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Abstract. This article is a continuation of our previous work [5], where we

formulated general existence theorems for pullback exponential attractors for
asymptotically compact evolution processes in Banach spaces and discussed its

implications in the autonomous case. We now study properties of the attractors

and use our theoretical results to prove the existence of pullback exponential
attractors in two examples, where previous results do not apply.

1. Introduction. Global pullback attractors proved to be a useful tool to study the
asymptotic dynamics of infinite dimensional non-autonomous dynamical systems.
To be more precise, let here and in the sequel (X, dX) denote a complete metric
space and T = R or T = Z. The rules of time evolution in the non-autonomous
setting are dictated by a two-parameter family U = {U(t, s)| t ≥ s}, t, s ∈ T, of
continuous operators from X into itself, which is called an evolution process in
X, if it satisfies the properties

U(t, t) = Id t ∈ T,
U(t, s) ◦ U(s, r) = U(t, r) t ≥ s ≥ r, t, s, r ∈ T
(t, s, x) 7→ U(t, s)x is continuous from T ×X → X,

where T := {(t, s) ∈ T × T| t ≥ s}, Id denotes the identity in X and ◦ the
composition of operators.
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If T = Z we call U a discrete evolution process and for T = R a time continuous
evolution process.

Definition 1.1. The family of non-empty subsets {A(t)| t ∈ T} of X is called the
global pullback attractor of the evolution process {U(t, s)| t ≥ s} if the sets
A(t) are compact, for all t ∈ T, and the family {A(t)| t ∈ T} is strictly invariant,

U(t, s)A(s) = A(t) ∀ t ≥ s.

Moreover, it pullback attracts all bounded subsets of X; that is, for every time
t ∈ T the set A(t) pullback attracts every bounded set D ⊂ X at time t,

lim
s→∞

distH

(
U(t, t− s)D,A(t)

)
= 0,

and {A(t)| t ∈ T} is minimal within the families of closed subsets that pullback
attract all bounded subsets of X.

Here, distH(·, ·) is the Hausdorff semidistance in X; that is,

distH(A,B) = sup
a∈A

inf
b∈B

dX(a, b) for subsets A,B ⊂ X.

Different from the definition of global attractors in the autonomous case, the
minimality property is an additional property needed to ensure the uniqueness of
the global pullback attractor. It can be omitted if the pullback attractor is uniformly
bounded in the past, i.e., if the union⋃

t≤t0

A(t)

is bounded for all t0 ∈ T. The following theorem characterizes the evolution pro-
cesses possessing a global pullback attractor, for its proof we refer to [7] or [4].

Theorem 1.2. Let {U(t, s)| t ≥ s} be an evolution process in a complete metric
space X. Then, the following statements are equivalent:

(a) The evolution process {U(t, s)| t ≥ s} possesses a global pullback attractor.
(b) There exists a family of compact subsets {K(t)| t ∈ T} of X such that for all

t ∈ T the set K(t) pullback attracts all bounded subsets of X at time t.

Furthermore, the pullback global attractor is given by

A(t) =
⋃

D ⊂ X
bounded

ω(D, t) t ∈ T,

where ω(D, t) denotes the pullback ω-limit set of the set D ⊂ X at time instant
t ∈ T.

The pullback ω-limit set of the subset D ⊂ X at time instant t ∈ T is defined
by

ω(D, t) :=
⋂
r≥0

⋃
s≥r

U(t, t− s)D,

and A denotes the closure of a subset A ⊂ X.
Like global attractors of semigroups in the autonomous context, global pullback

attractors are generally not stable under perturbations and the rate of convergence
to the attractor is unknown, which motivates to consider pullback exponential attrac-
tors (see [8], [16] and [5]). Pullback exponential attractors are families of compact
subsets of the phase space whose fractal dimension is uniformly bounded and that
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pullback attract all bounded sets at an exponential rate. They are, due to the expo-
nential rate of attraction, more stable under perturbations and contain the global
pullback attractor. In particular, to show the existence of a pullback exponential
attractor is one way of proving the existence and finite dimensionality of the global
pullback attractor.

Definition 1.3. Let {U(t, s)| t ≥ s} be an evolution process in the metric space
(X, dX). We call the family of non-autonomous setsM = {M(t)| t ∈ T} a pullback
exponential attractor for the evolution process {U(t, s)| t ≥ s} if

(i) the subset M(t) ⊂ X is non-empty and compact ∀ t ∈ T,
(ii) the family M is positively semi-invariant; that is,

U(t, s)M(s) ⊂M(t) ∀ t ≥ s,
(iii) the fractal dimension of the sections M(t), t ∈ T, is uniformly bounded,

sup
t∈T

{
dimX

f (M(t))
}
<∞,

(iv) andM exponentially pullback attracts all bounded subsets of X: There exists
a positive constant ω > 0 such that for every bounded subset D ⊂ X and every
t ∈ T

lim
s→∞

eωsdistH

(
U(t, t− s)D,M(t)

)
= 0.

If an evolution process possesses a pullback exponential attractor {M(t)| t ∈ T},
the existence of the global pullback attractor {A(t)| t ∈ T} follows immediately
from Theorem 1.2. Moreover, the global pullback attractor is contained in the
pullback exponential attractor and possesses finite dimensional sections. Indeed,
the minimality property in Definition 1.1 implies

A(t) ⊂M(t) ∀t ∈ T.

An algorithm for the construction of non-autonomous exponential attractors was
first developed in [12] for discrete evolution processes, where the authors considered
forwards exponential attractors. The method is based on the compact embedding of
the phase space V into an auxiliary normed space W and the smoothing or regular-
izing property of the evolution process (see Section 2). Using the pullback approach
the result was recently extended in [8] and [16] for time continuous evolution pro-
cesses. Common assumptions in both articles were that the process satisfies the
smoothing property, which implies that it is eventually compact, and the existence
of a fixed bounded uniformly pullback absorbing set. This allows the pullback ex-
ponential attractor M to be unbounded in the future but it is always uniformly
bounded in the past, i.e., the union ⋃

t≤t0

M(t)

is bounded for all t0 ∈ T. Moreover, the Hölder continuity in time of the evolution
process was essential for the construction in [8] and [16]. It is typically satisfied in
parabolic problems, but not by evolution processes generated by hyperbolic equa-
tions. We proposed an alternative method for time-continuous evolution processes
in [5], which does not require the Hölder continuity in time of the evolution process,
we extended the algorithm for evolution processes that are asymptotically compact
and considered a time-dependent family of bounded pullback absorbing sets instead
of a fixed bounded pullback absorbing set. Our construction leads to better bounds
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for the fractal dimension of the sections of the attractors and to existence results
for pullback exponential attractors that are not necessarily uniformly bounded in
the past. To prove the finite fractal dimension of global pullback attractors that are
not uniformly bounded in the past has been an open problem. Previous construc-
tions of pullback exponential attractors were therefore limited to evolution processes
possessing global pullback attractors that are uniformly bounded in the past (see
Section 1 in [16] and Remark 3.2 in [18]).

In [13] the authors proposed a construction for forwards exponential attractors
for time continuous evolution processes, which is similar to our method. However,
the existence of the uniform attractor for the evolution process is a priori known and
the existence of a fixed bounded uniformly forwards absorbing set is assumed. This
is equivalent to the assumption of a fixed bounded uniformly pullback absorbing
set and implies the uniform boundedness of the forwards exponential attractor (i.e.,⋃
t∈TM(t) is bounded). They consider asymptotically compact evolution processes

in the weaker space W , a construction for processes that are asymptotically compact
in the stronger phase space V as we formulated in [5] has not been considered
before (see [8], [16], [13] and for autonomous exponential attractors [11], [12]). We
discussed and compared these different settings and results in [5], Section 3.2.

Our present article is the continuation of [5], where we constructed pullback expo-
nential attractors for asymptotically compact evolution processes in Banach spaces
assuming that the process possesses a family of time-dependent pullback absorbing
sets that possibly grow in the past and studied its implications in the autonomous
setting. We now discuss properties of the attractors and apply the theoretical re-
sults to prove the existence of pullback exponential attractors in two applications.
In both examples, previous results are not applicable and the generalizations we
developed in [5] are essentially needed.

In particular, we consider a non-autonomous Chafee-Infante equation in a bounded
domain Ω ⊂ Rn, n ∈ N,

∂

∂t
u(x, t) = 4u(x, t) + λu(x, t)− β(t)

(
u(x, t)

)3
x ∈ Ω, t > s,

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω, s ∈ R,

where λ > 0 and the initial data us ∈ C(Ω). The non-autonomous term β : R→ R+

is strictly positive, continuously differentiable, bounded when time t tends to∞ and
vanishes as t goes to −∞. We show that the generated evolution process satisfies
the smoothing property and possesses a semi-invariant family of pullback absorbing
sets. The diameter of the absorbing sets grows in the past since the function β
vanishes when t tends to −∞. From our results in [5] we deduce the existence of
a pullback exponential attractor for the generated evolution process. This implies
that the global pullback attractor exists and that its sections are of finite fractal
dimension. Furthermore, we prove that the global pullback attractor is unbounded
in the past,

lim
t→−∞

diam(A(t)) =∞,

where diam denotes the diameter in the space C(Ω), which provides a positive
answer to the question whether the finite fractal dimension can be established for
global pullback attractors that are not uniformly bounded in the past (see Section
1 in [16] and Remark 3.2 in [18]).
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The second application is the non-autonomous dissipative wave equation

∂2

∂t2
u(x, t) + β(t)

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x),
∂

∂t
u(x, s) = vs(x) x ∈ Ω, s ∈ R,

where Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain. We assume that the non-
linearity f : R→ R is continuously differentiable and of sub-critical growth.

