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Abstract

Single cell time-lapse fluorescence microscopy is a well established technique in system
biology to investigate protein expression. Our datasets are from genetically modified
mouse embryonic stem cells (mESC), which express Nanog and Oct4 proteins with
a VENUS fluorophore tag. The concept of fluorescence microscopy is that the more
fusion proteins are in the cell, the brighter is the fluorescence signal. However, no ab-
solute fusion protein copy numbers can be derived from the microscopy data without a
conversion factor. It has been shown that the conversion factor can be estimated with
intensities form mitosis events, which are intensities from mother cell and daughter
cells just before and after cell devision. The main assumption is an equal stochastic
apportionment of proteins from mother cell to either daughter cell and binomial dis-

tribution is used to estimate absolute protein copy numbers.

However, data analysis shows that our fluorescence intensities are observations with no-
table multiplicative and additive noise from microscopy imaging. In this master thesis
two approaches are developed to estimate both noise parameters, additive and multi-
plicative, in longitudinal time-lapse fluorescence intensities. The variance approach fits
a linear model to the noise terms and the likelihood approach maximizes the likelihood.
The two methods give similar results, whereas the variance method is striking simple
to use. Multiplicative log normal scale parameter is estimated to 7, = 0.1540.04 and

relative additive normal standard deviation to &,/ = 0.13 4 0.05.

Therefore the existing methods to estimate protein copy numbers from mitosis events
have to be extended to incorporate both additive and multiplicative noise. Again
two unbiased approaches are derived, a variance approach using a linear model fit
and a likelihood approach which needs a numerical 3-dimensional integration for its
maximization. For our best datasets we estimate NanogVENUS and Oct4VENUS copy
numbers to 218 and 452 respectively. Reported analysis performed with western blot
technique indicate copy numbers from 400 000 to 180 millions for Nanog and Oct4 in
mESCs. The discrepancy to our derived copy numbers may indicate that the fusion

proteins cluster to multimers prior mitosis.
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6 1 INTRODUCTION

1 Introduction

Mouse embryonic stem cells (mESC) were first extracted from the inner cell mass of
a blastocyst stage of the embryo 1981 [1I]. mESC are able to differentiate into all cell
types of the organism and stay pluripotent when kept in the right culture conditions
[2]. mESC express amongst others the variant homeodomain proteins Oct4 and Nanog,
which are regarded important to keep cells pluripotent: “Nanog seems to be a master
gene that makes embryonic stem cells grow in the laboratory. In effect this makes
stem cells immortal. Being Scottish, I therefore chose the name after the Tir nan Og
legend,” said Dr Ian Chambers who isolated the Nanog gene 2003 [3]. Together with
Oct4 and other factors, Nanog forms a regulatory network to influence several genes
which are important for pluripotency [4] [5] [6]. Elevated levels of Nanog activate these

genes and may maintain the self-renewal of the mESC [7].

Figure 1: Microscope images of a mESC mother cell and its daughter cells. A: Bright
field images. B: NanogVENUS fluorescence images. The images of the mother and of
the daughters are taken in 30 minutes intervals.

Recent developments show that cell fate decisions depend crucially on absolute num-
bers of proteins [§]. The standard in analyzing protein copy numbers in cells is mass
spectrometry-based proteomics. Recent developments use labeling of stable isotopes
to analyze differential expression levels [9][10]. Another method is to generate a dilu-
tion assay of known amounts of fluorophores with western blot technique [11]. When
comparing western blots of mESCs fluorophore tagged proteins with these dilution
assays their copy numbers can be derived. This technique has already been applied
to NanogVENUS and Oct4VENUS fusion proteins in mESCs: Adam Filipczyk from
SCD lab of Timm Schroeder at Helmholtz Zentrum Miinchen [12] estimated Nanog
protein copy numbers to approximately 1.5 millions and Oct4 protein copy numbers
to approximately 180 millions per cell. Nick Mullin from the lab of lan Chambers [13]
estimated Nanog protein copy numbers to approximately 400 000 per cell.



In this thesis, we use single mESC fluorescence data generated in the SCD lab of Timm
Schroeder post processed in the lab of Fabian Theis, both located at Helmholtz Zen-
trum Miinchen. The mESCs have been genetically manipulated so they express Nanog
and Oct4 proteins with VENUS fluorophore tags. The mESCs for the NanogVENUS
experiment are preselected with a FACS (=fluorescence activated cell sorting) and
only the 5% brightest are taken as initial cells. After illumination with wavelength
A = 515nm VENUS tagged proteins re-emit photons with wavelength A = 528nm
which can be monitored in vitro with the microscope (see figure . One assumption
is that on average each fluorophore re-emits the same number of photons (see chapter
3.5.1)). Thus the observed intensity in the microscope has a linear relationship with the

fusion protein copy number: Double intensity is interpreted as doubled copy number.

However, fluorescence microscopy gives only relative information on the concentration
of fluorophore tags. A conversion factor is needed here to derive absolute copy numbers
and compare the fluorescence microscopy data to protein numbers derived with other
techniques. In the literature statistical methods are described to calculate the conver-
sion factor of proteins in cells from single cell time-lapse microscopy data [14] [15] [16].
In these methods cells are measured before and after mitosis and the variability in the
brightness of the two daughter cells is used. Put simply, the higher the number of fusion
proteins the lower is the relative variability in the in the daughter cells. A fundamental
assumption of these methods is that apportionment of fusion proteins during mitosis
to either daughter cell is a stochastic process with equal probability p = 0.5. Thus
copy number of daughter cells are binomial distributed with size is the copy number

of their mother cell.

An example shall illustrate the principle. Petri dish A has 10 mother cells with 10
tagged proteins each, petri dish B has 10 mother cells with 1000 tagged proteins each.
After mitosis we have 10 pairs of daughter cells in dish A and dish B with randomly
chosen copy numbers (see figure . Looking at the relative difference between the copy
number in the daughter cells, it is obvious, that the higher the copy number in the
mother cell, the lower is the relative variance within the daughter cells. This effect of

the binomial distribution can be used to get an estimate for the absolute copy numbers.

Naturally, these methods to estimate the copy numbers are quite sensitive to noise
in the intensity measurements. There are various sources of noise in video cameras.
Irie et al. [17] distinguish different additive and multiplicative noise sources of a CCD
(Charge-coupled Device) camera chip. Possible additive noise sources are read out

noise of the chip, dark current shot noise, offset fixed pattern noise, quantization noise,
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Figure 2: Example of five randomly apportions of fusion proteins from mother to
daughter cells, its relative copy numbers and the density lines of its normal approxi-
mations. A: Protein copy number mother cell is 10. B: Protein copy number mother
cell is 1000.

thermal noise, reset noise, flicker noise or post image capture effects. Illumination
depending multiplicative noise sources are photoresponse non-uniformity and photon
shot noise. The noise level depends not only on the camera type, but also on the
channel (blue, red, green). The authors investigated a commercially available video
camera while taking images of a controlled lighting chart and compared this with sim-
ulated noisy images of the chart to assign the different noise sources. For the analysed
camera they found main contributions from read out noise (additive), photoresponse
non-uniformity and photon shot noise (multiplicative). This indicates that typical CCD

image data contains multiplicative and additive noise.

Up to now, only additive noise has been studied for the estimation of protein copy num-
bers [15]. In this thesis we generalize the method to additive plus multiplicative noise.
In chapter [2| the used datasets are introduced. We describe fundamental features, ap-
ply data cleaning and descriptive data analysis. In chapter |3| the needed methods are
derived to estimate noise and signal of the time series to estimate additive and multi-
plicative noise parameters for intensities and to estimate fusion protein copy numbers
from mitosis events. In chapter 4| the new methods are validated with toydata and
its capabilities analyzed and finally the methods are applied on the available datasets.

The outcome is discussed in chapter [5] and an outlook is given in chapter [6]



2 Descriptive data analysis

2.1 Data overview

Four different fluorescence intensity data sets from NanogVENUS and Oct4dVENUS
are available (see table . In a preselection step only the 5% brightest NanogVENUS
mESCs from a bigger group of cells are used as initial cells for our experiment. The
preselection was performed with a FACS (=fluorescence activated cell sorting). No
such preselection was performed for the Oct4VENUS mESCs. Each data set consists

of around 3000 individual cells and includes 1500 mitosis events.

cells observations mitosis events
NanogVENUS raw 3097 32 782 1494
NanogVENUS normalized | 3022 32 781 1448
Oct4VENUS raw 2999 61 142 1473
Oct4VENUS normalized 2999 61 142 1473

Table 1: Available fluorescence intensity data. Number of cells, observations and mi-
tosis events before data cleaning.

For raw intensity and normalized intensity data set the same microscope images are
used. The raw intensities are the sum over the intensities of the pixels within the
segments of the cell. For normalized intensities, additional background correction is
performed and the gain of every pixel is considered. For more details on the normal-
ization process please see [18]. The higher number of cells and mitosis events within
NanogVENUS raw intensity data set compared to NanogVENUS normalized intensitiy
data set is because manual adjustment of the segmentation is done in more cells here.

Coincidentally the amount of observations in these two datasets is almost the same.

Time series of mother and its daughter cells give a first overview of the fluorescence
intensities (see figure [3[to @ In this thesis only a randomized subset can be displayed.
For better comparison of the effect of normalization process the same cells are chosen
from the raw and normalized data set. Fluorescence images are taken every 30 min-
utes. NanogVENUS fluorescence intensity data are from experiment no. 111115AF6,
Oct4dVENUS fluorescence intensity data are from experiment no. 110613AF6 with
mESCs in culture conditions in one dish. The first label (e.g. p0230) indicates the area
within the dish. The second label (001, 002, ...) indicates the number of first mother
cell within this area. The third label (AF or MS) indicates the operator who takes care
of the experiment. The last label (e.g. 29, 58, 59) indicates the number of mother cell
and its daughter cells.
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Figure 3: NanogVENUS raw intensity. Fluorescence intensity time series before
data cleaning for 12 randomly chosen mitosis events. Black points indicate the flu-
orescence intensity of the mother cell, red and green the fluorescence intensity of its
daughter cells.
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Figure 4: NanogVENUS normalized intensity. Fluorescence intensity time series
before data cleaning for 12 randomly chosen mitosis events. Black points indicate the
fluorescence intensity of the mother cell, red and green the fluorescence intensity of its

daughter cells.
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Figure 5: Oct4VENUS raw intensity. Fluorescence intensity time series before data
cleaning for 12 randomly chosen mitosis events. Black points indicate the fluorescence
intensity of the mother cell, red and green the fluorescence intensity of its daughter

cells.
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Figure 6: Oct4VENUS normalized intensity. Fluorescence intensity time series
before data cleaning for 12 randomly chosen mitosis events. Black points indicate the
fluorescence intensity of the mother cell, red and green the fluorescence intensity of its
daughter cells.
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Figure 7: Number of observations per cell. A: NanogVENUS und B: Oct4VENUS.
Raw intensity data sets. Blue line indicates the median.

For NanogVENUS, the majority of cells has nine intensity observations only (see figure
7). This is because the segmentation of the cells has been manually adjusted within
this data set to get more reliable NanogVENUS fluorescence intensities for the first
three, last three and middle three images of every cell. Oct4dVENUS data set is not
reworked like this and is in lower quality therefore. The median number of cell obser-
vations for Oct4dVENUS is 20. Raw intensity and normalized intensity data set show

the same distribution in number of observations.

One cell cylce last for around 10 hours. The fluorescence intensities in raw intensity
data set are about 10 times as high as the fluoresence intensities in normalized intensity
data sets. The fluorescence intensity levels of NanogVENUS and Oct4VENUS are of
the same magnitude. The fluorescence intensity seems to increase within a cellcycle
in all cells. The variation from observation to observation is quite high in some cells
(see figure 4| A, figure |5| L). This indicates a fair amount of measurement noise. It
seems that fluorescence intensities below 3.0 in raw intensities and 0.3 in normalized
intensities have a higher tendency to be incorrect measurements (see figure |5| E, figure
[6 ). Also fluorescence intensities above 100 (raw) respectively 10 (normalized) seems
to be incorrect more likely (see figure [3| H, figure [6| B).

In some cells time series of the fluorescence intensity changes considerably from raw
to normalized intensity (see figure [3| B to figure {4| B; figure |5| B to figure @ B). The
normalized intensities are often more regular as raw intensities (see figure [3{ H to figure
H; figure [5| C to figure |§| C). As expected, for some cells the intensity of the mother
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cell (black) is around the sum of the intensities of its daughters (red, green) at the
moment of mitosis (see figure [ G, figure [f] A). However for some cells the intensity of
the daughters does not make the intensity of its mother (see figure [3] J, figure [f| E).

2.2 Data cleaning

To minimize invalid measurements data cleaning is performed. Following rules are used

in this order.

1. Fluorescence intensities must be within [0.3,10.0] for raw intensity and within

[3.0,100.0] for normalized intensity data sets.

2. Minimum number of observations per cell is 9.
Additional data cleaning rules are applied for fluorescence intensities of mitosis events.

3 Fluorescence intensities of mother and both daughter cells must exist.

4 Last three fluorescence intensities of mother cell and first three fluorescence in-

tensities of both daughter cells must be measured within 6 timepoints (2.5 hours).

5 The ratio of median and mean of the last three mother cell intensities respectively
of the first three daughter cell intensities must be within [0.8,1.2].

