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ABSTRACT

Microarrays are high through-put, high sensitivity tools to measure thou-
sands of gene expressions simultaneously. However, experiments are
still quite expensive and are known to produce relatively noise measure-
ments. Hence, their high number of features for relatively few samples
makes them a particular challenge for data analysis. We propose a data
integration method to compute virtual protein-complex expressions
from the microarray gene expressions. With this, the number of corre-
lated features and the total size of the data set can be reduced. The study
of multi-class problems is less frequent, but support vector machines
with recursive feature elimination (SVM-RFE) offer a possible solution.
We verify our approach by training a SVM-RFE on a large breast-cancer
data set, where we determine the classification performance on a sec-
ond, independent data set from another study. We have found that
the classification performance did not improve on protein-complex
expression, but nevertheless biologically interesting and interpretable
protein-complexes have been extracted by our recursive feature elim-
ination method. Our data integration method is therefore a new and
interesting approach to interpret such data sets, and to gain new insights
into the role and funcions of protein-complexes.
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INTRODUCTION

The analysis of gene expressions has been an important topic in Molecu-
lar Biology. A gene expression is the process by which a functional gene
product (e.g. protein) is synthesized using information encoded in a
gene. Microarrays are high through-put, high sensitivity tools that allow
the measurement of thousands of genes simultaneously. The conduction
of microarray experiments is expensive. Therefore, measurements often
exist only for very few samples. This leads to data analysis problems
in very high features spaces with relatively few samples, which are an
interesting challenge and have been subject to multiple machine learning
approaches.

The CORUM database contains manually annotated protein com-
plexes from mammalian organisms and is maintained by the Munich
information center for protein sequences (MIPS) at the Helmholz Zen-
trum Munich. Its annotations for protein-complexes include protein-
complex function, localization, subunit composition as well as literature
references and more.

We propose a new data integration method using the protein-complex
information from the CORUM database to compute virtual protein-
complex expressions. While the study of multi-class problems is less
frequent, we believe that support vector machines with recursive feature
elimination (SVM-RFE) in combination with our new data integration
method offer a potent solution.

To verity our approach, we have trained a multi-class support vector
machine with recursive feature elimination on a large breast-cancer data
set and have determined its performance on a smaller breast-cancer
data set from a different study. Even though we were unable to increase
classification performance on the computed virtual protein-complex
expressions over gene-expressions, our novel data integration method
coupled with multi-class SVM-RFE has extracted biologically interesting
and interpretable protein complexes. Therefore, our new approach can
be seen as an interesting method to analyse and interpret data sets
of this kind. Furthermore, this can lead to new insights into the role
and function of protein-complexes by using virtual protein-complex
expressions from gene expression microarray data sets.






BACKGROUND

The first chapter will be a short introduction to the relevant background.
It will start with molecular biology, continued by Support Vector Ma-
chines (SVMs) and possible derived approaches to solve multi-class
problems. It will end with a brief introduction to breast cancer.

2.1 THE CENTRAL DOGMA OF
MOLECULAR BIOLOGY

Figure 2.1: Diagram of the information flow between DNA, RNA and Protein
according to the central dogma of molecular biology. Black arrows denote flow of
the general group and red arrows denote flow of the special group.

In his article “Central dogma of molecular biology”, Crick wrote 1970:

“The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that such information
cannot be transferred from protein to either protein or nucleic acid”,

and elaborates this idea through-out the article. The central dogma of
molecular biology deals with the information transfer, which can be split
into three groups: general, special and unknown. The general group,
which occurs in all cells with minor exceptions, consists of the following
three transports:

deoxyribonucleic acid (DNA) — DNA,
DNA - ribonucleic acid (RNA),
RNA — Protein.

The special group does not occur in most cells, but has been shown to
be present in virus infected cells with flows from: RNA - RNA and
RNA — DNA. A third case for the special group: DNA — Protein flow
has only been seen in cell-free systems containing neomycin. The other



information flows are postulated by the central dogma to never occur;
these are Protein — Protein, Protein -~ DNA and Protein — RNA, and
belong to the unknown group (Crick, 1970).

2.1.1 Genes

We divide all cells into two basic types: prokaryotes and eukaryotes. The
defining structure that sets eukaryotic cells apart from prokaryotic cells
is the nucleus. Prokaryotic cells have cell walls containing glycopeptides.
Whereas eukaryotic organisms are made from cells that are organized
by complex structures within membranes (Okafur, 2007, p.17).

Human beings are eukaryotes and contain billions of individual cells.
Almost all of these cells contain, within each nucleus, the complete hered-
itary information for the organism in form of the genome. The genome
consists of DNA and can be seen as the blueprint for all structures of the
organism. The human genome is made from 23 pairs of chromosomes,
where each pair is based on the chromosome pairs from their biological
parents. The chromosomes contain chains of DNA, which consist of two
polymers. These polymers are wrapped around each other and form a
structure known as double helix. The polymer strands are held together
by hydrogen bonds. They are large molecules of repeating monomers,
which are called nucleotides. Each nucleotide is made from deoxyribose
sugar, a phosphate group and one of the following four nitrogen bases:
adenine, cytosine, guanine and thymine, usually represented by their
first letter A, C, G and T. Due to a property of the nitrogen bases (called
complementary base pairing) one can deduct from one strand of DNA
the other complementary strand; in particular, adenine can only form
hydrogen bonds with cytosine, and guanine with thymine. The sequence
of these nucleotides in the double helix encode the hereditary genetic
information. Genes are, as Pearson puts it in 2006:

“A locatable region of genomic sequence, corresponding to a unit of inher-
itance, which is associated with regulatory regions, transcribed regions
and/or other functional sequence regions”,

and can therefore be described by their ordered sequence of nitrogen
bases. The length of these sequences can be hundreds of thousands of
bases. The sequences encode particular patterns, of which the exact
number in the human genome is unknown. The number of protein-
coding genes is estimated between 20,000 and 25,000 genes. To have
the hereditary information available within all cells, the DNA has to
reside in each cell. Therefore, the DNA needs to be replicated to create
new cells, which is essential to multi-cell organisms. The so-called DNA
replication is the first of the general information flows described by the
central dogma of molecular biology. To form a protein from a protein-
coding gene, the gene information has to flow from the gene to the
messenger RNA (mRNA) using a process called transcription, and from



the mRNA to the final protein through the so-called translation. These
are the second and third information flows as postulated by the central
dogma.

DNA replication

Because complete DNA is contained within each cell of the organism, it
needs to be replicated upon cell division (cytokinesis). In eukaryotes,
the replication is triggered at the end of the interphase. The interphase
is followed by the separation of the chromosomes (mitosis), and the
immediate cytokinesis. During the DNA replication process the double
helix is split into its strands and each strand’s complementary pair is
synthesized using an enzyme called DNA-polymerase.

Transcription

Pearson (2006) noted that the genes consist of regions that are regulatory
as well as regions that explicitly code for a protein. One of these regula-
tory regions is known as promoter, and is used by the RNA-polymerase
that drives the RNA synthesis. The RNA synthesis is similar to the DNA
synthesis, with the notable difference that only one strand is copied.
Eukaryotic genes consist of exons and introns, which are DNA regions
within a gene. The difference between exons and introns is that the final
mRNA only represents the exons. During transcription, first precursor
mRNA (pre-mRNA) is transcribed from the DNA strand'. A process
called splicing later removes the introns from the pre-mRNA to yield
the final one stranded mRNA, which only consists of exons. The mRNA
leaves the nucleus via the nuclear membrane.

Translation

Outside of the nucleus the mRNA is used as a template for the synthesis of
proteins, which is called translation. It contains the nucleotide uracil (U)
instead of thymine. The translation is done by ribosomes, which are large
complexes of proteins. These ribosomes read the genetic information
carried by the mRNA molecules in triplets of nucleotides, and combine
any of the 20 amino acids in the human body into complex polypeptide
chains through chemical reactions. These triplets are called codons. The
translation will start on the codon AUG and select phenylalanine if it
reads the codon UUU, or glycine on GGG?; but if it reads the codon
UAA, UAG or UGA the translation will be terminated (Okafur, 2007,
p.38). The resulting polypeptide chains then form the protein.

The process, in which the information from a gene is used to synthe-
size a functional gene product or protein via transcription and transla-
tion, is known as gene expression.

1. The reverse way is used in biotech-
nology as well as retroviruses,
which include the HI / AIDS virus,
where a single-stranded RNA is
transcribed to a single-stranded
DNA. (Okafur, 2007, p.36)

2. These are examples, a complete
list can be found in Okafur (2007,
p.38, Table 3.1)



2.1.2 Proteins

Proteins are macromolecules; they form the building blocks of the or-
ganism and are responsible for numerous functions inside the living
organism. Proteins are important for the metabolism, which is the main-
taining of life in living things through chemical reactions. As hormones,
proteins transport messages through the body. For example, the protein
hemoglobin transports oxygen. Proteins are also the basis for enzymes,
catalysts for chemical reactions. Proteins form 3-dimensional structures
by folding their amino acid backbone. The protein’s shape depends on
the process it guides (Coen, 1999).

The linear chain of amino acids resulting from the translation phase is
a so-called random-coil, a simple polypeptide. To form a proper protein,
the random-coil needs to fold into a well-defined three-dimensional
structure, which defines its characteristic and function. This process
is driven by the interaction of the amino-acids from the random-coils
during and after the protein synthesis. The correct fold is essential for
proteins to function correctly, and failure results in inactive proteins or
toxins.

Inside the human body, there are many different types of proteins.
When several proteins with different polypeptide chains form a complex
where each polypeptide chain contains different protein domains, the
result can have multiple catalytic functions, and is called a multi-protein
complex or protein-complex.

2.1.3 Multiprotein Complexes

Today, we know that the cell’s dry mass consists mostly of proteins.
These protein molecules form protein assemblies that carry out most
of the major processes in the cell. These little machines of ten or more
protein molecules perform complex biological functions where each
assembly interacts with other protein-complexes (assemblies). These
functions include cell cycle, protein degradation and protein folding
(Alberts, 1998).

A similar definition is given by Ruepp et al. (2007, 2010) in CORUM:
the Comprehensive Resource of Mammalian Protein Complexes with a
slightly stronger emphasis on gene dependence:

“Protein complexes are key molecular entities that integrate multiple gene
products to perform cellular functions.”

