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Liquid chromatography coupled to mass spectrometry
(LC-MS) has become a standard technology in metabolo-
mics. In particular, label-free quantification based on
LC-MS is easily amenable to large-scale studies and thus
well suited to clinical metabolomics. Large-scale studies,
however, require automated processing of the large and
complex LC-MS datasets.

We present a novel algorithm for the detection of mass
traces and their aggregation into features (i.e. all signals
caused by the same analyte species) that is computation-
ally efficient and sensitive and that leads to reproducible
quantification results. The algorithm is based on a sensi-
tive detection of mass traces, which are then assembled
into features based on mass-to-charge spacing, co-elu-
tion information, and a support vector machine–based
classifier able to identify potential metabolite isotope
patterns. The algorithm is not limited to metabolites but
is applicable to a wide range of small molecules (e.g.
lipidomics, peptidomics), as well as to other separation
technologies.

We assessed the algorithm’s robustness with regard to
varying noise levels on synthetic data and then validated
the approach on experimental data investigating human
plasma samples. We obtained excellent results in a fully
automated data-processing pipeline with respect to both
accuracy and reproducibility. Relative to state-of-the art

algorithms, ours demonstrated increased precision and
recall of the method. The algorithm is available as part of
the open-source software package OpenMS and runs on
all major operating systems. Molecular & Cellular Pro-
teomics 13: 10.1074/mcp.M113.031278, 348–359, 2014.

The identification and quantification of compounds in bio-
logical samples play a crucial role in biological and biomedical
research, as concentration changes of specific metabolites
may be descriptive of a system’s response to disease or
environmental influences. Liquid chromatography coupled to
mass spectrometry (LC-MS) has become the primary analytic
platform for metabolic profiling experiments (1). Such exper-
iments usually follow one of two main strategies. Targeted
metabolomics allows for the simultaneous, absolute quantifi-
cation of hundreds of known metabolites by comparison to
internal standards. In contrast, the aim of the nontargeted
strategy is to detect as many metabolites in a biological
system as possible. This raises two important issues: the
identification of the metabolites in question, and their accu-
rate quantification. Quantification based on the intensity ratio
of isotope-labeled compound pairs has potential limitations,
such as increased time and complexity of sample preparation,
a requirement for increased sample concentrations, high
costs of the reagents, and incomplete labeling. Thus, there
has been increased interest in label-free techniques to
achieve faster and simpler quantification results. In label-free
quantitative metabolomics, control and case samples are an-
alyzed via LC-MS individually, and quantification is achieved
through the comparison of a metabolite’s corresponding
chromatographic peak intensities (2). An LC-MS profile from a
complex biological sample usually yields several hundreds to
tens of thousands of signals (3). This complexity of the data
often creates a bottleneck in data analysis for experimental
studies (4). Consequently, automated label-free quantification
of metabolites from LC-MS data is an essential procedure for
meeting today’s experimental requirements.

A typical data-processing pipeline includes centroiding,
signal processing, feature detection, and retention time align-
ment (see supplemental Fig. S1). Starting from a set of profile
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data files, spectra are usually first centroided and then refined
with signal processing methods such as noise/baseline re-
duction and mass recalibration. Feature detection is em-
ployed to extract ion signals from the raw or centroided data
against the background of measurement noise and to con-
dense this information into a table of compound-specific peak
intensities (5). Alignment methods adjust measurements
across different samples to correct for random and system-
atic variations in the observed elution time and group coin-
ciding signals (4). A key feature of such processing pipelines
is data reduction, whereby the data complexity of a single
measurement is reduced from step to step to facilitate the
simultaneous computational analysis of hundreds or thou-
sands of samples (6). Whereas in other approaches to LC-MS
data processing the filtering, retention time alignment, and
feature detection are strongly intertwined and thus consider
all samples at the same time (7), the presented pipeline pro-
cesses each sample individually and then computes the oth-
erwise computationally expensive alignment on the con-
densed datasets afterward.

Feature detection (or feature finding) reduces the data vol-
ume to improve the running time of further analysis steps. We
use the term “feature” to denote the LC-MS signal that arises
from some compound (e.g. a metabolite). In a feature, a
compound is represented by its mass-to-charge ratio, reten-
tion time, and signal intensity. The extraction of LC-MS sig-
nals of true metabolites is hampered by the nonspecific nature
of the electrospray ionization process, resulting in more than
90% background signals in the spectra (8). Therefore, the
challenge for a feature-finding algorithm is to identify all sig-
nals caused by true metabolites while avoiding the detection
of false positives (9). Detector noise; poor signal-to-noise
ratios for low-abundance metabolites; and the presence of
numerous peaks from isotopes, contaminants, and in-source
degradation products make this task difficult (5). Moreover,
metabolites can occur in different charge states and form
different adducts in electrospray ionization, giving rise to mul-
tiple features per analyte.

Software tools for the aforementioned data-processing
tasks are available but are often difficult to combine with one
another or not flexible enough to allow for rapid prototyping of
a new analysis workflow. Particularly, the feature-detection
procedures therein pursue different strategies to overcome
the mentioned difficulties.

These strategies can be grouped into those that merely
extract chromatographic peaks from the given raw data and
others that additionally perform deisotoping (i.e. assembling
subsets of chromatographic peaks into isotope patterns that
most likely originate from the same compound).

A widely used tool for metabolomics data is the XCMS
package implemented within the R statistical framework (7).
XCMS implements a binning strategy in the m/z dimension
and thereby avoids the problem of searching for peaks in the
m/z direction. Simultaneous feature detection and noise re-

moval are then achieved in a bin-wise manner by a second
derivative Gaussian matched filter. Other R packages are also
available, such as apLCMS for LC-MS profiles with high mass
accuracy (3). Neither of these provides built-in functionality for
isotope pattern assembly, which has to be provided by addi-
tional packages such as CAMERA (10, 11).

Though it has been argued that it is impossible to define
optimal bins for all circumstances (12), binning in the m/z
dimension is also performed by other tools such as MZmine
(13) and MAVEN (5).

