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EnglishmicroRNAs (miRNAs) are small, noncoding RNAmolecules which
posttranscriptionally regulate the expression of protein coding genes. They
specifically suppress gene expression by binding to the mRNA of the protein.
This binding leads to a lower translational efficients or a faster degradation
of the mRNA.

miRNAs are transcribed from DNA by polymerase II and underlie a similar
transcriptional regulation as protein coding mRNAs. Therefore its expres-
sion is also regulated by transcription factors (TF). To give insight into this
regulation, a network between miRNAs and the TFs regulating them could
be used.

Previously constructed networks either used experimentally data, as the
correlation between TFs and miRNA expression, or experimentally deter-
mined transcription factor binding sites (TFBS) to construct the network.
Also conservation between species was used.

We created a pipeline to predict a TF-miRNA network based on the
genome of the examined organism. Only the genomic sequence and the
genomic position is needed.

A comparison to a previously constructed network, using experimentally
validated data, suggest that our network has a high quality. Therefor this
network could be used to give more insight into the transcriptional regulation
of miRNAs.

DeutschmicroRNAs (miRNA) sind kurze, nicht Protein kodierende RNAs
die die Expression von Genen posttranskriptional regulieren. Sie binden an
deren Boten-RNA (mRNA) und hemmen dadurch die Translation oder sor-
gen für deren vorzeitigen Abbau. Dies führt zu einer geringeren Expression
des entsprechenden Proteins.

miRNAs werden, wie die Protein kodierenden mRNAs, von Polymerase II
transkribiert und unterliegen daher einer ähnlichen transkriptionallen Regu-
lation durch Transkriptionsfaktoren (TF). Um ein besseres Verständnis dieser
Regulation zu erhalten, könnte das erstellen eine Netzwerks helfen, dass alle
miRNAs die TFs zuordnet, von denen diese reguliert werden.

Die bis jetzt erstellten Netzwerke basierten entweder auf experimentell
erzeugten Daten, wie der Korrelation zwischen TFs und der miRNA Expres-
sion oder experimentell bestimmten Transkriptionsfaktorbindestelle (TFBS),
oder dem Vergleich zwischen verschiedenen Spezies.

Wir haben eine Pipeline entwickelt mit deren Hilfe sich TF-miRNA Netzw-
erke allein auf Basis des Genoms des untersuchten Organismus vorhersagen
lassen. Es wird nur die Gensequenz und die Positionen der bekannten miR-
NAs darauf benötigt.

Ein Vergleich zu einem existierenden Netzwerk mithilfe von experimentellen
Daten, zeigt dass unser Netzwerk eine höhere Qualität hat. Daher könnte es
tiefere Einblicke in die transkriptionale Regulation von miRNA erlauben.
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1 Introduction

Since their discovery in 1993 [1] microRNAs (miRNA) have revealed a new, previously
unknown level of gene regulation. miRNAs are short, non-coding RNAs, that downreg-
ulate the expression of proteins coding genes through binding to their messenger-RNA
(mRNA) [2].

A search in PubMed [3] for publications about miRNA since the last year (2012)
returns about 4500 results (search for all articles with “microRNA” or “miRNA” in the
title). Searching in the same time frame for publication about transcription factors
(TF), proteins also controlling gene expression, results in only about 2500 hits (search
for “transcription factor” or “tf” in the title). This shows the large efforts currently put
into the understanding of this relatively young field.

TFs are DNA binding proteins that control the transcription of DNA to mRNA [4].
They can increase or decrease the rate of transcription, which influences the number
of RNA present in the cell. This RNA can be mRNA, in which case the expressions of
proteins is influenced, but also other, not coding RNAs are controlled by this mechanism.
Therefor also the levels miRNA can be changed by TFs.

A current work of Yu et al. revealed the influence of miRNA and its transcriptional
regulation in human cancer [5]. Therefore the construction of better TF-miRNA net-
works seems to promise further insight into cancer and other human diseases, caused by
the deregulation of the cell.

Currently available networks are based either on experimental data [6, 7] or use the
conservation among different species to be able to search for large regions for transcrip-
tion factor binding sites [8] without getting too much false hits. As for most species,
except human, only few experimental data are available, this networks cannot be used
for them. The use of conservation restricts the miRNAs to the ones present in the
examined species.

Here we describe a pipeline that is able to predict TF-miRNA networks based only on
the genomic sequence, the genomic position of known miRNAs and information about
TFs of the examined organism. We applied methods for the search of transcription factor
binding sites (TFBS) on the promoter regions of the transcripts, from which the miRNA
is processed. To detect these promoters we use promoter prediction tools.

2 Background

2.1 What is microRNA

microRNAs (miRNA) are small, 21-25-length, RNAs which downregulate the expression
of protein coding genes [2]. This down regulation is achieved through a binding to the
3’ untranslated region (3’-UTR) of mRNA of the controlled gene.

The maturing of miRNAs starts with longer RNA called primary microRNA (pre-
miRNA). This pri-miRNA may contain several miRNAs. pri-miRNAs itself origin from
own transcripts or introns of protein coding genes. Own transcripts are, as the protein
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coding mRNAs, transcribed by polymerase II [9]. The distance between the start of this
transcript and the first pre-miRNA varies between a few bp up to several kp [9, 10].

From this pri-miRNA small stem loops are cut out by Drosha, a RNA cleaving protein
[11]. The results are RNAs with a length about 70 nucleotides. Dicer cuts this precursor
miRNAs (pre-miRNA) to the final mature miRNAs[12]. Together with several protein
this mature miRNAs form a RNA-induced silencing complex (RISC) [13].

This complex binds the 3’-UTR of the target mRNA. The binding is caused by a match
of the RISCs miRNA to the mRNA [1]. The reason for the silencing could be explained
through a slower translation or a degradation of the mRNA. Guo et al. showed that the
main reason for mRNA suppression is the destabilisation of the mRNA decrease [14]

As the target of the miRNA is bound through base pairing too the mRNAs, this could
be used to predict the targets of a miRNAs. For this an exact pairing to the seed, a seven
nucleotides long part of the mature miRNA, is searched in the 3’-UTRs of all mRNAs.
An example for such a method is TargetScan [15], which uses conservation between
species and is so able to relax requirements for the base pairing to a six nucleotides long
seed.

2.1.1 Transcriptional Regulation

Transcriptional regulation describes the regulation on the level of transcripts through
the initiation of transcription. This could reach from a change of the transcript number
to the activation or complete deactivation of the regulated transcript.

The level of transcription is influenced through transcription factors (TF) [16]. TFs
are DNA binding proteins that change the activity of polymerase. Some a part of the
initiator complex. This is a complex of proteins binding to the DNA which initiates
the binding of polymerase II and is therefor necessary for transcription to take place
[17]. Other TFs block the formation of the polymerase complex, which leads to a down
regulation of the transcription [7]. Also a methylation or demethylation of a histone
through the TF is possible. This changes the DNA folding and high-level chromatin
folding is known for suppressing the transcription [18].

There are two types of regions were TF binding change the rate of transcription, the
promoter and enhancer. The promoter is a region near the transcriptional start site
(TSS) and TF binding here influence directly the binding of the polymerase [19]. The
second type are enhancers. Enhancers may be several kb up- or downstream. It is able
to change the rate of expression as it is physical near the promoter through the folding
of the DNA [19]. Through this low physical distance to the TSS the TF binding can act
on the formation of the polymerase.

