Downloaded 02/20/14 to 146.107.3.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM/ASA J. UNCERTAINTY QUANTIFICATION (©) 2014 Society for Industrial and Applied Mathematics
Vol. 2, pp. 29-54 and American Statistical Association

Cellular Probabilistic Automata—A Novel Method for Uncertainty Propagation*

Dominic Kohler!, Johannes Miiller, and Utz Wever®

Abstract. We propose a novel density based numerical method for uncertainty propagation under distinct
partial differential equation dynamics. The main idea is to translate them into objects that we
call cellular probabilistic automata and to evolve the latter. The translation is achieved by state
discretization as in set oriented numerics and the use of the locality concept from cellular automata
theory. We develop the method using the example of initial value uncertainties under deterministic
dynamics and show that it is consistent. As an application we discuss arsenate transportation and
adsorption in drinking water pipes and compare our results to Monte Carlo computations.
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1. Introduction. The numerical treatment of differential equations that are subject to
uncertain data has attracted a lot of interest lately. A prominent approach is to use polynomial
chaos expansions [49, 8, 22]. It can be improved by decomposing the random space [47],
and only recently numerical implementations of this improvement have been investigated [1].
Alternative approaches are based on the Monte Carlo idea, like the Markov chain Monte Carlo
method [10], Latin hypercube sampling [33], the quasi Monte Carlo method [7], importance
sampling [34], and the multilevel Monte Carlo method [2]. Further well-known approaches use
the Itd calculus [36, 24, 25, 38] or the Fokker—Planck equation [29]. Although the approaches
have proven to be successful for many tasks, they often encounter certain efficiency restrictions
in higher dimensions of the random space. New methods are needed to meet these challenges.

Time-continuous dynamical systems on continuous state space can be approximated by
time-discrete Markov chains on finite state space [18]. This technique of state space discre-
tization has led to the powerful tools of set oriented numerics [4, 5|. It is especially useful
to study ergodic theory, asymptotic dynamics, and optimal control [28, 11]. Recently, also
contributions to uncertainty quantification have been made [20].

In this paper we introduce a novel numerical scheme for uncertainty propagation in distinct
spatio-temporal processes. It is based on the concept of state space discretization and on ideas
from cellular automata (CAs) theory [21, 6, 15]. We develop the method for the example of
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the propagation of initial value uncertainties under deterministic partial differential equation
(PDE) dynamics and pave the way towards an extension to more general stochastic influences
on the system.

In particular we introduce a discretization of a PDE which does not depend explicitly on
the independent variables. First, a finite difference scheme is applied to a PDE; the spatial and
temporal continuum is replaced by discrete sites and discrete time steps. Second, the state
space of the resulting system is discretized. As this procedure emphasizes the interaction
between neighboring sites, a property that strongly resembles the locality and shift-invariance
in CAs, the resulting completely discrete system is termed a cellular probabilistic automaton
(CPA). Such an automaton is much simpler than the PDE and becomes accessible to very
efficient simulation techniques.

Cellular probabilistic automata (CPAs) basically consist of information about transition
probabilities between discretized portions of phase space in a site’s neighborhood. The tran-
sition probabilities are interpreted as approximating the evolution of the system’s probability
density in transfer operator theory [30]. Hence CPA can be used for uncertainty propagation
[35]. While the translation from PDEs into CPAs may be rather time-consuming, the evolu-
tion of uncertainties with CPAs is fast. The accuracy of the approximation depends on two
parameters: one measures the state space resolution at every site, and the other the degree of
locality, i.e., the extent to which correlations between neighboring sites are preserved.

The paper is structured as follows. In section 2 we formulate the problem of initial value
uncertainty propagation under deterministic dynamics and deterministic boundary conditions.
Here we also present the idea of density based uncertainty propagation through phase space
discretization. By exploiting locality and shift-invariance of our problem this leads to the
definition and discussion of CPAs in section 3. Here we also present a consistency result for
our construction. In section 4 we show how CPAs can be extended to incorporate stochastic
boundary conditions and apply the theory to the example of arsenate transportation and
adsorption in water pipes. The results are compared to Monte Carlo computations. Finally,
we give our conclusions in section 5.

2. Density based uncertainty propagation. In this section we first formulate the problem
and then develop the idea of density based uncertainty propagation. Finally, the CPA idea is
derived in this context.

2.1. Problem formulation. We are interested in the time evolution of uncertain initial
data in a specific deterministic dynamical system. First, we introduce some notation from
probability theory and the Frobenius—Perron operator as the suitable tool to describe this
process. Second, we specify the deterministic dynamical system that we will work with, and
third, we formulate the problem.

Let (X,A, ) be a probability space, (X', A’, /) a measure space, and V : X — X' a
random variable with distribution p1,. We say that V has density g if thereis g € £ (X', A", i/')
such that

vy :/ gdy' VA €A
A/
The set of densities on (X', A’, i) is denoted by
D(X'):={g e LY(X", A',u') |9 = 0, |lgll = 1}.
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Now let (X', A", 1) = (R™ B(R™"),\), where m,n € N, B(R™") is the Borel o-algebra,
and A is the Lebesgue measure. A measurable map S : R™" — R™" is called nonsingular if
A(STHA")) =0 for all A’ € B(R™") with A\(A’) = 0. For any such map a unique operator can
be defined on the basis of the Radon—Nikodym theorem [30].

Definition 2.1. Given a nonsingular map S : R™ — R™" | for g € LY(R™") the Frobenius—
Perron operator (FPO) Ps : LY(R™) — L1(R™) is defined by

Psg(z)dx = / g(z)dz VA € B(R™).

A/ S*l(A/)

The FPO preserves positivity and normalization and hence describes how densities are
mapped under phase space evolution with S. We focus on a particular type of phase space
evolution.

Definition 2.2. Consider a deterministic dynamical system (T, R™" ®) specified as follows:

(i) (T,+) is an additive semigroup of time;
(ii) R™ = x;R™ is the state space, where I = {1,...,m};

(iii) the flow ® : T x R™ — R™ s nonsingular for allt € T';

(iv) there is a neighborhood U = {—r,... s} with r,s € Ng, r + s < m, such that ® has
the locality property, i.e., that there is h : T x (R™)IVl — R™ with

<I>(t, ’U)Z' = h(t, Vi—py oo - 7'Ui+s)

forallteT, v=(v1,...,0y) € X/ R" andie€{l+r...,m—s}, and
(v) that the system acts as the identity on K = {1,....,r} U{m —s+1,...,m}, ie.,
O(t,v)|x =v|k for allt € T and all v € x;R™.

We will write ®'(v) := ®(t,v) in the following and refer the reader to [12] for further
information on dynamical systems. Assume that there is a compact 0 C R"™ such that Q™ is
positively invariant under the flow, and fix 7 € T, 7 #£ 0.

Our main application is the analysis of a PDE

Oy = fl(amv,(‘)xv,v), v(z,t) € Q,

on a one-dimensional compact spatial domain = € [a,b] for a,b € R. Under certain assump-
tions a dynamical system like the above is obtained by applying a finite difference method
with space discretization Ax = Tl,’"b__al, where m € N, m > 2, and time step 7. Then U is
naturally induced by the choice of the finite difference scheme; e.g., usually U = {—1,0, 1} is
suitable to account for central second order difference quotients. Because of the PDE context
we call I the set of sites. By considering only trajectories with v"| = k € x xR", the system
can be interpreted as obeying boundary conditions.

The time evolution of uncertain initial data in the deterministic dynamical system is
described by real random variables VO, V1 ... : X — Q™ on probability space (X,A,u),
where V"1 = &7V, We focus on deterministic boundary conditions: VO(z)|x = k € x xR"
for all z € X. If V™ has density g" € D(R™"), the density of V"*! is given by application of
the associated FPO: ¢g"*! = Pgpr(g"). The goal is to develop an algorithm that approximates
the density evolution. It will be achieved by translating the system into a CPA in two steps.
First, the FPO is discretized via a state discretization procedure, and then locality and shift-

invariance are used to further transform it into a CPA.
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2.2. State space discretization. In this section, first, we introduce the concept of state
space discretization. Second, we investigate according densities, and third, we construct a
discretized version of the FPO. In principle these ideas are well known in the literature [4, 5].
Here they are adapted to the special structure of the dynamical system.

