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Abstract

Obesity is a major health risk factor in the Western world and developing coun-
tries. It describes the excess of white adipose tissue, which consists primarily
of adipocytes. The differentiation of preadipocytes to mature adipocytes is called
adipogenesis. In this thesis, we investigated this differentiation process based on in-
vitro experiments. The differentiation to mature adipocytes was observed in three
independent experiments using the human Simpson-Golabi-Behmel Syndrome cell
strain. Over a timespan of 28 days, the intra- and extracellular concentrations
of 188 metabolites were measured by mass-spectrometry. This metablomics data
was analysed applying the following methods to obtain a better knowledge about
adipogenesis. To get a first overview of the dynamics in the metabolite dataset, a
k-means clustering was performed. These results indicated an increase of concen-
tration of several phosphatidylcholines and a decrease of concentration of amino
acids. Therefore, an enrichment analysis was performed to assess statistically sig-
nificant concentration changes during differentiation. At first, biochemical class
information was used for the metabolite set definition. This revealed a down regu-
lation of intracellular amino acid concentrations during adipogenesis. To include a
pathway feature in the metabolite set definition, we utilised a Gaussian graphical
model based on the population data of the Kooperative Gesundheitsforschung in
der Region Augsburg study. This allowed for the identification of several phos-
phatidylcholines. Their concentrations are highly altered during the experiment
and are most likely in connection with the formation of lipid droplets. In ad-
dition, data about intra- and extracellular metabolite concentrations enabled us
to investigate the exchange of metabolites between these two environments. The
exchanges of metabolites might be in connection with signaling by metabolic in-
termediates or helps to answer questions regarding metabolite concentrations in
blood. There are several time courses of metabolite concentrations, that could be
due to an exchange between the two environments. Additionally, the exchange of
metabolites might be also only during a short timespan. Therefore, we applied
several methods which are based on the correlation coefficient or the t-value of the
Student’s t-test. The results indicate that several methods are needed to cover
the variety of the biological scenarios which involve the exchange of metabolites.
Further research in form of tracer experiments is needed to confirm these results.
The results of this thesis can be used as a starting point for further investigations
to increase the knowlegdge about the adipogenesis and the role of adipocytes as
an endocrine cell. This knowledge is essential to reduce the impact of obesity and
the associated diseases as major health risk factor.
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Zusammenfassung

Adipositas ist ein schwerwiegendes Gesundheitsrisiko in der Westlichen Welt und
Entwicklungslindern. Es ist definiert als der Uberschuss an weiem Fettgewebe,
welches hauptsichlich aus Adipozyten besteht. Adipogenesis bezeichnet die Dif-
ferenzierung von Praadipozyten zu Adipozyten. In dieser Thesis wurde dieser
Prozess basierend auf in-vitro Experimenten untersucht. Die Differenzierung zu
Adipozyten wurde in drei unabhéngingen Experimenten beobachtet, welche mit
der menschlichen Simpson-Golabi-Behmel Syndrom Zelllinie durchgefiihrt wurde.
Die intra- und extrazelluldren Konzentrationen von 188 Metabolite wurden {iiber
eine Zeitspanne von 28 Tagen mittels Massenspektrometrie gemessen. Um ein
besseres Verstédndnis iiber den biologischen Prozess Adipogenesis zu gewinnen,
wurden diese Daten mit den folgenden Methoden analysiert. Ein k-means Clus-
tering wurde durchgefithrt, damit ein erster Uberblick {iber die Daten ermdoglicht
wurde. Die Ergebnisse des Clusterings deuteten auf einen Anstieg der Konzentra-
tionen von mehrere Phosphatidylcholinen, sowie eine Verringerung der Aminoséure
Konzentrationen. Daher wurde eine Enrichment Analyse angewendet, um statis-
tisch signifikante Anderungen der Konzentrationen festzustellen. Zunichst wur-
den Informationen {iber die biochemischen Klassen zur Definition von Metabolit-
Gruppen verwendet. Mit Hilfe dieser wurde eine signifikante Runterregulierung
der intrazelluldren Aminosédure Konzentrationen festgestellt. Damit die Definition
der Metbolit-Gruppen zusatzlich Pathway Informationen enthélt, wurde ein Gaus-
sches graphisches Modell basierend auf den Populationsdaten der KORA Studie
erstellt. Diese Metabolit-Gruppen erlaubten die Identifikation von Phosphatidyl-
cholinen, deren Konzentrationen stark verdndert waren, welche wahrscheinlich im
Zusammenhang mit der Entstehung von Lipid-Trépfchen stehen. Durch die Mes-
sung von intra- und extrazelluldre Konzentrationen war es moglich den Austausch
von Metaboliten zwischen diesen beiden Umgebungen zu untersuchen. Dieser
Austausch kénnte im Zusammenhang mit der Signalgebung von metabolischen
Zwischenprodukten sein oder Fragen beziigliche der Metabolit-Konzentrationen
im Blut beantworten. Es gibt mehrere Konzentrationsverlaufe, welche dem Aus-
tausch von Metaboliten zu Grunde liegen konnten. Zusétzlich kann der Austausch
nur wahrend einer kleinen Zeitspanne statt finden. Daher wurden mehrere Metho-
den zur Untersuchung des Austauschs angewendet. Die Resultate verdeutlichen,
dass mehrere Methoden notwendig sind, um die Vielfalt der biologischen Szenarien
abzudecken. Die Ergebnisse dieser Untersuchungen miissen jedoch mit weiteren ex-
perimentellen Methoden bestétigt werden. Die Ergebnisse dieser Thesis konnen als
Startpunkt fiir tiefergehende Untersuchungen dienen, damit das Wissen iiber Adi-
pogenesis und die Rolle von Adipozyten als endokrine Zelle erweitert wird. Dieses
Wissen is essentiell, um den Einfluss von Adipositas und die damit verbundenen
Krankheiten als schwerwiegendes Gesundheitsrisiko zu verringern.
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Chapter 1

Introduction

In this thesis, we investigate the differentiation of preadipocytes to adipocytes.
This process was observed in three independent in-vitro experiments over a time-
span of 28 days. The intra- and extracellular concentrations of 188 metabolites
were measured. These metabolomics data was analysed with several methods to
indentify metabolites or metabolite sets that show significant changes in concen-
tration during the experiment. Additionally, the exchange of metabolites between
the intra- and extracellular environment is examined. In this chapter, we explain
the biochemical background of the differentiation process and its meaning for the
organism. In the beginning of Chapter [2] we explain the experimental design and
the dataset. Afterwards, the applied methods are introduced. The results of these
methods are shown in Chapter [3| and their biological meaning is discussed. At
the end, we give a summary of this thesis and present an outlook in Chapter
Additional Figures and Tables, which are mainly of the results, are included in the
Appendix.

1.1 Adipogenesis

The differentiation of mesenchymal stem cells to preadipocytes and then the termi-
nal differentiation to adipocytes is called adipogenesis. Adipocytes are primarily
embedded in white adipose tissue (WAT). Obesity describes the excess of WAT.
Since it is associated with cardiovascular diseases and diabetes type 2, it is a major
health risk factor in the Western world and developing countries like China [39]
or India [14]. The WAT consists mainly of adipocytes, preadipocytes, fibroblasts,
nerves and diverse immune cells [7]. It regulates the energy homeostasis of the
organism, thus it is not only a passive energy depot. Rather, the WAT fulfills
the function of an endocrine organ, which secretes several factors that play a cen-
tral role in insulin sensitivity, lipid metabolism and satiety [10], immunological
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2 CHAPTER 1. INTRODUCTION

responses and cardiovascular diseases [16, 21]. The size of the WAT is largely
dependent on the number and size of the adipocytes. The number of adipocytes
can increase during childhood and puberty [33]. In adulthood, there is an anually
turnover of adipocytes of approximately 10%.

In this thesis, we investigate the differentiation step from preadipocyte to a
mature adipocyte. There are several factors which are well established to influence
the adipogensis. Both, the canonical and non-canonical WNT signaling inhibit
the adipogenesis of a committed preadipocyte [§]. However, the canonical WNT
signaling seems to be important for the survival of committed preadipocytes [2§].
TGFf is another signaling pathway that regulates adipogenesis. Depending on the
experimental design and the cell state, the TGFf signaling may inhibit or promote
adipogenesis [§]. The stiffness and tension of the extracellular matrix (ECM) is
another factor, which contributes to the regulation of adipogenesis [8]. Changes
of the ECM and cytoskeletal components induce an alteration in cell shape from
fibroplast-like to a spherical shape [11].

After a preadipocyte gets to a committed state, the major regulator of the
adipogenesis are the transcription factors CCAAT /enhancer binding protein-/3
(CEBPg), CEBP¢ and peroxisome proliferator-activated receptor-y (PPAR~) as
they induce a transcriptional cascade (see Figure[L.1)). Without PPARy or CEBP/3
and CEBPJ, the cell is not able to differentiate to a mature adipocyte. These ma-
jor regulators induces the expression and synthesis of proteins which are associated
with the adipocyte phenotype. These include, inter alia, fatty acid-binding pro-
tein 4 (FABP4), glucose transporter 4 (GLUT4), leptin, adiponectin, adipsin and
resistin [8, [11]. Some of these help to fulfill the role as an endocrine cell with key
parts in various physiological processes. Additionally, mRNA levels of enzymes
that are involved in tricylglycerol synthesis and degradation are increased [I1].
The cell accumulates lipids, which are stored in lipid droplets (LDs). These are
cellular organelles that consist of a phospholipid monolayer as the membrane and
have a hydrophobic core. Phosphatidylcholines are the most prevalent phospho-
lipid of the membrane with up to 60% [24]. The biogenesis of LDs is not yet fully
understood, but the current model invovles a budding of a nascent lipid droplet
nearby the endoplasmatic reticulum. The main task of the phospholipids is the
formation of a boundary to store triglycerols and other lipids, but they may also
be involved in differentially recruitment of LD proteins [24]. The mechanism be-
hind regulation of adipogenesis, biogenesis of LDs and the role of adipocytes as
endocrine cells are yet to be completely understood and leave room for further re-
search. A better understanding of these biological processes may help to increase
the knowledge about obesity and may reduce the impact of the associated health
risk factors in the Western world and developing countries.
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Figure 1.1: Scheme of the differentiation from a preadipocyte to a mature adipocyte.
Characteristics and molecular events, e.g. the expression of transcription factors, that
occur during the adipogenesis are denoted on the side. The Figure is adapted from [25].
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1.2 Simpson-Golabi-Behmel Syndrome Cell
Strain

The Simpson-Golabi-Behmel Syndrome (SGBS) cell strain can be used to investi-
gate the differentiation of human preadipocytes to adipocytes and were the used
cell strain in this thesis. The cell were prepared from an adipose tissue specimen
of a patient with SGBS [9]. SGBS is a genetic disorder which is inherited in a
X-linked recessive fashion. It is characterized by pre- and postnatal overgrowth,
coarse facies, congenital heart defects, and other congenital abnormalities [40].
The mutation which leads to the disease is not detected in this cell strain.

Preadipocytes isolated from regular adipose tissue donors are well established
for studies of adipogenesis. However, they have several drawbracks due to issues of
the availability and variability of different donors. In addition, they have a limited
life span. In contrast, the SGBS cell strain can proliferate up to 50 generations
and it retains the capacity to differentiate to adipocytes. The analysis of gene
expression of SGBS cells showed that they behave like adipocytes of regular adipose
tissue [30].

The SGBS cells are not transformed or immortalized. They can differentiate
under serum- and albumin-free culture conditions. The differentiation is induced
by exposure to a mixture of insulin, triiodothyronine, cortisol and a PPAR~y ago-
nist. Wihthin a few days, an accumulation of lipids ain the cell is visible as small
lipid droplets. Overall, using these cells one can reach up to >90% adipogenic
differentiationrate [9].

The SGBS cell strain has been used in several studies analysing adipose dif-
ferentiation, adipocyte glucose uptake or lipolysis. In general, cell lines or strains
can be used to study the effects of single factors or hormones on specific cell types
in vitro. However, these studies need to be verified in vivo, since the tissues are
part of a complex organism and communicate with other cells and tissues.

1.3 Metabolomics

The metabolome describes the abundance of metabolites in a cell, tissue or or-
ganism. Metabolites are the products and intermediates of metabolism. The
metabolome can change within seconds in contrast to the genome or proteome [5].
All cellular processes of the the transcriptome and proteome end in metabolites.
Therefore, the metabolome is considered to be an indicator of an organism’s phe-
notype endpoint. At the moment, around 40,000 metabolites are known of the
human organism (Human Metabolome Database [38]). Additional metabolites are



1.4. MOTIVATION 5

taken up through the environment, which increases the number of metabolites up
to 100,000 [5].

Metabolomics refers to the comprehensive study of these metabolites and their
reactions. There are several methods to determine the metabolites and their con-
centrations. The three major determination methods are chromatography, nuclear
magnetic resonance and mass-spectrometry. All of these methods include several
submethods with each of them has their assets and drawbacks. Therefore, most of
them are limited to a specific class of metabolites with specific biochemical proper-
ties. A composition of methods can be used to cover a wide range of metabolites.

Metabolomics is used for various applications in research. For instance, the
ratio of phenylalanine and tyrosine can be used as a biomarker of the disease
phenylketonuria (PKU) for newborn [6]. Another study examined the human re-
sponse to glucose challenging [32]. Illig et al. [I5] used metabolomics in a genome
wide association study to show that there is association between metabolite fre-
quencies and genetic variations. There is also one study that used metabolomics
to investigate the adipocyte differentiation of the 3T3-L1 murine cell line [27].
Metabolomics can be combined with other omics like transcriptomics or genomics
to gain further knowledge about biological processes.

1.4 Motivation

As described in Section [I.1] the biological process adipogenesis is not yet com-
pletely understood. In this thesis, we have the possibility to analyse metabolomics
data of a human cell strain that differentiates from preadipocytes to adipocytes.
We want to identify metabolites or pathways of which the concentration is highly
altered during the experiment. These metabolites or pathways are most likely to be
regulated during adipogenesis and their influence could be essential to comprehend
the differentiation process. In addition, the extracellular measurements enable us
to investigate the exchange of metabolites between the intra- and extracellular
environment during adipogenesis. These results could be set in a connection with
the metabolite concentrations in blood samples or help to understand the signal-
ing of metabolic intermediates. Overall, the results of this thesis might be able to
increase the understanding of adipogenesis or reveal interesting aspects of these
metabolomics data which could be followed up by further research.
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Chapter 2

Materials and Methods

This chapter deals with the applied methods and the used materials in this thesis.
It explains the used dataset for the analysis, necessary preprocessing steps and the
performed analysis methods. All the results are then shown and discussed in the

Chapter [3|

2.1 Experimental Data of Adipocyte Differenti-
ation

The dataset contains the data of the biological experiment which was conducted
by the workgroup of Dr. Helmut Laumen (Technische Universitdt Miinchen). In
the following sections, the experimental design and further information about the
measured metabolites are explained.

2.1.1 Experimental Design

The experiment was conducted in order to analyze the adipogenesis of the human
Simpson-Golabi-Behmel Syndrome (SGBS, see Section cell strain. The cells
were cultivated for 32 days (from day -4 to day 28). The growth medium was
replaced every two days. The differentiation of the cells is induced by a change of
growth medium from proliferation medium to induction medium at day 0. Another
switch of growth medium to feeding medium occured at day 4. The composition
of induction medium and feeding medium is slightly different, whereas the prolif-
eration medium is the only one which contains fetal calf serum (FCS).

The cells were harvested before and at eight days after induction of differen-
tiation. An overview of the harvesting days and the changing growth medium
is displayed in 2.1 Additionally, a sample of the supernatant was taken and

7
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Figure 2.1: Overview of the experimental design. The harvesting points and the change
of growth medium are marked.
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the metabolite concentrations in cells and supernatant were measured with mass-
spectrometry. The measurements of the cells will be referred to as intracellular and
supernatant measurements will be referred to as extracellular. The medium has
an influence on the extracellular metabolite measurements. This is especially the
case for the proliferation medium, since it is the only medium with FCS. Some of
these metabolites are measured in the supernatant and an effect of the medium is
measured in the supernatant. Proliferation medium was used from day -2 and day
0. Hence, day 0 is left out for analysis which deal with extracellular measurements.

The experiment was conducted three times (experiment #1 to #3) which we
refer to as biological replicates. The concentration of an intracellular metabolite
sample was also measured three times which are referred to as technical replicates.
There are no technical replicates for the supernatant samples. To sum up, the
number of intracellular measurements per metabolite is 81 (number of biological
replicates x number of harvesting points x number of technical replicates) and the
number of extracellular ones is 27, since there are no technical replicates. Hence,
the overall number of datapoints should be 108 per metabolite. This is not the
case, because the determined concentration for all metabolites at experiment #3,
day 6, technical replicate #1 and for all technical replicates of experiment #3, day
10 are missing. So, there are only 104 datapoints per metabolite available.

2.1.2 Measurement of Metabolites

The metabolite concentrations were determined with the Biocrates AbsoluteIDQ™
p180 kit. It is based on electrospray ionization tandem mass spectrometry (ESI-
MS/MS) and it measures the concentration of 188 metabolites. To give a brief
overview about the panel of measured metabolites, it contains 40 acylcarnitines,
21 amino acids, 21 biogenic amines, 90 glycerophosholipids, 15 sphingomyelins and
1 sugar. Table lists all 188 metabolites of this dataset.

Since not all samples fit onto one plate, the concentrations were determined in
two batches. The first batch contains the intracellular samples of all nine harvesting
points and technical replicates for experiment #1 and experiment #2. Experiment
#3 is present with the first five harvesting points (day 0 to day 8). The remaining
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harvesting points of experiment #3 are measured on batch #2. All extracellular
measurements were also part of batch #2.

