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Abstract

Hematopoiesis is the process of regenerating all mature blood cells. It is based
on hematopoietic stem cells (HSCs), i.e. blood cells that have the ability to give
rise to new HSCs (self renewal) or differentiate to more specialized cell types.
To maintain a constant number of every cell type, the blood system must be
highly regulated. Yet the molecular mechanisms governing differentiation of
HSCs are still poorly understood. A deeper biological understanding of this
process would allow the development of treatments for severe diseases such as
leukemia and anemia.

Continuous imaging of HSCs is an approach that has already proven to
provide new insights into hematopoiesis. With this technique researchers can
identify progenitor cells of differentiated blood cells and quantitatively analyze
cellular components like transcription factors that control asymmetric cell di-
vision. Usually, the first step of analysis is to track cells in the imaging data,
since this is necessary to further examine the depicted cells. Since blood cells
tend to keep moving during experiments, and the generated gray-scale images
can have very low contrast, it is sometimes difficult even for experts to iden-
tify cells in the images and distinguish them from debris. Therefore, reliable
results of high quality are currently mainly generated by manual cell tracking,
which is very time consuming. So mostly only a rather small subset of cells
in each experiment is tracked, while the majority of cells in the experiment is
neglected from further analysis.

In this work, a new software toolkit is presented that enables automated
tracking of cells yielding reliable results of high, quantifiable quality. It in-
tegrates with the existing work-flow allowing further examination by using
already existing tools. To maximize quality, the algorithm avoids unsure de-
cisions and leaves them to the user instead. For that purpose, a powerful and
easy to use graphical user interface (GUI) has been developed. The results
of automated cell tracking are compared to those generated by manual track-
ing and are used for a biological analysis of cell movement. We show that
the presented software not only helps to eliminate the bottleneck of manual
cell tracking but also improves the quality of tracking data significantly. The
increase in quantity and quality of available data will make further analysis
based on computational methods much more reliable and allow us to tackle
new biological questions in the future.

i





Zusammenfassung

Die Regenerierung von Blutzellen wird als Hämatopoese bezeichnet. Sie basiert
auf hämatopoetischen Stammzellen (HSZs), d.h. Blutzellen, die in der Lage
sind, neue HSZs zu erzeugen (Selbsterneuerung) oder in stärker spezialisierte
Zellen zu differenzieren. Um eine konstante Anzahl aller Zelltypen aufrecht zu
erhalten, wird das Blutsystem stark reguliert. Die molekularen Mechanismen,
die die Differenzierung von HSZs steuern, sind aber kaum erforscht. Ein bes-
seres biologisches Verständnis dieses Vorgangs würde die Entwicklung von Be-
handlungsmöglichkeiten für schwere Krankheiten wie Leukämie oder Anämie
ermöglichen.

Kontinuierliche Beobachtung von HSZs hat bereits zu neuen Erkenntnissen
bezüglich Hämatopoese geführt. Mit dieser Technologie können Forscher die
Vorläufer von ausdifferenzierten Blutzellen erkennen und quantitativ zelluläre
Komponenten wie Transkriptionsfaktoren, die asymmetrische Zellteilung regu-
lieren, analysieren. Der erste Schritt der Analyse ist üblicherweise das Tracken
von Zellen in den Bilddaten. Da Blutzellen die Tendenz haben, sich während
den Experimenten zu bewegen, und da die erzeugten Graustufenbilder einen
sehr geringen Kontrast haben können, ist es manchmal sogar für Experten
schwierig, Zellen in den Bildern zu erkennen und von Fremdkörpern zu unter-
scheiden. Daher werden verlässliche Ergebnisse von hoher Qualität momentan
hauptsächlich durch manuelles Tracken von Zellen generiert, was enorm viel
Zeit kostet. Daher wird meistens nur ein kleiner Teil der Zellen in jedem Ex-
periment getrackt, wohingegen die Mehrheit der Zellen im Experiment nicht
für weitere Analysen verwendet werden kann.