In the following we only are interested in TFs binding to the promoter. Enhancers are
ignored as it is difficult the find them, for their distance to the controlled gene on the
genome. How a TF influence the transcription and if it is a suppressor or a activators
is ignored.
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2.2 Databases

2.2.1 miRBase

miRBase is a database for known miRNAs [20, 21]. Mature sequences are annotated
with the genomic position of the particular pre-miRNA. The current version (19) contains
1600 precursors for human and 855 for mouse.

miRNAs need to be supported experimentally, a prediction alone is not sufficient, to
get annotated. Usually only the sequence of the mature miRNA can be determined. So
most of the pre-miRNA sequences stored in the database are based on hairpin structure
predicted around the detected mature sequence.

miRBase also provides names to newly detected miRNAs. They can be requested
after the publication of the paper supporting this miRNA is accepted.

Since 40 − 70% of the miRNAs are not cut from own transcripts, but from introns
of protein coding genes [22], known overlapping transcripts are also annotated. These
transcripts are stored in the database even if they are on the opposite strand. Information
about the direction and the type of the overlap are also stored in the database. The
type of the overlap can be “exon”, “intron”, the “5’-” or the “3’-UTR”.

As it is possible that several pre-miRNAs are processed from one pri-miRNA [9],
miRBase contains additional information for clusters of miRNAs. A cluster is defined
as set of miRNAs with a distance lower than 10 kb. The strand is ignored and therefore
miRNAs on the opposite strand are also annotated to be part of the cluster.

2.2.2 Ensembl

Annotation We used Ensembl [23] as resource for the genome annotation. The basis
for their annotation is a automatic pipeline using experimental data like cDNA and
manual annotation from the Havana[24] project.

The “Ensembl Automatic Gene Annotation System” uses primarily cDNA data and
known protein sequences to search for the chromosomal position of the corresponding
gene. After the position is found a alignment is used to determine the exact positions
of exons and introns. Additionally Expressed sequence tags (EST) are used. However,
this kind of data is less reliable [25].

The second resource for data is the Havana project . The Havana database contains
manual annotation for vertebrate genomes. All genes need evidence from ESTs, cDNA
or protein sequence to be annotated.

BioMart One possibility to access the data of Ensembl is BioMart [26]. It provides an
easy to use interface for data retrieval from the Ensembl databases, including Ensembl
Genes, which was used here. The attributes of interest can easily be retrieved and a
filter can be applied to restrict for certain entries. These can for example be a certain
region or only transcripts belonging to a certain gene.

For the R programming language[27] the biomaRt [28, 29] package, provided by Bio-
conductor, can be used as a simple interface. Queries to the databases are returned as
R data.frames and can directly be used for further analysis.
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2.3 Existing Networks

2.3.1 TransmiR

Wang et al. published a TF-miRNA network [6] based on experimental validated in-
teractions obtained from literature. They searched PubMed for papers containing the
keywords ‘microRNA’ or ‘miRNA’ and evaluated them. As result they obtained 243
TF-miRNA interactions between 82 TFs and 100 miRNAs from 83 papers.

The current version (TransmiR v1.2, 2013 February 19) contains 745 interaction for
17 different organisms. The vast majority of the stored interactions are for human (649).
Even for the important model organisms mouse and C. elegans just a few interactions
are annotated (31 and 37).

As this network is literature-based, it has a high quality and should contain only few
false-positive interactions.

They also annotated the type of interaction, which can be activation or suppression of
the respective miRNA, as well as the PubMed ID of the paper from which the knowledge
of the interaction was extracted. Additionally the network contains information about
diseases associated and biological functions for each miRNA.

The drawback of this approach is the low number of interactions that were validated
experimentally. So for the 1600 known miRNAs in human (miRBase release 19), only
175 are contained in the network. The most connected miRNA is regulated by 24 TFs
and only 15 have more than 10 connections.

Also the number of miRNAs differ between the different TFs. The highest number
of miRNAs regulated by one TF (MYC) is 45. This also shows that the network is
biased. Deregulation of c-Myc is associated with human cancer and therefore a promising
target in the development of new drugs [30]. A search for “myc[Title]” in PubMed
(2013, February the 19) results in 8105 in hits. On the other hand “foxp3[Title]”, a
TF important for the development of T-cells [31], interacts with only 4 miRNA genes
according to TransmiR. A PubMed search for this TF returns only 2147 papers. So it
is likely that the more one TF is in the focus of interest, the more connections will be
found and the higher the degree will be in literature based networks.

On the other hand, Wang et al. could show the conservation of one miRNA correlates
with the number of associated TFs based on this network [6]. They split the miRNAs in
a group of high degree and low degree, where each miRNA regulated by 3 or more TFs
was considered to be of high degree. miRNAs conserved in vertebrates and more distant
species were labelled as conserved, all others as non-conserved. The use of Fisher’s exact
test on these data returned a p-value of p = 0.02. This shows that conserved miRNAs
have interactions with more TFs than expected by change.

On the one hand this result could indicate that the number of interactions is not only
influenced by the interest in one particular miRNA or TF. On the other hand it could
be an artifact from conserved miRNAs playing a more central role in cell regulation,
which leads to more available information.
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2.3.2 PuTmiR

A other approach for the construction of a TF-miRNA network was applied by Bandy-
opadhyay and Bhattacharyya [8]. They used conserved TFBS determined by the use
of PWMs to find putative TF-miRNA interactions in human. Binding sites in both
directions, downstream and upstream of the miRNA, are considered to play a role in
the transcriptional regulation.

They retrieved the positions for the pre-miRNAs from miRBase, while miRNAs which
are not on the University of California Santa Cruz (UCSC) assembly [32] were ignored.
Especially miRNAs on the mitochondrial DNA and chromosomes, which are not part of
the standard assembly (like HSCHR6_MHC_COX), were excluded. For the remaining
miRNAs the regulatory sequences were defined as the 10 kb upstream region (USR) and
the 10 kb downstream region (DSR).

In order to get TF binding in these regions, TFBS from the UCSC Table Browser were
extracted by downloading data of conserved sites and conserved TFs from the TFBS
conserved track of the human genome. The combination of this two data sets with the
previously defined regulating regions results in two lists of TF-miRNA interactions. One
for the USR and one for the DSR. As this list contains also the distance of the TFBS
to the miRNA, it is possible to get only TFs in a smaller USR or DSR as the predefined
10 kb. It is also possible to use only one of the resulting lists, and therefore only TFs in
the USR or DSR of the miRNA.

The conserved TFBS in the UCSC database are defined as the positions for which
a common binding site is predicted in the three species human, mouse and rat. The
matrices are taken from the public part of the TRANSFAC database [33]. If the score
from one PWM at a certain position exceed a threshold for this species it is considered
as a putative TFBS. The threshold is defined using the z-score of this matrix in this
species as being 1.64 standard deviations over the mean.
The idea behind the use of only predictions conserved in all three species is that TFBS

with a biological role are more likely to change only slightly between the species as cause
of the evolutionary pressure. However, regions for which PWM hits are random should
change between the species by mutation, as they are under no constraints.
The advantages of using TFBS prediction over searching the literature for known

interactions is the higher number of detected interactions and that there is no bias for
TF or miRNA being more in the focus of interest. However, the match of a PWM
does not always predict a real influence on the miRNA as it could appear randomly.
This is unlikely by using only conserved binding sites, but it is still possible that this
function disappeared in human and the found position is just a relict of a previous
existing regulation.
A regulatory network can be defined as bipartite graph with TFs on the one and

miRNAs on the other side, where an edge symbolises an interaction. In theses graphs
the degree of the miRNAs usually follows a power law distribution [8]. For this most of
the miRNAs are regulated by only a few TFs and the number of miRNAs regulated by
many TFs is low. Also they found more TFBS in the DSR as in the USR.
From the 721 extracted pre-miRNA from miRBase, TF interactions are detected for
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666. The current version of miRBase contains only 855 and 466 pre-miRNAs for Mus
musculus and Rattus norvegicus, where only 218 orthologous miRNAs exist in all three
species (only the number of the miRNA was used for this comparison, so hsa-miR-548a-
1 and hsa-miR-548i-3 would be considered as the same what also reduced the number
of miRNAs in the network to 490, which is still twice as much). The conservation of
a TFBS indicate that regulated element still exists in all three species, otherwise they
would disappear by random mutation. Therefore this 666 miRNA should also be found
in mouse and rat.

