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ABSTRACT

In eukaryotes, the three families of ATP-dependent
DNA ligases are associated with specific functions
in DNA metabolism. DNA ligase I (LigI) catalyzes
Okazaki-fragment ligation at the replication fork
and nucleotide excision repair (NER). DNA ligase
IV (LigIV) mediates repair of DNA double strand
breaks (DSB) via the canonical non-homologous
end-joining (NHEJ) pathway. The evolutionary
younger DNA ligase III (LigIII) is restricted to higher
eukaryotes and has been associated with base
excision (BER) and single strand break repair
(SSBR). Here, using conditional knockout strategies
for LIG3 and concomitant inactivation of the LIG1
and LIG4 genes, we show that in DT40 cells LigIII
efficiently supports semi-conservative DNA replica-
tion. Our observations demonstrate a high function-
al versatility for the evolutionary new LigIII in DNA
replication and mitochondrial metabolism, and
suggest the presence of an alternative pathway for
Okazaki fragment ligation.

INTRODUCTION

Vertebrates contain three different DNA ligase species
(1,2). LigI is thought to play a central role in DNA
replication. It is targeted to DNA replication factories
through interaction with proliferating cell nuclear
antigen (PCNA) (3–5) and a human cell line with
mutated LIG1 alleles (6,7), 46BR, from an
immunodeficient patient, shows defects in Okazaki

fragment joining but nearly normal overall growth
characteristics. A LIG1 knockout mouse harboring
homozygous deletions of the 30-end of the LIG1 gene is
embryonic lethal (8). However, mouse embryonic fibro-
blast (MEF) cell lines generated from such embryos
show defects in Okazaki fragment joining but normal
proliferation patterns (8,9). Therefore, the essential role
of LigI in DNA replication is still under debate.
The second family of ligases found in all eukaryotes is

that of LigIV. The main function of LigIV is the ligation
step during the repair of DNA double strand breaks
(DSBs) by the canonical non-homologous end-joining
(NHEJ) pathway. Through breast cancer gene 1 carboxy
terminal (BRCT) motifs, LigIV interacts with X-ray cross
complementing 4 (Xrcc4) and becomes integrated in a
NHEJ pathway (to be termed here D-NHEJ), which in
vertebrates also comprises XRCC4-like factor (XLF),
and the DNA-dependent protein kinase (DNA-PK)
complex, consisting of the Ku heterodimer and the cata-
lytic subunit, DNA-PKcs (10,11). Although in the mouse
LIG4 knockout is embryonic lethal (12–14), this lethality
can be rescued by concomitant loss of p53 function and
LIG4�/�/p53�/�MEFs are highly radiosensitive and show
defects in D-NHEJ (14–16).
The LigIII family is newer evolutionary and restricted

to vertebrates (2). Nuclear and mitochondrial versions of
LigIIIa are ubiquitously synthesized from LIG3 mRNA
by an alternative translation initiation mechanism (17,18).
In addition, germ-cell-specific alternative splicing of the
LigIIIa 30-coding exon generates LigIIIb (18,19).
Nuclear LigIIIa interacts with Xrcc1 and functions in
the short-patch subpathway of BER (20), the repair of
single strand breaks (21,22) and a NER subpathway
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(23). There is also evidence that LigIIIa is a component of
an alternative pathway of NHEJ functioning as a backup
(B-NHEJ) to D-NHEJ (24,25). Deletion of LIG3 has con-
sequences significantly more severe than deletion of either
LIG1 or LIG4 and attempts to generate LIG3 knockout
cells or animals had failed until recently (26). Recent work
shows that loss of mitochondria ligase function underlies
this lethality and that viability of a LIG3 knockout is
rescued by other eukaryotic ligases targeted to this organ-
elle, or by expressing prokaryotic homologs (27,28).
Although these observations indicate that LIG3 is dispens-
able, they leave open the question as to whether LigI or
LigIV substitute for important LigIII functions, and
vice-versa, as a result of unknown functional redundancy
among eukaryotic DNA ligases. Here, we employ the
chicken B cell line, DT40, and powerful conditional tar-
geting approaches to investigate the role of the different
DNA ligases in DNA replication and to study the inherent
functional flexibility built by evolution into the vertebrate
ligase system.

MATERIAL AND METHODS

Cell culture and electroporation

DT40 cells were grown at 41�C in a mixture of D-MEM/
F12 growth medium supplemented with 10% fetal bovine
serum, 1% chicken serum, 50 mM b-mercaptoethanol in
a humidified incubator supplemented with 5% CO2. All
cells were routinely maintained in the logarithmic phase
of growth. Stable transfectants were selected in 15 mg/ml
of blasticidin S, 1mg/ml mycophenolic acid or 1 mg/ml of
puromycin, as appropriate. Targeted clones were screened
by polymerase chain reaction (PCR) according to
Arakawa et al. (29).
Two methods of electroporation were used to introduce

DNA into DT40 cells. In the first protocol, electropor-
ation was carried out with cells suspended in complete
growth medium, and 107 cells were electroporated using
the GenePulser-Xcell (BIORAD) at 25 mF and 700V. In
the second protocol, 106 cells were electroporated with
program 21 in Buffer B using commercially available
equipment and protocols (Amaxa).