Additionally, zero samples were measured for every metabolite besides the ex-
periment samples. These are samples that only contain extracting solvent (80%
methanol) and are used to determine the noise in the measurement. Every batch
contained eight zero samples per metabolite. So overall, there are sixteen zero
samples.

2.1.3 Differentiation Marker

As described in Section [I.1], there are several transcription factors and other pro-
teins that are expressed during the differentiation to adipocytes. Some of these
markers were measured during the experiment to assess the differentiation status
of the cells. The following markers were measured:

e Lipid accumulation: measured by Oil-Red-O staining
e Glycerol-3-phosphate dehydrogenase (GPDH): enzyme activity measured

e Peroxisome proliferator-activated receptor-y (PPAR~y): mRNA expression
measured

e Leptin: mRNA expression measured

The data of these differentiation markers is shown in the Figures|A.1} [A.2land [A.3]
Dr. Helmut Laumen provided an analysis of these differentiation marker to assign
different phases of the differentiation to the measuring days of the experiment. All
differentiation markers indicate a preadipocyte state at day 0 and 2, since there is
no activity or they are not expressed. At day 4, PPARy and Leptin are slightly ex-
pressed, but there is no lipid accumulation. From day 4 to 14 an increase of GPDH
enzyme activity, PPARy mRNA levels and the accumulated lipids is observeable.
This indicates that the cells were accumulating triglycerides. These three markers
reached the maximum level at day 18 to 28. Additionally, the expression of leptin
increases at 18 and reaches its maximum at day 28, which confirms that the cells
are differentiated to adipocytes. Based on these observations, day 0 and 2 are
considered to be the early phase of differentiation, day 4 to 14 the middle phase
and day 18 and 28 the late phase.

2.2 Quality Control

Since metabolomics data is always affected by noise, it is crucial to perform a qual-
ity control, because the analysis is highly dependent on the quality of the data.
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The follwing criteria were used to perform the quality control.
Missing Values

Metabolites contain a varying number of missing values, so that there is no mea-
sured concentration. This is dependent on the difficulty to measure this certain
metabolite. Since an analysis is only meaningful with a sufficient amount of dat-
apoints, we defined the threshold such that the fraction of missing values should
be below 75% of a metabolite. This criteria was applied independently for intra-
and extracellular, so that a metabolite with a high fraction of missing values in
one environment is not necessarily left out in the other environment.

Coefficient of Variation

The coefficient of variation (CV) is a normalized measure to evaluate the dispersion
of a distribution. It is defined as follows:

cv =2
!
where o denotes the standard deviation and u the mean of the technical replicates
for a metabolite at a certain experiment and measuring day. Since there are no
technical replicates for extracellular measurements, this was only possible for the
intracellular measurements. Afterwards, the intra- and extracellular measurements
of metabolites were excluded in which over 80% of the datapoints had a CV greater
than 0.25.

Limit of Detection

The mean of the zero samples were used to calculate the specific limit of detection
(LOD) for every metabolite. Because the zero samples only contain extracting
solvent, they are used to evaluate the noise in the measurement of this metabolite
and a measurement below the LOD indicates that this measurement is mostly
affected by noise.

Two unique LODs per metabolite were calculated, since two batches were used
in the measurement process. For the intracellular case, metabolites will be exl-
cuded, if 70% of the measurements are below the LOD. The threshold for extracel-
lular measurements was reduced to 60%. The distinct thresholds were used to take
the varying number of datapoints in the two environment into account. A more
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conservative threshold was used, since the number of datapoints is much smaller
for the extracellular case.

2.3 Preprocessing of Data for Analysis

Due to the characteristics of the dataset (see Section [2.1)), a preprocessing of the
data was necessary to proceed with the analysis. This implied a correction of a
batch effect and imputing of the missing values.

2.3.1 Correction of batch effect

Since one part of experiment #3 was measured on batch 1 and the other part
on batch 2 (see Section [2.1.2)), it was necessary to correct for this batch effect.
That is, the measured concentration of an identical sample results in different
concentrations when measured on different batches.

The affected measurements of the batch effect are the intracellular values of
experiment #3 at the measuring days 14, 18 and 28. The correction of the batch
effect was performed as follows. Every metabolite is treated individually and two
means are calculated. One is the mean of experiment #3 of the intracellular values
of day 14 to day 28. The other mean is based on the same measuring days, but
it consists of the values of experiment #1 and #2. The correction value for every
metabolite is then the difference between the mean of experiment #3 and the mean
of experiment #1 and #2. This value is then subtracted of every value which was
described to be a target of the batchcorrection earlier in this section. It could be
the case that this correction methods leads to negative values, i.e. measured value
< correction value. Such values are set to a missing value and might be imputed
in a later step of the preprocessing.

2.3.2 Imputing of Missing Values

Some metabolites contain missing values. These missing values are imputed by a
process which consists of two steps that are sequentially performed.

Imputing of Missing Values Due to Low Concentrations

The first imputing step is based on the assumption that some values are missing
due to a low concentration of the metabolite. Thus, there is no signal in the mass-
spectrometry measurement. These values are imputed with the minimal measured
concentration of this metabolite over all experiments and measuring days. But only
missing values were qualified, which had a technical replicate (same measuring day
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and experiment) with a concentration that was below the LOD. This indicates that
the missing value was due to a low concentration for this sample and this imputing
method is applicable.

Imputing with Linear Interpolation

For the second step, there are two variants to impute a missing value. The first uses
the information of the same experiment. The mean over the technical replicates
of the measuring day before and after the missing value are calculated and the
missing values is imputed with the mean of these two values. If this approach
is not possible (i.e. missing values at the measuring days before and after), the
mean of the other two experiments at the measuring day of the missing value is
calculated. Imputed values of this step were not used for imputing of further values.
This method was also used to impute missing values of time course metabolomics
in the HuMet study [17].

2.4 Statistical Analysis

This section deals with fundamental statistical analysis. They were used as a part
of other applied methods or they provide a general analysis of the data.

2.4.1 Normalization of the Data

The concentration of the metabolites can vary in great ranges, but these differences
do not necessarily indicate the biological relevance of the metabolite. Therefore,
normalization of the metabolite concentrations was performed depending on the
analysis or applied method.

Calculation of the Fold Change

The fold change allows an easy evaluation whether the concentration of a metabo-
lite was in- or decreasing over the time in respect of the starting point of the
experiment. For the calculation of the fold change, the mean of all values at a
certain measuring day (up to 9 for intracellular and up to 3 for extracellular) was
calculated. Afterwards, the ratio from the measuring day to the first measuring
day is calculated. We also logarithmised the fold changes to base 2, so that a
value of 1 corresponds to a doubled concentration and a value of -1 to a halved
one. Some concentrations are measured with a 0 and the logarithm results in a
missing value. These values are replaced with the lowest value of the metabolite.
The log(fold change) of a metabolite will be referred to as logFC.
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Fold Change of Grouped Measuring Days

Some of the methods or analysis were not only applied for the measuring days,
but also with grouped measuring days to account for differentiationphases. The
calculation of the logFCs had to be adapted for that. First of all, the value of
a differentiationphase is the mean of all measuring points (all technical replicates
and all experiments) of all measuring days within the certain differentiationphase.
When comparing two differentiationphases (e.g. early to middle or middle to
late), the fold change is then calculated in such way, that it is relative to the first
mentioned differentiationphase.

Z-Score

The z-score is another way of normalizing the concentrations of a metabolite. With
this normalization, the mean of the values is 0 and the standard deviation is 1.
The z-score is defined as follows:

with 4 being the mean and o being the standard deviation of the considered
measuring points. These are typically all measuring points (all experiments, all
measuring days and all technical replicates) of a metabolite of one of the two
environments.

2.4.2 Distribution of Data

The knowledge about the distribution of the data is very important, since some
statistical tests or methods are based on the assumption that the dataset underlies
a normal distribution. Earlier investigations of metabolomics data revealed that
they usually follow a log-normal distribution [17, [18]. Figure shows the distri-
bution over all measuring points of the dataset, when the values are logarithmised.

We performed a visual examination of our dataset with Q-Q plots to validate
these observations. A Q-Q plot displays the quantiles of two distributions [37]. In
this case, we compare the quantiles of the sample (i.e. metabolite concentration)
against the theoretical quantiles of a normal distribution. The plot will be close
to linear, if the sample underlies a normal distribution. Overall, a majority of the
metabolites were closer to a log-normal distribution than to a normal distribution.
Thus, if not stated otherwise, the log(concentrations) will be used for further
analysis. Some metabolites have measured concentrations of 0, for which the
logarithm is not defined. Hence, before the concentrations are logarithmised, these
0-values are replaced with the minimum value of this metabolite which is not zero.
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2.4.3 Student’s t-Test

A Student’s t-test can be applied to evaluate whether the means of two populations
are equal. To apply this test, the populations have to follow a normal distribution
and the variance has to be equal. As a part of the test, the t-value is calculated.
Afterwards, the t-distribution is used to calculate the confidence interval to eval-
uate the Hy hypothesis which assumes that the means of the two populations are
equal. The Hjy hypothesis is rejected at a significance level a of 0.05.

In this thesis, we are dealing with log-normal distributed data. We can not
ensure that the two used populations of the t-test always have the same variance,
but we assume it and we have to keep that in mind when evaluating the results.

2.4.4 Multiple Testing Correction

Multiple testing describes the simultaneously application of a statistical test, which
typically leads to an increase of a type I error (or false positives). This is, the Hy
hypothesis is falsely rejected. Several methods have been proposed to correct
for multiple testing. In this thesis, we applied a method which is based on the
control of the false discovery rate (FDR) [2]. The FDR is defined as the expected
proportion of false positives to the number of hypothesis which are declared to
be significant. This method is considered to be less stringent, but more powerful,
than methods which are based on the family wise error rate such as Bonferroni
correction.

2.4.5 Principal Component Analysis

The principal component analysis (PCA) is a statistical multivariate technique to
extract the important information from the data [I]. A principal component is a
linear combination of several variables, e.g. metabolites or measuring days. The
explained variance of a principal component decreases with an ascending num-
bering of the component, so that the first one has the largest possible variance.
Additionally, the calculation of a principal component is under the constraint to be
orthogonal to the preceding principal component. In this thesis, the PCA is used
to give an brief overview of the data. For this, the concentrations were normalized
with the z-score (see Section [2.4.1)).

2.5 Clustering of Metabolite Time Courses

Several algorithms were applied to cluster the time courses of the metabolites.
Their results are used to give an overview of the dataset with an visual represen-
tation.
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2.5.1 Distance Measures

A distance measure is used to calculate the distance between two observations,
e.g. fold changes of metabolites. Two of these distance measures were used in this
thesis.

FEuclidean Distance

The Euclidean distance between two vectors x and y (e.g. fold changes of metabo-
lites) is defined as follows:

(2.1)

e 1, y: vectors with the length of n

e ;. y;: the i-th element of the vector, e.g. the concentration at measuring
day 4

Pearson Product-moment Correlation Coefficient

The Pearson product-moment correlation coefficient (PCC) describes the linear
dependence between two variables. The PCC r for two samples x and y is defined
as follows:

SO W 1 € kTt ) .
RV ST V) S T (22)

e 1,: the i-th obversation of z

e 7: the mean of z

The PCC r ranges from -1 and 1. A value above 0 indicates a positive correlation
and a value below 0 a negative correlation. At a value of 0, there is no linear
dependence between the two variables.

2.5.2 Hierachical Clustering

The hierachical clustering tries to build a hierachy of clusters. For that, the dis-
tance between all samples is calculated with a metric. Afterwards, the samples or
clusters with the smallest distance are joined in further clusters. This bottom-up
approach is also called agglomerative hierachical clustering. At the end, there is
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one cluster which cointains all samples. The hierachy of clusters can be visualized
by a dendogramm.

For the initial distance calculation between the samples, the distance measures
Euclidean distance. The distance between two clusters is calculated with the com-
plete linkage criteria:

d(X,Y) :=maz{d(z,y) :xz € X,y €Y}

To cluster the data, the mean of the technical replicates and the mean of the three
experiment was calculated. Afterwards, the z-score (see Section [2.4.1) over the
measuring days of a metabolite was computed to normalize the data.

2.5.3 k-means Clustering

The k-means clustering algorithm assigns the observations (i.e. metabolite con-
centrations) to k cluster. It consists out of two steps which are iterated. The
algorithm stops when the assignment of the samples do not change anymore. The
two steps are called assignment and update step. In the assignment step, the sam-
ples are allocated to the cluster with the closest mean or centroid, respectiveley.
We decided to use the Euclidean distance and the PCC as a distance measure. A
re-calculation of the mean or centroid is performed in the update step. k obver-
sations are choosen randomly as the initial centroids. Since it is not ensured that
the k-means clustering algorithm converges to the global minimum, we repeated
the calculation 500 times.

Determine the Number of Clusters via Silhouette

The silhoutte aids with the visual investigation of a cluster analysis [29]. It can
be used to evaluate whether an observation lies within or merely at the outside of
its cluster. For every observation i, the value s; is calculated which is defined as
follows:

e i: the i-th observation, i.e. metabolite concentrations
e a;: average distance to all the other observations in the cluster A

e b;: average distance to all the observations to the closest neighbor cluster B

bz‘ — Q;
S = ——
" max{a;, b}
so that s; ranges from -1 to 1. The s; values are displayed in a plot at which
the s; values are grouped in the corresponding clusters and in a descending order.
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This plot can be used to evaluate the result of a cluster analysis. In this thesis,
we mainly used it to determine a k, the numbers of clusters, for the k-means
clustering.

2.6 Enrichment Analysis of Metabolite Changes

Enrichment analysis are widely used to evaluate whether there is a certain gene
annotation (e.g. biological or molecular function) enriched in a gene set. In this
thesis, we used an enrichment analysis to assess the changes in concentration of
metabolite sets.

2.6.1 Definition of Sets

A metabolite set is a group of metabolites that have a similarity or connection
in respect of certain characteristics. The following sections describe the applied
methods to define the metabolite sets.

Biochemical Classes

This definition of the metabolite sets is based on the biochemical classes and
properties of the metabolites, e.g. sphingomyelins or amino acids.

GGM-based Classification

This method consists of two steps. The first one is the calculation of a Gaussian
graphical model (GGM) and the second one is the detection of communities within
this GGM.

The GGM can be represented as a network in which the nodes are metabolites
and the edges are based on partial correlation between the metabolites. The partial
correlation describes the linear dependency between two random variables, i.e.
the concentrations of two metabolites. Furthermore, the partial correlation is
conditioned against the whole set of random variables in contrast to the Pearson
correlation coefficient. This leads to the outcome that indirect effects of correlation
are removed as it can be seen in an example in Figure [2.2]

At first, we estimated a GGM with the values of this dataset. The GeneNet
package was used to calculate the partial correlation [31]. The outcome was not
satisfying due to the low number of samples in contrast to the number of variables,
i.e. metabolites. Therefore, we used the GGM which was already calculated by
Krumsiek et al. [18]. This GGM is based on the metabolite concentrations of
the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) study
[13, [15]. Even though, our dataset is based on cells that undergo adipogenesis
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Figure 2.2: This example illustrates that indirect interactions between metabolites are
eliminated in a Gaussian graphical model (GGM) in contrast to a correlation network
(CN). Figure is adapted from Krumsiek et al. [I8§].

and the KORA study has samples of blood serum, we decided that we can use
the KORA GGM, because both datasets are based on human samples and the
fundamental metabolic pathways should be the same. Krumsiek et al.| calculated
a partial correlation coefficient above 0.1619 to be significant. We decided to use
a cutoff of 0.18 for edges between the metabolites to follow a more conservative
approach. The corresponding network is called a GGM which was used to detect
modules within.

The next step is the detection of communities within the GGM. A community
is a group of nodes in the network that show a high density of edges within the
community, but sparse connections to nodes outside the community [22]. There are
several approaches to detect such a community structure. We applied an algorithm
that is based on the maximization of modularity. The modularity is defined as the
number of edges within the groups minus the expected number of edges in an
equivalent random network [22]. The applied algorithm is a heuristic approach
to optimize the modularity [4]. It reiterates two phases in which the number of
communities decreases until there is no further improvement of the modularity.
The algorithm was provided as the brain connectivity toolbox in MATLAB (The
Mathworks Inc.) [30].

Finally, a manual curation step of the community classification was necessary
because of two reasons. First, not all metabolites in our dataset were measured in
the KORA study. Second, there a metabolites in the GGM which do not have any
edges to other metabolites. Hence, they are considered as an own community by
the detection algorithm.

2.6.2 Enrichment Analysis

We implemented two methods to perform an enrichment analysis which are based
on different approaches. One uses t-tests to evaluate the changes of a metabolite
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set and the other one compares the distribution of the set metabolites against the
distribution of all metabolites.

Hypergeometric Test (t-Test based)

First of all, a t-test of the log(concentrations) (see Section between all data-
points of the the first measuring day and another one is performed. This is done for
all measuring dayss and metabolites. Thus, the overall number of t-tests is number
of metabolites x (number of measuring days —1). The Hy hypothesis that the two
samples have the same mean is rejected at a significance level « of 0.05. Thus, the
log(concentrations) of the metabolite are considered to be significantly different
between these two measuring days. To account for multiple testing, p-values were
corrected using FDR (see Section [2.4.4).

Afterwards, the metabolite set information is used to perform a hypergeomet-
ric test for every metabolite set and every assessed measuring days combination.
The hypergeometric test is based on the hypergeometric distribution. It describes
the probability of x successes in N draws (without replacement) from a finite pop-
ulation of size M containing K elements with the desired characteristic. These
variables have the following meaning in our test:

e x: number of metabolites of one specific set which show a significant differ-
ence

e N: overall number of metabolites which show a significant difference
e M: overall number of metabolites

e K: number of metabolites in the corresponding set

The probability density function is defined as follows:
(:)(5=2)
M
(v)
which is used in the cumulative distribution function to calculate the p-value as
follows:

flz|M,K,N) :=

p-value =1 — zj: —<II_<1)(]<WAJ)4V_€()

This test is identical to the one-tailed Fisher’s exact test [26]. This approach reveals
which metabolite sets show an enriched fraction of metabolites with a significant
difference at a certain measuring day.
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Distribution-based Tests

We used two tests to evaluate whether the distribution of the log,(fold changes)
of a metabolite set is different than the distribution of all metabolites at a certain
measuring day. Hence, the number of tests is number of metabolite sets x number
of measuring days.