Definition 2.3. A partition or coding E of Q2 is a finite collection of disjoint sets {Qe}ecE
whose union is Q0. We call e € E the symbol of coding domain ., and the coding map is the
function T : Q — E, where T'(v) = e if v € Q.. A partition is called uniform if there is a
resolution AS) € R such that Q. is an n-dimensional hypercube with side length AQ) for all
eec k.

To avoid technical complications, in the following proofs we consider only uniform par-
titions while developing the theory. They are also the ones that are relevant in practical
algorithms.

A partition E of Q with coding map T and |E| = N naturally induces a partition E! of
Q™ with coding map

T:Qm™ = Bl v T(v) with (T(v)); = T(v;) fori € 1.
Note that |E!| = N™. For ¢ € B/, where J C I, we write
Qp = {veQm|VjeJ: T(v)(j) = »(j)}

Now we study densities that are compatible with state space discretization. For this
purpose we introduce the measure space (EI,P(EI), 7v), where P(EI) is the power set of E!
and v is the counting measure. The densities D(E') consist of the weight functions

g:EI%[anO]a g(@):pcp,

where (p,), epr are nonnegative numbers with > prpp = 1.
Definition 2.4.
(i) /J%(]Rm”) = span(B) is the finite-dimensional L' (R™")-subspace of piecewise constant
functions with basis B = {xq, /M) },cpr- The set of piecewise constant densities is given
by DA(R™) := LL(R™) 1 D(R™).

(ii) The coordinate representation Kp : ﬁlf(Rm") 5 RE', g kp(g) with respect to
C

the basis B is given by kp(g9)(p) = ¢, for ¢ € El and g = zdeEI )\(T%XQw. Obviously
kp(Ds(R™)) = D(ET).

(iii) Let p € EX such that p; = T(k;) for all i € K. The densities that are compatible
with the boundary conditions are given by

Dpc(E) :={g € D(E") |g(p) =0 if ¢k # p}-

By averaging in the coding domains, every function in £!(R™") can be mapped to a
piecewise constant function.

Definition 2.5. A restriction operator to the subspace of piecewise constant functions is
given by

. 1 R 1 R _ Co
©

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/14 to 146.107.3.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CELLULAR PROBABILISTIC AUTOMATA 33

where

o= [ glwdu.

P
R is idempotent, i.e., Ro R = R, and furthermore R(D;(R™")) C D4(R™). In the
following we will use the restriction operator to construct a discretized version of the FPO on
the density level: RPg-. This procedure is well known in ergodicity theory when invariant
measures are approximated. There it is called Ulam’s method [42].
The matrix representation of the linear RPgr| L1 (Rmn) is given by P = HJBRqu-HJEl S

I I . .
RE *E" with entries

XQ XQ AQ, N @77(Qy))
P :/ PT—*"dA:/ f_d\ = d .
Bre Q, ? AQ) o-7(0,) M) A(L,)

Pg . is the probability of finding a realization of a random variable with uniform density in
Q, in Qy, when ®7 is applied. Hence we may interpret Pp . 4 as the transition rate from €2,
to €2 of a finite state Markov chain on {Q},cpr. This chain approximates the behavior of
the dynamical system for uncertain initial values.

In the following we regard Pp : Dpc(E') — Dpc(E') as a function which maps densities
that are compatible with the boundary conditions by matrix multiplication.

2.3. Using locality—towards cellular probabilistic automata. E! grows exponentially in
m. For a growing number of sites it becomes numerically expensive to obtain global transition
rates and to handle global states and densities.

However, our dynamical system has a special structure: We use the locality property
to approximate the set of global transition probabilities by several identical sets of local
ones. This is possible for two reasons. The first is because we find identical dynamics at all
sites away from the boundaries, and the second is because the transition probabilities at one
particular site mainly depend on the state of its neighborhood rather than on the whole global
configuration.

For the formal definition of these local transition probabilities we need to introduce the
shift by [ € Z on finite grid J C Z. It is given by

UZ:FJ—>F_H_J, o= o(p),  oe)(=l+7)=»(),

where F' is an arbitrary set, e.g., F = E or F = D(E"). Moreover, for arbitrary V =
{-p,....q}, W = {—t,...,u} with p,q € Ny, t,u € Z,—t < u, and | € Z we use the
conventions | +V ={-p+1,...,q+ 1} and V4+W ={-p—1t,...,q+ u}.

Definition 2.6. Let V. = {—p,...,q} with p,q € Ny and p+q+r+s <m. A local function
fo: BtV — D(EVY) is then given by

i) = 2ot B8 o))

where i =1+p+r, o€ VYV and ¢ € EV.
Note that because of the locality property the definition is independent of the chosen site
ie{l+p+r,...,m—q— s} Theset V controls the degree of locality, i.e., the number of
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Figure 1. The relations between the FPO Por and its approximations. By state discretization we obtain
the discretized FPO Pg, which still works globally, and by exploiting locality we approzimate Pr further by the
CPA with global function f. The state space on which the CPA operates is a collection of local densities; see
the text.

sites that give rise to a local transition. It will turn out that by enlarging it we can diminish
the error of the locality approximation.

In the following section we develop a method of how to combine several such local tran-
sitions to approximate a global one. This will finish the construction of a CPA from the

FPO.

3. Cellular probabilistic automata. CPAs are defined by extending the definition of de-
terministic CAs according to [6, 15]: In CPAs the local transition function specifies a time-
and space-independent probability distribution of next states for each possible neighborhood
configuration. As we do not want to follow one realization but rather the whole ensemble,
unlike in the literature we define CPAs to work on densities. This enables their utilization for
uncertainty propagation.

In the last section we showed how the discretized FPO Pg on state space Dpc(E!) can
be used to approximate the FPO Pgr on D(R™"). CPAs further approximate the discretized
FPO on a product space of local densities; see Figure 1 for a sketch. Uncertainty propagation
with CPAs therefore requires two definitions. The first one is about how to translate between
global densities and the product space of local densities, and the second one is about how to
evolve local densities in time with the help of the local function.

Since the definitions can be best understood for V' = {0}, in section 3.1 we first introduce
CPAs in this special case to demonstrate the basic construction. Afterwards we develop the
de Bruijn calculus as a connection between local and global objects for more general V' on
finite grids in section 3.2. This connection leads to the generalization of CPA to general
V in section 3.3. Section 3.4 contains a consistency result for our algorithm and further
investigation of the pattern approximation.

3.1. Cellular probabilistic automata: A special case. A crucial step is to translate be-
tween global densities D(EY ") and a (subset of a) collection of local densities (D(EY )V,
where V.= {—p,...,q} and W = {—t,...,u} for p,q,t,u € Ny. We introduce a projection
operator By : D(EV*W) — (D(EV))"W and an embedding ayy : (D(EV))W — D(EVTW),
Bw localizes the information to densities on states of size V' and thus erases far-reaching cor-
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relations. aypy in turn constructs global densities out of information about local densities. As
we will see in the next section, this process is by no means unique and requires some technical
refinement of the space of local densities. However, for V' = {0} there are canonical definitions
for ayy and SByy: multiplication of local probabilities for independent events and calculation
of marginal distributions.
Definition 3.1. Let W = {—t,...,u} for t,u € Ny.
(i) We set ayy : (D(E)W — D(EWY), g+ ayw(g) with

aw(9)®) = [T gD (@(@).

ieW
(i) We set By : D(EW) — (D(E)W, g — Bw(g) with

Bw(@)i)e) = Y. g0

XEEW s.t. x(i)=e

We want to keep the construction simple at this point and close the grid I to a torus Z,,.
This way we avoid boundary conditions in this special section.

Definition 3.2. A cellular probabilistic automaton (CPA) is a tuple (I,U, E, fy), where for
m,r,s €E Ng with 1 <m and1+r+s<m,

(i) I = Zy, is a toroidal grid,

(ii)) U ={—r,...,s} is the neighborhood,

(ili) FE is a finite set of local states, and

(iv) fo: EY — D(E) is the local function.

The global function f : (D(E))! — (D(E))!, g — f(g) is given by

F@B) @) = > auloig)|v) (@) fole)(®).

peRU

The trajectory starting with ¢° € (D(E))! is given by the sequence (¢")nen, where g" =
f(g"™1) forn € NT.