With data cleaning the number of cells for NanogVENUS data sets are reduced by
ca. 35% and for Oct4VENUS data sets by 4% (see tables [I] and [2). The number of
observations are reduced for NanogVENUS data sets by ca. 30% and for Oct4dVENUS
data sets by 5%, the number of mitosis events are reduced for NanogVENUS data sets
by ca. 18% and for Oct4VENUS data sets by 16% (see tables [I] and [2). Mitosis fluores-
cence intensities consists of the median of the last three fluorescence intensities of one

mother cell and the median of the first three fluorescence intensities of its daughter cells.

cells observations mitosis events
NanogVENUS raw 2034 23 887 1232
NanogVENUS normalized | 1850 22 317 1191
Oct4VENUS raw 2891 57 857 1235
Oct4VENUS normalized 2888 57 185 1233

Table 2: Number of cells, observations and mitosis events after data cleaning. Mitosis
fluorescence intensities consists of the median of the last three fluorescence intensities of
one mother cell and the median of the first three fluorescence intensities of its daughter
cells.

For the following chapters only fluorescence intensities after data cleaning are used.
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2.3 Data analysis

The median of fluorescence intensities in NanogVENUS raw intensity data set is 42.5.
The median in the normalized intensity data set is 2.82. This means that the nor-
malization process reduces fluorescence intensity here by a factor 15. The median of
fluorescence intensities in Oct4VENUS raw intensity data set is 31.9 and after nor-
malization 2.85. NanogVENUS shows 1/3 higher intensities than Oct4VENUS in raw

intensity data sets, but after normalization the difference is almost vanished (see table

).

Min. | 1st Qu. | Median | 3rd Qu. | Max. | Mean SD

NanogVENUS raw | 4.05 31.12 42.47 52.75 | 99.87 | 43.42 | 16.57
NanogVENUS normalized | 0.31 1.90 2.82 3.88 | 9.8 | 3.00| 148
Oct4dVENUS raw | 3.00 23.31 31.86 40.54 | 99.73 | 32.57 | 13.55
Oct4VENUS normalized | 0.30 2.05 2.85 3.73 | 10.00 | 3.01 | 1.42

Table 3: 5 point summary plus mean and standard deviation of fluorescence intensities.

The fluorescence intensities of all four data sets are right-skewed (see figures |8 A to
A). Their right tail is longer and the bulk of the values and the median lie to the
left of the mean. In contrary, the logarithmized fluorescence intensities of all four data
sets are left-skewed (see figures |8 B to [11] B). A Kolmogorov-Smirnov test with the
null hypothesis that the fluorescence intensities follows a normal distribution can be
refused for all four data sets with alpha error p < 2.2 -107!6. The same test performed
with null hypothesis that the fluorescence intensities follows log-normal distribution
can also be refused for all four data sets with the same alpha error. Therefore it can
be concluded that NanogVenus and Oct4dVENUS fluorescence intensities are neither

normally nor log-normally distributed. No bimodality can be seen in the histograms.

Mother cell intensities as well as daughter cell intensities are right-skewed as well (see
figures to and figures to [I1D). Median of mother cell intensity is 52.3
(NanogVENUS raw), 4.0 (NanogVENUS normalized), 43.5 (Oct4VENUS raw) and 4.0
(Oct4VENUS normalized). Median of daughter cell intensity is 26.7 (NanogVENUS
raw), 2.08 (NanogVENUS normalized), 23.1 (Oct4dVENUS raw) and 2.27 (OctVENUS
normalized). This indicates an fluorescence intensity gain during mitosis, because the
median of the daughter cells is higher than the half of the median of the mother cells.
The mean fluorescence intensity gain is from 0.24 for NanogVENUS normalized inten-

sity to 4.79 for OCT4VENUS raw intensity data set (see figures|8E to and table .

Fluorescence intensity gain is not independent from mother cell fluorescence intensity.



2.3 DATA ANALYSIS 17

Mean SD
NanogVENUS raw | 0.71 | 11.60
NanogVENUS normalized | 0.24 | 0.88
Oct4dVENUS raw | 4.79 | 12.14
Oct4dVENUS normalized | 0.58 | 0.93

Table 4: Fluorescence intensity gain during mitosis.

Scatter plots show the dependency of the daughter cells intensity from their mother
cell intensity and its regression line (red) (see figures |8 F to [L1| F). With constant
fluorescence intensity gain and a assuming linear relation between the copy number
and the fluorescence intensity, we expect a regression line with slope 0.5. However
the estimated slope values of the regression lines between daughter and mother cell
fluorescence intensities range from 0.23 to 0.48. The slope seems to be higher for
NanogVENUS and for normalized intensity data sets. Deviation of the slope from 0.5
might be explained by nonlinear proportion between the copy number of protein and
fluorescence intensity. The smaller slope values in raw intensity and for Oct4VENUS
data sets indicate that fluorescence intensity increases here more than linear with copy
number. Normalization process and manual adjustment of the segmentation seems to
help to support the assumption of linear relation between the copy number and fluo-

rescence intensity.

Another assumption is homogeneous partitioning of the fusion protein from mother
cell to its daughter cells. Inhomogenous partitioning would mean that for example
the probability for one cell is p; = 0.7 and for its sister it is po = 0.3. Histograms
of the ratio between daughter cell intensity devided by the sum of both daughter cell
intensities show only a central unimodal distribution in all four data sets (see figure

G to|11] G), so the assumption of homogeneous partitioning can not be rejected.
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857). C. Histogram mother cell intensities (n=1235). D: Histogram daughter cell inten-
sities (n=2470). E: Histogram intensity gain during mitosis (n=1235). F: Scatterplot
daughter cell intensity versus mother cell intensity (n=2470) with regression line. G:
Histogram ratio of one daughter cell intensity devided by sum both daughter cells
intensity both daughter cells (n=2470). The blue lines indicate the median values.



A [ g ]
— ]
Q - S
S = -
5 |
o
o
o
o 1 0
8 - —
ZF © 3 o
c c 8
g g 8
g 8 | g
[T L 8
o
<
o
o _| o
o o
N o
N
o - (=)
T T T T T 1 T T T 1
0 2 4 6 8 10 -1 0 1 2
Intensitiy [a.u.] log Intensitiy [a.u.]
| C o B
> 8 g =
c <
[}
=]
o
oo
L 3 o
(=]
(2]
o
T T T T 1
>
0 2 4 6 8 10 2
() o
2 9
Mother cell intensitiy [a.u.] o o
w
o D o
=
[}
=]
o
[ o
S o
° T T T T T T 1
f T T T T ! -6 -4 -2 0 2 4 6
0 2 4 6 8 10
Gain intensitiy [a.u.]
Daughter cell intensitiy [a.u.]
o _|
B G
F °
o
n
ERC
& ° Al
2 s
2 o >
g g o
s s 3
1%}
2 5
A L o
Q o
c N
[=2}
=1
8 o o =)
3 -
y=0.789 + 0.377 x
o - o
T T T T T T T T T 1
0 2 4 6 8 10 0.3 0.4 0.5 0.6 0.7

Mother cell intensity [a.u.]

daughter intensity / (daughter 1 intensitiy + daughter 2 intensity)

Figure 11: Oct4VENUS normalized intensity. Graphical data analysis. A: His-
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3 Method

3.1 Nomenclature

Following nomenclature and abbreviations are used in this thesis.

Nomenclature
1 Intensity Fluorescence intensity with noise of one cell
I Signal Fluorescence intensity without noise of one cell
n Copy number Number of fusion proteins in one cell
v Conversion factor | Parameter of linear relation between copy
number n and signal I’

Index for mother cell

Index for first daughter cell

21 4+ 1 | Index for second daughter cell
€m Variable multiplicative noise

N Number of cells or mitosis events
7
21

€a Variable additive noise
€0 Variable total noise
€ Residuum of observation i
€ij Residuum of observation j of unit i
om | Parameter multiplicative noise
O, Parameter additive noise
0./I | Parameter relative additive noise
I Mean intensity within a dataset

age | Lifetime of cell starting from mitosis of its mother cell
gain | Fusion protein gain during mitosis

Table 5: Nomenclature.

Please note that the daughter cells are not ordered, that is to say the "first" daughter

cell is not bigger, brighter or rounder than the other one.

Abbreviation

mESC | Mouse embryonic stem cell
LMM | Linear Mixed Model

ACF Auto Correlation Function

Table 6: Used abbreviations.
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3.2 Additive and multiplicative noise
We consider two types of noise:

e Multiplicative measurement noise. The random variable ¢, is log-normally dis-
tributed.

e Additive measurement noise. The random variable ¢, is normally distributed.

This means that the intensity I is a function of the signal I and two independent noise

terms, an additive and a multiplicative, ¢,, ¢, contribution:

2
I = [l s €m + €, with: €, ~ N (0,02) €m ~ LN (_%naagn> (1)

Note that F(e,,) = 1 and var(e,,) = exp (62, — 1.

The densities of the independent multiplicative and additive variables are given by

o) = o e (—7) )

1

Jew(€m) = ——=—— exp
2T O €m

P N )
|
—_
=
—~
Q)
3
~—
_|_
q
N——
V)
“

The total noise ¢; is defined as:
c=1-1T :],(em—1)+ea
Three noise scenarios are considered in the following chapters:

e Additive measurement noise only: o, > 0, o, = 0.
e Multiplicative measurement noise only: o, = 0, o, > 0.

e Multiplicative plus additive measurement noise: o, > 0, g,, > 0.

Figure [12] illustrates additive (A), multiplicative (B) and multiplicative plus additive
noise (C) in simulated data. Total noise versus signal scattergrams show the homo-
geneity of variance of the noise term. For additive noise (see figure [I2| A), the variance
of total noise ¢ is independent from the signal I and the random variable total noise
is so called homoscedastic. For multiplicative noise (see figure|12| B) and multiplicative
plus additive noise (see figure C) the spread of the total noise €, increases with

increasing signal I' and the random variable total noise is so called heteroscedastic.
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3.3 Estimation of signal I and total noise ¢

To estimate noise parameters o,, and o, from fluorescence intensity, estimates for the
signal I' and the total noise € are needed. Since single cell time-lapse fluorescence
intensities consists of repeated measurements of the same unit (cell), we can apply a
Linear Mixed Model (LMM) for longitudinal data to get an estimate for I' and €. The
assumption of uncorrelated error terms within LMM is analysed with the estimated

autocorrelation function (ACF).

3.3.1 Linear Mixed Model

A LMM can be written in general form as [19]:

Yij = Bo + B1%irj + . + Baing + zio + 2aTirj + - + ZimTimj + €ij
Zik ~ N (O, di) €ij ~ N(O, 0'2)

y;; is the observation j of unit 7, Sy, ..., 8, are the so called fixed effect parameters,
2i0, -5 Zim are the random effect parameters of unit ¢ with m < n, ¢;; is the error term

of observation j of unit i.

In this context, observations are intensities, units are cells and fixed and random effects
are intensity intercept, age and age?. age is the time in hour from mitosis of mother

cell, where cell is born, until its own mitosis or end of observation.

Six different LMMs are used:

A LMM with fixed linear effect and random intercept:
Iij = Bo + b1 - agey; + zio + €3
with fixed intercept [y, fixed linear f; in age and random intercept z;.

B LMM with fixed linear effect and random intercept and slope:
Lij = Bo + b1 - ageij + zio + zin - ageij + €
with fixed intercept [y, fixed linear (3, in age and random intercept z;o and random

linear z;; effect in age.

C LMM with fixed parabola and random intercept:
Lij = Bo + b1 - ageij + B2 - aged; + zio + €
with fixed intercept [y, fixed linear [ and fixed quadratic effect [y in age and

random intercept z;.
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D LMM with fixed parabola and random intercept and slope:
Lij = Bo + b1 - ageij + Bz - agef; + zio + €
with fixed intercept [, fixed linear 5 and fixed quadratic effect 5 in age and

random intercept z;o and random linear z;; effect in age.

E LMM with fixed parabola and random parabola:
Ii; = Bo + B1 - age;j + B2 - age?j + Zio + 2i1 - age;; + Zio - ag@?j + €5
with fixed intercept [, fixed linear 3; and fixed quadratic effect £, in age and

random intercept z;9, random linear z;; and random quadratic effect z;» in age.

F LMM with fixed exponential and random exponential:
In(Z;;) = Bo + Bi - agei; + zio + i1 - ageij + €
with fixed intercept [y and fixed linear effect 8; in age and random intercept z;

and random linear effect z;; in age for the logarithmised observation.

In model A to E the estimates for the signal I' of cell i for observation 7 are the
predicted values and the estimates for total noise ¢y are the residuals of the models.
In model F the estimates for signal T’ are the exponential of the predicted values from
the model and the total noise €y is the difference between intensity I and estimated
signal I.

A linear random intercept:

-~

! A~
I'ij = Po+ P1-ageij + zio and €y = €5

B linear random slope:

-~

! ~
I'ij = Bo+ b1 - ageij + zio + 2 - ageij + €5 and €y = €5

C parabola random intercept

I'ij = Bo+ b1 - agey; + P2 - agej; + zo and &y = €

D parabola random slope:

Ilz'j = BO + 51 $age;; + 52 : age?j + Zio + Zi1 - ageg; and a)ij = €jj

E parabola random parabola:

P 2 2 ~
I'ij = Po+ Bi-agei; + B2 - ages; + zio + zin - ageij + zin - age;; + €5 and €5 = €5

F exponential random exponential:

~ o~

]lz‘j = eXp (60 + 61 . agez-j + Zi0 + Zil * ageij) and a)ij = IZ — I/ij

3.3.2 Autocorrelation

For a linear model, as well as for a LMM, we assume that the error terms are uncor-

related. This assumption can be analysed with the estimation of an autocorrelation
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function (ACF) of the residuals of the LMM. Autocorrelation is the correlation of a
variable with itself, but shifted with 1, 2, and more lags.