Parental cell line

Mutants described here were derived from the DT40-Cre1
cell line that conditionally expresses Cre recombinase to
allow genome editing, and v-myb to enhance gene conver-
sion (29,30). Cre recombinase is expressed from a human
b-actin promoter as a chimera, MerCreMer, between
a mutated estrogen receptor (Mer), only responding to
tamoxifen or 4-hydroxytamoxifen (4HT) (31), and Cre
recombinase (29,30). In the absence of tamoxifen,
MerCreMer is efficiently sequestered by heat shock
proteins in the cytoplasm. This interaction is rapidly
disrupted upon administration of 4HT and causes the
translocation of the protein to the nucleus, where Cre
exerts recombination activity at loxP sites. Cells are also
AID�/� and carry a deletion in the pseudo V locus of
the non-rearranged Ig light chain locus. Furthermore,
the non-rearranged V-intervening-sequence is replaced

by a rearranged VL light chain gene together with
DsRed as a hypermutation reporter. Thus, the full
description of the cell line is DT40-AID�/�IgLdual; and is
referred here as DT40. This genetic background extends
the utility of the mutants generated here to studies of
gene conversion and hypermutation through analysis of
inactivating mutations in the DsRed gene and will be
reported elsewhere.

Conditional gene knockout using an especially designed
mutant 3loxP system

Three loxP targeting vectors were generated as outlined in
Figure 1 and Supplementary Figure S1C–E by cloning 50,
middle and 30 arms of the genes of interest into a plasmid
vector, p3loxBsr. After genomic integration of these
vectors, clones in which all 3 loxP sites were retained
in the targeted locus were identified by PCR (see
Supplementary Table 1 for a list of all oligos used for
PCR genotyping as part of this work). To generate con-
ditional knockout alleles, the 3loxP targeted clones were
cultured with 20 nM 4-HT for 2 h and were subcloned by
limited dilution in duplicate. Blasticidin-sensitive
subclones were further screened by PCR to ensure reten-
tion of the two loxP sites.

Targeted integration of overexpression vectors

To ensure consistent expression of transgenes, we
constructed an expression vector that can be targeted
into a defined intergenic locus on chromosome 8,
pChr8RsvLoxIresBsr. The vector integrates without des-
troying or grossly disturbing nearby genes. Transgene
expression is driven by the Rous sarcoma virus (RSV)
promoter and is followed by an internal ribosome
binding site (IRES), the bsr selection marker and the
SV40 polyA signal. The yeast LIG1 homolog, CDC9,
the human LIG3� and the human M2I LIG3� genes
were cloned into this vector and knocked into DT40
chromosome 8.

Targeting of LIG1, LIG3 and LIG4

The first LIG3 allele was targeted using the vector
pLig3lox3Bsr2 shown in Figure 1B. One pair of loxP
sites flanks the bsr gene and is placed between LIG3
exons 9 and 10, whereas a third loxP site is placed
between exons 5 and 6. After stable integration of
pLig3lox3Bsr2, clones resistant to blasticidin S were first
selected and among those, clones with targeted integration
identified by PCR. After removal of the selection marker
using 4HT, the mutant LIG3+/2loxP was generated. The
targeted LIG3 allele in this mutant has two loxP sites
that allow the conditional removal of exons 6–9 upon
treatment with 4HT; they encode the LigIII DNA
binding domain and the 50 half of the catalytic core
including the active site (red bar in Figure 1A). The
second allele of the LIG3 gene was knocked out in
LIG3+/loxP using a vector deleting a segment starting
from the middle of exon 4 and ending before exon 11
and inserting at the same time an in-frame stop codon
into the exon 3, as well as the gpt (xanthine–guanine
phosphoribosyl transferase) drug resistance cassette.
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Figure 1. Eukaryotic DNA ligases and targeting strategies. (A) Domain structure of chicken DNA ligases. Nc, nuclear; mt, mitochondrial. Red bars
indicate regions deleted in the mutants generated. The b form of LigIII is inferred, as the corresponding exon could not be identified. (B) Vectors and
approach taken to generate conditional and constitutive knockouts of DT40 LIG3 alleles. Gels show PCR products confirming genome editing steps.
The steps followed to generate the indicated mutants are outlined in the lower right. (C) Approach to generate an allele expressing the mitochondrial
version of LigIII.
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Following selection in 1 mg/ml mycophenolic acid,
targeted integration of pLig3Gpt was screened by PCR
using primers 3LI44 and GP1. The preservation of the
conditional knockout allele was checked in parallel using
the primers 3LI34 and 3LI41. Limited exposure to 4HT
allowed excision of the gpt drug resistance cassette,
while the possible loss of the conditional allele was
counter-selected by its lethal character.
DT40 mutants expressing the mitochondrial LigIII,

were generated using the targeting vector pLig3M2IBsr
(Supplementary Figure S1C). The vector introduces an
inactivating mutation in the M2, while preserving M1,
translation initiation site and is used to disrupt the
second allele in LIG3+/2loxP. Following excision of the
bsr drug resistance cassette from the second allele,
a mutant is generated with one conditional allele and
a second allele expressing constitutively only the mito-
chondrial form of LigIII (LIG32loxP/M2I).
Conditional targeting of the LIG1 gene was carried out