A CPA can be used to evolve an input distribution £;(g) for g € D(E') via the global
function. After n time steps the approximated global density is then given by ajf"5;1(9);
see also Figure 1 with D!, = DI, = (D(E))!, & = a, and B = Br. The role model for
the global function is the matrix operation with the discretized FPO Ppg: The product of the
transition probability with the probability of being in a preimage state is summed up over all
possible preimage states. A probability is assigned to a preimage state ¢ € EV by ay.

Note that deterministic CAs are special cases of CPAs: assume that for all ¢ € EV there
is e € E such that fy(¢)(e) =1 and that the input is deterministic.

3.2. De Bruijn calculus. To generalize the construction to arbitrary V we first study the
relation between local and global objects in more depth. We introduce de Bruijn density
calculus on the basis of pattern ideas in CAs theory [14, 46|, in the theory of de Bruijn graphs
[40], and in pair approximation [23].

As before, we introduce a projection operator Sy that localizes the global information to
densities on states of size V, this time |V| > 1. The precise definition of Sy is still rather
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straightforward: Marginal distributions dismiss all information but that over a certain range
V. We will find below that the reconstruction of global densities out of local information by
ap is more involved. However, let us first define Sy .

Definition 3.3. LetV ={—p,...,q} and W ={—t,... ,u} forp,q e Nandt,u € Z,—t < u.
Bw : D(EVTWY) = (D(EV)W is given by

Bw(g)@w) = Y. gl

XEEV+W s.t.
Xlirv=0_i(¥)

Ezample 1. Let E =V =W = {0,1}, c € (0,1), and g,§ € D(EV*"W) be given by

. if 9 = (001) cgl —0) i£ P = EOOO;,w = (101),

_ . ' N e if ¢ = (001),

Q(Tl)) - (1)_ c lefisqﬁ - (100)7 g(¢) - (1 _ 6)2 if w — (100)7

’ 0 else.
We find that Sw(g) = fw(g) with
c if ¢ = (00), 1—c ify =(00),
Pw(9)0)(¥) =49 1—c if ¢ =(10), Bw(g)(D)(¥) =4 ¢ if ¢ = (01),
0 else, 0 else.

Example 1 shows that information is lost under Sy ; i.e., different global densities are
mapped to the same collection of local densities. Now we are interested in the embedding
aw : (D(EY)W — D(EV*W). Although the properties of By allow us to define ayy as
the solution of a linear nonnegative least squares problem [31], this algebraic approach is not
appropriate. We rather suggest a probabilistic approach that fulfills two natural requirements:
first, our ayy degenerates to simple multiplication of local densities for V' = {0}, and second,
aw and Sy are inverse of each other on important sets. Since a precise formulation is very
technical, we only outline the construction and the according results at this point. The
technical details and proofs of section 3.2 can be found in Appendix A.

We first introduce several definitions that are central to our approach; see also Figure
2(a).
Definition 3.4.

(i) XV = (P(EV)W is the set of de Bruijn states, where P(EY') is the power set of
EV. The elements of EV are called patterns of size V.
(ii) The subset of extendable de Bruijn states is given by

X =1{®c Xyp|Vic WYp € (i) I € EVTVVj € W: 0;(¥)|v € ®(j),0:()|v = ¢}

(iii) DY, = (D(EV)W is called the set of de Bruijn densities.
(iv) The subset of extendable de Bruijn densities is given by

Dyg. = {9 € DY | xiew supp g(i) € X}p.}.
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(a) (b)

Figure 2. (a) The relation between global densities and de Bruijn densities. (b) An example of how a global
density is approzimated by local densities via an approzimation of Markov type for W = {—1,0,1}, V = {0, 1},
and i = 0; see Appendiz A for details. The thin and dark grey box that covers sites O and 1 is the factor at site
0. The medium box that covers sites —1 to 2 is the factor at site 1: the local state at site 2 depends on the local
states from —1 to 1 (medium grey part). In the approzimation (dashed line) the local state at 2 depends only
on that at 1. The thick box covering sites —1 to 1 is the factor at site —1. The local state at site —1 depends
on the local states on sites 0 and 1 (light grey part). In the approzimation the dependence stops again at the
dashed line.

The idea behind extendable de Bruijn states is that every pattern can be extended to a
global state by gluing suitable patterns on it. An example of an extendable de Bruijn density
is fw(g) in Example 1: For example, pattern (10) at site 0 can be extended by (01) at site
1 to the global state (101), because the patterns coincide in the overlapping state 0. We find
that this observation can be generalized.

Lemma 3.5. im (Bw) C D).

Since only the extendable de Bruijn densities are addressed by Sy, we need only define
Qs on D%e. In our choice of aypy the probability of a global state is calculated by using
conditional probabilities while concatenating according patterns. Starting with a pattern at
a site 7 € W we extend it to the left and right with suitable patterns by one more site and
condition on the overlap; see also Figure 2(b). By repeating this procedure site by site to the
left and right we cover the whole grid with the desired global state. However, we find that in
general this construction depends on the site 7.

Definition 3.6. Let i € W. Then aw,; : DY — D(EYV™W) is given by

i—1 u
awi(g)®) = [] mlon@)lp} o 3 9@ (@@)lv) [T ml{or@)lgy} H{on@)v_},

k=—t l=i+1

where p;[*|+] denotes the conditional distribution associated with g(j) € D(EY) for j € W,
and 1 € EVtW. Here {o1,(¥)];} = {0 € EV| ¢|; = or(¥)|;}, where k € W and J CV, and
Vi =V\{—p} and V_ = V\{q} describe the overlap.

For W = {u}, u € Z, the definition simplifies to a,} ,(9)(¥) = g(u)(ow (). For V = {0}
the conditions vanish, and we get back simple multiplication, aw,i(9)(v)) = [[ew 9(k) (0 (k)).
We formally justify that our construction is well defined.

Lemma 3.7. Let g € DY, and i € W. Then aw,;(g) € D(EVTW).
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Now we focus on the important set im (fy ) and investigate ayy; on this subset of D[% .-
It turns out that enough information of the preimage state in D(EY W) is preserved under
Bw to ensure that in this case ayy; is independent of the starting site 7.

Lemma 3.8. Leti € W and g € im (Bw). Then aw,i(g9) = aw,j(g) for alli,j € W.

Moreover, ay; and By are even inverse on this set.

Theorem 3.9. Let g € im (Bw ). Then Bwaw,i(g) =g for alli € W.

Next we consider the opposite way and focus on global densities that are preserved under
aw,Pw for all i € W. We will see that they enable an algebraic interpretation of Sy .

Definition 3.10. g € D(EV*W) is called V -factorizable if g = aw,iBw (g) for alli € W.

An example of a {0, 1}-factorizable density is g in Example 1. g in the same example,
however, has correlations over more than two sites: a state has positive probability only if
the local states at sites 0 and 2 differ. This long-range correlation cannot be preserved under
mappings with pattern size [{0,1}| = 2, and therefore g is not {0, 1}-factorizable.

Generally, correlations can be preserved if they are short-range with respect to V: aw,; B
will leave a global density invariant if a site’s state is independent from the states at sites that
are more than |V| — 1 sites apart. This can be formally understood in terms of a spatial
Markov property of order |V| — 1; see Appendix A.

Obviously the set of V-factorizable states is the natural counterpart of im (B ).

Lemma 3.11. Leti € W and g € im (Bw). Then aw,i(g) is V-factorizable.

The important role of V-factorizable states for the algebraic interpretation of Sy is
stressed by the next result.

Theorem 3.12. For all g € D(EV*W) there is a unique V -factorizable g € D(EYV W) such
that Bw (9) = Bw (9)-

Bw induces equivalence classes on D(EY+W) by collecting all global densities with the
same image in one class. According to Theorem 3.12 each equivalence class contains at least
one V-factorizable density. Moreover, we know that there is exactly one such density, because
Bw is injective on these densities by definition. It is given as the image under ayy ;8w of
any density in the class for any ¢ € W. Therefore it is possible to choose the V-factorizable
densities as the representatives of the equivalence classes. These representatives are preserved
under aw;Bw for any ¢ € W. Example 1 provides an example: g and g are in the same
equivalence class, and § = aw,0PBw (g) is the unique V-factorizable representative of the class.

However, in general aw,;(g) is not V-factorizable if g € DIV, \im (8w ). There is a degree
of freedom in how to map a density collection to a global density on this set. We choose the
arithmetic mean over all ayy;, where i € W. Note that for g € im (8y ) the definition then
coincides with any ayy;.