Software tools such as MEND, MapQuant, and MZmine
identify chromatographic peaks by matching them with a
particular model profile such as a Gaussian or an exponen-
tially modified Gaussian (13–16). However, detection based
on such a predefined model may have low sensitivity, as the
shapes of elution profiles vary greatly from one compound to
another and peaks that do not conform to the predefined
shape will be discarded.

Aberg et al. compared a two-dimensional representation of
LC-MS data with the behavior of signals and noise on a radar
screen. They implemented a Kalman filter for intrasample
tracking and alignment of mass spectra into pure ion chro-
matograms (12).

In addition to the detection of chromatographic peaks, sev-
eral tools such as MEND (14), MapQuant (15), and msInspect
(17) pursue different deisotoping strategies. In msInspect (17),
chromatographic peaks that co-elute over time and show
similar profile shapes are pooled together and are considered
as isotopes of the same compound. Another strategy is fitting
a three-dimensional model of a generic isotope pattern
against the raw data and subtracting the fit from the signal
(18). In MapQuant (15), peaks are deisotoped by fitting iso-
tope patterns to the observed two-dimensional data.

In proteomics, a popular choice for many feature-detection
algorithms is to match the shape of peptide isotope patterns
against an “averagine” model (19, 20). However, for nonpep-
tide compounds such as metabolites, the observed isotope
patterns will not match, as they differ considerably in their
chemical composition as assumed by the “averagine” model.
Many available software solutions depend on numerous pa-
rameters that are difficult to interpret. These need to be op-
timized in order to obtain high-quality results, which often
proves challenging, as their influence on the tools’ behavior is
hard to predict for the user (3, 21).

In this work, we present the novel software tool
FeatureFinderMetabo for the label-free quantification of me-
tabolites from LC-MS data. The algorithm detects chromato-
graphic peaks in a robust and efficient manner without the
need to bin the data in the m/z dimension. Because there are
no assumptions regarding the chromatographic peak shape,
low-intensity peaks are detected with high sensitivity. Further-
more, the algorithm constitutes a new method for model-
based deisotoping of metabolite LC-MS data that is based on
support vector machine classification. This novel classifier is
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designed to capture isotopic abundances of organic molecules
in general and thus is also applicable to the wide array of small
organic molecules. We designed the algorithm to be configu-
rable mainly by three intuitive parameters that reflect the char-
acteristics of typical LC-MS data. The straightforward and intu-
itive configuration of our software tool allows researchers to
achieve fast and high-quality results and to focus more on
downstream analysis. To assess the performance of our algo-
rithm, we examined the influence of the adjustable parameters
on a simulated benchmark dataset and the algorithm’s quanti-
fication capability on a real-world dataset from human plasma
samples. These samples were spiked with a set of standard
compounds in a wide range of concentrations to reveal the
relationship between the detected feature intensities and the
actual quantities. We compared our algorithm’s performance to
that of XCMS in combination with the CAMERA package on
both the simulated and the spiked human plasma data.

Although designed with metabolomics applications in mind,
the algorithm is applicable to all small-molecule data and thus
has applications beyond metabolomics (e.g. drug substance
analytics, lipidomics, peptidomics, environmental analysis).
Initial experiments also indicated that the algorithm deals well
with data from separation technologies other than HPLC—for
example, capillary electrophoresis mass spectrometry.

The presented algorithm is implemented as part of the
OpenMS framework. OpenMS, together with TOPP (The
OpenMS Proteomics Pipeline), was designed as a versatile
and functional framework for developing mass spectrometry

data analysis tools, providing rich functionality ranging from
basic data structures to sophisticated algorithms for data
analysis and visualization (4, 22, 23). It is open source soft-
ware and incorporates all steps needed for building powerful
computational metabolomics workflows.

MATERIALS AND METHODS

Algorithm—
Overview—The feature-finder algorithm comprises two main

stages, namely, the mass trace detection and feature assembly. In the
first stage, signals in centroid LC-MS data that occur repeatedly over
the retention time within a machine-dependent margin of mass error
are gathered in a mass trace. Initially, a mass trace may contain
signals from two different analytes (e.g. isobaric compounds overlap-
ping in their elution profiles). To resolve this, the algorithm performs a
filtering step to split these mass traces into individual chromato-
graphic peaks. In the second stage, mass traces corresponding to the
same metabolite are assembled into features. Hypotheses sharing
mass traces between distinct analytes are resolved via a scoring
procedure. An overview of the algorithm is shown in Fig. 1.

Mass Trace Detection—For mass trace detection, we assume that
the LC-MS data have already been centroided (by either the instru-
ment software or some other peak-picking algorithm). The data then
consist of a large number of spectrometric peaks P � �pk�, where an
individual peak pk is defined by its retention time tk, mass-to-charge
ratio mk, and intensity ik.

pk � �tk, mk, ik� (Eq. 1)

To prepare the input for the mass trace detection stage, we sort the
set P by decreasing intensity and remove peaks that do not exceed a
user-defined intensity threshold. Based on the resulting list P�, the
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FIG. 1. General procedure of feature finding. A, starting with the most intense peaks (magenta dots), potential mass traces are extended
with peaks compatible in m/z back and forth in retention time. B, each mass trace is smoothed to facilitate the determination of chromato-
graphic maxima. Multimodal elution profiles are split into smaller mass traces with respect to the number of maxima. C, based on this set of
mass traces, potential feature hypotheses are generated and scored according to their compatibility with theoretical isotope patterns. D, finally,
the best-scoring hypotheses are assembled to features.
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algorithm iterates first over the most intense peaks and considers
each as a potential seeding point for the construction of mass traces.
We define a mass trace T as a list of n mass spectrometric peaks
pk � P� that exhibit a similar m/z and occur in adjacent survey scans
of an LC-MS run.

T � �p1, p2,…,pk, pl,…,pn� with tk � tl � k � l.