The field of proteomics, the large-scale study of proteins, can be
divided into cell-map and expression proteomics. The large-scale, quan-
titative study of protein-protein interactions through their isolation
of protein complexes is called cell-map proteomics. It studies in par-
ticular the structure and function of the proteins contained within
the protein-complexes. The study of protein expression changes is



called expression proteomics. The availability of complete sequences
of the genome has shifted the focus towards functional interpretation
of genomics (Blackstock and Weir, 1999). This has led to the creation
of large scale databases containing protein-complexes, subunits and
functional description. One of the largest, freely accessible databases
is the CORUM database maintained as part of the Munich Informa-
tion Center for Protein Sequences (MIPS), and is available at http:
//mips.helmholtz-muenchen.de/genre/proj/corum/. It is the compre-
hensive resource of mammalian protein-complexes, and contains mainly
human (64%), mouse (16%) and rat (12%) protein-complexes, which
have been experimentally verified. In 2007, the database contained more
than 1,750 protein-complexes composed of 2,400 different genes, rep-
resenting ~12% of the protein coding genes in humans. It has grown to
more than 2,850 protein-complexes from 3,198 different genes by 2009,
with the release of CORUM 2.0. It now represents ~16% of the protein
coding genes in humans (Ruepp et al., 2007, 2010).

2.1.4 Microarray Technology

The conversion of information encoded in a gene into a functional gene
product is the gene expression. It has become an important measurement
in biology. A high through-put technology to measure gene expressions
are microarrays. This high sensitivity tool can be used to measure the
expression levels of thousands of genes; in some cases, even the expres-
sions of the whole genome of an organism simultaneously (Stekel, 2003).
They have become a very common method, and can measure the relative
activity (gene expression) of multiple genes at once.

In their beginning, microarrays had been made using larger glass
slides and nylon filters. Today, they consist of a 1 — 2cm? solid surface,
usually glass, silicon or plastic, which has been divided into many tiny
spots. These spots are of the size of a few ym? arranged in an array-like
structure, and contain labeled DNA molecules (probes). These probes
consist of immobilized single stranded DNA (ssDNA) molecules that
have been attached to the surface. Each probe contains ssDNA with the
same nucleotide sequence, and represents a single gene. Probes contain
either synthetic oligonucleotide, short nucleic acid polymers of 20 to
60 bases or complementary DNA (cDNA) that has been synthesized
from mRNA using the enzyme: reverse transcriptase. Each spot targets
a specific mRNA molecule, which is said to correspond to a certain gene.
The idea behind this setup is that an mRNA molecule should hybridize
to its complementary DNA, and form a strong mRNA-DNA bond. For
later evaluation the ssDNAs have been labeled using fluorescent dye.
These are Cyanine 3 (Cy3), a green-fluorescent dye, and Cyanine 5 (Cys),
a red-fluorescent dye. The level of fluorescence of the dye is later read
by a laser-scanner. Stronger photon responses from the fluorescent dye
suggest more hybridized mRNA, and therefore a higher expression level
of the targeted gene.
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Figure 2.2: Cy®3- and Cy"5-labeled
c¢DNA hybridized to a DNA mi-
croarray.

Retrieved March 10, 2010, used
with permission from Promega Cor-
poration (http://www.promega.
com)



Microarrays are fabricated using two different methods: so-called
spotted and in-situ microarrays.

Spotted microarrays

The first technology available to create microarrays were so-called spot-
ted microarrays. At first, the probes are synthesized by amplifying cDNA
using Polymerase Chain Reaction (PCR), and purifying the result or
using pre-synthesized cDNA oligonucleotides. Afterwards, these probes
are attached to the microarray using a spotting robot, which utilizes pins
to transport the cDNA or oligonucleotide onto the array. After each step
the pins are carefully washed to make sure that no contamination takes
place (Stekel, 2003).

In-situ microarrays

With in-situ methods the ssDNAs synthesis takes place directly on the
surface of the microarray, and is therefore fundamentally different from
spotted microarrays. One approach used by Rosetta, Agilent and Ox-
ford Gene Technology is to synthesize the probes by using a printer to
print the ssDNAs with ink jet like nozzles. These have been modified
to fire drops of A, C, G and T nucleotide bases instead of colour to
produce the desired probes. Another approach is the use of lithographic
technology similar to semiconductor manufacturing techniques. As
a base the microarray is coated with silane (Si) molecules. A second
photosensitive layer (called linker) is applied. Its purpose is to block
the attachment of nucleotides. Using masks to selectively destroy the
photosensitive layer allows to apply nucleotides very granular onto spe-
cific areas on the microarray chip. The repeated process of coating the
chip with the linker, selective destruction of certain regions on the mi-
croarray and the application of nucleotides produces the desired probes.
Occasionally, the nucleotides may not bind. To prevent the construction
of ill-sequenced probes, a capping agent is applied after each coating
with nucleotides. The capping agent seals the unprotected strands, onto
which no nucleotide has bound, and consequently terminates all further
binding of nucleotides onto this particular strand. The fabrication of the
required masks is quite expensive, and can only be used for a specific set
of microarrays. This is known as the Affymetrix technology. A similar
method employed by Nimblegen and Febit uses digital micromirror ar-
rays. These digital micromirror arrays can be used instead of the masks.
The mirrors of the micromirror arrays are computer controlled. These
are used instead of the masks to direct the ultra violet (UV) light to the
appropriated parts of the chip (Stekel, 2003, p. 6).

The data-sets for the project described in chapter 3 (p. 23) stem from
Aftymetrix GeneChips.
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The Affymetrix GeneChip

The GeneChip, as produced by Affymetrix, is an in-situ microarray. Its
probes are grouped in so-called probe-sets, which are sets of ~20 dif-
ferent probes, which correspond to the same cDNA sequence. Cross
hybridization describes the annealing of ssDNA to only partially com-
plementary target ssDNA. This is an unwanted side effect, and can lead
to distorted results. While it is common to add a repetitive DNA to the
solution to reduce cross-hybridisation (Stekel, 2003, p. 13), Affymetrix
reduces cross-hybridisation further by using only short polymers with
25 bases instead of the longer (> 1,000) ssDNAs used in spotted microar-
rays. Each probe of the probe-set then targets a different portion of the
cDNA in question. For further accuracy each probe is synthesized in
pairs of perfect match probes (PM) and miss match probes (MM). The
so called perfect match probe (PM) is the complementary of the targeted
polymer in question. The MM probe is identical to the PM probe, with
the only difference that its middle base, the 13", is swapped with the
complementary base. This is meant to estimate the non-specific binding,
when mRNA binds to the PM even though it’s not targeted, and thus can
be used to reduce the background noise of the measurement (Herold,
2007, p. 12). The Affymetrix technology allows a very dense placement
of the probes, and creates rectangular regions. The use of light and the
inherent interference results in leakage from one probe to its neighbours.
This effect is compensated by the Affymetrix image-processing software,
which uses only the inner portions of the probe’s region to compute the
expression (Stekel, 2003, p. 9).

Figure 2.3: An Affymetrix®
GeneChip®

Retrieved March 10, 2010, from
http://www.wikipedia.com



2.2 MACHINE LEARNING

The abundant amount of information resulting from microarray experi-
ments requires algorithms that can deal with the high amount of data.
The mathematical field of machine learning studies the classification or
recognition of patterns in vast amounts of data.

Mathura and Kangueane (2009) describe this in chapter 3 as:

“For instance, cancer type classification based on microarray expression
or determining whether a protein binds to DNA or not based on sequence
and structural motifs are good examples of classification problems.”

Classification is a subtopic of the supervised learning category as
outlined in chapter 1 by Hastie et al. (2009):

“The learning problems that we consider can be roughly categorized as
either supervised or unsupervised. In supervised learning, the goal is
to predict the value of an outcome measure based on a number of input
measures; in unsupervised learning, there is no outcome measure, and
the goal is to describe the associations and patterns among a set of input
measures.”

Different methods have been applied to classification tasks in bio-
informatics. Widely used are Decision Trees, Support Vector Machines,
Bayesian Classifiers, Neural Networks and many more (Mathura and
Kangueane, 2009, ch. 3). The following will introduce Support Vector
Machines, which will be used extensively throughout the following
chapters.

2.2.1  Support Vector Machines

Support Vector Machines (SVMs) are large margin classifiers. The mar-
gin can be understood as the distance of the example to the separation
boundary. The large margin classifier generates a decision boundary
with a large margin to almost all training examples. SVMs have been
introduced by Boser et al. (1992), and can be used for binary classifica-
tion problems. SVMs are no machines in the classical sense, and do not
consist of any tangible parts. SVMs are merely mathematical algorithms
for pattern-matching. To understand the mathematical model, a few
definitions are needed.

Notation 1 (Scalar Product). Let V" be an n-dimensional vector space,
for x, y € V" the scalar product will be denoted by:

(x,7) ::in'yi- (2.1)
Notation 2 (Euclidean Norm). Let x € R", the euclidean norm will be
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written as follows:
%[ = v/ %, x). (2.2)
A hyperplane is an (#n —1)-dimensional object in the same sense that
in a three dimensional space a two dimensional object can be seen as a
plane. The formal definition follows:

Definition 2.2.1 (Hyperplane). A hyperplane h c R” can be explicitly
defined by its perpendicular vector w € R” and its distance b € R from
the origin:

h:={xeR":(x,w)=>b}. (2.3)

If b = 0 the hyperplane is said to be unbiased. The distance of the
hyperplane to the origin is Wb” units.

Definition 2.2.2 (Linearly Separable). A set of instance-label pairs
S:={(x,y;):x; eR", y; e {-1,1},i=1,..., 1} cR"x{-1,1} (2.4)

is said to be linearly separable, if there exist w € R" and b € R for a

hyperplane
h={xeR":(x,w) =0}, (2.5)
such that
V(xi,y:i) €S:yi({x;,w)—b) >0. (2.6)

The binary classification problem can therefore be written as the
following:

Definition 2.2.3 (Binary Classification Problem). Assume a set of instance-
label pairs

S={(x,yi):x; e R", y; e {-1,1},i=1,...,1}. (2.7)

The objective is to find a prediction function f : R" ~ {-1,1}, which
satisfies

V(xi,y:) €S: f(xi) = yi. (2.8)
E
o
4 O
o
]
(a) multiple separating hyperplanes | (b) optimal hyperplane with margin |

Figure 2.4: Hyperplanes in a two-dimensional space separating a linearly separable
set of instance-label pairs.
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Given a linearly separable binary classification problem, a hyper-
plane h = {x € R" : (x,w) = b} exists that clearly separates the set
{(xi,y:) € S y; = -1} from {(x;,y;) € S : y; = 1}. The prediction
function f : R" » {-1,1} can then be derived from the hyperplane:

f(x) = sign({x, w) - b). (2.9)

The hyperplane is not unique as figure 2.4a shows; but only one hy-
perplane has the broadest margin. The margin describes the shortest
distance from any point in S to & as depicted in figure 2.4b. This leads
to the formulation of the Support Vector Machine:

Definition 2.2.4 (Support Vector Machine). The support vector ma-
chine finds the hyperplane h with the broadest margin for a linearly
separable binary classification problem as the solution to

1
mibn E”WHZ subjectto  V(x;,y:) €S:yi({x;,w)-b) >1. (2.10)
This optimization problem is known as the primal form of the SVM.
It can also be solved in its dual form.