Within a LMM, the ACF might be estimated for the residuals of every cell individually.
This leads to ngy estimated coefficients for every lag. These coefficients are displayed

with boxplots.

3.3.3 Model comparison

There are several approaches to compare different linear models. Most common are
AIC, BIC and R%?. AIC and BIC are based on the maximized log-likelihood with
penalty for the complexity of the model. Within LMMs the complexity is rated as the
number of fixed and random effects [I9]. The number of random effects are rated here
with the same complexity as the number of fixed effects although that for the random
effects ny individual parameters (for every cell) must be estimated whereas for the fixed
effect only one overall parameter is estimated. This penalization is appropriate if the
LMM is used for prediction only, however we estimate the signal and noise with our
models and rate this proposed penalization as not advisable. Moreover AIC and BIC
use the log-likelihood, which is not straightforward for our model F with logarithmized

response variable.

Because of these reason we use adjusted R? to compare different LMMs:

2 n—1

R=1-— (-1 (4)

with

R2—1_ Zz]\il (yi — @)2
Z?:l (yi — g@)2

and number of observations N and number of regressors p. For every random effect we

take the number ng of estimated individual parameters for penalization,

p = (number of fixed effects) + ng- (number of random effects).
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3.4 Estimation of noise parameters from longitudinal data

In this chapter methods to estimate the noise parameters o, and o,, from fluorescence
intensity data are introduced. These methods are not limited to time lapse fluores-
cence data but also applicable for all longitudinal observations with additive and/or

multiplicative noise, if an estimate for the signal /' and the noise €, can be derived.

The estimation of noise parameters is quite simple for additive or multiplicative noise
only. For the combined situation, additive plus multiplicative noise, two different ap-
proaches are shown. The first approach uses a likelihood technique and needs numeric
integration, the second one uses a variance approach and fits a linear model to the

noise values.

3.4.1 Additive noise

For a model with normally distributed additive noise only, o, > 0, 0, =0 (I =1 ' +é€,),
the parameter o, can be estimated with the maximum likelihood estimator for the

standard error of the normal distribution.

R 1 & 1
Oq = m;(%i—%)?: mzei

=1

3.4.2 Multiplicative noise

For a model with log-normally distributed multiplicative noise only,c, = 0, 7,, > 0
(I = I'-€,,), the parameter o, can be estimated with the maximum likelihood estimator

for the parameter of the log-normal distribution.

o= \/m (m + 1) — V/In (var(en) + 1)

Ez(em)

with var(ey,) = ﬁ S (€my — Em)?

3.4.3 Multiplicative plus additive noise

There is no closed-form solution for the maximum likelihood estimator of the param-
eters o,, and o, for a model with multiplicative plus additive noise. Two different
approaches are discussed here: (i) Likelihood technique using numerical integration

and (2) a variance approach which fits a linear model to the noise values €.
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3.4.3.1 Likelihood approach

The joint density function for €, and ¢, is the product of the single density func-
tions f, (€,,) (see equation [2) and f., (e,) (see equation |3|) since the multiplicative and

additve noise variables are independent.

fem,ea(€m7 €a> = fem (‘Em) . fea(6a>

0'2 2
1 <ln(em) + 7"‘) €2 )
= ——— eX —_ J—
2T O T am P 202, 202

With transformation for bivariate density functions (appendix [7.1.2)) this joint density
function can be transformed to get the joint density function for total noise ¢, and
additive noise €,, fe, ., (€0, €4). Total noise is ¢y = I' (€ —1)+¢€, and the transformation

is T(eg, €q) = (€9 = I (€ — 1) + €4,€q = €,). The inverse transformation function is

T (e, €0) = €05 + 1,6, ). The density after transformation is
0'2 2
€0 —€a m
I (=) +3) e s
on,ea(E())ea) - exXp - 2 2 - 2 D) : 7 )
20 0q <€°I;,€“ + 1) Om Oa
while the Jacobi determinant is 11—,:
9905 1
L fea L0 1
T, v2) = | 29 O | = | I ==
( ) e _ % 1 I
Oeq Oeq

The desired univariate density function for €, is obtained after integration of the joint

density function,

Jeo (60) = /feo,ea (607611) de,

I/—i-e €0—€a a2, 2
0 ) (n(os=+1)+ %) o
= exp | — — deg .

270,04 (€0 — €a + 1) 202, 202

—0o0

The integration limits are because the multiplicative noise variable is log-normally dis-
tributed, €,, ~ LN (U—’Q” o2 ) With co-domain ¢, €]0, o[ follows ¢, €] — 0o, I + ¢

2 '%m
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with €, = €g — I (6 — 1) .

Likelihood L of the parameters o2 and o2, given some data is the product of the density

function for each observation ¢.

n

L(O'?n, 02|€0> = H f€0<€0i Ufnv Uczu)
i=1
I/+60 1 E01-*50, O',,2n 2
” ! (m(2=s1)+d) a2
- H 200, (€0, — €a + 1) e 202, B 20?2 ‘a

i=1 7

The log-likelihood [ is the logarithm of the likelihood L.

l(oy,, 0aleo) =

2
n [ 1 (ln < Oi;&z + 1) + %) 2
= E In exp | — — = | deg
— 2700, (€0, — €4+ 1) 202, 202

(6)

The log-likelihood [ may be evaluated and maximized numerically for o2, and o2 to get

the maximum likelihood estimator for the noise parameters.

Alternatively to the use of the density transformation we can get the density function

fe.(€0) through integration of the joint density fe,, c,(€m, €q) from equation [f]

fou(e0) = / for(em) + foo (0 = c0— T (6m — 1)) dery
0

/ 1 (1n(em) + %)2 (0= I'(e —1))° den (7

exp | — -
2T O T am,

2 2
/ 20, 207

Maximization of the log-likelihood using this alternative density function in equation

leads to the same maximum likelihood estimator for crfn and 02.
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Confidence intervals for ML-estimators

Let the parameter set 6 be one dimensional. Under certain regularity constraints
(which are independent identically distributed observations or at least the information
in the data increases with sample size, estimates of parameters lie not on boundary
and/or the boundary is not dependent from the parameter itself and the number of
nuisance parameters must not increase with number of observations [19]) the maximum
likelihood estimator @ is asymptotically normally distributed and the log-likelihood
1(5,:5) has the form of a parabola at the maximum likelihood estimator § in large
samples. With the second derivative of the log-likelihood, I”, an asymptotic 95%

confidence interval can be written as

Clysy =0+ 1.96 ——— .
—1"(0, )

Our parameter set 6 = (02,,02) is two dimensional. This implies that the confidence
interval is a confidence region. For easier interpretation the confidence interval are
calculated for each parameter individually with the second parameter is set to the

value of its maximum likelihood estimator.

1
Cll o = 4 1.96 - LI (8)
_82802727](0%17 02’60)
~ 1
Cllyope =0+ 1.96 - ————— (9)
55-z1(02%,,02%]€0)

These are the diagonal elements of the negative Hessian matrix or the so called observed

information.

3.4.3.2 Variance approach

In this paragraph a novel method to estimate the noise parameter from fluorescence
data with additive and multiplicative noise is described. It compares the variances and

fits a linear model to the noise values €.

The total noise of one observation is ¢g = [ —I' = I'(¢,, — 1) +¢€,. To derive an estimate
for the noise parameters o,, and o, the variance of the noise of one observation ¢, shall
be considered.
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var(eg = I (ém — 1) 4 €) = var(I e, + €,)

= I"%var(en) + var(e,) + 21 cov(em, €,)
— 1 (ef’?n - 1) 4?40 (10)

= E(e2) — E(eo)

The last step holds true, because of E(ey) = E(I (em—1)4¢€,) = I (E(em)—1)+E(e,) =
0+0.

Thus a linear model might be fitted, €3, = Bo+311;>+¢; to estimate E(e3). An estimator
for the noise parameters o,, and o, can be derived with comparing the coefficients from

the linear model with equation

~ 2 =
Oq :50

I? (GU/;LZ — 1) = 3\1

and the estimator can be written as

Gu =/ Bo (11)

o = 1n<31+1). (12)
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3.5 Estimation of copy numbers from mitosis events
3.5.1 Assumptions for copy numbers estimation

For all described methods to estimate copy numbers of proteins following three as-

sumptions hold:

Assumption 1: [ =v-n
Assumption 2: ny; ~ Bi(n;,p = 0.5)

Assumption 3: n; = ng; + noi g

About assumption 1: The fluorescence intensity I is regarded linear in the copy number

of fusion proteins n with conversion factor v.

About assumption 2: Each fusion protein from the mother cell has the same chance to
be allocated in one of the two daughter cells, so copy number ny; of daughter cell follows
a binomial distribution with probability 0.5. A close approximation for n; - p > 5 of

this binomial distribution is a normal distribution with mean n;p = n;/2 and variance
n; - p(1 —p) =n;/4.

About assumption 3: Conversion of fusion protein holds during mitosis. Adjustments
are done in the methods which consider multiplicative plus additive noise to include

the observed fusion protein gain (see table [4)).

Following variances can be derived when using these assumptions:

var(ng) =n;p(l —p) = e

1 1
var(vng) = 7/217%‘ = ZIZ-'I/ (13)

var(ng; — noiv1) = var(ng — (n; — ng;)) = var(2ngy;) = n;

var(I;)

/ !/ 2 !
var(ly; — I5,,1) = v° - var(ngy — noip1) = Ly
!/ !
Iy =Ty} _ 1
var (| ——"= | = —

Please note that the signal I/ and the copy number n; of the mother cell are not random

(14)

variables.
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3.5.2 No noise

3.5.2.1 Likelihood approach

This method is an “approximate solution” [15], because it does not take any measure-
ment error into account. Rosenfeld and colleagues [15] observed a fusion protein in
Escherichia coli which is not expressed nor degraded during microcolony growth. By
washing out the inducer they are able to stop the fluorescent gene expression. There-
fore the colony contains a fixed amount of fluorophores which keeps constant within a
lineage tree. In contrast, our data is based on cells, which express NanogVENUS and
Oct4VENUS fusion proteins during their cell cycle. Conversion holds approximately
only for one mitosis event. Therefore we adjust the original approach to fit it to our
data.

Without measurement error, I = I', constant number of proteins means that the inten-
sity is preserved during one cell devision. Mother fluorescence intensity is then equal

the sum of its daughters, I; = I5; + I5;11.

The density of the approximated normal distribution for ng; is

Py (2 |123) = \/g \/1n_iexp (—W) . (15)

The density f,,,(n2;|n;) can be transformed with theorem of transformation of univari-
ate probability density functions (see chapter [7.1.1)) to get fr,, (I2i|1;, V).

o) = st )| 2510

Here, y = Is;, © = ny; and g(ny;) : Is; = vny;. It follows that

F1, (I I, v) = \[\/_ ( (2122111/11) ) (16)

where n; can not be observed and is replaced with n; = I;/v. The likelihood L(v|I;, I5;)
for the conversion factor v given fluorescence intensities I; and Is; is the product over

all N independent mitosis events:

9\ N/2 N 1N of 2
L(v|Li, i) = (;) y N2 (Hli0~5 - exp _;Z%

The maximum likelihood estimator 2 is found by differentiation of the log likelihood
l(V|IZ‘, .[22‘),



3.5 ESTIMATION OF COPY NUMBERS FROM MITOSIS EVENTS 35

With assumption 3, conversion of fusion proteins, it follows I; = I5; + I5;+; and ¥ can

be written as N

1 (I2i — Iyiga)?

Uv=— —_ 17
In the original paper the density transformation is performed via Bayes theorem and
integration over copy numbers, which gives the same result, but is more complex.

3.5.2.2 Variance approach

This method uses a variance approach, which is important because its describtion in

literature [15] motivated us to apply this principle to more complex situations (see

chapters |3.4.3.2| and |3.5.4.2)). The variance of the intensity I; of the daughter cell is
(see equation

1
var(ly) = ZVL». (18)

The same variance can also be derived with expectation values:

'UO/T(IQZ‘) =F <[2z - E([21>>2

L — i\’
—p 2 19
( : ) (19)

Please see the appendix for variance and covariance rules (see chapter [7.2)). The ex-



36 3 METHOD

pectation values from equation [19| can be estimated with a linear model with residuum

€;:

Iy — Iyi1
2

2
) = Bil; + ¢ (20)

Thus an estimate for the conversion factor  can be derived from coefficient comparison
of the estimates of the linear model (see equation , which estimates the variance of

equation [I9] with the variance from equation [I§]
v =405

3.5.3 Additive noise

In this method, Rosenfeld and colleagues [I5] assume additive normally distributed

measurement error.

L=I+4+e=vn;+e, with e~ N(0,02).

In [15], the authors considered the whole lineage tree of one mother cell in cells which
does not express fusion proteins. We consider every mitosis event separately without us-
ing lineage tree information because our cells express NanogVENUS and Oct4VENUS

fusion proteins continuously during their cell cycle.

Using probability product rule and assuming that o, and v are independent, the prob-
ability of one cell devision satisfies

P(L,I,0%,v) = P(I|L,0%,v) P(L|o},v) P(o;) P(v) .