The initial value problem generates an asymptotically compact evolution process
U in the phase space V := H1

0 (Ω)×L2(Ω). We prove that the evolution process can
be represented as a sum U = S + C, where the family of operators S satisfies the
smoothing property with respect to V and an auxiliary normed space W compactly
embedded into V , and C is a family of contractions in the stronger space V . Our
main result in [5] implies the existence of a pullback exponential attractor for the
evolution process U . Previous results cannot be applied since the constructions of
exponential attractors were developed for evolution processes or semigroups that are
asymptotically compact in the weaker space W , i.e., under the assumption that the
family C is a contraction in W (among others see [11], [12] and [13]). Moreover, the
former existence results for pullback exponential attractors in [8] and [16] required
the Hölder continuity in time of the evolution process, which is generally not satisfied
by hyperbolic equations.

The outline of our paper is as follows. In Section 2 we recall the main result of [5]
about the existence of pullback exponential attractors for asymptotically compact
evolution processes. We discuss properties of the pullback exponential attractors
and consequences of our existence theorem in Section 3. Finally, in Section 4 we ap-
ply our theoretical results and show the existence of pullback exponential attractors
for a non-autonomous damped wave equation and a non-autonomous Chafee-Infante
equation.

2. A general existence theorem for pullback exponential attractors. In
this section we recall the existence result for pullback exponential attractors ob-
tained in [5]. Let U = {U(t, s)| t ≥ s} be an evolution process in the Banach space
(V, ‖ · ‖V ). The construction of the pullback exponential attractor is based on the
existence of a time-dependent pullback absorbing family, the compact embedding
of the phase space into an auxiliary normed space and the asymptotic smoothing
property of the process. We assume the process U can be represented as U = S+C,
where {S(t, s)| t ≥ s} and {C(t, s)| t ≥ s} are families of operators satisfying the
following properties:

(H0) Let (W, ‖ · ‖W ) be another normed space such that the embedding V ↪→↪→W
is dense, compact and

‖v‖W ≤ µ‖v‖V ∀ v ∈ V,

for some constant µ > 0.
(H1) There exists a family of bounded sets B(t) ⊂ V , t ∈ T, that pullback absorbs

all bounded subsets of V : For every bounded set D ⊂ V and every t ∈ T there
exists a pullback absorbing time TD,t ∈ T+ := {t ∈ T| t ≥ 0} such that

U(t, t− s)D ⊂ B(t) ∀ s ≥ TD,t.
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(H2) The family {S(t, s)| t ≥ s} satisfies the smoothing property within the ab-
sorbing sets: There exist t̃ ∈ T+\{0} and a constant κ > 0 such that

‖S(t+ t̃, t)u− S(t+ t̃, t)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t), t ∈ T.

(H3) The family {C(t, s)| t ≥ s} is a contraction within the absorbing sets:

‖C(t+ t̃, t)u− C(t+ t̃, t)v‖V ≤ λ‖u− v‖V ∀u, v ∈ B(t), t ∈ T,

where the contraction constant 0 ≤ λ < 1
2 .

(H4) The process {U(t, s)| t ≥ s} is Lipschitz continuous within the absorbing sets:
For all t ∈ T and t ≤ s ≤ t+ t̃ there exists a constant Lt,s > 0 such that

‖U(s, t)u− U(s, t)v‖V ≤ Lt,s‖u− v‖V ∀u, v ∈ B(t), t ∈ T.

The construction of pullback exponential attractors requires to impose additional
assumptions on the pullback absorbing family in Hypothesis (H1).

(A1) The family of absorbing sets {B(t)| t ∈ T} is positively semi-invariant for the
evolution process {U(t, s)| t ≥ s},

U(t, s)B(s) ⊂ B(t) ∀ t ≥ s, t, s ∈ T.

(A2) For every bounded subset D ⊂ V and time t ∈ T the corresponding absorbing
times are bounded in the past: There exists TD,t ∈ T+ such that

U(s, s− r)D ⊂ B(s) ∀ s ≤ t, r ≥ TD,t.

The above-stated assumptions allow to construct pullback exponential attractors
for the evolution process {U(t, s)| t ≥ s} (see [5]).

Definition 2.1. We say that a time-dependent family of bounded sets {B(t)| t ∈ T}
grows sub-exponentially in the past if

diam(B(t))eγt −−−−→
t→−∞

0 ∀ γ > 0,

where diam(B) denotes the diameter of a subset B ⊂ V .

In the sequel, we denote by BXr (a) the ball of radius r > 0 and center a ∈ X in
the metric space X and by NX

ε (A) the minimal number of balls in X with radius
ε > 0 and centers in A needed to cover the subset A ⊂ X.

Theorem 2.2. Let {U(t, s)| t ≥ s}, t, s ∈ T, be an evolution process in the Banach
space V and the assumptions (H0)–(H4), (A1) and (A2) be satisfied. Moreover, we
assume that the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most
sub-exponentially in the past. Then, for every ν ∈ (0, 1

2 − λ) there exists a pullback
exponential attractor {Mν(t)| t ∈ T} for the evolution process {U(t, s)| t ≥ s}, and
the fractal dimension of its sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)

∀ t ∈ T.

Remark 1. For discrete evolution processes the Lipschitz continuity assumption
(H4) in Theorem 2.2 can be omitted.
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3. Properties of the pullback exponential attractor. An immediate conse-
quence of Theorem 2.2 is the existence and finite dimensionality of the global pull-
back attractor. For the proof of the following theorem we define the group of time
shift operators or temporal translations {Sr| r ∈ T} by

SrU(t, s) := U(t+ r, s+ r) t ≥ s, t, s ∈ T,
where r ∈ T and {U(t, s)| t ≥ s} is an evolution process.

Theorem 3.1. Let T = Z or T = R, {U(t, s)| t ≥ s} be an evolution process in the
Banach space V and the assumptions (H0)–(H3), (A1) and (A2) be satisfied. More-
over, we assume that the diameter of the family of absorbing sets {B(t)| t ∈ T}
grows at most sub-exponentially in the past. Then, the global pullback attractor
{A(t)| t ∈ T} of the evolution process {U(t, s)| t ≥ s} exists, and the fractal dimen-
sion of its sections is uniformly bounded by

dimV
f (A(t)) ≤ inf

ν∈(0, 12−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)}

∀ t ∈ T.

Proof. For discrete evolution processes the statements follow from Theorem 2.2, Re-
mark 1 and the minimality property of the global pullback attractor (see Definition
1.1).

Otherwise, if T = R, we define the discrete evolution process {Ũ(n,m)| n ≥ m}
by Ũ(n,m) := U(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. It satisfies the assumptions
of Theorem 2.2, and we conclude that for every ν ∈ (0, 1

2 − λ) there exists a
pullback exponential attractor {Mν

d(k)| k ∈ Z} for the discrete evolution process

{Ũ(n,m)| n ≥ m}. We define the sets

M̂ν(t) := U(t, kt̃)Mν
d(k) for t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

which implies M̂ν(kt̃) =Mν
d(k) for all k ∈ Z. Since the operators U(t, s) : V → V ,

t ≥ s, are continuous and the sectionsMν
d(k), k ∈ Z, are compact, {M̂ν(t), | t ∈ R}

is a family of compact subsets of V . Moreover, it follows as in the proof of Theorem

2.2 that the family {M̂ν(t)| t ∈ R} pullback attracts all bounded subsets of V . By
Theorem 1.2 we conclude that the global pullback attractor {A(t)| t ∈ R} of the
time continuous process {U(t, s)| t ≥ s} exists, and the minimality property implies

A(t) ⊂ M̂ν(t) for all t ∈ R.
Since ν ∈ (0, 1

2−λ) was arbitrary Theorem 2.2 implies that the fractal dimension
of the discrete global pullback attractor is uniformly bounded by

dimV
f (A(kt̃)) ≤ inf

ν∈(0, 12−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)}

∀ k ∈ Z,

and it remains to estimate the fractal dimension of the time continuous sections.
To this end let r ∈ R be arbitrary. We consider the shifted evolution process

{SrU(t, s)| t ≥ s} and the associated discrete evolution process {Ũr(n,m)| n ≥ m},
which is given by Ũr(n,m) := Ur(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. By Theorem
2.2 and Remark 1 for every ν ∈ (0, 1

2 − λ) there exists a pullback exponential

attractor {Mν
r,d(k)| k ∈ Z} for the discrete evolution process {Ũr(n,m)| n ≥ m},

and the fractal dimension of its sections satisfies the estimate stated in the theorem.
We follow the previous arguments to conclude that the global pullback attractor
{Ar(t)| t ∈ R} for the time continuous evolution process {SrU(t, s)| t ≥ s} exists
and observe that

Ar(t) = A(t+ r) ∀ t ∈ R.
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Moreover, the fractal dimension of the discrete sections of the global pullback at-
tractor is uniformly bounded,

dimV
f (Ar(kt̃)) ≤ inf

ν∈(0, 12−λ)

{
dimV

f

(
Mν

r,d(k)
)}

≤ inf
ν∈(0, 12−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)}

for all k ∈ Z. Finally, since r ∈ R was arbitrary and

Ar(kt̃) = A(kt̃+ r) ∀ k ∈ Z,

we obtain the uniform bound for the fractal dimension of the time continuous global
pullback attractor {A(t)| t ∈ R}.

