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The indiscriminate use of the cumulative exposure metric (the product of intensity and duration of exposure) might
bias reported associations between exposure to hazardous agents and cancer risk. To assess the independent
effects of duration and intensity of exposure on cancer risk, we explored effect modification of the association of
cumulative exposure and cancer risk by intensity of exposure. We applied a flexible excess odds ratio model that is
linear in cumulative exposure but potentially nonlinear in intensity of exposure to 15 case-control studies of cigarette
smoking and lung cancer (1985-2009). Our model accommodated modification of the excess odds ratio per pack-year
of cigarette smoking by time since smoking cessation among former smokers. We observed negative effect modifi-
cation of the association of pack-years of cigarette smoking and lung cancer by intensity of cigarette smoke for
persons who smoked more than 20-30 cigarettes per day. Patterns of effect modification were similar across individual
studies and across major lung cancer subtypes. We observed strong negative effect modification by time since smok-
ing cessation. Application of our method in this example of cigarette smoking and lung cancer demonstrated that
reducing a complex exposure history to a metric such as cumulative exposure is too restrictive.

cigarette smoke; cumulative exposure; effect modification; lung cancer; pooled analysis

Abbreviations: EOR, excess odds ratio; ICS, lifetime average intensity of cigarette smoking; PCS, pack-years of cigarette smoking;

TSC, time since smoking cessation.

Editor’s note: An invited commentary on this article exposure metric used in epidemiologic cancer studies. How-
appears on page 299. ever, the assumptions on which the use of cumulative expo-

sure is based, namely that the cumulative probability of

developing a disease is proportional to the sum of the daily

Cumulative exposure (the product of average daily expo- probabilities of developing a disease, the daily probability
sure intensity and duration of exposure) is often the default of developing a disease increases monotonically with the
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concentration in the target tissue, the concentration in the tar-
get tissue is linearly related to the external exposure (1), are
not always justified.

Pack-years of cigarette smoking (PCS) are calculated as the
average number of packs of cigarettes smoked per day multi-
plied by the cumulative number of years during which a person
smoked. This example of the cumulative exposure metric is
often used to evaluate smoking behavior in epidemiologic
analyses. There is considerable evidence that with a straightfor-
ward inclusion of PCS in epidemiologic analyses of chronic
health effects, not all intensity- and duration-related aspects
of smoking behavior are optimally characterized (2). For ex-
ample, Doll and Peto (3) demonstrated that the absolute excess
rate of lung cancer among smokers was related to at least the
fourth power of smoking duration and only to the second power
of smoking intensity. Because both smoking duration and
baseline lung cancer rates vary with age, the relationships be-
tween the excess relative risk and duration and intensity of
smoking are likely to be more complex.

One way to assess the independent effects of duration and
intensity of cigarette smoking on lung cancer risk is to ex-
plore effect modification of the association between PCS
and lung cancer by intensity of cigarette smoking (4). Excess
relative risk or excess odds ratio (EOR) models that are linear
in total exposure and exponential in the intensity of exposure
have been applied successfully to explore effect modification
of cumulative exposure by intensity of exposure for a number
of exposures (4-10). Such models have a general form of
OR(d) =1+ B1d x exp(B, (n)), where B represents the EOR
per unit of total exposure (d) (i.e., the EOR of disease
changes in an additive fashion with total exposure) and 3,
represents the (multiplicative) modifying effect of intensity
of exposure (n). In the past, fitting these models required the
use of specialized software, but they can now be fitted in stan-
dard software packages with relative ease (11).

We explored the modification of the effect of PCS on the
EOR for lung cancer by lifetime average intensity of cigarette
smoking (ICS). For our analysis, we modified a previously
developed approach to model total exposure and exposure in-
tensity (4). Our analysis is unique in that we were able to
apply this model in a large data set of 15 independently de-
signed case-control studies with detailed smoking informa-
tion (the SYNERGY pooling project, a pooled analysis of
case-control studies on the joint effects of occupational car-
cinogens in the development of lung cancer) (12—14). Fur-
thermore, our approach differs from previous applications
by including a direct assessment of the modification of the
EOR per PCS by the time since smoking cessation (TSC),
which is a strong predictor of lung cancer risk in former
smokers (15), in the regression model, and we included a
3-knot restricted cubic spline function for both ICS and
TSC to allow a more flexible assessment of the shape of
the modification of the EOR per PCS.

