolites 

and lipids from both organisms. Therefore metabolites present in both, have to be excluded, 

e.g. information about PE species, major membrane constituents of P. aeruginosa, could not 

be used. The other possibility is to upscale the whole infection model and use bigger 

cultivation plates. This certainly increases also costs, due to the used special cultivation plates. 

Lastly, the analytical method could be improved. The method used for lipid profiling of C. 

elegans offers higher sensitivity, but sample consumption is also higher. Due to lack of time 

and material this method could not be tested with HeLa lipid extracts. 

5.5 ExoY – A potent cellular toxin 

Isolated studies on single virulence factors are useful to reveal their role in the multi-

parametric process of infection. These effectors have to be highly potent effectors, because 

bacteria cannot produce vast amounts of them to achieve their aims. ExoY is one of the five 

T3SS effectors of Pseudomonas aeruginosa. The protein is 378 amino acids long and contains 

two ATP binding sites which are similar to the domains of the extracellular adenylyl cyclases 
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from Bordetella pertussis (CyaA) and Bacillus anthracis (edema factor). Upon injection into 

mammalian cells ExoY raises the intracellular cAMP level, leading to differential expression of 

multiple genes including many that are known to be regulated by cAMP. The eukaryotic 

interaction partner of ExoY is still unknown. Recent work presented on the 5th International 

Conference on cGMP: Generators, Effectors and Therapeutic Implications, 2011, suggested 

that ExoY has a preference for GTP. Using a sensitive HPLC-MS/MS method it was shown the 

GTP and UTP are more preferred than ATP in both cell culture with intact cells or by the 

purified enzyme [153]. cAMP, produced by ExoY is a well-known second messenger involved in 

regulation of glycogen, sugar and lipid metabolism. cAMP dependent lipases convert TG´s to 

free fatty acids and glycerol. Furthermore in E. coli it has been shown that cAMP regulated the 

biosynthesis of carnitine, suggesting cAMP has broader functions than just being a hunger 

signal [132]. Pulldown experiments at the CeMM in Vienna gave several hits for putative ExoY 

interaction partners. Table 9 summarizes the Pulldown results using the TAP-TAG strategy 

[154]. Parallel to these experiments a set of samples was prepared to elucidate the effect of 

ExoY on the host cell metabolome. Cells with a vector carrying full length exoY or an empty 

vector were subjected to metabolic profiling using ICR-FT/MS. 

Table 19: Possible interaction partner for ExoY 
Possible interaction partner for ExoY were determined using pulldown experiments at CeMM in Vienna. 

Experimental 
interactor 

interactor 
Description 

Pathomics 
experiment 

Confidence Pathways 

TBB3_HUMAN Tubulin beta-3 chain Pulldown first Low 3 

EFTU_HUMAN Elongation factor Tu, 
mitochondrial 

Pulldown first low 1 

EF1A3_HUMAN Putative elongation 
factor 1-alpha-like 3 

Pulldown first low 1 

ACACB_HUMAN Acetyl-CoA 
carboxylase 2 

Pulldown first low 5 

UBB_HUMAN Polyubiquitin-B Pulldown first low 1 

2ABA_HUMAN Serine/threonine-
protein phosphatase 
2A 55 kDa regulatory 

subunit B alpha 
isoform 

Pulldown first high 5 

 

5.6 Effects of ExoY on the HeLa cell metabolome 

Data from negative mode experiments confirmed previous knowledge, that ExoY increases 

the intracellular cAMP concentration and decreases ATP, and also ADP and AMP levels. 

Despite this also higher levels in adenosine were found. Similar profiles were found for GTP 

and CTP and their metabolites. This shows that the results are consistent with published 
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results. Figure 53 shows the levels of different nucleotides and nucleosides, detected. 

Together with higher levels of adenosine, a general danger signal [155], higher levels of inosine 

were found. Inosine is directly built from adenosine, suggesting that cells are possibly trying to 

decrease adenosine signaling. 

 

Figure 53: Expression of ExoY leads to decreased nucleoside levels and higher levels of cyclic NMP´s 
(A) Western Blot of a protein extract from transfected shows expression of ExoY. (B) Levels of nucleosides where 
lower in exoY transfected cells, whereas cyclic nucleotide monophosphates increased. 

To reveal further metabolic alterations occurring in cells expressing ExoY log-ratio analysis 

was performed. Citrate/isocitrate and cis-aconite were found in significantly lower amounts. 

Moreover lactate and malate were found as unique masses in ExoY transfected cells, whereas 

no NADH was detected in these samples. This findings lead to the suggestion that ExoY is 

interfering with the TCA cycle. Normally an increased level of cAMP acts positively on the 

conversion of pyruvate to acetyl-CoA, which enters the TCA cycle by condensation with 

oxaloacetate yielding citrate. Interestingly one of the partners of ExoY in the pulldown 

experiments is acetyl-CoA carboxylase 2, converting acetyl-CoA to malonyl-CoA. Unfortunately, 

malonyl-CoA could not be detected. The lower amount of NADH in ExoY transfected cells leads 

to the suggestion that the TCA cycle is not passed through. Instead pyruvate is metabolized to 

lactate. 

From glycolysis, D-glucose, fructose/glucose 6-Phosphate and fructose 1,6-bis-Phosphate 

were detected in significantly lower levels in ExoY transfected cells. Other metabolites of the 

glycolysis pathway could not be detected, due to the high mass cut-off of the ICR-FT/MS. Two 

possibilities exist. First levels of the three mentioned metabolites are lower because they are 

consumed the following reactions. This means, they are fed through the glycolysis to yield 

pyruvate. The second alternative would be that glycogen is produced from glucose for storage 
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of excessive energy. A marker of increased glycogen synthesis is UDP-glucose. However, also 

UDP-glucose levels are low in cells expressing ExoY. These results suggest that normal 

glycolysis takes place and pyruvate is further metabolized to lactate. 

 

Figure 54: Cells expressing ExoY have an interrupted TCA cycle 
Differences in detected metabolites suggest an interruption of the TCA cycle with lower levels of citrate and cis-
aconitate and higher levels of malate in ExoY expressing cells. Certainly, acetyl-CoA should be also increased, which 
is not the case. Possibly it is cleaved to CoA and acetate. 

Additionally to TCA cycle metabolites, some acylcarnitines could be detected in positive 

ionization mode. Similar to infected C. elegans samples, cells transfected with ExoY have lower 

levels in acylcarnitines. Possibly fat storage of the cells is broken down by β-oxidation, with 

goal to generate energy via the TCA cycle. However, blockage of the TCA cycle, would lead to 

an increased level of acetyl-CoA which was not detected. In contrary, levels of acetyl-CoA are 

lower in ExoY transfected cells. Acetylcarnitine is known as buffer for acetate to free CoA for 

other metabolic processes. Both, CoA and acetylcarnitine have lower levels cell expressing 

ExoY. Possibly, acetyl-CoA cleaved into acetate and CoA, which is used in other metabolic 

reactions. Hoerr et al. described elevated acetate levels in serum of mice infected with P. 

aeruginosa PA01 [156]. Because no lipidome data was obtained from these cells, it could not 

be seen if TG´s are lower. Certainly, HeLa cells infected with PA14wt show decreased levels of 

TG´s. 
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Figure 55: Acylcarnitines detected in HeLa cells 
The detected acylcarnitines have lower levels in ExoY transfected HeLa cells, which is a similar trend as found in C. 
elegans 

For confirmation of these results further experiments are needed, e.g. targeted methods 

for quantification of glycolysis and TCA cycle metabolites. Additionally, a lipidomic approach to 

reveal if ExoY is responsible for TG reduction would be useful. Lastly, a non-catalytic ExoY 

mutant has to be included as additional control. 



 

  

125 Development of extraction methods for non-targeted metabolomics of the HeLa-P. aeruginosa host-pathogen model 

  



 

  

126  

  



 

  

127 Conclusion 

 

 

 

6. Conclusion 

Abstract 

Different infection models and methods revealed different results. Some of them are partly 

overlapping; some are unique according to the organism or genotype. These results were 

integrated into a model that possibly reflects the host’s metabolic response to infection with P. 

aeruginosa. However, non-targeted metabolomics could only generate working hypothesis, 

which have to be proven in further experiments. Still the results obtained provide a good data 

basis for further investigation. 
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6.1 Metabolomics – a fast growing research area 

The systematic study of metabolism, today called metabolomics, currently revives. It is a 

fast growing discipline of the “omics”-technologies. Standard protocols are currently available 

for several standard biology organisms, like mice, C. elegans, A. thaliana or other model 

organisms. Despite this, new protocols are published on a monthly basis. Also, more and more 

high-throughput platforms are established all over the world, allowing metabolic profiling of 

even large population cohorts [157]. 

Metabolomics holds great opportunities as functional genomics tools, to describe novel 

gene functions, enzymes and metabolic pathways. The described methods in this rely on the 

ultrahigh-resolution of current mass spectrometric technology and allowed comprehensive 

detection of both known and unknown metabolites. Beside the used non-targeted profiling 

approach, the targeted investigation of different metabolites and metabolic flux analysis hold 

great potentials to further elaborate the used P. aeruginosa infection models. 

6.2 Improved annotation and data analysis methods 

The extensively used MassTRIX metabolite annotation server was further improved in this 

work. It was developed to meet one of the key aspects of metabolomics, conversion of mass 

spectrometric data into biological meaning. The server uses different metabolomics databases, 

like KEGG, HMDB and LIPIDMAPS to putatively annotate metabolites. A key improvement was 

implementation and possibility to upload own mass lists of metabolites not covered by the 

used databases. This feature enabled to include metabolites like the ascaroside signaling 

molecules of C. elegans or secondary metabolites from different Pseudomonas species in the 

annotation process that cannot be found in any of the above mentioned databases. 

Furthermore comparing different sample states with the compare pathways functionality 

turned out to be a useful tool to retrieve a first overview on altered metabolic pathways. 

Comparison against other existing tools with the same functionality showed that MassTRIX is a 

useful resource for metabolomics researches, which is also used extensively by other users. 

The only major drawback is the slowness compared to other tools, which will be changed in 

further releases by the use of a MySQL database instead of flat files. 

In order to understand metabolic capabilities of the studied organisms’ simple metabolic 

reconstructions were carried out. The lists were assembled by using data retrieval tools from 

different databases. These list rather present metabolites that are expected to be found in an 

organism, than a complete reaction network for in silico modeling. 
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Comparison of different species from the genus Pseudomonas, showed the great metabolic 

flexibility of these bacteria. The extracellular pathogen Pseudomonas aeruginosa possess an 

extensive arsenal of genes, encoding for several xenobiotic degradation pathways and efflux 

pumps, making it hard to treat with antibiotics. Because P. aeruginosa can synthesize all 

needed building blocks, like amino acids itself the major drive for infecting higher organisms 

doesn´t seem to be the search for nutrients. On the first sight, this seems to be clear, but hosts 

normally present a nutrient rich environment. A study on the gene expression of metabolic 

genes of P. aeruginosa isolates from CF patients lungs over several months showed high 

metabolic activity in the begin of infection, which declines [158]. This suggests that P. 

aeruginosa is rather taking up nutrients from the surrounding environment than synthesizing 

them itself. 

C. elegans in contrast is dependent on external sources of branched chain amino acids and 

cholesterol. Also different metabolic processes are not present in C. elegans and if metabolites 

related to these are found in measurements, they possible derive from ingested bacteria. One 

example is depicted in chapter 4, where metabolites of phenylalanine were found in fer-15 C. 

elegans fed with E. coli OP50 that cannot be produced by the worm. 

6.3 Ultrahigh resolution analytical methods 

Two different methods of metabolic profiling were used, DI-ICR-FT/MS and UHPLC-UHR-

ToF-MS. DI-ICR-FT/MS, with superior resolution and mass accuracy, was shown to be a good 

screening tool for metabolic difference between certain sample conditions. It provided good 

group separation and revealed metabolic phenotypes with significantly different metabolites, 

as possible marker for each group. Nevertheless, some drawbacks exist. First, in DI-MS ion 

suppression is a commonly observed phenomenon, in which ionization of lower abundant 

molecules is suppressed by higher abundant ones or molecules that ionize more readily. 

Second, due to missing chromatography isomeric and isobaric substances cannot be resolved. 

Despite this drawbacks, DI-ICR-FT/MS is a useful tool for first metabolic profiling, because 

measurement time and sample consumption are much smaller than for other techniques. 

For calculation of molecular formulas a mass difference network based approach, described 

by Tziotis et al., was used. This approach revealed several novel formulas which were 

previously not found in the major metabolite database like KEGG or HMDB. With these, bigger 

and more comprehensive databases like PubChem or Chemspider can searched. Calculation is 

fast and only dependent on the input list of allowed chemical transformations. 
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The second method, UHPLC-UHR-ToF-MS added additional information of retention time 

and separation of isobaric and isomeric substances. Totally, 3 different methods, 2 for 

metabolite profiling and 1 for lipid profiling were used. Usage of positive and negative 

ionization mode further enhanced the metabolome and substance coverage. A QSRR model 

was developed for enhanced metabolite annotation and identification. Although the total 

model was only based on 41 standard substances, prediction errors of about 25% were 

achieved. Further inclusion of more substances in a future model, will possibly reduce this 

error. Creek et al. already stated in their work on retention time prediction for metabolomics, 

that the error is substance class specific, so prediction will always work better for one or the 

other substance class. Furthermore, prediction of retention time is always coupled to the 

goodness of the prediction of physicochemical properties of the molecules. Some 

chemoinformatics tools like the ChemAxon toolkit offer the possibility to teach their prediction 

algorithms with an own library of molecules. The closer such a library is to the real metabolites 

present in the sample, the better the prediction will be. Chemoinformatics currently enters the 

metabolomics field in different ways, as reviewed shortly in chapter 2. It holds great 

opportunities to assist in identification of known and unknown metabolites. 