Theorem 2.2.1 (Dual Form of the Support Vector Machine). The support
vector machine can also be solved in its dual form, and the optimal solution
of the primal and dual form coincide.

Proof. Using the generalized Lagrangian, the primal form can be written
as:

1
minmax =||w|* - Y a&; (y;((x;,w) —b) -1) subjectto 0<a.
wb a2 ;

=:L(w,b,a)
(2.11)
For which the dual form is defined as:

1 :
max min EHWHZ - ZI: a; (yi({xi,w) —b) —1) subjectto 0<a.
(2.12)

Computing the partial derivatives for the primal variables, and equating
them to 0 gives:

%L(w, ba)=w-Y ayx; =0=>w= Y a;yix; (2.13)
0 !
a—bL(w, b,a)=(a,y)=0 (2.14)

Substituting equations 2.13 and 2.14 in 2.12 leads to the dual form:

maxz (oc,- - % Z aia;yiy; (xl-,xj>) subjectto 0<aA(a,y)=0.
i j
(2.15)

12



Because the optimization problem is convex and Slater’s condition is
satisfied, strong duality holds:

maxmin L(w, b, «) = minmax L(w, b, «). (2.16)
0<a  w,b w,b 0L«

This implies that the optimal solution from the primal and dual form
coincide. From the optimal solution a* of the dual form, the primal
variables w* and b* can be computed. From the Karush-Kuhn-Tucker
(KKT) conditions, the complementary slackness:

Vi:a;(1-y;({x;,w*)-b*))=0 (2.17)

is used to compute b*. It implies that Vi : a* > 0 the point x; lies on the
margin: y;((x;, w*) = 1). This can also be seen in figure 2.5b.

w* = Z ol yix; (2.18)
i
* 1 * : *
b* = —( max (w*,x;)+ min (w ,xi)) (2.19)
2 \iyi=—1 A a}>0 ityi=l A a¥>0
O

In order to remove the restriction on linearly separable classification
problems, a penalty parameter? C € R, as well as slack variables (; € R,
for each point in S are introduced. { will denote the vector ({3, (5,...)".
The slack variables are used to soften the constraints on the optimization
problem while the penalty parameter allows to adjust the impact of the
slack variables on the objective function.

(a) penalized points inside the (b) construction of the perpendicular
margin vector w from its dual representation
(w=3,aiyix;)

Figure 2.5: Hyperplanes in a two-dimensional space with soft-margins.

Definition 2.2.5 (Support Vector Machine with soft margins). The sup-
port vector machine with soft margins finds the hyperplane / with the

13

3. Note on notation: if a variable
x € Ris used where a vector is
expected, x implicitly represents the

vector (x, X, ...

dimension.

,x)! of the required



broadest margin by solving

1
mbir(l§||w||2+(C,C) st. V(xi,y:)eS:yi({xi,w)-b) 21-{;A0< (.

(2.20)
This allows a certain set of points to lie within the margin, or on the
wrong side of the hyperplane.

At this point, a hyperplane can be found for arbitrary binary classi-
fication problems using the support vector machine with soft margins.
Often, algorithms solve the dual form of the optimization problem. The
results for the dual form can be obtained analogous to the dual form
for the support vector machine without soft margins (cf. theorem 2.2.1).
The dual form is given below.

Definition 2.2.6 (Dual form of the Support Vector Machine with soft
margins).

1
mo?.xz (oci ~3 Zoci(xjyiyj (xi,xj>) subjectto 0 < < CA(a, y) = 0.
i j
(2.21)

A notable feature of the dual form of the SVM with soft margins
is that the slack variables have been eliminated from the optimization
problem. Its only difference to the dual form for the SVM without soft
margins is the additional constraint & < C.

The prediction function f can therefore be written as

f(x) =sign({x,w) - b) = sign (Z ;i (xi,x) — b)

utilizing the primal or dual form respectively. For a more detailed in-
troduction to support vector machines and their extensions to the non-
linear separable case, see e.g. Scholkopf and Smola (2002).

14



2.2.2  Multi-class Support Vector Machines

Multi-class support vector machines (sometimes abbreviated as MSVMs)
aim to provide extensions for multi-categorical data to the standard SVM,
which solves only the binrary case. These approaches can be grouped
into three groups. The first group tries to solve the multi-class problem
by extension of the SVM model, while the other two use the binary
SVM for classification, partitioning the input data differently and using
different heuristics for the class prediction.

To demonstrate the different approaches, toy-data have been gener-
ated. The three posed sample problems are visualized in figure 2.6. All
tests have been performed using the default settings. The sample data
has been rescaled according to the suggested ranges for each software
package.
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Figure 2.6: Three sample problems using two-dimensional gaussians with different
centroid arrangements. The middle problem is a portion of the first. It contains only
the lower three classes. All sample problems have been scaled to [-1,1]?.

All-In-One Multi-Class SVM

Direct extension of the SVM to tackle multi-class problems can lead to
the addition of further constraints for each class onto the optimization
problem. Their advantage is their ability to take inter-class correlation
into account. This is lost with approaches relying on binary SVMs
because they assume independence of the binary problems. An approach
chosen by Crammer and Singer (2001) starts from a generalized notion of
separating hyperplanes. They solve the compact quadratic optimization
problem from the dual form of the problem using a fixed point algorithm.

An implementation of the multi-class SVM proposed by Crammer
and Singer (2001) using a different algorithm to solve the inherent opti-
mization problem can be found in the software package SVMmuiticlass
by Thorsten Joachims and is available from http://svmlight.joachims.
org/svm_multiclass.html for free for non-commercial use.

Figure 2.7 indicates that SVM™!ticlass will find decision boundaries
through the origin, and therefore perform poorly on problems 1 and 3.
The classification details for the prediction of the training data can be
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Figure 2.7: Empirical decision boundaries for the three sample problems using the
SVMmmulticlass software by Thorsten Joachims.

found in table 2.1. For problem 1, the model has virtually ignored class 1
in favour of the other classes. With problem 2, the SVM™#!ticlass software
has found a very good model resulting in a training-performance of
~98% correct classification. By far the worst training-performance was
achieved for problem 3.

Predicted Class
Problem 1 Problem 2 Problem 3
2 3 4 5|1 2 3|2 3 4 5
2 1] 15 33 28 24|99 1 0|14 35 25 26
%’ 2 | 100 o o ol 1 99 ol 0 94 6 o
Tg 3 0 100 o) ol 1 2 97| o 80 20 o
S 4 o] 0 100 0 5 0 0 9
< 5 o o 0 100 O o o0 100
Perf. 400/500 (80%) 295/300 (~98%) 180/500 (36%)

Table 2.1: Class-prediction and performance for the three sample problems using the
SvMmulticlass software by Thorsten Joachims.

All-Against-One (AAO) SVM

Other approaches decompose the multi-class training data into multiple
binary problems. The All-Against-One (AAO) strategy constructs k
different sets, where k is the number of different classes in the multi-
class training data. Each set consists of all the data-points from the
training data, but the points have been reassigned to different classes
to form a binary classification problem. For each class j:1< j < k, the
class labels of the corresponding set have been changed to form a binary
classification problem. All data-points in the set that correspond to the
class j are assigned the class-label 1; all other the class-label 1. This
has been implemented by the author on top of a binary SVM. The SVM
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implementation chosen was the LSVM package by Mangasarian and
Musicant, which implements a Lagrangian approach in a very succinct
manner as detailed in their paper LSVM Software: Active Set Support Vec-
tor Machine Classification Software (Mangasarian and Musicant, 2000a).
The LSVM package is available as a MATLAB file from the authors” web-
site http://www.cs.wisc.edu/dmi/lsvm/. A free license is granted for
academic and research purposes.

The resulting k models with their hyperplanes bear the question of
the heuristic to be used in the prediction function. Two heuristics will
be presented.

The first heuristic will apply the point in question to all k trained
models, and chooses the class, for which the point lies on the positive
side. Two obvious issues arise: the data-point may lie on the positive
side of two or more hyperplanes or possibly none at all. These points will
be assigned the classes —1 and 0 respectively. The decision boundaries
found using this heuristic are depicted in figure 2.8. Table 2.2 shows the
prediction details and classification performance on the test set for the
strict heuristic.
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Figure 2.8: Empirical decision boundaries for the three sample problems using the
LSVM algorithm and a strict classification heuristic.

Predicted Class
Problem 1 Problem 2 Problem 3
o 2 3 4 5 | -1 0 1 2 3 | o 2 5
2 11|99 1 o o o|1 o 98 1 o0]|100 O o
o]
O 2| 4 96 o o o|0 1 1 98 o 2 98 0
§ 3 7 0 93 o o] 3 1 0 96 99 1 0
o 4 6 0O 0 94 O 100 O 0
< 5 1 o O o0 99 0O 0 100
Perf. 382/500 (~76%) 292/300 (~97%) 198/500 (~40%)

Table 2.2: Class-prediction and performance for the three sample problems using
the LSVM by Mangasarian and Musicant with a strict classification heuristic.
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The second heuristic aims to eliminate the regions where the first
heuristic would assign the classes —1 and 0. To achieve this, the hy-
perplanes from the models are not interpreted as strict boundaries. A
data-point is assigned to the class, for which the corresponding model’s
objective function yields the largest value. When multiple objective
functions return the same maximum, the class with the lowest index is
chosen. The empirical decision boundaries are visualized in figure 2.9
with the detailed classification information in table 2.3.
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Figure 2.9: Empirical decision boundaries for the three sample problems using the
LSVM algorithm to train the models and a continuous prediction heuristic

Predicted Class
Problem 1 Problem 2 Problem 3
2 3 4 5| 1 2 3|1 23 5
2 1] 15 33 28 24|98 2 ols5 55 1 39
T 2| 100 o 0 o| 1 99 o|o 100 O o
Tg 3 0 100 0 o| o o 100|0 100 O o
5 4 o} 0 100 0 0 0O O 100
< 5 o} o 0 100 o} 0O O 100
Perf. 400/500 (80%) 297/300 (99%) 205/500 (41%)

Table 2.3: Prediction for the three sample problems using the LSVM software by
Mangasarian and Musicant and a continuous prediction heuristic.