Definition 3.13. aw : DIV, — D(EYVW) is given by aw(g) = ﬁ Y icw aw,i(g)-

It is clear that ayy(g) is a density by reasoning similar to that for ay;(g).

3.3. General cellular probabilistic automata. With the de Bruijn calculus at hand we
can now generalize the definition of CPAs to general V. To cope with boundary conditions it
is necessary that the global function operate only on I instead of I, where I contains the sites
away from the boundary. We also have to adapt ay and Sy to boundary conditions when
they operate on the whole grid.

Definition 3.14. As before let I = {1,...,m}, U = {—r,...,s}, V = {—p,...,q} for
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p,q,r8,m € No withm >1,1+p+qg+r+s<m,and K={1,....,r}U{m—s+1,...,m}.
We now set iy =1+p+r,ir=m—q—s, and I ={iy,... i}
(i) We set &: Dl — Dpc(EY), g a(g) with

a(g)(¥) = { ap( @)Wl itr,m—sy) i Yl = p,

0 else.
(i) We set 3 : Dpc(E') — DgBe, g Blg) with

Bl = > g
xeEl s.t.
Xlivv=0_i(¥)

In order to shorten notation at this point, we state the general definition for a CPA without
specifying the terms “p matches the boundary condition” and “U(i) is the adaptation of U
to the finite grid size.” The precise meaning for these two statements is given in Appendix B.

Definition 3.15. A cellular probabilistic automaton (CPA) is a tuple (I,U,V, E, fo), where
form,p,q,r,s ENgwithm >1and 1 +p+qg+7r+s<m,

(i) I ={1,...,m} is a finite grid,
(ii) U ={-r,...,s} is the neighborhood,
(iii) V ={—p,...,q} gives rise to de Bruijn patterns,
(iv) E is a finite set of local states, and
(v) fo: EYTV — D(EY) is the local function.
With the definitions iy =1+p+r, i, =m —q—s, and I = {i,...,i,} the global function is
given by

f:DgBe%DgBev ng(Q))
FOO®) =3 g @@)lg0) @y 1ow) - o))

where the sum is taken over all p € EVTV such that ¢ matches the boundary condition p € EX

in case of an overlap. U(z) is the technical adaptation of U to the finite grid size m and almost
coincides with U. The trajectory starting with ¢° € (D(EY))! is given by the sequence (g")nen,
where g" = f(g" ') for n € N*.

See Figure 3 for a sketch of how the CPA works on general patterns. Note that fy is not
arbitrary but connected to a dynamical system with the locality property. By exploiting this
relation we can ensure that the global function is well defined; see Appendix B for the proof.

Lemma 3.16. f(Dis.) C Dig. .

We denote the case of i; = 7, with Vi, and find that dB(g) = g for all g € Dpc(E)
and Ba(g) = g for all g € (D(EV))!. Furthermore, U(I) = {0} in this case, and it can be
calculated for g € DéBe and p € EUTV that

ooy (o4, (9)) (lv) = g(i) (elv).

For 1 € EV then
F@) @) =" g@)(elv) - fole) (@),
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Figure 3. An example of a CPA with I = {1,...,8}, U ={-1,0,1}, and V = {-2,...,2}. The global func-
tion considers patterns located at I = {4,5} and sketched in the image (lower part) by rectangles of small and
large heights, respectively. The corresponding preimage patterns (upper part) are larger due to the neighborhood,
and their probability of occurrence is influenced by boundary conditions (dashed parts). From an implementa-
tional point of view, V may be constructed from V = {-2,...,1} and W = {0, 1}; see section 4.2: Focus on a
pattern at site 4. The transition probability from a preimage pattern is calculated from the information about
two subtransitions between light and dark grey subpatterns.

where the sum is taken over all ¢ € EVTY such that the boundary conditions are fulfilled.

For Vihax the evolution of the global density is calculated directly, and locality is completely

omitted. It can be shown that then the CPA exactly corresponds to the discretized FPO.
Proposition 3.17. For V = V. we find that ész = Pg.

3.4. Consistency and locality errors. Up to technical postprocessing, time evolution of a
density with an FPO is approximated by evolution with the according CPA. The accuracy of
the approximation is determined by the two parameters’ state space resolution and de Bruijn
pattern size. In this section we first show that for maximal pattern size the approximation
can be made arbitrarily close. A subsequent investigation of potential locality errors in the
case of smaller pattern size complements this consistency result.

There are many ways to study distances between probability measures [9]. In our density
based formulation we use the £'-norm for probability densities, which leads to the notion
of strong convergence in the literature [30]. A result by Li ensures that in this norm the
discretized FPO converges pointwise to the original FPO for increasing state space resolu-
tion [32].

Theorem 3.18. Let g € D(R™") with supp (g) € Q™, and let T : Q@ — E be a uniform
partition with resolution AQ. Then R converges pointwise to the identity with respect to the
LY-norm,

|R(g) —glli =0 (AQ—0).

Note that the one-dimensional proof by Li can immediately be extended to general di-
mension mn of the phase space.
With Proposition 3.17 we therefore find that for maximal pattern size Vi,.x and a uniform
partition with resolution AQ our algorithm is consistent: For g € k' (Dpc(ET)),
li 5afp — Ppr
A k5 afBri(g) — Por(9)h

_ —1p — Pyr
flszHI{B BrB(9) o7 (9)[11
= 1 Pgr — Py~
flszHR > (9) o7 (9)[11

=0.
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Now we investigate in more depth the role of locality in approximating the discretized FPO
Pp by a CPA. It turns out that the CPA covers the dynamics of the underlying Pgp if only
the support is considered.

Lemma 3.19. For alln €N, all g € Dpc(E"), and alli € I it holds that

supp (BPp(g)(i)) € supp (f"B(g)(i)).

Proof. Let n € N, g € Dpc(E"), i € I, and x € supp (BP&(g)(i)) € EV. Then there
is 1 € B! such that P2(g)(¢) > 0 and o;(¥)|y = x. Let ¢, = . Per induction it can be
AQp,_ 1 N7 ()

- > 0 and

shown that we can find ¢q,...,n_1 € ET such that Py 1on =
PE"Yg)(pr—1) > 0 for k € {1,...,n}. Since for all j € T

Q‘Pkfl A (I)_T(Q‘Pk) < Q@kfl‘jJrUJrV N (I)_T(Qson|k+U+V)a

Qsﬂkq < Q<Pk71 ‘j+U+V7

we conclude that fo(oj(¢r_1)|lv+v)(oj(¢r)ly) > 0 for all j € I. Furthermore, we conclude
that 5(g)(j)(0; (o)) > 0 for all j € I, and therefore f3(g)(5)(c;(¢1)|v) > 0 for all j € I. This
induces f25(g)(j)(c;(¢2)|v) > 0for all j € T and so on, and therefore f"3(g)(j)(cj(¢n)|v) > 0
for all j € I. Recalling that os(¢n)|v = X, we conclude that x € supp (f"5(g)(%)). [ ]

However, we cannot recover the precise global behavior of the discretized FPO from a
CPA in general. The errors that can occur are twofold, and we will provide examples for both
types here. On the one hand, it may happen that correlations over |V| sites are not preserved,
because we work on patterns of size V. This is independent of the actual dynamics and a
direct consequence of our approximation space; see section 3.2. On the other hand, we will
see that even for U C V in general there are locally allowed transitions of a global state that
are not allowed in a global consideration with Pp. This is remarkable, since such behavior
was ruled out for the underlying dynamical system by the locality property. This may also
lead to errors. While the first error type is a true locality effect, the second arises from the
interplay of locality and state space discretization.

Ezample 2. This example shows that in general correlations over |V| sites are not pre-
served. We compare one CPA time step to one time step with the discretized FPO. Consider
I = {1,2,3} and the dynamical system that is given by the identity on Q™ = [0,1]?, i.e.,
U = {0} and K = (). We choose the partition Q¢ = [0,0.5) and ©; = [0.5,1], i.e., E = {0, 1},
and look at the CPA with V = {0,1} and I = {1,2}. We find that fo(¢)(¥)) = d, for all
@, € B0},

Consider g € Do (E!) = D(EVHW) with W = I from Example 1. 3(g) = B;(g), and also
fB(g) = Bj(g). So aB(g) = a;Bi(g) = g. However, Pp(g) = g, and so &fB(g) # Pp(9).