(Eq. 2)

For each peak pk � P�, we initialize an empty candidate mass trace
T with pk as a seeding point. Starting from this seeding point, the
algorithm attempts to extend T along the retention time axis in both
directions. This is accomplished by recruiting new peaks from P� that
are close in m/z to all peaks gathered so far in T and thus most likely
originate from the same ion mass. Depending on the accuracy of the
underlying MS technology, mass spectrometric peaks will exhibit scan-
to-scan deviations from the true mass of the measured ion. These m/z
errors follow a heteroscedastic noise model; that is, low-intensity peaks
are expected to have a less reliable mass than higher-intensity peaks
(24). We describe this error model by an intensity-weighted Gaussian
distribution N with parameters � (mean) and �2 (variance). The recruit-
ment of suitable peaks to T depends on the accurate estimation of these
parameters. To this end, we employ an online m/z density estimator (25)
that refines the mean and variance estimates for each newly recruited
peak pn�1 by the recursive expressions

�n�1 �
wn � �n � in�1 � mn�1

wn � in�1

�n�1
2 �

wn � �n
2 � in�1 � �mn�1 	 �n�1�

2

wn � in�1

with �n 	 3 � �n 
 mn�1 
 �n � 3 � �n (Eq. 3)

where wn � �
k

nik represents the accumulated weights of the preceding

trace peaks and i0 � 1. Furthermore, we restrict the recruitment to
those peaks that are most likely under the previously estimated m/z
distribution N��n, �n

2�. The recursion is initialized with a variance of �0
2

that is chosen in proportion to the expected mass error of the mass
spectrometer. In most cases, this mass error turns out to be a rough
estimate, because the online density estimator yields a more accurate
estimate of �2 after only a few recursion steps and thus avoids
erroneously recruiting potential outliers to the mass trace. The algo-
rithm is thus quite robust against an incorrect choice of this user-
defined mass accuracy parameter.

The extension of mass trace T aborts as soon as a specified number
of scans has been observed without finding an adequate peak. Such
missing trace peaks occur more often in the fronting and tailing regions
of a chromatographic peak as the mass trace starts to fade into the
noise. We define a centroid m/z value for mass trace T by m� � �n,
where �n corresponds to the last mean estimate before the trace ex-
tension was aborted. Trace peaks that were recruited by T are removed
from the list P�. They can neither be used as a seeding point nor be part
of other mass traces created in the subsequent iterations.

Analytes with mass-to-charge ratios sufficiently similar to be indis-
tinguishable at the instrument resolution and sufficiently close reten-
tion times can form overlapping elution peaks within a mass trace (see
Fig. 1, upper right). Based on the elution profiles, these mass traces
need to be split. The algorithm detects the chromatographic maxima
of the respective elution profiles and minima between them. This is
complicated by the fact that peak intensities along an elution profile
tend to be noisy, in particular at low intensities. We use local regres-
sion (LOWESS) with a polynomial of degree two as a smoothing
technique, which offers the advantage of not needing a specific

chromatographic peak shape to be defined in advance (26). An im-
portant parameter that influences the degree of smoothing is the
window size s, which describes the number of peaks the local poly-
nomial fit is applied to. An optimal choice of s should roughly cover
the extent of a chromatographic peak. We found that good estimates
for the window size are the number of trace peaks that are covered
within the full-width-at-half-maximum �t0.5 of a typical chromatographic
peak. LOWESS smoothing is not very sensitive to changes in the
window size. As long as the window size is reasonably close to �t0.5 of
most chromatographic peaks—a parameter that is generally well known
for the chromatographic separation system—the smoothing will yield
the desired result. Thus, we set the window size according to

s � ��t0.5

tscan
� (Eq. 4)

where tscan designates the time between two consecutive MS scans.
The mass trace detection algorithm offers the option to automatically

infer a good estimate of �t0.5 based on the data. To this end, we
consider the distribution of peak widths that are gathered throughout
the mass trace extraction phase. From this distribution, we can estimate
an average peak width that is used for smoothing with good accuracy.

On the smoothed elution profiles, chromatographic peaks are de-
tected. A mass trace peak is regarded as a local chromatographic
maximum if it has a higher intensity than at least ⎩s/2⎭ trace peaks in
each direction (increasing and decreasing in retention time). This
condition guarantees that in order to be regarded as separable, the
chromatographic maxima of two consecutive overlapping elution pro-
files must be at least �t0.5 apart. If there is more than one chromato-
graphic maximum within the same mass trace, the position with the
minimum intensity between each pair of maxima is determined. These
minima are used as splitting points between two separable chromato-
graphic peaks (see supplemental Fig. S2). The splitting of mass trace
T with c chromatographic maxima results in c shorter mass traces
T1, T2,…,Tc. After the splitting step, we can define the retention time
for each mass trace Tj by the position of the chromatographic peak
maximum. Additionally, we approximate the chromatographic peak
area under the elution profile of a mass trace Tj by the Riemann sum

aj � �
l	0

n
1il � �tl�1 	 tl�. (Eq. 5)

Finally, each individual mass trace Tj is added to a global list M that
holds all detected mass traces for the following feature assembly.

Feature Assembly—The goal of the feature-assembly stage is to
find sets of mass traces that most likely originate from the same
analyte. A set is regarded as a valid isotope pattern if its mass traces
do co-elute, have correct m/z distances with respect to charge z, and
exhibit correct isotopic abundance ratios (see supplemental Fig. S3).
The feature-assembly algorithm reconstructs the isotopic patterns of
multiple adduct ions of one analyte as individual features rather than
aggregating them into one single feature. Following the modular
approach of the OpenMS framework, such adduct features can be
clustered subsequently or considered for improving the results of
accurate mass queries against databases.

We define a set of k � 1 mass traces as a feature hypothesis

H � �T0, T1,…,Tk� (Eq. 6)

where the mass trace T0 corresponds to the monoisotopic and
T1, T2,…,Tk to the higher isotopic mass traces of an analyte. To
enumerate all potential feature hypotheses in a list C, the algorithm
traverses all mass traces in M in order of ascending m/z. Each mass
trace therein is iteratively assumed to be the monoisotopic trace T0 of
a candidate feature hypothesis H. After initializing H with T0, the
algorithm searches the list M for mass traces that are compatible with
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T0 in terms of their retention times, m/z distances, and intensity ratios.
Instead of processing the complete list, we restrict the search for
candidates to a subset of mass traces that lie in the vicinity of T0 in
both m/z and retention time dimension. The criteria for m/z and
retention time compatibility are regarded as independent and are
therefore modeled separately. Traces that fulfill these criteria are
added to the feature hypothesis H.