=) a’ a

where I = (I;, Iy, Isiy1) and I = v(n;, ng;, mgisy) are intensities and signals of one
mitosis event. P(0?) and P(v) are taken as uniform bounded distributions and can
be ignored for the maximum likelihood calculation. P(I|I, 02, v) is the product of the

normal distribution for the noise ¢y, = I; — I, for one mother and two daughter cells.

1

\/2mo?

P(I'|02,v) is the probability for the signal and therefore independent of o2: P(I'|o?, )

3
! 1 ! / /
P(II,02,v) = ( ) exp {_Tﬂ (5= 102 + (i = ;) + (T — [%H)?ﬂ

P(I'|v). Conversen of proteins during mitosis requires I, ; = I;—1I,; and so P(Iy; |1}, I,

1. With this follows P(I'|0?,v) = P(Iy|1;,v)P(I,).

i”/):
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P(I,|I;,v) is an even binomial distribution, which can be approximated with a normal
distribution (see equation . P(I;) is the priori for the protein number of the mother
cell. This priori is taken to be uniformly bounded and can be omitted for the maximum

likelihood derivation, ending to

, 2 1 (21, — I,)?
P(I |02 N\/j— ST 21
R Rl G (21)

For o2 the empirical variance of the difference from the intensities can be used. The
authors derive these formulas for the whole lineage trees and use different numeric

approximation for the empirical variance. Here, a simplier estimator can be used:

/ !
i — Loy — Lyipq + € — €2; — €2i41)

ar(0) + 302

var(l; — Iy — Iyiqq) = var([ /

Using the maximum likelihood estimator for the variance of a normal distribution, this

leads to

~2 _
Oq —

OJI>—‘

N
1
N_1 Z(L’ — Ipi — Iyi1)*. (22)
J

Using I, 1= I, — I,; (assumption 3), the probability for the intensities of one mitosis

event is:

/ 1 1 ! /
P(LI,v) ~ —eXP( 57 <(Iz’ — L)+ (I — I)* + (Tois — I +12i+1)2))
1 oL, — I.)?
eXp _( 21 i z)
y]’: 2[ZV

This is also the likelihood for the conversion factor and the unobserved signal values

’ ’ o~ 1 ’ ’
UL LD ~ 8, exp |~ (U= 10 4l = 10 4 T = 1L+ 1)

1 (21 — 12)2}

N [ 2w
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For maximization of the likelihood L(I;, I,;, v|I), it is helpful to take derivates of the
log-likelihood I(I;, I, v| f) with respect to variables (I}, I,;, v). With

/ / ~ ]_ ’ / / /
T3 Lo vID) ~ =3 10(6) = =g (= L)+ (T = L) 4 (o = I+ L))
1 1., 2L, — I.)2
— —In(v) — = In(I;) — M»
2 2 20 v
this is
ol(I;, I;, v|I) 1 ;o 1 412 — 172
i) ;n =) _ IZ [1 — 2. [.)——,——’L, L
or, 2@3<('+2+1 i 21, 2L v
oI, I, v|I) 1, v
#:_[<1__]i Ii _[Z.>
ol 2 g L2+ Doiva = 1)
UL, Loy v|D) 1 (21 — L)
ov 2w V2T '

1

Setting the partial derivative equal zero, solve and elliminate I; and I,;, the maximum

likelihood estimator for the conversion factor ¥ for mitosis event ¢ can be written as

(Ii — Iniy1)* — 265"

$(2L + Ini + D)

7=

(23)

The estimator for the conversion factor 7 of all observed mitosis events is the mean of

~

.
N ~2
1 Iy, — I541)? — 205,

%:_2(12 2+1) a (24>
N - 320 4 Iy + Ipi11)

with the empirical estimator for the variance

N
D = I = Iisa)* .

J
With ¢, = 0 in equation [24] the estimator for the model without noise of equation

is received.

o, 11
e T3N 1
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3.5.4 Multiplicative plus additive noise

We assume that the fluorescence intensities has additive normally distributed noise

plus independent multiplicative log-normally distributed noise.

3.5.4.1 Likelihood approach

Several different proposals for random variables might be considered: absolute differ-

Ipi—1I2it1
I;

ence [; — I5;11 or relative difference of daughter cell intensities or daughter cell

intensities only, I5;. Here, the density function of the difference between the daughter

cell intensities is used:

/ [y—
Az‘(]ma €m1s €ma, Gao) = Iy — Iyip
_ gt '
- IQiEml + €q, — [2i+1€m2 — €ay
_ 7 (7 7 o
= Lyem, — (I; = I3;)em, + €y — €ay

= I (€my + €my) — L[€my + €aq

while €4, = €4, — €4, ~ N(0,202). Mother cell signal I/ is not a random variable.

Because the four random variables I}, €,,,, €m,, €4, are independent, the joint density
function is the product of the single density functions. With the approximation of the

binomial distribution with the normal distribution, I}, = v - ng; ~ N (%]l’ , il/fi)

fléiﬁnq 76'm2 76110 ([éﬂ 67TL1 Y €m2’ 6aO) = fléz (Iél) ' f€m1 (Eml) ' femg (6m2) ' ffao (an)
2 AN
! (13- 41) ! (tnfem) + )
= X — . ex —
\/2m vl ’ 25w} Vaomen, 200,

| (e +3) 1 ( e )

P X : exp | —
V2T O €y P 202, V2120, P\ 72, 202

The density of the difference between the two daughter cells intensities A; = Iy —

Lyis1 = I} (€m, — €my) — I[€m, + €4, is derived via integration, similar to equation [7
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I; oo oo
///le Iéz Eml (eml)femz (€m2)f5a (€a0 - A IQ@<€m1 6m2) +I 6m2) d€m1 d€m2 dI2z
0 0 O

/

I, o0 2 a2 2
1 2 (I, — +17) (hl(%) + 7’”)
_ - exp _ 21 21 _
) 2727/202 0 €y €my / V1 vi; 207,
(1ens) + %)’
n(€m,) + 7 Ai = Lpi(€my + €my) + L €m,)? /
-exp | — 5 2 _( 22(6 1 +2€ 2)+ i€ 2) deml d€m2 dIQZ
207, do;

(25)

We need to estimate the signal from the mother cell, [Z, which is not a random variable.
This can be done with the intensities of the mother and both daughter cells and the
fusion protein gain during mitosis (see table |4]):

-~ 1 —
Iz' = §(IZ + Io; + Isiq + gam) (26)
Fusion protein gain is assumed to be constant for one data set. It is the mean difference

between the sum of the daughter cells intensities minus the mother cell intensity.

QER = Do+ L1 — 1

The log-likelihood [ of the parameters o2, 0% and v is the logarithm over the product
of the densitiy function fa(A;) for all observed differences between the daughter cell
intensities A;.

N
Uom 00,V A) = In fa(A) (27)
=1

The log-likelihood [ can evaluated and maximized numerically for 02, 02 and v to get

the maximum likelihood estimator for the noise parameter and the conversion factor.

3.5.4.2 Variance approach

A second, numerically easier method to estimate copy numbers from mitosis fluo-

rescence data with multiplicative plus additive noise is based on the comparison of
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variances, similar to the approaches used in chapter [3.4.3.2] and |3.5.2.2, To derive an
estimate for the conversion factor, the variance of the difference of the observed fluo-

rescence intensities of the daughter cells var(Iy; — I 1) is analysed. All used equations

for variance and covariance are listed in chapter [7.2]
For mother and daughter intensities, the following expectation values can be derived:

1
EUZ) - E(Iéi+1> - 5—7{

E(Iy — IéiJrl) =0

The variance of the difference of the observed daughter cell intensity can be split into

var(Iy — Ipip1) = var (Iy; — I,y + eo(Iy;) — €0(I5;11))
= var (I3; — I3;1) + var (eo(13;)) + var (€0(I;4,))
+ 2cov (I3; — Iy, €0(13;) — €0(I5;11))
— 2c00 (co(I3), colTy1)) - (28)

Using the variance of a product var(XY) = E?(X)var(Y)+E*(Y )var(X)+var(X )var(Y),

the single terms of equation 2§ can be written as

var(eg(Iy;)) = var (I (€, — 1) + €4)

= var(Iy(em — 1)) + o2
= E2(I};) var(epm — 1) + E* (e, — V) war(1};) + var(Iy) var (e, — 1) + o2

I\? 1 1

= (Ez) (e"gﬂ — 1) Oz_ffiy + ZIZ{V (e”gn - 1) + o2
P 1 >

= ]1»21 (e”m — 1) + ]{ZV (e”m — 1) + o2

and
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cov (Iéz — i1y €0, (I3;) — 602([§i+1))

= cov <]éz — Lyiys L(€my — 1) + €0, — (‘[éi+1(€m2 - 1)+ €a2))
= cov (I}, — Loy, Lyi(€my — 1) — Iy (€my — 1)) + cov (Iy; — Iy, €ay + €ay)
=E ([Iéz — Ly, — E (Iéz - Iéi—i—l)} X

[]éi(eml —1) = Lyy(em, — 1) — E (Iéi(eml — 1) — Iy (€my — 1))}) +0
=L ([Iéz - Iéi+1] [‘[éi(eml — 1) = Ly (ems — 1)})
= B {1 (em, = 1) + L alemy = 1) = Il (emy — 1) = Tyl (6my — 1)]
=0

The last step holds because of E(X,Y) = cov(X,Y)+ E(X)E(Y) and
E[IZ (e — 1)] = cov(I, (€ — 1)) + E(I3) E(€, — 1) =0+ 0.
The last term in equation 28| can be evaluated to

cov (60([§i>7 60([§i+1))
= cov (I5;(€my — 1) + €ay, Loy (€my — 1) + €ay)
= E([I(emy — 1) + €0, — E (Iy;(€my — 1) + €4,)] -
[[éi+1(€m2 —1)+e,—F (Iéi+1(€m2 - 1)+ Eaz)])
E([(emy — 1) + €ay) [Bi11(€my — 1) + €4,])
E [Iéiléi—l-l(Eml — D(ems — 1) + €ay€ay + €ay L3511 (€my — 1) + €0 Li (€my — 1)}
0.

Using this, the variance of the difference within the intensities of the daughter cells can
be expressed as

! / 1 l1
var(ly; — Iyipy) = Ly + 2 (1'1»24—1 (e"’gn — 1) 1—1‘1’/6072" + 02)

4 1 ’ 1
— 20‘3 + Izya (1 + 60-72”> —|— 1225 (eUNL 1)
~ 1 ~21
w20t Ly (1 e ) + 105 (7 1), (29)

For the last step I} is replaced with an estimate for it, similar to equation

~

’ 1 -
= §(Iz + Iy + L1 + gain).
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A second way to derive the variance of the difference in daughter cell intensities is to

use the expectation values is needed:

var(ly — Inip1) = E(Iy — Iyiy1)? — E*(Iy; — Iyigq)
= E(Iy; — I5i41)° (30)

A linear model can be fitted to estimate the variance from equation

~ ~2
(Ii — Iip1)2 = Bo + Bu I + Bo I + €5 (31)

With coefficient comparison from equation [29] and ,

By =202
fonnd Al 0/\2
b=y (1+¢7)

~ 1 .
b =3 (1)

an estimator for the conversion factor can be derived

o~

Bi
1+53

U= (32)
Confidence intervals for 7 may be derived with the standard errors of ﬁAl and BAQ or with
bootstraping.

The estimated number 7; of proteins of cell 7 is the product of the conversion factor

with its fluorescence intensitiy.
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4 Results

4.1 Estimation of signal and total noise

In chapter [2| four different mESC time lapse fluorescence datasets are discussed (see
table (1)) for which six different LMMs are estimated (see chapter |3.3.1)).

A linear random intercept: I;; = By + B1 - agei; + zio + €5

B linear random slope: I;; = By + b1 - agei; + zio + i1 - age;j + €5

C parabola random intercept: I;; = By + 31 - age;; + B2 - agefj + Zio + €5

D parabola random slope: I;; = By + 51 - age;j + P2 - agefj + zio + zi1 - age;; + €;

E parabola random parabola:

Iij = Bo + B1 - ageij + Ba - agefj + Zio + 21 - age; + Zig age?j + €ij
F exponential random exponential: In(1;;) = By + 51 - ageij + zio + zi1 - age;j + €;;

All models are estimated with R-software and the package nime [20], [2I] which fits a
linear as well as a nonlinear mixed-effects model in the formulation described by Lind-
strom and Bates [22]. For every unit (cell) an individual expectation line is estimated
in the LMM. For model A with linear fixed effect and random intercept the expectation
lines of the different cells are shifted straight lines with the same gradient (see figure
A). For model B with linear fixed effect and random slope the expectation lines
of the different cells are straight lines with individual gradients (see figure (13| B). For
model C with fixed quadratic effect and random intercept the expectation lines of the
different cells are parabolas with individual intercepts (see figure (13| C) and so on. For
model F with fixed and random exponential effect the expectation lines are exponential
lines (see figure |13 F). In the diagrams only a subset of 6 randomly choosen cells can
be displayed. The corresponding diagrams for NanogVENUS raw intensity dataset,
Oct4dVENUS raw and normalized intesnity datasets are in the appendix, figures [30| to

The expectation lines of the different LMMs for a cell can be quite different. The
expectation lines of the model A are straight lines whereas the curvatures for the same
cells for model E are very bended (e.g. blue lines in figures (I3[ A and E).
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A: linear random intercept B: linear random slope
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Figure 13: NanogVENUS normalized intensity. Intensities / and expectation lines of
LMM for six randomly choosen cells.
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4.1.1 Scatter diagrams

Estimated total noise €y;; is the difference of the observerd intensityl;; to the expec-
tation line and estimated signal T ;; 1s the value on the expectation line (see figure
to . With scatter diagrams (see figures to the homogeneity of variance of
the total noise can be compared with the homoscedasticity and heteroscedasticity of
different noise in toydata (see figure [12).