Comparing table 2.2 and table 2.3 as well as figure 2.8 and figure 2.9,
one can see that both heuristics result in very different classifications.
Notably, problem 3 shows very different classification results for iden-
tical models. The performance on this training set is similar for both
heuristics, but the continuous heuristic outperforms the strict heuristic
for the simple training set.
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Pairwise Voting SVM

The third approach draws all possible pairs from the original multi-class
classification problem. This results in k'(g_l) binary classification sub-
problems for a k-class classification problem. For each sub-problem, a
model is trained using a binary SVM. The trained models’ hyperplanes
therefore separate only two classes as opposed to the one-against-all
strategy. Consequently, the objective functions of the models predict the
class based on the two classes used during training. These predictions are
understood as votes. For each data-point in question, the votes from all
models are counted, and the class with most votes wins. This approach
has been implemented for the multi-class classification support in the
LIBSVM software package. LIBSVM is a library for SVMs developed by
Chang and Lin and available from http://www.csie.ntu.edu.tw/~cjlin/
libsvm/. A problem arising from the voting comes with the fact that
two or more classes may have obtained the same number of votes. In
this case, the LIBSVM prediction heuristic will choose the class with the
lowest index.
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Figure 2.10: Decision boundaries using the pairwise-voting approach chosen by
LIBSVM from Chang and Lin.

Predicted Class
Problem 1 Problem 2 Problem 3
1 2 3 4 s| 1 2 3|1 2 3 4 s
© 1|97 2 o 1 0|98 2 0/99 o0 o0 1 o)
6 20 1 99 o o ol 1 99 ol 0 99 1 o o)
T§ 3] o o 100 O ol o o0 100| O 1 99 0 0
S 4| 1 o o 99 o) 0O 0 0 100 0
< 51 o o 0o 0 100 o o o 0 100
Perf. 495/500 (99%) 297/300 (99%) 497/500 (~99%)

Table 2.4: Class-prediction and performance for the three sample problems using
the LIBSVM software package by Chang and Lin.
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Obviously, the pairwise voting methodology computes more models,
if the number of classes exceeds three. The pairwise strategy permits to
keep linear separable classes linear separable, which can be seen in the
very good training-performance for problem 3 in figure 2.10 compared
to the poor performance of the one-against-all heuristics in figure 2.8
and 2.9. The one-against-all heuristics have virtually no option to find a
separating hyperplane for any of the three inner classes of problem 3.

Figure 2.7, figure 2.9 and figure 2.10 indicate that for problem 2, the
LIBSVM’s pairwise voting heuristic yields a very similar classification to
the classification from the SVM™#!ticlass and continuous classification
heuristic on top of the LSVM. The continuous classification heuristic
and the LIBSVM even perform identical on problem 2’s training set as
table 2.3 and table 2.4 show.
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2.3 BREAST CANCER

Cancer (malignant neoplasm) is in most cases a malicious form of in-
vasive, uncontrolled cell growth, which in some cases may develop
metastases*. Cancer can form tumors, though this is not necessarily the
case as blood cancer (leukemia) shows. At any age, one is exposed to
develop cancer; the risk increases with age, exposure to carcinogenss
and genetic inheritance.

Cancer can be seen as a result of a defective cell as it stems from abnor-
malities in the genetic material, which can be caused by erroneous repli-
cation of DNA. Often, cancer-promoting oncogenes are highly expressed
genes resulting in tumor cells, programmed cell death prevention and hy-
peractive growth. Also, reduced expression of tumor suppressor-genes
can result in abnormal cell functions like inaccurate DNA replication
and loss of cell cycle control.

The diagnosis of cancer is often performed using the biopsy® of
suspected tissue and the histologic examination’.

Breast cancer (breast carcinoma) is one of the most frequent mali-
cious tumors of milk ducts, and has occasionally been found to metasta-
sise to bone, liver, lung and brain. It is dominant in women, where it is
found a hundred times more often than in men. It develops sporadically,
and is the most likely cancer in the western hemisphere for women to
develop; being the highest cause of death for women between 30 and 60
years of age, with a lethality rate of approximately 30%.

The common breast cancer treatment consist of a combination of
surgical removal of the affected tissue, hormone and chemotherapy as
well as radioactive therapy. Some subtypes of breast cancer depend
on the oestrogen and progesterone hormones to grow. Drugs which
block the production of the aforementioned hormones exist and are
used after surgical removal of the cancer tissue to prevent a second onset
and further spreading of the disease. These drugs are likely to result in
death of the ovaries®and subsequent infertility.

The risk to develop breast cancer due to genetic inheritance is only
at 5%, though carriers of the breast cancer susceptibility gen mutations
BRCA1 or BRCA2 have a very high (five-fold increase) risk to develop
breast or ovarian cancer during their lifetime. While abortion, contrary
to the abortion-breast cancer hypothesis, does not increase the risk, the
lack of childbearing or breastfeeding as well as high hormone levels are
primal risk factors.

Early diagnosis of breast cancer can be done using screening meth-
ods, for example mammography, where the breast is x-rayed to detect
irregular spots. The final diagnosis, given a suspected diagnosis, is often
done using a needle or surgical biopsy.

There are multiple schemata to classify breast cancer. These schemata
differ in their criteria as they target different purposes and are deter-
mined by different examiners. The most common schema is the TNM
classification, which uses different stages for the breast cancer classifi-
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4. Metastasis is the spread of ma-
licious cells from one part of an
organ to another part of the same
(or completely different) organ
through lymph or blood vessels.

5. Carcinogens are agents, which
are directly involved in the increase,
propagation or exacerbation of
cancer. These include tobacco
smoke, radiation, chemicals and
diseases.

6. Biopsy is a medical test including
the removal and analysis of cells
and tissue; often performed with a
needle, but larger tissue lumps may
be surgically removed.

7. A histologic examination is the
analysis of a thin slice of cells or
tissue using a light- or electron
microscope to gain insight into
the microscopic structure of the
retrieved specimen.

8. Ovaries are primary genitalia

of females, where the ovocytes are
produced. Ovaries are the source
for the secretion of the hormones
oestrogen and progesterone, and
consequently play an important role
in the hormone balance. Oestrogen
is the hormone, which is respon-
sible for the development of the
secondary sex characteristics and
reproductive organs as well as the
maintenance of their mature func-
tional state. Progesterone controls
the cyclic change and the health of
the endometrium.



cation. TNM has five major categories for the tumor size (Tis, T1, T2,
T3 and T4), four categories to classify lymph nodes (N1 to N4) and a
binary category for the existence of metastases outside of the breast and
lymph nodes. The binary category describes the absence or presence of
metastases with Mo and M1 respectively.

Another rather simple schema uses the histological appearance of
the examined tissue. The classification uses the Bloom-Richardson grade
system. Well-differentiated in this context means that the tissue in ques-
tion looks like ordinary tissue, moderately-differentiated means that it
neither looks ordinary nor extremely disorganized. The final poorly-
differentiated grade corresponds to tissue that looks nothing like ordi-
nary tissue. This schema can be extended into the pathology schema,
which uses in addition to the appearance additional criteria and leads to
a very rich list of different breast cancer types.

A final schema to be presented uses gene and protein expressions
to describe the breast cancer cells. As some breast cancer types rely on
oestrogen and progesterone to grow, one can test for oestrogen receptors
(ER) and progesterone receptors (PR). Additionally, the protein HER2/neu
(also known as ERBB2) is also used for classification. If none of these
three is expressed, the cancer is said to be triple negative breast cancer,
which is a subgroup of the so called basal-type breast cancers and are
more aggressive and less responsive to standard treatment, and therefore
leaving the patient with a poorer prognosis.

Sorlie et al. (2001) have found that they could make out six breast
cancer subtypes using a hierarchical clustering approach. They have
found gene expression patterns for the following subtypes: Basal-Like,
ERBB2+, Normal (Breast-) like, Luminal A, Luminal B and Luminal C.
From their hierarchical clustering they identified the tumor subtypes as
follows: with low to absent gene expressions of ER and several additional
transcriptional factors, the first three subtypes were categorized. The
basal-like subtype had high expressions of keratins 5 and 17 as well as
laminin and fatty acid binding protein 7. The ERBB2+ subtype had
among others high expressions of ERBB2 and GRB7 genes. The highest
expression of many genes that are known to be expressed by adipose
tissue as well as nonepithelial cell types was found in the normal (breast-)
like subtype.

The specimen with high expressions of ER and several transcrip-
tional factors were clustered into the subtypes Luminal A, Luminal B and
Luminal C. The highest expressions of the ER « gene, GATA binding pro-
tein 3, X-box binding protein 1, trefoil factor 3, hepatocyte nuclear factor
3 « and estrogen-regulated LIV-1 were found in the subtype Luminal A.
Luminal B and Luminal C were only marginally different and showed
low to moderate expressions of luminal-specific genes including the
ER cluster. A high expression of a novel set of genes with an unknown
function, differentiated subtype Luminal C from Luminal A and Luminal
B (Sorlie et al., 2001).

22



THE PROJECT

After the first part laid the very basis, this part will describe the con-
ducted project in detail. At first, the data-sets will be introduced, fol-
lowed by the results obtained during the conduction of the correlation
analysis and recursive feature extraction.

3.1 DATA SETS

This project is based on the microarray breast-cancer data-sets of frozen
breast-cancer tumors from Sweden. The data stems from two different
cohorts. The data-sets can be obtained in the form of .Rdata files from
the website of Prof. Yudi Pawitan at http://www.mep.ki.se/~yudpaw/.
Furthermore, the author has been supplied with .mat files contain-
ing Gene-Symbol to protein mappings and a snapshot of the CORUM
database’s protein to protein-complex mappings.

3.1.1 Breast Cancer Data

The breast-cancer data is composed of two cohorts (Stockholm and Up-
psala) with a total of 412 quality controlled RNA expressions. These
expressions have been obtained using Affymetrix GeneChips. The Stock-
holm cohort consists of the expressions of tumor-cells from 159 patients.
Their tumor-cell samples have been collected by the Karolinska Hospital
in Stockholm, Sweden, from January 1** 1994 to December 31 1996 from
patients who have been operated for primary breast-cancer.

The Uppsala cohort consists of the expression values of tumor-cells
from 253 patients. The tumor-cells have been collected by the Uppsala
University Hospital, Uppsala, Sweden from January 1st 1987 to December
31st 1989.

Both cohorts have been subject to previous research. For a detailed
account see Pawitan et al. (2005), Miller et al. (2005), Calza et al. (2006).

