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Abstract

Phosphatidylcholines (PCs) consist of a glycerol backbone, a phosphate group with
an attached choline and two fatty acid (FA) resdiues. The mass spectrometry tech-
nology used for the determination of metabolite concentrations in the KORA and
a mouse nutritional challenging study is not able to resolve the FA composition
of the PCs. In this thesis, we implemented a method to calculate the FA fre-
quencies which are incorporated in the biosynthesis of phosphatidylcholines. This
calculation is based on the measured PC concentrations. The computed FA fre-
quencies would help to understand the FA composition of measured PCs in detail.
The computed FA frequencies show significant genetic associations with single nu-
cleotide polymorphisms. It was also possible to detect the effects of a nutritional
challenging of mice on the computed FA frequencies. These results support the hy-
pothesis that the computed FA frequencies are meaningfulness with respect to the
biological context. An examination of the computed and measured FA frequencies
indicate that the free fatty acid pool does not correlate with the fatty acid pool,
which is used in the biosynthesis of PCs.

Zusammenfassung

Phosphatidylcholine (PC) bestehen aus Glycerin, einer Phosphatgruppe, Cholin
und zwei Fettsdure-Resten. Die Massenspektrometrie-Technik, welche in der KORA
Studie und einer Studie mit Mé&usen, die unter einer bestimmten Didt gehalten
wurden, verwendet wurde, ist nicht in der Lage, die genaue Fettsiure (FS) Zusam-
mensetzung der PCs zu bestimmen. Wir haben in dieser Thesis eine Methode
entwickelt, um die einzelnen F'S H&ufigkeiten, welche bei der Biosynthese von PCs
in diese eingebaut werden, zu berechnen. Diese Berechnung beruht auf den gemes-
senen PC Konzentrationen der jeweiligen Studie. Die berechneten FS Héaufigkeiten
wiirden dazu dienen, die FS Zusammensetzung der gemessenen PCs aufzuschliis-
seln. Die berechneten FS Haufigkeiten zeigen signifikante genetische Assoziatio-
nen mit Einzelnukleotid-Polymorphismen. Auflerdem war es moglich, die Auswir-
kungen der Diét in den berechneten F'S Haufigkeiten zu erkennen. Diese Ergebnisse
sind ein Indikator dafiir, dass die berechneten FS Haufigkeiten als biologisch sinn-
voll erachtet werden konnen. Der Vergleich von den berechneten FS Héaufigkeiten
und gemessenen Haufigkeiten von freien Fettsduren ldsst darauf schlieflen, dass der
an freien Fettsduren nicht mit dem an Fettsduren, welche fiir die Biosynthese von
Phosphatidylcholinen verwendet werden, korreliert.
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Chapter 1

Introduction

In the following sections, we explain the fundamental biochemistry and the term
metabolomics that will be required to understand the biological background of the
problem statement.

1.1 Basic Biochemistry

The following two sections cover the basic biochemistry about fatty acids and
phospholipids. This includes the structure, denotation, biochemical processes and
biological functions.

1.1.1 Fatty Acids

Fatty acids (FA) are hydrocarbon chains with a carboxylic acid group at one end.!
They vary in chain length and also in the degree of desaturation. These variations
influence the fatty acid’s properties, e.g. the melting point. A shorter chain or a
higher desaturation grade leads to a lower melting point. Fatty acids have various
biological functions. They are part of phospholipids and therefore are involved
in biological membranes (see section 1.1.2). They are also fuel molecules in an
organism’s metabolism. Three FAs form ester bonds with the carboxyl groups of a
glycerol. The resulting molecule is known as a triglyceride. Derivates of FAs also
act as hormones and intracellular messengers.

The FA’s carbon atoms are numbered starting at the carboxyl terminus. The
second carbon atom is called a and the third is called 5. The last carbon atom
of the carbon chain is referred to as w. The presentation for a double bound
is cis/trans-A"™ with n being the position of the first carbon atom of the both

Fundamental biological backgrounds in this chapter were extracted from one biology text-
books: [1]
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Figure 1.1: Representation of the fatty acid with the common name palmitoleic acid.
An systematic denotation for this FA is cis-A”-hexadecenoic acid. The second and third
carbon atoms are referred to as « and (3, that last one as w. The denotation of the
double bound is also shown, e.g. A? or w-7.

carbon atoms involved in the double bound. Alternatively, a double bound can
be described with the w-n-denotation. This denotation begins the numeration at
the w carbon atom with 1 and the carbon double bounds is with the position of
the first carbon atom, e.g. w-3-fatty acid. In this work we generally refer a FA
to its number of carbon atoms and double bounds. For instance, the FA with
the common name palmitoleic acid has 16 carbon atoms and 1 double bound (see
figure 1.1). This FA will be denoted with the term C16:1.

The FA synthesis occurs in the cytoplasm and is a cycle, which runs through
four main steps. These steps are catalyzed by the enzyme fatty acid synthase
(FAD) in human. FAD consists of several functional domains with one them being
an acyl carrier protein (ACP) domain. A cycle of the synthesis begins with an aycl
group and a malonyl group. In the first cycle, the acyl group is acetyl-CoA. That
and malonyl-CoA are being transferred into a thiol linkage with the ACP domain
of FAD. This results in the groups acetyl-ACP and malonyl-ACP, which are then
condensated to form acetoacetyl-ACP. Step two is a reduction of the double bound
of acetoacetyl ACP to a hydroxyl group resulting in S-hydroxylbutyryl-ACP. The
third step is a dehydration between the C-2 and C-3 resulting in crotonyl-ACP.
In the last step of the first cycle, crotonyl-ACP is reduced to butyryl-ACP. This
would be used as the acyl group for the second cycle. Hence an elongation of the
acyl group by two carbon atoms occurs in each cycle. The cycle is repeated until
the acyl group contains 16 carbon atoms, which is then released as palmitic acid.

Palmitic acid provides the foundation for the elongation to longer fatty acids.
The elongation process is catalyzed by elongases. These are proteins, which are
associated with the endoplasmic reticulum on the cytosolic side. Malonyl-CoA
here also serves as the donor of the two carbon atoms. Hence most natural FAs
contain an even number of carbon atoms. The elongation is similar to the FA
synthesis, but catalyzed by different protein.

The desaturation of FAs is catalyzed by the following enzymes: NADH-cytochrome
bs reductase, cytochrome by and desaturase. It is based on several electron trans-
fers between these enzymes and substrates, e.g. NADH, O and a fatty acyl CoA.

In the first step, electrons are transferred from NADH to the FAD moiety of
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NADH-cytochrome bz reductase. This leads to an reduction of the iron atom of
cytochrome bs to the Fe?* state. Subsequently, the iron atom of the desaturase is
converted from the Fe? into the Fe?T state. This enables the desaturase to inter-
act with O, and the fatty acyl CoA substrate, which results in a double bond at
the fatty acyl CoA and the formation of two HyO molecules. The human organism
can only perform the desaturation of A® A% and A? and not the desaturation of
A2 Therefore w-3- and w-6-fatty acids can be of particular importance, because
some of them are essential FAs of the human. Thus the human has to take in a
sufficient amount of these through food.

1.1.2 Phospholipids

Phospholipids form membranes due their amphipathic character. This means, they
possess a hydrophilic and hydrophobic part with the head being the hydrophilic
and the FA chains being the hydrophobic part. Phospholipids consist of four
components:

e a backbone, e.g. glycerol or sphingosine

e one or two fatty acids depending on the backbone
e a phosphate group

e an alcohol group

The backbone can differ between glycerol and sphingosine. This results in the
two subclasses, phosphoglycerides and sphingolipids. A phosphoglyceride consists
of two fatty acids, which are attached to the hydroxyl groups of the C-1 and C-2
carbon atoms of glycerol through an ester bond. A phosphate group forms an-
other ester bond with the hydroxyl group of the C-3 carbon atom. The resulting
molecule is known as diacylglycerol 3-phosphate, which is the simplest phospho-
glyceride. Although it is uncommon in membranes it provides a basis for the
synthesis of further phosphoglycerides. These phosphoglycerides contain an alco-
hol group, which form another ester bound with the phosphate group. This part
of the phospholipid is also referred to as the head group. Common alcohols incor-
porated in PC are the amino acids glycerol, ethanolamine, serine and choline (see
figure 1.2). The latter, phosphatidylcholines (PC), are the most common phospho-
lipids in membranes and we will deal exclusively with these type of phospholipids
in this thesis.