METHODS
SYNERGY data set

We used data from the SYNERGY project (12—14). Our
data set included data from 14 case-control studies from
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Canada (n = 2), France (n = 3), Germany (n = 2), Italy (n = 3),
New Zealand (n=1), Spain (n=1), Sweden (n = 1), and The
Netherlands (n = 1), as well as a multicenter study conducted
in Central and Eastern Europe and the United Kingdom (16).
Controls were individually or frequency-matched to cases by
sex and age and recruited from the general population (82%)
or hospitals (18%). Smoking information was predominantly
collected through interviews with the subjects themselves
(92% of cases, 94% of controls). Lung cancer subtypes
were classified according to World Health Organization
guidelines by the pathologists associated with the participat-
ing hospitals. The ethics committees of the individual studies
approved the conduct of the study, as did the institutional re-
view board at the International Agency for Research on Can-
cer. We provide an overview of the characteristics of the
studies included in the analysis in Web Table 1, available
at http:/aje.oxfordjournals.org/.

Smoking data

Information on cigarette smoking history included the
number of cigarettes smoked per day in calendar-year periods
and the age at smoking cessation for former smokers. We cal-
culated continuous variables for duration of smoking, ICS,
and PCS based on the smoking history. A current smoker
was defined as someone who had smoked for more than 1
year and still smoked in the year of interview or in the year
before. Former smokers were defined as persons who had
smoked for at least 1 year but quit smoking at least 2 years
before the date of the interview. Subjects who had smoked
for less than 1 year were considered occasional smokers and
were treated as never smokers in the analyses. All cases and
controls for whom we had complete smoking data were in-
cluded, without restriction on age or smoking status.

Statistical analysis

The model we used in this article provides a balance be-
tween parsimony and model fit. The model falls within a
more general framework for flexible modeling of exposure-
time relations (17). Similar inferences were obtained using
other model specifications within the more general frame-
work (Web Appendix, Web Table 2, and Web Figure 1).

Below we provide a description of the models that we ap-
plied in our study, with an emphasis on how they differed
from the models used in the previously published study by
Lubin and Caporaso (4). Our models are linear for PCS
and exponential for ICS and TSC to force the modifying ef-
fect to be non-negative. We used 2 approaches to model ICS
(expressed as cigarettes smoked per day). The first approach
defines [ intensity categories and indicator variables, n; i =
1,..., I, where n;=1 if a subject’s intensity level occurs
within the ith category and n; =0 otherwise.

The model is as follows:

OR(d) = 1 + Bd x exp{Z6;n;}, (A)
where  represents the EOR for each PCS, d. The model spec-

ifies a different slope for each intensity category. With 6, set
to O for identifiability, 0,, . . . , 6; represent category-specific
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effects relative to the / = 1 level. Model A has been published
before (4, 7, 8) and was fitted to a subset of the data that is
restricted to current and never smokers 50-75 years of age
to parallel the data sets used in previous publications.

We extended model A with a function for TSC to allow the
inclusion of former smokers in our analysis, as follows:

OR(d) = 1 + Bd x explgi(?)] X exp{Z0m;}, (B)

where g(?) is a 3-knot restricted cubic spline function for TSC
(knots located at the 20th, 50th, and 80th percentiles of the dis-
tribution of TSC of all former smokers). The variation in EOR
per PCS by continuous ICS (n) is assessed with 3 different
models (models C, D, and E below). The first of those is:

OR(d) = 1 + Bd x h(n), ©)

where h(n) has the functional form h(n) =exp(®; In(n) +
D, ln(n)z). @, and P, are the parameters for the modifying
function of continuous ICS. Model C has been published before
4,7,38).

We modified model C to include a flexible spline function
for ICS, as shown:

OR(d) = 1 + Bd x exp(gi(n)). (D)

g1 1s a 3-knot restricted cubic spline function of continuous
ICS (n) (knots located at the 20th, 50th, and 80th percentiles
of the distribution of ICS of all smokers). Models C and D
were fitted to a subset of the data that was restricted to current
and never smokers who were 5075 years of age.