In contrast to proteomics, there is no averagine model available to
assess the correct m/z spacings and isotope abundance ratios within
a putative metabolite isotope pattern. Thus, we built a comprehensive
set of isotope patterns characteristic of metabolites and studied novel
models to validate our feature hypothesis H. Although isotope pat-
terns of typical metabolites could be obtained from metabolite data-
bases, we chose a different approach in order to prevent bias due to
the limited size and potential biases of these databases. To generate
a set of valid isotope patterns, we first employed the HiRes software,
a chemical formula generator that has been further developed by
integrating heuristics to filter out unlikely sum formulas (28). We
generated all sum formulas based on the elements C, H, O, N, P, and
S in a mass range between 1 and 1,000 Da. This yielded about 24
million distinct sum formulas. We randomly sampled a subset of
115,000 compositions spread evenly over the mass range of interest.
We then computed the theoretical isotope patterns of these compo-
sitions with the program emass (29). For each isotope pattern, we
extracted the mass differences and abundance ratios between the
monoisotopic and each of the higher isotope masses. The underlying
distributions of these theoretical mass differences and abundance
ratios provided the basis for novel isotope pattern models geared
toward metabolites.

For each distribution of mass differences, we computed the mean
and standard deviation. Based on the shifting elemental ratios to-
ward higher masses and the distinct differences in mass between
isotopes of different elements, we observed that the mass differ-
ences between isotope mass distributions are not constant. In-
stead, they change slightly, but systematically. We observed that
the mass differences increased linearly from lower to higher iso-
topes. Instead of using fixed Gaussian models ���, �2� for approx-
imating each isotope mass spacing, we generalized the model
generation by the linear equations

�theo� j� � 1.000857 u � j � 0.001091 u and

�theo� j� � 0.0016633 u � j 	 0.0004751 u (Eq. 7)

where j � 1, 2, . . ., 5 corresponds to the higher isotope peaks con-
sidered. This generalization simplifies the validation of feature hypoth-
eses based on the mass differences �m between the monoisotopic
mass trace T0 and an arbitrary number of higher isotopic mass traces
Tj � j � 1, 2, . . ., k�. The m/z distance m� j� � � m0 	 mj� corresponds
to the difference in their m/z estimates computed during the mass
trace detection stage.

To assess the similarity between the observed and theoretical m/z
distances, we formulated the following error model: For each pair of
traces T0, Tj with m/z variances �0

2 and �j
2 and a hypothetical charge z,

the Gaussian models N�mz��� j�, �2� j�� are evaluated, where

�� j� �
�theo� j�

z
and �2� j� �

�theo
2 � j�

z
� �0

2 � �j
2.

(Eq. 8)

This leads to the following scoring function for pairwise m/z
distances:

S�m� j� � �e

��m� j�
�� j��2

2�2� j� , if �� j� 	 3 � �� j� 
 �m� j� 
 �� j� � 3 � �� j�
0 else.

(Eq. 9)

In a nutshell, this scoring function assesses how likely it is that a set
of mass traces were caused by the same metabolite based on a
comparison to the precomputed mass difference distributions of po-
tential metabolite compositions. It yields scores close to 1 for small
mass differences, and scores decrease with increasing deviation from
�� j�. For values that lie outside the interval defined by three times the
standard deviation �� j�, the score becomes 0.

To ensure that mass traces compatible in m/z also exhibit similar
elution profiles, we implemented a correlation similarity score as an
orthogonal criterion. For each pair of mass traces T0 and Tj, our
algorithm first detects all peaks that are overlapping in both mass
traces’ full width at half-maximum regions. If this overlapping stretch
comprises most of both full width at half-maximum regions (at least
70%), we compute the similarity score; otherwise, we set the score to
0. Given the mass traces’ T0 and Tj matched peak intensities �xl, yl�,
we compute their similarity with

SRT� j� � max� �lxl � yl

��lxl
2 � ��lyl

2, 0	. (Eq. 10)

If the algorithm finds a suitable candidate mass trace Tj for j � 1,
the scoring procedure is repeated to find the subsequent higher
isotope traces for j 	 2, . . ., 5. We restrict the size of a feature
hypothesis to up to six isotopic traces (monoisotopic trace plus up to
five satellite traces). As soon as the list of potential candidates is
exhausted, we select the mass trace next in M as a reference and
construct all hypotheses supported by it. A candidate list C keeps
track of all hypotheses that have been generated throughout this
iterative process.

For each hypothesis H � C, we compute a combined score Scombined

as

Scombined � �
j	1

k
5 1
�Naj

aj � S�mz� j� � SRT� j� (Eq. 11)

In order to give preference to high-intensity signals over low-intensity
ones, we weigh each score with the peak area aj of mass trace Tj

normalized by the total sum of the N detected mass traces in M.
We sort the candidate list C by decreasing score. Because C

contains hypotheses built merely of mass traces compatible in reten-
tion time and m/z dimensions, it is very likely that co-eluting or partly
overlapping isotope patterns are merged into one single hypothesis
instead of distinct ones. Furthermore, a trace that is actually a higher
isotopic trace of another pattern might erroneously be chosen as the
monoisotopic trace of a hypothesis. To filter out such invalid hypoth-
eses, we first consider each hypothesis by decreasing score, giving
precedence to high-scoring hypotheses. Subsequently, we apply an
isotope abundance filter to reject unlikely metabolite hypotheses.

Based on the theoretical isotope abundances extracted before, we
train a support vector machine to distinguish typical metabolite pat-
terns from unlikely intensity ratios. For each of the roughly 115,000
isotope patterns, we extract the first three isotope abundance ratios
together with the monoisotopic mass. These constitute the four fea-
tures of a training instance for the support vector machine classifier.
Because the classifier must cope with isotope ratios from real-world
measurements that are generally prone to errors, it might misclassify
measured ratios when it is trained merely on theoretical isotope
abundances. Consequently, we added Gaussian noise to each of the

Quantification of Metabolites from LC-MS Data

352 Molecular & Cellular Proteomics 13.1



theoretical abundance ratios in order to model a root-mean-square
error of 5%.