in DT40 or LIG32loxP/� genetic background (Supple-
mentary Figure S1D). In the bursal cDNA database, we
identified an incomplete chicken LIG1 cDNA sequence
encoding the 658 C-terminal amino acids. The amino
acid sequence of chicken LigI derived from this cDNA,
shared 66% identity and 81% similarity with the human
protein. Therefore, we deduced the numbering of amino
acids and exons of the entire chicken LIG1 locus from
that of human and used it to construct appropriate target-
ing vectors. The first allele of LIG1 was targeted by the
vector pLig1Lox3Bsr. The vector contains, in addition to
the three loxP sites, a genomic fragment of LIG1 spanning
exons 12–28. The Bsr drug resistance cassette spanned
by two loxP sites is placed in the 30-untranslated region
of exon 28. Targeting of allele 1 with this vector and
excision of the drug resistance cassette as described for
LIG3, results in a conditional allele for LIG1. The
second allele of LIG1 was targeted with the pLig1Puro
targeting vector and was followed by recycling of the
selection marker (Supplementary Figure S1D).
We employed a conventional knockout strategy to

inactivate LigIV (Supplementary Figure S1E). The
amino acid sequence of chicken LigIV has 75% identity
and 85% similarity with the human enzyme. The chicken
LIG4 gene does not contain introns and is composed of a
single exon. The vector pLig4Bsr was therefore, designed
to delete the entire coding sequence of one LIG4 allele.
The vector pLig4Puro4 was designed to delete amino acids
185–614 of the second allele while inserting an in-frame
stop codon after codon 184. Integration of this vector
deletes the entire catalytic core including the LigIV
active site. Following selection in 15 mg/ml blasticidin S
and 1 mg/ml of puromycin, cells with both alleles disrupted
were selected. Cre induction by tamoxifen allowed
the removal of drug selection cassettes and the generation
of LIG4�/� cells.

Reverse transcription reaction and real-time PCR

The RNA was prepared according to the protocol of the
High Pure RNA Isolation Kit (Roche) with the exception
that three million cells were used for total RNA isolation.

RNA concentration was determined with a spectropho-
tometer (NanoDrop; Thermo Scientific).The cDNA was
prepared from 1 mg total RNA by reverse transcription
using the ‘Transcriptor First Strand cDNA Synthesis
Kit’ (Roche) according to the manufacturer’s instructions.
This cDNA was used as input in real-time PCR reactions
according to the protocol suggested in the LightCycler�

FastStart DNA MasterPLUS SYBR Green I kit (Roche).
Briefly, 1 ml of cDNA, 0.5ml of sense and antisense primer
solution, 2 ml of LightCycler� FastStart DNA MasterPLUS

SYBR Green I Master Mix and 6 ml H2O were mixed
together in a 10 ml reaction mixture in a LightCycler�

Capillary. Capillaries were placed in the sample carousel
of the LightCycler� (Roche). The settings for the thermal
cycles were as follows: initial denaturation step 10min at
95�C; 45 cycles of 10 s at 95�C, 5 s at 62�C and 10 s at
72�C. The primer sequences used were: Lig4-F: 50-CCC
CAT TAA CAG GCA GGA TA-30; Lig4-R: 50-CCA
CGT TTG TCA GGC TTG TA-30; TBP1-F: 50-CAG
CAC CAA CAG TCT GTC CA-30; TBP1-R: 50-GGG
GCT GTG GTA AGA GTC TG-30; Lig3-F: 50-GAT
GAC CCC AGT TCA GCC TA-30; Lig3-R: 50-GTG
GGC TAC TTT GTG GGG AA-30; Lig1-F7: 50-CAT
CTG CAA GAT AGG CAC TG-30; Lig1-R7: 50-CCC
AAA TCG TCA CCA AAC AG-30.

Analysis of cell cycle distribution by flow cytometry

Measurements of cell cycle distribution were carried out
with an Epics XL-MCL (Beckman–Coulter) flow
cytometer. Cells were collected by centrifugation and
fixed in 70% cold ethanol for 24 h. Ethanol-fixed cells
were spun down at 1500 rpm for 5min and were resus-
pended in phosphate buffered saline (PBS) containing
40 mg/ml propidium iodide (PI) and 62 mg/ml RNase A.
Samples were incubated at 37�C for 20min and 20 000
cells were measured. The fraction of cells in the different
phases of the cell cycle was calculated using the Wincycle�

software.

Analysis of DNA replication by BrdU incorporation

Exponentially growing cells were incubated with 10 mM
BrdU for 1 h and fixed in 70% ethanol. After washing
with 0.9% NaCl, cell pellet was incubated for 10min at
41�C in 0.5% pepsin. HCl solution (5.5ml of 1 M HCl per
100ml water). Subsequently, cells were then incubated in
2 M HCl for 20min at room temperature and washed in
0.05% PBS–Tween 20 before incubation for 30min at 4�C
with an anti-BrdU antibody (1 : 50 dilution, Becton
Dickinson) in the same solution. After washing with
PBS–Tween 20 (0.5%)–bovine serum albumin (BSA)
(1%), an fluorescein isothiocyanate (FITC) conjugated
secondary antibody (1 : 100 dilution, Sigma) was applied
for 30min at 4�C in the same solution. Finally, cells were
stained with PI and analyzed by flow cytometry. In the
course of experiments using different DT40 mutants,
we noticed mutation-dependent fluctuations among cells
with S-phase DNA content in the fraction of those
incorporating BrdU and therefore actively synthesizing
DNA. For a quantitative evaluation of this effect, we
defined the ‘Fraction of active S’ phase cells. The
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calculation of this parameter is graphically illustrated in
Figure 4C (left) and consists of determining the fraction of
BrdU positive cells in the region defined between the end
of the G1 peak and the beginning of the G2 peak.