Kolmogornov-Smirnov Test

The Kolmogornov-Smirnov (K-S) two-sample test is a nonparametric test that
compares the underlying probability density function of two populations [41], i.e.
log, (fold changes) of the metabolite set and all metabolites. For that, it quantifies
the distance between the distributions. The H, hypothesis is that both distribu-
tions are equal and is rejected at a significance level a of 0.05.

Wilcoxon Rank Sum Test

The nonparametric Wilcoxon rank sum test is used to evaluate whether the mean
ranks of two populations differ. The test relies on the assumption that the two
samples are independent, but in contrast to the t-test, there is no need for an
underlying normal distribution. The Hy hypothesis states that the mean difference
is zero and is rejected at a significance level o of 0.05.

Weighted Enrichment Analysis

The weighted enrichment analysis determines whether the values of a metabolite
set are statistically overrepresented. That is, the values are higher than the values
of the other metabolites. The logFCs or t-values of a t-test were used as the values
of the metabolites, so that they are comparable between the metabolites. For
the weighted enrichment analysis, the sum of the values for each metabolite set
is calculated. Therefore, this test is performed with non-negative values, i.e. the
absolute-values of the logFCs or t-values. This sum is denoted as e. To assess the
statistical overrepresenation, the set assignments of the metabolites are randomly
shuffled. Afterwards, the sum e, of this random metabolite sets are calculated and
compared to e. This process was repeated r = 10° times and the number of times
when e, > e was counted as f. The empirical p-value is then calculated as follows:
p = f/r. This method was recently applied on metabolomics data [19].
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2.7 Analysis of the Intra- and Extracellular
Metabolite Dependency

The following sections describe methods which were used to assess the exchange
of a metabolite between the intra- and extracellular environment. These methods
are based on the correlation of the concentration or use the t-statistic to evaluate
the changes in concentrations.

2.7.1 Global Correlation

This methods uses the Spearman’s rank correlation coefficient (SCC) to evaluate
whether there is an association between the intra- and extracellular log(concentrations)
of a metabolite. To account for the distribution of the metabolite data, we applied
the rank correlation coefficient. The SCC p is defined as follows:

= > i (@ — 2)(yi — )
Vo (i — )23 (g — )?

x, y: intra- and extracelluar concentrations

e n: number of considered measuring days
e ;. y;: rank of the i-th concentration

e 7: mean rank of z

The log(concentrations) of all three experiments are used. For that, the mean of the
technical replicates of the intracellular measurements is calculated. As explained
in Section [2.1.1] the extracellular concentrations of some metabolites is affected by
the growth medium at the first measuring day. Therefore, day 0 is left out of the
calculation of p. So overall, 24 concentrations are used for the calculation (number
of experiments x (number of measuring days - 1) = 3 x 8 = 24). The probability
that p is significantly different from 0 is calculated with a permutation test. A
metabolite is considered to be correlated or anti-correlated when the p-value is
below 0.05.

2.7.2 Window-based Correlation

In addition to the global correlation (see Section , we applied a method that
can be considered as a local approach. The Spearman’s correlation coefficient p
is calculated with the concentrations that are in between a certain time window.
The number of considered measuring days is the window size which is denotated
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as ws. Hence, a metabolite does not have a single p. Instead there are 8 —ws + 1
p’s per metabolite. The calculation of p is slightly altered:

Py >ics(@i — ) (yi — ¥)
Vi (@i = 2)2 20 (v — )?

e 1, y: intra- and extracelluar concentrations

s: start index of the window

e: end index of the window

x;, y;: rank of the i-th concentration

e 7: mean rank of =

2.7.3 t-Value Based

This method seeks for remarkable changes between measuring days of the intra-
and extracellular log(concentrations). For that, a t-test is applied for all adjacent
measuring days starting at day 2 (see Section for the reason), e.g. day 2 and
day 4, day 4 and day 6 and so on. Dependent on the environment, the two pop-
ulations consist of nine (intracellular) or three (extracellular) log(concentrations)
for a single t-test. Due to the low number of samples per measuring day, it is
unlikely to observe significant changes. Hence, we did not use the p-value to seek
for significant changes, but instead the t-value of the t-test (see Section was
used to evaluate the change between the measuring days. A certain threshold was
defined, so that [t| > treshold indicates a timespan (e.g. day 4 to day 6) with a
remarkable change. This threshold was set to 1.25. After the assessment of the
timespans for intra- and extracellular was done, we were looking for metabolites,
in which there were at least two timespans that showed a remarkable change for
both environments, i.e. intra- and extracellular.
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Results and Discussion

In this chapter, we show the results of the different analysis methods and discuss
their biological meaning. First of all, results of the data preprocessing (e.g. quality
control or handling of the batch effect) are shown. The next section deals with
the analysis of metabolite time course of a single environment. In the end, the
exchange between intra- and extracellular is investigated.

3.1 Metabolomics Data Analysis and Preprocess-
ing

Before further analysis could be performed, a preprocessing of the data was nec-
essary. This includes a quality control of the metabolites, correction of a possible
batch effect and imputing of missing values. The results of these methods are
shown in the first two sections. The last section gives a brief overview of the data.

3.1.1 Quality Control

The quality control was individually carried out for the intra- and extracellular en-
vironment. At the end there are three sets of metabolites that passed the quality
control. One for intracellular, one for extracelluar and the last one is the inter-
section of the two sets before. The workflow and the numbers for the intersection
of intra- and extracellular are shown in Figure Table [3.1 and Table [3.2] give
an overview about the criteria and the metabolites which did not pass the certain
criteria.

The quality control consists of two phases. The first phase was the elimination
of metabolites with a fraction of missing values equal or higher than 75%. 10
(intracellular) or 6 (extracellular) metabolites were excluded due to this criteria
(see Figure [3.2)). The other two criteria, coefficient of variation (CV) and limit

23
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Criteria: .
Limit of Detection [ U LIRS ]

Crltena

Criteria:

Coefficient of Variatio [ 162 Metabolites ]

Figure 3.1: The workflow of the quality control. The first phase was the elimination of
metabolites with a high number of missing value. The resulting set of metabolites was
the basis for the application of the other criteria, which were carried out independently.
At the end, the intersection of these two sets was build. The given numbers are for the
combination of the intra- and extracellular environment.

of detection (LOD) (see Section [2.2)), were independently applied in the second
phase. We wanted to evaluate the consensus between these two criterias, because
metabolites that do not pass the limit of detection criteria, could be more affected
by noise in the measurement and this could also be exposed in a high CV.

The LOD criteria was not passed by 11 (intracellular) or 4 (extracellular)
metabolites, respectively. This discrepancy can be explained with the influence
of the growth medium, which in general, leads to higher concentrations in the ex-
tracellular environment. Figure displays the distribution of the fractions below
the LOD. The evaluation of the CV criteria was only performed on the intracellu-
lar measurements, because there are no extracellular technical replicates. Since no
evaluation for the extracellular measurements was possible, we decided to exclude
the 15 metabolites, that did not pass this criteria (see Figure , not only for
the intracellular environment, but also for the extracellular one. The consensus
between the CV and LOD criteria is 0 at the intracellular environment, which
was surprising. Hence, the combination of these two criteria leads to a further
reduction of the set of metabolites.

At the end, there are 152 metabolites in the intracellular set and 167 metabo-
lites in the extracellular set. The intersection of these two sets contains 151
metabolites.
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Figure 3.2: The fraction of missing values per metabolite is shown in a histogram repre-
sentation for the intracellular (A) and extracellular (B) measurements. All metabolites
with a fraction above 0.8 (red line) were excluded.

A 100 Fraction below limit of detection (intracellular) B 120 Fraction below limit of detection (extracellular)
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Figure 3.3: The fraction of measuring points below the limit of detection (LOD) per
metabolite is shown in a histogram representation for the intracellular (A) and extra-
cellular (B) measurements. The applied threshold of the quality control is indicated
with the vertical red line. The threshold is 0.7 for intracellular and 0.6 for extracellular.
The distinct thresholds were used to take the varying number of datapoints in the two
environment into account.
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Figure 3.4: The coefficient of variation (CV) was calculated for every metabolite, every
experiment and every measuring day. The fraction of CVs above 0.25 per metabolite
is shown in this histogram. Metabolites with a fraction above 0.8 were excluded in the

quality control.

Missing Values

Intracellular

Coeflicient of Variation

Limit of Detection

Carnosine,
Dopamine,
OH-Pro, SDMA,
tonin, total
ADMA, Histamine

Nitr

DOPA,

o-Tyr,
Sero-
DMA,

Arg, Putrescine, Sarco-
sine, Taurine, PC aa
C40:5, PC aa C42:1, PC
aa C42:4, PC aa (C42:5,
PC ae (C40:3, PC ae
C42:2, SM (OH) C22:1,
SM (OH) C22:2, SM
C20:2, SM (C26:0, SM
C26:1

C14:1, C14:2, C16:1,
C16:1-OH, C7-DC, Cit,
Creatinine, PEA, PC aa
C40:1, PC aa C42:0, PC
aa C42:6

Table 3.1: List of the metabolites that were excluded due to the certain criteria for the
intracellular environment.
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Extracellular

Missing Values Coefficient of Variation | Limit of Detection

Arg, Putrescine, Sarco-
sine, Taurine, PC aa
Dopamine,  Nitro-Tyr, | C40:5, PC aa C42:1, PC
OH-Pro, SDMA, Sper- | aa C42:4, PC aa C42:5, | PC aa (C40:5, PC aa
mine, Carnosine PC ae (C40:3, PC ae | C42:1, SM (OH) C22:2,
C42:2, SM (OH) C22:1, | SM C18:0

SM (OH) C22:2, SM
C20:2, SM (C26:0, SM
C26:1

Table 3.2: List of the metabolites that were excluded due to the certain criteria for the
extracellular environment.

3.1.2 Preprocessing of Data for Analysis

This section deals with the results of methods which are applied before further
analysis of the dataset could be carried out. This includes the correction of a
batch effect in the measurements and also the imputing of missing values. The
effects of these methods are also illustrated.

Correction of Batch Effect

The intracellular concentrations of all metabolites were measured on a different
batch (batch 2) for day 14, 18 and 28 of experiment #3 (see Section [2.1.2). The
concentrations at these measuring days showed a notable difference to the other
two experiments at these measuring days. Depending on the biochemical class of
the metabolite, the concentrations of batch 2 were higher or lower, whereas the
three experiments showed a similar course at the first measuring days. An example
is shown in Figure 3.5A. Therefore, we assumed that these differences are due to
the different batches.

We performed a PCA of all intracellular measuring points (81 in total) to
confirm this assumption. The first and second principle component are able to
discriminate between the two batches for the most part of the measuring points
(see Figure [3.6]A). So, we decided to perform a correction of the batch effect as
explained in Section [2.3.1] The PCA of the corrected concentrations is shown in
Figure[3.6B. Based on these results, the corrections leads to an improvement, since
the measuring points of batch 2 are not clearly separated anymore. There is still
a small bias in the data, but this could also be explained due to the progression in
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Figure 3.5: Intracellular concentrations of C10:1. The three replicates of each experiment
are denoted with a unique symbol. The concentrations of experiment #3 at day 10 are
missing. They will be imputed in a later stage. Panel A shows the concentrations
without a correction of the batch effect and panel B the corrected concentrations. The
affected measuring days are day 14 to day 28 of experiment #3.

the experiment (see the PCA in Section , since the corrected concentrations
are in the late stage of the experiment. The effect of the correction were also
manually evaluated. Figure [3.5B shows an example of the correction.

The batch correction can lead to negative values which are then set to a missing
value. For the set of 151 metabolites, this is the case for 77 measuring points. These
value will also be imputed in the next step.

Imputing of Missing Values

Using the set of metabolites of both environments, the dataset consist of 16,308
datapoints (151 metabolites x 108 measuring points), of which 894 are a missing
value (~5.5%). 604 of these missing values are due an error in the conduction of the
experiment (see Section , so that there are no samples at certain measuring
points.

After Step 1 of the imputing method (see Section , there are 787 missing
values left (107 values are imputed). So, only a small portion of the missing values
was qualified for this imputing method. Step 2 (see Section imputed 757
missing values, so that 30 missing values are left at the end of the imputing process.
These values are part of two metabolites and could not be imputed, because the
values were missing for all three experiments for consecutive measuring days. These
metabolites might be left out in further analysis, when the applied method is not
able to handle missing values. The corresponding numbers of the other two sets
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Figure 3.6: PCA of the intracellular measuring points. The effects of the batch effect
(panel A) and the correction of it (panel B) are visualized.

Intracellular | Extracellular | Both

Before imputing 899 1441 894
After step 1 792 1311 757
After step 2 30 183 30

Table 3.3: The number of missing values for the three sets of metabolites before and
after the imputing steps.

of metabolites are listed in Table 3.3l An example of the imputing for C10:2 is
shown in Figure [3.7]

3.1.3 Overview of the Data

At first, a brief overview over the dataset is given. Figure shows the intra-
cellular measurements which a normalized by the z-score (see Section [2.4.1)). Tt is
notable that a overwhelming fraction of the metabolites has a higher concentration
in the early phase (day 0 to 4) than in the end stage (day 28). We performed a
hierachical clustering (see Figure ) to further investigate the involved metabo-
lites and to make this observation more comprehensible. The cluster which shows
the clearest down regulation to the end of the experiment consist of 60 metabolites.
A large part of the amino acids, some acylcarnitines (C12 to C18) and a various
composition of glyercophospholipids are present in this cluster. There is also a
fraction of metabolites that reaches its peak at day 10 to 18. This cluster consist
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Figure 3.7: Intracellular concentrations of C10:2. The three replicates of each experiment
are denoted with a unique symbol. (A) The concentrations of experiment #3 for one
technical replicate at day 6 and for all three technical replicates at day 10 are missing.
(B) The missing concentrations are imputed.

almost exclusively of phosphatidylcholines (PC aa and PC ae) and acylcarnitines
(C3 to C10). See Section for a more in depth cluster analysis.

In contrast to the intracellular measurements, the extracellular ones do not
show such a clear trend towards a down regulation at the end of the experiment
(see Figure . Additionally, Figure displays the normalized value when
day 0 is included. This represenation further illustrates the effect of the growth
medium at day 0.

Figure and in the appendix show a similar overview, but in this case, the
mean over the experiments was not computed, so that there are three measuring
points per day and metabolite. For the intracellular measurements, the clustering
looks very similar to the clustering with the mean over the experiments. Three
major clusters, which have their peak in concentrations either in the early, middle
or late phase of the experiment, are observeable. There is also a fourth cluster
of which its metabolites show not such a clear peak at a certain timepoint. The
results of the extracellular measurements are not that well separated and the result
looks very inhomogenous.

Principle Component Analysis

We performed several principle component analysis (PCAs) to display different
information. First, the PCA of all measuring points in both environments (108
measuring points in total) is shown in Figure m The first principle component
is able to divide these two environments very good, as it can be seen due to the two
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Figure 3.8: Represenation of the normalized intracellular measurements. The average
over the technical replicates and experiments was computed, so that there is only one
measuring point per day. (A) 152 metabolites are normalized with the z-score. The
metabolites are ordered according to their biochemical classes. (B) A hierachical clus-
tering was performed with Euclidean distance as metric and complete-linkage.
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Figure 3.9: Represenation of the normalized extracellular measurements. The average
over the technical replicates and experiments was computed, so that there is only one
measuring point per day. (A) 167 metabolites are normalized with the z-score. The
metabolites are ordered according to their biochemical classes. (B) A hierachical clus-
tering was performed with Euclidean distance as metric and complete-linkage.
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Figure 3.10: The normalized extracellular measurements of 167 metabolites from day 0
to day 28 are shown. The bias of the growth medium at day 0 is observeable.

clusters. The extracellular environment has less measuring points, because there
are no technical replicates measured. The red circle highlights the extracellular
measuring points of all three experiments at day 0. As in Section [2.1.1] explained,
the composition of the growth medium at day 0 differs due to the addition of fetal
calf serum. The second principle component was able to separate this measuring
day which is affected by this medium effect.

Another PCA was performed to show the differences or changes between the
days which is displayed in Figure [3.12] There are two representations. Figure
used the mean of the technical replicates and hence, there are three points
per measuring day which represent the three experiments. The points of each
measuring day have a tendency to cluster. To show this information more clearly,
the mean of the three experiments was calculated in the PCA of Figure[3.12B. As a
result, a trajectory of the measuring days is visible which represents the progression
of the experiment over the timespan. The distance between the corresponding
measuring days can already be used to get an idea about the different phases in
the differentiation process, i.e. day 0 and 2 as an early, day 6, 8 and 10 as middle
and day 14, 18 and 28 as the late phase. Day 4 is in between the early and middle
phase. These results match with the information about the differentiation phases,
which were provided by Helmut Laumen with an analysis of differentiation marker
(see Section [2.1.3). We also performed a PCA for the extracellular measurements
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Figure 3.11: A PCA of all intra- and extracellular measuring points (108 in total). They
are coloured according to their environment, i.e. intracellular in blue and extracellular
in green. Day 0 of all three extracellular experiments are highlighted with a red circle.
These measuring points are separated due to the different composition of the growth

medium (see Section [2.1.1)).

(see Figure . The progression in the differention during the experiment is not
so clearly visible.