Uppsala  Stockholm

Probe-Set IDs 44928 44928
Experiments 253 159
Unique PIDs 44760 44760

Table 3.1: Details of the cohorts size.
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The Stockholm and Uppsala cohort contain expression values for
44,928 Probe-Set Identifiers (Probe-Set IDs or PIDs), of which only
44,760 Probe-Set IDs are unique as table 3.1 shows. Both cohorts’ sam-
ples came annotated with a breast-cancer subtype schema as found and
described by Serlie et al. (2001). Figure 3.2 shows the different distribu-
tion of the subtypes within the cohorts.

Uppsala Stockholm

&

A

® Basal ® Normal Like Luminal A
® Luminal B @ ERBB2 ® No Subtype

Table 3.2: Breast-cancer subtype distribution within the Stockholm and Uppsala
cohort.

3.1.2  Affymetrix GeneChip Array Information

The array information for the Affymetrix GeneChips is provided by
Affymetrix and contains additional information for the probe-sets on
the GeneChip. They include multiple fields, of which three have been
used: Probe-Set ID, Gene-Symbol and Swiss-Prot.

The Probe-Set ID is the identifier for the probe set, for which the
expression has been measured. For example, these look like 200007 _at,
200011 s_at or 200012 _x_at.

The Gene-Symbol can come from different organizations, which
assign them to different species. Some of the possible databases, from
which the information has been sourced include: The Human Genome
Organization (HUGO), The Rat Genome Database (RGD), Mouse
Genome Database Project (MGD) at the Mouse Genome Informatics
(MGTI) as well as the SubtiList, which analyses the genome of Bacillus
subtilis (Affymetrix, 2010).

The Swiss-Prot entry contains the Swiss-Prot accession number.
Examples are P11474, Q8N4S8, QO96F89 or Q96I02. Swiss-Prot is a
protein knowledge-base of protein sequences and part of the UniProt
(http://www.uniprot.org) Knowledgebase (UniProtKB).

The number of entries available in the data-set that has been used,
has been summarized in table 3.3.
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Type #Entries

Probeset IDs 54675
Gene Symbols 21373
Unique Gene Symbols 21372
Swiss Protein 44713

Table 3.3: Size of the Affymetrix GeneChip Array Information. Here unique means
invariance under capitalization.

3.1.3 Additional Gene-Symbol To Protein Mappings

The additional Gene-Symbol to protein synonyms mapping contained
protein mappings for 5,556 Gene-Symbols of which 4,940 were invariant
under capitalization. The statistic can be found in table 3.4.

Type #Entries
Gene-Symbols 5556
Unique Gene-Symbols 4940
Proteins 7152

Table 3.4: Size of mappable elements in the additional Gene-Symbol to Protein
Mapping.

3.1.4 CORUM Protein To Protein-Complex Mappings

The CORUM database as it has been mentioned in chapter 2.1.3 (p. 6) is
a database of mammalian protein-complexes from mainly human (64%),
mouse (16%) and rat (12%) that have been experimentally verified. The
database is freely accessible, and maintained as part of the Munich Infor-
mation Center for Protein Sequences (MIPS) at the Helmholz Zentrum
Munich, the German Research Center for Environmental Health.

The snapshot that has been used for this project containes proteins
associated with protein-complex IDs and protein-complex names. Out
of all the different protein-complex names 35 were identical after capital-
ization. The numbers of entries for each type have been summarized in
table 3.5.

Type #Entries
Proteins 3642
Protein-Complex IDs 2104
Protein-Complex Names 1880
Unique Protein-Complex Names 1845

Table 3.5: Size of mappable elements in the snapshot of the CORUM database that
was used.
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3.2 CORRELATION ANALYSIS

In the first part of this project the question was whether or not the
superimposition of the structural information provided by the CORUM
database would make a significant difference. As an indicator, the mean
correlation coefficient has been selected.

A statistical test was performed. The null-hypothesis chosen is as
follows: the mean correlation coefficient of expressions of Probe-Set
IDs is the same as the mean correlation coefficient of expressions of
Probe-Set IDs within protein-complexes.

It has been performed using a two-tailed Welch’s ¢-test, which is
similar to the students ¢-test and allows the two samples to have unequal
variance. The significance level was set to 5%.

It defines the statistic ¢ for two samples X; and X, as

Xi-X;

t: 2 2
S S

1 +_2

M TN,

where X denotes the sample mean, s? the sample variance and N the
sample size. Together with the estimated degrees of freedom v, which
can be computed using the Welch-Shatterthwaite equation:

LAY
Ni N,

sk 53
1 + 2
NZ(Ni-1) = NZ(Np-1)

V=

the null-hypothesis can be tested using the t-distribution.
Three distributions of the mean correlation coefficients have been
computed:

1 for randomly chosen pairs from all available Probe-Set IDs,

for randomly chosen pairs from all Probe-Set IDs, for which a mapping
to a protein-complex was available,

for randomly chosen pairs of Probe-Set IDs that belong to a randomly
chosen protein-complexe.

For each distribution, the mean value of 1,000 correlation coefficients
of Probe-Set ID pairs have been sampled another 1,000 times. Figure 3.1
shows plots for all three distributions using a gaussian kernel density
estimator. For some Probe-Set IDs, the microarray data contains two ex-
pressions. Therefore, these have been aggregated using minimum (min),
average (avg) and maximum (max). Consequently, each distribution
has been computed separately for each aggregation.

Table 3.6 lists the distributions’ mean values and table 3.7 the p-values
for the performed Welch’s ¢-test of distribution 1 against distribution 2
and distribution 1 against distribution 3.
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Figure 3.1: Kernel density estimates for the mean correlation coefficient distribution
using a gaussian kernel.

‘ Distribution1  Distribution 2  Distribution 3

min | 0.001225644 0.018802678 0.135954911
avg | 0.001337716 0.018857328 0.136323111
max | 0.001110031 0.019165409 0.136386125

Table 3.6: The mean values for each distribution and aggregation.

‘ Distribution 1 against 2 Distribution 1 against 3

min | < 2.2e-16 < 2.2e-16
avg | <2.2e-16 <2.2e-16
max | < 2.2e-16 < 2.2e-16

Table 3.7: p-values from the Welch’s two sample ¢-test.

The p-values in table 3.7 show that the null-hypothesis had to be
rejected. This means that the distributions that have been tested against
each other did not have equal mean.

Furthermore, table 3.6 shows that the mean of distribution 1 and 2 are
close to o, while the mean of distribution 3 is ~14%. It also indicates that
the Probe-Set ID expressions aggregated using the maximum increase
the spread between the mean of distribution 1 and 2 as well as the spread
between the mean of distribution 1 and 3.

The performed analysis suggests that the superimposition of the
CORUM database results in a valuable structural gain in information
on the microarray breast-cancer data from the Uppsala and Stockholm
cohorts.
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3.3 RECURSIVE FEATURE ELIMINATION

The second part of this project deals with the inquiry whether the use of
structural information could reduce the dimensionality of the classifica-
tion problem and retain or even enhance the classification performance.

3.3.1 Methods

Recursive Feature Elimination (RFE) is a method, which tries to reduce
the number of features in the classification problem to the most rele-
vant features. The method has been described by Guyon et al. (2002)
in combination with SVMs (SVM-RFE). SVM-REFE has initially been
proposed for binary problems. Let p be the number of features. The
algorithm works by removing the features i = 1, ..., p with the smallest
coefficient of the squared weight vector w? from the binary SVM. Let |
be the number of binary SVMs in a multi-class SVM. The extension to
a multi-class SVMs has been done similar to the multi-class algorithm
proposed in Zhou and Tuck (2007). In the multi-class SVM-RFE, the
features i = 1,..., p with the smallest mean over the corresponding
coeflicients of the squared weight vectors w]?i (j=1,...,1) are removed.

(oot

CGene—Symbol)—»( Protein )J

Figure 3.2: Pipelines that were used to compute the virtual expressions for Gene-
Symbols, proteins and protein-complexes from the microarray expressions of the
Uppsala and Stockholm cohorts.

SVM-REFE can be used to eliminate multiple features at once. For the
application of the SVM-RFE on the breast-cancer data-set, piplelines had
to be devised to describe the aggregation of expressions for the Probe-Set
IDs and Gene-Symbols as well as the proteins and protein-complexes.
The two pipelines are visualized in figure 3.2. The upper pipeline uses the
Aftymetrix GeneChip Information (see § 3.1.2 (p. 24)) to connect Probe-
Set IDs to proteins from the Swiss-Prot database. A second step connects
these proteins to their corresponding protein-complexes, according to
the information from the CORUM database (see § 3.1.4 (p. 25)). The
lower pipeline uses the Affymetrix GeneChip information (see § 3.1.2
(p. 24)) to find mapping paths to Gene-Symbols. And from there, paths
to proteins through the Additional Gene-Symbol to protein mappings
(see §3.1.3 (p. 25)). The CORUM database is used again in the last step to
find connections between proteins and their protein-complexes. These
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two pipelines have been implicitly merged for the computation of protein
and protein-complex expressions.

The expression data from the microarrays is only annotated with
the corresponding Probe-Set IDs. For some Probe-Set IDs, not one,
but two expressions are present. These have been aggregated using the
aggregation functions: minimum (min), average (avg) and maximum
(max). The proteins can then be described as sets of Probe-Set IDs. Be-
cause a protein can map to multiple Probe-Set IDs, another aggregation
function for the calculation of the protein expressions is introduced:
median. The protein-complex expressions have finally been computed
using all the aforementioned aggregation function min, avg, median
and max on the protein expressions. These computational paths are
depicted in figure 3.3.

'Gene Symbols 19494
'Raw : : 44928\

Expression Values

'Probe-Set I% m 44760\
) 71\
Protein /

/1] I ]

LT

Protein Complexes 2103

Aggregation: @ min avg emedian e max

Figure 3.3: The flow of the expression computation. Each blue box represents one
step. The number on the right side of each box denotes the number of features, for
which expressions could be computed.

Initially, the mapping had been hand coded in MATLAB. It proved to
be hard to verify and maintain. Furthermore, it was rather slow, and the
adoption to new data or small changes in the pipelines was complicated.
A different approach was chosen, and the expression data, accompanied
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with the mapping information transferred into a relational database
management system (RDBMS). PostgreSQL was chosen because it was
readily available and provided the ability to use R functions through the
embedded PL/R language. The mapping of the expressions was done in
the database with a few Structured Query Language (SQL) statements
and subsequently written back into MATLAB files.