With the support vector machine classifier, the algorithm assesses
each feature hypothesis H � C. Hypotheses classified as invalid are
discarded from C. In the final step, we traverse C sorted by descend-
ing hypothesis scores Stotal and subsequently transfer feature hypoth-
eses to a list of accepted features. In order to guarantee that no mass
trace occurs in more than one feature, all remaining hypotheses
containing already accepted mass traces are removed from C.

The final list of features is stored in an XML-based file format
(featureXML) that contains both key properties (retention time, m/z,
intensity, full width at half-maximum, and charge) and potential meta-
information (e.g. unique identifier). The algorithm offers the option to
report the feature intensity as either the chromatographic peak area of
the monoisotopic trace alone or the sum of all isotopic peak areas.

Datasets—Assessing quantification algorithms is a difficult task,
and one may be severely hampered by the complexity of the data and
the lack of an exact ground truth if experimental datasets are used (for
example, the presence of unknown/unexpected contaminants). At the
same time, there is not a single performance measure for a quantifi-
cation algorithm. It needs to be sensitive, accurate, fast, and robust.
In order to assess the different aspects of our algorithms, we devised
two complementary benchmarking strategies. For the first bench-
marking setup, we conducted MS measurements with a concentra-
tion series of standard compounds that were spiked in human
plasma. The resulting dataset allowed us to assess the algorithm’s
quantitation capabilities when used with a complex real-world sam-
ple. However, the exact number of true metabolite features in our
experimental data is not known, and thus classical assessment by
sensitivity and specificity is not feasible. Because there exist only a
few freely available and fully annotated metabolomics datasets that
could be used as ground truths, we computationally generated a
synthetic dataset based on a published list of 500 well-characterized
plant metabolites. This ground truth provided the basis for our second
benchmarking setup, in which we aimed to quantify the algorithm’s
performance in terms of recall and precision rates.

Quantification Dataset—For the spike-in experiments with human
plasma, we selected a set of seven standard compounds that pro-
vided both a reasonable distribution within the experimental gradient
and good mass coverage. The standard compounds, together with
their mass-to-charge ratios and retention times under the given ex-
perimental conditions, are shown in Table I.

Sample Preparation—All aqueous solutions were prepared using
LC-MS-grade water from Chromosolv®, Fluka Analytical (Sigma-Al-
drich, Munich, Germany). LC-MS-grade acetonitrile and methanol
were purchased from Chromosolv®, Fluka Analytical (Sigma-Aldrich,
Munich, Germany). Formic acid (ultra-high-performance LC-MS
grade) was procured from Biosolve (Valkenswaard, The Netherlands),
and sodium hydroxide (�98%) was obtained from Roth (Karlsruhe,
Germany). Leucine enkephaline (�95% HPLC grade), nialamide (95%),
reserpine (�99% HPLC grade), sulfadimethoxine-d6 (VetranalTM), and

terfenadine were purchased from Sigma-Aldrich (Munich, Germany).
[3,3,3-d3]-propionyl-L-carnitine hydrochloride, [16,16,16-d3]-hexade-
canoyl-L-carnitine hydrochloride, and [18,18,18-d3]-octadecanoyl-L-
carnitine hydrochloride were purchased from Dr. H.J. ten Brink Lab-
oratory (Amsterdam, The Netherlands).

A stock solution for each standard was prepared at a concentration
of 1 g/l. Each standard was mixed at the same concentration in 20%
acetonitrile solution. An experimental standard serial dilution at 10
mg/l, 5 mg/l, 2 mg/l, 1 mg/l, 0.5 mg/l, 0.2 mg/l, 0.1 mg/l, 0.05 mg/l,
0.02 mg/l, and 0.01 mg/l was set. In addition, a non-spiked sample
was included in the experiment.

Fresh EDTA blood was collected from healthy male donors. Blood
plasma was prepared via centrifugation at 2,000g at 4 °C for 7 min.
The resulting plasma was pooled, mixed, and aliquoted for storage at

80 °C until analysis.

Frozen EDTA plasma was thawed on ice and vortex-mixed for 30 s
prior to treatment. The protein precipitation extraction was performed
by adding cold acetonitrile (1 ml) to a plasma volume (250 �l). After
the organic solvent had been added, the samples were vortex-mixed
for 30 s at room temperature and centrifuged at 15,294g for 10 min at
4 °C. The dried samples were reconstituted in 50 �l of the different
experimental standard solutions.

Ultra-high-performance LC-MS Analysis—Sample analysis was
performed using a Waters Aquity ultra-high-performance LC system
coupled to a Synapt HDMS oa-Q-TOF mass spectrometer (Waters,
Milford, MA) equipped with an electrospray ion source operating in
positive mode. The gradient chromatographic separation was per-
formed with a C18 Vision HT-HL ultra-high-performance LC column
(2  150 mm, 1.5 �m, Alltech Grom GmbH, Rottenburg-Hailfingen,
Germany). Elution buffer A was water containing 0.1% formic acid,
and elution buffer B was acetonitrile. The flow rate was set at 0.300
ml/min. The linear-gradient method consisted of 5% B over 0–1.12
min, 5% to 100% B over 1.12–22.27 min, and 100% B until 29.49 min,
after which the gradient was returned to 5% B at 29.56 min. In order
to equilibrate the column with the initial mobile phase, 5% B was
maintained until minute 35. The column oven was set to 40 °C, and the
sample manager temperature to 4 °C. A solution of leucine enkephalin
(556.2771 u, 400 pg/�l) in MeOH/H2O:1/1 containing 0.1% formic acid
was infused as lockmass compound at a flow rate of 5 �l/min. The
spectra were acquired in centroid mode within a range of 50–1000 u.
The detection parameters are described in the supplemental material
(see supplemental Table S6).

The samples were measured in randomized triplicate and alter-
nated with blank samples consisting of 20% acetonitrile. All data files
were converted into mzML format (31) using the command line tool
msconvert of the ProteoWizard suite (32).

For each measurement, we extracted metabolite features with our
algorithm and stored the resulting feature map in the featureXML data
format (6). For the following processing steps, we used existing
software solutions from the OpenMS framework (version 1.10). Fea-
tures coinciding on at least two measurements were aggregated to
consensus features and stored in the consensusXML format using the
FeatureLinkerUnlabeledQT software. The consensusXML file was ex-
ported to a tabular text format with the TextExporter tool. All further
analyses were conducted with the MATLAB R2012b (33) and R 2.15.2
(34) software packages.