Since a standard PCA is not able to deal with missing values, we performed
this PCA with imputed values at first. There is also a Baysian PCA which is able
to be applied on data with missing values [35]. We used the GP-LVM toolbox in
MATLAB (The Mathworks Inc.) to perform a non-linear PCA without imputed
values [20]. The results were very similar to the results of the standard PCA with
imputed values (see Figure .

3.1.4 Interpretation of the Extracellular Measurements

Before we continue with the clustering analysis of the intra- and extracelluler mea-
surements, we discuss the interpretation and meaning of the extracellular concen-
trations. When the intracellular concentration of a metabolite decreases between
two measuring days, there are two possible explanations. First, the metabolite
has been catalyzed to another metabolite. Second, there was an exchange to the
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Figure 3.12: A principle component analysis of the intracellular measuring days. The
concrete day of the point is denoted as a number in the figure. (A) The mean of
the technical replicates was calculated, so that the three points per day represent the
experiments. It is notable, that the three points of a measuring show a tendency to
cluster. (B) Additionally, the mean of the experiments was computed. A trajectory
dependend on the time point of differentiation can be observed.

extracellular environment. On the other hand, a decrease of the extracellular con-
centration can be explained with a third option. This is due to the fact that
the extracellular concentrations are the measurement of the supernatant. Hence,
the metabolite concentrations of the medium have an effect on the extracellular
concentrations. This is the first problem in the interpretation of the extracellular
concentrations. The second one is the medium change which occurs every two
days. This is a reset of the extracellular metabolite concentrations. So for exam-
ple, the concentration between measuring day 14 and 18 is the change between
day 16 and 18 starting at the medium concentration. We tried several methods
to recalculate the extra- and also the intracellular measurements, but we were not
able to find a solution which made the meaning of the concentrations of the two
environments entirely comparable.



36 CHAPTER 3. RESULTS AND DISCUSSION

A Silhouette for k = 6 B Silhouette for k = 14
1 ‘ ‘ ‘
1 L
2+ ol —-4
5 T —
4 L
5 _——b—-
— 3 [ — g :
Q [0]
2 2§
(&) (&)
10+
4+t
11+
5 L 12 [
bl ——————— ] 3
-0.2 0 0.2 0.4 0.6 0.8 1 -04 -02 O 02 04 06 08 1
Silhouette value Silhouette value

Figure 3.13: Silhouette of the clusters for & = 6 (panel A) and & = 14 (panel B).
The silhouette values are much higher for the result of £ = 6 and this representation
illustrates the decrease of quality of the clustering result between these two k.

3.2 Analysis of Metabolite Time Courses

3.2.1 Clustering of Metabolite Time Courses

We performed a k-means clustering of the log(fold changes) (logFCs) to get a first
overview of the data. The clustering was performed with the Euclidean distance
and the Pearson product-moment correlation coefficient as distance measures. The
assignments of the metabolites to their clusters for all the clustering results are
listed in the tables in Appendix [C]

Clustering Based on Euclidean Distance

A k-means clustering was performed for the logFCs of the metabolites with Eucli-
den distance as the metric. The fold changes normalize the measurements, so that
the values of the metabolites are comparable, and a up or down regulation of the
metabolite is visible. A range of 2 to 15 was used as k for the k-means clustering.
The cluster results itself and the silhouette plots (see Section were used to
evaluate the cluster analysis. Figure displays the silhouette values for k = 6
and k£ = 14. These results are based on the intracellular fold changes. They illus-
trate the differences between a good clustering result (k = 6) to a mediocre one.
In general, the silhouette values are higher and less values are negative.

In fact, £k = 6 obtained the best clustering result for the intracellular fold
changes. The six clusters cover a range of elementary biological responses (see
Figure . Cluster #1 and #2 are both up regulated metabolites, but cluster
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#1 reaches its peak at a much earlier point. One can distinguish these two clusters
as an early- and late-responder. Cluster #3 is the largest cluster and contains the
metabolites that do not change much over the experiment. The fluctuations of
these metabolites are most likely due to noise in the measurement. Cluster #4, #5
and #6 are all down regulated differ mainly due to the degree of down regulation.
The assignment of metabolites to the clusters is given in the Table (Appendix
A).

The k-means clustering of the extracellular fold changes does not show such a
clear result. The silhoutte values of the clustering with £ = 13 are displayed in
Figure |3.15] This was the best result for the extracellular environment. Table
(Appendix A) lists the clusters and their assigned metabolites. In comparison to
the intracellular result, there are more metabolites with a negative silhouette value.
Even though, the choosen k is much higher, the clusters do not look as homogenous
(see Figure . The time courses of the metabolite fold changes show much
more fluctuation in the extracellular environment than in the intracellular one.
Additionally, there are metabolite time courses that look artificial with a flat line,
i.e. cluster #13. These are metabolites with a lot of values that were measured
with a concentration of 0. They were replaced with the minimum value of this

metabolite (see Section [2.4.1)).
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k-Means clustering (euclidean) for intracellular fold changes
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Figure 3.14: Overview of the k-means clustering with £ = 6 for the intracellular logFCs
based on Euclidean distance. The clusters are ordered in a way, so that there is a
descending from a up to a down regulation. The piechart illustrates the distribution of
biochemical classes within the cluster.
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Figure 3.15: Silhouette values of the k-means clustering of extracellular logFCs for k£ = 13
and Fuclidean distance.
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k-Means clustering (euclidean) for extracellular fold changes
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Figure 3.16: Overview of the k-means clustering with & = 13 for the extracellular logFCs
based on Eucliden distance. The clusters are ordered in a way, so that there is a de-
scending from a up to a down regulation. The piechart illustrates the distribution of
biochemical classes within the cluster.
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Figure 3.17: Silhouette values of the k-means clustering of intracellular (A) and extracel-
lular (B) logFCs. Pearson product-moment correlation coefficient was used as distance

measure.

Clustering Based on Correlation Coefficient

The clustering analysis of the logFCs was also performed with the Pearson product-
moment correlation coefficient (PCC) (see Section as distance measure. The
range of k£ was between 2 and 15. The consideration of the silhouette values
indicate that a clustering with k£ = 12 provides the best result for the intracellular
measurements and k = 7 for the extracellular one. The silhouette values of these
two are shown in Figure |3.17] There are almost no negative silhouette values,
which indicates that the clustering of the metabolites is appropiate.

The clustering results for the intracellular logFCs are displayed in Figure [3.18
There are some biochemical classes of which the majority of its metabolites are
only present in a few clusters. For example, the amino acids are only part of
cluster #9 and #12 with the exception of two amino acids. These two clusters
show a trend towards a down regulation. A similar observation can be done for
the acylcarnitines, which are predominant in the clusters #5, #6 and #11. Figure
shows the clustering of the extracellular logFCs with k = 7. Even though the
silhouette values of this clustering suggested a good clustering, its is a demanding
task to evaluate this result. The time courses of the metabolites within a cluster
do not look homogenous. The same applies for the composition of the clusters
regarding its composition of biochemical classes. The two tables and list
the assignment of metabolites to the clusters.
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k-Means clustering (correlation) for intracellular fold changes
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Figure 3.18: Overview of the k-means clustering with £ = 12 for the intracellular logFCs
based on correlation coefficient as the metric.
that there is a descending from a up to a down regulation. The piechart illustrates the
distribution of biochemical classes within the cluster.

The clusters are ordered in a way, so
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k-Means clustering (correlation) for extracellular fold changes
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Figure 3.19: Overview of the k-means clustering with k = 7 for the extracellular logFCs
based on correlation coefficient as the metric. The clusters are ordered in a way, so
that there is a descending from a up to a down regulation. The piechart illustrates the

distribution of biochemical classes within the cluster.
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Conclusion of the Clustering Analysis

We performed the k-means clustering with two different distance measures, i.e.
Euclidean distance and PCC. Regarding the intracellular measurements, the result
with Euclidean distance enabled to distinguish between the metabolites considering
their up or down regulation during the adipocyte experiment. There is one cluster
(#3) of which its metabolites vary between a logFC of 1 to -1. The results of the
PCC clustering was able to separate these metabolites and assign it to clusters of
other metabolites. This is due to the differences of the distance measures. PCC
takes the trend of a time course into account, whereas the Euclidean evaluates
whether the time courses are in the same range of values. But it is most likely, that
the fluctuations of these metabolites, that vary between 1 and -1, are due to noise
in the measurements. Therefore, it might be reasonable to exclude metabolites
that do not have an absolute logFC above 1 for future analysis.

The clustering of the extracellular measurements seems to be a demanding
task. Both distance measures were not able to provide a clustering which enables
a reasonable biological interpretation of the clusters. There could be two reasons
for that. First, several metabolites have a measured concentrations of 0 at various
measuring points. Our implementation of the logFC computation replaces these
0-values. Depending on the amount of 0-values, the time course of this metabolite
can be artificial to some extent as already described earlier. Second, the meaning
of the extracellular concentrations is not the same as for the intracellular ones.
This was already discussed in Section [3.1.4]

However, first conclusions can be drawn from the results of the clustering anal-
ysis. There is a fraction of diacyl phosphatidylcholines (cluster #1 and #2 of the
intracellular clustering result with Euclidean distance, see Figure and also
acyl-alkyl phosphatidylcholines that are strongly up regulated during the adipocyte
experiment. On the other hand, the major part of the amino acids is down reg-
ulated as it can be seen in the clusters #9 and #12 of the intracellular result
with PCC as a distance measure (see Figure [3.18). Before we discuss about the
biological meaning of these metabolite concentration changes, we perform an en-
richment analysis to further investigate the behaviour of the biochemical classes
or pathways in the next section to assess whether there are significant changes of
concentrations during the experiment.
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Biochemical class Number of metabolites
Acylcarnitines 35
Amino acids 19
Biogenic amines )
Phosphatidylcholines (PC aa) 31
Phosphatidylcholines (PC ae) 36
lyso-phosphatidylcholines 14
Sphingomyelines 10

Table 3.4: List of the biochemical classes and the corresponding number of metabolites
after quality control. These biochemical classes were used as metabolite sets for the
enrichment analysis. Table lists the metabolites of the biochemical classes.

3.2.2 Enrichment Analysis of Metabolite Changes

The clustering analysis provided groups of metabolites that behaved similar in
respect of a up or down regulation during the experiment. We follow another
approach with the enrichment analysis. The results of this analysis are described in
this section. The enrichment analysis is a method which investigates the behaviour
of certain metabolite sets. These sets are defined in a way such that the metabolites
of a set share certain characteristica, e.g. they belong to the same biochemical class.
The enrichment analysis tries to identify metabolite sets that show a bevhaviour
which is different in respect of the other metabolites. For this, several different
test variants are applied.

Hypergeometric Test with Biochemical Classes as Metabolite Sets

The first variant of enrichment analysis was performed for the intracellular mea-
surmenets as a hypergeometric test (see Section with the biochemical classes
(see Section [2.6.1)) of the metabolites as sets. To enable a comparison between the
intra- and extracellular environments, the group of 151 metabolites was used. This
group was the intersection of intra- and extracellular that passed the quality con-
trol. Among these metabolites, H1 was the only sugar. No matter how H1 behaves
during the experiment, this set with only one metabolite would have not shown a
signal in an enrichment analysis. Therefore, it was also excluded and the enrich-
ment analysis was performed with 150 metabolites. Table gives an overview of
the biochemical classes.

A t-test (see Section for every metabolite was applied for a pair of two
measuring days. The first measuring day was always day 0 and the second one
was one of the remaining eight, e.g. day 0 and 2 or day 0 and 4. A number of
1,200 t-tests (8 measuring day pairs x 150 metabolites) was computed. To account
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Fraction of significant t-tests (intracellular)
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Figure 3.20: A t-test for every metabolite was performed between a pair of measuring
days which is declared on the x-axis. The fraction of significant metabolites for each
metabolite set is shown. The metabolite sets are based on the biochemical classes.
Additionally, the fraction of all metabolites is shown (last row).

for multiple testing, the significance level o was adjusted with FDR (see Section
to 0.0154. Figure displays the fraction of metabolites per set which
showed a significant difference at the corresponding measuring day in comparison
to day 0. The group of amino acids and phosphatidylcholines (PC' aa) achieve
the highest fractions. It is also noteworthy, that the fraction of all metabolites
increases towards the end of the experiment.

The enrichment analysis itself was performed as a hypergeometric test (see Sec-
tion . The p-values are shown in Figure . We interpret these p-values
as an indicator of the enrichment of a certain metabolite set. This first hint can
then be followed with a further investigation of the metabolite set specific measure-
ments. The results of the hypergeometric test show that the sets of amino acids
and phosphatidylcholines (PC' aa) show the strongest signal over all measuring
days. This means, in comparison to all the other metabolites, an overwhelming
part of the metabolites of these sets are up or downregulated. A weaker signal is
observeable for the other group of phosphatidylcholines (PC ae) at day 18 and 28.
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Figure 3.21: The p-values of a hypergeometric test. A t-test for every metabolite was
performed between a pair of measuring days which is declared on the x-axis. Since FDR
adjusted the signifcance level a to 0, we applied the Bonferroni correction [3] to account
for multiple testing. (A) The biochemical classes were used as the metabolite sets. The
adjusted signifance level « is 8.93 x 107*. (B) The hypergeometric test was performed
with the GGM-based metabolite sets (see Section [3.2.2)). The adjusted signifance level
o is 5.21 x 1074,
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Figure 3.22: A Gaussian graphical model (GGM) of the metabolites based on the KORA
study. An edge between metabolites denotes a partial correlation coefficient of 0.18 or
greater. The metabolites are ordered and colored according to their metabolite set. The
set definition is based on a community detection algorithm and a manual curation step.
Metabolites that are not in the dataset of this experiment are colored white.

Hypergeometric Test with GGM-based Metabolite Sets

During adipogensis, metabolites of certain pathways might be up or downregu-
lated. Therefore, we also wanted to include pathway features for the metabolite
set definition. So far, this was not the case, because the biochemical classes only
consider the biochemical properties of the metabolites. At the moment, it is a
demanding task to obtain complete pathway annotations, because a mapping be-
tween the measured metabolites and resources with annotations are not accurate
or annotations are missing. Hence, we decided to use Gaussian graphical modeling
(GGM) as another approach, which has shown to be successful in reconstruct-
ing biological pathways from metabolomics data [I8]. This was also done with a
metabolite panel of Biocrates measurements.

The general method of the GGM-based metabolite set definition is described in
Section [2.6.1] Here, we describe the intermediate results in the definition process.
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The modularity clustering algorithm detected 15 communities in the GGM, which
is based on the blood serum samples of the KORA study (KORA GGM). Even
though, our dataset is based on cells that undergo adipogenesis and the KORA
study has samples of blood serum, we decided that we can use the KORA GGM,
because both datasets are based on human samples and the fundamental metabolic
pathways should be the same. These 15 communities were then mapped to the
150 metabolites of the adipocyte experiment. Since not every metabolite of the
KORA study is present in the group of the 150 metabolites due to a different
Biocrates metabolite panel or excluded metabolites in the quality control, the
mapping reduced the number of communities to 13. Vice versa, 23 of the 150
metabolites were not measured in the KORA study, e.g. some acylcarnitines, all
biogenic amines, several amino acids and glycerophospholipids. Hence, these 23
metabolites are not present in the GGM and were not assigned to a community.
Thus, a manual curation of these metabolites was performed. The last step was
the merging of two communities, that consist of only one amino acid, with the
community that contained all the other amino acids. At the end, there were 12
communities or metabolite sets, respectively. Table gives an overview of the
metabolite sets and its metabolites. Figure [3.22] shows the KORA GGM with
a coloring of the nodes according to the metabolite sets. As it can be seen on
the white nodes, it was not possible to map every of the 150 metabolites to the
metabolites of the KORA study.

Similar to Section [3.2.2] the enrichment analysis was performed as a hyperge-
ometric test with the 12 communities as the metabolite sets. The fractions with
significant different metabolites per set are shown in Figure and the result of
the enrichment analysis itself is displayed in Figure 3.2IB. Since the metabolite
set of the amino acids is excactly the same, the results do not differ from the result
with the biochemical classes as sets. Besides the amino acids, two sets, that con-
tain phosphatidylcholines (i.e. PC aa + PC ae + lysoPC #1 and PC aa + PC ae)
have the lowest p-values. This result is similar to the result with the biochemical
classes, but a finer distinction in the composition is possible. Additionally, this set
definition puts the results more in a pathway context.