Sphingolipids are the second subclass of phospholipids. Their backbone is sph-
ingosine, which is an amino alcohol with 18 carbon atoms and a desaturated hy-
drocarbon chain. In contrast to phosphoglycerides sphingolipids contain only one
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Figure 1.2: Representation of a phosphatidylcholine. R; and Re indicate the hydrocar-
bon chain of the first or second fatty acid respectively. Figure adapted from Wikipedia

fatty acid, which is amino-linked to the sphingosine. The earlier mentioned al-
cohols serine, ethanolamine and choline are also utilized as the head group for
sphingolipids. This head group is O-linked to the sphingosine.

1.2 Metabolomics

The metabolome describes the abundance of metabolites in a cell, tissue or or-
ganism. Metabolites are the products and intermediates of metabolism. The
metabolome can change within seconds in contrast to the genome or proteome.
[2]. All cellular processes of the the transcriptome and proteome end in metabo-
lites. Therefore the metabolome is considered to be an indicator of an organism’s
phenotype endpoint. There are around 3,000 known endogenous metabolites of
the human organism. Humans take in metabolites through the environment addi-
tionally, which increases the number of metabolites up to 100,000 [2].

Metabolomics refers to the comprehensive study of these metabolites and their
reactions. There are several methods to determine the metabolites and their ac-
cording concentrations. The three major determination methods are chromatog-
raphy, nuclear magnetic resonance (NMR) and mass spectrometry (MS). All of
these methods include several submethods with each of them has their assets and
drawbacks. Therefore most of them are limited to a specific class of metabolites
with specific biochemical properties and a composition of methods is necessary to
covering a wide range of metabolites.

Metabolomics is used for various applications in research. For instance, the
ratio of phenylalanine and tyrosine can be used as a biomarker of the disease
phenylketonuria (PKU) for newborn [4]. Another studied examined the human re-
sponse to glucose challenging [22]. Illig et al. [12] used metabolomics in a genome
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Figure 1.3: Simplified example of the phosphatidylcholine biosynthesis.

wide association study to show that there is association between metabolite fre-
quencies and genetic variations (SNPs).

1.3 Problem Statement

A Phosphatidylcholine (PC) contains two fatty acids (see section 1.1.2 and figure
1.3). Due to the variety of fatty acids (FAs), there are several possibilities for the
FA composition of a PC. The mass spectrometry technology which was used to
establish the data used in this work can not distinguish between PCs that have the
equal sum of carbon atoms and double bounds of the their corresponding FAs. For
instance, PC36:4 can resolved to several FA compositions (see figure 1.4). Thus
there is an uncertainty of the FA composition of the PCs, whose concentrations
were measured with mass spectrometry.

In this thesis, we attempted to develop a method to calculate the FA frequencies
which are used for the PC biosynthesis. This calculation is based on the measured
PC concentrations. The computed FA frequencies would help to understand the
FA composition of measured PCs in detail. The estimation of missing data based
on measured data is referred to as imputing [12]. With a more abstract view at
this problem, we try to estimate parameters based on experimental data. Such an
problem can be referred as an inverse problem [8].

Fatty acid pool Phosphatidylcholines Measured masses

0 AN \NN\NAANINANNN
c16:0 C16:0/C18:1 W/\ S =C34:1

C16:1 ANNANANANAN

. . / — .
C18:0 AN NN cre:/ciso W/\ 2 = G
C18:1 ANANANANANANS C16:0/C20:4 W/\/\ > =C36:4
N 7NVN 7

€182 ANANANANANS

Y NS
cvs s, sz @CTCTTIOCX 2 = C36:4

Figure 1.4: Simplified example of the phosphatidylcholine biosynthesis.



CHAPTER 1. INTRODUCTION



Chapter 2

Methods and Materials

This chapter deals with the developed methods and used materials for this thesis.

2.1 Imputing Method

In the following sections, we give an overview about the basic idea, their compo-
nents and the implementation of the imputing method.

2.1.1 Basic Idea

The imputing method has the goal to find a set of FA frequencies which explains the
in mass spectrometry measured PC concentrations best. It is necessary to generate
PC frequencies based on the FA frequencies to evaluate a set of FA frequencies.
Afterwards the evaluation is performed with a cost function which provides a
measurement of distance between the computed PC frequencies and the frequencies
which were measured via mass spectrometry. The search space of all FA frequencies
is n-th dimensional with n being the number of fatty acids.

2.1.2 Definitions

For the further explanation of the method, we will define some fundamental terms.
A relative frequency of a FA is referred to as z. 4 with ¢ being the number of carbon
atoms and d the number of double bounds. Furthermore, the relative frequency
of a PC is denoted as Y, 4, ¢,.do- Cn and d,, represent the number of carbon atoms
and double bounds of the n-th FA in the PC. 2., denotes the relative frequency of
PCs, which their FA composition is not resolved. This is the case for the measured
PCs of the used studies. We will refer to relative frequencies of measured PCs as

Zed-
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2.1.3 Basic Assumptions

In this section, we explain some assumptions that are needed as a basis for the
imputing method.

Non-negativity
Obviously, the relative frequencies are non-negative:

V(e,d) : e > 0,Yey dyesdy = 0, 2ca >0

Lipid Sum

A lipid sum is the sum of the relative frequencies of the PCs, which have the
same number of carbon atoms and double bounds. Lipid sums are the relative
frequencies, which are measured by mass spectrometry (see section 1.3), i.e:

Zed = Z Yer,diea,do (2'1)

c1+ca=c
d1+da=d

Relative Frequencies

We are dealing with relative frequencies in this work and therefore the sum over all
relative frequencies equals 1. ye, 4, ¢,,4, 15 composed of two z. 4. With the definition

of lipid sums follows:
ch,d =1 g qud =1

2.1.4 Generation Function

The generation function attempts to simulate the incorporation of FAs at the glyc-
erol backbone. It calculates the PC frequencies for given FA frequencies which is
accomplished in two steps. First, the generation function computes the frequencies
of PCS Ye,.dy c0.d,- Second, it calculates the sum of PCs, which have the same num-
ber of carbon atoms and double bounds. The outcome are the relative frequencies
of PCs z.4.

At this point it is not clarified which assumptions or constraints the incorpora-
tion of the FAs underlies. For instance, there is a hypothesis that polyunsaturated
fatty acids (PUFA) are exclusiveley at the second position in the glycerol backbone
[3]. Such assumptions and constraints would have to be included in the genera-
tion function. In this we work we assume that the the incorporation of FAs in
the glycerol backbone is independent of the respective FA at the other position.
The statistical independency leads to the following assumption in the generation

ProOCesS: Yey,dy,co.de = Tey,di * Leg,da-



2.1. IMPUTING METHOD 9

2.1.5 Cost Function

A cost function provides a measurement of distance between computed PC frequen-
cies and the frequencies, which was measured via mass spectrometry, and therefore
helps to evaluate a possible solution. There are several possibilities to calculate
the distance. We implemented the following variants of a cost function in this work.

Distance-based:

Ci(z%) =) (z— %)

=1

This method is also known as the least square error (LSE) and is one of the most
common approaches to calculate a distance. The problem with this method for
our purpose is that PCs with a higher relative frequency have a greater influence
on the distance than one with a lower frequency. In this work we want to achieve
a good estimation for every FA regardless to the scale of the corresponding PCs.
Therefore we implemented a variant of this function which normalizes each single
component and thus every single result has an equal influence on the overall result.
Distance-based normalized:

CQ(Z’E>_i<Zi;fi>2

i=1

We will refer to the result of a cost function as costs in this work.

2.1.6 Simulated Annealing

Simulated annealing is a heuristic method to solve an optimization problem [14].
It attempts to find a good approximation of the global minimum in the search
space by simulating an annealing process. It repeats the steps of alteration and
evaluation of the current putative solution. The evaluation is performed by a given
cost function f(z), which needs to be minimized. After each iteration the method
picks a new solution which is close to the current one in the search space. If this
solution leads to lower cost values, the method will continue with the new solution.
Otherwise the method will accept the solution with the following probability:

exp (_f <xnew>T— f<xold>>

where f(x,e) are the cost values of the new and f(z,4) are the cost values of the
old solution. 7' is the virtual temperature which decreases exponentially. Hence
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the higher the current temperature, the more likely the method will continue with
the worse solution. The exponential decrease of T' is shown in the following term:

T—T-c (2.2)

where c is the cooling schedule, which has a value between 0 and 1. Note that a
sufficient slow cooling schedule would always result in the global minimum [18].
But the increase of runtime would make such a slow cooling schedule not feasible.
In our case a putative solution is a set of FA frequencies. Therefore the func-
tion which will be minimized by simulated annealing consists out of a generation
function (see section 2.1.4) and a cost function (see section 2.1.5), because the PC
frequencies have to be computed to evaluate the set of FA frequencies.