Example 3. This example shows that transitions at different sites are not independent in
general. By comparing one CPA time step to one time step with the discretized FPO we see
that a specific local transition at one site cannot take place if another specific local transition
happens at a neighboring site, although both transitions are allowed locally. Consider I =
{1,...,4} and the system on dynamically invariant state space Q™ = [0, 1]* given for all n € N

by vt = h(vP, 0 ,) = v?;;}g“ fori € {1,...,m —1}. We have U = {0,1} and define five
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S
3
¥ 2 I I I I
1 2 3. 4 ho» 1 2 3 4

Figure 4. [llustration of a transition from x = (4,4,2,2) to ¢ = (2,2,0,2) in Ezample 3. The left side
shows the preimage and the right the image state. The horizontal numbers correspond to the respective sites,
while the vertical numbers display E = {0,...,4}. The states x and v are marked by black rectangles at the
corresponding sites.

intervals
Q) = [’(Uj,wj+1), fOI‘j € {07"'73}7 Q4 = [ZU4,’LU5]

with
wog =0, w; =0.183, wy =031, w3=04, wys=07 ws=1,

name them by their index, and obtain a partition of  with E = {0,...,4}; see Figure 4.
The induced flow is denoted by ®! for one time step. We consider the CPA with V = U for
deterministic input g € Dpc(E!) given by g(¢) = 6y, where x = (4,4,2,2) € EL. We focus
on the image state ¢ = (2,2,0,2) € E! and determine

l1 =08, [l3=0.3625, 7 =0.83875, 1o =0.32375
as the solution of the equations
hwg, l1) =ws, h(ly,la) =we, h(ri,re) =ws, h(re,wy) = w;.
It is possible to show that

{QX|1+U+V N (I)_I(Qw|1+v)} - {U €N | wy <vg < lp,lo <wg < ZU3},
{le(X|2+U+V) N (I)_I(Qm(d)luv))} Cl{veQr <v < 1wy <wg <o},

folor(xhiruv)(@1(@liyv)) > 0, and fo(oa(xl2+v+v))(o2(Pl24v)) > 0. Hence afB(g)(v) >
0, but

A(Qx n <I>_1(Qw))

P(g)(®) = > g(@)Pp gy = O
pel! X
< /\((QX\1+U+V N <I>_1(Q¢\1+\/)) N (QX|2+U+V N (I)_I(Qw|2+v)))
B A(€2y)
_Am
RRXCN I
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and so &fB(g) # Pp(g)-

Both examples are scalable in the sense that we can find analogous partitions of [0, ¢|, ¢ €
(0,1), with the above properties by dividing all phase space coordinates by ¢ and complete
the partition in [c, 1] arbitrarily. So for decreasing size of the coding domains we can still find
a partition of [0,1] with the above effects: Locality errors are independent from resolution
errors.

4. Application. In this section we comment on how to implement an algorithm to evolve
uncertainties with CPAs The algorithm is tested at the problem of arsenate transportation
and adsorption in drinking water pipes, and the results are compared to a Monte Carlo
calculation. Although the theory has been developed for uncertainties in initial conditions, in
this applicational part we extend the concept slightly such that CPAs can cope with certain
stochastic boundary conditions. This is important in contaminant transport modeling [48].
With this first generalization we want to provide evidence that with CPAs the treatment of
more general stochastic spatio-temporal processes seems feasible.

4.1. Stochastic boundary conditions. We deal with stationary temporal white noise
boundary conditions

g € D(EXY  for K; ={1,...,r},
g € D(EEY)  for K, ={m —s+1,...,m}

instead of deterministic p € EX. With stationary we mean that the densities do not change
in time, and the term temporal white noise indicates that there are no correlations in the
boundary random variable’s realizations at different times.

For this purpose the global function in Definition 3.15 is extended to

f:DgBe%DgBev g'_>f(g)7
F@®O@) = Y g@)@) - g @ @lge) @l ow) - T@ ) - fol@)®),

S06E‘U+V

where g(i) and g(i) incorporate suitable parts of g; and g,, respectively, at the boundary sites
and equal 1 otherwise. The precise definition is very technical and can be found in Appendix
B. Note that & and ﬁ also have to be generalized to match stochastic boundary conditions.

CPAs with stochastic boundary conditions may be used to approximate spatio-temporal
processes with deterministic dynamics, in which the initial and boundary conditions are sto-
chastic. We remark that it is straightforward to use time-dependent stochastic boundary
conditions instead of stationary ones.

4.2. Implementation. From an implementational point of view two steps of uncertainty
propagation with CPAs have to be distinguished. Step one is the translation of the com-
pletely continuous system into a CPA. This is independent of initial or boundary conditions
and can be achieved in a preprocessing procedure. Step two consists of the CPA evolution
with given initial and boundary values. It turns out that step one is numerically more expen-
sive than step two. For industrial applications like simulation based system monitoring the
CPA method points towards real-time uncertainty quantification, because the slow step one
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has to be performed only once before the actual simulation. We furthermore note that by
construction the simulation is parallelizable in space.

Step one basically consists of the approximation of local transition probabilities. We pro-
pose a local version of the standard Monte Carlo quadrature approach [19] in set oriented
numerics for this purpose. We remark that also advanced adaptive methods have been sug-
gested; see, e.g., [13].

1. For p € EUTY choose W, test vectors w; = (w; —y—p, ..., Wi stq) € (R")VTV where
{w; j}i<w, is randomly distributed over coding domain Q,;y C 2, respectively.
2. Compute for all : < W, the image points

v(4)

w; = (h(T, wi,_r_p, e 7wi,s—p)7 h(T, wi,_r_pﬂ, e ,wi,s_pﬂ), cey h(T, wi7_r+q, e ,wi7s+q)).

3. Determine 1, ..., € EY such that there is | < L and w; with T'((@;);) = (¥;); for
all j € V. Let the number of image points in the specific coding domain be denoted by Wy,
ie., ZzL:1 Wy, = W,. The local transition function is then approximated by

fol@) () = { W/ Wo V0 € (Ut

With an increasing number of test points the approximation is expected to get better.
However, the number of evaluations grows exponentially in |V|. So we suggest using de
Bruijn calculus to determine transition probabilities for large V' from transition probabilities
for smaller V; see Figure 3. For given fo : EVTYV — D(EV) and W given by V = V4+W,

fo: EYY 5 D(EY), ¢ fole),
where

fole) W) = aw (@),
g€ DENY, 40) = Jol@lv10)

It can be shown with an example similar to Example 3 that this is again just an approximation
of the directly calculated fy.

Regarding step two, the simulation with CPAs, we remark that it is important to follow
and store only states with probability larger than a specified threshold whenever possible.
Otherwise already for reasonably large £/ or V the calculations are not feasible. An example
is the de Bruijn density DéBe, where ]EUW numbers would have to be handled at every site in
I. The set of states with positive probability is much smaller, although it typically first grows
and then shrinks again in the transient phase of dynamics. Note that our de Bruijn choice of
apw enables such sparse calculations, whereas the whole space is needed to solve, for example,
a linear nonnegative least squares problem.

4.3. Arsenate fate in water pipe. Consider the advection and adsorption of arsenate
in drinking water pipes, a topic that has attracted a lot of attention in the water supply
community lately [39, 26]. We describe a water tank on a hill and a pipe to a consumer in a
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valley. Report locations to observe the arsenate concentrations are installed in a distance of
Ax; see Figure 5(a). The physics is described by the Langmuir adsorption model [27]

1 1
0D + v0,D = —— DS — A) — Koo A),
t v Thk—11—|—if(smax—A)( ( ) q )
1

]%1 + %(Smax - A)

A =

(D(Smax - A) - Kqu)7

where D is the concentration of dissolved arsenate and A the concentration of arsenate ad-
sorbed at the pipe wall. We adopt realistic parameter values from [26, 37],

l
Ulei, rp = 90—,
min m
l
kl =0.2 —, Smax = 100m§7
mg min m
K., — 0053728 hp—24—"
s = 00537 . e

and consider the system on the approximately positively invariant 2 given by D € [0, 1]
and A € [0,100]28. The backward difference with U = {-1,0}, Az = 100m, and At
Az /v = 10min is used with the Trotter formula [41].