The used separation methods allowed the separation and detection of metabolites from 

several metabolic pathways. Reversed phase separation using a BEH C8 column could separate 

different acylcarnitines, including isomeric species like α- and γ-linolenyl-carnitine. In contrast 

to this, chromatography on a BEH Amide column could separate leucine and isoleucine. The 

only major drawbacks of these methods are missing metabolites from TCA cycle and 

nucleotides, e.g. ATP. 

Alignment between ICR-FT/MS and UHPLC-UHR-ToF-MS was used to obtain exact masses 

together with exact mass measurements. This approach added to possibility to obtain exact 

masses for formula calculation of unknown molecules together with retention time 

information, which can add hints about possible molecule structures. 

6.4 Metabolomics based phylogeny of Pseudomonas species 

The genus Pseudomonas is a very broad bacterial clade with species posing different 

metabolic capabilities, as shown in chapter 2. Current standard methods in bacterial taxonomy 

include phenotypic analysis, as far as possible, testing for different growth conditions and 

presence of reactions. Phylogeny is based on sequence similarity of 16S RNA. Recently the 

MALDI Biotyper® of Bruker enabled a more rapid identification of microbes based on 

molecular profiles obtained from MALDI-ToF-MS. Metabolomics based on ICR-FT/MS profiling 
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was shown by Rosella-Mora et al. to be a useful tool to reveal differences between different 

geographic isolates of the halophile Salinibacter ruber . 

In this work different Pseudomonas species were used in order to first proof that also 

UHPLC-UHR-ToF-MS is also applicable and second that metabolomics can be a useful tool in 

microbiology. 

For this purpose 14 different strains were grown in either LB medium or M9 buffer with 

Glucose as sole carbon source. Statistical analysis revealed a separation according to growth 

medium and afterwards in the single media a separation according to the single species. HILIC 

separation using a BEH Amide column together with negative ionization and growth in M9 

buffer was shown to be a good method to cluster the different species based on their central 

metabolites, as far as they were detected. Although several metabolites were missing in this 

method; it provides a good starting point. Chromatographic separation that also allow the 

detection of Citrate and related metabolites from the TCA cycle, metabolites from Glycolysis, 

Pentose phosphate pathway and many others can give a better picture and a more clear 

separation of the different species. Reversed phase separation of metabolite extracts derived 

from bacteria grown in LB medium gave hints about synthesis of secondary metabolites. 

A major problem is the measurement of LB medium samples. Here the medium is already a 

complex mixture of peptides and metabolites, making a non-targeted investigation of secreted 

metabolites nearly impossible. A better solution would be a complex, but chemically defined 

medium. Furthermore samples were only taken at the exponential phase of growth. A second 

interesting point would be the stationary phase because here most Pseudomonads start to 

develop biofilms at this time point. Additional isotopic labeling of certain amino acids will allow 

revealing their metabolic faith and how the different strains are using them. 

In most of the methods P. aeruginosa clustered away from all other species. This is possible 

of clinical relevance and can be possibly used for diagnosis in future. Lastly a better 

understanding of P. aeruginosa metabolism can be used for development of novel 

therapeutics. 

A standardized method including even more than one or two growth conditions, like in the 

BiOLOG microbial identification system can be a useful tool for microbiologists. In the BiOLOG 

system several carbon sources are tested in microtiter plates. A similar system could be set up 

for metabolomics, where bacteria are grown in microtiter plates in chemically defined medium 

with different carbon sources, e.g. M9 medium with Glucose or Succinate. Quantification of 

central metabolites or even flux analysis using 13C labeled carbon sources or 15N labeled amino 
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acids can give information of their direct use. The obtained data can be stored in public 

available database which can be used by biologist all over the world. Such use of public data 

repositories of all kind of data was already emphasized by Ramon Rosello-Mora in his review 

on taxonomy of bacteria and archaea [159]. 

6.5 C. elegans as convenient model for host-pathogen research 

50-80% percent of the C. elegans genes show homology to human genes. Short 

reproductive cycle, a translucent body, possibility to generate knock-out mutants and the low 

cost made it to an ideal model organism to study several diseases. C. elegans is widely used in 

host-pathogen research as alternative host organism. Comparing the preparation steps for P. 

aeruginosa infection models used in this work, C. elegans allowed the easier maintenance. 

HeLa cells were rapidly lysed already after several minutes upon contact with the pathogen, 

whereas first C. elegans died after several hours to one day. Second, the removal of interfering 

bacteria was easier with C. elegans than with HeLa cells, which needed careful washing steps 

and the used of special cultivation plates. In contrast, C. elegans just needed simple shaking in 

M9 buffer to remove residual bacteria from the intestinal tract. Lastly, the nematode is a 

whole organism model, with differentiated organs, which possibly allows better to study the 

influence of infection on the host metabolic system. 

The presented work showed the usability of C. elegans and non-targeted metabolomics in 

host-pathogen research. Metabolic profiling of C. elegans was carried out using DI-ICR-FT/MS 

and UHPLC-UHR-ToF-MS. 

Usage of C. elegans as host model organism allowed identifying key events in metabolic 

reactions upon infection. Data analysis showed that down-regulation of amino acid 

metabolism is a major contributor to the metabolic phenotype of infected or stressed worms. 

Also daf-2 worms fed on E. coli OP50 show lower activities on these metabolic pathways. This 

reaction is shared between P. aeruginosa PA14 and S. enterica infection. Moreover it is found 

in worms fed with P. aeruginosa PA14ΔgacA, suggesting that this is a common response, 

possible mediated by pathogen associated molecular patterns (PAMPs). On top of this 

common reaction, different metabolic phenotypes evolve. The inclusion of the PA14ΔgacA 

mutant was certainly useful, because nutritional differences between E. coli and P. aeruginosa 

would have led to false positive discoveries. In P. aeruginosa infection, comparing the fully 

virulent wildtype against the highly attenuated ΔgacA mutant, lipid metabolism seems to play 

a central role. Low levels of acylcarnitines and triacylglycerols argue for increased β-oxidation 

in C. elegans infected with PA14 wt. β-oxidations takes place in parallel to glycolysis, because 

under conditions of pure β-oxidation ketone bodies are formed from acetyl-CoA, which are 
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missing during infection. In contrast to this, S. enterica infected worms have normal 

acylcarnitine levels comparable to E. coli OP50 or PA14ΔgacA, but increased levels of sugar 

metabolites. Contrary to P. aeruginosa infection, energy seems to be utilized by metabolizing 

stored sugars. 

The open question is what molecular mechanisms are responsible for this metabolic 

phenotype? Because this trend is similar in fer-15 and daf-2 worms, regulation independent of 

daf-2 or a bacterial effector are plausible causes. ExoY is a good candidate as effector causing 

these metabolic alterations. cAMP produced by ExoY acts as second messenger, regulating 

metabolism of glycogen, sugar and lipid metabolism. Indeed, the major storages of lipids in C. 

elegans are found in intestinal cells, which are in direct contact with the pathogen. Secretion 

of bacterial effectors into this cells lead to increased energy utilization from lipids. In 

adipocytes, cAMP is known to stimulate lipolysis through enhanced lipase activity. 

HeLa cells expressing ExoY show partially similar patterns to PA14wt infected C. elegans. In 

these cells, also a cut-off of the TCA cycle was observed, with low levels of citrate/isocitrate 

and cis-aconitate. Interestingly, lactate was found only in cells expressing ExoY, which leads to 

the conclusion that pyruvate obtained from glycolysis is further metabolized by lactic 

fermentation. Additionally, decreased levels of several acylcarnitines were found. Because no 

lipidomic data was collected it is not possible to tell if TG´s are depleted like in C. elegans. HeLa 

cells infected with PA14wt showed low levels of TG´s, consistent with the nematode model. 

 

Figure 56: Genetic model of metabolism regulation during infection 
(A) DAF-2 is one of the major regulators in C. elegans metabolism under non-infection conditions. If nutrients are 
highly abundant DAF-2 is highly active and inhibits DAF-16, leading to a normal metabolism. However if nutrients 
are limited DAF-2 activity decreases and DAF-16 is active, leading to a shifted metabolism towards fat storage and 
slower metabolism. (B) During infection also nutrients are limited and normally DAF-2 would be not active, but 
PA14wt is able to up-regulate expression of daf-2 and possibly tries to mimic high nutrient conditions. 

However, ExoY together with the two other type 3 effectors ExoU and ExoT, are 

dispensable for C. elegans killing, as shown before [160, 161]. From this point of view, the 



 

  

134  

observed metabolic phenotype, possibly caused by ExoY seems to be not the only driving force 

for C. elegans killing. A second major event is the up regulation of daf-2 by P. aeruginosa to 

suppress host immunity. Daf-2 inhibits Daf-16 and therefore down regulates Daf-16 target 

genes. Because Daf-16 also controls the transcription of several metabolic genes, daf-2 up-

regulation also affects metabolism. This up-regulation requires the two-component regulator 

GacA. 

Because during infection no or less bacteria are digested by C. elegans nutrients are limited, 

which would normally lead to decreased daf-2 activity and a slower metabolism. One of the 

goals of daf-2 up-regulation is possibly to maintain a normal metabolism in the host to make 

use of this nutrient rich niche. 

In daf-2 worms the TCA cylceis inactive and the glycoxylate shunt, gluconeogenesis and 

starch metabolism are dominating, as shown by Fuchs et al. [72]. Reduced levels of 

triacylglycerols and acylcarnitines were also found in PA14wt infected daf-2 worms, suggesting 

that increased lipolysis and β-oxidation is a daf-2 independent event. The adaptation of 

metabolic fluxes in daf-2 worms, possibly gives them an advantage over fer-15 worms to cope 

with increased acetyl-CoA levels. In fer-15 worms the fate of acetyl-CoA in PA14 wt infected 

worms is still an open question. Cells can use carnitine to restore CoA levels. However, 

acetylcarnitine is lower in infected daf-2 and fer-15 worms. Eventually acetyl-CoA is cleaved 

into CoA and acetate which is excreted into the lumen, where it possibly serves as carbon 

source for P. aeruginosa. 

Following model of metabolic alterations in C. elegans during P. aeruginosa infection, 

shown in Figure 57, is proposed, which has to be proven by further targeted metabolome and 

transcriptome analysis. After ingestion and attachment P. aeruginosa injects type three 

effectors into the intestinal cells of C. elegans. Adenylate cyclase activity of ExoY increases the 

intracellular cAMP level, leading to increased lypolytic activity. Genes of β-oxidation are up-

regulated and increased β-oxidation leads to decreased levels of TG´s and  Acylcarnitines. 

This leads first to an increased level of acetyl-CoA. Additional up-regulation of daf-2 reduces 

gluconeogenesis. Because TCA cycle is blocked due P. aeruginosa effectors, acetyl-CoA cannot 

be further metabolized and energy metabolism is disturbed. Excessive acetyl-CoA is cleaved to 

CoA and acetate, which is excreted. Because in daf-2 worms down regulation of 

Gluconeogenesis is not possible, acetyl-CoA can be converted via the glyoxylate shunt to 

malate and oxaloacetate and is possibly used for gluconeogenesis. 
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Quantification of metabolites present on the glycolysis and gluconeogenesis pathway, TCA 

cycle and glyoxylate shunt can proof this hypothesis. The key enzyme for understanding this 

metabolic alteration seems to be citrate synthase. 

 

Figure 57: Proposed model of central carbon metabolism in C. elegans during P. aeruginosa infection 
P. aeruginosa attaches to the intestinal cells of C. elegans and injects different T3SS effectors, like ExoY into these 
cells. Increasing cAMP levels lead to enhanced lipolysis and β-oxidation (response shared between daf-2 and fer-15 
worms, lila color). Due to a cut-off of the TCA cycle, the obtained acetyl-CoA cannot be further metabolized in the 
TCA cycle and up regulation of daf-2 leads to decreased gluconeogenesis. In fer-15 mutants (red color), acetyl-CoA is 
cleaved to CoA and acetate, which is excreted and can be taken up by P. aeruginosa. In contrast, in daf-2 worms, 
higher gluconeogenesis converts acetyl-CoA to sugars. 
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Furthermore it must be proven that C. elegans in fact secretes excessive acetate, which can 

be used by P. aeruginosa. Looking to the other side of the host-pathogen equation will be 

certainly useful. The protocol to remove remaining bacteria in the worm gut can be used to 

recover these bacteria and study their metabolome. If increased acetate utilization by P. 

aeruginosa is found, this will finally proof this model. E.g. growing C. elegans for certain 

generations on bacteria fed with uniformly 13C labeled glucose before switching to P. 

aeruginosa will allow accumulating metabolites enriched in 13C. If 13C2-acetate is afterwards 

found in P. aeruginosa recovered from the worm gut, this would be the ultimate proof. 