2.1.7 Construction of the Fatty Acid Pools

The term fatty acid pool (FAP) describes the FAs, which will be used to calculate
the PC frequencies and hence whose frequencies will be determined. The FAP
great influence on the out coming result, because it determines which PCs can be
generated in general and how their FA compositions are in detail. For instance,
if we want to generate PC40:5, we will have to put a FA with an uneven number
of double bounds, e.g. 1, 3 or 5, into the FAP. Otherwise we would not be able to
generate a PC with 5 double bounds and the costs would rise. Therefore we put
a lot effort into the examination of the FAP. In this section, we explain how we
established the examined FAPs. A general overview of the FAPs is shown in table
2.1.

Original (ORI)
The FAP ORI was provided by an earlier work on this field [15]. This FAP was
used as a foundation for the first examinations with the imputing method.

Literature (LIT)

We examined papers which determined the FA composition of PCs [5, 6, 7, 9, 11,
19, 20, 21]. These PCs were mainly taken out of blood samples. This FAP is an
union of all FAs that were mentioned in these studies.

Pathway (PATH)

For the FA composition of this FAP, we used the FA biosynthesis pathway of
KEGG (pathway id: hsa01040) as a foundation [13]. PATH contains every FA,
which is existent in this KEGG pathway. In addition, the FAP was expanded by
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fatty acids, which were missing so far and have been recognized as important in
the development of previous FAPs. For instance, C12:0 and C14:0 were added,
because the pathway covers only the biosynthesis of FAs with a number of carbon
atoms above 16. Hence, the resulting FAP is not an identical implementation of
the KEGG pathway.

Literature + Pathway (LITPATH)

This FAP is an union of LIT and PATH. This FAP was designed with the purpose
to evaluate whether these FAPs each for themselves lack in crucial FAs. If this is
the case, it will result in an considerable improvement of the performance.

Expert (EXP and EXP260)

The FAP EXP was established in a collaboration with Josef Ecker from the work-
group Schmitz, Universitdtsklinikum Regensburg. It was unsure whether C26:0
should be in EXP. Therefore an additional FAP was created to examine both
cases. EXP260 contains all FAs of EXP and C26:0 in addition.

Overfitting (OVER)

This FAP contains all possible FAs with 10 - 26 carbon atoms and 0 - 6 double
bounds. This includes also FAs with an uneven number of carbon atoms. This
FAP was constructed with the purpose to verify the hypothesis that too many FAs
can lead to an overfitting by the imputing method.
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contained fatty acids

additional information

C12:0, C14:0, C16:0, C16:1,
C18:0, C18:1, C18:2, C18:3,
original (ORI) C18:4, C20:0, C20:3, C20:4, | This FAP was provided by
C20:5, C22:0, C22:4, C22:5, | an earlier work [15].
C22:6, C24:0, C24:4, C24:5,
C24:6
C12:0, C14:0, C15:0, C16:0,
C16:1, CIT:0, C180, CI&L, | 1y pun oy
. C18:2, C18:3, C20:0, C20:1, ot .
literature (LIT) 020:2. C20:3. C20-4 C20:5 examination of literature [5,
oy SOy WA VL9 6,7, 9, 11, 19, 20, 21]
C21:0, C22:4, C22:5, C22:6, | > 7 H0 1 20
C23:0
C12:0, C14:0, C16:0, C16:1,
C18:0, C18:1, C18:2, C18:3, | This FAP is based on the FA
pathway (PATH) (C20:0, C20:3, C20:4, C20:5, | biosynthesis pathway of the
C21:0, C22:5, C22:6, C23:0, | KEGG database [13].
C24:5, C24:6
C12:0, C14:0, C15:0, C16:0,
C16:1, C17:0, C18:0, C18:1,
literature  +  pathway C18:2, C18:3, C20:0, C20:1, | This FAP is a union of the
(LITPATH) C20:2, C20:3, C20:4, C20:5, | FAPs LIT and PATH.
C21:0, C22:4, (22:5, (22:6,
(23:0, C24:4, C24:5, C24:6
C12:0, C14:0, C14:1, C16:0,
expert (EXP) ’ ’ ’ " | a collaboration with an ex-
C20:3, C20:4, C20:5, C22:0, . .
C92:4, (122:5, (:22:6, C24:0, | Pert in this field.
C24:4, C24:5, C24:6
C12:0, C14:0, C14:1, C16:0, It was unsure whether
C16:1, C18:0, C18:1, C18:2, .
C18:3, C20:0, C20:1, C20:2, | S20:0 should be in EXP.
expert + C26:0 (EXP260) C20'3’ 020_4’ C20'5’ C22'0’ Therefore an additional
C22:4. (22:5. C22:6, C24:0, | LT Was created to exam-
C24:4, C24:5, C24:6, C26:0 | e Poth cases.
C10:0 --- C10:6 T&is gﬁP C_(f}lltaiigs azlé pos-
. . _ sible FAs wi - 26 car-
overfitting (OVER) : : bon atoms and 0 - 6 double
C26:0 C26:6

bounds.

Table 2.1: Description of the examined fatty acid pools.
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2.1.8 Determine the Minimum Number of Runs

As already explained in section 2.1.6, simulated annealing is a heuristic method to
solve an optimization problem. The heuristic character induces the problem that
not every resulting solution of the annealing process is a viable one. Therefore we
need to determine a minimum number of runs which we have to perform to receive
at least one viable result with a high probability.

S is a set of costs with |S| = n and s, being the minimum cost and hence the
best solution. Syiue is a set with the following elements:

Sviabie = {5 € S|s < sppt - (1 +¢€)}

with e being the allowed aberration with respect to the best solution s,,,. We will
refer € also as error tolerance. The set Sy;qae contains all elements which are to be
considered as viable.

|Sviable|
B =
1S

[ is the empirical probability that a solution of the set S is viable one.

0:=(1-p)"

0 is the probability that there is no viable solution in the set S and is referred as
the wviability accuracy. We have to calculate the following term to determine the
minimum number of runs n.

~ In(9)
~ In(1-p)
So n is dependent on the values of § and (3, whereas [ itself is dependent on € and

the set of solutions S. To determine the minimum number of runs, we have to
assign values for the parameters € and 3 and examine a sample set of solutions S.

n

2.1.9 Queue Calculation

All methods were implemented in MATLAB (The Mathworks Inc.). The runtime
of the imputing method for one sample is approximately 2.5 seconds. Hence the
overall runtime for the KORA dataset (see section 2.3.1) with 931 samples and
100 runs per sample is about 65 hours. Therefore we also implemented the ability
to submit the calculation to a GRID engine that can parallelize the calculation on
150 cores. This can accelerate the calculation for the KORA dataset up to 150
times from 65 hours to 44 minutes.
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2.2 Toy Data

The usage of toy data is a common approach to evaluate the correctness and ro-
bustness of a new methodology. We perform a forward simulation of the toy data
to evaluate the imputing method. Hence, the toy data is used as an evaluation
dataset. This dataset represents the FA frequencies, which are unknown in the
work with real data. The relative PC frequencies are computed with the evalu-
ation data and the according generation function (see section 2.1.4). These PC
frequencies are then used to accomplish the process of the imputing. Afterwards an
evaluation of the putative imputing solution is possible due to the known correct
solution, which is the evaluation data set. In general, the toy data were generated
as uniformly distributed random numbers between 0 and 1.

2.2.1 Noise

Noise appears in all biological measurements, e.g. the determination of metabolite
concentrations with mass spectrometry. We implemented the ability to super-
pose the toy data with noise and thus to simulate the work with real data more
realistically. The noise superposition procedure is explained in the following:

50,(1 = Ec,d —+ zc,d r-s (23)

with x being a relative frequency of a metabolite, s the noise strength and r ~
N(0,1). Hence the resulting noise superposition is normally distributed and scaled
with the metabolite frequency and s. We implemented two versions to specify the
noise strength s.

Coefficient of Variation

The coefficient of variation (CV) is defined as follows:

cv="2
1
with o being the standard deviation and p being the mean. This version of noise
superposition uses the coefficient of variation for each metabolite as r, hence the
value differs for each metabolite. The CVs were determined based on the data of
the "HuMet” study in collaboration with Gabi Kastenmiiller. The determination
was enabled by measured concentrations of technical replicates. The use of CV as
the value for r allows us to generate a noise superposition that equals the noise
superposition of the measured data. This helps to evaluate the robustness of the
imputing method specific for the work with the KORA (see section 2.3.1) and
mouse (see section 2.3.2) datasets.
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Constant Noise Strength

In this version, r has the same value for all metabolites and the value itself is
selectable. Additionally, it is possible to set a minimum and a maximum value
and also a growth value. r starts with the minimum value and increases with the
growth value per each sample till it reaches the maximum value. This gives us the
ability to examine the correlation between the increasing noise strength and the
resulting increase of the costs and thus evaluate the robustness of the imputing
method in general.