To obtain the local function of a CPA we map test points by using intermediate steps with
the smaller A2/ = 1m and At = 0.1min. We use V = V = {0} and partition the phase space
equidistantly with five symbols in each of the n = 2 directions. If we label the coding domains
from 0 to 4 in each direction, the corresponding CPA results from transition probabilities like

meg
l

0.806  if ¢ = (1,4),
fO(((174)7 (274)))(¢) = 0.194 if ¢ = (274)7

0 else;

see Figure 5(b). White noise boundary conditions are applied to describe a random arsenate
source in the tank, and deterministic initial values represent a pipe which is completely empty
in the beginning. The observed dynamics is shown in Figures 5(c)-5(e): Dissolved arsenate is
transported along the pipe, and over time the walls are covered more and more with adsorbed
arsenate. After 24 hours a steady state is reached, and we compare it to a Monte Carlo
calculation; see Figures 6(a)—6(b). The latter has also been obtained on the basis of the
Trotter formula with At = 0.lmin and Az’ = 1m for 20000 evaluations. The boundary
condition has been drawn from the stationary boundary distribution every 10min and held
constant in the meantime. Our example features an interesting probabilistic effect due to
the nonlinearity of the reaction equations. Although the boundary values are distributed in
the D-domains 1-3, the consumer mostly observes dissolved arsenate at a concentration of
domain 2 in the steady state.

Furthermore, we plot the steady state results from CPAs for which the approximation
parameters are altered. In Figure 6(c) the result is plotted for V =V = {0} with an equidis-
tant phase space partition of 5 domains in the D-direction and 15 domains in the A-direction,
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report locations

contaminated
reservoir 100m consumer
(a)
0 hours
A[Z_g] 4, 4) dissolved arsenate adsorbed arsenate
// 3 5
4 £
2. 2
S S
a, a2
(0,0) (4,0)
02 04 06 08 1 9
2, [M ] domain domain
l location location
(b) (c)
1 hour 5 hours
dissolved arsenate adsorbed arsenate dissolved arsenate adsorbed arsenate

probability
probability
probability
probability

- b 3
domain ) ¢+ * report domain report domain domain | report
location location location location

(d) (e)

Figure 5. (a) A reservoir on a hill is connected to a consumer in a valley through a pipe with six report
locations. (b) The phase space at every report location is divided into 5 X 5 coding domains, and the steady
states are drawn in green. For example, fo(((1,4),(2,4))) can be approxzimated by the transition of blue test
points in domain (1,4) and black ones in domain (2,4) to the set of red points. (c) shows the initial conditions
for an exemplary simulation with the according CPA, and the results after 1 and 5 hours are shown in (d) and
(e), respectively. See also Figure 6(b).

whereas in Figure 6(d) the pattern size is extended by W = {—1,0} to V = {-1,0}. It
is observed that in this example increasing the pattern size does not improve the result if
compared to the Monte Carlo case, but increasing the state space resolution has a notable
effect. In all cases we used 75 test points for the coding domain at site 0 and 37 at site —1 to
approximate the local function and used a probability threshold of 0.00005 in the simulation.

We note that there is often no interest in global results and accordingly no need to trans-
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dissolved arsenate adsorbed arsenate dissolved arsenate adsorbed arsenate

probability
probability
probability

3 3 3 3 3 3 3
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location location location location
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dissolvad Ardenats sdsoibed arseriats dissolved arsenate adsorbed arsenate

probability
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probability

3 B . 2 i ’
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(c) (d)

Figure 6. Steady states after 24 hours. (a) shows the result of a Monte Carlo computation. In (b) one
finds the result for a CPA with a state space resolution of 5x 5 and pattern size V.=V = {0}, in (c) the results
for5x 15 and V. =V = {0}, and in (d) those for 5 x5 and V ={0},V = {—1,0}.

form between local and fully global states with &. Local information like that indicated in the
graphs can be directly extracted from the CPA result. Similarly, in practice the information
about initial values is often given locally, such that there is no need to use the full 6A . Besides,
we note that the discrete state space information is often completely sufficient in practice. In
the example a consumer is interested rather in risk level or threshold information about water
contamination than in information in the form of exact concentrations. In some biological
systems even the Boolean case, |E| = 2, is enough [3].

5. Conclusion. We have introduced a numerical scheme for density based uncertainty
propagation in distinct spatio-temporal systems. It consists of a preprocessing step, in which
the underlying PDE system is translated into a CPA, and a simulation step, in which initial
and boundary conditions are evolved. The simulation is parallelizable in the space extension
and fast in relation to the preprocessing. Furthermore, it computes on discrete states instead
of on the continuous phase space. Since the discrete states can be interpreted as risk levels,
fast uncertainty propagation directly on this simplified state space suits industrial demands.

The algorithm is based on state space discretization like in set oriented numerics and
on the de Bruijn state idea from CAs theory. There are two parameters that allow us to
control the approximation of the exact density evolution: state space resolution and de Bruijn
pattern size. We have shown consistency of the method for uncertain initial conditions under
deterministic dynamics and have paved the way towards the handling of spatio-temporal
processes with more involved stochastic influence. More precisely, it has been shown how to
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deal with white noise boundary conditions, an important topic, for example, in contaminant
transport modeling.

We suggest three directions for future research. First, we are interested in really quanti-
fying the approximation error for given de Bruijn pattern size beyond our consistency result.
This seems to be a demanding problem, because spatial correlations have to be quantified
somehow. One might use the rich theory on quantum (multipartite) entanglement measures
[17, 16, 44, 45] and on the related matrix product states [43] for that purpose. Second, we
will focus on random parameters. It seems difficult to preserve temporal correlations in such
parameters with our algorithm, but our ideas can be used for white noise parameters. We
are confident that white noise parameters only extend the preprocessing, whereas the simu-
lation step is not changed. In this sense CPAs promise to overcome the curse of dimension
in parameter space. And third, we want to investigate how our algorithm performs in more
complex applications like the simulation of drinking or waste water grids.

Appendix A. De Bruijn calculus technique. In this appendix we introduce a more formal
approach to the de Bruijn calculus of section 3.2 and give the proofs of the above results.

We start with a motivation of ayy; in terms of a spatial Markov property, for which we
first introduce some notation. For finite J C Z and A, B C E’, u[A] = > pea 9(ip) denotes

the distribution associated with g € D(E”), and p[A|B] = w205

F] denotes the conditional
probability. Furthermore,

{7} = {o e B el; = vis}

for finite J,J CZ, J C J, J C J, and ¢ € E’, and we also write {w]j} = {Wj“} if J is clear
from the context.

As before, let V.= {—q,...,q} and W = {—t¢,...,u} with p,¢ € N and t,u € Z,—t < u.
We calculate for i € W and ¢ € EVTW that

ul{e) = pl{Wlea)) T1 5{%'{{:2:.;1}}:;}}]]

l=i+1
= 1:[ P gy} iy N elliov Y T el gy 1 e v 3,
k=t I=i+1

where Vi = {—p+1,...,q} and V_ = {—p,...,¢—1}. If there are no far-reaching correlations,
we expect the following approximations to be suitable:

10l ge—py } {8l iyv M = 0l go—py 3 {0 kgvy 3,

1Yl grgy {0l H = el{d g HAY v
for k € {—t,...,i—1} and l € {i +1,...,u}. They resemble a Markov property of order
|[V| — 1 in space; see also Figure 2(b): A site’s state is independent from the states at sites

that are more than |V| — 1 sites apart.
Lemma A.l. Let uj be the distribution associated with Bw(g)(j) € D(EY) for j € W.
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Then

a0 r—py } H{¥ kv H = e [{ow (D) —py } [H{on (@) v, },
pl{lirv ] = pwil{oi () v ],
{0l —py ¥ {0 lve 3 = ml{on () l—py } [H{on () [v_ }]

forie W, ke{—t,...,i—1}, andl e {i+1,...,u}.
Proof. Without loss of generality we prove the statement only for k € {—t,...,i — 1}:

_ el I Bw (9) (k) (or (¥)]v)
1Y k—py } {Y kv }] = S e tohnn, ) 900 = Z%{w)%} 2ovefo @iy 900
Bw (9) (k) (o (¥)]v)

- Z¢€{0k(¢)|¥+} Bw (9)(k) () - Nk[{ak(w)’{—p}} [ {o®(¥)[v }]. [ |

Using the above approximations of Markov type and the lemma we find that

pl{y}] ~ H p{0 ey} {0 lhrv, Ml liv ) TT sl gy {8l Y]

k=—t l=i+1
= H e[{ok (W) —py } [{oe () vy H pil{oi () v }] H wl{o )l o @)lv_ }.
k=—t l=i+1

This leads directly to Definition 3.6 of ayy;.