A comparison of infection with different P. aeruginosa strains or mutants will be certainly 

useful to reveal if the metabolic host response is similar to all strains or if different metabolic 

phenotypes evolve. Not all strains are carrying ExoY. The hypothesis that ExoY is the effector 

affecting at least the central carbon metabolism holds true, strains where ExoY is absent 

should show a different phenotype. 

A second major question is the resistance of daf-2 worms to bacterial pathogens. 

Metabolome analysis revealed higher levels of adenosine in daf-2 C. elegans infected with P. 

aeruginosa or S. enterica compared to fer-15 worms. Adenosine was shown to reduced 

pathogenicity of P. aeruginosa [138]. If adenosine is a mediator of this resistance, an 

adenosine deficient and daf-2 double mutant should have reduced resistance. 

Anyway, it was shown that metabolomics is a useful tool for host-pathogen research. It can 

be used in future research, to reveal contribution of different virulence genes. C. elegans can 

be fed on mutants of certain virulence genes and following cluster analysis can reveal similar 

metabolic phenotypes and if they are comparable to PA14 wt or the highly attenuated 

PA14ΔgacA mutant or novel phenotypes can be found. C. elegans fed with PA14Δpec7 is an 

example used in this work. The obtained lipidomics data showed that PA14Δpec7 is behaving 

like the parental wildtype. 

Furthermore metabolomics can assist in annotation of orphan genes. Data in this work 

suggest a possible carnitine 3-dehydrogenase activity in C. elegans, which is not described until 

now. Mutation of the corresponding gene and cultivation of the nematode in axenic culture 

medium containing isotope labeled carnitine can proof this hypothesis. 

The Million Mutation Project of C. elegans would be a good opportunity for in-depth 

metabolome analysis of C. elegans. Currently the project reports 822,138 SNP´s in 20,117 

genes and 12,534 knockouts in 6774 genes [162]. Screening of this library in a metabolomics 

approach would be certainly useful to generate deeper understanding of metabolism in 
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eukaryotes. Such high-throughput studies have already been used with prokaryotes like E. coli 

[18]. 

6.6 HeLa cell model 

Most work in the HeLa cell model was focusing on a dedicated sample preparation for this 

infection model. Problems arise from the mixture of two different organisms, because 

metabolites cannot be mapped back to the original species, like it is possible for DNA-, RNA or 

protein sequences. The developed sample preparation methods represent a good compromise 

between fastness needed in metabolomics to obtain an instantaneous snapshot of a cells 

metabolism and the reduction of the bacterial load in the cell culture preparation. 

This method was applied to a HeLa infection model and DI-ICR-FT/MS and lipid profiling 

using UHPLC-UHR-ToF-MS showed alteration in the host cell metabolome. A major feature was 

reduced levels of TG´s, similar to infected C. elegans. Second, ceramide levels were increased, 

which in known from previous studies, showing that the developed workflow and methods are 

valid. A major problem from the used methodology is the low recovery of cells. For higher 

sensitivity in the used analytical methods, higher cell numbers are needed. Scaling up the 

whole model, could be one solution. Another possibility would be to go to nano flow LC-MS, 

which is well suited for low volume applications, needing high sensitivity. 

HeLa cells were also used to express the bacterial effector ExoY to enlighten its effects on 

the host metabolome. Analysis was carried with DI-ICR-FT/MS and revealed changes in the TCA 

cycle. In exoY expressing cells this pathway seems to be cut off and pyruvate and acetyl-CoA 

are metabolized in alternate routes. Also lower levels of acylcarnitines were found, which can 

be an indicator of increased β-oxidation. 

6.7 Comparison of the infection models 

Results from the C. elegans and HeLa infection models show a striking overlap, especially at 

the TCA cycle and low levels of TG´s. This suggests that this response is possibly conserved 

during evolution. The used HeLa infection model has to be further optimized to obtain cleaner 

preparations in higher amounts. Using the more sensitive lipidome methods used for lipid 

profiling in C. elegans, can further enhance results. Still the major problem with this model, is 

the fast lysis of HeLa cells. Moving to a different of P. aeruginosa, e.g. PAO1, can solve this 

issue. However, the question is still open, if the metabolic phenotype is the same as for PA14. 

Table 20 compares some effects seen in the different infection models. 

Because most effects are found in both model systems, it seems that the affection of 

energy and lipid metabolism is one of the major events in P. aeruginosa infection. Several 
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results published by other groups support this idea. In a mouse model of P. aeruginosa used by 

Hoerr et al, reduced levels of citrate, 2-oxoglutarate, glucose, fumarate, pyruvate and 

succinate were found, whereas acetylcarnitine, glycerol, lactate and acetate were elevated 

[156]. Interestingly, Behrends et al. compared 179 strains of P. aeruginosa isolated from cystic 

fibrosis patients based on their exometabolome. They found a highly significant negative 

correlation between time of infection and acetate levels in the cell supernatants. Acetate 

levels of wildtype P. aeruginosa PAO1, which was used as control, exceeded most clinical 

isolates. The results either suggest a decreased excretion of acetate or an increased uptake 

from the medium [163]. In another work, the group around Nina Jagmann described parasitic 

growth of P. aeruginosa PAO1 with Aeromonas hydrophila on chitin as carbon and nitrogen 

source. P. aeruginosa PAO1 is not able to use chitin. The growth consisted of two phases. First 

both organisms grew in a commensal way. In the second phase a massive acetate release of 

about 10 mM by A. hydrophila was observed, which was caused by pyocyanin from P. 

aeruginosa. Pyocyanin inhibited aconitase and the TCA cycle, but not pyruvate dehydrogenase 

[164]. 

Table 20: Comparison of different infection models 
The effects were observed between PA14ΔgacA and PA14wt. n.d. = not detected 

Effect C. elegans 
(fer-15) 

C. elegans 
(daf-2) 

HeLa infection HeLa ExoY 

Altered TCA 
cycle? 

Yes  n.d. Yes 

Low acyl-
carnitines ? 

Yes Yes n.d. Yes 

Low TG´s? Yes Yes Yes n.d. 
Amino acid 
metabolism 
affected? 

Yes Yes n.d. no 

 

Apart from this, results have to be validated using targeted methods. The presented 

methods represent good starting points for further work in the field of host-pathogen 

metabolomics. They can be used in a broader screening approach using different mutants and 

compare the observed metabolic phenotypes. This makes it hopefully possible to identify 

molecular actors that are responsible for this phenotypes and supply future targets for drug 

development or diagnostics. 

  



 

  

139 Conclusion 



 

  

140  

  



 

  

141 Literature 

 

 

 

Literature 

  



 

  

142  

1. Blow, N., Metabolomics: Biochemistry's new look. Nature, 2008. 455(7213): p. 697-700. 

2. Santorio, S., De Statica Medicina. 1675. 

3. Wöhler, F., Ueber künstliche Bildung des Harnstoffs. Annalen der Physik, 1828. 88(2): p. 

253-256. 

4. Krebs, H.A. and W.A. Johnson, Metabolism of ketonic acids in animal tissues. B

 iochemical Journal, 1937. 31(4): p. 645-660. 

5. Lynen, F., Lipide Metabolism. Annual Review of Biochemistry, 1955. 24(1): p. 653-688. 

6. Buchanan, B. and D. Arnon, A reverse KREBS cycle in photosynthesis: consensus at last. 

Photosynthesis Research, 1990. 24(1): p. 47-53-53. 

7. Berg, J.M., T.J. L., and S. Lubert, Biochemistry. 2002, W H Freeman: New York. 

8. 2012; Available from: 

http://www.imsb.ethz.ch/researchgroup/sauer/research/centralmetabolism. 

9. Fiehn, O., Metabolomics – the link between genotypes and phenotypes. Plant 

Molecular Biology, 2002. 48(1): p. 155-171. 

10. Weckwerth, W., Metabolomics in Systems Biology. Annual Review of Plant Biology, 

2003. 54(1): p. 669-689. 

11. Wishart, D., Systems Biology Resources Arising from the Human Metabolome 

Project,Genetics Meets Metabolomics, K. Suhre, Editor. 2012, Springer New York. p. 

157-175. 

12. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the 

metabolic responses of living systems to pathophysiological stimuli via multivariate 

statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 

1181-1189. 

13. Pauling, L., et al., Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid 

Partition Chromatography. Proceedings of the National Academy of Sciences, 1971. 

68(10): p. 2374-2376. 

14. Marianna, L., Datamining metabolomics: the convergence point of non-target 

approach and statistical investigation. 2009. 



 

  

143 Literature 

15. Kell, D.B., et al., Metabolic footprinting and systems biology: the medium is the 

message. Nat Rev Micro, 2005. 3(7): p. 557-565. 

16. Calder, P.C., Dietary Fatty Acids and the Immune System. Nutrition Reviews, 1998. 

56(1): p. S70-S83. 

17. Nandakumar, M. and M.-W. Tan, Gamma-Linolenic and Stearidonic Acids Are Required 

for Basal Immunity in Caenorhabditis elegans through Their Effects on p38 MAP Kinase 

Activity. PLoS Genet, 2008. 4(11): p. e1000273. 

18. Fuhrer, T., et al., High-Throughput, Accurate Mass Metabolome Profiling of Cellular 

Extracts by Flow Injection–Time-of-Flight Mass Spectrometry. Analytical Chemistry, 

2011. 83(18): p. 7074-7080. 

19. Goodacre, R., Metabolomics – the way forward. Metabolomics, 2005. 1(1): p. 1-2. 

20. Sud, M., et al., LMSD: LIPID MAPS structure database. Nucleic Acids Research, 2007. 

35(suppl 1): p. D527-D532. 

21. Hu, C., et al., RPLC-Ion-Trap-FTMS Method for Lipid Profiling of Plasma: Method 

Validation and Application to p53 Mutant Mouse Model. Journal of Proteome 

Research, 2008. 7(11): p. 4982-4991. 

22. Ogundare, M., et al., Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present 

in Brain? Journal of Biological Chemistry, 2010. 285(7): p. 4666-4679. 

23. Aharoni, A., et al., Nontargeted Metabolome Analysis by Use of Fourier Transform Ion 

Cyclotron Mass Spectrometry. OMICS: A Journal of Integrative Biology, 2002. 6(3): p. 

217-234. 

24. Huang, N., et al., Automation of a Fourier transform ion cyclotron resonance mass 

spectrometer for acquisition, analysis, and e-mailing of high-resolution exact-mass 

electrospray ionization mass spectral data. Journal of the American Society for Mass 

Spectrometry, 1999. 10(11): p. 1166-1173. 

25. Southam, A.D., et al., Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion 

Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-

Based Metabolomics Increased by the Spectral Stitching Method. Analytical Chemistry, 

2007. 79(12): p. 4595-4602. 



 

  

144  

26. Kim, S., et al., Automated electrospray ionization FT-ICR mass spectrometry for 

petroleum analysis. Journal of the American Society for Mass Spectrometry, 2009. 

20(2): p. 263-268. 

27. Marshall, A.G., Milestones in Fourier transform ion cyclotron resonance mass 

spectrometry technique development. Int J Mass Spectrom, 2000. 200: p. 331-356. 

28. Kind, T. and O. Fiehn, Seven Golden Rules for heuristic filtering of molecular formulas 

obtained by accurate mass spectrometry. BMC Bioinformatics, 2007. 8(1): p. 105. 

29. Li, X., et al., At-line coupling of UHPLC to chip-electrospray-FTICR-MS. Analytical and 

Bioanalytical Chemistry, 2007. 389(5): p. 1439-1446. 

30. Cubbon, S., et al., Metabolomic applications of HILIC–LC–MS. Mass Spectrometry 

Reviews. 29(5): p. 671-684. 

31. Rainville, P.D., et al., Novel Application of Reversed-Phase UHPLC-oaTOF-MS for Lipid 

Analysis in Complex Biological Mixtures: A New Tool for Lipidomics. Journal of 

Proteome Research, 2006. 6(2): p. 552-558. 

32. Wilson, I.D., et al., High Resolution Ultra Performance Liquid Chromatography Coupled 

to oa-TOF Mass Spectrometry as a Tool for Differential Metabolic Pathway Profiling in 

Functional Genomic Studies. Journal of Proteome Research, 2005. 4(2): p. 591-598. 

33. Stoll, D.R., et al., Fast, comprehensive two-dimensional liquid chromatography. Journal 

of Chromatography A, 2007. 1168(1–2): p. 3-43. 

34. Buescher, J.M., et al., Ultrahigh Performance Liquid Chromatography−Tandem Mass 

Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic 

Metabolites. Analytical Chemistry, 2010. 82(11): p. 4403-4412. 

35. Pluskal, T., et al., MZmine 2: Modular framework for processing, visualizing, and 

analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 11(1): 

p. 395. 

36. Lommen, A. and H. Kools, MetAlign 3.0: performance enhancement by efficient use of 

advances in computer hardware. Metabolomics, 2012. 8(4): p. 719-726. 

37. Soga, T., et al., Quantitative Metabolome Analysis Using Capillary Electrophoresis Mass 

Spectrometry. Journal of Proteome Research, 2003. 2(5): p. 488-494. 