The SVM has been trained using the expressions computed from
the Uppsala data-set, and the performance has been measured on the
expressions computed from the Stockholm data-set. The SVM-RFE that
was initially used was based on the LSVM software. The multi-class
and RFE logic was custom coded as a layer on top of the LSVM. The
multi-class approach that was used was a one-against-all approach with
a continuous prediction heuristic as described in § 2.2.2 (p. 16). An issue
arose from the Out-of-Memory Exceptions due to the size of the problem.
The problem size of the classification of Probe-Set ID expression values
from the Uppsala data source required more memory than the available
systems provided. As a solution, the LSVM algorithm accompanied with
the multi-class and RFE logic was rewritten in Python using NumPy and
SciPy to allow it to run on systems that were unable to run MATLAB
(e.g. the computer barn at the institute of informatics of the Technische
Universitdt Miinchen). Another motivation for this rewrite was that the
use of Python would make it easy to run the computation in parallel.
But the python version ran out of memory as well.
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Figure 3.4: The classification performance of the LSVM algorithm with different
split-sizes for the last 195 iterations from features 200 to 5.

An idea to circumvent the out of memory problem was to split the
problem along the Probe-Set IDs (features) into sub-problems of smaller
size. Even though this approach was questionable, it at least allowed to
compute a model for the data. A few tests reviled that the computed
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model depended heavily on the chosen size of the sub-problem (split-
size). The dependence on the splitsize can be seen in the classification
performance of the training-set (Uppsala) and the testing-set (Stock-
holm) for the max-aggregated Probe-Set IDs in figure 3.4.

With all the issues of the LSVM software, a different SVM was sought
and the LIBSVM software package was selected. Its excellent support for
R with the e1071 Package provided a tuning facility to find the optimal
penalty parameter C for the linear SVM using a grid search approach.
The LIBSVM has shown to be faster, and able to compute a model for
the Probe-Set IDs’ expressions in a fixed size of memory. The LIBSVM
supports multi-class problems using a pairwise voting strategy (see
§ 2.2.2 (p. 19)). On top of the LIBSVM, the RFE algorithm has been
implemented, based on a similar implementation by Fernandez (2008).

3.3.2 Results

In this section, classification results using the LIBSVM with the RFE
implementation will be presented on Gene-Symbols, Probe-Set IDs,
proteins and protein-complexes. For the last fifty features, their Gene
Ontology and Functional Catalogue information for the corresponding
Gene-Symbols, Probe-Set IDs and Protein-Complexes can be found in
appendix A (p. 61).

Classification on Gene-Symbols

Using only the Affymetrix GeneChip information for 19,494 different
Gene-Symbols, expressions could be computed. These represent the
expressions associated with 34,553 (~77%) of the available Probe-Set-IDs,
which are implicit in the mapping'. The SVM-RFE performance on
the min, avg, median and max aggregated expressions can be seen in
figure 3.5. The RFE has been configured to reduce the features by 10%
until 200 features are reached. From there on, one feature is removed
during each iteration until five features are left and the RFE terminates.

min avg median max
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Features

Figure 3.5: Classification-performance using Gene-Symbols on the testing-set
(Stockholm) for the models, which have been trained on the Uppsala data-set.
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Figure 3.5 only shows the performance of the last 195 iterations (fea-
tures 200 - 5). The box-plots in figure 3.6 suggest that the expression
aggregation with the median yields the best results, but figure 3.5 and
figure 3.6 clearly show that an aggregation using the average of the ex-
pressions results in a more stable performance.
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Figure 3.6: Box-plots for the classification performance on Gene-Symbols for the
different aggregation functions during the last 195 iterations of the RFE.

When looking at the subtype performance in figure 3.7, one can see
that the classification-performance for the average (avg) aggregation
decreases for the No Subtype subtype, while it even improves for the
ERBB:2 subtype with fewer features.

Finally, figure 3.8 shows the mean and standard deviation (SD) of
the classification for the 195 last iterations of the RFE. It shows that
using Gene-Symbols the classification of Basal, Luminal A, Luminal B
and Normal Like subtypes is on average easier than the classification of
ERBB2 and No Subtype subtypes, which are often assigned to the wrong
class.

Figure 3.9 depicts the number of common features that the SVM-RFE
found for the different expression aggregations. While the intersection
of all different aggregation paths shows only very few common features,
the intersection of the two better performing aggregation paths (avg
and median) shows more common features. This suggests that these
two paths have found Gene-Symbols, which are more relevant for the
classification-performance.

The Gene-Symbols at fifty features from the average path are the
listed in table 3.8.

A strong annotation indicates that the Gene-Symbol is part of all
paths, and an emphasised annotation indicates that the Gene-Symbol
is also part of the fifty features of the median path. The number in
parentheses is the cardinality of the subset of features, in which this
particular feature was last seen.
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Figure 3.8: Classification for each subtype throughout the last 195 iterations; visual-

ized as a heat-map.
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Figure 3.9: The number of common features of the aggregation paths. E.g. avg &
median represent the cardinality of the intersection of the Gene-Symbols for the
average and median aggregation.

Table 3.8: The Gene-Symbols at the 50 feature step of the SVM-RFE. The number in

(50) TMEM34
(46) ERBB2
(42) CHI3L1
(38) LRP2
(34) ZNF780B
(30) GSTM2
(26) MTF1
(22) FAM134B
(18) NOL5A
(14) MSI2

(10) ESR1

(6) CBX2

(5) TCTA

(49) TAS2Rs
(45) COL17A1
(41) ECHDC2
(37) SP8

(33) GRTP1
(29) NUCB2
(25) KLHL20
(21) CNTD2
(17) DACH1
(13) HMGB3
(9) RDHE2
(5) MAPT

(5) YWHAZ

(48) TMEMo1
(44) GPR87
(40) ANKRDs
(36) EXOSC3
(32) REPS2
(28) FRAG1
(24) PPM1]
(20) KRT14
(16) CAPNi1o
(12) SAMDs
(8) DEFB1

(5) RABEP:1

(47) HN1

(43) TBC1iDy
(39) CYP20A1
(35) PIN

(31) SQLE
(27) MPP;
(23) SCUBE2
(19) ELOVL6
(15) KRT223P
(11) ZNF684
(7) STARD3
(5) SOX10

parentheses is RFE step, in which the feature is eliminated.
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Classification on Probe-Set IDs

Similar to the Gene-Symbol classification results, the results for the
classification using Probe-Set IDs are presented. They have been com-
puted using the same settings for the RFE that have been used with the
Gene-Symbols. Figure 3.10 together with figure 3.1 suggest that the
aggregation using the maximum (max) of the expressions yields a good
path with respect to the classification performance.
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Figure 3.10: Classification-performance using expressions for the Probe-Set
IDs. Models have been trained using the Uppsala cohort, and the classification-
performance has been measured using the Stockholm cohort.

Using the average to compute the expressions results in a better
classification-performance (around 75 features). The plots in figure 3.10
and figure 3.11 suggest that using the minimum to aggregate the expres-
sions for the Probe-Set IDs is suboptimal.
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Figure 3.11: Boxplots for the classification-performance on Probe-Set IDs for differ-
ent aggregation functions.

This is reinforced in figure 3.12 and figure 3.13, which show that the
minimum aggregation under-performs for the ERBB2 subtype.

Figure 3.12 further indicates that the SVM-RFE maximum aggre-
gation improves the classification-performance for the Luminal A and
ERBB:2 subtypes in favour of the Luminal B subtype.
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Figure 3.13: Classification for each subtype on Probe-Set IDs throughout the last 195

iterations. Visualized as heatmap.
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That the subtype Luminal B is very hard to classify correctly using
the expressions computed for the Probe-Set IDs, can be clearly seen
in figure 3.13. While specimen with Luminal A are rarely assigned a
different subtype, other subtypes are often miss-classified as Luminal B
using the models trained during the iterations.
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Figure 3.14: The number of common features of selected aggregated paths that have
been used to compute the expressions for the Probe-Set IDs.

Figure 3.14 shows that the different aggregation paths often share the
same features during the RFE.

Classification on Proteins

Similar to the Gene-Symbols, expression values for 43,856 different pro-
teins could be computed from sets out of 33,735 different Probe-Set IDs
by using both pipelines. Thus, for the proteins only ~75% of the available
expressions could be utilized. Again, the RFE has been set to reduce the
features by 10% until 200 features are reached. Upon which one feature
is discarded during each iteration.

The classification-performance on the Probe-Set IDs has not been
conclusive to which aggregation should be used on the Probe-Set IDs.
Therefore, the results for all twelve computed expression paths are pre-
sented.

The best performance (hovering around 70%) could be achieved
using the average aggregation on the minimum aggregated Probe-Set
IDs (average-on-minimum) according to figure 3.15. This is also the
same path that figure 3.16 suggests due to its suggested stability.

The minimum-on-average aggregation, average-on-minimum ag-
gregation as well as the medium-on-maximum aggregation show good
performance in both, figure 3.15 and figure 3.16. These paths have been
broken down into their subtype performances in figure 3.17.

The heat-map in figure 3.18 indicates that for the average-on-minimum
classification the ERBB2 subtype is classified more often correctly, while
the No Subtype subtype is less often classified correctly.
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Figure 3.15: Classification-performance on proteins for all available paths that lead
to expressions for the proteins.
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Figure 3.16: Box-plots of the classification-performance on proteins for all available
aggregation paths.
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Figure 3.17: Classification-performance on selected expression paths for the proteins;
broken down into their six different subtypes.
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Figure 3.18: Classification for each subtype on selected expression paths for the
proteins throughout the last 195 iterations. Visualized as a heatmap for the mean
and standard deviation (SD).
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Figure 3.19 shows that for the selected subset of paths the median-
on-maximum and average-on-minimum paths share the most common
features during the RFE.
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Figure 3.19: The numbers of common features of selected aggregation paths that
have been used to compute the expressions for the proteins.

The last fifty remaining proteins for the average-on-minimum path
are listed in table 3.9.

(50) Q59F11 (49) Q9BXG2  (48) Q53G41 (47) Q6ZVBo
(46) Q9HC96  (45) Q49A35  (44) Q14508 (43) Q59EN9
(42) Q15276 (41) QONQF3  (40) QsUoBo  (39) Q7Z5Qs
(38) Q6FGLs  (37) Q9HsJ4  (36) P57738 (35) Q5TC63
(34) Q9GZUo (33) Q6PJWS  (32) Q9BX40  (31) Q99712
(30) Q9UI36 (29) Q8NFHS8 (28) QsT9Ho (27) 000148
(26) Q8N589  (25) Q4781 (24) QQNYW4  (23) QoD2I8
(22) QQUNR6  (21) Q7ZsLy (20) P21246 (19) Q8IY28
(18) Q7ZsC1  (17) Q6ZRF6  (16) Q9NVA4  (15) Q96C34
(14) Q9JIVe (13) Q9BVG4  (12) Q96LX1 (11) P60022
(10) Q72684  (9) Q9NR86  (8) Posogo (7) Q9UK79
(6) Q6I9Us  (5) O35551 (5) Qu3751 (5) Q6ZToy
(5) QoH8F1 (5) QQUK76

Table 3.9: The protein accession numbers at the 50 feature step of the SVM-RFE
using the average-on-minimum path. The number in parentheses is RFE step in
which the feature is eliminated.