Remark 2. We remark that the Lipschitz continuity (H4), which is essential for the
construction of the time continuous pullback exponential attractor, is not required
to establish the existence of the global pullback attractor and to derive estimates
on its fractal dimension (see the hypothesis in Theorem 3.1).

Remark 3. The (Kolmogorov-) ε-entropy of a pre-compact subset A ⊂ X is defined
as

Hε(A) = log2(NX
ε (A))

and was introduced by Kolmogorov and Tihomirov in [15]. The order of growth of
Hε as ε tends to zero is a measure for the massiveness of the set A in X, even if
the fractal dimension of A is infinite.

The bound on the fractal dimension of the global pullback attractor in Theorem
3.1 is related to the entropy numbers for the embedding of the spaces V and W .
For k ∈ N the k-th entropy number for the embedding V ↪→W is defined as

ek := inf
{
ε > 0

∣∣BV1 (0) ⊂
2k−1⋃
j=1

BWε (wj), wj ∈W, j = 1, . . . , 2k−1
}
.

If V and W are infinite dimensional Banach spaces such that the embedding V ↪→↪→
W is compact, then 0 < ek <∞ for all k ∈ N.

Let λ = 0 and ν ∈ (0, 1
2 ) be as in Theorem 3.1, that is, the evolution process U

satisfies the smoothing property. Assuming that ek → 0 as k → ∞ and that there
exists k ∈ N such that ek = ν

κ we obtain in our estimate

log 1
2ν

(
NW

ν
κ

(BV1 (0))
)
≤ (k − 1) ln(2)

ln( 1
2κek

)
.

We further observe that

log 1
2ν

(
NW

ν
κ

(BV1 (0))
)
−−−→
ν→ 1

2

∞.

On the other hand, if the entropy numbers grow polynomially in 1
k , i.e., if ek = c

kα

for some constants c, α > 0, then

log 1
2ν

(
NW

ν
κ

(BV1 (0))
)
≤ (k − 1) ln(2)

ln( 1
2κc ) + α ln(k)

−−−−→
k→∞

∞,

and consequently,

log 1
2ν

(
NW

ν
κ

(BV1 (0))
)
−−−→
ν→0

∞.
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These observations illustrate that there exists an optimal constant ν ∈ (0, 1
2 ) to

minimize the bound on the fractal dimension in Theorem 3.1.
For certain function spaces the entropy numbers can explicitly be estimated

(see [10]). For instance, for the embeddings of the Sobolev spaces W s1,p(Ω) into
W s2,q(Ω), where Ω ⊂ Rn is a smooth bounded domain and s1, s2 ∈ R, p, q ∈ (1,∞)
are such that s1 − s2 − nmax

{
0, 1

p −
1
q

}
> 0 it is known that

c1k
− s1−s2n ≤ ek ≤ c2k−

s1−s2
n

for some constants c1, c2 ≥ 0 (Theorem 2, Section 3.3.3 in [10]), and our argumen-
tation above applies.

The following proposition illustrates the relation between the global pullback
and the pullback exponential attractor for evolution processes. We recall that an

evolution process U was called B̂-asymptotically compact in [19], where B̂ =
{B(t)| t ∈ T} is a family of bounded subsets, if for every t ∈ T and all sequences
(tn)n∈N in T+ and (xn)n∈N in B(t− tn) such that limn→∞ tn =∞ the set {U(t, t−
tn)xn|n ∈ N} is pre-compact in V . Furthermore, the sets Λ(B̂, t), t ∈ T, were
defined as

Λ(B̂, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ)
‖·‖V

∀ t ∈ T,

where A
‖·‖V

denotes the closure of the set A in V.Under the assumptions of Theorem

2.2 it can be observed from its proof in [5] that the evolution process U is B̂-

asymptotically compact, where the family B̂ is the family of pullback absorbing

sets B̂ = {B(t)| t ∈ T} in Assumption (H1). Moreover, it follows from [19] that

Λ(B̂, t), t ∈ T, is a strictly invariant family of non-empty, compact subsets of V that
pullback attracts all bounded sets and

A(t) ⊂ Λ(B̂, t) ∀ t ∈ T.
However, the sets do not coincide in general.

Remark 4. For an evolution process {U(t, s)| t ≥ s} satisfying the hypotheses of
Theorem 2.2 the pullback exponential attractor in [5] was defined as

Mν(t) =
⋃
n∈N0

U(t, kt̃)En(k)
‖·‖V

∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z

(see the proof of Theorem 3.2 and Theorem 3.3). The family of discrete sets
En(k), n ∈ N0, k ∈ Z, satisfies the properties

• En(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),
• ]En(k) ≤

∑n
l=0N

l, N := NW
ν
κ

(BV1 (0)),

• U(k, k − n)B(k − n) ⊂
⋃
u∈En(k)B

V
(2(ν+λ))nRk−n

(u),

where ] denotes the cardinality of a set, B(k) are the pullback absorbing sets for
discrete times k ∈ Z in Hypothesis (H1), and Rk > 0 is the radius of a ball in V
that contains B(k).

Proposition 1. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space
V and the assumptions of Theorem 2.2 be satisfied. Then, the pullback exponential
attractor of Theorem 2.2 can be represented as

Mν(t) = Λ(B̂, t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,
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where t̃ is given by (H2) and (H3), and we refer to [5] for the definition and con-
struction of the family of sets En(k), n ∈ N0, k ∈ Z.

Moreover, if the family of pullback absorbing sets is bounded in the past, i.e., if
the union

⋃
t≤t0 B(t) is bounded for all t0 ∈ T, then

Mν(t) = A(t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

where {A(t)| t ∈ T} denotes the global pullback attractor of the evolution process.

Proof. The pullback exponential attractor in [5] was defined as

Mν(t) =
⋃
n∈N0

U(t, kt̃)En(k)
‖·‖V

∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

Let k ∈ Z, t ∈ [kt̃, (k + 1)t̃[ and x ∈ Mν(t). Moreover, let (xm)m∈N be a sequence
in
⋃
n∈N0

U(t, kt̃)En(k) such that limm→∞ xm = x. For every m ∈ N there exists

nm ∈ N0 such that xm ∈ U(t, kt̃)Enm(k). If N0 := sup{nm|m ∈ N} < ∞, then

{xm|m ∈ N} ⊂
⋃N0

m=0 U(t, kt̃)Enm(k) and since the set is finite,

x = lim
m→∞

xm ∈
N0⋃
m=0

U(t, kt̃)Enm(k).

Otherwise, there exists a subsequence, which we denote by (nm)m∈N as well, such
that limm→∞ nm =∞. By the definition of the sets En(k) we have

xm = U
(
t, (k − nm)t̃

)
ym

for some ym ∈ B
(
(k − nm)t̃

)
. It follows that x ∈ Λ(B̂, t), and we conclude

Mν(t) ⊂ Λ(B̂, t) ∪
⋃
n∈N0

U(t, kt̃)En(k).

To show the reverse inclusion let t ∈ T and x ∈ Λ(B̂, t). Then, there exist
sequences (tm)m∈N in T+, limm→∞ tm = ∞, and (xm)m∈N in B(t − tm) such that
x = limm→∞ U(t, t−tm)xm. We argue by contradiction and assume that there exist
ε > 0 and N0 ∈ N such that

distH

(
U(t, t− tm)xm,Mν(t)

)
≥ ε ∀m ≥ N0.