 

  

145 Literature 

38. Monton, M.R.N. and T. Soga, Metabolome analysis by capillary electrophoresis-mass 

spectrometry. Journal of Chromatography A, 2007. 1168(1-2): p. 237-246. 

39. An, Y.J., et al., Metabotyping of the C. elegans sir-2.1 Mutant Using in Vivo Labeling 

and 13C-Heteronuclear Multidimensional NMR Metabolomics. ACS Chemical Biology, 

2012. 

40. Beltran, A., et al., Assessment of Compatibility between Extraction Methods for NMR- 

and LC/MS-Based Metabolomics. Analytical Chemistry, 2012. 84(14): p. 5838-5844. 

41. W., M., Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe, 1894. 1: p. 

235-328. 

42. N., P.J., Family I. Pseudomonadaceae, in Bergey´s Manuel of Systemative Bacteriology, 

Bergey, Editor. 1984. p. 141-172. 

43. Willenbrock, H., et al., An environmental signature for 323 microbial genomes based on 

codon adaptation indices. Genome Biology, 2006. 7(12): p. R114. 

44. Willenbrock, H. and D. Ussery, Prediction of highly expressed genes in microbes based 

on chromatin accessibility. BMC Molecular Biology, 2007. 8(1): p. 11. 

45. Lyczak, J.B., C.L. Cannon, and G.B. Pier, Establishment of Pseudomonas aeruginosa 

infection: lessons from a versatile opportunist. Microbes and Infection, 2000. 2(9): p. 

1051-1060. 

46. Stover, C.K., et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an 

opportunistic pathogen. Nature, 2000. 406(6799): p. 959-964. 

47. Lee, D., et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is 

combinatorial. Genome Biology, 2006. 7(10): p. R90. 

48. Winsor, G.L., et al., Pseudomonas Genome Database: improved comparative analysis 

and population genomics capability for Pseudomonas genomes. Nucleic Acids 

Research, 2011. 39(suppl 1): p. D596-D600. 

49. Oberhardt, M.A., et al., Genome-Scale Metabolic Network Analysis of the Opportunistic 

Pathogen Pseudomonas aeruginosa PAO1. The Journal of Bacteriology, 2008. 190(8): p. 

2790-2803. 



 

  

146  

50. He, J., et al., The broad host range pathogen Pseudomonas aeruginosa strain PA14 

carries two pathogenicity islands harboring plant and animal virulence genes. 

Proceedings of the National Academy of Sciences of the United States of America, 

2004. 101(8): p. 2530-2535. 

51. Rehm, B.H.A., Pseudomonas. 1 ed. 2008: Wiley. 402. 

52. Economou, A., et al., Secretion by numbers: protein traffic in prokaryotes. Molecular 

Microbiology, 2006. 62(2): p. 308-319. 

53. Cornelis, G.R., The type III secretion injectisome. Nat Rev Micro, 2006. 4(11): p. 811-

825. 

54. Wolfgang, M.C., et al., Conservation of genome content and virulence determinants 

among clinical and environmental isolates of Pseudomonas aeruginosa. Proceedings of 

the National Academy of Sciences, 2003. 100(14): p. 8484-8489. 

55. Yahr, T.L., et al., ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa 

type III system. Proceedings of the National Academy of Sciences of the United States 

of America, 1998. 95(23): p. 13899-13904. 

56. Ha, U. and S. Jin, Growth Phase-Dependent Invasion of Pseudomonas aeruginosa and 

Its Survival within HeLa Cells. Infection and Immunity, 2001. 69(7): p. 4398-4406. 

57. Shaver, C.M. and A.R. Hauser, Relative Contributions of Pseudomonas aeruginosa 

ExoU, ExoS, and ExoT to Virulence in the Lung. Infection and Immunity, 2004. 72(12): p. 

6969-6977. 

58. Kulasekara, B.R., et al., Acquisition and Evolution of the exoU Locus in Pseudomonas 

aeruginosa. Journal of Bacteriology, 2006. 188(11): p. 4037-4050. 

59. Bleves, S., et al., Protein secretion systems in Pseudomonas aeruginosa: A wealth of 

pathogenic weapons. International Journal of Medical Microbiology, 2010. 300(8): p. 

534-543. 

60. Frimmersdorf, E., et al., How Pseudomonas aeruginosa adapts to various 

environments: a metabolomic approach. Environmental Microbiology, 2010. 12(6): p. 

1734-1747. 



 

  

147 Literature 

61. Behrends, et al., Metabolic profiling of Pseudomonas aeruginosa demonstrates that 

the anti-sigma factor MucA modulates osmotic stress tolerance. Vol. 6. Cambridge, 

ROYAUME-UNI: Royal Society of Chemistry. 8. 

62. Gjersing, E.L., et al., NMR Metabolomics of Planktonic and Biofilm Modes of Growth in 

Pseudomonas aeruginosa. Analytical Chemistry, 2007. 79(21): p. 8037-8045. 

63. Muller, H., et al., Variation and adaptation of Pseudomonas aeruginosa toxicity to HeLa 

cells and fibroblasts. Journal of Clinical Microbiology, 1986. 24(3): p. 317-323. 

64. Lorenz, M.A., C.F. Burant, and R.T. Kennedy, Reducing Time and Increasing Sensitivity 

in Sample Preparation for Adherent Mammalian Cell Metabolomics. Analytical 

Chemistry, 2011. 83(9): p. 3406-3414. 

65. Sugimoto, M., et al., Non-targeted metabolite profiling in activated macrophage 

secretion. Metabolomics, 2012. 8(4): p. 624-633. 

66. Hulme, S.E. and G.M. Whitesides, Chemistry and the Worm: Caenorhabditis elegans as 

a Platform for Integrating Chemical and Biological Research. Angewandte Chemie 

International Edition, 2011. 50(21): p. 4774-4807. 

67. 2012. Available from: 

http://blog.neuinfo.org/wp-content/uploads/2011/06/celegans.jpg. 

68. Evans, E.A., T. Kawli, and M.-W. Tan, Pseudomonas aeruginosa Suppresses Host 

Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in Caenorhabditis 

elegans. PLoS Pathog, 2008. 4(10): p. e1000175. 

69. Szewczyk, N., E. Kozak, and C. Conley, Chemically defined medium and Caenorhabditis 

elegans. BMC Biotechnology, 2003. 3(1): p. 19. 

70. Geier, F.M., et al., Cross-Platform Comparison of Caenorhabditis elegans Tissue 

Extraction Strategies for Comprehensive Metabolome Coverage. Analytical Chemistry, 

2011. 83(10): p. 3730-3736. 

71. Blaise, B.J., et al., Metabotyping of Caenorhabditis elegans reveals latent phenotypes. 

Proceedings of the National Academy of Sciences, 2007. 104(50): p. 19808-19812. 

72. Fuchs, S., et al., A metabolic signature of long life in Caenorhabditis elegans. BMC 

Biology, 2010. 8(1): p. 14. 



 

  

148  

73. Martin, F.-P.J., et al., Metabotyping of Caenorhabditis elegans and their Culture Media 

Revealed Unique Metabolic Phenotypes Associated to Amino Acid Deficiency and 

Insulin-Like Signaling. Journal of Proteome Research, 2011. 10(3): p. 990-1003. 

74. Butler, J.A., et al., Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans 

utilize a novel metabolism. The FASEB Journal. 24(12): p. 4977-4988. 

75. Pungaliya, C., et al., A shortcut to identifying small molecule signals that regulate 

behavior and development in Caenorhabditis elegans. Proceedings of the National 

Academy of Sciences, 2009. 106(19): p. 7708-7713. 

76. von Reuss, S.H., et al., Comparative Metabolomics Reveals Biogenesis of Ascarosides, a 

Modular Library of Small-Molecule Signals in C. elegans. Journal of the American 

Chemical Society, 2012. 134(3): p. 1817-1824. 

77. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res, 2000. 28(1): p. 27-30. 

78. Caspi, R., et al., The MetaCyc Database of metabolic pathways and enzymes and the 

BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 2008. 

36(suppl 1): p. D623-D631. 

79. Schomburg, I., A. Chang, and D. Schomburg, BRENDA, enzyme data and metabolic 

information. Nucleic Acids Res, 2002. 30(1): p. 47-49. 

80. Csizmadia, F., JChem: Java applets and modules supporting chemical database 

handling from web browsers. Journal of Chemical Information and Computer Sciences, 

2000. 40(2): p. 323-324. 

81. Steinbeck, C., et al., The Chemistry Development Kit (CDK): an open-source Java library 

for chemo- and bioinformatics. J Chem Inf Comput Sci, 2003. 43(2): p. 493-500. 

82. Steinbeck, C., et al., Recent developments of the Chemistry Development Kit (CDK) - An 

open-source Java library for chemo- and bioinformatics. Current Pharmaceutical 

Design, 2006. 12(17): p. 2111-2120. 

83. Nobeli, I., et al., A Structure-based Anatomy of the E. coli Metabolome. Journal of 

Molecular Biology, 2003. 334(4): p. 697-719. 

84. Heinonen, M., et al., Metabolite identification and molecular fingerprint prediction 

through machine learning. Bioinformatics, 2012. 28(18): p. 2333-2341. 



 

  

149 Literature 

85. Wolf, S., et al., In silico fragmentation for computer assisted identification of 

metabolite mass spectra. BMC Bioinformatics, 2010. 11(1): p. 148. 

86. Wang, Y., et al., PubChem: a public information system for analyzing bioactivities of 

small molecules. Nucleic Acids Res, 2009(37 Web Server): p. W623-633. 

87. Kanehisa, M., et al., From genomics to chemical genomics: new developments in KEGG. 

Nucleic Acids Research, 2006. 34(suppl 1): p. D354-D357. 

88. Wishart, D.S., et al., HMDB: a knowledgebase for the human metabolome. Nucleic 

Acids Res, 2009(37 Database): p. D603-610. 

89. Suhre, K. and P. Schmitt-Kopplin, MassTRIX: mass translator into pathways. Nucleic 

Acids Research, 2008. 36(suppl 2): p. W481-W484. 

90. Wapstra, A.H., G. Audi, and C. Thibault, The Ame2003 atomic mass evaluation: (I). 

Evaluation of input data, adjustment procedures. Nuclear Physics A, 2003. 729(1): p. 

129-336. 

91. García-Alcalde, F., et al., Paintomics: a web based tool for the joint visualization of 

transcriptomics and metabolomics data. Bioinformatics, 2011. 27(1): p. 137-139. 

92. Antunes, L.C.M., et al., Impact of Salmonella Infection on Host Hormone Metabolism 

Revealed by Metabolomics. Infection and Immunity, 2011. 79(4): p. 1759-1769. 

93. Jansson, J., et al., Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease. PLoS 

ONE, 2009. 4(7): p. e6386. 

94. Leader, D.P., et al., Pathos: A web facility that uses metabolic maps to display 

experimental changes in metabolites identified by mass spectrometry. Rapid 

Communications in Mass Spectrometry, 2011. 25(22): p. 3422-3426. 

95. Henry, C.S., et al., High-throughput generation, optimization and analysis of genome-

scale metabolic models. Nat Biotech, 2010. 28(9): p. 977-982. 

96. Bellmann-Weiler, R., et al., Divergent modulation of Chlamydia pneumoniae infection 

cycle in human monocytic and endothelial cells by iron, tryptophan availability and 

interferon gamma. Immunobiology, 2010. 215(9–10): p. 842-848. 



 

  

150  

97. Kastenmüller, G., J. Gasteiger, and H.-W. Mewes, An environmental perspective on 

large-scale genome clustering based on metabolic capabilities. Bioinformatics, 2008. 

24(16): p. i56-i62. 

98. Gillespie, J.J., et al., PATRIC: the Comprehensive Bacterial Bioinformatics Resource with 

a Focus on Human Pathogenic Species. Infection and Immunity, 2011. 79(11): p. 4286-

4298. 

99. Dale, J., L. Popescu, and P. Karp, Machine learning methods for metabolic pathway 

prediction. BMC Bioinformatics, 2010. 11(1): p. 15. 

100. Karp, P.D., et al., Pathway Tools version 13.0: integrated software for pathway/genome 

informatics and systems biology. Briefings in Bioinformatics, 2010. 11(1): p. 40-79. 

101. Aziz, R., et al., The RAST Server: Rapid Annotations using Subsystems Technology. BMC 

Genomics, 2008. 9(1): p. 75. 

102. Brendza, K.M., et al., Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the 

first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis 

elegans. Biochem J, 2007. 404(3): p. 439-448. 

103. Wishart, D.S., et al., HMDB 3.0—The Human Metabolome Database in 2013. Nucleic 

Acids Research, 2012. 

104. Frolkis, A., et al., SMPDB: The Small Molecule Pathway Database. Nucleic Acids 

Research, 2010. 38(suppl 1): p. D480-D487. 

105. Stobbe, M., et al., Critical assessment of human metabolic pathway databases: a 

stepping stone for future integration. BMC Systems Biology, 2011. 5(1): p. 165. 

106. Hein, E.-M. and H. Hayen, Comparative Lipidomic Profiling of S. cerevisiae and Four 

Other Hemiascomycetous Yeasts. Metabolites, 2012. 2(1): p. 254-267. 