2.2.2 Correlated Data

FA frequencies underlie a correlation among each others due to biosynthesis pro-
cesses, e.g. desaturation and elongation (see section 1.1.1). We have to evaluate,
whether this correlation would bias the results of the imputing method. For this
purpose, we generated a m X n matrix M with m being the number of samples and
n being the number of FAs. The values of this matrix were uniformly distributed
between 0 and 1 and afterwards the values were correlated, which is explained in
the following term:
M —E-Dz-M"

with £ and D being the two first resulting matrices of a singular value decompo-
sition function (MATLAB function svg). The correlated data are not distributed
uniformly and not between 0 and 1, so we perform a rescaling step.

2.3 Datasets

The following sections provide informations about the studies of the used dataset
and what data the dataset contains.

2.3.1 KORA

KORA is a study which examines people from the region of Augsburg, Germany,
with respect to the effects of their environment, behavior and genetic variations.
This study provides severals thousand independent population-based samples [10].
In this thesis the dataset consists of a subset with 931 samples from participants
of the KORA study. This dataset includes the concentration of 151 metabolites
such as sugars, amino acids and phospholipids. The latter are the main focus of
this work and 36 of these phospholipids are PCs, which are used to calculate the
FA frequencies with the imputing method. The PC concentrations were normal-
ized to obtain the relative frequencies Z. 4 before applying the imputing method.
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number of week
11213145
Control | 18 | 27 | 27 | 2 | 2

Distel | 20 | 25 |31 | - | -
DistelR | - | - | - |96
Table 2.2: Number of mice for every week and diet. ’Control’ denotes the standard diet
and 'Distel’” the safflower oil diet. ’DistelR’ describes the group of mice which received a

standard diet after three weeks of the safflower oil diet. Thus there are only samples of
the fourth and fifth week available.

diet

The metabolite concentrations were determined with the Biocrates AbsolutelDQ
technology via electrospray ionization tandem mass spectrometry (ESI-MS/MS).
Another mass spectrometry technology (Metabolon) was used to determine the
concentration of 27 free FAs in the samples in addition to the 151 metabolites.

Besides the determination of metabolites, the samples were genotyped using
the Affymetrix 6.0 GeneChip. SNPs at 517,480 different loci resulted from this
genotyping [12]. A subset of 326 SNPs were used in this work.

2.3.2 Mouse Nutritional Challenging

This study is conducted by the workgroup of Susanne Neschen HMGU and ex-
amines the effect of a safflower oil diet on the metabolome of the mouse. There
are three mouse strains - C3H, B6J and B6N. The two latter are almost identical
except for a mutation in the gene NNT. There were two groups of mice for each
strain. Group one received a standard diet, whereas group two received a special
safflower oil diet. The sample period of this study was three weeks. After every
week some samples of each group were chosen to determine the metabolite concen-
trations. The mice had to be sacrificed for this determination process. The two
groups of the C3H strain were examined two additional weeks. The safflower oil
group also received the standard diet in this period, giving us the possibility to
analyze the changes of the metabolome after dropping the safflower oil diet.

The determination of the metabolite concentrations was performed with the
Biocrates AbsoluteIDQ technology via electrospray ionization tandem mass spec-
trometry (ESI-MS/MS). The dataset contains 167 samples of the 6 groups with
151 metabolite concentrations. Informations about the sample, e.g. the week and
the diet, were recorded thus enabling the evaluation of the influence of the diet on
the mouse metabolome (see table 2.2).



2.4. EVALUATION METHODS 17

2.4 Evaluation Methods

2.4.1 Genetic Association

Illig et al. [12] showed in a genome wide association study that there is an associ-
ation between metabolite frequencies and genetic variations (SNPs). The method
of genetic association is based on linear regression and therefore underlies the as-
sumption of an additive genetic model.

In this thesis, we will use their approach of establishing associations to evaluate
the results of the different fatty acid pools (see section 2.1.7). For this purpose, we
used the computed FA frequencies. As shown by Illig et al., the use of metabolite
concentration ratios can lead to stronger associations, e.g. lower p-values. We also
apply the ratio calculation when we take a closer look at a single fatty acid pool.
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Chapter 3

Results and Discussion

This chapter deals with the results and discussion of the imputing method. At first,
it was necessary to establish some general results and to evaluate the correctness
and robustness of the imputing method with toy data. Afterwards an analysis of
two real datasets was performed.

3.1 General Results of the Imputing Method

In this section, we discuss general results concerning the imputing method. First,
we show that there are local minima in the search space and how these local minima
affect the imputing method.

3.1.1 Local Minima in the Search Space

The search space is composed of the FA frequencies and therefore it has n dimen-
sions with n being the number of FAs. The imputing method attempts to find the
global minimum of this search space with a heuristic approach (simulated anneal-
ing). Local minima affect this process, since the imputing method could get stuck
in a local minima. Thus, we had to evaluate whether there are local minima in the
search space, which then need to be considered in the application of the imputing
method.

For this purpose, the imputing method was performed for a few randomly
chosen samples of the KORA dataset (see section 2.3.1) with 100 runs of the
imputing method per sample. Afterwards we performed a principle component
analysis of the computed FA frequencies to visualize the result. Each result was
examined individually. An exemplary result of a principle component analysis for
one sample is shown in figure 3.1. The enrichment of solutions at several locations
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Figure 3.1: First two principle components (PC1 and PC2) for a random sample of the
KORA dataset.

indicate the existence of local minima. Thus, we have to consider local minima in
the application of the imputing method.

3.1.2 Minimum Number of Runs

With the existence of local minima in the search space (see section 3.1.1) and the
heuristic character of the imputing method, we conclude that not every result of
the imputing method is a viable one. Therefore we have to determine a minimum
number of repetitions of the imputing method for each sample, so that at least
one result is viable with a high probability. We will refer to the repetitions of
the imputing method for a sample as runs in this thesis. In this section, we will
discuss how we determined this minimum number of runs.

We chose 50 samples randomly out of the KORA dataset and performed the
imputing method 1000 times for each sample. The method described in section
2.1.8 covers the determination for a single sample, but we dealt with 50 samples
to get a good random sample of the KORA dataset. The best resulting costs of
the samples can vary among themselves up to 120% and thus we can not merge
all solutions into one set, because it would bias the calculation. Therefore we
determine the minimum number for each sample and the mean of all results will
become the overall minimum number, thus treating it like an average case analysis.

The parameters € (error tolerance) and ¢ (non-viable probability) have a con-
siderable influence on the outcome besides the set of solutions itself (see section
2.1.8). We examined systematically a range of values for both parameters. This
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gives us the ability to see how changes at these parameters influence the outcome
in detail.

The size of the set of costs is another aspect which needs to discussed. The
described method requires a set with a sufficient number of costs or it could lead
to the following problems. First, it could be the case that s, is not a viable result.
Second, # will be estimated more precisely. Therefore we performed the imputing
method 1000 times. Additionally, we will also discuss the result with a number
of 100 costs per sample. Thus we can evaluate, how significant this method with
a lower number of costs is. This will provide us helpful information for further
studies with other datasets.

As expected a lower error tolerance and a lower non-viable probability both
lead to an increase of the minimum number (see figure 3.2A). A lowering of the
non-viable probability leads to a linear growth of the minimum number, whereas a
lowering of the error tolerance results in an exponential increase. The non-viable
probability is the logarithm to the base 10, hence the growth is also exponential.
There is a broad area with a minimum number of runs between 5 and 150. The
comparison with the result which only contains 100 costs per set reveals that broad
area is almost the same like in the result with 1000 costs per set (see figure 3.2B).
The difference is that the growth along both axis is lower. We conclude that an
analysis with a lower number of costs per set will be applicable, if the targeted
error tolerance value is > (.02, hence the exponential growth a long the error
tolerance-axis has more influence on the minimum number for low error tolerance
values.

Based on this result, we decided that the default number of runs per sample
will be 100 for the most of the analyses. This number covers more than 50% of
the search space for the error tolerance and non-viable probability (see figure 3.3).
For instance, it fulfill the requirements of a non-viable probability of 10~° and a
error tolerance of 0.02. This number still provides a good overall runtime for the
imputing method (see section 2.1.9).