Let k ∈ Z be such that t ∈ [kt̃, (k + 1)t̃[, and let km ∈ Z, sm ∈ [0, t̃[ be such that
t− tm = (k − km)t̃− sm. We observe that

U
(
(k − km)t̃, (k − km)t̃− sm

)
xm ∈ B

(
(k − km)t̃

)
and obtain by the definition of the pullback exponential attractor

distH

(
U(t, t− tm)xm,Mν(t)

)
≤ distH

(
U(t, kt̃)U(kt̃, t− tm)xm, U(t, kt̃)

⋃
n∈N0

En(k)
)

≤ LdistH

(
U(kt̃, t− tm)xm,

⋃
n∈N0

En(k)
)

≤ LdistH

(
U
(
kt̃, (k − km)t̃

)
B
(
(k − km)t̃

)
,
⋃
n∈N0

En(k)
)
,
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for some constant L ≥ 0, where we used the Lipschitz-continuity (H1) in the second
inequality and the semi-invariance of the absorbing sets in the last inequality. It
follows from the proof of Theorem 2.2 in [5] that

U
(
(kt̃, (k − km)t̃)

)
B
(
(k − km)t̃

)
⊂

⋃
u∈Ekm (k)

BVrkm (u),

where the sequence of radii rkm → 0 as km tends to ∞. We conclude that

distH (U(t, t− tm)xm,Mν(t)) < ε

if m ∈ N is sufficiently large, which contradicts our assumption and shows the

relation Λ(B̂, t) ⊂Mν(t).
To prove the second statement in the proposition it suffices to show the inclusion

Mν(t) ⊂ A(t) ∪
⋃
n∈N0

U(t, kt̃)En(k) ∀ t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

since the global pullback attractor is contained in the pullback exponential attrac-
tor. Let k ∈ Z, t ∈ [kt̃, (k + 1)t̃[, x ∈ Mν(t) and (xm)m∈N be a sequence in⋃
n∈N0

U(t, kt̃)En(k) such that limm→∞ xm = x. For every m ∈ N there exists

nm ∈ N0 such that xm ∈ U(t, kt̃)Enm(k). If N0 := sup{nm|m ∈ N} <∞, it follows
as above that

x = lim
m→∞

xm ∈
N0⋃
m=0

U(t, kt̃)Enm(k).

Otherwise, there exists a subsequence, which we denote by (nm)m∈N as well, such
that limm→∞ nm =∞, and by the definition of the sets En(k) we have

xm = U
(
t, (k − nm)t̃

)
ym

for some ym ∈ B((k−nm)t̃). By assumption, the family of absorbing sets is bounded
in the past, which implies that {ym|m ∈ N} ⊂

⋃
s≤tB(s) ⊂ D for some bounded

set D ⊂ V. It follows that

x = lim
m→∞

xm = lim
m→∞

U
(
t, (k − nm)t̃

)
ym ∈ ω(D, t) ⊂ A(t) =

⋃
D ⊂ X
bounded

ω(D, t)
‖·‖V

,

where we used the representation of the global pullback attractor in Theorem 1.2.

Remark 5. Let {U(t, s)| t ≥ s} be an evolution process in V, the hypothesis of
Theorem 2.2 be satisfied and {A(t)| t ∈ T} and {Mν(t)| t ∈ T} be the corresponding
global and exponential pullback attractor. We remark that⋃

n∈N0

U(t, kt̃)En(k) ∩ A(t)

is a countable dense subset of the section A(t) of the global pullback attractor for
every t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

Moreover, if the pullback exponential attractor is bounded in the past, Propo-
sition 1 implies that the Hausdorff dimensions of the sections A(t) and of Mν(t)
coincide,

distVH(Mν(t)) = distVH(A(t)) ∀t ∈ T,
since the Hausdorff dimension of every countable set is zero. In this case, if we
required finite Hausdorff instead of finite fractal dimension in the definition of ex-
ponential attractors we could add an arbitrarily large countable semi-invariant set
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to the global attractor without changing its dimension. This is not possible if we
impose finite fractal dimension in the definition of exponential attractors (see also
[9], Chapter 7, for the autonomous case).

If an evolution process {U(t, s)| t ≥ s} possesses the global pullback attractor
{A(t)| t ∈ T} and is periodic, that is SrU = U for some r ∈ T, the invariance
property

U(t, s)A(s) = A(t) ∀ t ≥ s, t, s ∈ T,
shows that the periodicity is directly inherited by the attractor. Since pullback
exponential attractors are not unique we could certainly construct for an evolution
process U and the shifted process SrU , where r ∈ T, pullback exponential attractors
MU and MSrU that do not satisfy the cocycle property

MU (t+ r) =MSrU (t) ∀ t, r ∈ T.
However, if {MU (t)| t ∈ T} is a pullback exponential attractor for the evolution
process U the translation of the attractor {MU (t + r)| t ∈ T} yields a pullback
exponential attractor for the shifted process SrU , for every r ∈ T.

Corollary 1. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space
V . We assume that the hypotheses of Theorem 2.2 are satisfied and denote by
{Mν

U (t)| t ∈ T} the pullback exponential attractor for {U(t, s)| t ≥ s} in Theorem
2.2. Then, for every r ∈ T the family {Mν

SrU (t)| t ∈ T}, where

Mν
SrU (t) :=Mν

U (t+ r) ∀ t ∈ T,
is a pullback exponential attractor for the evolution process {SrU(t, s)| t ≥ s}, and
the family of exponential attractors satisfies

Mν
U (t+ r) =Mν

SrU (t) ∀ t, r ∈ T.
If an evolution process is periodic the family of pullback exponential attractors
{Mν

SrU (t)| t ∈ T}r∈T exhibits the same property.

Proof. Let r ∈ T, {Mν
U (t)| t ∈ T} be the pullback exponential attractor for the

evolution process {U(t, s)| t ≥ s} in Theorem 2.2 and

Mν
SrU (t) :=Mν

U (t+ r) ∀ t ∈ T.
Then, the family {Mν

SrU (t)| t ∈ T} is semi-invariant under the action of the evolu-
tion process {SrU(t, s)| t ≥ s}. The exponential pullback attraction property with
respect to the process {SrU(t, s)| t ≥ s}, the compactness of the sections and the
uniform bound for its fractal dimension immediately follow from the corresponding
properties of the family {Mν

U (t)| t ∈ T}, which proves that {Mν
SrU (t)| t ∈ T} is a

pullback exponential attractor for the shifted process.

Finally, we formulate assumptions for the construction of forwards exponential
attractors.

Definition 3.2. Let {U(t, s)| t ≥ s}, t, s ∈ T, be an evolution process in the metric
space (X, dX). We call the family M = {M(t)| t ∈ T} a forwards exponential
attractor for the evolution process {U(t, s)| t ≥ s} if it satisfies Properties
(i)-(iii) in Definition 1.3 and forwards exponentially attracts all bounded subsets of
X: There exists a constant ω > 0 such that

lim
s→∞

eωsdistH

(
U(t+ s, t)D,M(t+ s)

)
= 0,

for every bounded subset D ⊂ X and every t ∈ T.
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We replace the hypothesis (H1) and (A2) by the following:

(H1)′ There exists a family of bounded subsets B(t) ⊂ V , t ∈ T, that forwards
absorbs all bounded subsets of V : For every bounded set D ⊂ V and every
t ∈ T there exists a forwards absorbing time TD,t ∈ T+ such that

U(t+ s, t)D ⊂ B(t+ s) ∀ s ≥ TD,t.
(A2)′ For every bounded subset D ⊂ V and time t ∈ T the corresponding absorbing

times are bounded in the future: There exists TD,t ∈ T+ such that

U(s+ r, s)D ⊂ B(s+ r) ∀ s ≥ t, r ≥ TD,t.

Theorem 3.3. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V
and the assumptions (H0), (H1)′, (H2)–(H4), (A1) and (A2)′ be satisfied. Moreover,
we assume that the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at
most sub-exponentially in the past.

Then, for every ν ∈ (0, 1
2 − λ) there exists a forwards exponential attractor

{Mν(t)| t ∈ T} for the evolution process {U(t, s)| t ≥ s}, and the fractal dimension
of its sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)

∀t ∈ T.

For discrete evolution processes Hypothesis (H4) can be omitted.

Proof. Forwards exponential attractors can be constructed by slightly modifying
the proof for pullback exponential attractors in [5].

Remark 6. If the pullback absorbing time TD,t corresponding to a bounded subset
D ⊂ X in Hypothesis (H1) is independent of the time t ∈ T, the family {B(t)| t ∈ T}
is also forwards absorbing for the process. More precisely, the properties (H1) and
(H1)′ are indeed equivalent in this case, and the conditions (A2) and (A2)′ are
automatically satisfied.

Consequently, in this case the pullback exponential attractor constructed in The-
orem 2.2 coincides with the forwards exponential attractor in Theorem 3.3.

4. Applications. In this section we illustrate our results and prove the existence of
pullback exponential attractors for evolution processes generated by non-autonomous
PDEs.

4.1. Non-autonomous Chafee-Infante equation. The following initial value
problem for the non-autonomous Chafee-Infante equation yields an example for a
finite dimensional global pullback attractor which is unbounded in the past.