107. Rossello-Mora, R., et al., Metabolic evidence for biogeographic isolation of the 

extremophilic bacterium Salinibacter ruber. ISME J, 2008. 2(3): p. 242-253. 

108. Pena, A., et al., Fine-scale evolution: genomic, phenotypic and ecological differentiation 

in two coexisting Salinibacter ruber strains. ISME J. 4(7): p. 882-895. 



 

  

151 Literature 

109. Brito-Echeverría, J., et al., Response to adverse conditions in two strains of the 

extremely halophilic species &lt;i&gt;Salinibacter ruber&lt;/i&gt. Extremophiles. 15(3): 

p. 379-389-389. 

110. Gross, H. and J.E. Loper, Genomics of secondary metabolite production by 

Pseudomonas spp. Natural Product Reports, 2009. 26(11): p. 1408-1446. 

111. Youard, Z.A., et al., Pseudomonas fluorescens CHA0 Produces Enantio-pyochelin, the 

Optical Antipode of the Pseudomonas aeruginosa Siderophore Pyochelin. Journal of 

Biological Chemistry, 2007. 282(49): p. 35546-35553. 

112. Bonsall, R.F., D.M. Weller, and L.S. Thomashow, Quantification of 2,4-

Diacetylphloroglucinol Produced by Fluorescent Pseudomonas spp. In Vitro and in the 

Rhizosphere of Wheat. Applied and Environmental Microbiology, 1997. 63(3): p. 951-5. 

113. Garvis, S., et al., Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a 

Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence. 

PLoS Pathog, 2009. 5(8): p. e1000540. 

114. Tan, M.-W., et al., Pseudomonas aeruginosa killing of Caenorhabditis elegans used to 

identify P. aeruginosa virulence factors. Proceedings of the National Academy of 

Sciences, 1999. 96(5): p. 2408-2413. 

115. Garsin, D.A., et al., Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial 

Pathogens. Science, 2003. 300(5627): p. 1921-1921. 

116. Houthoofd, K., et al., DAF-2 pathway mutations and food restriction in aging 

Caenorhabditis elegans differentially affect metabolism. Neurobiology of Aging, 2005. 

26(5): p. 689-696. 

117. ACD/MS Fragmenter. Mass spectral fragmentation analysis software. 

118. MassFrontier. Mass spectral fragmentation analysis software. 

119. Bowen, B.P. and T.R. Northen, Dealing with the Unknown: Metabolomics and 

Metabolite Atlases. Journal of the American Society for Mass Spectrometry. 21(9): p. 

1471-1476. 

120. Kumari, S., et al., Applying In-Silico Retention Index and Mass Spectra Matching for 

Identification of Unknown Metabolites in Accurate Mass GC-TOF Mass Spectrometry. 

Analytical Chemistry, 2011. 83(15): p. 5895-5902. 



 

  

152  

121. Creek, D.J., et al., Toward Global Metabolomics Analysis with Hydrophilic Interaction 

Liquid Chromatography–Mass Spectrometry: Improved Metabolite Identification by 

Retention Time Prediction. Analytical Chemistry, 2011. 83(22): p. 8703-8710. 

122. Brown, M., et al., Mass spectrometry tools and metabolite-specific databases for 

molecular identification in metabolomics. Analyst, 2009. 134(7): p. 1322-1332. 

123. Dunn, W., et al., Mass appeal: metabolite identification in mass spectrometry-focused 

untargeted metabolomics. Metabolomics: p. 1-23. 

124. Peironcely, J.E., et al., Understanding and Classifying Metabolite Space and Metabolite-

Likeness. PLoS One, 2011. 6(12): p. e28966. 

125. Murphy, R.C., et al., Detection of the abundance of diacylglycerol and triacylglycerol 

molecular species in cells using neutral loss mass spectrometry. Analytical 

Biochemistry, 2007. 366(1): p. 59-70. 

126. Bird, S.S., et al., Separation of Cis–Trans Phospholipid Isomers Using Reversed Phase LC 

with High Resolution MS Detection. Analytical Chemistry, 2012. 84(13): p. 5509-5517. 

127. Tziotis, D., Norbert Hertkorn, and P. Schmitt-Kopplin, Kendrick-analogous network 

visualisation of ion cyclotron resonance Fourier transform mass spectra: improved 

options for the assignment of elemental compositions and the classification of organic 

molecular complexity. European Journal of Mass Spectrometry, 2011. 17(4): p. 6. 

128. Lewis, J.A. and J.T. Fleming, Chapter 1 Basic Culture Methods, in Methods in Cell 

Biology, F.E. Henry and C.S. Diane, Editors. 1995, Academic Press. p. 3-29. 

129. Kaniga, K., I. Delor, and G.R. Cornelis, A wide-host-range suicide vector for improving 

reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia 

enterocolitica. Gene, 1991. 109(1): p. 137-141. 

130. Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans: an emerging genetic model for the 

study of innate immunity. Nat Rev Genet, 2003. 4(5): p. 380-390. 

131. Troemel, E.R., et al., p38 MAPK Regulates Expression of Immune Response Genes and 

Contributes to Longevity in C. elegans. PLoS Genet, 2006. 2(11): p. e183. 

132. Hormiga, J., et al., Quantitative analysis of the dynamic signaling pathway involved in 

the cAMP mediated induction of l-carnitine biosynthesis in E. coli cultures. Molecular 

BioSystems, 2010. 6(4): p. 699-710. 



 

  

153 Literature 

133. Sevilla, A., et al., Impairing and Monitoring Glucose Catabolite Repression in l-Carnitine 

Biosynthesis. Biotechnology Progress, 2007. 23(6): p. 1286-1296. 

134. Jia, K., et al., Autophagy genes protect against Salmonella typhimurium infection and 

mediate insulin signaling-regulated pathogen resistance. Proceedings of the National 

Academy of Sciences, 2009. 106(34): p. 14564-14569. 

135. Irazoqui, J.E., et al., Distinct Pathogenesis and Host Responses during Infection of C. 

elegans by P. aeruginosa and S. aureus. PLoS Pathog, 2010. 6(7): p. e1000982. 

136. Hansen, M., et al., A Role for Autophagy in the Extension of Lifespan by Dietary 

Restriction in C. elegans. PLoS Genet, 2008. 4(2): p. e24. 

137. Hansen, M., et al., A Role for Autophagy in the Extension of Lifespan by Dietary 

Restriction in C. elegans. PLoS Genet, 2008. 4(2): p. e24. 

138. Sheng, L., et al., Interkingdom adenosine signal reduces Pseudomonas aeruginosa 

pathogenicity. Microbial Biotechnology, 2012. 5(4): p. 560-572. 

139. Lucanic, M., et al., N-acylethanolamine signalling mediates the effect of diet on lifespan 

in Caenorhabditis elegans. Nature, 2011. 473(7346): p. 226-229. 

140. Payne, S.H. and W.F. Loomis, Retention and Loss of Amino Acid Biosynthetic Pathways 

Based on Analysis of Whole-Genome Sequences. Eukaryotic Cell, 2006. 5(2): p. 272-276. 

141. Eisenberg, T., et al., Induction of autophagy by spermidine promotes longevity. Nat Cell 

Biol, 2009. 11(11): p. 1305-1314. 

142. Das, D., et al., The crystal structure of a bacterial Sufu-like protein defines a novel group 

of bacterial proteins that are similar to the N-terminal domain of human Sufu. Protein 

Science, 2010. 19(11): p. 2131-2140. 

143. Wang, C., et al., Use of Caenorhabditis elegans for Preselecting Lactobacillus Isolates To 

Control Salmonella Typhimurium. Journal of Food Protection 174;, 2011. 74(1): p. 86-

93. 

144. Rizzi, M., et al., In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. 

Mathematical model. Biotechnology and Bioengineering, 1997. 55(4): p. 592-608. 

145. Silas G. Villas-Bôas, U.R., Michael A. E. Hansen, Jorn Smedsgaard, Jens Nielsen, 

Metabolome Analysis - An Introduction. 1 ed. 2007: John Wiley & Sons Inc. 



 

  

154  

146. Folch, J., M. Lees, and G.H.S. Stanley, A Simple Method For The Isolation And 

Purification Of Total Lipids From Animal Tissues. Journal of Biological Chemistry, 1957. 

226(1): p. 497-509. 

147. Bligh, E.G. and W.J. Dyer, A rapid method of total lipid extraction and purification. 

Canadian Journal of Biochemistry and Physiology, 1959. 37(8): p. 911-917. 

148. Matyash, V., et al., Lipid extraction by methyl-tert-butyl ether for high-throughput 

lipidomics. Journal of Lipid Research, 2008. 49(5): p. 1137-1146. 

149. Alvarez, H.A. and A.S. Steinbüchel, Triacylglycerols in prokaryotic microorganisms. 

Applied Microbiology and Biotechnology, 2002. 60(4): p. 367-376. 

150. Riethmüller, J., et al., Ceramide in Pseudomonas aeruginosa infections. European 

Journal of Lipid Science and Technology, 2007. 109(10): p. 998-1002. 

151. Zhang, Y., et al., Acid Sphingomyelinase Amplifies Redox Signaling in Pseudomonas 

aeruginosa-Induced Macrophage Apoptosis. The Journal of Immunology, 2008. 181(6): 

p. 4247-4254. 

152. Plotkowski, M.-C., et al., Lipid body mobilization in the ExoU-induced release of 

inflammatory mediators by airway epithelial cells. Microbial Pathogenesis, 2008. 45(1): 

p. 30-37. 

153. Voigt, U., et al., The effector protein ExoY secreted by Pseudomonas aeruginosa is a 

nucleotidyl cyclase with preference for GTP. BMC Pharmacology, 2011. 11(Suppl 1): p. 

P74. 

154. Burckstummer, T., et al., An efficient tandem affinity purification procedure for 

interaction proteomics in mammalian cells. Nat Meth, 2006. 3(12): p. 1013-1019. 

155. la Sala, A., et al., Alerting and tuning the immune response by extracellular nucleotides. 

Journal of Leukocyte Biology, 2003. 73(3): p. 339-343. 

156. Hoerr, V., et al., Gram-negative and Gram-Positive Bacterial Infections Give Rise to a 

Different Metabolic Response in a Mouse Model. Journal of Proteome Research, 2012. 

11(6): p. 3231-3245. 

157. Gieger, C., et al., Genetics Meets Metabolomics: A Genome-Wide Association Study of 

Metabolite Profiles in Human Serum. PLoS Genet, 2008. 4(11): p. e1000282. 



 

  

155 Literature 

158. Oberhardt, M.A., et al., Metabolic Network Analysis of Pseudomonas aeruginosa 

during Chronic Cystic Fibrosis Lung Infection. The Journal of Bacteriology: p. JB.00900-

10. 

159. Rosselló-Móra, R., Towards a taxonomy of Bacteria and Archaea based on interactive 

and cumulative data repositories. Environmental Microbiology, 2012. 14(2): p. 318-

334. 

160. Miyata, S., et al., Use of the Galleria mellonella Caterpillar as a Model Host To Study the 

Role of the Type III Secretion System in Pseudomonas aeruginosa Pathogenesis. 

Infection and Immunity, 2003. 71(5): p. 2404-2413. 

161. Wareham, D.W., A. Papakonstantinopoulou, and M.A. Curtis, The Pseudomonas 

aeruginosa PA14 type III secretion system is expressed but not essential to virulence in 

the Caenorhabditis elegans–P. aeruginosa pathogenicity model. FEMS Microbiology 

Letters, 2005. 242(2): p. 209-216. 

162. Flibotte, S., et al., Whole-Genome Profiling of Mutagenesis in Caenorhabditis elegans. 

Genetics, 2010. 185(2): p. 431-441. 

163. Behrends, V., et al., Metabolic adaptations of Pseudomonas aeruginosa during cystic 

fibrosis chronic lung infections. Environmental Microbiology, 2012: p. no-no. 

164. Jagmann, N., H.-P. Brachvogel, and B. Philipp, Parasitic growth of Pseudomonas 

aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. 

Environmental Microbiology, 2010. 12(6): p. 1787-1802. 

165. Watts, J.L. and J. Browse, Genetic dissection of polyunsaturated fatty acid synthesis in 

Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 2002. 99(9): 

p. 5854-5859. 