In the majority of the diagrams the data points are obviously bound within two parallel
lines (e.g. figure (17| B). This can be explained because the observed intensities are all
positive. Therefore the estimated total noise, which is the difference between intensity
and signal, can not be smaller than the negative signal values. This leads to the lower
bound of the residuals. The upper bound is defined by the upper limit in data clean-

ing rules for the intensities, which is 10 in raw and 100 in normalized intensity datasets.

The estimated total noise is not homoskedastic for all cases. Heteroskedasticity seems
to be more prevalent in Oct4VENUS, more in raw intensity data and more in the
random intercept LMMs (see figure [14{to . Diagrams indicate an even more complex
noise behavior in Oct4dVENUS residuals versus predicted than only multiplicative plus
additive noise. No big differences between random parabola and random exponential

LMDMs residuals can be seen.
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A: linear random intercept B: linear random slope
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Figure 14: NanogVENUS raw intensity. Estimated total noise €y,; versus estimated

signal I';; for 23 887 observations from 2034 cells using six different LMMs.
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A: linear random intercept
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Figure 15: NanogVENUS normalized intensity. Estimated total noise €,; versus

estimated signal T ij for 22 317 observations from 1850 cells using six different LMMs.
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A: linear random intercept
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Figure 16: Oct4VENUS raw intensity. Estimated total noise €;; versus estimated

signal I';; for 57 857 observations from 2891 cells using six different LMMs.
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A: linear random intercept B: linear random slope
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Figure 17: Oct4VENUS normalized intensity. Estimated total noise &,;; versus
estimated signal I';; for 57 185 observations from 2888 cells using six different LMMs.
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4.1.2 Autocorrelation

With the estimated ACF (see chapter [3.3.2]) the assumption of uncorrelated error noise
terms is investigated. Raw and normalized intensity as well as NanogVENUS and
Oct4dVENUS show similar distribution of the estimated ACF coefficients (see figures

to.

Due to manual adjustment of the segmentation in NanogVENUS datasets, the majority
of NanogVENUS cells has nine intensity observations only: three observations in the
beginning, three observations in the middle and three observations at the end of the
cell cycle (see figures [7| to . This is problematic for the interpretation of the ACF,
because the timepoints of observations are not balanced then. Lag 1 is a shift of one

observation which can be 30 minutes or 4 hours in NanogVENUS datasets.

ACF coefficients for lag 1 estimated for model A and C are mainly positive. The boxes,
which range from the lower quartile to the upper quartile, does not include zero for
three of the four datasets. Only for NanogVENUS raw intensity dataset the box in-
cludes zero for these models. For models B, D and F the medians for lag 1 for all data
sets are positive again, but the boxes do include zero. For model E the median for lag
1 in the NanogVENUS datasets is negative and for Oct4VENUS datasets is positive

and the boxes for all datasets include zero.

Thus, the assumption of uncorrelated residuals seems to be violated in the models A
and C. The ACF analysis for the other models however are consistent with this as-
sumption. The reason is that models A and C have no random effect age, which is of
course positively correlated with the order of the observations. The missing explained

variation of the random effect age is interpreted as autocorrelation.
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Figure 18: NanogVENUS raw intensity. Boxplot over estimated autocorrelation

functions for the estimated total noise (number cells = 2034). The residuals are from

six different LMMs.
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Figure 19: NanogVENUS normalized intensity. Boxplot over estimated autocor-

relation functions for the estimated total noise (number cells = 1850). The residuals

are from six different LMMs.
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Figure 20: Oct4VENUS raw intensity. Boxplot over estimated autocorrelation

functions for the estimated total noise (number cells = 2891). The residuals are from

six different LMMs.
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lation functions for the estimated total noise (number cells = 2888). The residuals are

Figure 21: Oct4VENUS normalized intensity. Boxplot over estimated autocorre-
from six different LMMs.
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4.1.3 Model comparison

We use adjusted R-square R? for model comparison (see equation . For model E
with fixed parabola and random parabola the R? value is highest for all four datasets
compared to the other models (see table |7) and therefore we choose here model E to

. . ! .
estimate signal I and noise €.

A B C D E F

NanogVENUS raw intensity 0.646 0.705 0.674 0.720 0.735 0.678
NanogVENUS normalized intensity | 0.721 0.839 0.722 0.849 0.888 0.845
Oct4dVENUS raw intensity 0.490 0.581 0.507 0.590 0.617 0.554

Oct4VENUS normalized intensity | 0.588 0.674 0.588 0.677 0.713 0.655

Table 7: Adjusted R-square R? for the six LMMs of the for data sets.

However the majority of cells in NanogVenus datasets have intensity observations only
in the beginning, in the middle and at the end of the cell cycle. Thus, LMMs with
random parabola might overfit the observed NanogVENUS intensities and the noise is
underestimated. Therefore model F with fixed and random exponential is included in

the following evaluations of the noise parameters as a second model.

4.2 Toydata strategy

To verify the new derived methods to estimate noise level and copy numbers, toydata
are used. Key numbers from mother cells of the NanogVENUS normalized intensity
dataset are taken to simulate fluorescence intensities (see figures 22| and [9] C). Mean
value is I; = 4.1 and standard deviation is sd(I;) = 1.5.

In the methods to estimate (relative) noise parameters or copy numbers the absolute
value of I; is not importand. The relative distribution may influence the outcome to a
certain extent. To avoid negative intensities, Gamma distribution is used to simulate
cell intensity I! for toydata. To make it simpler, the standard deviation is taken to

be 1/3 of the mean value. So the used parameter for Gamma distribution are shape
factor k = 9.0 and scale factor § = $1I; (mean = k6 and sd = VED).

For simulation of mitosis event data, copy numbers in mother cell n; are drawn from
a Gamma distribution (rounded to integer value). These n; proteins are distributed
stochastically equally to either daughter cell with a binomial distribution with size n;
and probability p = 0.5. The copy number of the second daughter cell ny;,; is the

difference of copy number of mother cell and first daughter cell: ng; 1 = n; — ng;. Mul-
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Figure 22: Histogram of NanogVENUS mother cell normalized intensity after data
cleaning (N=1191). The red and blue lines show the corresponding densities of the
normal and Gamma distributions.

tiplication of the copy numbers with conversion factor v gives signal values, applying

multiplicative and additive noise gives intensity values.

The parameter are choosen that in mitosis toydatasets the mean intensity of mother
cell is I'; = 1.5. The mean intensity of mother and daughter cells is I' = %([_’Z + 1y +
I'yi41) = $(1.5+1.5/2+1.5/2) = 1.0. Please note: I' = 1. So with a conversion factor
v = 107* the mean copy number of daughters and mother cells is 7y = 1/v = 10%.
Moreover the additve noise parameter o, is then equal to the relative additve noise
parameter o,/ I', which avoids confusion. Saying in this report the mean copy number
in mitosis events is 1000 implies that the mean of the mother cell copy numbers is 1500

and the mean of daughter cell copy numbers is 750.
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4.3 Estimation of noise parameters
4.3.1 Validation with toydata
4.3.1.1 Likelihood approach

To estimate o, and o, we use the log-likelihood derived in chapter [3.4.3.1], equation [f]

with the estimated signal and noise values from the LMMs

l(0y,, 0ale0) =

' 2
n [ 1 (ln <€Oi;6a + 1) + %) 2
= E In exp | — — =2 | de,
c— 270,04 (€0, — €4 + 1) 202, 202

The log-likelihood [ can be maximized numerically for o2, and ¢ to get the maximum

likelihood estimator for the noise parameters.

R-function integrate() [20] is used for the numerical integration. This is an adaptive
quadrature of functions of one variable over a finite or infinite interval. Maximization
of the log-likelihood is done with the function optimize(), which uses a combination of
golden section search and successive parabolic interpolations. We use the R-software
with function fdHess() of the library nlme [21] to calculate the confidence intervalls
numerically with equation [§ and [9]

Om Oa
0.0995 | 0.2009
0.0989 | 0.1995
0.0988 | 0.2004
0.1031 | 0.1980
0.1013 | 0.2003

Table 8: Results validation likelihood method to estimate noise parameter o,, and o,.
Each toydataset consists of N = 50 000 observations with parameter o, = 0.1 and
o, = 0.2.

Five toydatasets with N = 50 000 observations are created with multiplicative log-
normal distributed noise with o,, = 0.1, additve normal distributed noise with o, = 0.2
and mean intensity I; = 1.0. Maximization of the log-likelihood (see equation @ leads
to the maximum likelihood estimates 7, and 7, (see table . 95% confidence intervall

for these estimators are quite narrow (< 107°). Maximum likelihood estimation of the
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parameters following equation [0] is shown in table 8. The deviation of the maximum
likelihood estimator to true parameter is smaller 10~2 and might be caused by random
effects while drawing the toydatasets. The 95% confidence intervall (see equation

and @ spans a region smaller 107°.

It can be concluded that the likelihood approach of equation [6] to estimate multiplica-
tive and additive noise parameters leads to reliable results.

4.3.1.2 Variance approach

With signal I; and total noise €, estimated in LMMs, the estimated coefficients from

a linear model €}, = By + B11;* + €; lead to estimatior for the noise parameters o,,, and

0, (see chapter |3.4.3.2] equations |11] and

a\-a = 50

Om = ln(ﬁAl—l—l)

1.5

1.0

(Total noise)*2 [a.u.]

0.5

0.0

0.5 1.0 1.5 2.0 25

Signal [a.u.]

Figure 23: Example of one toydataset and the calculation of the noise parameters o,
and o, with the variance approach. X-axis shows signal I;, y-axis the square of the
total noise €3, = (I; — I;)>. The red line is the regression line of the linear model,
egi = By + 51122 + ¢;. From the estimated coefficients of this linear model, estimates of

the noise parameter can be derived.
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Different values for noise parameter are investigated for the validation, o, € (0.1;0.2)
and o, € (0.1;0.2) x I with the mean signal I" = 1.0. 1000 toydatasets each with

N = 10000 observations are generated and analysed. For every toydataset noise pa-

rameters o, and o, are estimated and median and central 95% quantil are derived (see

table [9).
Om o, Om 0,
1010 0.10 | 0.100 [0.093, 0.107] | 0.100 [0.093, 0.107]
2 10.10 0.20 | 0.100 [0.088, 0.112] | 0.200 [0.193, 0.206|
31020 0.10]0.199 [0.188, 0.212] | 0.101 [0.071, 0.120]
41020 0.20]0.200 [0.186,0.216] | 0.200 [0.183, 0.213]

Table 9: Result empirical testing of variance algorithm to estimate noise parameters.
Median and its 95% confidence interval. 1000 toydataset are created for each parameter
combination with mean intensity I; = 1.0.
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Figure 24: Comparison of toydata results for two methods.
om = 0.1, 0, = 0.2 and N=10 000 observations are analysed with both methods. The
blue line is the angle bisector.

200 toydatasets with
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The median of the estimated noise parameters 7,, and 7, is equal within a range of less
than 1% to the used true parameters of the toydata, o,, and o,. The 95% confidence
intervals for the medians are based on the 1000 toydatasets. The range of the interval
is much bigger than the confidence interval of the likelihood method which are smaller
1075 (see chapter . One reason might be the variation within the toydatasets
due to random sampling.

The analysis with the likelihood method of the same 4 x 1000 toydatasets analysed
with the variance method is computional demanding and from only 200 toydatasets
with the same parameters (o, = 0.1, 0, = 0.2 and N=10 000 observations) the noise
parameters are estimated with both methods (see figure[24). The estimated parameter
with the variance method are positive correlated with the estimator of the likelihood
method (correlation @, 0.86 and correlation ¢, 0.85). This indicates that the varia-
tion within the toydatasets is a main contributor to the width of the confidence interval

for the variance method.

Using the likelihood estimates of the noise parameter here as the true parameter within
every single toydataset, the variance within the estimates from the variance method
can be reduced by more than 70%. This indicates that the width of the corresponding
confidence intervals would be only half without the variations within the randomly

drawn toydatasets.

It can be concluded that the variance approach of equations and to estimate
multiplicative and additive noise parameter leads to reliable results.

4.3.2 Application on mESC data

Noise parameter of the mESC datasets are estimated with likelihood and variance
method using. Table displays the results for the raw and normalized intensities
fluorescence data from NanogVENUS and Oct4dVENUS. For each dataset, residuals
and signal estimators are calculated with two different LMMs, model E with fixed and
random parabola and model F with fixed and random exponential (see chapter m
For the maximum likelihood estimations only residuals with predicted values €;; > 0.2

are used to avoid problems with divergent numeric integrals.