Let Ω ⊂ Rn, n ∈ N, be a bounded domain with smooth boundary ∂Ω and s ∈ R.
We consider the initial-/boundary value problem

∂

∂t
u(x, t) = 4u(x, t) + λu(x, t)− β(t)

(
u(x, t)

)3
x ∈ Ω, t > s, (1)

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

u(x, s) = us(x) x ∈ Ω, s ∈ R,
where the constant λ > 0, ∆ denotes the Laplace operator with respect to the
spatial variable x, ∂

∂ν the outward unit normal derivative on the boundary ∂Ω

and ∂
∂t the partial derivative with respect to time t > s. The initial data us is a

uniformly continuous function on Ω, us ∈ C(Ω). Moreover, we assume that the
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non-autonomous term β : R → R+ is strictly positive, continuously differentiable
and satisfies the properties

0 < sup
t∈R
{β(t)} ≤ β0, (2)

lim
t→−∞

β(t) = 0, (3)

sup
t∈R

{
|β′(t)|
β(t)

}
≤ β1, (4)

lim
t→−∞

eγt

β(t)
= 0 ∀ γ > 0, (5)

where the constants 0 < β0, β1 < ∞. We consider the evolution process generated
by (1) in the phase space W := C(Ω), where the norm in W is defined by

‖u‖W := max
x∈Ω
|u(x)| u ∈W.

To show the existence of a positively semi-invariant family of absorbing sets we use
the method of lower and upper solutions (see [21], Chapter 2).

Definition 4.1. A function u∗ ∈ C(Ω× [s,∞[)∩C2,1(Ω×]s,∞[) is called an upper
solution for Problem (1) if it satisfies the inequalities

∂

∂t
u∗(x, t)−4u∗(x, t) ≥ λu∗(x, t)− β(t)

(
u∗(x, t)

)3
x ∈ Ω, t > s, (6)

∂

∂ν
u∗(x, t) ≥ 0 x ∈ ∂Ω, t ≥ s,

u∗(x, s) ≥ us(x) x ∈ Ω, s ∈ R.

Analogously, the function u∗ ∈ C(Ω× [s,∞[)∩C2,1(Ω×]s,∞[) is a lower solution
for (1) if it satisfies the reversed inequalities in (6).

Lemma 4.2. There exist constants a, b ≥ 0 such that the function c∗ : [s,∞[→ R+,

c∗(t) :=
a√
β(t)

+ b, t > s,

is an upper solution for (1) if the initial data satisfies us(x) ≤ c∗(s) for all x ∈ Ω.
If the initial function fulfils us(x) ≥ −c∗(s) for all x ∈ Ω, the function c∗ :

[s,∞[→ R, c∗(t) := −c∗(t), is a lower solution for (1).

Proof. Defining the function c∗(t) := a√
β(t)

+ b, where a > max
{√

λ
3 ,
√

β1

2 + λ
}

and b > 0 we obtain

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3
=

a√
β(t)

(
− β

′(t)

2β(t)
+ b
√
β(t)

(
3a− λ

a

)
+ (a2 − λ) +

b3

a

√
β(t)

3
+ 3b2β(t)

)
.

Since β vanishes slowly,

sup
t∈R

{
|β′(t)|
β(t)

}
≤ β1 <∞,

the choice of a and b implies

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3 ≥ 0 ∀t > s,

which proves that c∗ is an upper solution for Problem (1).
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The non-linearity is odd with respect to u, and hence, we obtain

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3
= −

(
∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3) ≤ 0.

Consequently, c∗ := −c∗ is a lower solution for (1) if the initial data satisfies us(x) ≥
c∗(s) for all x ∈ Ω.

The linear heat equation

∂

∂t
u(x, t) = 4u(x, t) x ∈ Ω, t > 0, (7)

∂

∂ν
u(x, t) = 0 x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) x ∈ Ω,

generates an analytic semigroup {e∆t| t ∈ R+} in the space W := (C(Ω), ‖ · ‖W )
(see [20]). We denote the associated fractional power spaces by Xα, α ≥ 0. The
operators e∆t are linear and bounded from W to Xα and satisfy the estimates

‖e∆t‖L(W ;Xα) ≤
Cα
tα

∀ t > 0, (8)

where the constant Cα ≥ 0 and ‖ · ‖L(W ;Xα) denotes the operator norm. The
semi-linear problem (1) generates an evolution process {U(t, s)| t ≥ s} in W , where

U(t, s)us := u( · , t;us, s) t ≥ s,

and u( · , · ;us, s) : Ω× [s,∞[→ R denotes the unique solution of (1) corresponding
to initial data us ∈ C(Ω) and initial time s ∈ R. Moreover, {U(t, s)| t ≥ s} satisfies
the variation of constants formula

U(t, s)us = e∆(t−s)us +

∫ t

s

e∆(t−τ)f(τ, U(τ, s)us))dτ

(see [20] and [22]).
We apply Lemma 4.2 to show the existence of a semi-invariant family of pullback

absorbing sets.

Proposition 2. The family of subsets

B(t) :=
{
v ∈W | ‖v‖W ≤ c∗(t)

}
, t ∈ R,

is positively semi-invariant for the evolution process {U(t, s)| t ≥ s} generated by
Problem (1) and pullback absorbs all bounded sets of W .

Proof. Let s ∈ R and the initial data us ∈ W satisfy ‖us‖W ≤ c∗(s). Lemma 4.2
implies that the functions c∗ and c∗ are upper and lower solutions for Problem (1).
From Theorem 4.1, Chapter 2, in [21] it follows that there exists a unique classical
solution u( · , · ;us, s) : Ω× [s,∞[→ R and

c∗(t) ≤ u(x, t;us, s) ≤ c∗(t) ∀x ∈ Ω, t ≥ s.

Consequently, the evolution process {U(t, s)| t ≥ s} satisfies

U(t, s)us ∈ B(t) ∀us ∈ B(s), t ≥ s,

which proves the semi-invariance of the absorbing sets {B(t)| t ∈ R}.
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To show that the family is pullback absorbing, let D ⊂W be bounded and t ∈ R.
We choose R > 0 such that D ⊂ BWR (0). By Assumption (3) there exists t0 ∈ R
such that R ≤ a√

β(t)
for all t ≤ t0, and consequently, D ⊂ B(t) for all t ≤ t0.

Finally, we observe that the pullback absorbing time is bounded in the past, in
particular, TD,s ≤ t− t0 for all s ≤ t.

Next, we show that {U(t, s)| t ≥ s} satisfies the smoothing property with respect
to the Banach spaces

V := Ĉ1(Ω) :=

{
u ∈ C1(Ω)

∣∣ ∂
∂ν
u(x) = 0, x ∈ ∂Ω

}
and W , where the norm in V is defined by

‖u‖V := ‖u‖W +
n∑
j=1

‖ ∂u
∂xj
‖W , u ∈ V.

Lemma 4.3. Let {U(t, s)| t ≥ s} be the evolution process generated by Problem
(1). Then, there exists a positive constant κ > 0 such that

‖U(t+ 1, t)u− U(t+ 1, t)v‖V ≤ κ‖u− v‖W ∀u, v ∈ B(t), t ∈ R.

Proof. Let s ∈ R and u, v ∈ B(s) be given initial data. We denote the corresponding
solutions of Problem (1) by u(t) := U(t, s)u and v(t) := U(t, s)v, t ≥ s. It was shown
in [20], Theorem 2.4, that the continuous embedding Xα ↪→ V exists for all α > 1

2 .
Using the variation of constants formula we obtain∥∥u(t)− v(t)

∥∥
V
≤ c

∥∥u(t)− v(t)
∥∥
Xα

≤ c
(∥∥e∆(t−s)(u− v)

∥∥
Xα

+

∫ t

s

∥∥e∆(t−τ)
(
f(τ, u(τ))− f(τ, v(τ))

)∥∥
Xα
dτ
)

≤ c
∥∥e∆(t−s)∥∥

L(W ;Xα)

∥∥u− v∥∥
W

+ c

∫ t

s

∥∥e∆(t−τ)
∥∥
L(W ;Xα)

∥∥f(τ, u(τ))− f(τ, v(τ))
∥∥
W
dτ,

where c ≥ 0 denotes the embedding constant. By Proposition 2 it follows that∥∥f(τ, u(τ))− f(τ, v(τ))
∥∥
W

(9)

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+
∥∥β(τ)

(
u(τ)− v(τ)

)(
u(τ)2 + u(τ)v(τ) + v(τ)2

)∥∥
W

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+ 2
∥∥(u(τ)− v(τ)

)
β(τ)

(
u(τ)2 + v(τ)2

)∥∥
W

≤ λ
∥∥u(τ)− v(τ)

∥∥
W

+ 4
∥∥(u(τ)− v(τ)

)
β(τ)

( a√
β(τ)

+ b
)2∥∥

W

≤ (λ+ C)
∥∥u(τ)− v(τ)

∥∥
W
,

for some constant C ≥ 0, where we used Assumption (2) in the last estimate. The
estimate (8) and the embedding V ↪→W now imply∥∥u(t)− v(t)

∥∥
V

≤ cCα

( 1

(t− s)α
∥∥u− w∥∥

W
+ (λ+ C)

∫ t

s

1

(t− τ)α
∥∥u(τ)− v(τ)

∥∥
W
dτ
)

≤ cCα

( 1

(t− s)α
∥∥u− w∥∥

W
+ (λ+ C)µ

∫ t

s

1

(t− τ)α
∥∥u(τ)− v(τ)

∥∥
V
dτ
)
,
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for some constant µ > 0. Finally, we set t = s+ 1 and

y(s+ 1) := ‖U(s+ 1, s)u− U(s+ 1, s)v‖V = ‖u(s+ 1)− v(s+ 1)‖V ,

and obtain the inequality

y(s+ 1) ≤ cCα
(
‖u− v‖W + (λ+ C)µ

∫ s+1

s

1

(s+ 1− τ)α
y(τ)dτ

)
.