Similar to model B, we extended model D with a function
for TSC to allow the inclusion of former smokers in our anal-
ysis, as follows:

OR(d) = 1 + Bd x exp(gi(n) + &2(1)), (B)

where g; and g, are 3-knot restricted cubic spline functions with
knots located at the 20th, 50th, and 80th percentiles of the dis-
tribution of TSC of all former smokers. g; is a function of con-
tinuous ICS (n) and g, is a function of continuous TSC (7).
All models were fitted using the NLMIXED procedure in
SAS, version 9.2 (SAS Institute, Inc., Cary, North Carolina).
Effects were adjusted for study center, age group (<45, 45—
49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, >80 years),
and sex by allowing for stratum-specific baseline odds. Anal-
yses were also fully stratified by sex and study location and
conducted for all lung cancer subtypes combined and for 3
major lung cancer subtypes separately: squamous cell carci-
noma, small cell carcinoma, and adenocarcinoma. We as-
sessed the sensitivity of the restricted cubic spline functions
for continuous ICS and TSC to alternative knot locations
(10th, 50th, and 90th percentiles and 5th, 50th, and 95th per-
centiles) in an analysis of all lung cancer subtypes combined
among men and women. We observed a marginal impact on
both model fit (Akaike information criterion) and model pre-
diction. Therefore, all analyses were conducted with the a pri-
ori specified knot locations (20th, 50th, and 80th percentiles).
Bootstrapped 95% confidence intervals of the functions for
ICS and TSC were estimated via 1,000 bootstrap replications
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Figure 1. Modification of the excess odds ratio (OR) for lung cancer
per pack-year of smoking (all subtypes combined), 1985-2009.
A) Point estimates and 95% confidence intervals from linear odds
ratio models fitted within deciles of smoking intensity (model A) are
combined with the effect of function h from model C. All predictions
in A are based on analysis of the data set restricted to current and
never smokers aged 50-75 years. B) The effect of function h from
model C (dash dotted line) and the effect of function g; from model
D (dashed line) are combined with the effect of function g; from
model E (continuous black line). Model E is fitted on a data set that in-
cluded former smokers. C) The modification of the excess OR per
pack-year of smoking by time since smoking cessation (function g»
in model E) was shown. Triangles indicate the location of the knots
of the restricted cubic splines. Bootstrapped 95% confidence intervals
(dashed lines in A and C) are based on 1,000 replications. See text for
details on models.
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of the original data, and we used the 2.5th and 97.5th percent-
iles of the resulting distribution. To avoid overinterpretation
of patterns for regions in which the data were extremely
sparse, we excluded predictions for intensities less than the
1st percentile and higher than the 99th percentile of the dis-
tribution of the exposed persons from all plots. The same ap-
proach was used for TSC. A likelihood ratio test (18) was
used to compare differences in fit with the data between
nested models. Because (conditional on attained age) age at
smoking initiation 1) is multicollinear with duration of smok-
ing and TSC, 2) typically shows relatively little variation, and
3) is not very strongly associated with cancer occurrence, we
did not assess the effect of age at smoking initiation in our
analysis (2).

RESULTS

The pooled data set consisted of 17,975 cases (14,255 men
and 3,720 women) and 22,353 controls (17,267 men and
5,086 women). Further details of the study population are
provided in Web Table 1.

We first applied models A and C to a data set that was re-
stricted to current and never smokers who were 50-75 years
of age. Figure 1A shows the effect of ICS on the lung cancer
EOR per PCS, estimated using models A (point estimates for
deciles of ICS) and C (continuous line) among current and
never smokers (i.e., excluding former smokers). EORs per
PCS estimated with model A increased with increasing ICS
below 20 cigarettes (1 pack) per day and slightly decreased
with increasing ICS at intensities higher than 20 cigarettes
per day. The continuous prediction of model C followed
the pattern of the point estimates predicted with model
A. Importantly, because of model specification, model C
would predict EOR =0 for zero ICS. Parameter estimates
for ®; and ®, were 0.0258 (standard error, 0.0062) and
—0.0216 (standard error, 0.0052), respectively.

Next, we compared the effect of ICS predicted by model C
(Figure 1B, gray line) with the effect of ICS predicted by a
model that included a flexible spline function for ICS (model
D; Figure 1B, dashed line). Knots of the restricted cubic spline
were located at 10, 19, and 26 cigarettes per day. A comparison
based on the Akaike information criterion (19) suggested that
model D (Akaike information criterion =22,677) had a better
fit to the data than did model C (Akaike information criterion =
22,687). For intensities higher than 20 cigarettes per day,
model D predicted a slightly stronger decrease in EOR per
PCS with increasing ICS than did model C. Furthermore,
model D was not restricted to start at EOR/PCS =0 for zero
ICS, which resulted in a less pronounced increase in EOR
per PCS with increasing ICS below 20 cigarettes per day.

The continuous black line in Figure 1B is the effect of ICS
predicted by a model that was fitted on current, former, and
never smokers of all ages and included flexible spline func-
tions for both ICS and TSC (model E). The effect of ICS pre-
dicted by model E closely resembled the prediction of model
D. The effect of TSC predicted by model E is presented in
Figure 1C. Knots of the restricted cubic spline were located
at 6, 15, and 28 years since smoking cessation. Model E pre-
dicted a strong reduction (83%) in the EOR for lung cancer
per PCS with increasing TSC.