Cell fractionation in the different phases of the cell
cycle by centrifugal elutriation

For elutriation, cells were grown for 24 h from a concen-
tration appropriately selected to reach �1.5� 106 cells/ml.
Cells (2–3� 108) were collected and elutriated at 4�C using
a Beckman JE-6 elutriation rotor and a Beckman J2-21M
high-speed centrifuge at 25ml/min (Beckman, Krefeld,
Germany). Cells were loaded at 4500 rpm, and 250ml
fractions collected between 3400 and 2900 rpm at
100-rpm steps. Fractions of highly enriched cells in G1
were used for experiments. Cell-cycle analysis was
carried out by flow cytometry as described above. For
cell cycle analysis, cells were fixed in 70% ethanol and
stained in PBS containing 62mg/ml RNase A and
40mg/ml propidium iodide at 37�C for 30min.

Colony formation assay

For evaluation of colony forming ability DT40 cells were
seeded in a medium containing 1.5% methylcellulose
(MC) (Sigma, M0387). Cells were plated in 5ml
MC-growth medium in dilutions aiming at 100–200
colonies per dish, incubated for 10–14 days at 41�C and
counted. To determine the surviving fraction after treat-
ment with the poly-ADP-ribose-polymerase (PARP) in-
hibitor PJ-34, cells were plated in MC-growth medium
containing PJ-34 at the indicated concentrations and
were allowed to form colonies as described above.
Typically, 200–1000 cells were plated aiming at 100–200
colonies per dish, depending on the mutant tested.

SDS–PAGE and western blotting

Protein gel electrophoresis under denaturating conditions
was carried out using 10% polyacrylamide gels. For
western blot analysis, proteins were transferred onto
0.2 mm Nitrocellulose or polyvinylidene fluoride (PVDF)
membranes using an iBlot dry-transfer system
(Invitrogen). Equal loading and transfer efficiency were
monitored by Ponceau-S staining combined with
immunodetection of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). After transfer, membranes
were blocked with 5% non-fat dry milk in tris-buffered
saline with Tween20 (TBS-T) (0.1% Tween 20, 150mM
NaCl, 25mM Tris–HCl, pH 7.6) for 1–2 h at room tem-
perature. Subsequently, membranes were incubated over-
night at 4�C with primary antibody appropriately diluted
in blocking buffer. After three washes for 10min with
TBS-T, membranes were incubated for 1 h with secondary
antibody appropriately diluted in blocking buffer.
Membranes were developed using the ECL+ chemilumin-
escence detection kit (GE Healthcare), as recommended
by the manufacturer. Signals were visualized in a
VersaDocTM imaging system (Bio-Rad) and analyzed
using the ‘Quantity One’ software (Bio-Rad). The follow-
ing primary antibodies were used: anti-Lig3 (1F3) mouse
mAb (GeneTex); anti-GAPDH mouse mAb (Millipore).

The secondary antibody was anti-mouse IgG conjugated
with horseradish peroxidase (Cell Signaling).

Assay for Okazaki fragment ligation

To assay Okazaki fragment ligation, we modified an
earlier described method (9). Briefly, human or mouse
fibroblasts exponentially growing in 30mm dishes were
rinsed twice with warm serum-free medium and incubated
for 10min at 37�C in serum-free medium containing
2 mCi/ml [methyl-3H]-thymidine (25Ci/mole). After this
incubation, the growth medium was replaced with
serum-free medium containing 2mM thymidine and cells
were collected for analysis after a further incubation at
37�C for different periods of time as indicated. Human
or mouse cells were scraped in 1ml ice cold PBS,
pelleted by brief centrifugation and resuspended in 20 ml
buffer A (10mM Tris–HCl, pH 8.0, 50mM NaCl, 0.1M
EDTA). Subsequently, 60 ml of molten 1.5% low-melting
point agarose was added to the suspension, mixed and
pipetted into cylindrical molds, which were immediately
immersed in ice and kept for 5min. DT40 cells were
handled in a similar way, but because they grow in sus-
pension, scraping was not required and incubation was
at 41�C. The generated agarose plugs were incubated for
18 h at 50�C in 1ml lysis buffer [buffer A supplemented
with 2% (w/v) N-laurylsarcosine and 0.2mg/ml proteinase
K]. Subsequently, plugs were transferred to 5ml buffer A
for 1 h. Low molecular weight DNA that included
3H-labeled nascent DNA was electrophoresed under
alkaline conditions in 1% agarose gels at 2V/cm for 6 h
at room temperature. After electrophoresis, the gel was
soaked in neutralization buffer (1M Tris–HCl, pH 7.6,
1.5 M NaCl) for 1 h and cut into 1 cm slices. Molecular
weight markers run in parallel in the same gel allowed
assignment of molecular weight range (0.2 to �23 kb) to
each agarose slice. Slices containing DNA corresponding
to different sizes were soaked in 0.1 M HCl for 1 h, melted
by heating in a microwave oven and [3H] present was
counted in a scintillation counter. The results are plotted
as the percentage of cpm measured in agarose slices
with DNA <2 kb compared with the total cpm in the
corresponding lane.