Using the generalized Gronwall Lemma (Theorem 1.26 in [24]) we conclude

y(s+ 1) ≤ κ‖u− v‖W ,

for some constant κ > 0.

Theorem 2.2 now implies the existence of a pullback exponential attractor in V
for the evolution process {U(t, s)| t ≥ s}.

Remark 7. For evolution processes that satisfy the smoothing property it suffices
to assume that the pullback absorbing family is bounded in the metric of W and
that the process satisfies the Lipschitz continuity property (H4) in W .

Indeed, if the family of absorbing sets is bounded in the metric of W we define
the sets

B̃(t) := U(t, t− t̃)B(t− t̃) t ∈ T,
which are pullback absorbing and bounded in the space V by the smoothing property
(H2). Moreover, the smoothing property (H2), the Lipschitz continuity in W and
the continuous embedding (H0) imply

‖U(t+ t̃+ s, t)u− U(t+ t̃+ s, t)v‖V ≤ κ‖U(t+ s, t)u− U(t+ s, t)v‖W
≤ κLt,s‖u− v‖W ≤ κLt,sµ‖u− v‖V ,

for all u, v ∈ B(t), t ∈ R and s ∈ [0, t̃]. This proves the Lipschitz continuity of the
evolution process in the space V and the result remains valid.

Theorem 4.4. Let {U(t, s)| t ≥ s} be the evolution process in W = C(Ω) generated
by Problem (1) and the function β satisfy Properties (2)–(5). Then, for every

ν ∈ (0, 1
2 ) there exists a pullback exponential attractor {Mν(t)| t ∈ R} in V = Ĉ1(Ω)

for the evolution process {U(t, s)| t ≥ s}, and the fractal dimension of its sections
is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV1 (0))
)

∀t ∈ R,

where κ > 0 denotes the smoothing constant in Lemma 4.3. Furthermore, the global
pullback attractor exists and is unbounded in the past,

lim
t→−∞

diam(A(t))→∞.

It is contained in the pullback exponential attractor, A(t) ⊂Mν(t), and

dimV
f (A(t)) ≤ inf

ν∈(0, 12 )

{
log 1

2ν

(
NW

ν
κ

(BV1 (0))
)}

∀ t ∈ R.

Proof. The family of pullback absorbing sets {B(t)| t ∈ R} defined in Lemma 4.3
satisfies the hypothesis (A1) and (A2). Since the diameter of the absorbing sets is
bounded by

‖B(t)‖W ≤ 2
( a√

β(t)
+ b
)

t ∈ R,
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and the non-autonomous term satisfies Property (5), the absorbing sets grow at most
sub-exponentially in the past. Moreover, the embedding V ↪→↪→W is compact, and
the smoothing property with respect to the spaces V and W was shown in Lemma
4.3. To deduce the existence of a pullback exponential attractor from Theorem 2.2
it remains to verify the Lipschitz continuity of the evolution process. Let s ∈ R
and u, v ∈ B(s) be given initial data. Using the variation of constants formula we
obtain ∥∥U(t, s)u− U(t, s)v

∥∥
W

≤
∥∥e∆(t−s)(u− v)

∥∥
W

+

∫ t

s

∥∥e∆(t−τ)
(
f(τ, U(τ, s)u)− f(τ, U(τ, s)v)

)∥∥
W
dτ

≤ C0

∥∥u− v∥∥
W

+ C0

∫ t

s

∥∥f(τ, U(τ, s)u)− f(τ, U(τ, s)v)
∥∥
W
dτ

≤ C0

∥∥u− v∥∥
W

+ C0(λ+ C)

∫ t

s

∥∥U(τ, s)u− U(τ, s)v
∥∥
W
dτ,

for some constant C0 ≥ 0, where we used the estimate (9) in the proof of Lemma
4.3. By Gronwalls Lemma follows the Lipschitz continuity of {U(t, s)| t ≥ s} in W .

The global pullback attractor exists by Theorem 2.2, it is contained in the pull-
back exponential attractor and its sections are finite dimensional. The bound on the
fractal dimension follows from Theorem 3.1, and it remains to show that the global
pullback attractor is unbounded in the past. Due to the homogeneous Neumann
boundary conditions, solutions of the ODE

d

dt
y(t) = λy(t)− β(t)(y(t))3 t > s, (10)

y(s) = y0 s ∈ R, y0 ∈ R,

also solve Problem (1) with initial data us(x) = y0, x ∈ Ω. As shown in [17],
Proposition 3.1, for initial data y0 6= 0 the explicit solution of (10) is given by

y(t; s, y0)2 =
e2λt

e2λsy−2
0 + 2

∫ t
s
e2λτβ(τ)dτ

, t > s.

Taking the limit s→ −∞ we obtain two complete trajectories ±ξ, where

ξ2(t) =
e2λt

2
∫ t
−∞ e2λτβ(τ)dτ

, t ∈ R,

that are unbounded when t tends to −∞ by Assumption (5).
If ζ(t), t ∈ R, is a complete trajectory of (10) above of ξ(t), t ∈ R, the explicit

solution formula implies

ζ(t)2 =
e2λt

e2λsζ(s)−2 + 2
∫ t
s
e2λτβ(τ)dτ

> ξ(t)2, t > s.

It follows that

ζ(t)2 >
e2λt

2
∫ t
−∞ e2λτβ(τ)dτ

= ξ(t)2, t ∈ R,

which shows that solutions starting above of the complete trajectory ξ blow-up
backwards in finite time and cannot be emanating from a bounded subset of R.
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We observe that y(t) = 0, t ∈ R, is an equilibrium solution of (10), ξ(t) pullback
attracts at time t all solutions emanating from initial data y0 > 0 and −ξ(t) all
solutions emanating from y0 < 0. Moreover, the family of compact subsets

{[−ξ(t), ξ(t)] | t ∈ R}
is strictly invariant for the evolution process generated by (10). By the connected-
ness of its sections it follows that the global pullback attractor Aode of the ODE
(10) is given by

Aode(t) = [−ξ(t), ξ(t)], t ∈ R.
When restricted to the subspace of constant functions, the evolution process

{U(t, s)| t ≥ s} generated by Problem (1) coincides with the evolution process
generated by the ODE (10), which implies that{

u(·, t) ∈ C(Ω) | u(x, t) = y(t) ∀ x ∈ Ω, y(t) ∈ [−ξ(t), ξ(t)]
}
⊂ A(t), t ∈ R,

and concludes the proof of the theorem.

4.2. Non-autonomous damped wave equation. We consider the following ini-
tial value problem for the non-autonomous damped wave equation,

∂2

∂t2
u(x, t) + β(t)

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s, (11)

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,
u(x, s) = us(x) x ∈ Ω, s ∈ R,

∂

∂t
u(x, s) = vs(x) x ∈ Ω, s ∈ R,

where s ∈ R and Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain with smooth boundary
∂Ω. We assume that the non-linearity f : R→ R is continuously differentiable and
satisfies

|f ′(z)| ≤ c(1 + |z|p), z ∈ R, (12)

lim sup
|z|→∞

f(z)

z
≤ 0, (13)

for some constant c > 0 and 0 < p < 2
n−2 . Furthermore, the function β : R → R+

is Hölder continuous and bounded from above and below by positive constants
0 < β0 ≤ β1 <∞,

β0 ≤ β(t) ≤ β1 ∀ t ∈ R. (14)

We apply Theorem 2.2 to show that the evolution process generated by (11)

possesses a pullback exponential attractor. Setting v := ∂
∂tu and w :=

( u
v

)
we

rewrite Problem (11) in the abstract form

∂

∂t
w = Aβ(t)w + F (w) t > s, (15)

w|t=s = ws ws ∈ V, s ∈ R,

where the initial data ws =
( us
vs

)
, and the phase space is V := H1

0 (Ω) × L2(Ω).