Amino Acid Metabolism

The hypergeometric test with biochemical classes and the GGM-based definition
of metabolite sets showed an enrichment of the metabolite set amino acids. There-
fore, we take a look at the time courses of this metabolite set, which consists of 19
amino acids. Figure displays the logFCs of the amino acids in comparison to
the remaining metabolites. The set of amino acids can be separated into two main
groups. The larger group is composed of amino acids, that have a logFC between
-0.5 to -1.5 at measuring day 2 and 4. In the progression of the differentiation,
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Metabolites

Acylcarnitines #1

Co, C2, C3, C4, C5, C6, C8, C10, C10:1, C10:2,
C12, C12:1, C14, C14:2-OH, C16, C16:2, C18,
C18:1, C18:2

Acylcarnitines #2

C3-OH, C3-DC, C3:1, C4:1, C5-OH, C5-DC,
C5-M-DC, C5:1, C5:1-DC, C6:1, €9, C12-DC,
C14:1-OH, C16:2-OH, C16-OH, C18:1-OH

Amino acids

Gln, Gly, His, Met, Orn, Phe, Ser, Thr, Trp,
Tyr, Ala, Asn, Asp, Glu, Ile, Leu, Lys, Pro, Val

PC aa + PC ae

PC aa C30:0, PC aa C32:0, PC ae C30:0, PC
ae C34:0, PC ae C36:0, PC ae C38:1

PC aa

PC aa C30:2, PC aa C32:2, PC aa C32:3, PC aa
C34:3, PC aa C34:4, PC aa C36:5, PC aa C36:6,
PC aa C38:5, PC aa C38:6, PC aa C40:2,PC aa
C40:3, PC aa C40:4, PC aa C40:6, PC ae C38:0,
PC ae C42:0

PC ae #1

PC aa C36:0, PC aa C38:0, PC ae C30:1, PC ae
C32:1, PC ae C32:2, PC ae C34:1, PC ae C34:2,
PC ae C34:3, PC ae C36:3, PC ae C36:4, PC ae
C36:5, PC ae C38:5, PC ae C38:6

PC ae #2

PC aa C42:2, PC ae C38:2, PC ae C38:4, PC ae
C40:4, PC ae C40:5, PC ae C40:6, PC ae C42:4,
PC ae C42:5, PC ae C44:4, PC ae C44:5, PC ae
C44:6

PC ae #3

PC ae C40:1, PC ae C42:1, PC ae C42:3, PC ae
C44:3

PC aa 4+ PC ae + lysoPC #1

PC aa C32:1, PC aa C34:1, PC aa C34:2, PC aa
C36:1, PC aa C36:2, PC aa C36:3, PC aa C36:4,
PC aa C38:1, PC aa C38:3, PC aa C38:4, PC
ae C36:1, PC ae C36:2, PC ae C38:3, lysoPC
a (C14:0, lysoPC a C16:0, lysoPC a C16:1,
lysoPC a C17:0, lysoPC a C18:0, lysoPC a
C18:1, lysoPC a C18:2, lysoPC a C20:3, lysoPC
a C20:4

PC aa + PC ae + lysoPC #2

PC aa (C24:0, PC aa (C26:0, PC ae C30:2,
lysoPC a C24:0, lysoPC a C26:0, lysoPC a
C26:1, lysoPC a (C28:0, lysoPC a C28:1

PC + SM

PC aa C28:1, PC ae C40:2, SM (OH) C14:1,
SM (OH) C16:1, SM (OH) C24:1, SM C16:0,
SM C16:1, SM C18:0, SM C18:1, SM (22:3,
SM C24:0, SM C24:1

Biogenic Amines

Ac-Orn, Kynurenine, Met-SO, Spermidine,

alpha-AAA

Table 3.5: Overview of the 12 GGM-based metabolite sets with 150 metabolites.
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Figure 3.23: The intracellular logFCs of the amino acids (19 metabolites) are shown

in red. The major part of this metabolite set is down regulated. The logFCs of the

remaining metabolites is displayed in gray.

their logFCs decreases even further and the logFC varies between -2 to -4. The
amino acids of the second group have a small peak at day 2 with a logFC around
1. Afterwards, their concentration descreases and the logFC mainly fluctuates
around 0.

To summarize, a predominant part of the amino acids is down regulated over
the whole time span of the experiment. Hence, the hypergeometric test indicates a
significant enrichment of this metabolite set (p-values between 0.01 and 0.001 for
certain measuring days, e.g day 4 to 10). The pathways of energy generation and
oxidative stress are known to be induced during adipogenesis [25]. In her Diploma
thesis, Dorothea Portius figured the role of amino acids in such pathways out and
therefore, how the lowered concentrations of the amino acids can be explained due
to the adipogenesis of the cell. Thus, the results of the amino acid metabolite set
indicate that the enrichment analysis provides biological meaningful results.

Distribution-based Tests with GGM-based Metabolite Sets

So far, an enrichment analysis based on t-test results was performed. The problem
with that kind of test is the hard cutoff whether there is a significant difference
in the metabolite concentration between two measuring days. These results of the
t-test are the basis of the hypergeometric test. It could be the case that several
metabolites of a certain set scarcely miss this cutoff, but overall a major part of
the metabolites of this set show a tendency towards a up or down regulation. This
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metabolite set might be interesting, but the hypergeometric test would not show
a signal for this metabolite set. Therefore, we applied two different tests which
are based on the distribution of the logFCs (see Section for the fold change
calculation).

These two tests, Kolmogornov-Smirnov test (K-S test) and Wilcoxon rank sum
test (see Section , evaluate whether the distribution of two populations differ.
They were used to compare the logFCs of all metabolites against the logFCs of
the metabolite set. This was done for the metabolite set and the measuring days.
Day 0 was not included into the analysis, because the logFC of every metabolite
is 0 per definition. The p-values that the underlying distributions of these two
populations are the same are displayed in Figure [3.24]

The results of the two tests are quite similar, but the K-S test shows more often
a signal for a certain metabolite set. This could be due to fact, that the rank sum
test only compares the mean of the two underlying distributions, whereas the K-S
test uses the distance between the two distributions. Hence, the K-S test could be
more sensitive. In comparison to the hypergeometric test, both distribution-based
tests also show a clear signal for the set of amino acids over all measuring days
except day 2. Additionally, PC' + SM at day 6 and acylcarnitines #2 at day 18
obtain a low p-value. The latter are especially interesting, since they had very
high p-values for the hypergeometric test.

Weighted Enrichment Analysis with GGM-based Metabolite Sets

The weighted enrichment analysis (see Section is another method which
overcomes the hard cutoff issue of the t-test based hypergeometric test. Since the
values of the metabolites have to be comparable, we used the logFCs. Additionally,
we also applied the weighted enrichment analysis with t-values of t-tests. The
setup of the t-tests was similar to the one of the hypergeometric test (see Section
3.2.2), i.e. a t-test for a every metabolite and measuring day pairs with day 0.
Since the values have to be non-negative for the weighted enrichment analysis, the
absolute-values of the logFCs and t-values were used.

The results of the weighted enrichment analysis for both approaches, logFCs
and t-values, are shown in Figure Overall, the results of both variants are
very similar. Like all the earlier applied tests, both approaches obtain low p-values
for the set of amino acids over all measuring days. Besides that, the PC aa + PC
ae set shows a signal for day 10 to 28. This is especially the case in the results
of the t-values approach. There are more tests which obtained p-values in the
region from 0.2 to 0.5. Thus, it seems like that weighted enrichment analysis with
t-values enables a clearer distinction between a signal or no signal for a set than
the logFC approach.
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Figure 3.24: Results of an enrichment analysis with the GGM-based metabolite set
definition (y-axis). The distribution of the log(fold changes) of all metabolites were
compared to the distribution of log(fold changes) for the metabolites of a certain set. The
p-value describes the probability that the underlying distribution of the two populations
are equal. The Kolmogornov-Smirnov test (K-S test) (A) and the Wilcoxon rank sum
test (B) were used. The adjusted significance level a is 0.0029 (K-S test) and 0.0015
(rank sum test) after FDR.
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Figure 3.25: The p-values of a weighted enrichment anaylsis with a GGM-based metabo-
lite set definition. (A) The intracellular logFCs of the metabolites were used as the values
of the metabolites. The adjusted significance level « is 0.0015 after FDR. (B) A t-test of
the intracellular concentrations was applied for every metabolite between the measuring
day pair which is denoted on the x-asis. The t-values were then used for the weighted
enrichment analysis. The adjusted significance level « is 4.4 x 10~* after FDR.
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Conclusion of the Enrichment Analysis for Intracellular Measurements

Overall, four different methods were applied as an enrichment analysis for the
intracellular measurements. These methods are a hypergeometric test based on t-
test results, two distribution-based tests with logFCs and the weighted enrichment
analysis, which was performed with t-values and logFCs. Before we continue with
two further enrichment analysis (i.e. extracellular measurements and grouping of
measuring days according two differentiation phases), we want to recap the results
of the already applied methods. Additionally, we discuss how the interpretation
of the results can differ between the methods.

All performed methods showed the metabolite set amino acids to be enriched
at almost every measuring day. In Section [3.2.2] a further investigation of this
metabolite set and possible biological explanation was given. Besides the amino
acids, there were several metabolite sets with phosphatidylcholines that obtained
low p-values of the test statistics. The hypergeometric test with the biochemical
classes as metabolite sets gave the first indication towards an enrichment of diacyl
phosphatidcylcholines, since the PC aa metabolite set had low p-values (see Figure
). This metabolite set contains 31 diacyl phosphatidcylcholines and is one of
the largest metabolite sets. The use of GGM-based metabolite sets allowed a finer
distinction between the phosphatidylcholines and puts them also in a pathway
context.

The metabolite sets PC' aa + PC ae + lysoPC #1 and PC aa + PC ae were
two sets that obtained low p-values in several tests at different measuring days.
The logFCs are displayed in Figure A major fraction of the PC aa + PC ae
+ lysoPC' #1 set has an increased or decreased concentration. The up regulated
metabolites have higher absolute logFCs. On the other hand, a larger part of the
metabolites have a negative logFC. Overall, there is only a small fraction of this
metabolite set which is not altered in concentration. This set has 22 metabolites
and is the largest metabolite sets. It consists of 10 diacyl phosphatidylcholines,
3 alyl-alkyl phosphatidylcholines and 9 lyso-phosphatidylcholines. The length of
the fatty acids of the lyso-phosphatidylcholines varies between 14 and 20 carbon
atoms. The number of carbon-carbon double bonds ranges from 0 to 4 times. All
lyso-phosphatidylcholines of this experiment that have a fatty acid with 20 or less
carbon atoms are part of this set. The diacyl and acyl-alkyl phosphatidylcholines of
this metabolite set have at least one carbon-carbon double bond and the summed
number of carbon atoms for the two fatty acids is between 32 and 38.

The metabolite set PC' aa + PC ae contains 6 metabolites, i.e. 2 diacyl and 4
acyl-alkyl phosphaticylcholines. The sumed number of carbon atoms of its metabo-
lites varies between 30 and 38. For the exception of one metabolite (PC ae C38:1),
they all have satured fatty acids. The hypergeometric test and the weighted en-
richment analysis indicate an enrichment for the metabolite set PC aa + PC ae in
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Figure 3.26: The intracellular logFCs of the metabolite sets PC aa + PC ae + lysoPC #1

(A) and PC aa + PC ae (B) are shown in red. The logFCs of the remaining metabolites

are shown in gray.

the late stage of the experiment. The inspection of the logFCs (see [3.26B) shows
that four metabolites have a logFC below -1 at day 28 and one metabolite has
a logFC around 2. The logFC of the remaining metabolite fluctuates around 0.
So, the majority of this metabolite set is up or down regulated at the end of the
experiment.

To summarize these results, the tests for the enrichment analysis indicated
an enrichment of two sets which contain several phosphatidylcholines besides the
amino acids. Phosphatidylcholines are part of the phospholipid class, which form
all sorts of biological membranes within cells. The lipid composition determines
characteristics of these membranes like fluidity or alters the binding of additional
proteins, which can change the function of the membrane [34]. The lipid droplets
(LD), which store triglycerides and are formed during adipogenesis, consist of
phospholipids. The formation and size of these LDs may be influenced by the
phosholipids [24]. Additionally, the differential recruitment of LD proteins may
also be dependent on the phospholipid composition. Therefore, the changes of the
phosphatidylcholines could be necessary adaptions of the lipid composition for the
formation of LDs during adipogenesis.

The hypergeometric test is based on the t-tests which evaluate whether there is
a significant difference of the metabolite concentrations between the investigated
measuring day and the first measuring day. That is, the hypergeometric test only
takes into account that there is a significant change and does not consider whether
the change is positive or negative. Hence, a metabolite set which is enriched
according to the hypergeometric test has an enriched fraction of metabolites with
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Figure 3.27: Results of an enrichment analysis with the GGM-based metabolite set defi-
nition (y-axis). The distribution of the absolute log(fold changes) of all metabolites were
compared to the distribution of log(fold changes) for the metabolites of a certain set
with the Wilcoxon rank sum test. The p-value describes the probability that the under-
lying distribution of the two populations are equal. These p-values are not corrected for
multiple testing. The adjusted significance level « is 0.0021 after FDR.

a significant change. The weighted enrichment analysis uses absolute-values for
the evaluation. In this context, an enriched set means that the metabolites of this
set show a higher change than the remaining metabolites.

The results of the distribution-based methods have to be interpretated in dif-
ferent way. They compare the distribution of the set metabolites against the
distribution of all metabolites. The outcome of such a test is that the metabolite
set behaves different than the other metabolites. For this, the distribution-based
tests try to distinguish between an in- or decrease of the metabolite concentration.
This could be a problem for the Wilcox rank sum test. It uses the mean of the two
distributions to evaluate the difference. It could be the case that the positive and
negative logFCs balance each other, so that the metabolite set seems to behave
like the other metabolites even though the metabolites of this set are highly up
and down regulated. One could try to solve this issue with the use of absolute-
values, but it appears to be that the Wilcox rank sum test becomes to sensitive
(see Figure [3.27).

These differences in the test statements and interpretation can be illustrated
with the following investigation of the metabolite set acylcarnitines #2. The
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Figure 3.28: The intracellular logFCs of the metabolite set acylcarnitines #2 are shown

in red. The logFCs of the remaining metabolites are shown in gray.

distribution-based tests indicated an enrichment of this metabolite set. This was
totally in contrast to the results of the other methods. The logFCs of the metabo-
lites are displayed in Figure [3.28] As it can be seen, the logFCs of all metabolites
fluctuate around 0 during the whole experiment. There are two possible explana-
tions, why the distribution-based tests indicated an enrichment of this set. Both
explanations rely on the fact that the logFCs of the set metabolites fluctuate
around 0. First, the standard deviation of this distribution is lower than the one
of the distribution of all metabolites. Second, the mean logFC of all metabolites is
slightly below 0, whereas the mean logFC of this metabolite set is slightly above 0.
Even though this metabolite set behaves different than the other metabolites, it
is unlikely that this metabolite set is interesting for further research in respect of
adipogenesis, since there is no really change of metabolite concentrations. There-
fore, we are going to focus on the weighted enrichment analysis as the method in
the following sections.

Enrichment Analysis of the Extracellular Concentrations

Thus far, the enrichment analysis was performed for the intracellular concentra-
tions. In this section, we want to take a look at the results of the extracellular con-
centrations. The analysis was performed as a weighted enrichment of the logFCs
with the GGM-based metabolite set definition. The results are shown in Figure
[3.29. There is less accordance with the results of the intracellular environments.
For example, there are two sets (PC ae #1 and PC + SM) that obtain low p-
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Figure 3.29: The p-values of the weighted enrichment analysis based on the extracellular
log(fold changes) and GGM-based metabolite set definition.FDR adjusted the signifi-
cance level a to 0. Therefore, we used Bonferroni correction to account for multiple
testing [3]. The adjusted significance level « is 5.95 x 1074,

values for almost all measuring days. These sets did not have low p-values in an
enrichment analyis for the intracellular concentrations. In contrast, the sets that
showed up frequently in the intracellular results (e.g. amino acids or PC aa + PC
ae + lysoPC #1) have high p-values at this enrichment analysis. So, it seems like
that there is only a small connection of these two environments in respect of the
metabolite set behaviour. This is further investigated in Section (3.3

The logFCs of the two enriched sets are displayed in Figure[3.30, The metabo-
lite set PC' + SM contains all sphingomyelins of this dataset and two phosphatidyl-
cholines (PC aa C28:1 and PC ae C40:2). Three of these metabolites show a strong
upregulation at day 4 and maintain this level to the end of the experiment. These
metabolites are SM (OH) C24:1, SM (€22:3 and PC aa C28:1. The remaining
metabolites have logFCs that mostly vary between -1 and -2. A sphingomyelin
consists of sphingosine, a fatty acid and a phosphorylcholine as a head group.
It was shown in mice that the experession of the sphingosine kinase is elevated
during adipogenesis [12]. The sphingosine kinase facilitates the phosphorylation
of sphingosine to sphingosine 1-phosphate (S1P). Thus, the breakdown of sphin-
gomyelins to generate S1P could be an explanation of the lowered concentrations
of sphingomyelins in the adipogenesis.

The PC ae #1 set consists mainly of acyl-alkyl phosphatidylcholines (PC ae)
with a combined chain length between 30 and 38 carbon atoms, which are unsat-
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Figure 3.30: The extracellular logFCs of the metabolite sets PC' + SM (A) and PC ae
#1 (B) are shown in red. The logFCs of the remaining metabolites are shown in gray.

urated between one and six times. This metabolite set also contains two diacyl
phosphatidylcholines (PC aa C36:0 and PC aa C38:0). Overall, the logFCs of al-
most every metabolite is varying between 0 and -4, but there are two exceptions.
First, there is PC aa C38:0 which reaches its peak with a logFC of 2 at day 10. The
second exception is PC ae C34:1, which has the lowest logFCs of all metabolites
of this experiment. This is due to the fact that the measured concentrations of
PC ae C34:1 are 0 for all three experiments from day 6 to 28. This is also the case
for experiment #2 and #3 at day 4, so that experiment #1 is the only measuring
point with a value unequal 0. As described in Section 2.4.1] the measuring points
with a value of 0 are replaced with the lowest value which is unequal 0. Hence, the
logFC is equal for every measuring day starting at day 4 and the time course is
constant. We wanted to ensure that the set PC ae #1 is not enriched due to this
metabolite. Thus, we repeated the weighted enrichment analysis and excluded PC
ae C34:1. The metabolite set PC ae#1 still obtained low p-values.

The extracellular enrichment analysis was also carried out with the other tests.
The results for the weighted enrichment analysis with t-values, the K-S and the
rank sum test are included in the appendix (see Figure [D.2][D.3] and [D.4)). It
is remarkable that there are almost no similarities between these four results,
whereas the application of the tests for the intracellular measurements shared
similar results to some extent. This could be an indicator that it is a demanding
task to analyze the extracellular measurements. This could be due to the lack of
technical replicates or metabolites with a high fraction of measured concentrations
that are 0. Additionally, we also discussed the differences in the interpretation of
the extracellular measurements in Section [3.1.4l
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At the end, we also want to point out the results of the hypergeometric test
based on t-test for each metabolite. There was not a single metabolite which
obtained a p-value low enough that means of the two measuring days is considered
to be significant different. This can be explained with the small population size,
since there are no technical replicates for the extracellular measurements. Hence,
the t-tests were performed with three values per population. Since there are no
metabolites with a significant difference, the hypergeometric test did not show any
results.