Immunofluorescence microscopy

Approximately 106 cells were spun for 1min at 1500 rpm
on Poly-L-Lysine pre-treated coverslips using cytospin
(Thermo Scientific) and fixed for 20min in 2% para-
formaldehyde. Fixed cells were washed with PBS,
permeabilized for 5min in solution P (100mM Tris,
50mM EDTA, 0.5% Triton X-100) and blocked
overnight at 4�C in PBG solution (PBS, 0.5 % BSA,
0.2 % Gelatin).
To visualize g-H2AX, coverslips were incubated for

90min at room temperature with an anti-g-H2AX
mouse monoclonal antibody (JBW301, Upstate) diluted
1 : 200 in PBG solution. Coverslips were washed once
in PBS and an anti-mouse IgG antibody, conjugated
with AlexaFluor488 (Invitrogen) was added for 60min
at room temperature at 1 : 400 dilution in PBG solution.
Cell nuclei were counter-stained for 30min with DAPI
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(40,6-Diamidin-2-phenylindol, 2 mg/ml, 0.1 M Tris, 0.1 M
NaCl, 5mM MgCl2, 0.05 % Triton X-100) and were
washed once with PBS. Subsequently, coverslips were
mounted on microscope slides using Prolong-Gold
Antifade (Invitrogen). Samples were scanned with a
�40 objective in an automated analysis station equipped
with a fluorescence microscope (Axio Imager Z2, Zeiss)
and controlled by the Metafer software (MetaSystems).
On average, 2500 cells were analyzed per sample using
Metafer software. The DAPI intensity was used to distin-
guish between cells in G1 and G2 phases of the cell cycle.
On average, the results of 850 G1 and 500 G2 cells
per experiment were included to calculate the data
shown here.

RESULTS

Targeting strategies and mutants

For an initial characterization of the DT40 LIG3, we
carried out a phylogenetic tree analysis using available
sequences and the neighbor joining method (Supple-
mentary Figure S1A). As expected, LIG1 and LIG4 are
found in all eukaryotes, whereas LIG3 is only found in
vertebrates, including the chicken. Surprisingly, we
uncovered a previously undetected LIG3 homolog in
Drosophila. The six amino acids of the active site are
highly conserved across species (Supplementary Figure
S1B) and are essential for enzyme activity. Therefore, we
constructed targeting vectors deleting a substantial
portion of the enzyme core region, always including the en-
zyme active site (shown by red bars in Figure 1A).
Since blast algorithms failed to unambiguously define

in the chicken LIG3 locus, the LigIIIb-specific exon,
we confined our studies to LigIIIa. We employed the
Cre/LoxP system to develop the conditional gene targeting
strategy summarized in Figure 1B. Thereby, we conserva-
tively knocked-in three loxP-sites into one allele of
the endogenous LIG3 gene and then excised only the
blasticidin-S resistance cassette by limited dilution after
a short treatment with 4-OH-tamoxifen (4HT). The
generated allele contains two loxP sites, which flank
LIG3 exons 6–9, encoding the DNA binding domain
and the 50-half of the catalytic core including the enzyme
active site (Figure 1A). In the LIG3+/2loxP cells, the second
allele is conventionally targeted as shown in Figure 1B
(left lower panel) to generate the mutant LIG32loxP/� in
which the conditional LIG3 allele can be excised by treat-
ment with 4HT (Figure 1B, right upper and lower panels).
To separate the nuclear and mitochondrial functions of

LigIII, we inactivated the M2 translation initiation site in
the second allele of the LIG3+/2loxP mutant to generate
LIG32loxP/M2I (Figure 1C). In this mutant, inactivation
of the conditional LIG3 allele generates cells exclusively
expressing mitochondrial (mt)LIG3 (LIG3�/M2I).
In order to generate complete LIG1 knockout in DT40,

we decided to delete entirely the catalytic core of LIG1.
This strategy minimizes problems arising from dominant
negative effects potentially arising when truncated
proteins are expressed from the targeted locus. Because
we considered the possibility that LIG1 ‘null’ DT40 may

not be viable, or may show only limited growth capacity,
we employed conditional targeting strategies for LIG1 as
well (Supplementary Figure S1C).

LIG4 was targeted using a conventional knockout
strategy (Supplementary Figure S1D). Mutants defective
in multiple ligases were generated for a comprehensive
study of functional overlap and possible functional substi-
tution between eukaryotic DNA ligases (Supplementary
Figure S1E–G) (see Table 1 for a summary of mutants).

LIG3, but not LIG1 or LIG4, is essential for DT40
survival

The mutant LIG32loxP/� converts to LIG3�/� by incuba-
tion with 4HT, which causes a rapid reduction of LIG3
mRNA (Figure 2A), from levels corresponding to 50% of
wild-type (wt) to undetectable within 12 h. Deletion of
LIG3 has no detectable compensatory effect on LIG1 or
LIG4 mRNA levels (Figure 2A). LIG3 knockout is also
associated with a marked reduction in LigIII protein after
3d (Figure 2B). Deletion of LIG3 has severe consequences
for cell growth and viability with all cells dying after 5
days (Figure 2C) and the clonogenicity dropping to zero
within 24 h (Figure 2D). We conclude that LIG3 is essen-
tial for survival in DT40.

In contrast to the observations following LIG3
knockout, LIG1 knockout generated by incubating with
4HT LIG12loxP/� cells, has no effect on cell growth (Figure
2E), despite rapid LIG1 mRNA depletion (Supplementary
Figure S2A).