The norm in V is given by

‖w‖V :=
(
‖u‖2H1

0 (Ω) + ‖v‖2L2(Ω)

) 1
2 , w =

( u
v

)
∈ V.
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Furthermore, the operators are defined by Aβ(t) = A1 +A2(t),

A1 :=

(
0 Id
−A 0

)
, A2(t) :=

(
0 0
0 −β(t)Id

)
, F (w) :=

(
0

F̃ (u)

)
,

where A = −∆ denotes the Laplace operator with homogeneous Dirichlet boundary
conditions and domain D(A) = H1

0 (Ω) ∩ H2(Ω) in L2(Ω). The domain of the

operatorA1 in V isD(A1) = (H1
0 (Ω)∩H2(Ω))×H1

0 (Ω), and F̃ denotes the Nemytskii
operator

F̃ : H1
0 (Ω)→ L2(Ω), u 7→ F̃ (u) := f(u(·)).

The initial value problem (15) generates an evolution process {U(t, s)| t ≥ s}
in the Banach space V , which is asymptotically compact and pullback strongly
bounded dissipative. For details we refer to [4], Chapter 4 in [14], Section VI.4 in
[6], [2] and [3].

We denote the evolution process generated by the linear homogeneous problem

∂

∂t
w = Aβ(t)w t > s, (16)

w|t=s = ws ws ∈ V, s ∈ R,

by {C(t, s)| t ≥ s}. The following lemma was proved in [3] and yields the exponential
decay of solutions of the linear homogeneous equation.

Lemma 4.5. Let {C(t, s)| t ≥ s} be the evolution process in V associated to the
linear problem (16). Then, there exist constants C ≥ 0 and ω > 0 such that the
norm of the operators is bounded by

‖C(t, s)‖L(V ;V ) ≤ Ce−ω(t−s) ∀t ≥ s, t, s ∈ R.

The process {U(t, s)| t ≥ s} satisfies the integral equation

U(t, s)ws = C(t, s)ws +

∫ t

s

C(t, τ)F (U(τ, s)ws)dτ

= C(t, s)ws + S(t, s)ws

(see [3] and [14]). Moreover, {U(t, s)| t ≥ s} is pullback strongly bounded dissipative
and the pullback absorbing time corresponding to a bounded subset is independent
of the time instant t ∈ R. For the proof of the following lemma we refer to [3].

Lemma 4.6. Let {U(t, s)| t ≥ s} be the evolution process in V generated by the ini-
tial value problem (15). Then, there exists a bounded uniformly pullback absorbing
subset B ⊂ V , i.e., for every bounded set D ⊂ V there exists TD ≥ 0 such that

U(t, t− s)D ⊂ B ∀s ≥ TD, t ∈ R.

To show that the family of operators {S(t, s)| t ≥ s} satisfies the smoothing
property we establish several auxiliary results. We denote by Xα, α ∈ R, the
fractional power spaces associated to the operator A with domain D(A) = X1 =
H1

0 (Ω)∩H2(Ω) in X := L2(Ω) (see [23] or [22]). Furthermore, let Hs(Ω), s ∈ R+, be
the fractional Sobolev spaces obtained by interpolation between the spaces Hm(Ω)
and L2(Ω), m ∈ N (see [1] or Section II.1.3 in [23]). Since the domain Ω is bounded
we have the following continuous embeddings

Hs
0(Ω) ↪→ Hs(Ω) ↪→ Lp

′
(Ω) ↪→ L2(Ω) if

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0, (17)
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where Hs
0(Ω) denotes the closure of C∞0 (Ω) in Hs(Ω) (see [1] or Theorem 1.1,

Chapter 2, in [6]). If 1
2 ≥

1
p′ >

1
2 −

s
n > 0 the embedding Hs(Ω) ↪→ Lp

′
(Ω) is

compact. Moreover, Theorem 16.1 in [24] implies the continuous embeddings

Hs
0(Ω) ↪→ X

s
2 ↪→ Hs(Ω) ∀s ∈ R.

By duality we conclude

L2(Ω) ↪→ Lq
′
(Ω) ↪→ X−

s
2 if

1

p′
+

1

q′
= 1,

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0, (18)

and the embedding Lq
′
(Ω) ↪→ X−

s
2 (Ω) is compact if 1

2 ≥
1
p′ >

1
2 −

s
n > 0.

The solution theory of the linear homogeneous problem can be extended to the
fractional power spaces Xα ×Xα− 1

2 , α ∈ (0, 1
2 ) (see [23], Section IV.1.1).

Lemma 4.7. Let 0 < ε < 1 and V ε := X
1−ε
2 ×X− ε2 . Then, for every initial data

ws =
( us
vs

)
∈ V ε, s ∈ R, there exists a unique solution w ∈ C([s, s+ T ];V ε) of the

linear problem

∂

∂t
w = Aβ(t)w s+ T > t > s,

w|t=s = ws ws ∈ V ε, s ∈ R,

where T > 0 is arbitrary. Moreover, the generated evolution process is uniformly
bounded in the space V ε,

‖C(t, s)‖L(V ε;V ε) < d ∀ t ≥ s, t, s ∈ R,

for some constant d ≥ 0.

Proof. We consider the operator

Aβ(t) = A1 +A2(t) =

(
0 Id
−A 0

)
+

(
0 0
0 −β(t)Id

)
,

in V ε, where the operators A2(t) : V ε → V ε are linear and uniformly bounded in
t by Assumption (14), and A is considered as an operator in X−

ε
2 with domain

D(A) = X1− ε2 . Since A is self-adjoint, the operator A1 is dissipative in V ε. Indeed,

let w =
( u
v

)
∈ D(A1) = D(A)×X 1−ε

2 , then

〈
w,A1w

〉
V ε

=
〈( u

v

)
,
( v
−Au

)〉
V ε

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X

+
〈
A−

ε
2 v,A−

ε
2 (−Au)

〉
X

=
〈
A

1−ε
2 u,A

1−ε
2 v
〉
X
−
〈
A

1−ε
2 v,A

1−ε
2 u
〉
X

= 0.

By Corollary 4.4, Chapter 1, in [22] the operator A1 generates a strongly contin-
uous semigroup of contractions in V ε. The lemma now follows from Theorem 1.2,
Chapter 6, in [22].

Lemma 4.8. There exists 0 < ε < 1 such that the Nemytskii operator F̃ is
uniformly Lipschitz continuous from H1−ε(Ω) to L2(Ω) within bounded subsets of
H1

0 (Ω) : Let D be a bounded subset of H1
0 (Ω), then

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ c‖u− v‖H1−ε(Ω) ∀u, v ∈ D,

for some constant c ≥ 0.
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Proof. Let D be a bounded subset of H1
0 (Ω), u, v ∈ D and R > 0 such that D ⊂ BR,

where BR := B
H1

0 (Ω)
R (0). The assumption p < 2

n−2 implies p = (1− ε) 2
n−2 for some

0 < ε < 1. Using the growth restriction (12) and Hölder’s inequality with p′ = n
2−2ε

and q′ = n
n−2+2ε we obtain

‖F (u)− F (v)‖L2(Ω) ≤ c‖(1 + |ζ|p)(u− v)‖L2(Ω)

≤ c
(
‖u− v‖L2(Ω) + ‖|ζ|p‖L2p′ (Ω)‖u− v‖L2q′ (Ω)

)
≤ c
(
c1‖u− v‖H1−ε(Ω) + c2‖ζ‖pL2pp′ (Ω)

‖u− v‖H1−ε(Ω)

)
,

for some ζ ∈ BR. In this estimate we used the continuous embeddings H1−ε(Ω) ↪→
L2(Ω) and H1−ε(Ω) ↪→ L2q′(Ω) in (17), and c1, c2 ≥ 0 are the corresponding em-
bedding constants. Since the set D ⊂ BR ⊂ H1

0 (Ω) is bounded, the embedding

H1
0 (Ω) ↪→ L2pp′(Ω) = L

2n
n−2 (Ω) in (17) yields the uniform bound on the norm

‖ζ‖p
L2pp′ (Ω)

and concludes the proof of the lemma.

Next, we show that the evolution process {U(t, s)| t ≥ s} restricted to the
bounded pullback absorbing set B is uniformly Lipschitz continuous in the space

V ε = X
1−ε
2 ×X− ε2 , where ε = 1− p

2 (n− 2) was defined in the proof of Lemma 4.8.

Lemma 4.9. Let ε := 1 − p
2 (n − 2) and the initial data ws =

( us
vs

)
∈ B, s ∈ R,

where B ⊂ V denotes the uniformly pullback absorbing set in Lemma 4.6. Then,
the evolution process {U(t, s)| t ≥ s} generated by the initial value problem (15) is
Lipschitz continuous in V ε.

Proof. By Lemma 4.8 the Nemytskii operator F̃ is uniformly Lipschitz continuous
from H1−ε(Ω) to L2(Ω) in bounded subsets of H1

0 (Ω). Let B ⊂ H1
0 (Ω) be bounded

and u, v ∈ B. Using the continuous embeddings L2(Ω) = X ↪→ X−
ε
2 and X

1−ε
2 ↪→

H1−ε(Ω) we obtain

‖F̃ (u)− F̃ (v)‖
X−

ε
2
≤ c1‖F̃ (u)− F̃ (v)‖X
≤ cc1‖u− v‖H1−ε(Ω) ≤ c2‖u− v‖

X
1−ε
2
, (19)

for some constants c1, c2 ≥ 0, which shows that F̃ is uniformly Lipschitz continuous

from X
1−ε
2 to X−

ε
2 in bounded subsets of H1

0 (Ω).