This leads to two explanations.

1. The miRNAs are conserved in all three species and some are simply not annotated
in miRBase

2. The conserved TFBS found for miRNAs not conserved in all three species regulate
other genes or miRNA. This seems likely because of the large size of the searched
sequence. This also leads to the conclusion that some TFBS for the conserved
miRNA may not regulate them.

2.3.3 ChIPBase

An other method to get information about gene regulation is the use of chromatin
immunoprecipitation (ChIP) based techniques [7]. ChIP uses antibodies to detect DNA
binding site of a certain protein. By using antibodies against TFs it becomes possible
to get in vivo information about TFBS.
The goal of chromatin immunoprecipitation is to detect the binding sites of DNA

binding proteins. For this purpose, snippets of DNA binding the protein of interest are
purified and examined. In the case of ChIP-Seq, next generation sequencing methods
are applied to get the position of the bindings.

The first step in ChIP is the in vivo crosslinking of the DNA binding proteins to
the DNA by the use of formaldehyde. After extracting the chromatin from the cells, it
is fragmented by sonication to pieces of a few hundred base pairs length. Antibodies
against the examined protein are used to enrich for DNA fragments that binds these
proteins. After the cross-links are removed, the DNA is isolated and can be examined
[34]. One method is to sequence this DNA snippets and map the results to the genomic
sequence. In this way the location of the protein binding sites can be determined.

Using antibodies against a TF, the resulting mapping shows TFBS for this TF. It has
to be noted that this experiments do not reveal all TF bindings occurring in nature. As
transcription depends on the cell type and the growth conditions, not all possible TFBS
will be detected by one single experiment. Experiments with different conditions and
cell types are therefor needed to find all existing bindings.

Using data from ChIP-Seq experiments, Yang et al. constructed a network for the
transcriptional regulation of large non-coding RNAs (lncRNA) and miRNAs [35]. As we
are interested in TF-miRNA interactions, in the following only the part about miRNA
will be discussed and lncRNAs will be ignored.

8



As for PuTmiR, the starting point was the miRNA annotation of miRBase. Intronic
pre-miRNAs were clustered into groups that are supposed to be transcribed together.
The TSS from this cluster was supposed to be the TSS of its first pre-miRNA. For
intronic pre-miRNAs, the TSS of the host gene was used.

The regulating domain was defined as the region 30 kb up- and 10 kp downstream of
the TSS. This large region was chosen because the distance between the pre-miRNA can
vary from a few tens of bp upstream, as 59 bp for miR-23a∼27a∼24-2 [9], and several
kb upstream, as more than 30 kb for miR-34a [10].

Every TFBS that intersects with this part of the sequence was considered as TF
regulating the miRNAs of the cluster or the host gene. These TFBS were extracted
from 543 ChIP-Seq peak data sets, including ENCODE [36] and modENCODE [37, 38].
This data sets contained information for 252 TFs.

Data can be downloaded from http://deepbase.sysu.edu.cn/chipbase/ for six species,
including human, mouse, D. melanogaster and C. elegans. The size of the regulating
region can be set from 30 to 5 kb up- and from 10 to 1 kb downstream. As the number
of available ChIP-Seq experiments varies between species, for example 329 for human
but only 37 for C. elegans, also the number of available TF varies. For human 119 and
for C. elegans 26 TFs are part of the network.

ChIP-Base is not limited by the number of experiments in the same amount as Trans-
miR. It also needs an experiment for every TF and cell condition, but for every miRNA
it is tested if a TFBS is in its regulating region. Also the number of falsely assigned
binding sites should be better, as they are validated by experiments. Also TFBS not
conserved in different species are found, in contrast to PuTmiR, as only information of
the investigated species is needed.

But it has similar problems as PuTmiR. Only binding sites of TFs in the neighbour-
hood of the miRNA are detected. No information is available if this TF changes the
expression of this miRNA and what the type of regulation, suppression or activation, it
is.

An other problem is the availability of data sets needed for generating the network.
For every TF experimental data for different conditions and cell types should be available
to construct the network. Currently it seems as only for human the number of available
ChIP-Seq is high enough, through the work of ENCODE.

2.4 Promoter and TSS Prediction

2.4.1 miRStart

MiRStart [39] is a database of predicted TSS for human miRNAs. It was published by
Chien et al. in 2011. The idea was to use not only the sequence in the upstream region
of the miRNA, but to use also data from high-throughput experiments, in order to find
the TSS. Therefore cap analysis gene expression tag (CAGE tag), TSS Seq libraries and
H3K4me3 data were used.

This also shows the drawback of the approach. Large amount of additional data are
needed. CAGE tag data is available for human and mouse from the FANTOM project,
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but data may lack for other model organisms.
CAGE tag [40] and TSS seq [41] are both techniques to get the position of TSS from

capped proteins. The idea is to sequence full length cDNA. Full length cDNA contains
all bases of the RNA from which it was transcribed. Therefore mapping of this sequences
to their genomic position reveal the real start of the transcript and so the TSS.

To isolate the cDNA in both cases the CAP of the RNA is used. As pri-miRNAs are
transcribed by polymerase II they are capped, as mRNAs. Therefore this methods also
reveals the TSS of pri-miRNAs.

The Functional Annotation of the Mammalian Genome 4 (FANTOM) project pro-
duced 29 million CAGE tags for 127 human RNA samples from the THP-1 cell line [42].
The goal of this project was to determine the transcription of THP-1 cells under different
condition, like stimulation with phorbol myristate acetate (PMA) and the knockdown
of 52 TF. Especially deepCAGE tag sequencing was used to determine the TSS under
different conditions.

The TSS seq data originate from DBTSS [43]. DBTSS contains TSS verified by TSS
seq. From this database MiRStart uses 316801241 sequences from eight human tissues
and six cell lines.

The second type of data used were histone modifications, as they are known to in-
fluence the transcription of genes. This could give hints on the position of genes and
therefore the start of their transcript. As the trimethylation of lysine 4 from the H3 his-
tone (H3K4me3) is associated with the position of the TSS [44], data of this modification
was used for the construction of this database.

The data from the histone modification was extracted from experiments performed
by Barski et. al [44]. They determined positions of several kinds of histone methylation
in CD4+ T cells using ChIP-Seq. The method is the same as described above for the
identification if TFBS. The difference is the use of antibodies against modified histones
instead of TFs. The mapping of the sequence in this case shows which part of the genome
is methylated in the investigated manner. For H3K4me3 the experiments returned 11.3
million tags.

To predict TSS from this data, a support vector machine (SVM) was used. In Order
to train a SVM a positive and a negative test set are necessary. For the positive set 7286
protein coding genes with experimentally verified TSS were used. Only genes with just
one TSS were used. The negative set was constructed using sequences 10 kb up- and
downstream of this TSSs.