In Table 1, we report the fit of model E to the study data. In
model E, the functions for ICS and TSC were set to 0; thus,
the effect of PCS on the odds ratio for lung cancer was not
modified. On the basis of a likelihood ratio test, both model
E; (in which the effect of TSC on the EOR for lung cancer per
PCS was set to 0) and model E, (in which the effect of ICS
was set to 0) provided a significantly better fit to the data than
did model E. Furthermore, model Es, in which functions for
both ICS and TSC were estimated, provided a significantly
better fit to the study data than did models E; and E,.
Model E; (hereafter referred to as model E) was therefore se-
lected for further analyses of the data set.

Table 1. Linear Odds Ratio Models for Total Cigarette Exposure and 3 Lung Cancer Subtypes Fitted on the SYNERGY Data, 1985-2009%
Type of Cancer
Model I\Illzggﬁiscsa:i):n Adf Combined ng:;:i‘:‘ l;fnie" Small Cell Carcinoma Adenocarcinoma

LL ALL  PValue® LL ALL P Value® LL ALL  PValue® LL ALL P Value®

Eo Not modified 45,828 25,099 14,220 23,001

E4 ICS 45,727 25,049 14,185 22,901

Eq vs. Eg 2 101 <0.0001 50 <0.0001 31 <0.0001 35 <0.0001

E> TSC 44,895 24,506 13,698 22,786

E, vs. Eg 2 933 <0.0001 593 <0.0001 518 <0.0001 522 <0.0001

Es ICS and TSC 44,843 24,487 13,686 22,714

Ejvs. Eg 4 985 <0.0001 612 <0.0001 526 <0.0001 534 <0.0001

E3 vs. E4 2 884 <0.0001 562 <0.0001 495 <0.0001 499 <0.0001

Esvs. Ex 2 52 <0.0001 19  0.0001 8 0.0025 12 <0.0001

Abbreviations: df, degrees of freedom for likelihood ratio test; ICS, intensity of cigarette smoke; LL, log likelihood estimate of the fitted model; OR,

odds ratio; TSC, time since smoking cessation.

& Excess OR was modified by either a function for the intensity of exposure (E4), a function for the time since smoking cessation (E,), or both (Es).

b Pvalues from likelihood ratio tests.
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Figure 2. Modification of the excess odds ratio (OR) for squamous
cell carcinoma (A), small cell carcinoma (B), and adenocarcinoma
(C) per pack-year of smoking by smoking intensity, 1985-2009. The
continuous line is the prediction from function g4 of model E. Triangles
indicate the location of the knots of the restricted cubic splines. Boot-
strapped 95% confidence intervals (dashed lines) are based on 1,000
replications. Point estimates and associated 95% confidence intervals
are from linear odds ratio models fitted within categories of smoking
intensity are from model B. See text for details on models.

Similar patterns with ICS were observed in analyses for 3
major subtypes of cancer: squamous cell carcinoma, small
cell carcinoma, and adenocarcinoma (Figure 2). Analyses
of men and women separately resulted in patterns of the

EOR per PCS that were comparable to the analyses of men
and women combined (Web Figure 2).

In Figure 3, we show study-specific patterns of the modi-
fication of EOR per PCS by ICS. These analyses were con-
ducted on all subtypes combined. Predictions were generated
by applying model E to each individual study.

Wide confidence intervals in some of the panels of Figure 3
demonstrate that some studies had limited statistical power to
explore patterns in the EOR per PCS. Furthermore, model E did
not converge when applied a lung cancer study in France, a lung
cancer study in Paris, and the Monitoring van Risicofactoren
en Gezondheid in Nederland (MORGEN) study, which were
3 studies of modest sample size (Web Table 1). In most stud-
ies for which we were able to observe a pattern, a downward
trend in EOR per PCS with increasing ICS was observed after
reaching a maximum EOR per PCS for approximately 20-30
cigarettes per day. Exceptions were the Liverpool Lung Project
(LLP), the Lungcancer i Stockholm (LUCAS) Study, and the
Polish arm of the International Agency for Research on Cancer
Multicenter Case-Control Study of Occupational, Environ-
ment and Lung Cancer in Central and Eastern Europe (INCO-
COPERNICUS), which showed a flat or increasing in EOR
per PCS. Confidence intervals for the predicted patterns for
these studies did not exclude a downward trend. Higher un-
certainty within studies and less consistency across studies
was observed for patterns in effect modification by ICS for
smoking intensities below 20 cigarettes per day. Among
studies for which predictions were relatively precise, upward
patterns were generally observed. Absolute levels of the EOR
per PCS varied considerably across study locations.