3.1.3 Cooling Schedule of the Simulated Annealing

The term cooling schedule describes how the virtual temperature of the simulated
annealing decreases (see in section 2.1.6 the equation 2.2) and is denoted with a
value for ¢ between 0 and 1. The cooling schedule influences the finding process
of the global minimum, hence the faster the cooling schedule the faster the virtual
temperature decreases. This could lead to the effect that the simulated annealing
gets stuck in a local minimum (see section 3.1.1) and thus resulting in higher costs.
On the other hand, a slow cooling schedule value could result in an unacceptable
runtime of the imputing method. Our target is to find a value, which ensures to get
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Figure 3.2: Visualization of the minimum number of runs analysis. The error tolerance
(e) and non-viable probability (J) are along the x- and y-axis. The resulting minimum
number of runs according to the value of these parameters is on the z-axis. (A) This
analysis was performed on 50 samples which were randomly chosen out of the KORA
dataset with 1000 runs per sample. A lowering of the non-viable probability leads to a
linear growth of the minimum number, whereas a lowering of the error tolerance results
in an exponential increase. The non-viable probability is the logarithm to the base 10,
hence the growth is also exponential. (B) This analysis was also performed with 50
samples. In contrast to the first analysis, the number of runs per sample is 100. This
results in lower exponential growth of the minimum number of runs along the e-axis.
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Figure 3.3: Visualization of the minimum number of runs analysis with 50 randomly
chosen samples of the KORA dataset and 1000 runs per sample. A red coloring means
that these two values of the two parameters ¢ and ¢ results in a minimum number of
runs, which is < 100. Otherwise the surface is colored blue.
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Figure 3.4: Comparison of different cooling schedules. The dataset consists of 100 ran-
domly chosen samples of the KORA study and 100 runs per sample for this analysis.
Three different cooling schedules (fast, medium and slow) are along the x-axis. The
cooling schedule value ¢ is displayed in the brackets. (A) The costs of the different
cooling schedules for the 100 samples are on the y-axis. (B) The number of updates of
the virtual temperature is on the y-axis. The total update number for each run of all
samples (100 runs x 100 samples = 10000 update numbers) is displayed.

a viable result with an appropriate runtime of the imputing method. We examined
three different cooling schedules (fast, medium and slow) and their effects on the
costs. The dataset were 100 randomly chosen samples of the KORA study and the
imputing method was performed 100 times for each sample.

The resulting costs of the fast cooling schedule were much higher (approxi-
mately 1.75 times) than the costs of the other two (see figure 3.4A). The bad per-
formance is likely to be explained by the fact, that the simulated annealing gets
stuck in a local minima too early with a faster decreasing temperature. Therefore
we can rule out the fast cooling schedule because of the unacceptable performance.
The costs of the medium and the slow cooling schedule were almost identical. The
number of updates with the slow cooling schedule is approximately 4 times higher
than the number of updates with the medium cooling schedule (see figure 3.4B),
which also leads to an increase of the runtime of the imputing method with the
same factor. Because there is no increase in the performance with a slow cooling
schedule, we use the medium cooling schedule in further analyses.

3.2 Toy Data

We used toy data to evaluate the correctness and robustness of the imputing
method. The identical toy data was used for all purposes in the following analyses.
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It was generated as a matrix with uniformly distributed numbers between 0 and 1
and consists out of 1000 samples. The number of FAs depends on the used fatty
acid pool (see section 2.1.7), which contains 21 FAs in this case. We used the fatty
acid pool which was the first established one (ORI), because the analysis of toy
data was performed before the analysis of the fatty acid pools. The FAP do not
influence the results of toy data like the results of real datasets. Therefore the use
of a less sophisticated fatty acid pool would not bias the following analysis.

3.2.1 Effects of Missing Information

The generation function generates the PC frequencies for all possible FA composi-
tion with the given fatty acid pool (see section 2.1.4). Real datasets may contain
a limited number of PC frequencies, e.g. 36 PCs in KORA and the mouse dataset
(see section 2.3.1 and section 2.3.2). Hence the resulting frequencies of the genera-
tion function contain PC which were not measured in the real datasets. Therefore,
we need to reduce the generated PC frequencies to the frequencies that were mea-
sured to apply the imputing method for these datasets. This reduction results in
a loss of information for the imputing method and could therefore lead to a worse
solution. In this section, we examined how the reduction effects the results on
toy data. This helped us to evaluate whether the imputing method is still able to
provide viable solutions after the reduction, which is necessary in the work with
real datasets.

The toy dataset contained 1000 samples and the imputing method was per-
formed 100 times for each sample. This dataset was examined twice. In the first
run, all PC frequencies which were generated by the generation function were used
in the imputing process (‘complete information’). In the second run, the set of
PCs were reduced from 93 to the 36 PCs which are measured in the two studies
(‘missing information’). Therefore only about one-third of the information was
available for the imputing method. We had to calculate the mean costs per PC
to compare the results, because the cost function adds the cost of each PC (see
section 2.1.5) and the two results had a different number of PCs. Otherwise it
would bias the comparison.

First of all, the results for 'missing information’ show that the imputing method
is applicable, since the mean costs per PC are close to 0 (see figure 3.5). That is, the
computed FA frequencies can generate PC frequencies which are almost identical
with the measured data. The results of 'missing information’ demonstrate that
reduction of the PC frequencies lead to an increase of the costs as expected. The
difference between the results is significant for the median as shown with the notch
representation. Considering the low costs, we conclude that the reduction only has
a small influence on the outcome.
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Figure 3.5: Comparison of two results of a toy dataset. The y-axis are the mean costs
per phosphatidylcholine. ’complete information’ describes that all PCs were used by
the imputing method, which were generated by the generation function. Whereas a
reduction of this set of PCs was performed before the imputing process for 'missing
information’. Outliers were removed for a more accurate resolution of the results.

3.2.2 Noise Analysis

We will analyze the influence of noise on the results of the imputing method in the
following sections. We examined two different versions of noise superposition.

Coefficient of Variation

We performed a third analysis on the same toy data set in addition to the two runs
in the section 3.2.1. Besides the reduction of the set of PCs, this dataset was ap-
plied with a noise superposition. The noise strength for each PC was based on the
determined CVs (see section 2.2.1). The imputing method was also performed 100
times per sample. The noise superposition procedure was performed individually
before each repetition of the imputing method.

The results of this analysis shows that the noise superposition leads to an
considerable increase of the costs (see figure 3.6). In comparison to the difference
between 'complete information’” and 'missing information’, this increase shows that
noise has much more influence on the costs than the reduction of the set of PCs.
The conclusion of this analysis is that noise is a factor in the work with real datasets
that is not negligible.

It was not possible to apply the noise superposition for the dataset with all
possible PCs, because the CVs could only be determined for the PCs that were
measured. Therefore we did not have the combination of all PCs generated by
the generation function and a noise superposition according to the CVs. It would
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Figure 3.6: Influence of noise on the results of the imputing method. The toy dataset
consists of 1000 samples and the imputing method was performed 100 times per sample.
The noise strength is given by determined CVs. (A) The mean costs per phosphatidyl-
choline are along the y-axis. (B) This is the same plot as A, but the axis of the mean
costs per phosphatidylcholine is log-scaled

be interesting to see whether the noise superposition has a significantly stronger
influence on the results with the reduction of the set of PCs than on the result
with all possible PCs.

Constant Noise Strength

In this section, we want to examine how the noise strength correlates with an
increase of the costs in detail. The noise strength is the same for all PCs in contrast
to the noise strength which was based on determined CVs. The examined toy
dataset consisted of 70 samples, which were identical before the noise was applied.
The noise strength underlie a linear growth for each sample, starting with 0 and
increasing 0.005 for each sample. Hence the applied noise superposition value was
0.0345 for the last sample. In contrast to other analyses, we did not record the best
score for a sample. Instead, we took the average score over all runs of the imputing
method for each sample. This was necessary, because the noise underlies a normal
distribution and this could lead to samples that were affected by significant less
noise than the others. Therefore the consideration of the best result would have
biased the overall result of this analysis. Hence, we increased the number of runs
from 100 to 1000 to get a better sample size for this average case analysis.

It was expected that the increase of the costs would be continuous. Thus the
result is not quite as expected, because there are fluctuations in the increase of
the costs (see figure 3.7). Overall the growth of higher costs can be observed,
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Figure 3.7: Representation of the costs of the imputing method with toy data and noise

superposition. The samples were identical before the noise superposition and 1000 runs

per sample were performed. The noise strength is equal for each phosphatidylcholine,

but was increased for each sample.

but it is unsure how the fluctuations can be explained. It is noticeable that the
frequency and also the amplitude of the fluctuations increases with a higher noise
strength. Hence we conclude that a higher noise strength increases the variance of
the imputing method. It would be interesting to see if a higher number of runs of
the imputing method for each sample would lead to a continuous linear growth.