To examine whether LIG1 deletion is associated with
more subtle defects in DNA replication, we analyzed
Okazaki fragment ligation. Human 46BR-1N cells defect-
ive in LIG1 show the expected defect in Okazaki fragment
ligation that is corrected in the LIG1 complemented
counterpart, 46BR-PBAHL (Figure 2F). A similar,
albeit 50% reduced, response is also detected in the
LIG1�/� MEFs (PFL13), as compared with the wt
(PF20). Surprisingly, an Okazaki fragment ligation
defect is not detectable in LIG1�/� DT40. We conclude
that in the chicken, the DNA replication functions of LigI
can be assumed by LigIII or LigIV and be carried out with
efficiency similar to LigI.

To investigate a possible function of LigIV in DNA
replication, we compared the growth kinetics of LIG4�/�

cells to those of the double mutant LIG1�/�LIG4�/�.
Growth of LIG4�/� cells is slightly slower as compared
with the wt, but growth of LIG1�/�LIG4�/� cells is not
further affected (Figure 2E) and Okazaki fragment
ligation remains intact in LIG32loxP/�LIG1�/�LIG4�/�

cells (Figure 2F).
To examine whether in DT40 the deletion of LigI is

associated with increased replication stress, we examined
toxicity to the PARP inhibitor PJ-34. Cells of different
genetic background were plated in MC-growth media
containing the indicated drug concentrations and colony
formation was evaluated. The results in Supplementary
Figure S2B show similar PJ-34 toxicity, expressed as
surviving fraction, for wt, LIG1�/� and LIG1�/�LIG4�/�

cells.
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As further test of replication stress in cells lacking LIG1,
we analyzed g-H2AX foci formation in non-irradiated
DT40 cells of different genetic background. The results
summarized in Supplementary Figure S2C show no
increase in the number of foci per cell between wt,
LIG1�/� and LIG1�/�LIG4�/� cells. Even separation
between G1 and G2 cell data, and as direct consequence
also of S-phase cell data, fails to uncover such trends
(Supplementary Figure S2C). We conclude that in
DT40, LigIII alone can efficiently substitute for all
major DNA replication functions of LigI and can
promote survival without detectable adverse consequences
as a sole DNA ligase.

Synthetic lethality of LIG1 and nuclear LIG3 double
knockout

To examine whether nuclear LIG3 knockout is viable, we
incubated LIG32loxP/M2I cells with 4HT. Notably, not only
LIG32loxP/M2I, but also LIG3�/M2I cells are viable and
grow as the wt (Figure 3A), despite reduced LIG3
mRNA levels (Supplementary Figure S2D). In
LIG3�/M2I cells, LigI is the only remaining nuclear ligase
with putative DNA replication functions and should
therefore be essential for cell survival. We confirmed this
postulate by incubating LIG3�/M2ILIG12loxP/� cells with
4HT and demonstrating cell death after 3 days
(Figure 3B), associated with depletion in LIG1 mRNA
levels (Supplementary Figure S2E). A role of LigI in
DNA replication is also demonstrated by the practically
immediate death of LIG32loxP/�LIG1�/�cells after incuba-
tion with 4HT (Figure 3B). Viability or lethality in the
above mutants is also evident in parallel clonogenic

assays (Figure 3C and Supplementary Figure S2F). We
conclude that in the absence of nuclear LigIII, LigI is es-
sential for DT40 survival and that there is functional
overlap and substitution potential in DNA replication
between LigI and LigIII.
Knockout of LIG4 does not further deteriorate the

phenotype of LIG32loxP/� or of LIG32loxP/�LIG1�/� cells
even after treatment with 4HT (Figure 3D), although the
clonogenicity of the triple mutant is reduced (Figure 3C).

The mitochondria functions of LIG3 are essential for
cell viability

The above results indicate that the lethality of LIG3�/�

mutants is associated with defects in the mitochondrial
function of the enzyme. To further examine this postulate,
we generated LIG32loxP/� cells expressing the human
nuclear and mitochondrial forms of LIG3� designed as
previously reported (17) (Figure 1C), as well as the yeast
LIG1 homolog, CDC9. LIG32loxP/� cells expressing
nuclear hLigIIIa cease growing 4 days after treatment
with 4HT despite strong expression of the protein
(Supplementary Figure S3), whereas cells expressing the
mitochondrial hLigIIIa are viable and grow in the
presence of 4HT with kinetics similar to the untreated
LIG32loxP/� cells (Figure 3E and Supplementary Figure
S3). Notably, LIG32loxP/� cells expressing CDC9, which
encodes for both nuclear and mitochondrial forms, are
also viable in the presence of 4HT and show only a
modest growth defect (Figure 3E). We conclude that the
functions of the mitochondrial form of LigIII are essential
for viability in DT40 cells, which is also in line with similar
results in the mouse (27,28).