Grouping of Measuring Days According to differentiation phases

As described in Section the adipogenesis can be divided into three phases.
These phases can be distinguished by lipid accumulation within the cell, GPDH
enzyme activity, mRNA expression levels of the key adipogenic transcription factor
PPAR~ and the mature adipocyte marker leptin. A metabolite ought to show a
similar behaviour at the measuring days within a certain differentiation phase.
Thus, we also performed a weighted enrichment analysis, for which the measuring
days were grouped according to one of the three differentionphases. The grouping
is as follows:

e Early phase: day 0 and 2 (early differentiation phase = no expression or
activity of any assessed marker)

e Middle phase: day 4, 6, 8, 10 and 14 (differentiation and continously in-
creasing lipid accumulation in lipid droplets = increase of PPARy mRNA,
GAPDH expression and lipid staining)

e Late phase: day 18 and 28 (mature adipocytes = lipid accumulation com-
pleted, GAPDH activity and PPAR~ levels reached maximal levels, leptin
expression detected)

The weighted enrichment analysis was performed with the GGM-based metabo-
lite set definition and the intracellular logFCs. The calculation of the fold changes
is adapted as described in Section[2.4.1} For example, the comparison between mid-
dle and late is based on the fold change of the middle to the late differentiation
phase. For the three possible comparisons, the p-values of the weighted enrichment
analysis are shown in Figure [3.31] As it could have been expected from the results
for the ungrouped measuring days, the metabolite set amino acids has low p-values
for the two comparison with the early phase. The fold changes between the early
and middle differentiation phase are visualized in a GGM (see [3.32]A). The com-
parison between the middle and late phase does not obtain a low p-value. This
is due to the fact that the concentration of the amino acids shows the strongest
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p-values of weighted enrichment analysis based on log(fold changes)
and grouped differentiationphases (intracellular)
Acylcarnitines #1 (19)
Acylcarnitines #2 (16)
Amino acids (19)
PC aa + PC ae (6)
PC aa (15)
PC ae #1 (13)
PC ae #2 (11)
PC ae #3 (4)
PC aa + PC ae + lysoPC #1 (22)
PC aa + PC ae + lysoPC #2 (8)
PC + SM (12)

Metabolite set

Biogenic amines (5)

Early - middle Early - late Middle - late

Compared differentiationphases

Figure 3.31: The p-values of the weighted enrichment analysis with grouped measuring
days according to their differentiation phase. The logFCs were calculated as described
in Section [2.4.1] so that the fold change describes the change between the first named
differentiation phase to the second named on the x-axis. The grouping of the measuring
days is as follows: day 0 and 2 are early, day 4, 6, 8, 10 and 14 are middle and day 18
and 28 are late. The metabolite sets are based on the GGM and denoted on the y-axis.
The adjusted significance level « is 0.004.
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decrease in the first days (day 2 to 8). After that, there is only a slight decrease
of concentration to the end of the experiment (see Figure . The majority of
the amino acids has a logFC between 0 and -1 (see [3.32B), which does not lead to
an enrichment by the analysis. These results allow the conclusion that the switch
of the amino acid metabolism (see Section occurs in the transition from the
early to the middle phase and is then maintained in the late phase.

The metabolite set PC aa has a low p-value for the comparison between the
middle and late phase. This set consist of 13 diacyl phosphatidylcholines with
combined chain length between 30 and 40 carbon atoms with 2 to 6 double bonds
per fatty acid chain. Additionally, this set contains two acyl-alkyl phosphatidyl-
cholines (PC ae C38:0 and PC ae C42:0). As it can be seen in the fold change
colored GGM, these two acyl-alkyl phosphatidylcholines are slightly lowered in
concentrations, whereas four of the diacyl phopsphatidylcholines have a logFC of
-1.5 or lower. In contrast to that, PC aa C40:3 and PC aa C40:4 show an increase
of concentration. Since PC aa C40:6 is one of the PCs which is lowered in con-
centrations, there could be a connection. Overall, there is enough change in both
directions (i.e. increase and decrease of concentrations), so that this metabolite
set is enriched according to this analysis. As described earlier (see Section ,
the change of PC concentrations may be explained with the remodelling within
the cell during the adipogenesis.

The representation of the fold changes between the phases in the GGM rep-
resents a lot of information very cleary. It can be used to find interesting group
of metabolites and as a starting point for further investigations. For example, the
GGM with the fold changes of the early to the late phase (see Figure|3.33|) exposed
an interesting pair of metabolites, PC aa (C38:3 and PC aa C38:4. They have a
very high partial correlation of 0.48, but PC aa C38:3 has a very low logFC of
-2.5, whereas PC aa C38:4 has a high logFC around 2.25 (see Figure [3.34). This
anti-correlation of these metabolites starts at day 4. A desaturation of one of the
two fatty acid chains of PC aa C38:3 could explain these time courses. This hy-
pothesis could be verified with another experiment which assesses the activity of
the corresponding enzyme(s).
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Figure 3.32: This is the same Gaussian graphical model (GGM) as in Figure The
nodes are colored with the fold change between the two differentiationphases which are
denoted in the top of a panel. Grey nodes are metabolites with a missing value after
the fold change calculation. Yellow nodes are metabolites that are not measured in this
experiment. Additionally, a t-test between the measuring points of these two phases
was performed for every metabolite. Metabolites with a significant difference between
the two phases have a diamond as the shape of the node. (A) The fold change between
the early (day 0 and 2) and middle phase (day 4, 6, 8, 10 and 14) are displayed. The
adjusted significance level after FDR is 0.0197. (B) The fold change between the middle
phase (day 4, 6, 8, 10 and 14) and late phase (day 18 and 28) are shown. The adjusted
significance level after FDR is 0.0086.
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Figure 3.33: This is the same Gaussian graphical model (GGM) as in Figure The
nodes are colored with the fold change between the early phase (day 4, 6, 8, 10 and 14)
and late phase (day 18 and 28) of differentiation. Grey nodes are metabolites with a
missing value after the fold change calculation. Yellow nodes are metabolites that are
not measured in this experiment. Additionally, a t-test between the measuring points
of these two phases was performed for every metabolite. Metabolites with a p-value <
0.0174 (adjusted significance level after FDR) have a diamond as the shape of the node.
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log(fold change) of PC aa C38:3 and PC aa C38:4

— PCaaC38:3
—— PC aa C38:4

log(fold change)

o 2 4 6 8 10 14 18 28

Day
Figure 3.34: The logFCs of PC aa C38:3 (blue) and PC aa C38:4 are displayed. Starting
at day 4, the logFCs of these two metabolites show an anti-correlation, which could be
explained with a desaturation of one fatty acid chain of PC aa C38:3.
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3.3 Analysis of the Intra- and Extracellular
Metabolite Dependency

The clustering analysis and the enrichment analysis were methods that seperately
dealt with the two environments, i.e. intra- and extracellular. In this section, we
want to investigate the exchange of metabolites between the intra- and extracel-
lular environment. For that, three different methods were performed to detect
metabolites, for which a connection can be observed between the intra- and extra-
cellular concentrations. Two of these methods are based on the Spearman’s rank
correlation coefficient (SCC) and the last one uses the t-values of Student’s t-test.
All methods were performed with the log(concentrations) of the 151 metabolites
that passed the quality control.

3.3.1 Global Correlation

The SCC describes the linear dependence between the intra- and extracellular
concentrations for a metabolite. The calculation was performed over 8 measuring
days (from day 8 to day 28) as described in Since it is always somehow
arbitrary to determine a cutoff, we decided to use the p-value to evaluate whether
the SCC is significantly different from 0. At a significance level « of 0.05, there are
16 metabolites with a significant SCC. A list of the metabolites is given in Table
. After multiple testing correction with FDR, o was adjusted to 6.19 x 1072,
which was only passed by one metabolite. This metabolite is glutamine, which has
a SCC of 0.74. The intra- and extracellular concentrations are shown in Figure
Increase or decrease of the concentrations are highly correlated between these
two environments, e.g. the increase from day 10 to day 28.

3.3.2 Window-based Correlation

Since it could be the case that an intra-/extracellular exchange only occurs during
a certain timeframe of the differentiation process (e.g. from day 4 to day 8),
the calculation of the SCC over all eight measuring days might not be the right
approach. Thus, we applied the computation of the SCC over a certain time
window of measuring days as described in[2.7.2] We performed this method with a
range of the windowsize ws between 2 and 5. Due to the window-based approach,
one metabolite has n (= 8 —ws+1) SCCs. Table|3.6|list the number of metabolites
that had a SCC with a significant difference from 0 for at least one window. In this
case, we used the Bonferroni correction to account for multiple testing [3], because
FDR always adjusted the significance level o to 0.
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Figure 3.35: The intra- and extracellular log(concentrations) of glutamine are shown.
The mean of the three experiments was calculated. The errorbars are plus-minus the
standard deviation of the experiments. Glutamine has a Spearman’s rank correlation
coefficient of 0.74. The concentration of glutamine is also plotted for the medium to
assess the effect of the medium on the extracellular concentrations.

Window size 2131415
Number of significant metabolites (uncorrected) | 32 | 37 | 32 | 33
Number of significant metabolites (corrected) | 0 | 0 | 0 | 0

Table 3.6: The number of metabolites that have a Spearman’s rank correlation coefficient
(SCC) which is significantly different from 0. The significance level « for uncorrected
was 0.05. It was corrected for multiple testing with the Bonferroni correction [3]. It
was used instead of FDR, because FDR always adjusted a to 0. The adjusted o were
as follows: a = 4.73 x 107> for a window size of 2 (ws = 2), 5.53 x 107> for ws = 3,
6.62 x 107° for ws = 4, 8.28 x 1075 for ws = 5.
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Figure 3.36: Venn diagram of the window-based SCC calculation with a varying win-
dowsize ws (from 2 to 5). The numbers denote the quantity of metabolites with a SCC
that is significant different from 0 (not corrected for multiple testing). The numbers in
the brackets denote the number of metabolites detected by this method. An overview of
the detected metabolites with the varying windowsize is given in Table The venn
diagram was created with VENNY [23].

To visualize the differences of the results between the windowsizes, a Venn
diagram was created (see Figure . Almost the half of the metabolites which
are detected by ws = 2 are not found by ws = 3. The major of these are also
not detected by one of the other two windowsizes. So, the result of ws = 2 is the
most different one in comparison to the others. 21 metabolites are shared by the
other three windowsizes, which is around two-thirds of their whole result. Table
[ELTl lists the detected metabolites of the different window sizes. A windowsize
of 3 is going to be used for further analysis. This windowsize seemed to be the
most reasonable considering the biological meaning of it which is the temporarily
exchange of metabolites between the environments.

So far, this method was based on a window that moved along the measuring
days. Similar to Section [3.2.2] we include information about the differentiation
phases in the analysis. Instead of a moving window with a rigid size, we defined
three windows according to the differentiation phases:

e Window for the early phase: day 2 and 4
e Window for the middle phase: day 6, 8, 10 and 14
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Figure 3.37: The log(concentrations) and Spearman’s rank correlation coefficient (SCC)
of proline are shown. (A) The intra- and extracellular log(concentrations) of proline
are displayed. The two red dashed lines indicate the window with the significant SCC.
(B) The SCC of the three windows for the differentiation phases. The errorbars were
calculated with bootstrapping with a repetition of 10,000 times. This approach might
not be accurate, since there are only two measuring days in the early and late phase.
The SCC of proline over all 8 measuring days is 0.60.

e Window for the late phase: day 18 and 28

In contrast to the definition of differentiation phases for the enrichment anal-
ysis, day 4 is part of the early phase. One can justify the assignment of day 4 to
both differentiation phases with the data of the differentiation markers. In this
case, the assignment of day 4 to the early phase was necessary. Since day 0 is left
out for the analysis of the intra-/extracellular exchange, day 2 would have been
the only measuring day in the early phase and a SCC calculation of this window
would have not been possible.

The predefined windows detected 20 metabolites that have at least one SCC
which is signifcantly different from 0 (at a significance level of 0.05). The detected
metabolites are listed in Table |3.7, There are 10 metabolites in the early phase, 7
in the middle phase and 4 in the late phase. But only one of the 21 SCCs is still
significant after the Bonferroni correction to account for multiple testing. This
metabolite is the amino acid proline. The log(concentrations) and the SCCs for
the three phases are shown in Figure [3.37 The middle phase has the significant
SCC with a value of 0.88. The SCC of the other two phases are with a value around
0.4 relatively high, but their p-values is not below 0.05 due to the low number of
used data points for the calculation of the SCC.
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t-values

PC aa C26:0
PC aa C28:1
PC aa C30:2
PC aa C32:1
PC aa C38:0
PC aa C38:4
PC aa C40:3
PC aa C40:4
PC ae C32:2
PC ae C38:2
PC ae C38:3
PC ae C38:6
PC ae C40:2
PC ae C40:4
PC ae C42:3
PC ae C42:5

Metabolites

2-4 4-6 6-8 8-10 10-14 14-18 18-28
Days

Figure 3.38: Representation of the t-values for 25 metabolites. A t-test between the two
denoted measuring days on the x-axis was performed for every metabolite. t-values above
the threshold 1.25 and below -1.25 are set to these two values. All t-values between -0.83
and 0.83 (this is two-thirds of 1.25) are colored white. This was done for readability.
A positive t-value means a decrease of concentration and a negative value an increase.
There are two lines per metabolite. The first one consists of t-values for the intracellular
environment and the second line the t-values of the extracellular one. Each of these
metabolites has at least two measuring day pairs at which the absolute t-value was
equal or above the threshold of 1.25 for both environments, e.g. C16 at the days 14 - 18
and 18 - 28.

3.3.3 t-Value Based

The t-value based method uses t-tests of log(concentrations) between adjacent
measuring days as described in Section [2.7.3] It seeks for metabolites that have at
least two so called qualified measuring day pairs. A measuring day pair consists of
the two days which are used to perform the t-test. It is called qualified, when the
absolute t-values of both environment are equal or above the threshold ¢ of 1.25.
In this test-setting, this t-value corresponds to a p-value around 0.22 to 0.28.

This method detected 25 metabolites, which are listed in Table [3.7, A repre-
sentation of the t-values of these metabolites is given in Figure[3.38] The majority
of these metabolites has at least one of the qualified measuring day pairs at the
first (day 2 to 4) or last (day 18 to 28). The most prevalent biochemical classes
among these metabolites are amino acids and phosphatidylcholines. This could
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Figure 3.39: The intra- and extracellular log(concentrations) of PC ae C38:2 (A) and
PC aa C30:2 (B). The line between two measuring days has a bigger width if the t-value
of the corresponding measuring day pair was above the threshold.

have been expected, since this analysis is based on changes of concentrations and
the enrichment analysis already showed that the metabolites of these biochemi-
cal classes undergo these changes. The log(concentrations) of two metabolites are
displayed in Figure [3.39. PC ae C38:2 shows a tendency towards a positive cor-
relation (see Figure [3.39/A), whereas PC aa C30:2 seems to be negative correlated
(see Figure . Interestingly, both of these metabolites were not detected by
one of the earlier applied methods.

There are several modifications possible of this analysis to increase its sensi-
tivity or specificity or to make it more suitable for a certain biological scenario.
So far, a threshold of 1.25 is used and at least two qualified measuring day pairs
are necessary. Obviously, one can in- or decrease the threshold to obtain more or
less metabolites that fulfill these criteria. It is also possible to add criteria for a
qualified measuring day pair or to alter the criteria. For example, the qualified
measuring day pairs have to be consecutive or that the change of both environ-
ments have to be the same, e.g. there is an increase of the intra- and extracellular
environment.

3.3.4 Conclusion of the Intra- and Extracellular Exchange

We applied three different methods to asses the exchange of metabolites between
the intra- and extracellular environment. At first, we want to compare the results
of these methods and then take a look at the metabolites and their biochemical
classes. For the methods which are based on the calculation of the SCC, we used
the detected metabolites which had a SSC significantly different from 0 before
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Global Window Preset window t-value
C3-DC (C4-OH) C12:1 C14:1-OH C16
Ala C14 C18:1-OH C8
Gln C16:2-OH C3-OH C9
Glu C18:2 C4:1 Glu
Pro C4:1 Gln Met
PC aa C28:1 Ch:1 Gly Phe
PC aa C38:0 C6 (C4:1-DC) Pro Pro
PC aa C38:1 Ala Tyr Tyr
PC aa C38:4 Gln PC aa C24:0 Val
PC aa C40:3 Glu PC aa C34:1 | PC aa C26:0
PC ae C34:1 Lys PC aa C34:4 | PC aa C28:1
PC ae C34:3 Phe PC aa C36:1 PC aa C30:2
lysoPC a C18:1 Pro PC ae C34:2 | PC aa C32:1
lysoPC a C24:0 Ac-Orn PC ae C34:3 | PC aa C38:0
SM (OH) C16:1 Met-SO PC ae C38:8 | PC aa (C38:4
H1 PC aa C26:0 PC ae C40:1 PC aa C40:3
PC aa C28:1 PC ae C40:6 | PC aa C40:4
PC aa C30:0 | lysoPC a C17:0 | PC ae C32:2
PC aa C32:2 | lysoPC a C18:1 | PC ae C38:2
PC aa C36:2 SM C22:3 PC ae C38:3
PC aa C38:0 PC ae C38:6
PC aa C38:1 PC ae C40:2
PC aa C40:2 PC ae C40:4
PC aa C40:3 PC ae C42:3
PC aa C40:6 PC ae C42:5
PC ae C34:1
PC ae C34:2
PC ae C34:3
PC ae C36:3
PC ae C38:3
PC ae C38:6
PC ae C40:1
PC ae C40:6
PC ae C44:6
lysoPC a C20:3
lysoPC a C28:0
SM (OH) C16:1

Table 3.7: This table lists the metabolites that were detected by one of the four methods.
Global describes the calculation of the Spearman’s rank sum correlation coefficient (SCC)
over all measuring days. Window is the window-based computation of the SCC. A union
of the results with a windowsize ws = 3 and ws = 4 is used. Preset window is the use
of three predefined windows according to the differentiation phases. t-value is the usage
of t-values of t-tests.