3.2.3 Effects of Correlated Data

The correlated data was generated as explained in section 2.2.2 with m = 100 and
n = 3. Hence the toy data was limited to 100 samples and 3 FAs. Two of the three
fatty acids have a correlation coefficient (CC) of 0.5. The remaining fatty acid is
uncorrelated (CC = 0). The imputing method was performed with 100 runs per
sample. The resulting costs of the correlated data were almost identical (see figure
3.8) to the costs of the uncorrelated data. Overall the costs were slightly lower
for the correlated data, but the median is not significant different as shown with
the notch representation. Therefore we can conclude that correlated data alone
do not bias the results of the imputing method. It would be interesting to see if
a combination of correlated data and noise superposition would lead to a different
conclusion, because this case would be the most similar to the examination of
biological datasets.
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Figure 3.8: Representation of the effects of correlated data by a comparison of the costs.
The imputing method was performed 100 times for each of the 100 samples.

3.3 KORA Dataset

This section deals with the examination of the KORA dataset. After the evaluation
of the fatty acid pools, we analyzed the result of a single FAP in more detail.

3.3.1 Evaluation of the Fatty Acid Pools

We established fatty acid pools (FAP) based on different resources (see section
2.1.7). In this section, we will evaluate the resulting FAPs. The evaluation of
a FAP can not only be based on the resulting costs of the imputing method.
For instance, a FAP which contains almost every fatty acid, despite whether the
FAs are meaningful with respect to the biological context, will get a good result,
because it has too much degrees of freedom in the fitting process. This effect is
known as overfitting and will be shown with a concrete FAP. Therefore we have
to perform a external validation, which is independent of the fitting process.

This is external validation is provided by the available genotyping data of the
KORA dataset (see section 2.3.1). We establish a genetic association with the
genotype of the 326 SNPs and the corresponding FA frequencies of the imputing
method to evaluate the FAP. A genetic association is assessed with a p-value. We
count the number of genetic associations and their p-values which are significant
after Bonferroni correction. A good FAP will result in low costs of the imputing
method and the corresponding FA frequencies will also show a high number of
genetic associations. This can also be considered as a trade off between these two
evaluation methods.
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Costs of the Different Fatty Acid Pools

The imputing method was performed for each FAP with the whole KORA dataset
(931 samples, see section 2.3.1). The number of runs per sample was 100 as
specified in 3.1.2.

We exclude the result of the FAP OVER in this discussion of the results for
now. Its results will be discussed in detail later. Among the remaining results, the
costs differ in the median from 8 to 16 (see figure 3.9). The distribution of the
costs around the median are almost identical for all FAPs. This could be due to
the fact that a single sample is stable with respect to its cost. This is, a sample
with a low score in relation to the other samples of the dataset with the FAP A
will be also assigned a low score with the FAP B. This hypothesis would need
further analysis to be confirmed. Only EXP and EXP260 have an enrichment of
outliers above the median. Five out of these six medians of FAPs share an even
closer range of costs (from 8 to 11), but still every median is significant different to
the others, besides LIT and LITPATH. The one FAP is PATH, which falls out of
this group. Its median is about 45% worse than the worst of the other five, which
is a noticeable difference. The lowest costs are achieved by EXP and EXP260.

Genetic Associations of the Different Fatty Acid Pools

The resulting FA frequencies of the imputing method for each FAP were used to
establish genetic associations with the available genotyping data. We used linear
regression (see section 2.4.1) to calculate the association and the corresponding
P-value. For the evaluation of the different fatty acid pools, we only used the
FA frequencies itself and not additionally the ratios of the FA frequencies. Three
different significance levels were used to evaluate, whether a genetic association is
significant after Bonferroni correction. The number of tests were number of FAs x
number of SNPs for each FAP.

The FAP ORI performs quantitative and qualitative the best in this evalua-
tion. It has the highest number of significant genetic associations and the most
significant genetic associations were also achieved with this FAP (see figure 3.10
and table 3.2). LIT, LITPATH, EXP and EXP260 perform almost equal consid-
ering the number of significant genetic associations. A closer look at their lowest
p-value shows that the two latter have more significant associations. PATH stands
between ORI and the mentioned group of 4 FAPs with its performance. OVER
does not establish a significant association at all.
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Figure 3.9: Comparison of the costs of the different fatty acid pools (FAP). The imputing
method was performed with each FAP for the whole KORA dataset with 100 runs per
sample.

fatty acid pool | @ =0.05 | @ =0.01 | @ = 0.001 | mean of costs + std

ORI 54 46 41 11.03 £ 0.89

LIT 24 19 16 10.08 £ 0.85
PATH 29 28 22 15.77 £ 1.03
LITPATH 20 16 11 9.91 £ 0.85
EXP 19 16 13 8.57 £ 0.95
EXP260 18 16 13 7.72 £0.93
OVER 0 0 0 0.86 £+ 0.31

Table 3.1: Numbers of significant genetic associations for the different fatty acid pools
(FAP) after Bonferroni correction and the mean costs for all samples £+ the standard
deviation (std). a denotes the applied significance level.
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Figure 3.10: Distribution of the genetic associations and their corresponding p-values
for the different fatty acid pools. The x-axis denotes the logarithm of the p-values to
the base 10. The number of hits are along the y-axis, which is log-scaled. The red line
marks a significance level of a« = 0.05 after Bonferroni correction. All tests below this
threshold are considered to be significant.
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Choice of a Fatty Acid Pool

We will discuss in this section, how we evaluated the results of the costs and genetic
associations in detail to specify a FAP, which fulfills our requirements. As already
mentioned the weighting of these two methods is kind of a trade off.

First, we will discuss an extreme example to demonstrate this trade off. The
FAP OVER contains 119 FAs, the most of them are not meaningful with respect to
the biological context. The resulting costs of OVER are close to 0. Hence this could
lead us to the conclusion that we can explain the measured PC frequencies almost
perfect with this FAP and the corresponding FA frequencies. The results of the
genetic associations show that there was no significant association. In contrast,
the results of the other FAPs demonstrate that significant associations can be
established. Thus we can conclude that the resulting set of FA frequencies of OVER
are not meaningful with respect to the biological context and the application of
this FAP would be useless for further analyses. This results signal that OVER
lead to an overfitting in the imputing method. This FAP was designed with the
purpose to demonstrate this effect.

The number and the significance of the associations established by PATH were
sufficient. On the other hand its costs of the imputing method were extraordinary
high in comparison to the other FAPs. A part of these FAPs achieved similar
results considering the associations. Therefore we also can rule out PATH for
further analyses. This FAP was based on the pathway database of KEGG. The
results suggests that this FAP is missing some meaningful FAs, which can be
conducted to two reasons. One, the database is missing some reactions. Two, the
human takes in FAs through the food. Both of these aspects are not covered in

this FAP.

LITPATH, EXP and EXP260 achieved quite similar results in both evaluation
methods. EXP and EXP260 (expert FAPs) performed better in the costs aspect
than LITPATH and their p-values also show a higher significance. Therefore we
would choose one of the expert FAPs over LITPATH. A further comparison be-
tween these two FAPs is not necessary, because ORI achieved an outstanding result
considering the genetic associations. The number of significant associations is up
to 2 - 3 times higher and also the significance of these associations is better. The
expert FAPs performed approximately 20-35% better in the costs aspect. At this
point the weighting of the evaluation methods came into play. We decided that the
better result of the genetic associations overweigh the costs and therefore we used
ORI for all following analyses with the KORA and mouse dataset. It cannot be
ruled out that on of the expert FAPs would have been a better choice. We assume
that either one out of these three FAPs would have been fulfill our requirements.
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Figure 3.11: Overview of the computed fatty acid frequencies of the imputing method
for the KORA dataset. The ORI fatty acid pool and 100 runs per sample were used for
this computation.

3.3.2 Analysis of the Computed Fatty Acid Frequencies

The imputing method was performed for the KORA dataset with 100 runs per
sample (see section 3.1.2) and ORI as the FAP (see section 2.1.7). First of all, we
discuss the resulting FA frequencies. The most abundant FAs are C18:1, C18:2
and C16:0 (see figure 3.11). These three FAs cover approximately 75% of all FAs
frequencies. This observation corresponds with the coverage of these FA frequen-
cies (approximately 65%) that were determined experimentally in a study [9]. But
the descending order according to the fatty acids abundance of this study differen-
tiate from our result. C16:0 is the most abundant one, whereas it is the 3rd most
common among the computed FA frequencies. We have to consider that Hodson
et al. used phospholipids and not exclusively PCs for the determination, hence a
difference had to be expected.

Another way to look at the result of the imputing method is the relative error
for the PC frequencies (see figure 3.12). These errors display how well the PC
frequencies can be explained by the FA frequencies. To this, the PC frequencies
need to be calculated by the generation function and the computed FA frequencies.
The relative error is the difference between the measured and the computed PC
normalized with the measured frequency. A relative error above 0 denotes an
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underestimation and vice versa a relative error below an overestimation of the PC
frequency.