Table 1. List of DT40 mutants generated and tested. For each mutant the Table shows its key features including viability and DNA replication

proficiency

Cell line Feature Viability DNA replication

LIG12loxP/� LIG1 conditional knockout + +
LIG1�/� LIG1 knockout + +
LIG32loxP/� LIG3 conditional knockout + +
LIG3�/�a LIG3 knockout � �

LIG3�/M2I nuclear LIG3 knockout + +
LIG4�/� LIG4 knockout + +
LIG1�/� LIG4�/� LIG1 knockout; LIG4 knockout + +
LIG32loxP/� LIG1�/� LIG3 conditional knockout; LIG1 knockout + +
LIG3�/� LIG1�/�a LIG3 knockout; LIG1 knockout � �

LIG32loxP /� LIG4�/� LIG3 conditional knockout; LIG4 knockout + +
LIG3�/� LIG4�/�a LIG3 knockout; LIG4 knockout � �

LIG3�/M2I LIG12loxP/� nuclear LIG3 knockout; LIG1 conditional knockout + +
LIG3�/M2I LIG1�/�a nuclear LIG3 knockout; LIG1 knockout � �

LIG3�/M2I LIG4�/� nuclear LIG3 knockout; LIG4 knockout + +
LIG1�/� LIG4�/� LIG32loxP/� LIG1 knockout; LIG4 knockout; LIG3 conditional knockout + +
LIG1�/� LIG4�/� LIG3�/�a LIG1 knockout; LIG4 knockout; LIG3 knockout � �

LIG1�/� LIG4�/� LIG32loxP/M2I LIG1 knockout; LIG4 knockout; nuclear LIG3 conditional knockout + +
LIG1�/� LIG4�/� LIG3�/M2Ia LIG1 knockout; LIG4 knockout; nuclear LIG3 knockout � �

LIG32loxP/� Cdc9 LIG3 conditional knockout overexpressing CDC9 (yeast LIG1) + +
LIG3�/� Cdc9 LIG3 knockout overexpressing CDC9 (yeast LIG1) + +
LIG32loxP/� hLIG3� LIG3 conditional knockout overexpressing human nuclear LIG3� + ND
LIG3�/� hLIG3�a LIG3 knockout overexpressing human nuclear LIG3� � ND
LIG32loxP/� hM2I LIG3� LIG3 conditional knockout overexpressing human mitochondrial LIG3� + ND
LIG3�/� hM2I LIG3� LIG3 knockout overexpressing human mitochondrial LIG3� + ND

aConditional allele deleted. Phenotype analyzed by 4HT treatment of parental cell line; ND: not determined.
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Figure 2. LIG3, but not LIG1 or LIG4, is essential for DT40 survival. (A) Determination of LIG3 mRNA level in LIG32loxP/� cells treated with 4HT.
The mRNA levels of LIG1, LIG4 and LIG3 were measured by real-time PCR at different times after incubation with 4HT. (B) Western blot analysis
of LigIII protein level in LIG32loxP/� cells treated with 4HT. A mouse monoclonal antibody, raised against human LigIII (clone 1F3), which
efficiently recognizes the chicken LigIII was used. Protein loading was monitored with an anti-GAPDH antibody. (C and E) Growth kinetics of
the indicated cell lines maintained in the exponential phase of growth by routine dilution in fresh growth medium. (D) Colony forming ability of wt
and LIG32loxP/�DT40 cells as a function of time after incubation with 4HT. (F) Accumulation of Okazaki fragments in LigI-deficient human and
mouse cells, as well as the indicated DT40 mutants. The graph shows the percentage of total radioactivity present in single-stranded DNA fragments
<2.0 kb for each cell line.
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Analysis of LigI and LigIII function in DNA replication

DNA replication can be quantified by following progres-
sion into S-phase of G1 cells obtained by elutriation.
This method minimizes the influence of dying cells,
which generate ‘apparent’ reductions in growth kinetics.
The flow-cytometry histograms (Figure 4A, left) allow
estimates of cell cycle progression through comparison
of the PI signal of the progressing-fraction-median to
that of the initial G1 peak. G1 cells from LIG1�/�,
LIG4�/� and LIG1�/�LIG4�/� cells complete the cell
cycle with kinetics indistinguishable from the wt (Figure
4A middle). Similar results are obtained with untreated
LIG32loxP/� cells (Figure 4A, right). On the other hand,
G1 cells from LIG32loxP/� cell cultures incubated with
4HT for 84 h or 96 h show a delay in their progression
through S-phase. The normal proliferation characteristics
of LIG1�/�, LIG4�/�, LIG1�/�LIG4�/�, LIG32loxP/� and
LIG3�/M2I mutants are associated with normal cell cycle
profiles (Figure 4B), which is in line with the normal

Okazaki-fragment ligation-characteristics presented
above. After 4HT treatment, LIG3�/M2ILIG12loxP/� and
LIG32loxP/�LIG1�/� cells show at first a severely reduced
G2-fraction, probably reflecting problems in completing
S-phase. At later times, cultures loose entirely the
S-phase population and die by apoptosis as indicated by
the sub-G1 population in the histograms. Knockout of
LIG4 does not deteriorate this phenotype. We conclude
that LIG1/LIG3-deficient cells die because of a defect in
DNA replication that leads to apoptosis.
For a more detailed analysis, we measured DNA repli-

cation using two-parameter DNA/BrdU flow-cytometry.
To compare the results obtained with the different
mutants, we defined the parameter ‘Fraction of active
S’-phase cells, which we calculated by dividing the
number of BrdU-positive cells by the total number of
cells, with both populations taken within the PI limits
shown in Figure 4C (left).
The fraction of active S-cells is slightly decreased