4 CHAPTER 3. RESULTS AND DISCUSSION

window (37) preset window (20)

global (16) t-value (25)

Figure 3.40: Four different analysis were applied to investigate the exchange between the
intra- /extracellular environment. The number of detected metabolites are shown in this
Venn diagram. Global describes the calculation of the Spearman’s rank sum correlation
coefficient (SCC) over all measuring days. Window is the window-based computation of
the SCC. A union of the results with a windowsize ws = 3 and ws = 4 is used. Preset
window is the use of three predefined windows according to the differentiation phases.
t-value is the usage of t-values of t-tests. The numbers in the brackets denote the number
of metabolites detected by this method. An overview of the detected metabolites is given
in Table The venn diagram was created with VENNY [23].

the correction for multiple testing. An overview of the results is given as a Venn
diagram in Figure [3.40] In the following, we are going to refer to the results with
the term which is denoted in the Venn diagram, i.e. global, window, preset window
and t-value. The window-based correlation method is present with two results.
One is based on the predefined windows according to the differentiation phases.
The second one uses a rigid moving window with ws = 3.

First of all, around two-thirds of the metabolites which were detected by global
are also found by window. This was expected, since both methods are based on
the calculation of the SCC. global is the same as the window-based method with
ws = 8. Overall, preset window has found 12 metabolites which are not part of
the window result. Further investigation revealed that 8 of these are found in
the window of the early or late phase. Both phases have a windowsize of 2 and
the comparison of the different windowsizes in Section already showed that
ws = 2 finds a lot of metabolites that are not detected by ws = 3. Hence, the
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preset window covers an aspect that window does not. In general, the overlap
between window and preset window is very small considering that they are based
on the same method.

There is one metabolite which is detected by every method. This metabolite is
proline. As it was the only metabolite with a significant p-value after Bonferroni
correction for the preset window method, its log(concentrations) were already dis-
played in Figure [3.37] Altogether, the overlap between the methods is very small.
window, preset window and t-value each have around 50% of metabolites which are
not detected by one of the other methods. t-value seems to be the most different
one. This is probably due to the fact that it is the only method which is not based
on the SCC.

There are several biological scenarios that could be explained with an exchange
between the two environments. For example, an intracellular decrease of concen-
tration and an extracellular increase could be due to a flux of the metabolite from
the intracellular environment to the extracellular one. Vice versa, with an intracel-
lular increase and an extracellular decrease, it could be other way. But there could
be also scenarios, in which there is such a strong intracellular increase which leads
to a flux out of the metabolite. So, the concentrations in both environments would
increase. These effects could be observed on varying time spans. One method
is unlikely to find all of these metabolites that undergo an remarkable exchange.
For example, Figure [3.39| shows two metabolites which were found by t-value, but
were not detected by the other methods. Their time courses are likely to indicate
an exchange between the two environments. Thus, probably every method has its
advantages and disadvantages. On the other hand, not every in- or decrease of
concentration is due to an exchange between the two environments. Metabolite
A can be catalyzed to another metabolite B, which would lead to a decrease of
A and increase of B. These observations are not in context with an exchange be-
tween the two environments. So, not every metabolite, which is detected by one
of these methods, might be target of an exchange. In conclusion, further investi-
gation of the detected metabolites is necessary to assess whether an exchange of
a certain metabolite occured. One possible approach could be the labeling of the
corresponding metabolites to make a possible exchange traceable.

We implemented all methods in a way that they compare the intracellular mea-
surements of a day with the corresponding extracellular measurements of the same
day, e.g. intracellular measurements of day 4 to the extracellular measurements of
day 4. One can argue that it takes some time until an exchange of metabolite man-
ifests in the measured concentrations. We assume that this possibility is unlikely,
because the exchange of metabolites occurs in such a small timeframe compared
to the time distances between the measuring points, so that the two or more days
are sufficient.
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At the end, we performed an enrichment analysis as a hypergeometric test
(see Section with the results of the different methods to evaluate whether
there is a group of metabolites enriched. Similar to the enrichment analysis in
Section we used the biochemical classes and GGM-based metabolite sets
as the sets for the hypergeometric test. For both ways of the metabolite set
definition, there was no set which was significantly enriched for any of the methods.
The lowest p-values were obtained by the amino acids and sets which contain
phosphatidylcholines. These are metabolites of biochemical classes which were
also detected by the enrichment analysis in Section [3.2.2] Even though there was
no significant enrichment of these metabolite sets for the exchange analysis, it
seems like that the changes of concentrations of these metabolites rely to some
extent on the exchange of metabolites between the two environments.



Chapter 4

Summary and Outlook

Obesity describes the excess of white adipose tissue (WAT) and is associated with
cardiovascular diseases and diabetes type 2. Therefore, it is a major health risk fac-
tor in the Western world and developing countries [14] [39]. Besides preadipocytes,
fibroblasts, nerves and diverse immune cells, WAT consists primarily of adipocytes
[7]. The differentiation of preadipocytes to mature adipocytes is called adipo-
genesis. This process was observed in three independent experiments, in which
preadipocytes differentiated to adipocytes. In this thesis, we analysed this metabolomics
data to gain further insights of adipogenesis. Before we were able to carry out the
analysis, we had to perform a quality control of the metabolites. Depending on
the environment, this resulted in the exclusion of 21 to 37 metabolites. Still, there
were metabolites with missing values, which were imputed with two methods. We
also showed that the medium of day 0 has an influence on the extracellular mea-
surements and discussed that the interpretation of the extracellular measurements
differs from the intracellular one.

At first, a clustering analysis was performed to get an overview of the data. It
was carried out with the Euclidean distance and Pearson product-moment corre-
lation coefficient (PCC) as the distance measures. The results of the Euclidean
distance helped us to find groups of metabolites with a similar regulation. Addi-
tionally, the clustering analysis already gave an indication that the amino acids
are down-regulated and that there are diacyl phosphatidylcholines (PCs) that are
strongly up-regulated.

An enrichment analysis was applied to perform a systematical analysis whether
there are groups of metabolites with significant changes. For this, the enrichment
analysis investigates the behaviour of biochemical classes or pathways. Regarding
the latter, we used a Gaussian graphical model (GGM) based on KORA blood
serum samples to include a pathway feature in the metabolite set definition [13|[1§].
The enrichment analysis itself was then performed as a hypergeometric test with
t-test results, two distribution-based tests on the log(fold changes) (logFCs) and

7
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weighted enrichment analysis with t-values and logFCs. The weighted enrichment
analysis appeared to be the most informative, because it does not have the issue
with the hard cutoff like the t-test based hypergeometric test. In addition, the
results of the distribution-based tests indicated an enrichment of metabolite sets
which were not interesting for our purpose, since there was no notable change in
their concentration during the whole experiment.

The results of the clustering analysis were confirmed by the enrichment analysis
to some extent. The amino acids showed a significant enrichment, which is due to
an down regulation of the concentrations, since they are involved in pathways of
energy generation and oxidative stress [25]. Depending on the applied test for the
enrichment analysis, several PCs were enriched. This is most likely due to their
participation of lipid droplets, which are formed during adipogenesis [24]. The
GGM was not only used to establish a metabolite set definition, but also to visu-
alize the logFCs of the metabolites for the differentiationphases. This integrated
analysis can be very useful for further research, since it contains a lot of informa-
tion, e.g. the fold change, whether the change is significant and the connections
to other metabolites.

We also examined whether there are metabolites that undergo an exchange
between the intra- and extracellular environment. There are various biological
scenarios that involve exchange. For instance, an increase of concentration in the
extracellular environment could be due to an flux out of metabolites. Depending
on the catalysed reactions within the cell, there could be an increase or decrease of
the intracellular metabolite concenctrations. This results in distinct time-courses.
The results of the applied methods indicate that one method is not able to detect
all metabolites and thus, several methods are needed. From the applied methods,
the t-value based approach and the local CC method with a windowsize of 3 seem
to be the most promising one.

Outlook

We applied a wide spectrum of methods to analyze this dataset. There are two
methods or variants that are similar to the already performed ones, which could
be also applied and might provide interesting results. The first one deals with
the metabolite set definition for the enrichment analysis. We used a modularity
clustering algorithm to detect modules in the GGM. Depending on the outcome
of the algorithm, every metabolite is assigned to one metabolite set. It is also
possible to perform a so-called soft or fuzzy clustering, in which the assignment of
metabolites to more than one cluster is possible, because many metabolites belong
to several biological pathways or processes. Therfore, it would be interesting to see,
how this changed metabolite set definition alters the outcome of the enrichment
analysis. The second additional method deals with the intra- and extracellular
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exchange of metabolites. This method analysis the trajectory of a metabolite which
would exist when plotting the intracellular concentration on one axis against the
extracellular concentrations on the other axis. Since this method is neither based
on the Spearman’s rank correlation coefficient nor on the t-values of a t-test, the
results would have been interesting to compare to other already applied methods.

It was a demanding task to interprete the results of the clustering and enrich-
ment analysis for the extracellular measurements. This might be due to different
meaning of the extracellular measurements due to the change of medium. So far,
we were not able to develope a method to recalculate either the extracellular or
the intracellular measurements in a way, so that their meaning is comparable. A
successful approach might also have an influence on the outcome of the analysis of
the intra- and extracellular exchange.

There are several machine learning methods (e.g. support vector machines,
ElasticNet, Lasso/Ridge Regression) which could be used to analyse the data.
The methods would help to identify metabolite that are likely to have the most
influence in the whole dataset. One could also include the data of the differentiation
marker to make this analysis more powerful. Overall, this would further help to
determine differentiation-specific pathways, which then could be used to perform
a modeling of metabolic pathways during adipocyte differentiation.

Adipogensis and the role of a adipocyte as an endocrine cell are complex mech-
anisms which are not yet completely understood. The results of this thesis can
be used as a starting point for further investigations to increase the knowlegdge
about these mechanisms. This knowledge is essential to reduce the impact of obe-
sity and the associated diseases as major health risk factor in the Western world
and developing countries.
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Appendix A

Methods and Materials

Table A.1: This table lists all 188 metabolites of the dataset. Metabolites that did not
pass the quality control, either for intra- or extracellular, are denoted with an asterisk
(*)-
Acylcarnitines
Co
C10
C10:1
C10:2
C12
C12-DC
C12:1
C14
Cl14:1 *
C14:1-OH
C14:2 *
C14:2-OH
C16
C16-OH
C16:1 *
C16:1-OH *
C16:2
C16:2-OH
C18
C18:1
C18:1-OH
C18:2
C2
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C3
C3-DC (C4-OH)
C3-OH
C3:1
C4
C4:1
Ch
C5-DC (C6-OH)
C5-M-DC
C5-OH (C3-DC-M)
Ch:1
C5:1-DC
C6 (C4:1-DC)
C6:1
C7-DC *

C8
C9

Amino acids
Ala
Arg *
Asn
Asp
Cit *
Gln
Glu
Gly
His
Ile
Leu
Lys
Met
Orn
Phe
Pro
Ser
Thr
Trp
Tyr
Val




Biogenic amines

ADMA *
Ac-Orn
Carnosine *
Creatine *
DOPA *
Dopamine *
Histamine *
Kynurenine
Met-SO
Nitro-Tyr *
OH-Pro *
PEA *
Putrescine *
SDMA *
Sarcosine *
Serotonin *
Spermidine
Spermine *
Taurine *
alpha-AAA
total DMA *

Diacyl phosphatidylcholines

PC aa C24:0
PC aa C26:0
PC aa C28:1
PC aa C30:0
PC aa C30:2
PC aa C32:0
PC aa C32:1
PC aa C32:2
PC aa C32:3
PC aa C34:1
PC aa C34:2
PC aa C34:3
PC aa C34:4
PC aa C36:0
PC aa C36:1
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PC aa C36:2
PC aa C36:3
PC aa C36:4
PC aa C36:5
PC aa C36:6
PC aa C38:0
PC aa C38:1
PC aa C38:3
PC aa C38:4
PC aa C38:5
PC aa C38:6
PC aa C40:1 *
PC aa C40:2
PC aa C40:3
PC aa C40:4
PC aa C40:5 *
PC aa C40:6
PC aa C42:0 *
PC aa C42:1 *
PC aa C42:2
PC aa C42:4 *
PC aa C42:5 *
PC aa C42:6 *

Acyl-alkyl phosphatidylcholines

PC ae C30:0
PC ae C30:1
PC ae C30:2
PC ae C32:1
PC ae C32:2
PC ae C34:0
PC ae C34:1
PC ae C34:2
PC ae C34:3
PC ae C36:0
PC ae C36:1
PC ae C36:2
PC ae C36:3
PC ae C36:4
PC ae C36:5



PC ae C38:0
PC ae C38:1
PC ae C38:2
PC ae C38:3
PC ae C38:4
PC ae C38:5
PC ae C38:6
PC ae C40:1
PC ae C40:2
PC ae C40:3 *
PC ae C40:4
PC ae C40:5
PC ae C40:6
PC ae C42:0
PC ae C42:1
PC ae C42:2 *
PC ae C42:3
PC ae C42:4
PC ae C42:5
PC ae C44:3
PC ae C44:4
PC ae C44:5
PC ae C44:6

Lysophosphatidylcholines

lysoPC a C14:0
lysoPC a C16:0
lysoPC a C16:1
lysoPC a C17:0
lysoPC a C18:0
lysoPC a C18:1
lysoPC a C18:2
lysoPC a C20:3
lysoPC a C20:4
lysoPC a C24:0
lysoPC a C26:0
lysoPC a C26:1
lysoPC a C28:0
lysoPC a C28:1
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Sphingomyelins

SM (OH) C14:1
SM (OH) C16:1
SM (OH) C22:1 *
SM (OH) C22:2 *
SM (OH) C24:1
SM C16:0
SM C16:1
SM C18:0
SM C18:1
SM C20:2 *
SM C22:3
SM C24:0
SM C24:1
SM C26:0 *
SM C26:1 *

Sugars

H1
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Figure A.1: The lipid accumulation and the cell count during the differentiation to
adipocytes.
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Figure A.2: The enzyme activity of Glycerol-3-phosphate dehydrogenase (GPDH) was
measured during the differentiation to adipocytes.
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Figure A.3: The fold change in mRNA levels of peroxisome proliferator-activated
receptor-y (PPAR#) and leptin during the differentiation to adipocytes.
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Figure A.4: This histogram shows the distribution of all measuring points of the data
set. The concentrations were logarithmised.
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A Normalized intracellular measurements 5
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Figure B.1: Represenation of the normalized intracellular measurements. The average
over the technical replicates was computed, so that there are three measuring points per
day and every measuring day has three columns. (A) 152 metabolites are normalized
with the z-score. The metabolites are ordered according to their biochemical classes. (B)
A hierachical clustering was performed with Euclidean distance as metric and complete-
linkage.
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A Normalized extracellular measurements
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Figure B.2: Represenation of the normalized extracellular measurements. The average
over the technical replicates was computed, so that there are three measuring points per
day and every measuring day has three columns. (A) 167 metabolites are normalized
with the z-score. The metabolites are ordered according to their biochemical classes. (B)
A hierachical clustering was performed with Euclidean distance as metric and complete-
linkage.
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Principle component analysis (extracellular)
average over experiments

Second principle component

28

-6 -4 -2 0 2 4 6 8 10 12
First principle component

Figure B.3: A principle component analysis of the extracellular measuring days. The
concrete day of the point is denoted as a number in the figure. The mean over the three
experiments was calculated, so that there is only one value per measuring day.

Second principle component
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Non-linear principle component analysis (intracellular)
average over experiments

28

-2 -1.5 -1 -0.5 0 0.5 1 15 2
First principle component

Figure B.4: A non-linear principle component analysis of the intracellular measuring
days without imputed values. The PCA was computed with the GP-LVM toolbox [20].
The concrete day of the point is denoted as a number in the figure. The mean over the
technical replicates and experiments was calculated, so that there is only one measuring

point per day.
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Clustering Analysis

Table C.2: Resulting clusters of the k-means clustering with extracellular logFCs and
Fuclidean distance as distance measure.