Some PCs can be explained very well (C40:6, C42:5, C42:5). Others have a
tendency to over- or underestimation. There also PCs which can not be explained
at all, thus resulting in an relative error of close to 100%, e.g. PC42:0 or PC26:0.
It is interesting to examine, why the FA composition of these PCs could not be
generated properly. It is remarkable that most of these PCs do not have a double
bound. Hence they need two FAs, which both have also zero double bounds. This
results in a small subset of the originally FAP. With the basic understanding, how
the evaluation process of the imputing method is proceeded, we can assume that
an alteration of the needed FA frequencies lead to an increase of the costs of the
remaining PCs. This increase had to be greater than the cost, which contains
relative PC errors close to 100%. Otherwise the imputing method had continue
with the altered FA frequencies. In order to come that true, the small subset of
FAs which have zero double bounds has to be incorporated in other FAs in an
overwhelming proportion. Based on this conclusion, we also assume that the PCs
with low relative errors have a FA composition, which at least one FA being rarer
in other PCs.

Investigation of Genetic Associations

We already used genetic associations to perform the evaluation of the different
FAPs (see section 3.3.1). For this purpose, we exclusively used the computed FA
frequencies. Illig et al. showed in their work that the use of ratios of concentrations
can lead to an even stronger signal of the associations, e.g. lower p-values. We
also applied the approach of the ratio calculation, whereas we had to work with
frequencies instead of concentrations. First, we take a look at the associations that
were established solely by the computed FA frequencies. We refer to this as the
non-ratio associations. The used FA frequencies were the result of the imputing
method with the FAP ORI.

The strongest non-ratio association is established between the SNP rs174547
and the FA (C20:3 (see table 3.2). This SNPs occurs in the intronic region of
the gene FADSI. The enzyme FADSI catalyzes the desaturation of C20:3 to
C20:4 (see KEGG pathway id 'hsa01040’). Hence this strong association support
the meaningfulness of the results of the imputing method. There are also two
other FAs (C18:3 and C12:0) that have a stronger association with this SNP than
any of the 151 metabolites of the KORA study. C18:3 is the substrate of the
enzyme FADS2. Hence, the association between C18:3 and FADS1 could be due
to the homology of FADS2 to FADS1. An association between a SNP of FADS2
(rs174550) and C18:3 is not quite that strong than the mentioned associations
above, but it is still stronger than any association with one of the 151 metabolites
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Figure 3.12: Overview of the relative error for the PCs. The PC frequencies were calcu-
lated by the generation function and the computed FA frequencies of the KORA dataset.
The relative error is the difference between the measured and the computed PC normal-
ized with the measured frequency. A relative error above 0 denotes an underestimation
and vice versa a relative error below an overestimation of the PC frequency.
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SNP information computed FA KORA metabolite
. Association o | Association 9
Identifier Locus with p-value R with p-value R
C20:3 6.1 x 10739 | 16.8% JvsoPC
rs174547 | FADS1 | C18:3 1.9 x 10735 | 15.3% y020-4 4.2 x 10727 | 11.8%
C12:0 49 % 10727 | 11.8% | * 77
C20:3 7.4 x 10737 | 15.9%
—35 PC aa _925
rs174548 | FADS1 | C18:3 7.4 % 10 15.1% | (1354 1.1 x 10 11.1%
C12:0 2.3 x 10726 | 11.4% '
C18:3 2.1 x10719 | 4.3% | PC aa 9
174570 | FADS2 [ .5 42x107° | 3.7% | C38:4 1> 10 A%
_9 PC aa _6
rs11849760 - C24:0 1.1 x 10 3.9% | (1401 9 x 10 2.1%
rs3100919 - | 240 1.9 x 108 | 3.4% 252-1 1 59%x10°6 | 2.2%

Table 3.2: Top associations between a SNP (SNP information) and FA frequency (com-
puted FA), which have a lower p-value than an association between the SNP and one
of the 151 measured metabolites in the KORA study (KORA metabolite). R? is the
proportion of the variance that can be explained by the genotype in the linear model.
'PC aa’ denotes a diacyl bonding between the FAs and the glycerol backbone of the
phosphatidylcholine. The term ’lysoPC’ describes PCs with only one FA.

of the KORA study. The association of C12:0 could be explained with a homology
of stearoyl-CoA desaturase (SCD) to FADS1. SCD catalyzes the desaturation of
C12:0 to C12:1. But it is more likely that this association is wrong.

Another SNP of FADSI (rs174548) establish also strong associations with these
three FAs (C20:3, C18:3 and C12:0). This supports the meaningfulness of our
results further. In addition, there are two SNPs (rs11849760, rs3100919), which
are not annotated with a gene locus, that show considerable associations with
the FA (C24:0. It is unsure how we have to evaluate these associations. These
associations might be used as an indicator for annotation in the future.

Only five ratio based associations could be established, which were stronger
than the strongest non-ratio association (see table 3.3). Additionally, the results
are quite controversial with respect to the FAs that were used to calculate the
ratios. It is rarely the case that the two FAs are nearby in the biosynthesis path-
way of unsaturated FAs as it would had been expected. One exception is the
association between a SNP of FADS1 (rs174547) with C18:1 / C18:3. Overall the
ratio associations are dominated by SNPs of FADSI1. In fact, the 50 strongest
associations were established with either one of these SNPs. Therefore, we have
to conclude that the ratio approach was not quite that useful as it has been for
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SNP identifier | Locus | Association with p-value p-gain R?
C12:0 / C20:4 | 9.7 x 107°1 | 5.1 x 10% | 21.5%
rs174547 FADS1 C20:3 / C18:1 82x107* | 7.5 x 10" | 17.6%
C18:1 / C18:3 | 3.9x 1071 | 4.9 x 10* | 17.3%
C12:0 / C20:4 | 1.4 x 1079 [ 1.6 x 10% | 21.0%
174548 FADSL 10 ) co2:4 [ 3.7x 10790 | 9.7 x 102 | 17.3%

Table 3.3: Listing of the associations between a SNP and the ratio of two FA frequencies,
which show a stronger association than non-ratio associations. The p-gain is calculated
by the lower p-value of the non-ratio association of the both FAs with the SNP dividedA
by the p-value of the ratio association. R? is the proportion of the variance that can be
explained by the genotype in the linear model.

Illig et al. We have two possible explanations for this fact. One, the computed FA
frequencies lack in correctness which is revealed by the ratio calculation. Two, it
might be the case that the ratio approach is only applicable for concentrations and
not for frequencies.

Correlations between Fatty Acids

Fatty acids and their frequencies underlie a correlation due to their biosynthesis,
e.g. desaturation and elongation of FAs (see section 1.1.1). Therefore we evaluated
whether the computed frequencies of the imputing method show such a correla-
tion. This would support the meaningfulness of the computed FA frequencies even
further.

The Pearson product-moment correlation coefficient (CC) was calculated for
the computed FA frequencies (see figure 3.13A). The two FAs C22:0 and C24:0
show the highest CC. This correlation could be explained by an elongation process.
The second best correlation is between C20:5 and C24:6. There is a huge distance
between these two FAs in the biosynthesis pathway. Hence this correlation is less
likely to be justified by elongation and desaturation processes.

Overall 11% of the combinations show a CC above 0.6 and a significance level
greater than 0.05 after Bonferroni correction (see figure 3.13B). For a large propor-
tion, these combinations can not be directly referred to the biosynthesis processes
as it would had been expected. Hence we conclude based on this result that there
is a need for improvement of the computed FA frequencies. Another factor is the
usage of relative frequencies for the calculation. I could be the case, that rela-
tive frequencies bias this calculation, because there are already dependencies in
between these frequencies. For instance, an increase of the FA A automatically
leads to a decrease of FA B.
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Figure 3.13: Correlation between the computed FA frequencies. (A) The cells are colored
by the Pearson product-moment correlation coefficient (CC) of the two corresponding
FAs. (B) Boolean representation of the correlation. A cell is colored red, when it
fulfill the following conditions: (1) CC > 0.6 (2) a < 0.05 after Bonferroni correction.
Otherwise it is colored blue.
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fatty acid | correlation coefficient 95% CI
C12:0 0.1404 0.0769 — 0.2028
C14:0 0.1802 0.1174 — 0.2417
C16:0 0.0463 -0.0180 — 0.1102
C16:1 0.1866 0.1238 — 0.2479
C18:0 0.0421 -0.0222 — 0.1061
C18:1 -0.0083 -0.0725 — 0.0560
C18:2 0.0108 -0.0535 — 0.0750
C18:3 0.0816 0.0175 — 0.1451
C18:4 0.2758 0.2154 — 0.3342
C20:4 0.0364 -0.0279 - 0.1004
C20:5 0.4645 0.4126 — 0.5134
C22:4 0.1667 0.1036 — 0.2285

Table 3.4: Listing of the Pearson product-moment correlation coefficient between the
measured and the computed fatty acid frequencies. CI denotes the confidence interval.