Simulated Plant Metabolite Dataset—For the generation of synthetic
LC-MS datasets, we employed the software package MSSimulator (35).
The simulator creates profile data based on the experimentally deter-
mined retention time and the composition of a set of compounds. It
can simulate different instrument resolutions, noise levels, and chro-
matographic performances. The datasets created here were based on
experimentally identified metabolites and thus captured the complex-
ity of a real-world sample. At the same time, the simulator provides

TABLE I
Standard compounds of the spike-in experiments

Standard CAS-RN m/z (u) Retention
time (min)

Propionyl-L-carnitine-d3 1182037-75-7 221.15751 1.4
Nialamide 51-12-7 299.15025 5.7
Sulfadimethoxine-d6 73068-02-7 317.11851 8.4
Reserpine 50-55-5 609.28065 10.6
Terfenadine 50679-08-8 472.32099 12.4
Hexadecanoyl-L-carnitine-d3 1334532-26-1 403.36096 16.6
Octadecanoyl-L-carnitine-d3 N.A. 431.39227 18.6
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complete control over signal-to-noise ratio, accuracy, and similar
parameters that would be very difficult to vary independently of each
other experimentally.

The dataset was based on a list of identified plant metabolites from
a rather comprehensive study by Giavalisco et al. (36). The authors
reported the elemental composition, intensity, and retention time of
hundreds of metabolites in the supplementary information for their
study. This information is all that was needed in order to create
synthetic datasets with characteristics typical of a complex metabo-
lomics study. MSSimulator performed a raw signal simulation of 500
metabolites within the range of 100–1,000 m/z and with a simulated
gradient runtime of 25 min. The machine-dependent settings of MS-
Simulator were chosen to be close to those of our experimental MS
setup: The simulated MS resolution R was set to 20,000, and the scan
time was set at 0.25 s. The output of MSSimulator consists of a
centroided LC-MS measurement and a feature map summarizing all
simulated metabolites with theoretical retention times, m/z ratios, and
intensities. This feature map facilitates comparison between the
ground truth (the simulator’s input) and the features detected by our
algorithm applied to the same simulated data.

To assess the influence of different sources of noise on the feature-
finding performance, we conducted three series of MS simulations,
each affected by detector noise, m/z variation, or elution profile
distortion. In the first series, we simulated increasing levels of detec-
tor noise that were controlled by the Gaussian standard deviation �det.
The second series comprised two datasets simulated with moderate
and strong mass errors (Gaussian standard deviation �m/z set to 10
ppm and 40 ppm, respectively). For the third series, we simulated
elution profiles with ideal peak shapes and heavily distorted shapes.
In MSSimulator, the degree of distortion is controlled by the number
of iterations ndist; that is, the greater the number of iterations per-
formed, the more the elution profiles deviate from their smooth
Gaussian shape. The configuration for each simulation is summarized
in the supplemental material (see supplemental Table S5).

For performance evaluation, we computed both the recall r and the
precision p based on the number of ground truth features and the
number of features found or missed by our algorithm. These mea-
sures can be combined into the F-score (37), defined as

F-score �
2 � r � p
r � p

. (Eq. 12)

For each of the simulated datasets, we employed our algorithm to
detect a feature map and compute its F-score. The resulting scores
were plotted with respect to either varying MSSimulator parameters
(e.g. �det) or parameters of our feature-finding algorithm.

Comparison to Related Methods—We repeated the performance
assessments done with our algorithm with the XCMS and CAMERA
packages (Bioconductor versions 1.34 and 1.14, respectively) (7, 10),
which are currently considered to be among the leading feature-
detection algorithms. For each experiment, we adjusted the corre-
sponding parameter settings of the XCMS software to the best of our
knowledge. Because the feature set found by XCMS was not deiso-
toped and thus would not allow for a fair comparison, we additionally
employed the CAMERA package to detect higher isotope masses in
the XCMS output.

To allow for a direct comparison to our method, we first converted
the XCMS/CAMERA output to a compatible feature map. For each set
of annotated isotope traces in the XCMS/CAMERA output, we kept
the retention time, m/z value, and intensity of the first isotope in a
tabular format and discarded the higher ones. CAMERA clustered
multiple adducts belonging to the same compound together; we
resolved these clusters and stored each contained feature individu-
ally. Non-annotated features were regarded as singleton mass traces
and were added to the same table. This extraction procedure resulted

in condensed feature lists that were converted to the featureXML file
format with the FileConverter software (6). We employed the
FeatureLinkerUnlabeledQT software to link features that were de-
tected by both our algorithm and XCMS/CAMERA.

RESULTS

In this section, we assess the performance of our algorithm
from different perspectives. First, we present the results ob-
tained from the quantification dataset as introduced in the
section “Quantification Dataset”. We examine the linearity of
the response observed in spike-in experiments as a meas-
ure of the quality of absolute and relative quantification.
Then, we assess the reproducibility of the feature-finding
process by determining the number of features detected
over technical replicates. In order to dissect some effects of
the data quality on the behavior of the algorithm in more detail,
we show results obtained with a simulated dataset. With the
general quality of the methods already demonstrated on real-
world data, simulated data permit the independent variation of
certain characteristics and the determination of an independent
ground truth. Finally, we repeated the benchmarking studies
with the state-of-the-art software packages XCMS and CAM-
ERA, and we compare the results to the performance of our
algorithm.