In the remainder of this appendix we give the proofs of section 3.2.

Proof of Lemma 3.5. Let g € im (Byw), j € W, and ¢ € EY with g(5)(¢) > 0. Then there
are g € D(EVTW) and ¢ € EV*W such that §(¢) > 0 and oj(¢)|y = ¢. But, furthermore,
already g(i)(o;(¢)|v) > 0 for all i € W, and therefore x;ew supp g(i) € X%, [ |

Proof of Lemma 3.7. Let g € D%e and i € W. aw,(g) # 0, because there is at least
one extendable pattern with nonzero probability. We prove that it is also normalized in the
following. Without loss of generality we assume that ¢ = u. Then

Y awa9)e) = Y Huk{ak Ni=py 3 Hor(@)lvy  pu[{ou(@)lv 1]

PEEVHW QEEVAW k=—t

= > Yo ul{oa@)lpt o (@) )]

>cEV+WN\{—t} ~ V4+W
o< eel{ eV o)

H pel{ok (D) —py } [H{on(@) vy H pul{ou(@)v ]

k=—t+1

- > H 1kl {o1( @)y} ok (@) v} pal{ou(@) v }]

GEEVFW\{~t} k=—t+1

== > ml{ou@lvil= D glp) =1

peRUtV pEEY
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The steps indicated by - -- follow by induction in |[W|. [ ]

Proof of Lemma 3.8. We show that aw,(g9) = awt1(g) for all i € W\{—t}. An index
shift to the left can be proven analogously.

Note that u;[{o:i(¥)|v}] = ¢(i)(oi(¢)]v) and that for k € {—¢,...,i — 1} and | € {i +
1,...,u},

9(k) (ok(¥)lv)
E efoncont, } B0
so@)l)
Zefmwy }ION

tel{oe ()| (—py } [{ok()]v, }] =

wl{o()lgy } [H{o(@)lv_}H =

Therefore aw;(g)(¢) and aw,i+1(g)(¢)) have the same numerator and differ only in the de-
nominator. It is enough to show that a factor in the denominator may be shifted one step to
the right: Let i € W\{u}, and let g = By (g) for g € D(EV*W). Then

> Bw@@) ) - > > G

xe{awy, xel{oiw)ly, } ee{oll

= > gy 1)
pe{vllY ee{viitly.

= > > i) = > Bw(@+1)(x). W
X6{0i+1(¢)|¥7 } pe{o_ @ I } X€{0i+1(¢)\¥, }

Proof of Theorem 3.9. Let i € W and g € im(fw ). We prove Bwaw,i(9)(j) = g(j) without
loss of generality only for j = u.

With Lemma 3.8 and because a conditional distribution is a distribution as well, for
Ve EY,

Bwaw,i(9)(u)(¥) = Bwawu(g)(u)(¥) = >, awu(9)()
gpe{a,u(w)”ji“//v
= > > p—il{o—t(@)l{—py } [{o—2 (D) IV, }]
@e{g,u Xi\y\{ t}} ¢€{¢‘V+W\{ )
H pi{or(@){—py } H{on (@) vy} pul{ou(@) v ]
k=—t+1
= > H pl{or(@) —py } [H{or(@)lvi H pul{ou(@)]v}]
pe{o_u(IFINED) ket
= = )W),
The last steps follow by induction in |[W]. [ ]

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/14 to 146.107.3.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CELLULAR PROBABILISTIC AUTOMATA 51

Proof of Lemma 3.11. Let g € im (Bw) and 4,5 € W. Then by Lemma 3.8 and Theo-
rem 3.9

aw,i(g9) = aw,j(g) = aw,;Bwaw,i(g),

and hence ayw,;(g) is V-factorizable. [ |

Proof of Theorem 3.12. Let g € D(EVW), and choose § = aw..fw(g). Then g is V-
factorizable by Lemma 3.11, and the definition does not depend on the site u. Furthermore,
Bw (§) = Pwawubw(g) = Bw(g) by Theorem 3.9. We also know that there is at most one
such density, because Sy is injective on the V-factorizable densities by definition. Hence g is
unique. ]

Appendix B. Global functions. In this section we state the precise definition of the global
function of general CPAs for deterministic boundary conditions and prove that it is well
defined. Afterwards we extend the definition to stochastic boundary conditions.

Definition B.1 (extending Definition 3.15). With the boundary conditions p € EX for K =
{1,...,7}U{m—s+1,...,m} and the definitions iy = 1+p+7, i, =m—q—s,1 = {i,...,i,},
U(i) = {—u(i),...,u(i)}, and w,@: I — U with

g(i):{z_zl ifie{ig,...,ip+r—1},
r else,
ﬂ(z.):{zr—z ifie{i,—s+1,... 0},

S else,

the global function is given by

f:DgBe%DtI;Bea g'_>f(g)7
f(9)@)() = > gy (0 D) ) (Ply o) - fol@) (@)

e EUFV st o(k—i)=p(k)
for ke KNi+U+V

Proof of Lemma 3.16. Since D!, = (D(EV))! for |V| = 1, the statement is trivial in this
case. So we focus on |V| > 1. We show that without loss of generality any pattern in the
support of any site in the image can be extended to the right by a pattern in the support of
the neighboring site.

Let g € DI i € {ij,...,i, — 1}, and 9 € supp f(g)(i). By the construction of f
and o, we know that there is ¢ € EYTV such that o;(p)ly € supp (9)(i + j) for all
j € U and fo(p)(vp) > 0. Because of the extension property of the preimage g we can find
¢ € EVTV such that 0;(3)|v = oj11(¢)|v € supp (9)(i+1+) forall j € {—r,...,s—1} and
ou(@)lv € supp (9)(i + 1 +3). )

This enables us to find ¢ € supp f(g)(i + 1) such that 9|y = o1(¢|v, ), as we will show
in the following. Hence the pattern ¢ may be extended to the right by 1/;, and the proof is
complete.

As fo(p)(®0) > 0 and the partition is uniform, there is an e-ball B, with respect to the
2-norm in R™" € > 0, such that

B, C Qo,i(ap) N @_T(Qgi.(w)).

7
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Since the set is just restricted on sites i + U 4+ V' due to the locality property, we may
independently restrict at site i + 1+ ¢ + s and can still find € > 0 with

B © Q0 i(0) N Qo1 (2g+5) N (2 w))
S Qo ielv, +0) N Do a4y @lars) V27 (Do wly, )
= QU*(@'H)(@ N <I>_T(Q(T*i(w“@r))'

In the second line we have again used the locality property, and the equality sign holds due
to o_i(¢lv,+v) = 0_(i+1)(Plv_+v). We now define ¢ € EV by ¢|y_ = o1(¢]y, ) and choose

¥(q) such that there is €’ > 0 with
Ber © Be N <I>_T(Q<L(i+1)(¢(q»)‘

Therefore

B CQ N @_T(Q

o_(i+1)(P) 07(¢+1)(1/~’))’

fo(@)(®) >0, and ¢ € supp f(g)(i+1). ™
For stochastic boundary conditions
g € D(EXY) for Kj ={1,...,r},

gr € D(EXT) for K, ={m —s+1,...,m}
the global function is extended to f : DCI;BG — DCI;BG, g— f(9),

g(i)(p) = > 9(x)»

K
e R T Ol F T b
Ufil(@)‘{l ,,,,, r4ip—i}

7)) = ) 9:(%),

xeBKr s.t. Ti—ip (X)‘{mfsﬁ»lfi«‘ﬁir ,,,,, m}=
T—ip (@)'{mfsﬁ»lfi«kir ,,,,, m}

FOO®) = 3 gi)@) - agw©@i@law) @l sow) - TOE) - fol@) ®).

weE‘UJﬁV

The relations between global and de Bruijn densities have to be generalized in the sto-
chastic case to & : D(EX) x DI, x D(EX") — D(ET), (g1 x g x g) — &((g1 x g X gr))
with

(g x 9% g,))(¥) = a(¥lk,)ap(9)(Clisr,...m—s})9r (YK, )

and /3 : D(E') — D(EXt) x DI, x D(EX"), g~ B(g) = (91,95, 9») with

a)= Y. 9, e@= > 9,

X€ET s.t. x|k, =1 XEET s.t. x| 5, =¢
gi)@w) = Y gx)
xeEl s.t.
Xlipv=0_i(1)

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/14 to 146.107.3.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

CELLULAR PROBABILISTIC AUTOMATA 53

Acknowledgments. The authors would like to thank Birgit Obst from Siemens Corporate

Technology for helpful discussions about the arsenate application. Advice from Oliver Junge
from Technical University Munich on set oriented numerics is also gratefully acknowledged.