Let now ws, zs ∈ B, s ∈ R, be given initial data and w(t) =
( w1(t)
w2(t)

)
= U(t, s)ws

and z(t) =
( z1(t)
z2(t)

)
= U(t, s)zs be the corresponding solutions of the semi-linear

problem (15). The evolution process {U(t, s)| t ≥ s} is bounded in V by Lemma
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4.6, and using the variation of constants formula we obtain

‖w(t)− z(t)‖V ε ≤ ‖C(t, s)‖L(V ε;V ε)‖ws − zs‖V ε+

+

∫ t

s

‖C(t, τ)‖L(V ε;V ε)‖F (U(τ, s)ws)− F (U(τ, s)zs)‖V εdτ

≤ d
(
‖ws − zs‖V ε +

∫ t

s

‖F̃ (w1(τ))− F̃ (z1(τ))‖
X−

ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε +

∫ t

s

c2‖w1(τ)− z1(τ)‖
X

1−ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε +

∫ t

s

c2‖w(τ)− z(τ)‖V εdτ
)
,

where we used the estimate (19). The Lipschitz continuity now follows by Gronwall’s
Lemma,

‖U(t, s)ws − U(t, s)zs‖V ε = ‖w(t)− z(t)‖V ε ≤ d‖ws − zs‖V εedc2(t−s). (20)

Combining the previous results we prove the smoothing property with respect to

the spaces V = X
1
2 ×X and W := V ε = X

1−ε
2 ×X− ε2 for the family of operators

{S(t, s)| t ≥ s}.

Lemma 4.10. Let ε = 1− p
2 (n−2) and W := V ε. Then, the embedding V ↪→↪→W

is compact, and for every t0 > 0 there exists a positive constant κt0 > 0 such that

‖S(t+ t0, t)w − S(t+ t0, t)z‖V ≤ κt0‖w − z‖W ∀w, z ∈ B, t ∈ R,
where B denotes the uniformly pullback absorbing set defined in Lemma 4.6.

Proof. Let s ∈ R, t0 > 0 and w, z ∈ B be given initial data. We denote the corre-

sponding solutions of (15) by U(t, s)w =
( U1(t, s)w
U2(t, s)w

)
and U(t, s)z =

( U1(t, s)z
U2(t, s)z

)
,

t ≥ s. By Lemma 4.5 and Lemma 4.9 follows

‖S(s+ t0, s)w − S(s+ t0, s)z‖V

≤
∫ s+t0

s

‖C(s+ t0, τ)
(
F (U(τ, s)w)− F (U(τ, s)z))

)
‖V dτ

≤ C

∫ s+t0

s

e−ω(s+t0−τ)‖F̃ (U1(τ, s)w − F̃ (U1(τ, s)z)‖Xdτ

≤ Cc1

∫ s+t0

s

‖U1(τ, s)w − U1(τ, s)z‖H1−ε(Ω)dτ

≤ c2

∫ s+t0

s

‖U1(τ, s)w − U1(τ, s)z‖
X

1−ε
2
dτ ≤ c2

∫ s+t0

s

‖U(τ, s)w − U(τ, s)z‖V εdτ

≤ c2d

∫ s+t0

s

ec2(τ−s)‖w − z‖V εdτ ≤ κt0‖w − z‖W ,

for some constants c1, c2 ≥ 0 and κt0 > 0. In this estimate we used the continuous

embedding X
1−ε
2 ↪→ H1−ε(Ω) and the Lipschitz continuity (20) of the process

{U(t, s)| t ≥ s} in V ε. The compactness of the embedding V ↪→↪→ W follows by
(18).

Finally, we show the existence of a pullback exponential attractor.
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Theorem 4.11. We set ε = 1 − p
2 (n − 2). Let {U(t, s)| t ≥ s} be the evolution

process in the Hilbert space V = H1
0 (Ω) × L2(Ω) generated by the initial value

problem (15) and W = X
1−ε
2 × X−

ε
2 . Moreover, for arbitrary λ < 1

2 we define

t0 := 1
ω ln C

λ , where C ≥ 0 and ω > 0 denote the constants in Lemma 4.5.

Then, for every ν ∈ (0, 1
2 − λ) there exists a pullback exponential attractor

{Mν(t)| t ∈ R}, which is also a forwards exponential attractor for the evolution pro-
cess {U(t, s)| t ≥ s}, and the fractal dimension of its sections is uniformly bounded
by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)

∀t ∈ R,

where κ = κt0 > 0 denotes the smoothing constant in Lemma 4.10. Furthermore,
the global pullback attractor exists, is contained in the pullback exponential attractor
{Mν(t)| t ∈ R} and

dimV
f (A(t)) ≤ inf

ν∈(0, 12−λ)

{
log 1

2(ν+λ)

(
NW

ν
κ

(BV1 (0))
)}

∀t ∈ R.

Proof. By Lemma 4.6 there exists a fixed bounded uniformly pullback absorbing set
B ⊂ V , and the pullback and forwards absorbing assumptions (H1), (H1)′, (A1),
(A2) and (A2)′ are satisfied. If λ ∈ (0, 1

2 ) and t0 = 1
ω ln C

λ , Lemma 4.5 implies
that the linear operators C(t + t0, t), t ∈ R, are contractions in V with contrac-
tion constant λ < 1

2 , which verifies Hypothesis (H3) with t̃ = t0. Moreover, we
proved in Lemma 4.10 that the smoothing property (H2) of the family of opera-
tors {S(t, s)| t ≥ s} is valid within the absorbing set B. To show the Lipschitz

continuity (H4) of the evolution process we recall that the Nemytskii operator F̃ is
locally Lipschitz continuous from H1−ε(Ω) to L2(Ω) (see Lemma 4.8). If the subset
D ⊂ H1

0 (Ω) is bounded the continuous embedding H1
0 (Ω) ↪→ H1−ε(Ω) implies

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ c‖u− v‖H1−ε(Ω) ≤ cc1‖u− v‖H1
0 (Ω) ∀u, v ∈ D, (21)

for some constant c1 ≥ 0. We can now show the Lipschitz continuity of the evolution
process {U(t, s)| t ≥ s} in V as in the proof of Lemma 4.9 if we replace the space
V ε by V and use the estimate (21) and Lemma 4.5 instead of the estimate (19) and
Lemma 4.7, respectively.

Consequently, all required hypothesis are verified and the existence of the pull-
back exponential attractor and the uniform estimates for the fractal dimension of
its sections follow from Theorem 2.2. Theorem 3.3 implies that the pullback expo-
nential attractor is also a forwards exponential attractor for the evolution process.
Moreover, the global pullback attractor of the evolution process exists, is contained
in the pullback exponential attractor, and Theorem 3.1 yields the bound for the
fractal dimension of its sections, which concludes the proof.
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visiting the Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo at São Carlos. She would like to express her gratitude to the colleagues
of the institute for their warm hospitality and FAPESP and BCAM for financially
supporting the visit.



PULLBACK EXPONENTIAL ATTRACTORS: PROPERTIES AND APPLICATIONS 1165

REFERENCES

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Elsevier, Amsterdam, 2003.
[2] J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical expo-

nent, Comm. Partial Differential Equations, 17 (1992), 841–866.

[3] T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors
for pullback asymptotically compact processes, Nonlinear Anal., 72 (2010), 1967–1976.

[4] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-

Autonomous Dynamical Systems, Appl. Math. Sci., 182, Springer, 2012.
[5] A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in

Banach spaces: theoretical results, Commun. Pure and Appl. Anal., 12 (2013), 3047–3071.

[6] V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math.
Soc., Providence, RI, 2002.

[7] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equa-

tions, 9 (1997), 307–341.
[8] R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations

part I: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748–765.
[9] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative

Evolution Equations, Research in Applied Mathematics, Masson, Paris, John Wiley & Sons,

Ltd., Chichester, 1994.
[10] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Opera-

tors, Cambridge University Press, New York, 1996.

[11] M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-
diffusion system in R3, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713–718.

[12] M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional

reduction for nonautonomous dynamical systems, Proc. R. Soc. Edinburgh Sect. A, 135A
(2005), 703–730.

[13] M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipa-

tive systems, J. Math. Soc. Japan, 63 (2011), 647–673.
[14] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society,

Providence, Rhode Island, 1988.
[15] A. N. Kolmogorov and V. M. Tihomirov, ε-entropy and ε-capacity of sets in functional spaces,

Amer. Math. Soc. Transl. Ser. 2, 17 (1961), 277–364.

[16] J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors, Discrete Contin.
Dyn. Syst., 26 (2010), 1329–1357.
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