Quantification Linearity and Reproducibility—Based on the
spike-in series in a complex plasma background, we can
assess both the linearity (11 different concentrations spanning
3 orders of magnitude) and the reproducibility of the quanti-
fication (based on triplicate measurements). With the detec-
tion of the standard compound features for each of the human
plasma spike-in experiments and their subsequent linking, we
obtained intensities for each analyte and dataset. Supplemen-
tal Table S10 lists the corresponding mean feature intensities
and standard deviations across the triplicate measurements
performed for each concentration of the analytes. We show
the relationship between the analytical concentrations and
their corresponding feature intensities for two selected stand-
ard compounds (reserpine and terfenadine) in Fig. 2; the
reader may refer to the supplemental material for the remain-
ing standard compounds (see supplemental Figs. S11 and
S12). For each concentration, we found rather little variation
between the triplicate feature intensities (in general, 2 or-
ders of magnitude smaller than the mean intensity) and thus
good reproducibility of both the LC-MS measurements and
the feature-detection algorithm. The Pearson correlation
coefficient between each compound’s concentrations and
corresponding feature intensities revealed an excellent lin-
ear relationship (R� 0.98 for all standard compounds). This
result suggests that the relative quantification of analytes
with our algorithm is reliable for a wide range of concentra-
tions (in the presented example, about 3 orders of magni-
tude). In the case of the propionyl-L-carnitine-d3 standard,
we could not detect any signals for the first six concentra-
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tions, either with our algorithm or by visual inspection of the
raw data.

Apart from the standard compounds, the algorithm de-
tected on average 2,020 � 236 features per measurement, of
which about 351 were singly, 12 doubly, and 6 triply charged.
The remaining features were singleton mass traces that ex-
hibited no isotope pattern (e.g. low signal intensity) and thus
did not allow a determination of the charge state. Because the
ground-truth set of real metabolites was unknown for the
plasma samples, a distinction between real metabolite fea-
tures and random features (e.g. noise, contaminants) was not
possible. To address this issue, we determined the percent-
age of measurements in which each feature was detected.
This detection rate is a measure of reproducibility and may
serve as a rough guide to distinguish randomly occurring
features from potential metabolite features. A bar plot shows
the distribution of these detection rates (see Fig. 3). We found
a set of 1,168 features to be reproducible in at least 50% of all
measurements. We then compared this feature set to the
features detected in each individual measurement and deter-
mined the size of the intersection. On average, we found
1,066 � 36 reproducible features in each of the 33 measure-
ments—that is, about 53% with respect to the average feature
number of 2,020. When we queried this feature list against the
Human Metabolome Database (38), 768 of the accurate
masses yielded a hit (i.e. about 74% could be assigned to at
least one potential metabolite ID).

Finally, we considered the variation in the intensity of coin-
ciding features among all measurements (features corre-
sponding to the spiked-in standard compounds were ex-
cluded). We grouped these features into three intensity bins

(i.e. magnitudes of order) to determine the dependence of
feature quantification as a function of feature intensity (see
Fig. 4). In the first intensity bin (intensities between 102 and
103), we observed a median variation of about 16.0%. The
second intensity bin (intensities between 103 and 104) showed
a median variation of 14.9%; this value finally reached 14.7%
in the highest intensity bin (intensities between 104 and 105).
These findings confirm good reproducibility in terms of feature
intensity when feature sets are compared between technical
replicates even for low-intensity features.

Recall, Precision, and Robustness of the Algorithm—In or-
der to determine the precision and recall of the methods, as
well as the dependence of the algorithm’s performance on
noise and instrument accuracy, we chose to employ simu-
lated datasets. For the human plasma dataset, the computa-
tion of these metrics was not possible because the ground
truth was unknown. Thus, we created a dataset with a known
ground truth that was based on a metabolomics investigation
of plant metabolites (36); however, elution profiles and isotope
patterns were created synthetically so that we could control
these parameters independently, which is not easily done in
an arbitrary fashion experimentally. Even if it were varied
experimentally—for example, by repeated measurements
modifying instrument resolution—we would not be able to
remove intersample variance. The simulation also did not
contain unknown contaminants so we could determine true
recall and precision rates based on the known (simulated)
ground truth.

When we simulated the dataset with parameters set to
simulate experimental results most closely, we observed ex-
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cellent precision and recall of the features of 97% and 96%,
respectively (see Table II).

Unsurprisingly, increasing noise levels in the simulated data
decreased both the precision and the recall of the method. In
extreme noise settings, F-scores can drop to significantly
lower values. The decline in performance primarily resulted
from the loss in feature recall rate—detecting features reliably
becomes more difficult as the signal-to-noise ratio decreases.
Details of this experiment are shown as part of the supple-
mental material (see supplemental Fig. S7). The method was
more robust against increases in the mass error and chro-
matographic distortion. In such cases, it yielded maximum
F-scores between 0.97 and 0.9. Because mass accuracy and
chromatographic peak width are parameters of the algo-
rithms, it is interesting to observe how performance is af-
fected by an incorrect choice of these parameters. For both
parameters, we found that the performance decreased mar-
ginally with a moderate underestimation and remained stable
with a moderate overestimation. These results suggest that
our algorithm is robust against significant deviations of these
parameters from the characteristics of the dataset (see sup-
plemental Figs. S8 and S9).

Comparison to Related Methods—By repeating the bench-
marks described above with XCMS/CAMERA, we were able
to compare the performance of our method to that of the
current leading algorithms in the field. Results of that com-
parison are summarized in Table II. For each of the human
plasma measurements, XCMS/CAMERA yielded 691 � 72
features. We linked the feature sets of all 33 experiments and
computed their detection rates (see Fig. 3). Features with a

detection rate above 50% were extracted, yielding a set of
544 reproducible features. For the comparison of XCMS/
CAMERA with our algorithm in terms of performance, we
considered the overlap between the reproducible feature sets.
Both methods detected a set of 361 common features,
whereas XCMS/CAMERA and our algorithm found 183 and
807 exclusive features, respectively. Thus, our algorithm de-
tected a substantial proportion (66%) of the XCMS/CAMERA
feature set. At the same time, XCMS/CAMERA found only
about 31% of our algorithm’s feature set. The high number of
exclusive features indicates that our algorithm exhibited
greater sensitivity than XCMS/CAMERA. To verify the sound-
ness of our exclusively detected feature set, we examined its
intensity distribution and found the majority of feature inten-
sities to be between 102 and 103. This suggests that the
exclusive features stemmed mainly from high sensitivity in the
low-intensity range. As we restricted this comparison to highly
reproducible features, we assumed that our algorithm’s ex-
clusive features originated from weakly concentrated analytes
rather than spuriously detected artifacts, an assumption that
was confirmed by visual inspection of the datasets. With
regard to intensity variation between replicate features, the
comparison revealed that our algorithm exhibited slightly less
variation (14.7% to 16.0%) than XCMS/CAMERA (18.0% to
18.9%) across all intensity ranges (see Fig. 4). We observed
that these differences in intensity variation were statistically
significant between XCMS/CAMERA and our method, but not
between different intensity ranges (based on a Wilcoxon test
with p � 0.05).
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We compared the benchmarking results of XCMS/CAMERA
and our algorithm in terms of simulated mass error and chro-
matographic peak distortion. In both mass error simulations,
our algorithm gave higher F-scores for the complete range of
tested parameter settings than XCMS/CAMERA (see supple-
mental Fig. S8). When we set the algorithm’s mass error
parameters according to the simulated error of 10 ppm (40
ppm), XCMS/CAMERA achieved an F-score of 0.52 (0.75) and
our algorithm achieved an F-score of 0.97 (0.95). Furthermore,
the performance plots revealed differences in the robustness
of the mass error parameter. Whereas the parameter was
insensitive to moderate under- and overestimation in our al-
gorithm, in XCMS/CAMERA it was more susceptible to minor
changes (see supplemental Fig. S8, right-hand plot).