in LIG1�/� and LIG3�/M2I compared with wt cells

Figure 3. The role of mitochondria in DT40 cell viability. (A, B, D and E) Growth kinetics of indicated mutants in the presence or absence of 4HT.
(C) Colony forming ability of indicated mutants incubated in the presence or absence of 4HT for the indicated periods of time.
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Figure 4. Analysis of LigI and LigIII functions in DNA replication (A) The upper panel on the left shows a representative flow-cytometry histogram
of G1-enriched cells obtained by centrifugal elutriation; the lower panel shows the same population 6 h after incubation at 41�C to allow progression
through the cell cycle. The horizontal bar shows the subpopulation used to estimate progression through the cycle of the population median. Middle
panel: progression through S-phase calculated by following the relative increase in DNA content for the median of the population described in A.
Right panel: progression through S-phase of LIG32loxP/� cells treated with 4HT for 3.5 and 4 days. (B) Representative flow-cytometry histograms of
the indicated mutants with or without 4HT incubation. (C) Left panel: representative dot plot of BrdU-labeled wt cells. The gates applied to calculate
the active S-phase fraction are shown. Middle panel: fraction of actively replicating cells. Right panel: fraction of actively replicating cells at various
times after treatment with 4HT.
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(Figure 4C middle). LIG4�/� cells show a fraction of
active S-cells similar to wt, while LIG1�/�LIG4�/� cells
show a decrease compared with LIG4�/� that is similar
in magnitude to that of LIG1�/� from the wt. The hetero-
zygous state of LIG32loxP/� cells already causes a reprodu-
cible 10% drop in the fraction of active S-phase cells
(Figure 4C, right); this effect is dramatically enhanced
3 days after deletion of LIG3 by 4HT incubation, and
the fraction of active S-cells approaches zero at 5 days.
The fraction of active S-cells in LIG3�/M2ILIG12loxP/�

begins to decrease after 2 days and approaches zero at
4 days after treatment with 4HT. In LIG32loxP/�LIG1�/�

cells, the fraction of active S-cells is 20% lower than in
LIG32loxP/� cells and incubation with 4HT causes an
immediate drop that reaches zero at 2 days. Knockout
of LIG4 does not further deteriorate the phenotype of
LIG32loxP/�LIG1�/� cells. These results suggest that
LigIII has a function in DNA replication even in the
presence of LigI. However, the strong apoptotic pheno-
type observed in DT40 cells depleted of LigIII prevents us
from drawing firm conclusions. It remains possible that
apoptosis induction even at mildly reduced levels of
LigIII contributes to the generation of DNA replication
inactive S-phase cells.

DISCUSSION

Our results demonstrate an impressive potential for LigIII
to function as the primary ligase in DNA replication in the
absence of LigI. Thus, a functional redundancy between
LigI and LigIII in DNA replication is indicated. It is
intriguing that such relationships developed only after
the evolutionary appearance of LIG3, as LIG1 and LIG4
family members have well separated functions in lower
eukaryotes. This functional flexibility is supported by the
impressive substrate flexibility of LigIII (32).

The structural similarity between LigI and LigIII (33)
offers a rationale for the functional overlap between the
two enzymes. However, whereas LigIII fully supports
Okazaki fragment ligation in DT40 cells (Figure 2F),
this function is less efficiently supported in the human
46BR cell line (34); a significantly smaller but still discern-
ible defect is observed in the mouse PFL13 cell lines (8)
(Figure 2F). It is therefore, possible that species-specific
differences in Okazaki fragment ligation underlie this
effect. However, in human LigI-deficient cells, LigI
protein encoding most of the catalytic core and other
domains important for DNA replication is still expressed.
Also, in the mouse knockout model some expression of
LigI with catalytic core cannot be excluded. Therefore,
it cannot be completely ruled out that dominant
negative effects cause the observed defect in Okazaki
fragment ligation, particularly in human cells, and that
differences in the expression of such competing forms
of LigI underlie the differences in the magnitude of the
defect observed between mouse and human cells.

It is well established that LigI becomes incorporated
in DNA replication centers through interaction with
PCNA (3–5). It remains open how LigIII is incorporated
in replication centers, but the interaction of the LigIII

partner, XRCC1, with PCNA offers testable possibilities
(35). It also remains to be established whether repair func-
tions underlie Okazaki fragment ligation in LigI-deficient
cells.
Similar to mouse systems (27,28), the lethality of

LIG3 knockout can be averted in DT40 by expression of
a mitochondria-specific enzyme (Figure 3A). Thus,
whereas the nuclear-specific functions of LigIII are sup-
ported by other ligases, the mitochondria-specific func-
tions are not. In other systems (28), cell survival for
several generations is possible after LIG3 knockout.
This raises the question as to why DT40 cells die after a
reduction in LigIII levels. Mitochondria store apoptotic
cell-suicide proteins (36), and it is possible that reduction
in LigIII levels triggers their release causing thus the
prompt apoptosis seen in this system.
Notably, the mitochondria-specific function of DT40

LigIII can be supported by the human mtLigIIIa. Even
the LIG1 yeast homolog CDC9 rescues lethality suggesting
that members of other ligase families also support
mitochondria function if they carry an MTS. This has
also been shown in mouse cells (27). Since in lower
eukaryotes replication and maintenance of mitochondria
DNA is part of LIG1 functions, it will be interesting to
consider the evolutionary advantages that are associated
with the transfer to LIG3 of this function in vertebrates.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–3.
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