 

 

  



 

  

156  

List of figures 

Figure 1: Metabolites play a central role in all biological processes. ............................................ 2 

Figure 2: Catabolic and anabolic metabolism is interwoven through ATP and redox factors, like 

NADH or NADPH. ........................................................................................................................... 3 

Figure 3: Genes, transcripts, proteins and metabolites are acting together in a tight network to 

build up life. ................................................................................................................................... 7 

Figure 4: Examples for different lipid classes found in biological samples ................................... 9 

Figure 5: Principles of ICR-FT/MS ................................................................................................ 12 

Figure 6: Principals of Q-ToF-MS ................................................................................................. 14 

Figure 7: Principals of CE ............................................................................................................. 15 

Figure 8: A) NMR B) construction ................................................................................................ 16 

Figure 9: P. aeruginosa secretion systems .................................................................................. 20 

Figure 10: Infection cycle of P. aeruginosa ................................................................................. 21 

Figure 11: C. elegans is a widely used model organism with a short life cycle. .......................... 24 

Figure 12: Project structure of Pathomics Project ...................................................................... 28 

Figure 13: Overview on thesis structure ..................................................................................... 30 

Figure 14: Principal workflow and outputs of MassTRIX. ........................................................... 38 

Figure 15 Possible comparisons between jobs in MassTRIX ....................................................... 39 

Figure 16: Metabolic capabilities of different Pseudomonas species ......................................... 42 

Figure 17: Comparison of the in silico metabolomes downloaded from BioCyc. ....................... 44 

Figure 18: Combined metabolic pathway map obtained directly from KEGG for P. aeruginosa 

PA14 and C. elegans .................................................................................................................... 48 

Figure 19: Scores plots of Principal component analysis of BEH C8 separation ......................... 57 

Figure 20: Different growth temperatures lead to differences in the intracellular metabolome

 ..................................................................................................................................................... 58 

Figure 21: PCA scores plots from BEH C8 separation of bacterial pellets grown in LB medium . 59 

Figure 22: Levels of intracellular pyochelin and 2,4-diacetylphloroglucinol ............................... 61 

Figure 23: Distances of different Pseudomonas species based on metabolome ........................ 62 

Figure 24: Metabolites found in measurements, but not in prediction ..................................... 63 

Figure 25 Complex mass spectrometric patterns can arise from a single metabolite species, 

including fragments, isotopes and adducts, which complicates data analysis. .......................... 68 

Figure 26: logP and logD values of the C. elegans in silico metabolome .................................... 72 

Figure 27: Physicochemical properties of the C. elegans in silico metabolome ......................... 73 

Figure 28: Building blocks of the C. elegans in silico metabolome ............................................. 74 

Figure 29: Metabolites on the same metabolic pathway show chemical similarity ................... 75 



 

  

157 Literature 

Figure 30: Example of cluster found using correlation analysis and RT filtering ........................ 79 

Figure 31: Isomeric and isobaric lipid species complicate analysis of lipidome data ................. 80 

Figure 32: The AutoMSn algorithm is a data dependent algorithm for the automated acquisition 

of MS/MS spectra during a chromatographic run ...................................................................... 82 

Figure 33: Retention time shifts and mass differences allow identification of members of 

homologous series. ..................................................................................................................... 83 

Figure 34: Overview on NetCalc networks .................................................................................. 86 

Figure 35: Results of ICR-FT/MS and UHPLC-UHR-ToF-MS alignment ........................................ 87 

Figure 36: Typical killing curves obtained from C. elegans fed on different pathogenic bacteria.

 ..................................................................................................................................................... 89 

Figure 37: Principal component analysis of negative ICR-FT/MS dataset .................................. 91 

Figure 38: Pathway comparison from positive ionization ICR-FT/MS data ................................ 91 

Figure 39: Several metabolites of L-Phenylalanine were found significant for fer-15 worms fed 

with E. coli OP50 ......................................................................................................................... 92 

Figure 40: Metabolites from Glycolysis and TCA cycle detected in negative ICR-FT/MS analysis

 ..................................................................................................................................................... 94 

Figure 41: Acylcarnitines are affected by infection independent of C. elegans genotype ......... 96 

Figure 42: Two different isomers of C18:3 Carnitine were detected ......................................... 97 

Figure 43: Carnitine synthesis and degradation pathways in C. elegans .................................... 98 

Figure 44: Synthesis of different phospholipid species in C. elegans ......................................... 99 

Figure 45: Adenosine possibly mediates resistance in daf-2 worms ........................................ 101 

Figure 46: Intensity pattern of unknown mass 470.23132 in DI-ICR-FT/MS experiments ....... 103 

Figure 47: Synthesis strategy and results from N-arachidonoyl-phospho-l-serine synthesis ... 105 

Figure 48: Pec7 is a possible novel bacterial effector or protein needed for virulence ........... 107 

Figure 49: Killing curves of C. elegans pre-fed with probiotics ................................................. 108 

Figure 50: Results of method optimization for HeLa cell preparation ...................................... 118 

Figure 51: Overlap of HeLa and P. aeruginosa lipidome ........................................................... 119 

Figure 52: Several Ceramides were found in higher amount in P. aeruginosa infected HeLa 

cells. .......................................................................................................................................... 120 

Figure 53: Expression of ExoY leads to decreased nucleoside levels and higher levels of 

cyclicNMP´s ............................................................................................................................... 122 

Figure 54: Cells expressing ExoY have an interrupted TCA cycle .............................................. 123 

Figure 55: Acylcarnitines detected in HeLa cells ....................................................................... 124 

Figure 56: Genetic model of metabolism regulation during infection ..................................... 133 



 

  

158  

Figure 57: Proposed model of central carbon metabolism in C. elegans during P. aeruginosa 

infection .................................................................................................................................... 135 

Figure 58: Workflows used in Genedata Refiner MS ................................................................ 171 

 

  



 

  

159 Literature 

List of tables 

Table 1: Definition of "omics"-sciences and related objects ........................................................ 6 

Table 2: Advantages and Disadvantages of different metabolomics methods .......................... 17 

Table 3: Genome size of several Pseudomonas species ............................................................. 18 

Table 4: Range of P. aeruginosa infections in man ..................................................................... 19 

Table 5: Advantages and Disadvantages of C. elegans as model organism ................................ 24 

Table 6: Essential and non-essential amino acids in C. elegans and humans ............................. 25 

Table 7: MS adducts covered by MassTRIX ................................................................................. 36 

Table 8: Number of genes of different Pseudomonas species ................................................... 43 

Table 9: Metabolome sizes of different Pseudomonas species .................................................. 45 

Table 10: Pseudomonas strains used in this work ...................................................................... 53 

Table 11: M9 stock solutions ...................................................................................................... 54 

Table 12: The four levels of metabolite identification confidence defined by the Metabolomics 

Standards Iniative (Sumner et al. 2007) ...................................................................................... 69 

Table 13: Used standards with retention times under RP and HILIC conditions ........................ 76 

Table 14: Calculated parameter for model equation 9 for the BEH Amide separation .............. 78 

Table 15: Mass differences used for network calculation .......................................................... 85 

Table 16: Overview on masses in main network and the annotation of new formulas ............. 86 

Table 17: Detected masses in the different tested extraction solvents ................................... 116 

Table 18: Characteristics of used SPE materials ....................................................................... 117 

Table 19: Possible interaction partner for ExoY ........................................................................ 121 

Table 20: Comparison of different infection models ................................................................ 138 

Table 21: Lipid gradient program used for lipid profiling of C. elegans samples. ..................... 170 

 

  



 

  

160  

List of equations 

Equation 1: Lorentz force ............................................................................................................ 11 

Equation 2: Equilibrium between centrifugal and Lorentz force ................................................ 11 

Equation 3: Angular velocity ....................................................................................................... 11 

Equation 4: Definition of mass resolution ................................................................................... 11 

Equation 5: Definition of ppm error ............................................................................................ 12 

Equation 6: Definition of chemical shift ...................................................................................... 16 

Equation 7: Definition of logP ..................................................................................................... 71 

Equation 8: Definition of logD ..................................................................................................... 71 

Equation 9: Model equation of QSRR model used by Creek et al. .............................................. 77 

 

  



 

  

161 Appendix 

 

 

 

 

 

 

 

Appendix 

  



 

  

162  

Used instruments 

ICR-FT/MS 

Name Manufacturer Description 

solariX ICR-FT/MS Bruker 
Apollo II ESI source, Magnex 
Scientific 12 T superconducting 
magnet 

 

UHPLC-UHR-ToF-MS 

Name Manufacturer Description 

Acquity UHPLC Binary Solvent 
Manager 

Waters 
Part No. 186015001, 
Serial No. L09UPB 919M 

Acquity UHPLC Sample Manager Waters 
Part No. 186015006, 
Serial No. L09UPA 507M 

Acquity UHPLC Column 
Manager 

Waters 
Part No. 186015009, 
Serial No. L09UPM 501G 

Acquity UHPLC PDA Waters 
Part No. 186015026, 
Serial No. A10UPD 473A 

maXis 3G UHR-ToF-MS Bruker 
Apollo II ESI source, 
Serial No. 10101 

 

GC-FID 

Name Manufacturer Description 

GC 6890 with Autosampler HP 
Part No. G1530A, 
Serial No. DE00022295 

 

Other instruments 

Name Manufacturer Description 

SpeedVac Thermo Scientific 
Savant SPD121P SpeedVac 
Concentrator 

refrigerated Centrifuge Eppendorf 5804R 

sonic bath Bandelin Sonorex RK100H 

sonic bath Bandelin Sonorex RK510 

laboratory shake Edmund Bühler KS10 Laboratory shaker 

vortex Scientific Industry Vortex Genie 2 

balance Kern ABT120-4M 
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Used chemicals 

Solvents 

Name Manufacturer Description 

methanol Fluka LC-MS Chromasolv, 34966-1L 

acetonitrile Fluka LC-MS Chromasolv, 34967-1L 

2-propanol Fluka LC-MS Chromasolv, 34965-1L 

MTBE Fluka 
Chromasolv Plus for HPLC, 
99.9%, 650560-1L 

water --- 

Water was obtained from a 
Merck Millipore Integral 
purification system on demand 
18.2 MΩ, TOC < 5 ppb 

dichloromethane Sigma-Aldrich 
ether Chromasolv Plus for HPLC, 
99.9%, 650463-1L 

hexane Fluka 
Chromasolv Plus for HPLC, 
99.9%, 650552-1L 

ethyl acetate Sigma-Aldrich Anhydrous, 99.8%, 270989 

THF Sigma-Aldrich 
Chromasolv Plus for HLCP, ≥ 
99.9%, 34865 

chloroform Sigma-Aldrich 
Chromasolv Plus for HPLC, 
≥99.9%, 650498 

 

Buffer salts 

Name Manufacturer Description 

ammonium acetate Biosolve ULC/MS grade, 01244156 

formic acid Fluka 
for mass spectrometry, 94318-
50ML-F 

sodium carbonate Sigma-Aldrich Anhydrous, 451614 

sodium bicarbonate Sigma-Aldrich ≥ 99.5%, S8875 

 

Chemicals for synthesis 

Name Manufacturer Description 

phospho-L-serine Sigma-Aldrich ≥ 98%, P0878 

arachidonic acid Sigma-Aldrich ≥ 95%, 10931 

DCC Sigma-Aldrich 99%, D80002 

NHS Sigma-Aldrich 98%, 130672 

Silica gel Sigma-Aldrich 
High purity grade, ≥ 99%, 
236772 

HCl Sigma-Aldrich 1.0 N, H9892 

 

Standards 

Following standards were used for retention time determination for usage in a QSRR 

model. Stock solutions were prepared in a suitable solvent with a 1000 ppm concentration and 

stored at -20°C. 
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Name Manufacturer Description 

alanine Merck for biochemistry, 1010070025 

arginine Sigma-Aldrich 
L-Arginine, ≥98% (TLC), A5006-
100G 

asparagine Sigma-Aldrich ≥98%, A0884 
glutamate Merck 3510 
glycine Merck ≥ 99%, 1042010100 
histidine Sigma-Aldrich ≥98%, H8000 
leucine Sigma-Aldrich ≥98%, L8000 
serine Sigma-Aldrich ≥ 99%, S4500 
tryptophan Sigma-Aldrich ≥ 98%, T025 
tyrosine Sigma-Aldrich ≥ 98%, T3754 
aspartate Sigma-Aldrich ≥ 98%, A9256 
isoleucine Sigma-Aldrich ≥ 98%, I2752 
lysine Sigma-Aldrich ≥ 98%, L5626 
methionine Sigma-Aldrich ≥ 99%, 64320 
phenylalanine Sigma-Aldrich ≥ 98%, P2126 
proline Sigma-Aldrich ≥ 99%, P0380 
valine Sigma-Aldrich ≥ 99%, V0375 
(S)-malate Merck for synthesis, 814737 
2,3-pyrazinedicarboxylic acid Merck for synthesis, 800214 
benzoylformic acid Fluka ≥ 98%, 78610 
citrate Sigma-Aldrich ≥ 99%, C0759 
cumarin-3-carbonic acid Merck for synthesis, 818273 
DL-malic acid Merck for synthesis, 814737 
fumarate Sigma-Aldrich ≥ 99%, 240745 
glutaconic acid Sigma-Aldrich ≥ 97.0%, 49360 
glutaric acid Alfa Aesar ≥ 99%, A14595 
maleic acid Sigma-Aldrich ≥ 99%, M0375 
mesaconic acid Sigma-Aldrich ≥ 99%, 131040 
meso-tartaric acid Sigma-Aldrich ≥ 99%, 95350 
oxalic acid Merck extra pure, 100492 
pyruvate Merck for biochemistry, 106619 
succinate Sigma-Aldrich ≥ 99%, 239682 
tartronic acid Sigma-Aldrich ≥ 97%, 86320 
D-glucose Sigma-Aldrich ≥ 99.5%, G7021 
D-glucose 6-phosphate Sigma-Aldrich ≥ 99%, G7879 
D-ribose Sigma-Aldrich ≥ 99%, R7500 
rhamnose Sigma-Aldrich ≥ 99%, R3875 
arachidic acid C20:0 Sigma-Aldrich ≥ 99%, A3631 
capric acid C10:0 Sigma-Aldrich ≥ 98%, C1875 
caprylic acid C8:0 Sigma-Aldrich ≥ 99%, C2875 
cholesterol Sigma-Aldrich ≥ 99%, C8667 
heneicosanoic acid C21:0 Sigma-Aldrich ≥ 98%, 51530 
lauric acid C12:0 Sigma-Aldrich ≥ 98%, W261416 
myristic acid C14:0 Fluka ≥ 98%, 70082 
palmitic acid C16:0 Sigma-Aldrich ≥ 99%, P0500 
perlagonic acid C9:0 Sigma-Aldrich ≥ 96%, W278408 
stearic acid C18:0 Sigma-Aldrich ≥ 95%, W303518 
undecanoic acid C11:0 Sigma-Aldrich ≥ 97%, W324507 
biotin Sigma-Aldrich ≥ 99%, B4501 
cytosine Sigma-Aldrich ≥ 99%, C3506 
D-fructose Fluka Ph Eur, 47748 
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Name Manufacturer Description 

folate Sigma-Aldrich BioReagent, F8758 
carnitine Sigma-Aldrich ≥ 98%, C0158 
nicotinamide Sigma-Aldrich ≥ 98%, N3376 
ortophosphate Sigma-Aldrich 1.0 M, P0180 
phenol Merck Ph Eur, 1002060250 
spermidine Sigma-Aldrich ≥ 99%, S2626 
adenosine Sigma-Aldrich ≥ 99%, A9251 
ESI Tune Mix Agilent G1969-85000 
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Columns 