In dieser Arbeit wird ein neues Software System vorgestellt, das es ermöglicht,
automatisch Zellen zu verfolgen und dabei verlässliche Daten von hoher, quan-
tifizierbarer Qualität zu erzeugen. Es ist optimal in unseren Work-Flow inte-
griert und ermöglicht somit die weitere Analyse der Daten mit bereits exis-
tierenden Tools. Um die Qualität zu maximieren, vermeidet der Algorithmus
unsichere Entscheidungen und überlässt diese stattdessen dem Benutzer. Zu
diesem Zweck wurde eine mächtige und einfach zu bedienende grafische Benut-
zeroberfläche (GUI) entwickelt. Die Ergebnisse der automatischen Verfolgung
von Zellen werden mit denen, die durch manuelle Zellverfolgung generiert wur-
den verglichen, und für eine biologische Analyse von Zellbewegungen benutzt.
Wir zeigen, dass die vorgestellte Software nicht nur hilft, den Engpass der ma-
nuellen Zellverfolgung zu beseitigen, sondern auch die Qualität der erzeugten
Daten erheblich verbessert. Die Verbesserung von Quantität und Qualität der
verfügbaren Tracking Daten wird weitere auf Computern basierende Analysen
verlässlicher machen und es ermöglichen, neue biologische Fragestellungen zu
behandeln.
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1. Introduction

1.1. Motivation

Under homeostatic conditions an adult human regenerates about 2.3 · 106 erythrocytes and
1.2 · 105 leukocytes per second [1]. This process is called hematopoiesis and is necessary,
since cells of the blood system are dying constantly and have to be replaced. It relies on
hematopoietic stem cells (HSCs) residing in the bone marrow, i.e. blood cells that have
the ability to give rise to new HSCs (self renewal) or differentiate into more specialized
cell types [2]. To maintain a constant number of every cell type, the blood system must be
highly regulated. However, despite its importance and decades of research, the molecular
mechanisms governing regulation of hematopoiesis are still poorly understood.

Continuous imaging of living HSCs is an approach that already provided new insights into
hematopoiesis [3]. With this technique biological researchers can investigate tissue regen-
eration on the single cell level at high spatiotemporal resolutions. Thus, different types of
cells and their progenitors can be identified, and concentrations of cellular components like
transcription factors can be quantitatively analyzed to understand the molecular mecha-
nisms regulating asymmetric cell division [4]. The measured concentrations can also serve
as solid basis for mathematical models derived from, for example, systems of differential
equations or Boolean networks [5, 6]. It has been shown that such models, especially if
they were created using high quality data, can help deepen our understanding of biological
processes and make correct predictions about the behavior of the underlying biological
systems under different conditions [7].

However, microscopic time-lapse experiments generate large amounts of data. Our ex-
periments at the hematopoiesis group of Timm Schroeder at the Stem Cell Dynamics
research unit, Helmholtz Center Muenchen, for example, are typically divided into about
90 fields of view called positions. Each contains about 5,000 pictures, which sums up to
450,000 image files that usually have a resolution of 1388 · 1040 pixels. The amounts of
data generated by time-lapse microscopy assays can be even larger [8], making manual
examination impossible. Therefore, powerful computational methods for automated anal-
ysis are required. The first step of analysis is usually tracking of cells to generate lineage
trees, but especially blood cells tend to move around at different speeds, which makes this
a challenging task. Furthermore, cell images that have not been obtained by fluorescence
microscopy but by bright field, phase contrast or differential contrast microscopy often
contain debris like parts of dead cells or dirt. Fig. 1 shows two examples for pictures with
particularly low quality.