Correlation with the Measured Free Fatty Acid Concentrations

The measured frequencies of FAs (see section 2.3.1) were used to examine the
correlation to the FA frequencies which were computed by the imputing method.
The set of measured frequencies contains 27 FAs. Only 12 of these FAs were also
existent in the used FAP ORI and therefore only 12 correlations could be examined.
In general, these two sets of frequencies show almost no correlation (see table 3.4).
The average Pearson product-moment correlation coefficient (CC) was 0.1353.

The frequencies of the FA C20:5 obtained the highest CC of 0.4645 (see figure
3.13A). This could be due to the enrichment of frequencies close to 0. The lowest
CC of -0.083 is achieved by the FA C18:1 (see figure 3.14B). This is very close to
0 and thus there is almost no linear relationship between these sets of frequencies.

Our results of the genetic associations show that the computed frequencies are
meaningful with respect to the biological context. In combination with the results
of this examination, we conclude that the pool of free FA (measured FA frequen-
cies) does not correlate with the pool of FAs which are used for the biosynthesis
of PCs (computed FA frequencies).

3.4 Mouse Nutritional Challenging Dataset
Besides the KORA dataset, we examined a second dataset which consists out of

real data. This dataset was based on the study of a nutritional challenging with
mice (see section 2.3.2). The imputing method was performed for 167 samples
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C18:1 frequencies obtain a CC of -0.083.
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number of week
11213145
Control | 18 | 27 | 27 | 2 | 2

Distel | 20 | 25 |31 | - | -
DistelR | - | - | - |96
Table 3.5: Number of mice for every week and diet. ’Control’ denotes the standard diet
and 'Distel’” the safflower oil diet. ’DistelR’ describes the group of mice which received a

standard diet after three weeks of the safflower oil diet. Thus there are only samples of
the fourth and fifth week available.

diet

with 100 runs per sample. The used FAP was ORI (see section 2.1.7 which was
also used in the analysis of the KORA dataset. It might have been necessary to
evaluate the FAPs with the mouse data a second time or to establish a new FAP.
This was not possible due to the absence of genotyping data of the mice. An
evaluation of the FAPs only based on the resulting costs can be quite difficult and
leads to false conclusions.

The focus of this section is to evaluate whether we can observe differences in
the resulting FA frequencies between the mice which received different diets. This
would support the fact that the results of the imputing method are meaningful
in a biological context. For this purpose, we divided the mice into three groups
(’Control’, 'Distel” and 'DistelR’) according to their received diet. The additional
information about the mouse strains is of no relevance of our examination and
therefore not considered in the grouping. The number of mice is shown in table
3.5. It is important to emphasize the small number of samples in the fourth and
fiftth week that received a standard diet. We have to consider this small sample
size in the evaluation of the results.

The computed frequencies of the FA C18:4 show the most noticeable difference
between the mice which received the standard and safflower oil diet (see figure
3.15). The safflower oil diet apparently leads to an increase of the frequency of
C18:4. After dropping the safflower oil diet (week four and five) the frequencies
went down to the level of the mice which received a standard diet. Before we will
discuss an explanation of this effect, we point out the result of the FA C18:2. The
frequencies of C18:4 of "Control’ cover a broad range from 0.1 to 0.5 besides week
four and five, but this could be due to the limited number of samples. ’Distel’
shows almost exclusively values above 0.5 (see figure 3.16) with week 1 being the
exception. This could be due to the fact that the diet only lasted for one week at
this point. Nevertheless an increase of the median is still noticeable.

The increase of C18:2 and C18:4 for the 'Distel’ group can be conducted to the
composition of safflower oil. It consists of 81.4% C18:2, 11.1% C18:1, 5.5% C16:0,
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Figure 3.16: Comparison of the C18:2 FA frequencies of the groups of mice which received
different diets. WX denotes the number of week, C represents the diet 'Control’, D
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Figure 3.17: Comparison of the C18:3 FA frequencies of the groups of mice which received
different diets. WX denotes the number of week, C represents the diet 'Control’, D
describes "Distel” and DR stands for ’DistelR’.

1.6% C18:0 and 0.4% C18:3 [17]. Therefore, the results of C18:2 are directly
associated with the high share in saflower oil. C18:4 do not occur in safflower oil,
but still our results suggest an increase of it. We assume that the higher abundance
of C18:2 lead to an increase of the desaturation process to C18:3 and afterwards to
(C18:4. This increase is not quite that noticeable for median frequencies of C18:3,
but the outliers support our thesis (see figure 3.17).

Overall we have to conclude that it is tough to evaluate the significance of
this results due to the limited number of samples. It could be the case that more
samples would lead to an even stronger signal of the safflower oil diet.



Chapter 4

Summary and Outlook

Phosphatidylcholines (PCs) consist of a glycerol backbone, a phosphate group with
an attached choline and two fatty acids (FAs). The mass spectrometry technol-
ogy used for the determination of metabolite concentrations in the KORA and
mouse nutritional challenging studies is not able to resolve the FA composition
of the PCs. In this thesis, we attempted to develop a method to calculate the
FA frequencies which are used for the biosynthesis of phosphatidylcholines. This
calculation is based on the measured PC concentrations and the computed FA
frequencies would help to understand the FA composition of measured PCs in de-
tail. For this purpose, we implemented an imputing method which relies on the
heuristic approach of simulated annealing.

After establishing some fundamental results, e.g. the existence of local minima
in the search space and how these local minima affect the imputing method in the
finding process of the global minima, we showed the correctness of our method
with the usage of toy data. Toy data was used as an evaluation dataset and the
influence of noise, correlated data and missing PCs frequencies was demonstrated,
because these three factors occur in the work with real datasets.

Before we were able to analyze the available datasets with real data (KORA
and mouse nutritional challenging), we had to do an evaluation of different fatty
acid pools (FAP). The FAP is the set of FA whose frequencies are computed by
the imputing method. The evaluation of the FAPs was not only based on the re-
sulting costs of the imputing method, because there is the possibility of overfitting.
Therefore we considered an external validation which was provided by genotyping
data. The genotyping data was used to establish genetic associations. The quality
and quantity of these associations were used as an indicator of the meaningfulness
of the resulting computed FA frequencies in respect to the biological context.

The results of the FAP ORI for the KORA and mouse nutritional challenging
datasets were analyzed in more detail. The meaningfulness of the computed FA
frequencies was supported by the results of the genetic associations, e.g. the as-

45
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sociation of C20:3 with a SNP of FADSI1. It was shown by the correlation of the
computed FA frequencies among each others and the genetic associations with ra-
tios of FA frequencies, that there is still a need for improvement in the computing
process of the FA frequencies. The comparison of the computed and measured FA
frequencies indicate that the free fatty acid pool does not correlate with the fatty
acid pool, which is used in the biosynthesis of PCs. The analysis of the mouse nu-
tritional challenging dataset revealed that the effects of the diet could be observed
in the computed FA frequencies. This is another indicator for the meaningfulness
of the computed FA frequencies.

The analysis of the results for this thesis revealed several aspects which could be
examined in the future. Some of these were already mentioned in the discussion of
the results. For instance, we only examined the influence of noise with a reduced
set of generated PCs. It would be interesting to see whether the combination of
noise superposition and the complete set of generated PCs results in significant
lower costs. We also separated the examination of noise and correlated data. Real
datasets contain both factors. Therefore it would simulate the work with a real
dataset the most, if we would have combined these factors and applied on the toy
data to evaluate the effects. A new consideration would be the extension of the
existing framework with a gradient descent function based on NMF [16], which
is currently under development in our workgroup. The gradient descent function
would be applied on the result after imputing and could lead to an improvement
of the resulting costs.

Besides these small aspects of existing results, there are further possibilities to
accumulate new results which could provide helpful insights. One, we performed
the whole analysis for the data of dicayl PCs in this thesis. The KORA dataset
also contains concentrations of acyl-alkyl PCs. The application of the imputing
method on this data would generate more results, which could be used to improve
the performance of the imputing method. Two, there is another dataset in prospect
that contains measured FA frequencies of PCs. This dataset could be used as an
evaluation of the computed FA frequencies. This could optimize the generation
function of the imputing method. Finally, further improvements, investigations
and expansions of the imputing method and their results could help to understand
intracellular processes of PC biosynthesis.
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