To test the performance of the TSS, cross-validation was applied. According to this
tests, the SVM determined the TSS of the protein coding genes with a sensitivity, speci-
ficity, accuracy and precision of about 90% in each case. The SVM was then used on
the 50 kb upstream region of the pre-miRNAs to predict their TSS.

2.4.2 Eponine

Eponine [45] is a prediction tool for TSS of protein coding, eukaryotic genes. It uses
PWMs to model certain features near the start site like the TATA-Box or CpG-Islands.
As the distance of this features can vary, a simple big PWM cannot be applied. For this
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reason the distribution of the distance TSS to feature is used to check if the features are
in the correct position.

The training used a mixture of a relevance vector machine and Monte Carlo sampling.
Feature like TATA-Boxes or CpG-Islands were not defined a priori, but training on
known promoter sequences revealed PWMs recognising this features.

2.4.3 Promoter2

Promoter2 [46] is a program to predict promoters using neuronal network (NN). A set
of NNs is run over the examined sequence. Each NN takes a window of 6 nucleotides
and, for all but the first one, results from the previous networks as input.

The NNs are trained using a simple genetic algorithm. The training set consisted of
200 bp length sequence, 100 promoter and 100 control. For the training the quality of
the NNs was rated by their ability to distinguish between this two sets.

2.4.4 Ep3

In difference to the methods described above, Ep3 [47] does not need any training data
and therefor no set of experimentally found promoters. It is based on DNA properties as
GC content, denaturation values or duplex free energy, that are assigned using tables for
each di- or trinuleotide. This tables on the other hand are created using experimental
data, but are universal for different species.

The prediction is based on windows, for which the average of each property is cal-
culated. Based on the overall distribution of this values promoters a predicted for all
windows exceeding a certain z-score. To get this overall distribution the whole genome
sequence is needed and therefor the program is applied on the whole genome. The results
are a list of all windows that were classified as putative promoters.

2.4.5 PromoterInspector

PromoterInspector [48] also predicts promoter regions. This method is based on IU-
PAC strings containing wild cards (“N”). Using the IUPAC strings classifiers are build,
distinguishing between promoter and non-promoter regions. For constructing these, a
training set is used. Three classifiers are used for which the non-promoters parts are
“exon”, “intron” or “3’-UTR”. Only if all three assign the sequence to the class “promoter”
it is considered as such.

To run the program on a large sequence a sliding window approach is used. Each
window is presented to the classifiers and if the number of “promoter windows” in on
region is exceeded it is considered as promoter region.
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2.5 TFBS search

2.5.1 PWM

To find TFs regulating a gene, binding sites in its promoter are searched. As not all
sequences a TFs binds are exactly the same, the simple search for a sequence is not
possible. Also allowing several mismatches does not solve the problem. If the number of
allowed mismatches is to low, too less binding sites are found. If it is to high, to many
sites are predicted that do not bind the examined TF [49].

The common solution for this problem is the use of position weight matrices (PWM).
The idea is to use a score for each position and possible nucleotide. To test if a sequence
matches the PWM, for each position the score of the nucleotide is read from matrix.
The overall score is determined by adding this values. If this score exceeds a certain
threshold it is counted as match.

At a conserved site the score for the consensus nucleotide is high and for all other
nucleotides are low. Therefor a non consensus nucleotide in such a position would lead
to a drastic lower overall score. In a less conserved position, on the other hand, the score
for all nucleotides a nearly the same. As a result a certain nucleotide at such a position
has only little influence on the score of the whole match.

To search such PWM matches and calculate their score the Biostrings package [50]
can be used. It contains function to calculate these score matrices from count matri-
ces. Based on this PWM matches can be search on sequences and their score can be
calculated.

2.5.2 Transfac

To use PWMs, as described above, count matrices are needed. Transfac [33] is a database
containing matrices for TFs of different species. Its basis is a collection of DNA sites
and TFs that bind to them. The sites need to be experimentally verified to be stored in
the database.

Matrices for the TFs are calculated based on these sites. The matrices are stored
separately. For each TF the corresponding matrices are annotated. It is possible that
no matrix exists, but also different matrices could be assigned to one TF.

2.5.3 ModelInspector

The method of using PWMs to predict TF described above has the problems that most
of its predicted site will not be functionally, unless the score is really high [16].

To improve the prediction, modules of TF can be used instead of single ones. The
idea behind this approach is that TFs interact and therefor certain TFs appear with a
higher probability in a certain distance [16].

The combination of ModelGenerator and ModelInspector [51] can be used for this type
of analysis. ModelGenerator create models consisting of different elements in a certain
order. The elements could be matrix matches, hairpins, repeats or several other DNA
properties. As TFs are search here, matrix matches are from special interest. Based on
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a set of the elements with their order and a set of training sequences ModelGenerator
generates a model. This model contains information about the distances of the elements
and which are necessary to identify the model.
ModelInspector is able to search this model on sequences. Using it with model for TF

modules it can search promoters for TFs binding them.

2.6 miRNA targeting Signalling Pathways

Normally one miRNA has many different target mRNAs [15]. Therefor a miRNA can
have more than one target in a signalling pathway. This would lead to the conclu-
sion that it has a influence on this pathway. To find such pathway for a given set of
miRNA Kowarsch et. all developed miTALOS [52]. As basis for the pathways the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [53] and the National Cancer Institute
Pathway Interaction Database (NCI PID) [54] are used.
miTALOS uses different miRNA target prediction tools to identify signalling proteins

which expression is probably influenced. For each pathway a enrichment score and
a proximate score are calculated. The enrichment score is the relation between the
signalling proteins hit by the miRNA to the number expected by ration of proteins
targeted by this miRNA. The proximate score describes distance between the influenced
signalling proteins. The closer they are, the more probably is a effect on this pathway.

Additionally p-values are calculated for the two properties described by the scores.
Based on these p-values and scores relevant pathways are selected. In the default options
a Proximate score over 1 and a p-value below 0.05 are used as threshold.

3 Methods

To construct the TF-miRNA network, first a list of all known pre-miRNAs with their
genomic position is need. From the position we determine the host gene of intronic
miRNAs and predicted the TSS for exonic miRNAs. After this step, the TSS for each
miRNA is determined and based on this information the promoter region is predicted.
In a final step TFBS are searched in this promoter, in order to find TFs regulating the
corresponding miRNA (see Figure 1).

3.1 Extraction of miRNA positions

3.1.1 miRBase

We extracted a list of all known miRNA ids for the examined species using themirbase.db
package [55]. First we examined the genomic context as annotated in miRBase. As the
received list contains overlapping genes from both strands, transcripts being on the
opposite strand are omitted. They are marked by a ‘−’ in the contextOverlapSense
field.

For all transcripts, ignoring the transcript_source, we looked up the gene position from
Ensembl using biomaRt. It is possible to look up all entries as transcript ids cannot be
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Figure 1: General flow of the pipeline. miRNAs are read from miRBase and grouped
into clusters. A cluster is a set of miRNAs that is expected to be transcribed
together on one pri-miRNA. A intronic cluster is part of another gene while
an exonic cluster is transcribed on his one. As for the exonic ones no TSS
are available, we tried to predict them. Based on the TSS of a cluster, the
promoter regions is searched. On this region finally TFBS a predicted, in order
to receive the TF-miRNA network.
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confused between the databases. miRNAs for which a gene entry is found in ensembl
are considered to be intronic and the start position of the gene is used as TSS.