A strong annotation indicates that the protein is part of all paths,
and an emphasised annotation indicates that the protein is also part
of the fifty features of the median-on-maximum path. The number in
parentheses is the cardinality of the subset of features, in which this
particular feature was last seen.
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Classification on Protein-Complexes

The protein-complexes represent the final mapping target. As described
in figure 3.2, expressions could be computed from the microarray breast-
cancer data using the pipelines for 2,103 different protein-complexes.
These 2,103 protein-complexes are based on sets out of 3,519 different
proteins, which in turn are based on sets out of 6,169 different Probe-Set
IDs. Thus, the protein-complexes only represent ~8% of the expressions
for proteins.

Based on the results from the previous section on the protein perfor-
mance, only the path of the average-on-minimum aggregated expression
values will be followed. For this sub-tree, the performance results will
be presented. The RFE has been set to reduce the features by 10% till
200 features are reached. Upon which one feature is eliminated during
each iteration.
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Figure 3.20: Classification-performance for the four differently aggregated protein-
complex expressions following the average-on-minimum path.

After the average-on-minimum aggregation, figure 3.20 and fig-
ure 3.21 show that a very good aggregation is the median and very bad
aggregation is the minimum.
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Figure 3.21: Box-plots for the classification-performance for protein-complex expres-
sions following the average-on-minimum path.
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Given that the median has been used to compute the protein-complex
expression from its corresponding protein-set, one can see from the
subtype-performance in figure 3.22 that the classification-performance
for the Basal and ERBB2 subtype improve, while it decreases for the
subtype Luminal B at the same time.
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Figure 3.22: Classification-performance on protein-complexes following the average-
on-minimum path for the proteins; broken down into the six different subtypes.

In figure 3.23 the heat map shows that, when using the median to
aggregate protein-set expressions, the subtypes Basal, Luminal A, Lumi-
nal B and Normal Like often get classified correctly, while the subtypes
ERBB2 and No Subtype get miss-classified frequently. It should be noted
that this is measured over the last 195 RFE iteration steps.

Figure 3.24 finally indicates that all four aggregation paths result in
quite different feature-sets during the RFE, and that the most feature-
similar paths are those using median and avg on the protein-sets.

As presented during the results for the Gene-Symbols and proteins,
this chapter will end with the protein-complexes for the iteration step
at fifty features for the median-on-average-on-minimum protein-sets.
These can be found in table 3.10.

Again, protein-complexes shared with the average aggregated path
are denoted with emphasis. At fifty features, no protein-complexes are
shared among all four aggregation paths as figure 3.24 shows. The num-
ber in parentheses is the cardinality of the last feature-set in which the
protein-complex was seen.
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(47) Polyadenylation complex (CSTF1, CSTF2, CSTF3, SYMPK CPSF1, CPSF2, CPSF3)

(45) Rabs GDP/GTP exchange factor complex

(40) Phosphatidylinositol 3-kinase complex (PIK3CA, PIK3R1)

(39) Transcription elongation factor complex (SUPT5H, CDKg, CCNT1)

(38) Kinase-scaffold-phosphatase complex, PKA-AKAP79-CaN

(32) Chromosomal passenger complex CPC (INCENP, CDCA8, BIRCs, AURKB)
(30) Prolactin (PRL) - PRL receptor (PRLR) complex

(28) hMediator complex (MED23, CDK8, CCNC, MED7)

(24) RICH1/AMOT polarity complex, Flag-Richi precipitated

(19) nephrin-cadherin complex (Nphsi, Ctnndi, Cdh3, Cdzap)

(18) NMDA receptor complex (NR2A, NR2B, NR1, PSD-95)

(14) Ubiquitin E3 ligase (CRY1, SKP1A, CUL1, FBXL3)

(5) Ubiquitin-protein ligase (UBE2N, UBE2V2/MMS2)

(5) Nephrin-cadherin complex (Nphsi, Ctnndi, Cdh3, Cdzap)

(50) SCF subcomplex (WEE1, SKP2, BTRC) (49) PGC-1-SRp40-SRps55-SRp75 complex
(48) MAML3-RBP-Jkappa-Notch4 complex (46) AR-AKT-APPL complex

(44) PAR-3-PKCz-Tiam2 complex
(42) HOXAg9-PBX2-MEIS1 complex
(37) Mi-2/NuRD-MTA2 complex

(35) GluR1-GluR2 heteromer complex
(33) p27-cyclinD2-Cdk4 complex

(29) Glur4-cadherin-catenin complex
(26) ITGAV-ITGB3-NOV complex
(23) Acinar cell-specific C complex
(21) c-Src-Muct complex

(17) GIPC1-NTRK1-RGS19 complex
(15) Ric-8A G alpha 13 complex

(12) Pparalpha-Pric320 complex

(10) Survivin homodimer complex

(8) SMAD3-VDR complex

(6) PYR complex

(5) EGFR-containing signaling complex

(43) Epsi15-stonin2 complex

(41) IL12B-1L12RB1-IL12RB2 complex

(36) SMG-1-Upf1-eRF1-eRF3 complex (SURF)
(34) ERBB2-MEMO-SHC complex

(31) Psd3-Actn1 complex

(27) Rabi1-Fip2-Reps1 complex

(25) REST-CoREST-mSIN3A complex
(22) ITGA2-ITGB1-COL6A3 complex
(20) Ecsit complex (Ecsit2-Smadi)

(16) SHARP-CtBP1-CtIP complex

(13) ER-alpha-GRIP1-c-Jun complex

(11) Smooth muscle dystroglycan complex
(9) ActRIIA-ActRIB-Smad3-Aripi complex
(7) TRF1-TIN2 complex

(5) APLG1-Rababtins complex

(5) BLM-TRF2 complex

Table 3.10: The Protein-Complexes at the 50 feature step of the SVM-RFE. The
number in parentheses is the RFE step, in which the feature is eliminated.
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Figure 3.23: Classification for each subtype on selected expression paths for the
protein-complexes throughout the last 195 iterations of the RFE. Visualized as a
heatmap for the mean and standard deviation (SD).
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Figure 3.24: The numbers of common features of selected aggregation paths that
have been used to compute the expressions for the protein-complexes.
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3.3.3 Discussion

The results from the recursive feature elimination using support vector
machines have shown that during the RFE, the classification perfor-
mance fluctuates and depends on the aggregation paths used to compute
the expressions.

The classification-performance on Gene-Symbol expressions repre-
senting ~77% of the available expressions for Probe-Set IDs shows to
be around 70% for most of the last 195 iterations during the recursive
feature elimination. This is similar to the classification performance
using Probe-Set IDs. The classification on protein expressions represent-
ing ~75% of the Probe-Set ID expressions yields a similar performance,
while the classification performance on protein-complexes is slightly
below ~70%.

The number of common features for the top-performing paths on
Gene-Symbol expressions is ~130 when the RFE is at 200 features. This
is topped by the number of common features for the top-performing
paths on Probe-Set ID expressions, which lie at ~150 common features.
The number of common features for the protein expressions and protein-
complex expressions are significantly lower at ~110 and ~90 common
features respectively. These represent ~55% and ~45% of the 200 features
for each path at this point during the RFE.

Additionally, the spread between the number of common features
for the top-performing paths and all paths increases the longer the
aggregation paths get. This is a further indication that the choice of
aggregation functions for the computation of the expressions for the
Gene-Symbols, Probe-Set IDs, proteins and protein-complexes plays a
major role in the feature subset that the recursive feature eliminations
selects.

Gene-Symbols

Some of the last fifty remaining Gene-Symbols play a role in cancer. This
is according to their EntrezGene summaries.

The expression of the dachshund homolog 1 (DACH]1) is lost in some
forms of metastatic cancer.

The v-erb-bz erythroblastic leukemia viral oncogene homolog 2 (ERBB2)
has been reported to be over-expressed in numerous cancers, including
breast and ovarian tumors (Lisa et al., 1999).

The estrogen receptor 1 (ESR1) encodes an estrogen receptor. Estrogen
receptors are known to be involved in pathological processes including
breast-cancer.

The TBC1 domain family member 7 (TBC1Dy) belongs to a family of
proteins, which are presumed to play a role in cell growth and differenti-
ation.

Finally, the Gene-Symbol TCTA is also part of the last 50 features. This

45



Gene-Symbol corresponds to the T-cell leukemia translocation altered
gene.

The most obvious breast-cancer related Gene-Symbols are ERBB2 and
ESR1. ERBB2 is already eliminated during the RFE from features 46 to 45,
but ESR1 is kept as one of the last Gene-Symbols used for classification.

Further genes have already been found in other studies to be cancer
related.

The transmembrane proteins 34 (TMEM34) has been found to be down-
regulated in breast-cancer specimens, compared to normal specimens
(Mehta, 2009, p. 285)

The hematological and neurological expressed 1 (HN1) has been one of
four genes distinguishing tumor samples from normal ovarian surface
epithelial cells (Lu et al., 2004).

The G protein-coupled receptor 87 (GPR8y) is essential for p53-dependent
cell survival upon DNA damage, and may be utilized for cancer treatment
and prevention (Zhang et al., 2009).

The secretion of pleiotrophin (PTN) has been found to remodel the
tumor’s micro-environment, and stimulates breast-cancer (Chang et al.,
2007).

Down-regulated nucleobindin 2 (NUCB2) was recently found in gastic
cancer cells, and is a potential tumor antigen (Kalnina et al., 2009).
Links between the induction of apoptosis and the down-regulation of
FGF receptor activating protein 1 (FRAG1) have been observed (Ishii et al.,
2005).

Finally, the Gene-Symbol SCUBE:2 corresponding to the signal peptide,
CUB domain, EGF-like 2 has been expressed in invasive breast carcino-
mas. It has recently been found that the alteration of the expression of
SCUBE?2 is important in breast cancer progression (Cheng et al., 2009).

The gene set has also been imported into the Genomatrix Biblio-
sphere (Scherf et al., 2005). The top 10 results from the Gene Ontology
(GO) enrichment and the Medical Subject Headings (MeSH) disease
analysis are listed in table 3.11 and 3.12.