LC Columns 

Name Manufacturer Description 

BEH C8 Waters 
130 Å, 1.7 µm, 2.1 mm x 150 
mm, 186003377 

BEH Amide Waters 
130 Å, 1.7 µm, 2.1 mm x 150 
mm, 186004802 

 

GC Columns 

Name Manufacturer Description 

DB-5 J&W Scientific 
123-5032, DB-5, 0.32 mm ID x 
30 m, 0.25 µm film thickness 
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Methods 

Cultivation and extraction of C. elegans 

Overnight LB broth cultures of the test bacterial strains were spread onto a 9 cm diameter 

NGM plates and incubated at 37°C for 24 hours. Briefly, three day old L4 stage or adult 

hermaphrodite worms raised on E. coli OP50 were washed extensively in M9 buffer to remove 

residual bacteria and 1500 worms were transferred onto feed plates seeded with one of the 

bacterial cultures, or onto non-seeded plates to obtain starved worms. Plates were incubated 

at 25°C for 24 hours and worms were then washed extensively with multiple M9 buffer 

changes to remove residual bacteria. After the final wash, the buffer was replaced with 1 mL of 

cold 50:50 (v/v) MeOH:water and flash frozen in liquid nitrogen. 

Samples were thawed on ice prior to analysis and all subsequent steps of the extraction 

were carried out on ice. To disrupt the worms, the mixture was sonicated for 15 min in a sonic 

bath with ice-cold water and vortexed every 3 to 5 minutes for metabolite extraction. After 

centrifugation at 14,000 rpm for 10 min at 4°C the supernatant was transferred to an on ice 

pre-chilled eppendorf cup and snap-frozen in liquid nitrogen and stored at -80°C prior to 

analysis. The remaining debris pellet was transferred to a 4 ml Teflon-lined glass vial with 100 

µl MeOH and 1 ml MTBE was added to extract lipids. After shaking at 450 rpm for one hour at 

room temperature 500 µl water were added and the sample were shaken again for a half hour. 

Phases were separated by low speed centrifugation. The upper organic phase was transferred 

to a fresh 4 ml Teflon-lined glass vial and solvent was evaporated in a vacuum centrifuge. The 

residue was dissolved in 10 parts water / 12 parts MeOH and 4 parts MTBE to yield a 

concentration of 5000 worms/ml. 

HeLa infection protocol 

HeLa cells were seeded with 3e5 cells in 5 ml DMEM with FCS into each well UpCellTM 6 well 

plates and allowed to grow overnight. Bacterial cultures were prepared also overnight in LB 

medium. Phenol red free DMEM without FCS and sterile PBS were warmed to 37°C. 

Additionally, ice-cold PBS was prepared. Bacteria were prepared in DMEM without phenol red 

with a MOI of 1:20. DMEM was removed from cells and 3 ml DMEM without phenol red and 

FCS were added gently per well. 1 ml of bacterial suspension was added to each and plates 

were centrifuged at 500 x g for 5 minutes. Infection was allowed to proceed for 30 minutes at 

37°C. Non adherent or internalized bacteria were removed by washing cells gently with 37°C 

warm PBS. After washing 3 ml ice cold PBS was added to each well and the plates were placed 

onto cold blocks to lift cells from the surface. The suspension was transferred to two 15 ml 

conical tubes and remaining cells in the wells were transferred with 1 ml of additional ice cold 
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PBS. Samples were shortly vortexed and centrifuged at 1000 x g for 2 minutes. Samples were 

either directly frozen in liquid nitrogen or freeze dried. 

Lipid extraction from HeLa cells 

Lipids from lyophilized samples were extracted with methyl tert-butyl ether (MTBE). The 

samples were suspended in 200µl MeOH, transferred to a 4 ml glass vial and 2ml MTBE were 

added. Samples were extracted for 30 min at RT with 430 rpm in a rotary shaker. 1ml water 

was added for phase separation. After centrifugation the upper organic phase was transferred 

to fresh 4ml glass vial and dried under vacuum. The residue was dissolved in 10 parts water / 

12 parts MeOH and 4 parts MTBE to yield a concentration of 12.5e6 cells/ml. To compare if 

remaining P. aeruginosa in the infected HeLa cells are disturbing subsequent analysis, separate 

cultures of P. aeruginosa PA14 and HeLa cells were prepared and extracted as mentioned 

above. 

Cultivation and extraction of HeLa cells expressing ExoY 

HeLa cells transfected with a vector containing full length exoY or with an empty vector 

were cultured in DMEM for 24 hours. Expression of ExoY was controlled with Western blotting. 

Cells were quenched with cold MeOH/water, scrapped of the plates and directly frozen in 

liquid nitrogen and stored at -80°C until extraction and analysis. For extraction cells were 

thawed on ice and lysed in an ice cold sonic bath for 15 minutes. Cellular debris was removed 

by centrifugation at 14,000 rpm and 4°C for 15 minutes. The supernatant was directly 

transferred to a fresh eppendorf cup. 

Metabolic profiling using DI-ICR-FT/MS 

Metabolite extracts were diluted 1:50 with 70% MeOH before analysis. The analysis was 

performed on a Bruker solariX equipped with a 12T magnet and an Apollo II ion source. The 

samples were introduced with a syringe pump at a flow rate of 120µl/h. Settings for the ion 

source were as followed: drying gas temperature = 200°C, drying gas flowrate =2.4 L/min, 

nebulizer gas flow = 1.1 L/h, capillary voltage = 4500 V, spray shield = -500V. The mass 

spectrometer was externally calibrated on cluster of arginine (10 ppm in MeOH). Spectra were 

obtained in positive and negative mode with an m/z range from 100 to 1000 at 2 mega words 

and 300 scans were accumulated for one spectrum. All tubing’s, the syringe and the sprayer 

needle were washed with first 50% MeOH, followed by 100% water with 0.1% formic acid, 50% 

MeOH, 100% ACN and 100% isopropanol and finally 50% MeOH again between two different 

samples to avoid cross contamination of the spectra. 
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Data processing DI-ICR-FT/MS 

Spectra were internally recalibrated and exported as mass list file (.asc) at a signal-to-noise 

ratio of 3 using Bruker Data Analysis 4.0 (Bremen, Germany). A matrix, containing an aligned 

mass list with the corresponding intensities for each sample was generated using an in-house 

written software tool with a window width of 1.0 ppm for peak alignment. All further 

calculations and filtering were done in Microsoft Excel 2010. Masses with an occurrence less 

than 5% in all samples were excluded from further analysis. All masses were uploaded to 

MassTRIX with a search range of 3.0 ppm for possible metabolite annotation. 

Metabolic profiling using UHPLC-UHR-ToF-MS 

For UHPLC-UHR-ToF-MS samples were concentrated four times by drying aliquots of the 

original extract in a SpeedVac vacuum concentrator and re-dissolving in 50% MeOH. Pooled 

samples served as quality control and were injected ten times before each sample batch to 

condition the column and after each tenth sample injection. Two modes of separation were 

employed for metabolite detection, Reversed phase chromatography for separation of mid-to 

nonpolar metabolites and HILIC for polar metabolites. For analysis a Waters Acquity UHPLC 

was coupled to Bruker maXis UHR-ToF-MS. 10 μl of sample were injected either onto a BEH C8 

or BEH Amide column with 150 mm length and 2.1 mm inner diameter. Column temperature 

was maintained at 40°C. 

During reversed phase chromatography metabolites were eluted using a water-MeOH 

gradient with 10% MeOH and 0.1% formic acid in buffer A and 100% MeOH and 0.1% formic 

acid in buffer B. The gradient started at holding 100% A for 2 min and increase to 100% B at 14 

min, holding 100% B for 2 min and returning to initial conditions in 0.5 min and re-equilibrating 

for 3.5 min. 

For chromatography of metabolites on the BEH Amide column buffer A consisted of 95% 

ACN, 5 % water, 10 mM NH4Ac and 0.1% formic acid. Buffer B was 50% ACN, 50% water, 10 

mM NH4Ac and 0.1% formic acid. The gradient started at 100% A holding for 2 min and an 

linear increase to 100 %B at 15 min, holding 100% B for 4.5 min and returning to initial 

conditions in 0.5 min and re-equilibrating for 3.5 min. 

Settings for the ion source were as followed: drying gas temperature = 200°C, drying gas 

flowrate =8.0 L/min, nebulizer gas pressure = 2.0 bar, capillary voltage = 4500 V in positive and 

3500 V in negative mode, end plate offset = -500V, acquisition speed = 2 Hz with rolling 

average of 0.5 Hz. The mass range was set from 50 to 1200 m/z. From 0.05 to 0.3 minutes of 

chromatography a calibrant mixture consisting of 1:4 diluted ESI tune mix was injected using a 
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six port valve at the MS each run. Injection order was randomized and every tenth injection 

was a QC. Prior the sample batch one solvent blank and ten times QC was injection to 

equilibrate the column. 

Lipid profiling using UHPLC-UHR-ToF-MS (C. elegans) 

Lipids were separated with modified version of the method described by Hu et al. [21] on a 

Waters Acquity BEH C8 column with 1 mm inner diameter and 150 mm length. For elution the 

gradient program shown in Table 21 at a flow rate of 70µl/min was used with buffer A 

consisting of 60% ACN and 40% water and buffer B consisting of 90% iPrOH and 10% ACN, both 

with 10 mM NH4Ac and 0.1 % formic acid. Detection was carried out in positive mode using a 

Bruker maXis UHR-ToF-MS with an Apollo II ESI source. For data-dependent acquisition the 

Apollo II ESI source and the AutoMSn functionality build in microTOF control were used. ESI 

setting were similar to the metabolic profiling method above. Mass range was set from 200 to 

1500 m/z. For AutoMSn scan rate was set to 5 Hz and 4 precursors were selected with an active 

exclusion time of 0.25 min after fragmentation. 

Table 21: Lipid gradient program used for lipid profiling of C. elegans samples. 
The gradient was adapted from [21]. Times described in the publication were scaled down to a total runtime of 20 
minutes. 

Time %B 

0 32 
1 32 
2.7 45 
3.5 52 
5.5 58 
7.5 66 
9.5 70 
12 75 
14 97 
16.7 97 
20 32 

 

Lipid profiling using UHPLC-UHR-ToF-MS (HeLa) 

Lipids were separated on a BEH C8 column (2.1 x 150 mm) with an iPrOH gradient. Buffer A 

was 60% ACN and 40% water with 10mM NH4Ac and 0.1% formic acid and buffer B was 90% 

iPrOH and 10% ACN with 10mM NH4Ac and 0.1% formic acid. The gradient started at 0% B, 

which was held for 2 minutes, followed by a linear increase to 100% B at 16 minutes. 100% B 

was held for 18 minutes and the gradient returned to 0% B at 18.5 minutes. Column was re-

equilibrated for 1.5 minutes. Sample was injected using full loop injection of 10 µl. Flowrate 

was set to 0.2 ml/min and column temperature was 40°C. The UHPLC was coupled to a Bruker 
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maXis equipped with an Apollo II ESI source and data was obtained from positive ionization 

mode at a mass range of 150-2000 Da. 