For all transcripts having a context entry but no data is received from BioMart,
we searched overlapping genes from ensemble. In human, it was necessary for twelve
miRNAs. We found gens for eleven of them. These are also considered as intronic. pre-
miRNAs being part of the same host gene are grouped into one clusters as they should
be co-expressed.

The remaining pre-miRNAs are marked as exonic. As it is known that one pri-miRNA
may contain several pre-miRNAs, we group pre-miRNAs into clusters according to their
genomic position. The CLUSTER entry from miRBase is used for this purpose, where
all pre-miRNAs being less then 10 kb apart are defined as one cluster. This size seems
to be reasonable for miRNA clusters [56]. As the context entry contains miRNAs on
both strands, the list has to be filtered first for miRNAs lying on the opposite strand.
The TSS of each cluster is defined as its first pre-miRNA.

3.1.2 miRNA annotation from Ensembl

An other method used for receiving pre-miRNA positions is to extract data directly
from Ensembl. For that, we receive information about the position of the gene, the
mirbase_id and the hgnc_symbol for all data sets for which with_mirbase is true using
BioMart.
To distinguish between intronic and exonic miRNAs, the hgnc_symbol was used. All

entries not starting with “MIR” or without hgnc_symbol were considered as intronic,
the remaining as exonic. We marked all miRNA having at least one intronic entry as
intronic.

The TSS of each miRNA was defined by the first start of all its transcripts. We simply
defined a cluster as set of miRNAs having the same TSS, which could result from lying
in the same host gene or being part of a pri-miRNA annotated in Ensembl.

3.2 Transcription Start Site search

As the distance of the real TSS to the pre-miRNA can vary in wide range, from a few
bases up the several kb [9, 10], it seems reasonable to search for the TSS. As a database
is only available for human, but networks should also be created for other species, the
TSS could only be predicted. As the TSS of intronic miRNAs are assumed to be the
same as for the host gene, which is known, this prediction is only needed for exonic
miRNAs.

3.2.1 Eponine

For the prediction of the TSS we used Eponine. For each cluster we extracted the
100 kb up- and downstream DNA sequence. We applied the Eponine program on these
sequences. Eponine returns for each prediction a score between 0 and 1, where 1 indicates
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a completely certain prediction. Only results with a score higher than 0.95 were used. As
Eponine predicts start sites on both strand, results for the opposite strand are filtered.

Eponine predicts about 47 TSS per examined sequence. Because the use of this high
number of regulating sequences for each miRNA to predict TFBS would lead too a high
number of false-positives, some TSS need to be selected. For this purpose, we calculated
the density of all prediction for this sequence. All maxima of the density before the
cluster reaching the half of the highest peak are used as TSS. If no predictions are
available, the we use the start of the cluster as TSS.

3.3 Promoter search

To search for TFBS, a region which should be examined is needed. We used promoter
predictions tools to search promoters, which we later used to search for this TFBS.

3.3.1 Promoter2

The first tool we tested was Promotor 2, using the public available Promoter 2.0 Pre-
diction Server. As only 50 sequences can be submitted at once, we only tested this
number.

For this, we selected 50 cluster. It was only mind that the cluster contain the miRNAs
23a∼27a∼24-2, as their TSS was determined experimentally. For this 50 cluster the 50
kb upstream and 500 bp downstream region was saved as a fasta-file and uploaded to
the server.

We converted the resulting position of promoter 2 to their genomic position. All
results were saved with their score.

3.3.2 Ep3

The second promoter predictor used, was Ep3. Ep3 needs to be run on the whole genome.
The regions in which promoters are searched are the same as for Promotor2. From the
gff-file created by Ep3 we extracted all results overlapping this region. As Ep3 predicts
TSS independently of their direction no filtering for the strand is necessary.

3.3.3 PromotorInspector

PromotorInspector is a promoter prediction tool that is part of the Genomatix Software
Suite. We used the region 9000 bp up- and 500 bp downstream of the TSSs. In order to
retrieve the sequences, the positions are save as BED-file, uploaded to Genomatix and
converted to DNA sequence.

We run PromoterInspector on these sequences. Afterwards we downloaded the result
as fasta-file. From the description lines of this files the positions and the strand of the
predictions is extracted. We used only results on the positive strand. As the prediction
was run on extracted sequences, the positions have to be converted back to the genomic
position.
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For all sequences without a prediction, we used the region 1000 bp up- and 500 bp
downstream as promoter. This length was selected for Cheng et al. showed that TF
binding is enriched in this region for C. elegans [57].

3.4 TFBS search

To retrieve the TFs regulating the miRNAs we searched the previous defined promoters
for TFBS. We saved these regions as bed-file and uploaded them to Genomatix. This
regions were converted to DNA sequences and downloaded as fasta-file

3.4.1 PWM from TRANSFAC

To predict TFBS based on PWMs, we first needed count matrices. We extracted these
matrices of the examined species from TRANSFAC. The PWM function of the Biostrings
package does not work on all these matrices, as sum of entries for each position varies
for most of the matrices. Also some matrices (e.g. “M01152”) obviously do not contain
counts as their entries are no integers.

First we converted the matrix a stochastic matrix, in which each entry represents the
probability for this position of containing the corresponding base. The entries for each
position sum up to 1. Afterwards, this matrix is normalised using the unitScale function
from Biostrings. After this step the lowest possible match score of this matrix is 0 and
the highest 1.
Using this PWMs, we searched for each promoter sequence matches with a score higher

than 0.8. All matches are saved with their score. Using information from Transfac, we
mapped the PWMs to their corresponding TFs. In the same step we saved files for
different score thresholds between 0.8 and 1. After the mapping of the clusters to their
miRNA, the TF-miRNA network for the different thresholds are complete.

3.4.2 ModelInspector

As second method to get TFBS we used ModelInspector. As the number of results is
limited to 20000, we split the bed-file to parts containing maximal 300 entries. Each bed-
file is converted to a DNA sequence and used as input for ModelInspector. Additionally,
the sequences are downloaded as fasta-files.
We saved the results as tsv-file. These files do not contain the name of the sequence

as specified in the bed-file, but a name for each sequence of the from ‘Region_1’. The
association of this region number to the cluster number is read from the identifier lines
of the corresponding fasta file and the region numbers are exchanged by the cluster
numbers.
The result of ModelInspector does not contain single TFs, but models of two or more

TF families. We extracted these families from the model names by simply splitting it
at the ‘_’ signs, ignoring the last part as it only contains a number. As by the use of
PWM from Transfac described above, in a last step we converted the clusters to their
miRNAs to get a TFfam-miRNA network.
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4 Result

We used our pipeline to predict a TF-miRNA network for human. We used this organism
as the most data is available for it. miRStart only list TSS for human miRNAs and
ChIPBase and TransmiR have most of its data for human. Based on our prediction
and the available data we evaluated the different methods and created our pipeline. Of
course the pipeline can be used for all organisms for which a genomic sequence, the
genomic position for miRNAs and information about TFs is available.

4.1 TSS search

From the 1600 miRNA annotated in miRBase for human, 658 are considered as exonic.
As no TSSs are available for these miRNAs from miRBase other sources are needed.

4.1.1 Ensembl annotation

Using biomaRt to retrieve data from Ensembl returned 2236 transcripts for 1426miRNAs
for human. So information on 174 miRNAs annotated in miRBase is missing.

Comparison of the position of this transcript to the position of the pre-miRNA as
annotated in miRBase shows that for 815 they are not the same. As this transcript
belongs to 186 different miRNAs, only for this number additional information can be
get from Ensembl.