DISCUSSION

Application of our approach in the SYNERGY data set
provided insight into the consistency of patterns of modifica-
tion of the effect of PCS on the EOR for lung cancer by ICS
across a large number of independently designed case-
control studies from Central and Eastern Europe, Canada,
and New Zealand. We observed negative effect modification
of the association of PCS and lung cancer by ICS for persons
who smoked more than 20-30 cigarettes per day. Patterns of
effect modification were similar across the major cancer sub-
types of squamous cell carcinoma, small cell carcinoma, and
adenocarcinoma. These findings corroborate the results from
analyses conducted on other data sets of smoking and lung
cancer (4, 7, 8). Our analysis furthers existing knowledge
by showing similar patterns of effect modification across a
large number of independently designed studies by allowing
for and demonstrating strong effect modification by TSC and
by including semiparametric spline functions that allow for
flexible assessment of patterns of effect modification.

Intensity of cigarette smoking

The observed variation in the EOR per PCS with increas-
ing ICS might be the result of biological processes, such as
saturation of metabolism or increasing DNA repair capacity
with increasing ICS (4, 20). Increasing misclassification of
ICS with increasing ICS could also have contributed to the
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observed patterns. Studies of cigarette smoking and nicotine
dependency have shown that an increase in the number of
cigarettes smoked per day might be associated with reduced
inhalation per cigarette, and increasing misclassification in
the reporting of the number of cigarettes smoked per day it-
self with increasing ICS is also conceivable (4, 21). Studies
using serum or urine cotinine levels as a marker of tobacco
smoking intensity have found that lung cancer risks do not
plateau at high exposure levels, which suggests that such
patterns observed in studies using smoking behavior ques-
tionnaires were likely due to exposure misclassification (22,
23). However, cotinine levels only reflect smoking intensity
over the past few days and should therefore not be considered
as an “ideal” marker to estimate lifelong average smoking in-
tensity (24). Our results suggest that the ICS patterns pre-
dicted for the low exposure range by our model E (which is
not constrained to start at § = 0 at no exposure) are highly var-
iable in magnitude and direction across study locations. This
is likely explained by the limited range of PCS at lower expo-
sure intensities (4).

We observed considerable variation across studies in the
range of predicted EORs per PCS. The large heterogeneity
of results might be associated with factors inherent to the
studies, like design, response rates, and statistical power
(25). Differential distribution of the relative occurrence of
lung cancer subtypes, characteristics of smoking habits,
and confounders and effect modifiers such as occupational
exposures, indoor radon exposure and dietary components
across study populations likely also played a role (14, 25).

Time since smoking cessation

Our finding of a continuous decrease in the EOR per PCS
with TSC corroborates findings from other studies. For exam-
ple, Peto et al. (15) demonstrated that the ratio of lung cancer
in former smokers compared with current smokers fell sharp-
ly with increasing TSC. Our analysis demonstrates that this
effect remains after adjustment for PCS. Similar patterns
with time since exposure cessation have been observed for
exposure to benzene and leukemia (26) and for exposure to
radon and lung cancer (27).

Extension to other (time-varying) exposures

Through its flexible parameterization, our model can ac-
commodate various patterns of effect modification and is
therefore a suitable tool to explore effect modification by in-
tensity of exposure for a wide range of different exposures.
Similar models have successfully been applied in studies of
arsenic, as well as alcohol and smoking and a range of can-
cers (6, 9, 10). A limitation of these models (including ours)
is that they ignore the possible variation in the EOR due to
variation in exposure intensity over time. Using the general
framework described in the Web Appendix as starting point,
our model can be extended to accommodate information on
time-varying exposure. Richardson et al. recently provided
an example of such a model in a study of radon exposure
and lung cancer (28). A further extension is to allow for more
complicated patterns of effect modification by including

tensor product splines as done by Berhane et al. (29), al-
though these may come at the cost of reduced interpretability.

Our model and possible further extensions of it provide in-
sight into whether the use of cumulative exposure in an epi-
demiologic analysis is justified or whether reducing complex
exposure history to a metric such as cumulative exposure is
overly restrictive. Combining information on observed pat-
terns of effect modification with mechanistic insights might
contribute to the incorporation of biological hypotheses in
the development of more biologically relevant exposure
metrics (30).
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