Data processing UHPLC-UHR-ToF-MS 

Data was preprocessed using Genedata Refiner MS 7.5. Several workflows were created to 

split the system load and increase performance. The first workflow loads the Bruker raw data, 

applies a chromatogram grid and subtracts chemical noise. Afterwards the file is exported into 

.sbf format. This significantly reduces file size. Each file of a data set was processed separately 

within a loop activity. The second workflow aligns the different chromatograms to overcome 

retention time shifts between the samples. Again the aligned data files are exported to .sbf 

format. In the last workflow peaks are detected using the “Summed Peak Detection” 

algorithm, filtered for an occurrence in minimum 10% of the samples and subjected to isotope 

clustering. The obtained data matrix was exported to .gda and .xlsx format for further work 

and statistical analysis (Figure 58). For the lipid data set different workflows were used. The 

used AutoMSn algorithm collects data in centroid mode. To make this data usable with 

Genedata Refiner MS files were imported and profile data was generated using the “centroid 

to Profile” function between “Load from File” and “Chromatogram Grid”. All other workflows 

were similar. The generated MS/MS spectra were exported using a VB-Script within Bruker 

Data Analysis 4.0. The generated files were sorted and aligned with the UHPLC-UHR-ToF-MS 

data using an in-house written Perl script. 

 

Figure 58: Workflows used in Genedata Refiner MS  
(A) The first workflow subtracts chemical background from the chromatograms, which significantly reduces file size. 
The single steps are processed within a loop for each single data file to reduce memory usage. (B) In the second 
workflow all chromatograms are aligned to overcome retention time shifts. A tree-guided pairwise alignment 
algorithm is used. (C) The aligned chromatograms are used for peak detection and isotope clustering. The “Summed 
Peak Detection” algorithm sums up all chromatograms and uses this summed chromatogram to find 
chromatographic peaks. These peaks are searched in a second step in the single chromatograms, within certain 
borders in retention time and mass. Finally the obtained matrix is subjected to identification of isotope clusters and 
exported to .gda and . xlsx files. 
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Fatty acid profiling 

For fatty acid profiling a method was adapted from Watts et al. [165]. Lipids from 2000 

worms were transesterified using 1 ml 2.5% H2SO4 in MeOH. The samples were boiled at 80°C 

for 1 h in 4 ml glass vials. After cooling to ambient temperature 1.5 ml H2O and 0.2 ml hexane 

were added and samples were shaken for 10 minutes at room temperature. The hexane layer 

was transferred to a GC vial with micro insert and 5 µl were injected using a PTV injector with a 

split of 50:1 and temperature of 250°C onto a DB-5 column (30 m x 0.32 mm ID, 0.25 µm film 

thickness). After 4 minute long isothermal step temperature was increased linearly with 

4°C/min to 250°C, which was hold for 4 minutes. Helium was used as carrier gas at a velocity of 

30ml/min. The FID temperature was set to 300°C and Hydrogen flow was 30 ml/min and 

synthetic air was 400 ml/min. Helium was used as make-up gas with 30 ml/min. 

Raw data was imported into ACD/Labs Spectrus Processor and peaks were detected after 

baseline correction. Identity of fatty acids was confirmed by matching retention time with an 

authentic standard. 
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Data Analysis scripts 

ICR-FT/MS spectra export 

Analysis.Spectra.MassListClear 

val=Analysis.Spectra.MassListFind(50, 1000) 

Analysis.Spectra(1).ExportMassList "H:\Export\" + analysis.name, daASCII 

form.close 

 

Export of MS/MS spectra generate by AutoMSn 

'This script exports a ASCII file for each compound spectrum  

'iterate thru all compounds 

 

Filename=left(Analysis.Name, len(Analysis.Name)-2) 

 

Analysis.Compounds.Clear 

Analysis.FindAutoMSn  

 

Analysis.Export "F:/AutoMSMS/Chrom/" & Filename & ".mzxml", daMzXML, daLine 

Analysis.Compounds.Export "F:/AutoMSMS/Compound/" & Filename & ".csv", daCSV 

 

Dim compound 

 

For i=1 to Analysis.Compounds.Count 

 

Compoundname=Analysis.Compounds(i).Name 

lower = 0 

upper = 0 

For j = 1 to len(Compoundname) 

     

if Mid(Compoundname, j, 1)="(" then lower = j+1 

         

Next 

     

compound = Mid(Compoundname, lower, 8) 

compound = Replace(compound, ".", ",") 

     

'Analysis.Compounds(i)(1).Export  "F:/AutoMSMS/Result/" & Filename & "_MS1_Cmpd" & CStr(i)& "_" &compound , 

daASCII 

Analysis.Compounds(i)(2).Export  "F:/AutoMSMS/Result/" & Filename & "_MS2_Cmpd" & CStr(i)& "_" &compound , 

daASCII 

     

Next 

 

Analysis.close 

 

form.close 
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Perl scripts 

ICR-FT/MS and LC-MS alignment 

#! /usr/bin/perl 

 

#read ft masses 

print "reading FT masses..."; 

open(FTIN, "F:/neg/FT_neg.txt"); 

while(<FTIN>) { 

 chomp($_); 

 @split = split("\t", $_), 

 $ftMass{$split[0]}=""; 

} 

close(FTIN); 

print "done\n"; 

 

#read lc masses 

print "reading LC masses and RT..."; 

open(LCIN, "F:/neg/LC_amide_neg.txt"); 

while(<LCIN>) { 

 chomp($_); 

 @split = split("\t", $_), 

 $lcMass{$split[0]}=$split[1]; 

 $lcMass2{$split[0]}=$split[2]; 

} 

close(LCIN); 

print "done\n"; 

 

#write results to file 

open(OUT, ">amide_neg_stat.txt"); 

print "comparing datasets...\n"; 

print "LC mass\tLC RT\tID"; 

print OUT "LC mass\tLC RT\tID"; 

 

for my $ppm (1..15) { 

 print "\tmass_$ppm\trealppm_$ppm\tnumber of hits_$ppm"; 

 print OUT "\tmass_$ppm\trealppm_$ppm\tnumber of hits_$ppm"; 

} 

 

print "\n"; 

print OUT "\n"; 

 

foreach my $lc (sort keys %lcMass) { 

 

 print "$lc\t$lcMass{$lc}\t$lcMass2{$lc}"; 

 print OUT "$lc\t$lcMass{$lc}\t$lcMass2{$lc}"; 

  

 for my $ppm (1..15) { 

   

  $roundLc=sprintf("%.f", $lc); 

  $result{$lc}{$ppm}="---"."#".$ppm; 

  $number{$lc}{$ppm}=0; 

   

  foreach my $ft (sort keys %ftMass) { 

   $roundFt=sprintf("%.f", $ft); 

   

   @split=split("#",$result{$lc}{$ppm}); 

   $ppmOld=$split[1]; 

   

   if ($roundLc eq $roundFt && $ft>0) { 

    $ppmReal = ($lc-$ft)/$ft*1000000; 

    if (abs($ppmReal) < $ppm) { 

     print "found\n"; 

     $number{$lc}{$ppm}++; 

     if (abs($ppmReal) < abs($ppmOld)) { 

      $result{$lc}{$ppm}=$ft."#".$ppmReal; 

     } 

    } 

   }  

  } 

   

  @split=split("#",$result{$lc}{$ppm}); 

  $massPrint=$split[0]; 

  $ppmPrint=$split[1]; 

  print "\t$massPrint\t$ppmPrint\t$number{$lc}{$ppm}"; 

  print OUT "\t$massPrint\t$ppmPrint\t$number{$lc}{$ppm}";   

 } 

  

 print "\n"; 

 print OUT "\n"; 

   

} 

close(OUT); 
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Conversion of ASCII files to MetFrag Batchfile 

#!/usr/bin/perl -w 

 

open(IN, "H:/lipid.annotated"); 

 

while(<IN>) { 

 

 chomp($_); 

 @split = split("\t", $_); 

 $anno{$split[0]}=$split[2]; 

 print "$_\n" 

 

} 

 

close(IN); 

 

# create a list of all *.ascii files in 

# the current directory 

 

opendir(DIR, "H:/AutoMSMS/Result"); 

@files = grep(/\.ascii$/,readdir(DIR)); 

closedir(DIR); 

 

# print all the filenames in our array 

foreach $file (@files) { 

    

   @filesplit=split("_", $file); 

    

   

$filename="$filesplit[0]_$filesplit[1]_$filesplit[2]_$filesplit[3]_$filesplit[4]_$filesplit[5]_$filesplit[6]_$filespli

t[7]_$filesplit[9]"; 

       

   open(IN, "H:/AutoMSMS/Result/$file");    

    

   while(<IN>) {       

    

      chomp($_); 

      @line = split(",", $_); 

       

   if ($anno{$line[4]} ne "") { 

  open(OUT, ">H:/AutoMSMS/batchfiles2/$filename.mb"); 

  print OUT "# Parent Mass:$anno{$line[4]}\n"; 

  print OUT "# Search PPM:50\n"; 

  print OUT "# Mode:1\n"; 

  print OUT "# Charge:+\n"; 

       

  $length=@line; 

       

  for ($i=8;$i<$length;$i++) { 

   @split=split(" ", $line[$i]); 

          

   print OUT "$split[0] $split[1]\n"; 

             

  } 

   

   close(OUT); 

    

   } 

    

    } 

  

    close(IN); 

     

} 
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Conversion of ASCII files to library 

#!/usr/bin/perl -w 

 

opendir(DIR, "F:/AutoMSMS/Result"); 

@files = grep(/\.ascii$/,readdir(DIR)); 

closedir(DIR); 

 

open(OUT, ">F:/AutoMSMS/DB.out"); 

open(OUT2, ">F:/AutoMSMS/precursor.out"); 

 

print OUT2 "MSnID\tRT\tmass\tsample\tcompound ID\n"; 

$count=0; 

 

foreach $file (@files) { 

    

   @filesplit=split("_", $file); 

    

   

$filename="$filesplit[0]_$filesplit[1]_$filesplit[2]_$filesplit[3]_$filesplit[4]_$filesplit[5]_$filesplit[6]_$filespli

t[7]"; 

    

    

    

    

   open(IN, "F:/AutoMSMS/Result/$file"); 

    

   while(<IN>) { 

      $count++; 

      chomp($_); 

      @line = split(",", $_); 

      print OUT "$filename"; 

      print OUT "\tRT\tprecursor\tfragment m/z\tfragment I\n"; 

       

      print OUT "MSn$count\t$line[0]\t$line[4]\t"; 

      print OUT2 "MSn$count\t$line[0]\t$line[4]\t$filename\t$filesplit[9]\n"; 

      $length=@line; 

      for ($i=8;$i<$length;$i++) { 

         @split=split(" ", $line[$i]); 

          

         if ($i==8) {             

 

            print OUT "$split[0]\t$split[1]\n"; 

                

         } else {             

 

            print OUT "\t\t\t$split[0]\t$split[1]\n"; 

             

         } 

          

      } 

   } 

    

   close(IN); 

       

} 

 

close(OUT); 

close(OUT2); 
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Alignment of LC-MS and LC-MS/MS features from AutoMSn 

#! /usr/bin/perl 

 

$ppm=10; 

$rtdev=10; 

 

#read ft masses 

print "reading LC/MS features..."; 

open(MS, "F:/MS.txt"); 

while(<MS>) { 

 chomp($_); 

 @split = split("\t", $_);  #input format: mass\tRT\tID 

 $MS1{$split[0]}=$split[1]; #MS1 = RT 

 $MS2{$split[0]}=$split[2]; #MS2 = ID 

} 

close(MS); 

print "done\n"; 

 

#read lc masses 

print "reading LC/MSMS features..."; 

open(MSMS, "F:/MSn.txt"); 

while(<MSMS>) { 

 chomp($_); 

 @split = split("\t", $_); #input format: mass\tRT\tID 

 $MSMS1{$split[0]}=$split[1]; #MSMS1 = RT 

 $MSMS2{$split[0]}=$split[2]; #MSMS2 = ID 

} 

close(MSMS); 

print "done\n"; 

 

 

#write results to file 

open(OUT, ">F:/AutoMSMSmatch.txt"); 

print "comparing datasets...\n"; 

print OUT "MS ID\tMSMS ID\tMS mass\tMSMS mass\tMS rt\tMSMS rt\n"; 

 

#iterate through masses and compare 

$i=0; 

foreach my $msFeature (sort keys %MS1) { 

 $roundmsFeature=sprintf("%.f", $msFeature); 

  

  

 foreach my $msmsFeature (sort keys %MSMS1) { 

  $roundmsmsFeature=sprintf("%.f", $msFeature); 

   

  @split=split("#",$result{$lc}); 

  $ppmOld=$split[1]; 

   

  if ($roundmsFeature eq $roundmsmsFeature) { 

    

   $ppmReal = ($msmsFeature-$msFeature)/$msFeature*1000000; 

    

   if (abs($ppmReal) < $ppm) { 

     

    $rtmsFeature = $MS1{$msFeature}; 

    $rtmsmsFeature = $MSMS1{$msmsFeature}; 

     

    $rtdevReal = ($rtmsFeature-$rtmsmsFeature)/$rtmsFeature*100; 

     

    if (abs($rtdevReal) < $rtdev) { 

     print 

"$MS2{$msFeature}\t$MSMS2{$msmsFeature}\t$msFeature\t$msmsFeature\t$MS1{$msFeature}\t$MSMS1{$msmsFeature}\n"; 

     print OUT 

"$MS2{$msFeature}\t$MSMS2{$msmsFeature}\t$msFeature\t$msmsFeature\t$MS1{$msFeature}\t$MSMS1{$msmsFeature}\n"; 

      

    } 

     

   } 

  } 

 } 

  

 

} 

 

close(OUT); 
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