From this 815 transcripts, only 62 overlap the respective pre-miRNA, leaving 753 ones
for which it is a part of the transcript. This only partial overlap can be caused either
by a transcript of an other gene overlapping the pre-miRNA or by differences in the
annotated data (see Figure 2).

After removing all transcripts belonging to other genes 101 one are left. The type of
the gene is determined by the HGNC Symbol, where all symbols not starting with “MIR”
are removed. This 101 give additional information on 59 miRNAs.
As this corresponds to only about 10% of all exonic miRNAs, it is not used and we

tried to predict the TSS from the upstream sequence of the respective miRNA cluster.

4.1.2 Comparison miRStart and Eponine prediction

As we could not retrieve the information about the TSS of the miRNAs from Ensembl
we needed to predict them. For this prediction Eponine was used.

Eponine returned 26344 TSS for the examined regions around the exonic miRNAs
of human. For the 570 exonic clusters, TSS with the required score are found for 557,
leaving 13 clusters without prediction. The average number of TSS for a cluster is
therefore 47.3.
For 529 cluster peaks are found by the method as described above. In total, 605 TSS

are detected in this way. More then one TSS was determined for 66 clusters, were the
highest number of TSS per cluster is 4.
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Figure 2: Different kinds of pre-miRNA only partial overlapping transcripts from En-
sembl. hsa-mir-1247 is overlapping DIO3OS but only partial, but is annotated
in Ensembl for this miRNA. In the case of hsa-mir-759 the transcript is the
miRNA, as the HGNC_Symbol “MIR759” indicates, but the position differs
between the two databases.
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The distribution of the Eponine prediction over the used region is heterogeneous (see
Figure 3). Some clear peaks in front of the cluster are possible, but also homogeneous
distributions over a wide region of more then 100 kb can be found.
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Figure 3: Examples of different results from Eponine. Plots show the density of all
predicted TSS exceeding as score of 0.95. The number on the top represents
the cluster for which the TSS should be predicted. The position is given
relative to the first pre-miRNA of the cluster. Solid lines indicate all TSS
used, selected as described in the Methods section. 977 shows a prediction
with a single result and a clear peak before the first pre-miRNA. As 1033
shows, similar results are also possible with more than one maximum. As
the threshold of 0.5 from the highest peak only considers the ones before the
cluster, it is possible that they are much smaller then maxima behind the first
pre-miRNA, as shown by 915. In the case of 857, all peaks are located behind
the start of the cluster and therefore no TSS is predicted.

The distribution of the distance between thee TSS and the pre-miRNA annotated in
miRStart shows no common distance. Even for more TSS are in the first 10 kb as on
average, the overall distribution looks nearly homogeneous (see Figure 4a). This is not
expected as it leads to a high number of pre-miRNA with a large pri-miRNA in front of
them.
As the number also does not drop towards the end of the 50 kb region examined
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by miRStart, distances beyond this border should be expected to exist. So TSS are
expected that can not be annotated in miRStart.

The distribution of distances for the Eponine data differs from the distribution of
miRStart. Also the density is nearly homogeneous for TSS and drops only slightly with
higher distance, it differs from that of miRStart. The number of TSS in the first 10 kb
is visible higher than the average. This cannot be explained by miRNAs for which no
prediction was available, as they were excluded from the examination.

In order to test the predictions of Eponine, we compared the relative positions of
the TSS to the pre-miRNA to the relative positions from miRStart. As the TSS of the
intronic miRNA is determined by their host gene TSS, they are assumed to be the same
for the to data sets and we only examined exonic miRNAs.

miRNAs without an prediction were excluded from the test leaving 616 of the 720
exonic miRNAs. If more than one predicted TSS was available, we used the one closest
to the miRStart data. This seems justified as more then one TSS is possible for genes
and therefor for pri-miRNA, too.

The direction comparison of the two distance sets shows no correlation between them
(see figure 4b). The Pearson correlation of only 0.11 supports the conclusion drawn
from the plot. Therefore we did not use the data from the Eponine prediction in the
further steps.

4.2 Comparison of miRStart to Promoter prediction

As both, the annotated data and the predictions, can not be used, we simply use the
start of the first pre-miRNA as TSS for exonic miRNAs. From this position we searched
the promoter. As promoter prediction is similar to the prediction of the TSS, the dis-
advantage of the missing real TSS should be marginal [19].

Looking through the results of the different promoter predictions tools shows that
results from Ep3 and PromoterInspector are comparable. Most of the PI results were
in regions were the score of Ep3 was also high. Additionally their results are often near
the TSS as it is the case for miRStart (see Figure 5).
The similarity between Ep3 and PromoterInspector is also supported by a comparison

between the Ep3 score of region overlapping the PromoterInspector result to the ones
not overlapping (see Figure 6). Comparing the distribution of this two sets using the
Wilcox test results in a p-value smaller than 2.2 · 10−26. Therefore this two distributions
are shown to be different. The Ep3 score for PromoterInspector regions is significantly
higher for the rest of the examined sequence.
Promoter2 shows for each input sequence several predictions with an high score. As

the use of all of them would increase the region searched for TFBS and selecting from
many possible regions has a high risk of using the wrong, we used PromoterInspector.
Its results are similar to the ones of Ep3, but it returns a region instead of scores.
PromoterInspector returns results for 714 clusters. For 179 clusters more than one

promoter was predicted. As it was applied for 1384 sequences, it returns a result for half
of them. Therefore its application seems to be useful and we use its results.
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Figure 4: (a) Distribution of the distance between the TSS as determined by miRStart
and the position of the pre-miRNA as extracted from mirbase. It shows clearly
that near the pre-miRNA the TSS are more frequent. But also the number
near 50 kb does not drop towards zero and it should be expected that TSS
behind 50 kb would be found if the searched region would be enlarged. (b)
Comparison of the distance between the TSS and the pre-miRNA as annotated
in miRStart and predicted by Eponine. The histograms on the top and the
right side show that the predictions of Eponine have a smaller distance to the
pre-miRNA. The black line shows were the points should be if the predictions
were the same as the miRStart data.
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Figure 5: Examples for the comparison of the different promoter prediction tools. As the
promoter is expected to be near the TSS the one as annotated in miRStart is
shown as dashed line. The circles show results from Promoter2, the lines from
Ep3 and the grey boxes from PromoterInspector. For 822, where the TSS is
known to be more downstream as annotated in miRStart, the results are even
further apart from the pre-miRNA. The predictions of Ep3 and PI seem to
be similar and often near the TSS. 927 is a example for Promoter2 being near
the TSS but the both other tools do not return a result.
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Figure 6: Comparison between Ep3 scores of regions overlapping the predictions of Pro-
moterInspector and regions not overlapping. The median for overlapping re-
gions is 0.44 and for not overlapping regions is 0.14. The p-value of the Wilcox
Test also indicates that this two sets have a different distribution.
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4.3 Evaluation of the Network

4.3.1 miRNA degree

The degree distribution of the miRNAs shows two maxima for the network created using
the Transfac data (Figure 7b). For the networks based onModelInspector these two clear
peaks do no exist (Figure 7a).

This can be explained by the different size of the used promoter regions. For the
clusters with a prediction from PromoterInspector this region has an average size of 508
bp, but a region of 1500 bp is used for the ones without prediction, which should lead
to a higher number of detected TFBS.

Splitting the data for these two kind of miRNAs into two sets, one for miRNAs with
promoter prediction and one for those without, and examining the their miRNA degree
distribution indicates, that the degree of the ones without prediction is higher as for the
ones with prediction (Figure 7c and 7d). This confirms the explanation above.