Cluster

Metabolites

Cluster #1

lysoPC a C28:0

Cluster #2

total DMA, PC ae C36:3, lysoPC a C17:0, SM
C16:0

Cluster #3

C5, C5-OH (C3-DC-M), C5:1-DC, Ala, Gly,
Lys, PC aa C24:0, PC aa C32:0, PC aa C32:1,
PC aa (C36:0, PC ae (C34:0, PC ae (C44:6,
lysoPC a C16:1, lysoPC a C18:2

Cluster #4

Co, C10:1, C12, C12-DC, C14:2, C14:2-OH,
C16, C16:1-OH, C16:2-OH, C18:1, C18:2, C3-
DC (C4-OH), C3-OH, C5-DC (C6-OH), C5-M-
DC, C5:1, C7-DC, C8, Asn, Cit, Gln, His, Ile,
Leu, Met, Phe, Pro, Thr, Trp, Tyr, Val, ADMA,
Ac-Orn, Creatinine, Histamine, Kynurenine,
Serotonin, Spermidine, PC aa C28:1, PC aa
C30:2, PC aa C32:2, PC aa C32:3, PC aa C34:4,
PC aa C36:1, PC aa C36:6, PC aa C38:5, PC aa
C40:4, PC aa C42:6, PC ae C34:3, PC ae C36:1,
PC ae C36:2, PC ae C38:0, PC ae C38:4, PC ae
C40:5, lysoPC a C16:0, lysoPC a C18:1, lysoPC
a C20:3

Cluster #5

PC aa C36:2, PC aa C36:4, PC aa C36:5, PC
ae C34:2
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Cluster

APPENDIX C. CLUSTERING ANALYSIS

Metabolites

Cluster #6

C10, C10:2, C12:1, C14, C14:1, C14:1-OH, C16-
OH, C16:1, C16:2, C18, C18:1-OH, C2, C3,
C3:1, C4, C4:1, C6 (C4:1-DC), C6:1, C9, Ser,
DOPA, PC aa C26:0, PC aa C30:0, PC aa
C34:1, PC aa C34:3, PC aa C38:1, PC ae C32:2,
PC ae C34:1, PC ae C36:4, PC ae C38:1, PC ae
C42:0, PC ae C42:1, PC ae C44:4, PC ae C44:5,
lysoPC a C18:0, SM (OH) C16:1, SM C18:1

Cluster #7

Asp, Met-SO, alpha-AAA, PC aa C34:2, PC aa
(C38:0, PC aa C38:3, PC aa C40:1, PC aa C40:2,
PC ae C30:0, PC ae C30:2, PC ae C38:2, PC ae
(C38:5, PC ae C40:1, PC ae C40:2, PC ae C42:3,
PC ae C42:4, PC ae C42:5, lysoPC a (C24:0,
lysoPC a C26:0, SM C16:1, SM C18:0

Cluster #8

PC aa C36:3, PC ae C36:5, PC ae C38:3, PC ae
C38:6, PC ae C40:6, lysoPC a C20:4, lysoPC a
C26:1, lysoPC a C28:1, SM (OH) C14:1

Cluster #9

PC aa C38:4, PC ae C30:1, PC ae C44:3

Cluster #10

PC ae C36:0

Cluster #11

PC aa (C38:6, PC aa C40:3, PC aa C40:6, PC
aa C42:0, PC aa C42:2, PC ae C40:4, lysoPC a
C14:0, SM (OH) C24:1

Cluster #12

Glu, Orn, PEA

Cluster #13

PC ae C32:1
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Metabolites

Cluster #1

Ac-Orn, PC aa C32:0, PC aa C32:2, PC aa
C32:3

Cluster #2

C16, ADMA, Histamine, PC aa C30:0, PC aa
C30:2, PC aa C34:2, PC aa C34:3, PC aa C36:2,
PC aa C42:6, PC ae C30:1, PC ae C30:2, PC ae
C32:1, PC ae C34:0, PC ae C34:2

Cluster #3

C10, C10:1, C10:2, C12, C12-DC, C12:1, C14,
C14:1, C14:1-OH, C14:2, C14:2-OH, C16-OH,
C16:1, C16:1-OH, C16:2, C16:2-OH, C18:1-OH,
C18:2, C2, C3-DC (C4-OH), C3:1, C4, C4:1,
C5, C5-M-DC, C5-OH (C3-DC-M), C5:1, C5:1-
DC, C6 (C4:1-DC), C6:1, C7-DC, Ile, Orn, Phe,
Pro, Ser, Thr, Val, Met-SO, Serotonin, Sper-
midine, alpha-AAA, total DMA, PC aa C24:0,
PC aa C26:0, PC aa C28:1, PC aa C34:4, PC
aa C36:0, PC aa C36:1, PC aa C36:4, PC aa
C38:0, PC aa C38:1, PC aa C38:3, PC aa C40:1,
PC aa C40:3, PC aa C42:0, PC aa C42:2, PC ae
C30:0, PC ae C32:2, PC ae C34:1, PC ae C34:3,
PC ae C36:0, PC ae C36:3, PC ae C36:4, PC ae
C38:4, PC ae C38:5, PC ae C40:4, PC ae C42:1,
PC ae C42:3, PC ae C42:4, PC ae C42:5, PC ae
C44:3, PC ae C44:6, lysoPC a C14:0, lysoPC a
C16:0, lysoPC a C17:0, lysoPC a C18:1, lysoPC
a C18:2

Cluster #4

Co, C18:1, C3, C3-OH, C5-DC (C6-OH), Ala,
Asn, Cit, GIn, Leu, Lys, Trp, Creatinine,
DOPA, Kynurenine, PC aa C32:1, PC aa C34:1,
PC aa C38:4, PC aa C38:6, PC aa C40:2, PC
aa C40:4, PC aa C40:6, PC ae C36:1, PC ae
C36:5, PC ae C38:0 PC ae C38:2, PC ae C38:3,
PC ae C38:6, PC ae C40:2, PC ae C40:5, PC
ae C40:6, PC ae C44:4, PC ae C44:5, lysoPC a
C16:1

Cluster #5

C18, C8, C9, Asp, Gly, PEA, PC aa C36:3, PC
aa C36:5, PC aa C36:6, PC ae C36:2, PC ae
C38:1, PC ae C40:1, PC ae (C42:0, lysoPC a
C18:0, lysoPC a C20:3

Cluster #6

Glu, His, Met, Tyr, PC aa C38:5

Table C.1: Resulting clusters of the k-means clustering with intracellular logFCs and
Euclidean distance as distance measure.
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Cluster Metabolites
C14, Tyr, ADMA, PC aa C30:0, PC aa C30:2,
Cluster #1 PC aa C32:2, lysoPC a C18:1
C10:2, C5:1, Val, PC aa C28:1, PC aa C32:1,
Cluster 42 PC aa C34:2, PC aa C42:2, PC ae C30:0, PC
ae C30:1, PC ae C30:2, PC ae C32:2, PC ae
(C34:0, PC ae C44:5, PC ae C44:6
C16, C3:1, C5-OH (C3-DC-M), C7-DC, DOPA,
Cluster #3 PC aa C26:0, PC aa C34:1, PC aa C36:0, PC aa
C36:1, PC ae C34:1, PC ae C34:3, PC ae C36:2
C4:1, C6:1, Serotonin, total DMA, PC aa C24:0,
Cluster #4 PC aa C42:0, PC ae C32:1, PC ae C34:2, PC ae
C36:3
Cluster #5 C10:1, Cl4:1, C181-OH, C18:2, C2, C3-DC
(C4-OH), C5, C5-M-DC, C5:1-DC, Pro
Cluster #6 C12, C12-DC, C12:1, C16:2, C6 (C4:1-DC), Phe
Cluster 47 C8, Creatinine, PC aa C34:4, PC aa C40:4, PC
ae C42:3, lysoPC a C16:0
PC ae C42:0, PC ae C42:4, PC ae C42:5, lysoPC
Cluster #8 a C16:1, lysoPC a C17:0
C0, C16:1-OH, C18, C18:1, C3, C9, Ala, Asn,
Asp, Gln, Glu, Gly, Leu, Lys, Met, Ser, Trp,
Cluster 49 Ac-Orn, Spermidine, alpha-AAA, PC aa C36:3,

PC aa C36:6, PC aa C38:5, PC aa C38:6, PC aa
C40:1, PC ae C38:1, PC ae C38:2, PC ae C40:1,
PC ae C40:2, PC ae C40:4, PC ae C40:5

Cluster #10

C14:2, C16-OH, Histamine, PC aa C32:0, PC
aa C32:3, PC aa C34:3, PC aa C38:1, PC aa
C40:2, PC aa C40:3, PC aa C40:6, PC ae C42:1,
lysoPC a C14:0, lysoPC a C18:0

Cluster #11

C10, C14:1-0OH, C14:2-OH, C16:1, C16:2-OH,
C3-OH, C4, C5-DC (C6-OH), Kynurenine, PC
aa C42:6

Cluster #12

Cit, His, Ile, Orn, Thr, Met-SO, PEA, PC aa
C36:2, PC aa C36:4, PC aa C36:5, PC aa C38:0,
PC aa C38:3, PC aa C38:4, PC ae C36:0, PC ae
C36:1, PC ae C36:4, PC ae C36:5, PC ae C38:0,
PC ae C38:3, PC ae C38:4, PC ae C38:5, PC ae
(C38:6, PC ae C40:6, PC ae C44:3, PC ae C44:4,
lysoPC a C18:2

Table C.3: Resulting clusters of the k-means clustering with intracellular logFCs and
Pearson product-moment correlation coefficient as distance measure.
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Metabolites

Cluster #1

C5, C5-OH (C3-DC-M), C5:1, C5:1-DC, Ala,
Gly, His, Lys, Val, PC aa C24:0, PC aa C32:1,
PC aa C32:2, PC aa C36:0, PC aa C36:1, PC
ae C30:0, PC ae C34:1, PC ae C36:4, lysoPC a
C14:0, lysoPC a C17:0, lysoPC a C18:0, lysoPC
a C20:3, SM (OH) C14:1, SM C18:0

Cluster #2

C10:1, C12-DC, C16:2, C5-DC (C6-OH), C5-
M-DC, Cit, Gln, Phe, Trp, Tyr, Creatinine,
DOPA, Kynurenine, alpha-AAA, PC aa C30:0,
PC aa C32:3, PC aa C38:0, PC aa C38:6, PC
aa C40:6, PC ae C32:1, PC ae C36:0, PC ae
C38:1, PC ae C38:5, PC ae C42:3, lysoPC a
C18:2, lysoPC a C28:0

Cluster #3

C10, Cl4, C14:1, C14:2, C16-OH, C16:2-OH,
C18:2, C3, (4, C6:1, C8, C9, Ile, Leu, Met, PC
aa C26:0, PC aa C34:2, PC ae C30:2, PC ae
C40:6, PC ae C42:4, PC ae C44:4, PC ae C44:6,
lysoPC a C24:0

Cluster #4

C16, C4:1, Orn, Thr, ADMA, PC aa C28:1, PC
aa C30:2, PC aa C34:4, PC ae C34:2, PC ae
C36:5, PC ae C44:5, SM C24:0

Cluster #5

C12:1, C16:1-OH, Asn, Asp, Glu, Ac-Orn, Met-
SO, total DMA, PC aa C38:1, PC aa (C38:4,
PC aa C40:1, PC aa C40:2, PC aa C42:0, PC aa
C42:2, PC ae C30:1, PC ae C32:2, PC ae C34:0,
PC ae C36:2, PC ae C38:0, PC ae C38:3, PC ae
(C38:6, PC ae C40:2, PC ae C40:4, PC ae C42:5,
lysoPC a C16:0, lysoPC a C26:1, SM C16:1, SM
C18:1, SM (22:3

Cluster #6

C10:2, C12, C14:1-OH, C14:2-OMH, C16:1, C18,
C2, C3-DC (C4-OH), C3-OH, C3:1, Ser, PC aa
(C32:0, PC aa C34:3, PC aa C40:3, PC aa C40:4,
PC aa C42:6, PC ae C36:1, PC ae C38:2, PC ae
C40:5, PC ae C44:3, lysoPC a C16:1, lysoPC a
(C28:1, SM C16:0

Cluster #7

Co, C18:1, C18:1-OH, C6 (C4:1-DC), C7-DC,
Pro, Spermidine, PC aa C34:1, PC aa C36:2,
PC aa C36:3, PC aa C36:4, PC aa C36:5, PC aa
C36:6, PC aa C38:3, PC aa C38:5, PC ae C34:3,
PC ae C36:3, PC ae C38:4, PC ae C40:1, PC ae
(C42:0, PC ae C42:1, lysoPC a C18:1, lysoPC a
C26:0, SM (OH) C16:1, SM (OH) C24:1

Table C.4: Resulting clusters of the k-means clustering with extracellular logFCs and
Pearson product-moment correlation coefficient as distance measure.
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Fraction of significant t—tests (intracellular)

Acylcarnitines #1 (19)
Acylcarnitines #2 (16)

Amino acids (19)

PC aa + PC ae (6)

PC aa (15)

PC ae #1 (13)

PC ae #2 (11)

PC ae #3 (4)

PC aa + PC ae + lysoPC #1 (22)
PC aa + PC ae + lysoPC #2 (8)
PC + SM (12)

Biogenic amines (5)

Metabolite sets

0.40 0.40

0.711 0.710 045 043  0.43 -

0-2 0-4 0-6 0-8 0-10 0-14 0-18 0-28
Days

Mean of all metabolites

Figure D.1: A t-test for every metabolite was performed between a pair of measuring
days which is declared on the x-axis. The fraction of significant metabolites for each
metabolite set is shown. The metabolite sets are based on the GGM. Additionally, the
fraction of all metabolites is shown (last row).

p-values of weighted enrichment analysis based on log(fold changes) (extracellular)

Acylcarnitines #1 (19) | 0.46 0.6 0.10

Acylcarnitines #2 (16) A<l 0.89 0.6¢
Amino acids (19)F 0.67 XL
PC aa + PC ae (6) ‘ 0.75
PC aa (15)
PC ae #1 (13)
PC ae #2 (11)
PC ae #3 (4)
PC aa + PC ae + lysoPC #1 (22)

PC aa + PC ae + lysoPC #2 (8)
PC + SM (12)

Biogenic amines (5)

2-4 2-6 2-8 2-10 2-14 2-18 2-28

Figure D.2: The p-values of the hypergeometric test based on the extracellular log(fold
changes) and GGM-based metabolite set definition (y-axis). A t-test was applied for
every metabolite between the measuring points of the two days that are denoted on the
x-axis. The outcome of the t-test was then used for the hypergeometric test.
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p—-values of K-S test (extracellular)

Acylcarnitines #1 (19)

Acylcarnitines #2 (16) 0.15
Amino acids (19) 0.07 0.07
PC aa + PC ae (6) 0.82 0.12
PC aa (15) 34 0.65 0.65 los
PC ae #1 (13) 0.02 0.79 05

PC ae #2 (11) . 002 0.2
PC ae #3 (4)

PC aa + PC ae + lysoPC #1 (22)
PC aa + PC ae + lysoPC #2 (8) L k g 0.88
PC + SM (12) ! 0.23 0.17
Biogenic amines (5) 0 ; ﬁ
4 6 8 10 14 18 28

Figure D.3: The p-values of the Kolmogornov-Smirnov test based on the extracellular
log(fold changes) and GGM-based metabolite set definition (y-axis).

p—values of rank sum test (extracellular)

Acylcarnitines #1 (19) " 4 0.96 0.97
Acylcarnitines #2 (16)

Amino acids (19) 0.21
PC aa + PC ae (6) 0.23 0.94 1 0
PC aa (15) 075 ) los
PC ae #1 (13) (EER 0.48 0.05 los
PC ae #2 (11) 0.13  0.02 @ 0.01  0.02
PCac#3 (4)F 031 0.68  0.37 Wil iX: RN

PC aa + PC ae + lysoPC #1 (22)| 0.69 S I VR o Xo NN s P RN W
PC aa + PC ae + lysoPC #2 (8) 0.79 0.78 0 0.24 0.58
PC + SM (12) f0h(-h R[] M‘OZ‘ 0.45 4088
Biogenic amines (5) F 014 m 097 0738 092 ,

4 6 8 10 14 18 28

Figure D.4: The p-values of the wilcoxon rank sum test based on the extracellular log(fold
changes) and GGM-based metabolite set definition (y-axis).
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104 APPENDIX E. INTRA- AND EXTRACELLULAR DEPENDENCY
ws = 2 ws =3 ws =4 ws =5
C10:1 C12:1 C12:1 C12:1
C12-DC C14 C14 C2
C14:1-OH C16:2-OH C14:1-OH C3-DC (C4-OH)
C18:1-OH C18:2 C18:1-OH C3-OH
C18:2 C4:1 C3-OH C4:1
C4:1 Ch:1 C4:1 Ch:1
Ch:1 C6 (C4:1-DC) Ch:1 C6 (C4:1-DC)
Ala Ala C6 (C4:1-DC) Ala
Gln Gln Gln Gln
Gly Glu Glu Glu
Ile Lys Lys Lys
Leu Phe Pro Pro
Lys Pro Ac-Orn Ac-Orn
Phe Ac-Orn Met-SO PC aa C26:0
Pro Met-SO PC aa C26:0 PC aa C28:1
Tyr PC aa C26:0 PC aa C28:1 PC aa C32:0
Ac-Orn PC aa C28:1 PC aa C32:2 PC aa C32:2
PC aa C24:0 PC aa C30:0 PC aa C34:1 PC aa C34:2
PC aa C32:2 PC aa C32:2 PC aa C34:2 PC aa C38:0
PC aa C36:1 PC aa C36:2 PC aa C34:4 PC aa C38:1
PC aa C40:2 PC aa C38:0 PC aa C38:0 PC aa C38:4
PC ae C34:2 PC aa C38:1 PC aa C38:1 PC aa C40:3
PC ae C34:3 PC aa C40:2 PC aa C38:4 PC ae C34:1
PC ae C36:3 PC aa C40:3 PC aa C40:3 PC ae C34:2
PC ae C36:4 PC aa C40:6 PC ae C34:1 PC ae C34:3
PC ae C38:3 PC ae C34:1 PC ae C34:2 PC ae C36:3
PC ae C40:6 PC ae C34:2 PC ae C34:3 PC ae C38:6
PC ae C44:6 PC ae C34:3 PC ae C36:3 PC ae C40:2
lysoPC a C17:0 PC ae C36:3 PC ae C38:6 lysoPC a C17:0
lysoPC a C18:1 PC ae C38:3 PC ae C40:2 lysoPC a C24:0
SM (OH) C16:1 PC ae C38:6 SM (OH) C16:1 | SM (OH) C16:1
SM C22:3 PC ae C40:1 SM C16:1 SM C16:1
PC ae C40:6 H1
PC ae C44:6
lysoPC a C20:3
lysoPC a C28:0
SM (OH) C16:1

Table E.1: This table lists the results of the windows-based correlation method to evalu-
ate the exchange between the intra- and extracellular environment. All listed metabolites
have atleast on Spearmans’s rank correlation coefficient that is significantly different from
0 according to their p-value. The p-values were not corrected for multiple testing. The
windowsize (ws) ranges from 2 to 5.
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