For the variance method the estimated parameter for the multiplicative noise 7,, ranges
from 0.102 to 0.188 and for the likelihood method from 0.111 to 0.211. The multiplica-

tive noise is smallest for all datasets in model E (parabola) with range for @, from 0.102
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variance method | likelihood method
Om Oa Om Oq
NanogVENUS E: parabola 0.123 4.725 0.129 4.370
raw intensity  F: exponential | 0.141 5.857 0.165 4.230
NanogVENUS E: parabola 0.102 0.264 0.111 0.226
normalized F: exponential | 0.121 0.367 0.147 0.254
Oct4dVENUS  E: parabola 0.186 4.301 0.145 5.757
raw intensity  F: exponential | 0.187 6.205 0.187 5.907
Oct4dVENUS  E: parabola 0.185 0.356 0.167 0.412
normalized F: exponential | 0.188 0.544 0.211 0.383

Table 10: Estimation of noise parameters. Variance method and likelihood method are
applied to the residuals from the two different LMMs.

to 0.185. The multiplicative noise does not change much with normalization process.
In NanogVENUS datasets for model E the estimated multiplicative noise parameter
with variance method are smaller than for model F, while for Oct4VENUS they are the
same. This indicates an overfitting of the data with model E in NanogVENUS data
sets (see chapter [1.1.3]

el
variance likelihood
NanogVENUS E: parabola 0.109 0.101
raw intensity = F: exponential | 0.135 0.097
NanogVENUS E: parabola 0.088 0.075
normalized F: exponential | 0.122 0.085
Oct4dVENUS  E: parabola 0.132 0.177
raw intensity = F: exponential | 0.190 0.181
Oct4dVENUS  E: parabola 0.118 0.137
normalized F: exponential | 0.181 0.127

Table 11: Estimation of relative additive noise parameter. The estimated additive
noise parameter g, (see table are devided by mean intensity I (see table |3)).

The estimated parameters for additive noise, g,, are very different for raw and nor-
malized intensity data. For raw data it ranges from 4.230 to 6.205 and for normalized
data it ranges from 0.226 to 0.544. The additive noise for Oct4dVENUS is bigger
than for NanogVENUS. In model F, 7, is higher compared to the model E except in
Oct4VENUS normalized. The additive noise changes a lot with the normalization pro-
cess, it is reduced by a factor between 11 and 19. The main reason for this reduction
in &, is that with normalization the mean intensity values, I, is reduced from 43.4
to 3.0 in NanogVENUS, which is a factor 14, and from 32.6 to 3.0 in Oct4VENUS,
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which is a factor 11 (see table [3). While reducing the intensities, the additive noise
is reduced as well. For easier comparision the relative additive noise 7,/I is shown
in table [II] Mean intensities for the datasets are displayed in table [3] The range for
relative additive noise is 0.075 to 0.190.

Overall, there is a good agreement between the estimators from the variance method
and the estimators from the likelihood method in the NanogVENUS data. The agree-
ment between variance method and likelihood method is smaller for Oct4dVENUS
datasets. This might be because Oct4dVENUS noise is more irregular in the residuals
versus predicted diagrams (see figure to which indicates that higher order of noise
are included. Our models with muliplicative and additive noise only may be too simple
for Oct4dVENUS datasets. The segmentations in the NanogVENUS microscope images
are manually re-adjusted which reduces image processing noise. This re-adjustment is
not performed in Oct4VENUS images. So the quality of the Oct4dVENUS datasets are

lower and their noise is more irregular.

95% Cl 5, | 95% CI g,
NanogVENUS E: parabola [0.118, 0.129] [4.411, 5.029]
raw intensity  F: exponential | [0.135, 0.148] [5.528, 6.180]
NanogVENUS E: parabola [0.098, 0.106] [0.250, 0.278|
normalized F: exponential | [0.115, 0.126] [0.347, 0.386]
Oct4VENUS  E: parabola | [0.179, 0.193] [3.957, 4.509]
raw intensity  F: exponential | [0.178, 0.197] [5.876, 6.478]
Oct4dVENUS  E: parabola [0.178, 0.192] [0.321, 0.390]
normalized F: exponential | [0.179, 0.195] [0.511, 0.573]

Table 12: 95% confidence interval for estimated noise parameter with variance method.
Based on bootstraping with 1000 drawings.

The accuracy of the parameter estimations can be rated with a 95% confidence inter-
val. For the likelihood method the interval is estimated with the negative Hessian, also
called information matrix (see chapter[3.4.3.1). For the variance method it is estimated
via Bootstraping with 1000 draws (see table . The widths of the 95% confidence
interval for the maximum likelihood estimators are quite small. They spans less than
10~* of the estimated values for all multiplicative noise parameters and less than 1072
of the estimated values for all additive noise parameters, and therefore they are not
displayed here. The 95% confidence intervals for 7, and &, for the variance method
ranges around £10% of the estimator value and even wider for o, in Oct4dVENUS

normalized with model A.
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4.3.3 Comparison of the two methods

Two methods are derived, a likelihood approach and a variance approach, to estimate
multiplicative and additive noise parameters from single cell time-lapse fluorescence
data. The likelihood method requires numerical integration and optimization. The
variance method estimates a linear model and proved to be unbiased, reliable, very
easy to implement and gives for our toydata sets and mESC datasets almost the same
estimater as the maximum likelihood estimator. So both approaches are appropriate
methods. Moreover the variance method is a quick and good alternative to likelihood
method to estimate additive and multiplicative noise parameter in setting comparable

to ours with 20 000 or more observations.

Om  0a)1
NanogVENUS raw intensity | 0.135 0.105
NanogVENUS normalized 0.116 0.087
Oct4dVENUS  raw intensity | 0.186 0.179
Oct4dVENUS  normalized 0.187 0.132

Table 13: Median of estimated multiplicative and relative additive noise parameters.

Finally we can conclude that the available NanogVENUS and Oct4dVENUS time lapse
fluorescence microscopy intensities carry considerable multiplicative and additive noise.
The median of the estimated multiplicative log-normal noise parameter ,, for Nan-
goVENUS is 0.14 for raw and 0.12 for normalized intensity data set and for Oct4VENUS
they are 0.19 for raw and for normalized intensity data set. The median of the esti-
mated relative additive normal noise parameter &, /I for NangoVENUS is 0.11 for raw
and 0.09 for normalized intensity data set and for Oct4VENUS it is 0.18 for raw and
0.13 for normalized intensity data set (see table [L3).
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4.4 Estimation of copy number from mitosis events
4.4.1 Validation with toydata

4.4.1.1 Likelihood approach

To estimate v, we use the integral derived in chapter [3.5.4.1] equation

fa(d) =
I; 00 0o 2 o2 2
1 2 (i~ 1n)°  (Inlem) +%)
I —
) 2127/202,0 €y €my / VI, vl 207,
(1tens) + %)
n(€m,) + % Ai = Ly (€my + €my) + Ii€my)? /
- exp 5 2 _( 22(6 1 +2€ 2)+ i€ 2) deml d€m2 dIQZ
207, do;

with the estimator for I; (see equation

~

’ 1 -
i = 5(]1 + IZi + ]22'_’_1 + gam).

2

m?

Maximization of the log-likelihood in respect to parameters o2, o2 and v gives the

maximum likelihood estimators for the parameters (see equation [27)).

N
lon,00,v]A) =) In fa(A)
=1

For the 3-dimensional integration R-function cuhre() from package R2Cuba is used.
This is a multidimensional numerical integration with a deterministic iterative adaptive
algorithm [23][24]. Maximization of the log-likelihood is done with function optimize()
[20].

observation I; Iy; Isiq
1 1.31174 | 0.63286 | 0.51201
2 1.88340 | 0.87850 | 1.18184

Table 14: Toydataset for upper limit verification. Intensity of mother cell I; and
daughter cells Io;, I5;1.

The upper limits of the integral (see equation for the multiplicative noise terms

€m, and €,,, is infinity. For the numerical calculation the upper limits must be real.
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The dependancy of the integral on different upper limits is tested with two toy-
data observations with parameter v = 0.001, o, = 0.1 and o, = 0.1 (see table
14)). In this toydataset the standard deviation of the multiplicative noise terms is
SD(e) = v/exp(02,) —1 = 0.1003 and mean value €, = 1.0 A first choice for the
upper limit for the integral is €,, + 5 - SD(e,,) = 1.5. This first choice is verified nu-
merically and the integral value for different upper limits is calculated (see figure .
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Figure 25: Toydata integration. Integral of equation is solved numerically for
different upper limits for €,,, and €,,, and different additive noise parameter o,. Param-
eter v = 0.001 and o, = 0.1 are constant for all figures. Figure A to C: observation 1
of the toydataset (see table is used. Figure D to F': observation 2 of the toydataset
(see table is used. Figure A and D: o, = 0.1. Figure B and E: 0, = 0.01. Figure
C and F: o, = 0.001.

The integral (see equation is evaluated for two different toydata observations (see
table with different upper limits for €,,, and €,,,, for v = 0.001 and o0,, = 0.1 and
for different settings of parameter o, (see figure . The behavior of the integral is
quite similar for the two different observations (see figure 25[ A to C versus (see figure
D to F). For case A and D with additive noise parameter o, = 0.1 the calculated
values for the integral seem stable for upper limits greater 1.5. For case B and E with
0, = 0.01 the integral values fluctuates a lot for increasing upper limits. For case C

and F the only integrals greater 102 are for upper limit is 2.0. A very similar result is
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obtain if o, is modified. If v is modified, the values for the integral are rather stable

(see appendix [7.4] figure [33] and [34).

The adaptive algorithm used for the integration makes a grid in the integration range.
For each gridpoint the function is evaluated and a integral value derived. If the grid
points do not include the area of considerable probability mass, the integration fails.
The mass of the function regarding ¢, is expected to be around 1, because it is log-
normal distributed with mean is 1.0. The exact shape of the function, of course,
depends on the observation. For small o, and o,, the area of mass is quite narrow.
It seems that in these cases with upper limit 2.0 and lower limit 0.0 we get at least
one initial gridpoint in the area of considerable probability mass and the adaptive al-
gorithm can starts its optimization process to get reliabe results. In the following an
upper limit of 2.0 and a lower limit of 0.0 for the integrals of the multiplicative noise
terms €,,, and €,,, is used for all observations. However it has not been shown yet that

this integration limits are robust for all observations.

We use toydatasets with noise parameter o,, and o, similar to the results obtained
for our mESC data (see table (10| and and different conversion factor v to validate
this method to estimate the copy numbers and the parameters (see table . Each

toydataset consists of 1000 mitosis events.

No of repeats v Om O, n
5 1072 0.17 0.13| 100
5 1073 0.17 0.13 | 1000
5 1074 0.17 0.13 | 10 000
5 1075 0.17 0.13 | 100 000

Table 15: Parameter for toydatasets for validation of likelihood method to estimate
copy numbers.

For the optimizations the parameter ,,, 0, and v are logarithmized (logio(o,), l0g10(04),
logio(v), see table for more stable results. The starting values for the optimization
are drawn from the uniform distribution over the optimization range (see table [L7).
The integral for one observations needs in our implementation 3 seconds computational
time, so for the calculation of the log-likelihood with 1000 observations and one param-
eter set 50 minutes are needed. After 180 hours and up to 7 optimization steps for each
toydataset the computing of the maximzation of the log-likelihood (see equation
in respect to the parameter o,,, 0, and v was stopped. For each toydataset maximum

likelihood estimators for the parameters are derived (see table |18]).
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No| v Om  0a | logio(v) logio(om) logio(oa)
Al 5 1072 0.17 0.13 -2 -0.77 -0.89
B| 5 |10 0.17 0.13 -3 -0.77 -0.89
C| 5 |107* 0.17 0.13 -4 -0.77 -0.89
D| 5 [107° 0.17 0.13 -5 -0.77 -0.89

Table 16: Input parameter for toydatasets for validation of likelihood method to esti-
mate copy numbers with logarithmized parameters.

Optimization range
logio(v)  logio(om) logio(0a)
[4,0] [1.27,-027] [1.39, -0.39]
[-5,-1]  [-1.27,-0.27] [-1.39, -0.39]
-6, -2] [-1.27,-0.27] [-1.39, -0.39]
[-7,-3] [-1.27,-0.27] [-1.39, -0.39]

Saoaw»

Table 17: Parameter optimization range in likelihood method to estimate copy numbers
with logarithmized parameters.

B =

'
—_—

-log10(nu estimated)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
|

T T
2 3 4 5 sigma.m sigma.a

—log10 (nu input)

Figure 26: Toydata result from table [I18 Figure A displays the negative logyy of the
estimated conversion factors 7. The blue line is the bisecting line. Red dots are the
estimators on the boundary of the optimization range. Figure B shows boxplots of all
estimated noise parameters 7,, and 7,. Input values are o,, = 0.17, o, = 0.13.
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v % Om 0,
1072 ] 0.011 -1072 # 0.177 0.139
1072 | 3.402 -1072 0.080 0.100
1072 | 4.203 -10~2 0.118 0.059
1072 | 4.057 -1072 0.108 0.070
1072 | 4.502 -1072 0.055 0.078
1073 [ 13.219 -1073 0.142 0.120
1073 | 22.630 -1073 0.102 0.096
1072 | 0.010 -10~® # 0.179 0.122
103 | 19.086 -10~2 0.140 0.096
1073 | 14.700 -1073 0.127 0.129
10721 97.022 -107* # 0.142 0.125
107% 1 99.986 -10~* # 0.124 0.128
10~* | 0.091 -10~* 0.173 0.130
107* 1 99.986 -10~* +# 0.113 0.138
107* | 0.105 -107* 0.194 0.127
10~° | 0.946 -107° 0.170 0.126
10~° | 0.893 -10°° 0.174 0.120
10-° | 0.901 -107° 0.164 0.135
107° | 0.975 -10°° 0.177 0.127
107° | 0.777 -107° 0.210 0.096

Table 18: Result validation of likelihood method to estimate copy numbers for toy-
datasets with different input values v. Mean copy number is n = 1/v, because I = 1.0.
# indicates that v lies on the boundary of the optimization range.