The Gene Ontology enrichment is not very conclusive, but the MeSH
disease analysis shows that the gene set found is very well related to breast
diseases and carcinomas.
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Term

Z-Score

cellular component biogenesis

tissue development

nervous system development

organ development

system development

multicellular organismal development
lipid metabolic process

positive regulation of cellular process
anatomical structure development

2.98
2.92
2.89
2.72
2.44
2.22
2.21
2.19
2.19

Table 3.11: Gene Ontology (GO) enrichment results for the last 50 surviving Genes

(using average aggregation).

Term Z-Score
Breast Neoplasms [C04.588.180] 184.03
Breast Neoplasms [C17.800.090.500] 184.03
Breast Diseases [C17.800.090] 182.71
Skin Diseases [C17.800] 128.10
Skin and Connective Tissue Diseases [C17] 112.12
Neoplasms by Site [Co04.588] 95.95
Carcinoma, Ductal, Breast [C04.588.180.390] 77.35
Carcinoma, Ductal, Breast [C17.800.090.500.390] 77.35
Carcinoma, Ductal, Breast [C04.557.470.615.132.500]  77.35

Table 3.12: Results from the Medical Subject Headings (MeSH) disease analysis for

the last 50 surviving Genes (using average aggregation).
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Proteins

Among the last fifty proteins that the RFE on the multi-class SVM left,
are the following cancer related proteins:

The WAP four-disulfide core domain protein 2 (Q14508), which is said
to be highly expressed in tumor cell lines, including breast and ovarian
cancer.

The isoform 2 of the RalBPi1-associated Eps domain-containing protein 2
(Q8NFHS) is down-regulated during the progession of prostate cancer.
The transmembrane protein 184C (QoNVA4) is a possible tumor suppre-
sor, which may play a role in cell growth.

Finally, the dachshund homolog 1 (Q9UI36) as well as the T-cell leukemia
translocation-altered gene protein (P57738; associated with T-cell accute
lymphoblasic leukemia) are present among the last 50 proteins used for
classification. These two were also found for the Gene-Symbol expres-
sions.

A notably feature of the set of fifty proteins is that for ~50% (24/50) of
the proteins their associated Gene-Symbols have been part of the set
of fifty selected Gene-Symbols. For each of the last six proteins their
corresponding Gene-Symbol was found in the set. These include the
Gene-Symbols TMEM34, DACH1, HN1 and ERBB2, which have been
found to be related to cancer. Almost all of the above mentioned proteins
are gone when the subset’s cardinality is 35. Only the transmembrane
protein 184C (QoNVA4) is kept until the elimination passes 16 features.
The information for the proteins has been sourced from the UniProt
KnowledgeBase (UniProtKB).

Protein-Complexes

The last targets in the expression computation were the protein-complexes
with the most intermediate steps. For each of the fifty last protein-
complexes, their complex details were looked up through the MIPS
Genome Research Environment (GenRE) web interface of the CORUM
database at http://mips.helmholz-muenchen.de/genre/proj/corum.

From the categorization in the MIPS Functional Catalogue (FunCat)
(http://mips.helmholz-muenchen.de/proj/funcatDB), which are em-
bedded in the protein-complex details through the web interface, one
could see that out of the fifty protein-complexes, 18 had their sub-cellular
localization in the nucleus, and 13 took part in the cellular communica-
tion. Furthermore, 12 were involved in mRNA transcriptional control,
and six were annotated with the cell-cycle. Another three of them are
associated with proteins that have also been part of the last fifty proteins.
This is in line with the ratio of the number of all proteins to the number
of proteins, from which the protein-complexes have been computed
(~8%). Further protein-complexes are discussed in more detail.
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A critical regulator for the chromosomal segregation is the chromo-
somal passenger complex (CPC) that was among the last fifty protein-
complexes. It corrects the nonbipolar microtubule-kinetochore inter-
action. Therefore, the CPC is presumed to prevent premature mitotic
exit through the creation of unattended kinetochores. These are then
sensed by the spindle assembly checkpoint (SAC) where the proper
chromosome attachment to spindle microtubules is monitored (Rudner
and Murray, 1996; Vader et al., 2007). The proper connection of mi-
crotubules to kinochores are essential for the chromosome segregation.
Many cancer cells are associated with a property called chromosome
instability. This is the loss or gain of chromosomes, and is suspected
to arise from a lesion within the chromosomal segregation machine
(Tanaka and Hirota, 2009).

Another complex has been found that is closely related to the CPC.
The Survivin homodimer complex has been found to be over-expressed
in tumor cells. As a part of the inhibitor of apoptosis protein (IAP)
family, the protein Survivin (in its monomeric form) plays a role in
the Chromosomal Passenger Complex (CPC). Its dimerization usually
occurs in the form of a bow tie-shaped homodimer, in which it can result
in the proliferation of tumor cells due to its suppression of apoptosis
(Park and Li, 2010).

According to the comments on the protein-complex details page,
the HOXA9-PBX2-MEIS1 complex is associated with leukemia, and is
present in myoloid leukemia (Shen et al.,, 1999). It has been shown
that the involvement of homeobox (HOX) proteins and the so called
three amino acid loop extension (i.e., PBX and MEIS) are present in
leukemia. Especially HOXAg plays a key role for the characteristics
of leukemia, and is involved in the morphogenesis. The onset of the
leukemic transformation is accelerated by MEIS1, which functions as a
cofactor for HOXAg (Thorsteinsdottir et al., 2001; Sitwala et al., 2008).

The MAML3-RBP-Jkappa-Notchq complex contains the Neurogenic
locus notch homolog protein 4 (Notch4) protein. The notch family con-
trols cell fate decisions and takes part in many developmental processes.
Together with mastermind-like (MAML) transcriptional co-activators,
which are important for the Notch signaling pathway, the Notch family
is known to be related to breast-cancer (Wu and Grifhin, 2004; Harrison
et al,, 2010). It has been shown that increased RBP-Jkappa dependent
Notch signaling transforms normal breast epithelial cells through the
suppression of apoptosis (Stylianou et al., 2006).

According to its FunCat annotation, the Polyadenylation complex
(CSTF1, CSTF2, CSTF3, SYMPK CPSF1, CPSF2, CPSF3) is involved in
the 3’-end processing. The enzyme polyadenylate polymerase (PAP) is a
catalyst for polyadenylation and important in the determination of the
stability of mRNA. Measurements of PAP are even part of the biological
profile of tumor cells definitions. They have been found to be a possible
prognostic factor in leukemia and breast-cancer (Scorilas, 2002).

Over-expression of the human growth hormone (HGH) has been
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linked to the development of breast-cancer. Wennbo et al. (1997) have
shown that in transgenic mice the activation of the Prolactin (PRL)
receptor (PRLR) is sufficient for the induction of breast-cancer. An im-
portant signaling mechanism for tumor cells is the autocrine/paracrine
loop. Reynolds et al. (1997) have shown evidence for the autocrine/-
paracrine loop for the Prolactin (PRL) - PRL receptor (PRLR) complex
within human breast tissues.

An important protein in multicellular organisms is the protein 53
(p53), where it is a regulator for the cell cycle. It is involved in the
prevention of cancer due to its tumor suppressor functions. One out
of the last five surviving protein-complexes is the BLM-TRF2 complex.
It was found that for the survival of cells without functional p53 this
complex is particularly important (Kim, 2008). It is also related to the
Bloom syndrome according to the comments on the protein-complex
page. The Bloom syndrome is a rare autosomal recessive chromosomal
disorder and poses a high risk to develop a broad spectrum of cancers
for its carrier (German, 1997).

ERBB2 is known to play an important role in breast-cancer cell mor-
tality and metastases formation. Its over-expression is specific to tumor
cells. For ERBB2s ability to inhibit apoptosis the SHC signaling protein is
required. Furthermore, SHC acts as a signaling pathway between ERBB2
and the Mediator of ERBB2 driven cell Mortality (MEMO). Therefore,
the ERBB2-MEMO-SHC complex is highly related to breast-cancer (Lucs
et al., 2009; Marone et al., 2004).

Another important protein is the Transforming growth factor beta
(TGF-p) protein. It also plays an important role as a regulator during
cell cycle, and can induct apoptosis via the SMAD pathway. In cancer
cells the TGF- pathways are mutated, and prohibit TGF-f to control
the cell. Two directly related protein-complexes were identifiable within
the last fifty using their FunCat annotation: the Ecsit complex (Ecsit2-
Smadi) and the SMAD3-VDR complex. Both are annotated with the
TGF-beta-receptor signalling pathway.

Finally, a FunCat-enrichment was performed with a hyper-geometric
test on the last fifty protein-complexes. The results are summarized in
table 3.13. From this we can see that some cell communication related
FunCat entries are more frequent in our set of fifty Protein-Complexes
than they would be in a random set of fifty Protein-Complexes (e.g.
ligand-dependent nuclear receptors and regulation of signal transduc-
tion).
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3.3.4 Conclusion

We have shown that the SVM-RFE has selected breast-cancer related
features using the virtual protein-complex expression we computed
from the Uppsala microarray breast-cancer data set using our novel
data integration method. The classification performance measured on
a microarray breast-cancer data set from a different study from Stock-
holm have shown to be similar for the classification on Gene-Symbol
expressions and protein expressions. Although the classification perfor-
mance on protein-complex expressions did not improve, the extracted
protein-complexes are biologically interesting and interpretable as the
discussion shows. Our proposed data integration method has shown
to be an interesting new approach for the extraction of cancer related
protein-complexes, and can be used to gain new insights into the role
and function of protein-complexes.
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ANNOTATED TABLES

The following tables list the last 50 Gene-Symbols, protein accession
numbers and protein-complexes resulting from the training of the multi-
class support vector machine with recursive feature elimination on the
Uppsala microarray breast-cancer expressions. The Gene-Symbols, pro-
tein accession numbers and protein-complexes have been listed together
with their respective name and additional annotation data. They have
been sorted in descending order according to their elimination during
the SVM-RFE.

A.1 GENE-SYMBOLS

The following table lists the Gene-Symbols with their Gene Ontology
annotation. The data has been sourced from the Affymetrix Information
file.
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A.2 PROTEINS

The following table lists the Protein Accession Numbers with the corre-
sponding protein and Gene-Symbol(s). The Gene Ontology annotation
has been sourced from the UniProt website (http://www.uniprot.org/).
Protein Accession Numbers in parentheses indicate that the old acces-
sion number redirects to the one in parentheses. If the protein’s name is
listed as (deleted) it does not exist in the UniProt database anymore.
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A.3 PROTEIN-COMPLEXES

The following table lists the protein-complexes with their Functional
Catalogue annotation. The data has been sourced from the Protein-
Complexes FunCat annotation and the MIPS Functional Catalogue
(http://mips.helmholtz-muenchen.de/proj/funcatDB/).
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