REFERENCES

F. AUGUSTIN AND P. RENTROP, Stochastic Galerkin techniques for random ordinary differential equations,
Numer. Math., 122 (2012), pp. 399-419.
BARTH, C. SCHWAB, AND N. ZOLLINGER, Multi-level Monte Carlo finite element method for elliptic
PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123-161.

. DAVIDICH AND S. BORNHOLDT, The transition from differential equations to Boolean metworks: A
case study in simplifying a regqulatory network model, J. Theoret. Biol., 255 (2008), pp. 269-277.

. DELLNITZ AND O. JUNGE, On the approzimation of complicated dynamical behavior, SIAM J. Numer.
Anal., 36 (1999), pp. 491-515.

. DELLNITZ AND O. JUNGE, Set oriented numerical methods for dynamical systems, in Handbook of
Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 221-264.
DEUTSCH AND S. DORMANN, Cellular Automaton Modeling of Biological Pattern Formation,
Birkh&user, Boston, MA, 2005.

B. L. Fox, Strategies for Quasi-Monte Carlo, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1999.

R. GHANEM AND P. SPANOS, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New
York, 1991.

A. L. GiBBs AND F. E. Su, On choosing and bounding probability metrics, Internat. Statist. Rev., 70
(2002), pp. 419-435.

W. R. GILKS, S. RICHARDSON, AND D. J. SPIEGELHALTER, Markov Chain Monte Carlo in Practice,
Chapman and Hall/CRC, Boca Raton, FL, 1995.

L. GRUNE AND O. JUNGE, Global optimal control of perturbed systems, J. Optim. Theory Appl., 136
(2008), pp. 411-429.

J. GUCKENHEIMER AND P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields, Springer-Verlag, New York, 1983.

R. GUDER, M. DELLNITZ, AND E. KREUZER, An adaptive method for the approximation of the generalized
cell mapping, Chaos Solitons Fractals, 8 (1997), pp. 525-534.

F. v. HAESELER, H.-O. PEITGEN, AND G. SKORDEV, Cellular automata, matriz substitutions and fractals,
Ann. Math. Artificial Intelligence, 8 (1993), pp. 345-362.

J. HAWKINS AND D. MOLINEK, One-dimensional stochastic cellular automata, Topology Proc., 31 (2007),
pp. 515-532.

M. HORODECKI, Entanglement measures, Quantum Inf. Comput., 1 (2001), pp. 3-26.

R. HORODECKI, P. HORODECKI, M. HORODECKI, AND K. HORODECKI, Quantum entanglement, Rev.
Modern Phys., 81 (2009), pp. 865-942.

C. S. Hsu, Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Springer, New
York, 1987.

F. Y. HunT, A Monte Carlo approach to the approximation of invariant measures, Random Comput.
Dynam., 2 (1994), pp. 111-133.

O. JUNGE, J. E. MARSDEN, AND 1. MEzIC, Uncertainty in the dynamics of conservative maps, in Pro-
ceedings of the 43rd IEEE Conference on Decision and Control, 2004.

J. KARIL, Theory of cellular automata: A survey, Theoret. Comput. Sci., 334 (2005), pp. 3-33.

G. E. KarnNiapakis, C. H. Su, D. Xiu, D. Lucor, C. SCHWAB, AND R. A. TODOR, Generalized
Polynomial Chaos Solution for Differential Equations with Random Inputs, Research Report 2005-01,
ETH Ziirich, Zirich, Switzerland, 2005.

J. M. KEELING, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. Lond.
B, 266 (1999), pp. 859-867.

P. E. KLOEDEN AND E. PLATEN, Numerical Solution of Stochastic Differential Equations, Springer, New

> 2 2 £ F

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 02/20/14 to 146.107.3.4. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

54 DOMINIC KOHLER, JOHANNES MULLER, AND UTZ WEVER
York, 2011.

[25] P. E. KLOEDEN, E. PLATEN, AND H. SCHURZ, Numerical Solution of SDE through Computer Ezperi-
ments, Springer, Berlin, 1994.

[26] S. KLOSTERMANN, R. MURRAY, J. SzABO, J. HALL, AND J. UBER, Modeling and simulation of arsenate
fate and transport in a distribution system simulator, in Proceedings of Water Distribution System
Analysis, American Society of Civil Engineers, Reston, VA, 2010.

[27] L. K. KooraL AND M. J. AVENA, A simple model for adsorption kinetics at charged solid-liquid interfaces,
Colloid Surface Physicochem. Eng. Aspect, 192 (2001), pp. 93-107.

[28] H. KUSHNER AND P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time,
Springer, New York, 2001.

[29] H. P. LANGTANGEN, Numerical solution of first passage problems in random vibrations, STAM J. Sci.
Comput., 15 (1994), pp. 977-996.

[30] A. Lasota AND M. C. MACKEY, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer,
New York, 1993.

[31] C. L. LawsoN AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[32] T. Y. L1, Finite approzimation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J.
Approximation Theory, 17 (1976), pp. 177-186.

[33] W. L. LoH, On Latin hypercube sampling, Ann. Statist., 24 (1996), pp. 2058-2080.

[34] R. E. MELCHERS, Structural Reliability Analysis and Prediction, John Wiley & Sons, Chichester, UK,
1999.

[35] I. MEzI¢ AND T. RUNOLFSSON, Uncertainty propagation in dynamical systems, Automatica J. IFAC, 44
(2008), pp. 3003-3013.

[36] B. K. OKSENDAL, Stochastic Differential Equations: An Introduction with Applications, Springer, New
York, 2002.

[37] M. L. PiERCE AND C. B. MOORE, Adsorption of arsenite and arsenate on amorphous iron hydrozide,
Water Res., 16 (1982), pp. 1247-1253.

[38] A. ROBLER, Runge-Kutta methods for the strong approximation of solutions of stochastic differential
equations, STAM J. Numer. Anal., 48 (2010), pp. 922-952.

[39] F. SHANG, J. G. UBER, L. A. ROSsMAN, R. JANKE, AND R. MURRAY, EPANET Multi-species Extension
User’s Manual, US Environmental Protection Agency, Cincinnati, OH, 2011.

[40] K. SUTNER, De Bruijn graphs and linear cellular automata, Complex Systems, 5 (1991), pp. 19-30.

[41] W. THIRRING, Quantum Mechanics of Atoms and Molecules, Springer, New York, 1981.

[42] S. M. Uram, A Collection of Mathematical Problems, Interscience, New York, 1960.

[43] F. VERSTRAETE, J. I. CIRAC, AND V. MURG, Matriz product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys., 57 (2008),
pp. 143-242.

[44] F. VERSTRAETE, J. DEHAENE, AND B. DE MOOR, Normal forms and entanglement measures for multi-
partite quantum states, Phys. Rev. A (3), 68 (2003), 012103.

[45] F. VERSTRAETE, M. Popp, AND J. 1. CIRAC, Entanglement versus correlations in spin systems, Phys.
Rev. Lett., 92 (2004), 027901.

[46] R. VOLLMAR, Algorithmen in Zellularautomaten, Teubner, Stuttgart, 1979.

[47] X. WAN AND G. E. KARNIADAKIS, Multi-element generalized polynomial chaos for arbitrary probability
measures, SIAM J. Sci. Comput., 28 (2006), pp. 901-928.

[48] P. P. WaNG AND C. ZHENG, Contaminant transport models under random sources, Ground Water, 43
(2005), pp. 423-433.

[49] N. WIENER, The homogeneous chaos, Amer. J. Math., 60 (1938), pp. 897-936.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