Also for the ModelInspector data, the two peaks are clearly visible after the size of
the promoter is distinguished. As the distance is not as big as for the Transfac based
network and also the overlap, between the two types of promoters, is higher, the size
seems to have a small influence on the ModelInspector predictions.

4.3.2 Comparison to other Networks

For the evaluation of the so constructed networks, they were compared to the data from
ChIPBase. In an first step all TFs and miRNAs are identified that are contained in all
examined networks. For the networks based on Transfac data we used the one with the
lowest threshold, as this contains the most miRNAs and TFs. As together with this
network also PuTmiR should be compared to ChIPBase, it is also considered by the
determination of the used TFs and miRNAs.

For the evaluation all possible TF-miRNA interactions were used to create a con-
tingency table. The two examined classifications were if they were discovered by our
prediction and if they are stored in ChIPBase . Fisher’s exact test was used to examine
this contingency table.

As all examined networks contain TF-miRNA interactions, their information is ex-
pected to be similar. Therefore a miRNA and a TF which have an interaction in one
network should have a higher probability to have an interaction in the other network.
Because of that, the two classification should be dependent. As Fisher’s exact test checks
for the independents of the two examined variables, it should return a small p-value.
As ModelInspector does not return TFs, but TF families, before the comparison the

TFs of the other network have to be conversed to the same TF families as used by
Genomatix. For this the mapping is extracted from the MatBase site describing all
vertebrates TF families. Then the data from ChIPBase is transferred from a TF-miRNA
to a TFfam-miRNA network.

Comparing the ModelInspector data to ChIPBase reveals that the classification of
both are dependent (Fisher’s exactest p-value : 3.18 ∗ 10−29 (see contingency table
1a). Therefore we consider the network created with ModelInspector as useful, as it is
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Figure 7: Distribution of the number of TF per miRNA. Transfac marks data for which
simple PWM from Transfac were used. ModelInspector indicates plot, for
which this method was used and the number is the number of TF families
as defined by Genomatix. For the bottom two plots, the grey bars show the
numbers for miRNAs their promoter was predicted by PromoterInspector. The
hatched boxes are for miRNAs where no promoter could be predicted and
simply the regions surrounding the TSS was used. It is clearly visible that
the two peaks of for the Transfac diagrams are a result of the different length
of the promoters predicted and the 1.5 kb region used around the TSS in the
case of no predictions available.
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comparable to a network created with experimentally data. A comparison to TransmiR
was not possible, for no TF family is in both networks.

Comparison of the TRANSFAC data against ChIPBase for different thresholds reveals
a optimal threshold of 0.94 (Figure 8). For the following analysis this value is used. As
the p-value for this network is much smaller as the ones for PuTmiR, this network is
more similar to the ChIPBase network.
A closer look on the contingency tables shows that for both, TRANSFAC and PuT-

miR, only using upstream TFBSs, (Table 1b and d), the number of experimentally not
confirmed predictions is nearly the same (about 1000 bp). However, the number of exper-
imentally confirmed predictions for the TRANSFAC based network (538) is about three
fold higher than for the PuTmiR upstream data (172). Even using all data from PuT-
miR, it has less experimentally confirmed interactions (316) as the network we created
using TRANSFAC (Table 1e). Additionally the number of not confirmed interaction
rises to about 2000, what is about twice as much as before.
A test between the network predicted using TRANSFAC data and TransmiR (table

1c) also shows a similarity between this to networks (p-value of Fisher’s exact test:
0.00012).
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Figure 8: Comparison between the network created by using PWMs from TRANSFAC
and PuTmiR. For TRANSFAC different thresholds are shown in order to find
the optimum. The quality of the networks was calculated based on the com-
parison to the data from ChIPBase. The two dashed lines show the p-values
for PuTmiR. The top one is based on the full data available in PuTmiR, the
bottom one only TFBS upstream of the miRNA were used.
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∩ ModelIns ModelIns
ChIPBase 944 1749
ChIPBase 1306 4321

(a)

∩ TRANSFAC TRANSFAC
ChIPBase 538 2460
ChIPBase 1072 10765

(b)
∩ TRANSFAC TRANSFAC

TransmiR 64 20
TransmiR 1643 1341

(c)

∩ PuTmiR PuTmiR
ChIPBase 172 2826
ChIPBase 1125 10712

(d)
∩ PuTmiR(full) PuTmiR(full)

ChIPBase 316 2682
ChIPBase 2020 9817

(e)

Table 1: Contingency table for the comparison of the predicted networks to data from
TransmiR and ChIPBase. In the case of data from ModelInspector (ModelIns)
the TFs of the compared database was first converted the TF families as used
by Genomatix. For the TRANSFAC PWM data the optimal threshold of 0.94
was used. PuTmiR contains only data of upstream TFBS. By PuTmiR(full) all
available data was used. The number of TF and miRNAs used for the matrices:
(c) miRNA:118 and TF:26, (a) miRNA:520 and TFfam:16, (b,d,e) miRNA:645
and TF:23. As for TransmiR and ModelInspector no TF was in both networks,
it could no be compared.
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4.4 miRNAs regulated by the TF NF-κB

Too examine the influence of miRNAs regulated by NF-κB on pathways, miTALOS was
used. The miRNAs were read from the network of interest and entered in the miTALOS
website. No filtering for tissues or certain pathways was applied. Only the default
settings were used, so the organism searched was human and the miRNA targets were
searched using TargetScan [15].
Using the TRANSFAC data with a threshold of 0.94, 25 miRNAs are predicted as

being regulated from NFKAPPAB. The same TF returns 27 miRNAs using PuTmiR
upstream data and 54 using PuTmiR full. As the numbers are more similar, only the
upstream data will be used in the following.
miTALOS returns 10 pathways for TRANSFAC and 15 for PuTmiR. 7 out of 10

found for TRANSFAC are directly related to cancer. For PuTmiR it is only in 4 out
of 15 results the case. This shows an enrichment of cancer related pathways being
influenced by NF-κB through miRNAs, according to the TRANSFAC based network
and miTALOS. 3 pathways are found for both networks used (“Melanoma”, “Prostate
cancer” and “Endometrial cancer”, all from KEGG).

Also interesting is the Notch Pathway, as it has the lowest p-value for the Enrichment
Score of all results for the TRANSFAC based network, which are not directly related to
cancer. Additionally the p-value for its Proximate Score are lower as the ones from the
cancer related pathways. From the four proteins targeted in the Notch pathway by the
miRNAs, one is Notch it self and the other three directly regulate Notch (see Figure 9).

Figure 9: Example for a pathway as returned by miTALOS. The four proteins with a
red border are suppressed from miRNAs which are regulated by NF-κB. One
of the proteins is Notch. The other three directly interact with it. (source
miTALOS [52] and KEGG [53])
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5 Discussion

We created a TF-miRNA network based on the genomic sequence and the genomic
positions of all known miRNAs of an organism. Additional information about TFs in
this organism were needed like PWMs for their known binding sites.

After grouping these miRNAs into clusters, which are expected to underlie the same
regulation, Eponine was used to predict the TSS. In the case of a misfit between these
TSS and the annotated ones in MiRStart, we did not use this prediction and simply the
start of the cluster was used as TSS.

Based on these TSS we searched the promoter. Finally we searched for TFBS in this
promoter regions to retrieve the TF-miRNA network.

The comparison to PuTmiR through the use of experimentally validated data from
ChIPBase and TransmiR showed the practicability of our approach. Also pathways
influenced by miRNAs regulated by the TF NF-κB show to be often related to cancer.
This corresponds to the fact that this TF is known to play a role in cancer cells [58].