Availability—The feature-detection algorithm presented in
this work was implemented and integrated in the open-source
framework OpenMS (version 1.10) as the software tool
FeatureFinderMetabo. The FeatureFinderMetabo tool can be
evoked on the command-line or out of TOPPView, the
OpenMS graphical user interface for processing and ana-
lyzing mass spectrometry data. Parameter settings are
stored in XML-based configuration files (*.ini) that can be
modified using the INIFileEditor tool (see supplemental Fig.
S13). As an input file format, FeatureFinderMetabo accepts
the mzML standard (31) and stores the results in the featur-
eXML file format. FeatureXML files can be read and further
processed by other OpenMS tools, such as MapAlignment-
PoseClustering for retention time correction or Fea-
tureLinkerUnlabeledQT for linking coinciding features from mul-
tiple experiments.

OpenMS offers the functionality to build custom processing
and analysis pipelines through the graphical workflow editor
TOPPAS (22). We employed TOPPAS to construct an exam-
ple workflow for label-free metabolite quantification. This tool
chain comprises feature detection, retention time correction,
feature linking, and the ability to export to a tabular text file for
subsequent statistical analyses. In order to allow for easy
integration of downstream analysis methods such as statisti-
cal learning, we implemented this workflow in KNIME, a pow-
erful platform for information mining (39). Both OpenMS 1.10
and workflows based on FeatureFinderMetabo are available
online at the OpenMS website (6).

DISCUSSION

The feature-finding method introduced in this work, the
OpenMS FeatureFinderMetabo, is a sensitive and reliable
method for identifying metabolite features in LC-MS data. It is
based on sensitive mass trace detection and hypothesis-
driven feature assembly. Model scoring with a hybrid mass
deviation and isotope profile scoring results in accurately
assembled features. An important component of the scoring
function is the detection of likely metabolite profiles by means
of statistical learning methods.

The algorithm can determine feature intensities of metabo-
lites with high sensitivity and specificity (above 95% on typical
data). Even in complex backgrounds (human plasma), we
found excellent linearity of the quantification based on re-
peated spike-in experiments. In a direct comparison, Fea-
tureFinderMetabo was able to outperform established
methods for LC-MS feature detection. Primarily in the low-
intensity range, we were able to pick up signals with poor
signal-to-noise ratios, and thus analyzing LC-MS data with
FeatureFinderMetabo might reveal interesting new metabo-
lites, or at least expand the dynamic range of metabolomics
analyses. Implementation of FeatureFinderMetabo as an
OpenMS/TOPP tool could ensure platform independence of
the tool and convenient availability.
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FIG. 4. Intensity variation between features that were matched
in at least half of the 33 spike-in human plasma measurements.
For each matched feature, we computed the intensities’ coefficients
of variation over the respective measurements. All matched features
were distributed to three bins with respect to the intensity’s magni-
tude of order. Based on the intensity bin’s underlying distributions,
median coefficient of variation values were determined and are de-
picted in the bar plot. We conducted one-sided Wilcoxon tests to
investigate whether the observed difference in the median coeffi-
cients of variation among the methods was significant. The results
from the pairwise comparisons are marked according to significance
level (asterisks). To enable a direct comparison of FeatureFinderMetabo
and XCMS/CAMERA feature intensities, we normalized all measure-
ments by quantile normalization.

TABLE II
Performance scores computed for the simulated plant metabolite
dataset (the algorithmic parameters were set appropriately to the

simulated characteristics of the data)

Method Recall Precision F-score

FeatureFinderMetabo 0.96 0.97 0.97
XCMS/CAMERA 0.88 0.37 0.52
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We designed the feature assembly algorithm to reconstruct
isotope patterns only. Although it is a common strategy to
also detect different adducts and charge states belonging to
the same analyte and integrate these into a unique feature, we
believe that this problem should be tackled in a separate
processing step. Adducts of the same compound may show
great variation in their ionization behavior and thus are difficult
to detect accurately.

Future improvements of the algorithms will include a more
advanced noise estimation model in order to increase the
specificity of the algorithm. We are also exploring methods
making use of multiple (replicate) measurements that collate
information across multiple LC-MS runs in order to increase
both the precision and the recall of the method.
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18. Hermansson, M., Uphoff, A., Käkelä, R., and Somerharju, P. (2005) Auto-
mated quantitative analysis of complex lipidomes by liquid chromatog-
raphy/mass spectrometry. Anal. Chem. 77, 2166–2175

19. Senko, M. W., Beu, S. C., and Mclafferty, F. W. (1995) Determination of
monoisotopic masses and ion populations for large biomolecules from
resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 6,
229–233

20. Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26, 1367–1372

21. Kind, T., Tolstikov, V., Fiehn, O., and Weiss, R. H. (2007) A comprehensive
urinary metabolomic approach for identifying kidney cancer. Anal.
Biochem. 363, 185–195

22. Junker, J., Bielow, C., Bertsch, A., Sturm, M., Reinert, K., and Kohlbacher,
O. (2012) TOPPAS: a graphical workflow editor for the analysis of high-
throughput proteomics data. J. Proteome Res. 11, 3914–3920
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