Therefore, creating software for automated tracking of cells is not a trivial task. Never-
theless, various software toolkits for that purpose have been published [9, 10, 11, 12, 13].
Despite that, when highly reliable tracking data with little or no errors is required, cells
are usually still tracked manually [14, 15, 16, 17, 18]. Although some of the available
tools are powerful on the algorithmic level, using them instead of manual tracking is often
problematic for various reasons that are covered in more detail in section 1.3.
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Fig. 1 Cell images with particularly low quality. For clarification some cells are highlighted with
yellow arrows and some variants of debris with black arrows. a) Image with changes in
contrast and way more debris than cells. b) Image with strong changes in brightness
containing debris looking similar to cells (lower black arrow).

1.2. The Problem of Automated Cell Tracking

Teaching computers how to track objects in video image sequences has been a field of
intense research for decades, since there is a wide variety of application possibilities for
such technologies. Especially in the last years, various very powerful approaches have
been published [19, 20] and were used to track, for example, the faces of humans yielding
very impressive results [21]. Yet applying these algorithms to the problem of tracking
cells in time-lapse microscopy data is problematic.

For example, one widely used technique for tracking objects is provided by the scale-
invariant feature transform (SIFT) algorithm [19]. SIFT works by first extracting features
from a picture and then computing SIFT descriptors of the found features that are in-
variant to changes in location, scale and rotation. The descriptors found in two successive
pictures can then be compared and clustered in order to identify and track objects that
appear in both images.

SIFT has actually been applied successfully to the problem of automated cell tracking in
time-lapse microscopy data [22]. However, this works only well if the obtained images are
of very good quality with spatiotemporal resolutions which are high enough to recognize
specific features in each cell, because feature detection by SIFT is based on the idea of
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looking for areas in the image that correspond to corners. When tracking objects like
humans or cars, this makes perfectly sense as they can usually be described very well over
different frames by focusing on their corners.
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Fig. 2 Example for appearance of cells in images obtained by bright field microscopy. a) Cells
as they appear in the image raw data (×3 zoom). The cells have a diameter of about
15 pixels, which corresponds to about 15 µm. b) Intensity values of one cell as heat map
after normalization in the [0, 1] interval. Due to low contrast the actual intensity values
lay within the [0.3, 0.45] interval, and it can be seen that the interior of the cell is very
similar to the background of the picture.

However, especially images obtained by time-lapse microscopy often have low resolution
and contrast as demonstrated in Fig. 2, so looking for corners in these images does not
work equally well as for real world images as shown in Fig. 3. To measure the similarity
of two depicted cells, it usually makes more sense to focus on more abstract features such
as cell area, brightness and eccentricity [23].

1.3. Overview of Existing Software

As mentioned before, various software solutions for automated cell tracking have been
published. This section gives a short overview of some of them. Usually, the first step
of automated cell tracking is segmentation, i.e. the identification and classification of
relevant objects like cells or beads in the image data. Then it is attempted to correctly
assign each identified cell its correct successor in the next image.

CellTracker is one program for automated cell tracking, which has initially been devel-
oped by Hailin Shen at The University of Manchester [12]. In 2006, further development
has been taken over by the Warwick Systems Biology Centre based at the university of
Warwick. Since the most recent version of CellTracker is being distributed without the
required version of the MATLAB Component Rumtime, which is not available for down-
load, an older version from 2006 had to be used for testing. After selecting images for
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Fig. 3 Positions of SIFT features (yellow circles) detected in (a) real world and (b) bright field
microscopy images. a) SIFT features are spread all over the relevant objects, whereas
only a few are located in regions between them. By comparing and clustering sets of
descriptors in successive frames, objects can be tracked reliably. Original image from [24].
b) Despite parameter optimization, SIFT feature detection does not work equally well
for the cell image due to the absence of corners, small cell sizes and low contrast. The
descriptors covering the cells (highlighted by black arrows) are unstable and turned out
to be very similar for different cells, and a lot of features were detected between cells.

analysis, the program attempts to load all of them into memory at once. Loading a small
set of 400 pictures resulted in an increase of memory consumption from about 60MBs to
660MBs. Due to memory limitations, this behavior renders the program useless for ana-
lyzing realistic numbers of pictures. Before starting the tracking algorithm, the user first
has to mark nuclear and cytoplasmic boundaries. Due to these limitations, the program
was not tested any further.