5.1 Problems of Transcription Start Site search

The comparison between the Eponine prediction and the miRStart data shows no cor-
relation. The question arising from this observation is, whether Eponine is not good in
finding TSS in general, it can not predict TSS for miRNA or the comparison to miRStart
is not able to evaluate the prediction.

The main reason why the evaluation may fail to compare the prediction to the anno-
tation correctly is that more than one TSS is possible for each gene. If the pri-miRNAs
have more than one TSS and a correct one is predicted but differ from the one annotated,
which is also a real TSS, this would lead to a difference between the two data sets. As
all predictions from the density method are compared and only the closest one is used,
this cannot explain the observation.

Another explanation would be difficulties in predicting TSS for miRNAs in general.
Bhattacharyya et al. showed that prediction tools developed for TSS of protein coding
genes perform badly on miRNAs [59]. The training of a prediction tool especially for
finding miRNAs, as described in their paper, may improve the result of TFBS prediction
as it would lead to a better starting point for promoter prediction.

5.2 Quality of the Network

5.2.1 Influence of Promoter Size on TFBS Prediction

The comparison of the miRNA degrees for those with promoter prediction from Mod-
elInspector to those without shows a higher degree for those without. This could be
explained by the larger region used in the case no prediction was available.

This differences are lower for TFBS predictions of ModelInspector than for the ones
created by the use of simple PWMs. Also for ModelInspector exists a overlap region,
which degrees are present in many miRNAs with prediction and without prediction.

30



Pathway (Source) P (E) P (P )
Melanoma (KEGG) 0.0001 0.9531

Prostate cancer (KEGG) 0.0005 0.9961
Thyroid cancer (KEGG) 0.0018 0.6570
Bladder cancer (KEGG) 0.0023 0.7654

Non-small cell lung cancer (KEGG) 0.0073 0.8678
Colorectal cancer (KEGG) 0.0111 1.0000

Endometrial cancer (KEGG) 0.0136 0.8027
Notch signaling pathway (KEGG) 0.0160 0.0987

Adherens junction (KEGG) 0.0230 0.8120
Botulinumtoxin (NCI) 0.0313 0.2790

(a) Network constructed using Transfac PWMs

Pathway (Source) P (E) P (P )
Neurotrophin signaling pathway (KEGG) 0.0001 0.0716

Long-term potentiation (KEGG) 0.0001 0.4167
Prostate cancer (KEGG) 0.0001 0.4708

mTOR signaling pathway (KEGG) 0.0002 0.0143
ErbB signaling pathway (KEGG) 0.0004 0.4964

Chronic myeloid leukemia (KEGG) 0.0008 1.0000
Melanoma (KEGG) 0.0026 1.0000

Dorso-ventral axis formation (KEGG) 0.0056 1.0000
Endometrial cancer (KEGG) 0.0091 0.5260

Type II diabetes mellitus (KEGG) 0.0121 0.1139
Hdac class iii (NCI) 0.0322 0.2862

Smad2 (NCI) 0.0331 0.7667
Maturity onset diabetes of the young (KEGG) 0.0346 1.0000

Foxm1 (NCI) 0.0385 0.0801
Telomerase (NCI) 0.0396 0.6281

(b) Putmir (full)

Table 2: Result of miTALOS for miRNAs regulated by NF-κB. P (E) and P (P ) are the
p-values for the Enrichment score and the Proximate score as calculated by
miTALOS.
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This is not the case for the TRANSFAC based data, for which miRNA with and without
prediction can be separated clearly.

An explanation for this effect could be a higher specificity of ModelInspector, as it
would lead to a lower number of falsely detected TFBS. A perfect method, only finding
true TFBS, would only be influenced slightly by the length of the searched region, as
most of the TFBS are located in the promoter and nearly no TFBS would by found
around it. On the other hand, a complete random method would find more TFs binding
to a long sequence than to a short one, as it is possible to find a binding at more positions.
These extreme examples suggest that a more specific method should only predict slightly
more TFBS for a larger region around the promoter than for the promoter alone.
As the idea behind the use of TFBS models, which are used by ModelInspector, is

the increase of specificity, this could explain the observed effect. Therefore the use of
ModelInspector seems to be more reasonable if the number of false connections should
be low. The drawback is that no TF, but only TF families are found and that TFBS
being not part of a known model will not be found.

5.2.2 More hits than PuTmiR

Comparing the numbers of connections verified and unverified by ChIPBase between
the network constructed here and PuTmiR revealed that PuTmiR has less verified con-
nections. Even if up- and downstream data are used, the number for the ones predicted
by the TRANSFAC based one is higher. But the use of both data sets also increase the
number of unverified connections.
As the region examined by PuTmiR is much larger than the one used here, 20 kb

compared to maximal 1.5 kb, the result is unexpected. Searching for the binding site
of a certain TF in a larger region should increase the number of result, but less are
observed.
This can be explained by the fact that PuTmiR only uses conserved TFBS being

present in all three examined species. As not all miRNA present in human exist also in
mouse and rat, not all TFBS can be found by this method. Regulation not conserved
but present in human are not recognised, too.
The higher number of unverified interactions on the other hand can be explained by

the large region that were examined. They are large enough that TFBS of other genes
could be part of them. Of course this binding sites do not belong to the miRNAs and
therefor are false positives.

5.3 NFKAPPAB and Notch

The TF NF-κB is known to have a negative influence on the effectiveness of cancer
therapies, like ionizing radiation or the use of daunorubicin [58]. As our network shows
a connection between this TF and several cancer pathways, miRNAs seems to play a
role in the connection between NF-κB and cancer. This is also supported by the fact,
that miRNA deregulation is found in human cancer cells [60].
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Searching PubMed for papers about the relationship of TFs and miRNAs in cancer
(“miran[Title] ORmicrorna[Title]) AND cancer[Title] AND "transcription factor"[Title]”)
resulted in only three results [61, 62, 63], where only one is about the TF-miRNA inter-
action in cancer [61]. Therefore better TF-miRNA networks may be able improve our
understanding of this relation in cancer cells.

Also the Notch Pathway, mentioned above for its high Proximate Score, is interesting
in the aspect of cancer. As it is known to influence the survival rate by cancer [64],
Notch is a promising target for cancer treatment [65]. So, also this pathway is related
to cancer, what increases the number of cancer related pathways influence by NF-κB
through miRNAs according to the combination of our network and miTALOS. The other
targeted gene products of this pathway could also give more insight into the connection
of the influence of this TF and Notch on cancer.

This shows that a TF-miRNA network could reveal interesting aspects of the known
correlation between TFs and human diseases, like cancer. A connection of such a network
to regulatory pathways, using a tool like miTALOS, could give insight into unknown
aspects of cellular deregulation leading to diseases.

5.4 Outlook

5.4.1 Tissue Specificity

Our current pipeline does not consider any tissue our state specific data. As TRANS-
FAC [33] contains tissue- and state-specific matrices, this information could be used to
generate networks for different cell types or conditions.

With the help of this PWMs, our pipeline could be used to predict these networks.
For researchers, which are interested in a specific cell type or different cells states, these
networks may reveal additional insight into gene regulation.

5.4.2 Uses in other Projects

Our network could be used to improve methods based on gene regulatory networks,
like the Multilevel ONtology Analysis (MONA) [66]. It could add an additional layer of
regulation which might help to improve the inference of biological processes among a
given set of genes.

If this application of our network would improve the results of such a method, it would
prove the success of our work.
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