For five toydata sets the maximum likelihood estimators for v are on the boundary
of the optimization range. Two of them are on the lower boundary and three on the
upper boundary (see table[L§)). For toydata sets with v = 1072 (copy number n = 100)
all estimated v (except that one, which lies on the boundary) are overestimated by a
factor 3.4 to 4.5. For toydatasets with v = 1073 (copy number n = 1000) all estimated
U (except that, which lies on the boundary) are overestimated by a factor 13 to 23 and
for toydatasets with v = 10~ (copy number n = 10000) all estimated 7 (except those,
which lie on the boundary) are underestimated by a factor 9.5 to 11. For toydatasets
with v = 107° (copy number n = 100000) all estimated 7 are little underestimated by
a factor 1.02 to 1.29. Graphical display of all 7 indicates accumulations below 1072
and at 107° (see figure [26)).

The estimators for the noise parameter o, and o, are all estimated within an accuracy
of factor 3. No noise parameter estimator is on the boundary of the optimization range.
With this limited testcases it can not be rated proberly if the likelihood approach to

estimate copy numbers works acceptably.
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4.4.1.2 Variance approach

With a linear model (see chapter [3.5.4.2] equation

~ ~2
(I — [2i+1)§ = Bo+ Bl + B2 [Mj + €.

and coefficient comparison an estimator for the conversion factor v can be derived (see
equation [32))

~

- B
U= — .
1+
Parameter Values
mitosis N | 10°  10* 10> 10
v 1073 107* 107° 107
Om 0.0 0.006 0.01 0.02 0.05 01 0.2
O, 0.0 0.006 0.01 0.02 0.05 01 02

Table 19: Parameters for toydatasets for testing the variance approach to estimate the
conversion factor v. Mean signal for mother cells for all cases is I/ = 1.5.

Toydata with various values for the number of mitosis events (observations) N, conver-
sion factor v, multiplicative and additive noise parameter o,,, o, are used to validate
the variance appoach to estimate v (see table . The mean intensity for mother
cells for all test cases is I! = I; = 1.5, so the mean intensity for all cells, mother
and daughters together, is [ = %(I_Z + Iy + Ipiy1) = %(1.5 +0.75+ 0.75) = 1.0. This
means, that the mean copy number 7 for the mother cells and its daughter cells is the
inverse of the conversion factor v, I = vi. So the range for the mean copy number is
n € (10%,10%,10°,10°%). Moreover the parameter o, of the normally distributed additive
noise can be interpreted as relative additive noise of the mean cell intensity o,/I. For
details on toydata generation see chapter [£.2] 1000 toydata sets for all combination of
the parameters from table [19] are generated and its ¥ derived with variance method.
Althogether 784 000 toydata sets and v are used for this validation.

With density lines of the estimated 7 for a combination of the parameters, it is tested,
if the variance method gives unbiased estimates. Figure [27 shows the density lines of
v of the toydata sets with parameter v = 1074 (7 = 10 000, N € (103,10%,10°, 10)
and o, and o, € (0.0,0.005,0.01,0.02). The corresponding figures for other parameter
sets look similar. Each diagram represents one parameter set, x-axis is the value of .

The dotted black lines indicate the true conversion factor v. The different colors refer
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to different amounts of mitosis events per toydataset N. All densitiy lines are symetric
around the true conversion factor v (dotted line). This shows that the variance method

is unbiased.

With more mitosis events the width of the density peak gets smaller (black to red
to green): The uncertainty of the estimations can be reduced with higher number of
mitosis events. Next we investigate the 95% confidence intervals in respect to different
parameter sets, o,, 0, and N to see the capability of the method. Figure [28/shows the
process of the empirical 95% confidence intervall of the estimated conversion factors
in respect to the additive noise level for a subset of o, and o,, input values. The
corresponding figures for other noise parameter look similar. X-axis is relative additive
noise parameter o,/ and the data are split for different multiplicative noise level o,,.
The light green bars indicate the area outside facor 10 accuracy for v: v ¢ (10v,0.1v).
To have a copy number estimate n = I /v which 95% confidence interval is within an
range of factor 10, the shown confidence intervalls in this figure must not touch the

light green area.

Figure finnally shows the result of all toydata in four heat diagrams. Similar to
figure 28] the empirical 95% confidence intervals for the estimated conversion factors
are analysed. The different grey colors indicate of how many mitosis events a dataset
must consists of to get with 95% probability an estimate for copy number within an
accuracy range of factor 10. E.g. for a copy number of 100 000, only small noise
levels are tolerable (o,,,0,/1 < 0.02) and up to 1 million mitosis events are needed to

estimate the conversion factor with 95% probalility with an accuracy of factor + 10.
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Figure 27: Estimated conversion factors 7 with variance method on toydata. Mean
copy number of proteins is 10 000. Density of 1000 toydata sets, black is for N = 10*
events, red is for N = 10° events, green is for N = 10° events per toydata set. Dotted
line indicates true conversion factor v = 107
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Figure 28: Estimated conversion factors ¥ with variance method. X-axis is o, and
y-axis is upper and lower bound of central 95% confidence quantil of 7. In each plot
we show different numbers of events, N=10* (black), N=10° (red) and N=10° (green).
The light blue area indicates values outside (v/10, 10v).
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Figure 29: Toydata result: Estimated conversion factor with variance method. The
different grey colours indicate the needed number of mitosis events to get an estimate
for the copy number which 95% confidence interval is within a factor 10 of the true
value.
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4.4.2 Application on mESC data

4.4.2.1 Likelihood approach

Computational maximization of the log-likelihood (see equation of the mESC
datasets to estimate the fusion protein copy numbers is stopped after 180 hours and 6
optimization steps. For the NanogVENUS datasets the maximum likelihood estimates
v is 1.79 -1073 for the raw intensity data set and 1.37 -10~2 for the normalized inten-
sity data set (see table 20). For the Oct4VENUS datasets ¥ is 1.50 -1073 for the raw
intensity data set and 6.66 -10~2 for the normalized intensity data set. With the mean
fluorescence intensity of the mESC datasets (see table [3|) the estimated copy numbers
n = I /U are for NanogVENUS 24308 (raw) and 218 (normalized) and for Oct4dVENUS
21717 (raw) and 452 (normalized) (see table

v Om 041 n
NanogVENUS raw 1.786 -107%  0.166 0.023 24308
NanogVENUS normalized | 1.3717 -10=2  0.107 0.047 218
Oct4VENUS raw 1.500 -10~3  0.117 0.053 21717
Oct4VENUS normalized 6.655 1072 0.109 0.030 452

Table 20: Result likelihood method mESC data.

For the NanogVENUS datasets the simultaneously estimated maximum likelihood noise
parameters o, (see table are similar to the estimates from chapter table [10}
For the Oct4VENUS datasets 0, is 40% smaller as the results in chapter The
maximum likelihood estimator for relative additive noise &,/ here is up to a factor 5
smaller than the results in chapter [4.3]

The 95% confidence intervals for v can be estimated with the approximation that the
maximum likelihood estimator 7 is normally distributed and the second derivate of
the loglikelihood of the mitosis data (compare equation . The limits of the 95%

confidence intervals for n are the inverses of the limits of the confidence interval for v

(see equation [33).

1

_8(29,2/21<V27 57\)17 O/Z‘A>

Clyos9 =V +1.96 -

1

Clhgs% = Cloomn
v95%
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v 95% CI
NanogVENUS raw 1.786 -10~% [1.783 -107%, 1.789 -10~7|
NanogVENUS normalized | 1.372 -1072 [ 1.371 -1072, 1.373 -107?|
Oct4VENUS raw 1.500 1073 [0.026 -1073, 2.637 -1073]
Oct4VENUS normalized | 6.655 -107*  [6.653 1073, 6.656 -10?]

Table 21: 95% confidence intervals for conversion factor v.

n 95% CI
NanogVENUS raw 24 308  [24 271, 24 346]
NanogVENUS normalized 218 -
Oct4dVENUS raw 21 717 [10 955, 1 235 074]
Oct4dVENUS normalized 452 -

Table 22: 95% confidence intervals for copy numbers n. The 95% confidence interval
for the normalized intensity datasets is smaller than 1 unit and therefore not displayed
here.

The 95% confidence interval for the maximum likelihood estimation of the fusion pro-
tein copy numbers are pretty narrow for NanogVENUS raw and normalized intensity
and for Oct4dVENUS normalized intensity data sets. However for Oct4VENUS raw

intensity data set the confidence interval ranges from 10 955 to 1.2 millions (see table

).
4.4.2.2 Variance approach

The accuracy of the variance approach is highly depending on the noise magnitude. If

there is too much noise, the accurcy of the coversion factor estimation is low.

v 95% CI
NanogVENUS raw 4.339 | [1.003, 7.587]
NanogVENUS normalized | -0.083 | [-0.323, 0.084]
Oct4VENUS raw -0.859 | [-2.522, 0.588|
Oct4VENUS normalized | -1.412 | [-2.516, -0.293]

Table 23: Variance method. Estimation of conversion factor 7. The 95% confidence
interval is based on 10 000 bootstrap samples.

Table shows the result of the estimated conversion factors 7 with the variance
method and its 95% confidence interval. Negative conversion factor would indicate

negative copy numbers, which does not make sense. For NanogVENUS raw intensity
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we get a positive conversion factor 7 = 4.34. Interestingly this is almost exact a tenth
of the mean intensity in this dataset of 43.4. This means the mean copy number would
be 10. However the copy number does not change with normalization process and so

we can not derive copy numbers for NanogVENUS here.

Figure [29] summarizes the results of the tests for the variance method with toydata.
It shows the needed number of observed mitosis events to get an conversion factor
estimation with an accaptable accuracy depending on the noise level and the expected
copy number. For the available NanogVENUS and Oct4VENUS data with noise level
om and o,/1 of about 0.15, more than 1 million observed mitosis events are needed to
get with 95% probability an estimate with an accuracy of factor + 10. In our datasets
only 1191 to 1235 mitosis events are included (see table [2)). This is too little to get a

reliable estimate for conversion factor v and copy number n with variance method.

4.4.3 Comparison of the two methods

A likelihood approach and a variance approach are derived and validated to estimate
conversion factors from mitosis fluorescence data. Both algorithms have their strengths

and weaknesses.

The likelihood method requires 3-dimensional numerical integration and optimization.
For our mESC and toy datasets the computation was stopped after 180 hours. There
are different possibilities to speed up the numerical optimizations process e.g. to in-
tegrate for a simple grid first and/or to approximate the integral on a new gridpoint
with the help of the integrals and its derivates from the neighboring gridpoints. The
validation with toydata does not show clearly the capability of the likelihood approach.
For 5 out of 20 toydata sets the estimated v are on the boundary of the optimization
range and the other values are accumulated below 1072 and around 107°. One weak-
ness of the performed integrations are the fixed upper limits for the integrals for €,,;
and €,,2 at 2.0 and the fixed lower limits at 0.0. An evaluation of the integral for every
observation separately to locate the area of considerable probability mass to get more
reasonable integration limits may stabilize the integration and optimization step in the

likelihood approach.

The variance method fits a linear model to estimate the conversion factor. The advan-
tage of this unbiased method is its ease of use. Implementation is simple and calculation
time is negligible. In three out of our four mESC datasets the estimated 7 are negative

which would imply negative copy numbers. This is outside of the reasonable range.
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Only for NanogVENUS raw intensity data set v is estimated to 4.3, which would imply
a copy number of 10. Validation with toydata shows that for our datasets with the
observed amount of multiplicative and additive nose more than 1 million observations

are necessary to get copy number estimations with acceptable accuracy.

The likelihood approach estimates low mean copy numbers for the normalized intensity
data sets (218 for NanogVENUS and 452 for Oct4VENUS) and relatively high mean
copy numbers for the raw intensity data sets (24 308 for NanogVENUS and 21 717
for Oct4dVENUS). This is remarkable because we expect that the true copy numbers
do not change with the normalization process of the intensities. The estimates for the
multiplicative noise parameter are similar whereas the estimates for relative additive
noise parameter are smaller than the estimates from chapter Because of the long
computational time, it was not possible to rate the capability of the likelihood method
in an appropriate manner. Further investigations shall be performed to understand

this method better and its sensitivity to noise.
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5 Discussion

In 2005 Rosenfeld et al. [14] proposed a method to estimate the conversion factor from
single cell time-lapse fluorescence data. This method considers the whole lineage tree
of cells with stopped fusion protein expression, but it can be adjusted for our mESCs,
which express fusion proteins. A fundamental assumption is that the partitioning of the
fusion proteins from mother to either daughter cell is homogeneous. Later Rosenfeld
et al. [I5] included additive noise and used a likelihood approach as well as a variance
approach to derive their methods. However the combination of multiplicative plus ad-
ditive noise is not covered with this method. Interestingly the authors We use both

approaches to enhance this technique and include multiplicative plus additive noise.

Our datasets contain no indication against homogeneous partitioning of proteins during
mitosis. Data analysis shows that the intensities are neither normally nor log-normally
distributed. On average, the intensities of both daughter cells are higher than the in-
tensity of their mother cell, which indicates a copy number gain during mitosis. We see
many individual trends of the intensity during a cell cycle. In some cells the intensity
increases steadily over time, in other cells the intensity remains almost the same or
fluctuates. These individual trends must be included in the LMMSs for the estimation
of noise and signal. Models with random intercept only seem to be not sufficient as
the ACFs for these models indicate autocorrelations. Therefore we recommend mod-
els with random parabola and random exponential effects in age. However, in our
NanogVENUS datasets most of the cells have only intensity observations at the be-
ginning, the middle and the end of its cell cycle. Choosing a LMM with individual
parabola for theses cells will possible lead to over fittings and the noise will be under-

estimated.

In the literature, multiplicative and additive noise are described as main contributions
in camera imaging [I7]. In our data, signal and noise scatter diagrams show het-
eroscedasticity in the noise terms, which seems to be not only caused by multiplicative
noise. We choose log-normally distributed multiplicative noise and normally distributed
additive noise for our models. The two proposed methods to estimate additive and mul-
tiplicative noise parameters, the likelihood approach and the variance approach, led to
the almost same result. Interestingly the variance approach proved to be a reliable and
easy to implement method to estimate noise parameters. The noise is smaller for the
NanogVENUS datasets, what might be because its segmentation has been manually
readjusted. The multiplicative noise parameter o,, is estimated to 0.12 and 0.13 for the
NanogVENUS datasets and to 0.19 for the Oct4VENUS datasets. The relative additive
noise parameter o, /I is estimated to 0.09 and 0.10 for the NanogVENUS datasets and
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to 0.13 and 0.18 for the OctdVENUS datasets. This means that the contribution from

both noise terms, additive and multiplicative, are in the same range.

This noise must be considered for fusion protein copy number estimations. Western
blot analyses indicate that the copy numbers for Nanog are 400 000 [13] or 1.5 millions
[12] and 180 millions for Oct4. These copy numbers would cause a relative standard
deviation due to the apportion process in the difference of the two daughter cell inten-
sities Gpinom < 1.6 - 1072 (see equation . This means the task in estimating copy
numbers is to find traces of the protein partitioning during mitosis, which relative mag-

nitude is around 1073, in observations, which noise has relative magnitude 1071,

The variance method to estimate fusion protein copy numbers gives unbiased estimates
for the conversion factors in regime with multiplicative plus additive noise (see figure
29). The big advantage of this method is its ease of use and its fast computing. How-
ever the noise level in the mESC data used in this project is too high and the number
of events too small. The experimental noise must be reduced at least by a factor 10
and the observed number of mitosis events must be increased at least by a factor 1000
to get reliable estimates. The second method uses maximum likelihood theorie to esti-
mate fusion protein copy numbers from fluorescence intensities. For this it is necessary
to solve and optimize numerically a 3-dimensional integral. The computation time for
a data set with 1000 observations was more than 100 hours in a single kernel. The
likelihood method estimates the multiplicative and additive noise parameter simulta-
neously with the copy numbers. The estimates for the multiplicative noise parameter
here for the mitosis data are similar to the multiplicative noise parameters estimated

for the longitudinal data which confirms this method.

Though the estimates for relative additive noise parameters for the mitosis data are
much smaller than the estimates for relative additive noise parameters for the longi-
tudinal data. This can be explained with the transcriptional noise, which describes
the stochastic process of the gene expression. During mitosis, the transcription of
NanogVENUS and Oct4dVENUS might be reduced and the transcriptional noise is
lower and smaller estimates of the noise parameters are obtained for the mitosis data.
This would mean that the transcriptional noise is mainly an additive noise and the

microscope measurement error is mainly a multiplicative noise.

We estimate the mean fusion protein copy numbers in NangoVENUS raw intensity to
24 308 and in NangoVENUS normalized intensity to 218 only. This discrepancy is
also seen in the Oct4dVENUS datasets with estimated copy numbers are 21 717 and

452 for raw intensity and normalized intensity data set respectively. This can not be
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explained by biology, because both datasets, raw and normalized, are based on the
same experiment with the same mESCs with the same copy numbers. However in the
raw data the noise distribution seems to be more heterogeneous than in the normalized
data and so our noise model is not correct then which may cause this difference in the
estimation. Another reason might be that the normalization process changes the struc-
ture of observed intensities and the used assumptions such as linear relation between
copy numbers and fluorescence intensities are valid only in the post processed intensity
datasets. The small confidence interval for the copy numbers for normalized intensity
data sets compared with the wider confidence intervals for the raw intensity data sets
support the conclusion, that the normalized intensity data sets are more reliable. This

would mean that the copy numbers of the fusion proteins are several hundreds only.

Anyway, the estimated copy numbers are less than the reported copy numbers from
western blot analyses, which found 400 000 to 180 million Nanog and Oct4 proteins in
mESCs [12] [I3]. This difference might be explained with the actual partition process
of the proteins from mother to daughter cells which may be affected by several mecha-
nisms. Prior to partition the proteins might cluster to multimers or tack on the DNA
or the concentration of different proteins might influence each other or a combination
of all of them [25] and the assumption of homogeneous partitioning is not valid. For
example if the fusion proteins cluster to multimers with 1000 proteins each and the
partitioning from mother to daughter cell is homogeneous for the multimers (and not
for the single proteins), the binomial model for the partitioning hold for multimers
and not for single protein. This would mean that the actual copy number in mESC is
the estimated copy number from our model multiplied with the size of the multimers.
Therefore our analysis indicates that Nanog clusters prior mitosis to multimers with
mean copy number is 2000 to 7000 and Oct4 clusters to multimers with mean copy
number is 400 000.
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6 Outlook

Single cell time-lapse fluorescence microscopy is an emerging technique and our meth-
ods to estimate fusion protein copy numbers may be applied to other datasets and cell

types. However some refinements to the methods are advisable:

Further refinement on the likelihood approach may include an analysis of the integral
function to find the area of considerable probability mass for each observation individ-
ually to define its integration limits. This can be done with an optimization to find
for every observation the values for the integration variables for which the integrand
becomes maximal. With the second derivatives, the Hessian matrix, the shape of the
integrand and the area of considerable probability mass can be estimated with the
approximation of an multivariate normal distribution. Then this area is used for the
integration. Moreover with the covariance matrix of the multivariate normal distribu-
tion, which is defined by this Hessian matrix and its prefactor, which is defined by the
maximal value of the integrand, the integral can be approximated to save computing
time. The optimization over the three parameters, o,,, 0, and v, may be carried out
simultaneously and not one after another as it is done within this thesis. These steps

shall stabilize the maximum likelihood estimation and reduce computation time.

Further data refinement are required to apply the variance approach successfully. Re-
duction of the measurement noise level and an increase of the observed number of
mitosis events are necessary. Higher resolution in microscope imaging to reduce noise
is technically possible and automated image processing might help to get higher number
of observations. Moreover, reliable results with the variance method may be obtained
for fusion proteins with lower copy numbers, for which the noise tolerance is higher

because the relative difference caused by the partitioning process is higher.

The result of the likelihood method to estimate copy numbers indicates that the addi-
tive noise is low during mitosis events. Maybe a model with multiplicative noise only
and without additive noise can be applied successfully to estimate copy numbers. We
used the median of the last three intensity observations from the mother cell as the
actual mother cell intensity and we used the median of the first three intensity observa-
tions from the daughter cells as the actual daughter cell intensities. Another possibility
is to use the last respectively the first values, or the mean of the last respectively the
first three intensity observations, or to estimate the actual mother and daughter cell

intensities with the parameters from the LMMs.

Strictly speaking, our methods to estimate copy numbers, likelihood and variance ap-
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proach, estimate the number of "units" for which homogeneous partitioning holds.
If the fusion proteins cluster prior to mitosis, we estimate the number of multimers.
However if the fusion proteins tack on the DNA, no relative difference would be caused
by the partitioning process, because the DNA is divided absolutely homogeneous, and
infinite copy numbers should be estimated with our methods. Knowing this, compari-
son of copy numbers derived from western blot or other techniques with copy numbers
estimated with our methods may help to understand mechanism of protein behaviors
during mitosis. Analysis of copy numbers on sub datasets with different mother cell

intensities may show new protein behavior during mitosis.
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7 Appendix

7.1 Density transformation
7.1.1 Transformation for univariate density functions

Suppose X is a continuous random variable and y = g(x) strong monotonic with the
inverse function x = ¢g~!(y) and the continuous derivative agé—ly(y). Then the density
function for the random variable Y = ¢g(X) is

o) = (o) - ]aga—y@)\ .

7.1.2 Transformation for bivariate density functions

Suppose X = (Xi, X5)" is a bivariate random variable with joint density function
Ixix (21, 22). If (21(y1, ¥2), 22(y1, ¥2)) € T'x, x,, the joint density function after trans-
formation T, Y = (Y1,Y2)" = T(X1, Xo) is

iy, v2) = fxoxe (@i (yn, y2) 22(y1, 92)) - | (1, v2)|

while J(y1,y2) is the Jacobi determinant

8:}01 81‘2

_ | o 0
J(y1,12) = 351 ag;
Jdy2  Oy2

Please note, that bivariate density functions might only be transformed in another bi-
variate density functions. To reduce the dimensionality, one variable can be integrated

out.

7.2 Variance and covariance

Following rules for variances and covariances are used [26]: X,Y,Z are random vari-
ables, a, b are constant factors.
var(X) = E ([X - E(X)!) = E(X?) - E*(X)
var(X £Y) =var(X) + var(Y) £ 2cov(X,Y)
var(XY) = E*(X)var(Y) + E*(Y) var(X) + var(X) var(Y)
cov(X,Y)=E(X -EX)][Y —EY)]) = E(XY)—-EX)E(Y)

cov(aX +Z+b,Y)=a-cov(X,Y)+ cov(Z,Y)
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7.3 Estimation of copy number using cell size information

For the estimation of protein copy numbers it is assumed, that the proteins have the
same chance to be allocated in either daughter cell (chapter . Teng and colleagues
[16] do not think like this and looked at the cell areas and flourescence intensities and
found positive correlations coefficients between 0.45 and 0.58 in their data when plot-
ting the ratio of the daughter cell intensities to its mother cell intensities y = fo;/ f;

against the ratio of its areas x; = Ay;/A;.

However we think, that the observed positive correlation between intensities and cell
areas mainly are not due to the assumed inhomogenous partitioning process of the pro-
teins but due to image capturing and image processing noise. Noise in segmentation
leads to variation in cell areas and to variation in intensities as well. If the cell area
is bigger due to noise, the intensity is probably higher as well which may cause the
observed positive correlation between areas and intensities. Therefore we think that
this model is not applicable for our datasets. However this method, which uses cell

size information, is explained here because it is an interessting approach.

In this approach, each protein from the mother cell has not the same chance to be
allocated in one of the two daughter cells. The chance is defined by the ratio of the
size of the daughter cell p = x;. So P(y;|x;) is an binomial distribution with p = z;.
Like with the other techniques, a normal distribution with is used as a aproximation

with mean p = x; and variance 02 = 0%;.

2

1 _Yi—T4)
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e 2UN

Fri(yilz:) =
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Actually, the authors use a bivariate normal distribution for (z;, ;) with covariance

2
o3 O

o
cause of the missing covariance (X5 = 0), this gives the same result as the univariate

X

matrix X = ( > and mean vector pu = > to motify their assumptions. Be-

approach shown here.
Maximize the likelihood for op

L
- 1
0N = ZZ(% — ;)%

In the dataset from Teng and colleauges, the error in area partitioning is small (~

—3.5%). This might be the motivation to approximate the variance in copy number
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with the binomial distribution with p = 0.5:
o3 = 1/Nop(1—p) = v/(4 fo), where Ny and f; are mean protein number and intensities

of the mother cells. Finally the conversion factor 7 is given

L
§:4foz Z(?/z‘—$i)2 Jo= %Zfz

7.4 Additional figures
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Figure 30: NanogVENUS raw intensity. Intensities I and expectation lines of LMM
for six randomly choosen cells.
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A: linear random intercept B: linear random slope
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Figure 31: OctVENUS raw intensity. Intensities I and expectation lines of LMM for
six randomly choosen cells.
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A: linear random intercept B: linear random slope
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Figure 32: OctVENUS normalized intensity. Intensities / and expectation lines of

LMM for six randomly choosen cells.
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Figure 33: Toydata integration. Integral of equation is solved numerically for

different upper limits and different multiplicative noise parameter o,,.

v = 0.001,

0, = 0.1. A-C: observation 1 of the toydata set is used, D-F: observation 2 of the
toydata set is used (table (14)). A and D: ¢, = 0.1. B and E: ¢, = 0.01. C and F:

om = 0.001.



7.4 ADDITIONAL FIGURES 91

A B C
0000000000000 0000 [Ty) 00000000000000000 | o
o o - o o o
- o §— °eee °°° ° °°%05500
a— = — . —
[ S 1 [ [ ]
g g 3 g 3
£ B E o E
~ - -
(\! —
[ - [
o«
o : e o o
T T T T T T T T T T T T
15 2.0 25 3.0 15 2.0 25 3.0 15 2.0 25 3.0
Upper limit of integration Upper limit of integration Upper limit of integration
D E F
3
00000000000000000 - 00000000000000000 O | o L)
o ° [t} ° N ] ° ee °%000050,
S S o
-« -« - 3+
[ - [S T [CE
g g g 8] g o
E 2 £ 3 £ 31
. - 3
o w o |
& S 3 |
o o H o
- T T T T T T T T N T T T T
15 2.0 25 3.0 15 2.0 25 3.0 15 2.0 25 3.0
Upper limit of integration Upper limit of integration Upper limit of integration

Figure 34: Toydata integration. Integral of equation is solved numerically for
different upper limits and different conversion faktor v. o, = 0.1, 0, = 0.1. A-C:
observation 1 of the toydata set is used, D-F: observation 2 of the toydata set is used
(table (14)). A and D: v =1073. Band E: v =1074. C and F: v = 1075.
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