Another program, TimeLapseAnalyzer (TLA) [9], is very powerful on the algorithmic level
but requires the input images in form of an AVI movie. Converting images to an AVI
movie with a specific codec is not a trivial task since it requires the usage of advanced
third-party programs like ffmpeg, and it takes a lot of time. Furthermore, TLA only
supports AVI files that are either uncompressed or use one of five supported codecs with
lossy compression. This is problematic, since uncompressed videos are very big (in a
test converting 100 JPEG files consuming 17.4 MBs of space produced a 140.6 MBs AVI
file), whereas lossy compression can have a bad impact on the tracking results. Once a
suitable AVI file has been loaded, the user can choose between five predefined setups for
cell tracking or create his own. Setups specify the algorithmic steps TLA will use for
cell tracking and can be defined in a script language using the integrated Advanced Setup
Editor. TLA has been successfully used to track cells from the same experiment that
is shown in Fig. 2 by using the predefined setup for bright field microscopy. However,
as TLA first failed to detect about 90% of the cells, it was necessary to adjust some
parameters of the underlying algorithms. The results are shown in Fig. 4.

Despite being very powerful on the algorithmic level, TLA is not suitable to be used for
automated cell tracking by regular users due to lacking user-friendliness. During testing
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Fig. 4 Automated cell tracking results generated by TimeLapseAnalyzer for a subset of images
obtained by bright field microscopy. The first image is shown with the starting posi-
tions of the detected cells (red circles), their ending positions (green circles) and their
trajectories (colored lines).

it turned out, for example, not to be very robust against wrong user input. TLA crashed
when it was attempted to load an AVI file using an unsupported codec or when parameters
were invalid. In that case it also tends to display cryptic error messages - in one test
the same error message was displayed several hundred times at the same time, once for
each picture. Furthermore, the provided default setups usually require the adjustment of
parameters to work properly for a given experiment. But using the Advanced Setup Editor
is obviously difficult for users with no deep understanding of the underlying algorithms
and no programming experience.

Another powerful tool that can be used for tracking cells is CellProfiler [11]. Like TLA, it
is very powerful on the algorithmic level and also supports the integration of external tools
such as ilastik [25] for segmenting images. However, creating and adapting the required
processing pipelines in CellProfiler to specific experiments is not easy, if the user does not
know the underlying algorithms very well.

The issue of lacking user-friendliness observed in TLA and CellProfiler applies to all tested
tools. Furthermore, the most important problems are that their output usually contains
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no information about the reliability of the tracking results and the missing integration into
our work-flow. None of them supports tracking cells moving over different positions, so
each position has to be tracked one after another. Since there are no standard file formats,
for every tool specific software would be necessary to convert the tracking results into
formats that can be read by our existing tools. Finally, mostly no convenient possibility
to manually inspect tracking results is provided.

1.4. Aims of this Work

In this work, a new software toolkit for automated cell tracking and lineage tree con-
struction is presented that has been developed according to our needs and with the main
focus put on user-friendliness. All software modules come with a powerful GUI that is
as robust and intuitively to use as possible. Great care has been taken to ensure that
it never freezes, crashes or fills the screen with error messages. It has been developed
in close cooperation with people who will be using the software and results have been
presented to them on a regular basis in order to get feedback as early as possible.

For maximal performance concerning both runtime and memory requirements, all parts
of the software have been implemented using C++ and solely rely on external libraries
also written in C or C++. Great care has also been taken to design all algorithms so that
they efficiently scale to an arbitrary number of threads without causing notable overhead
and maintaining a high level of robustness and stability at the same time. Furthermore,
the code can be compiled on other operating systems than Microsoft Windows, and it
includes a console version with no GUI. This makes it possible, for example, to run
the software remotely on a server, for example using a batch-queuing system such as
the Sun Grid Engine. When working with the console version, all settings have to be
passed as command line arguments. To make that easier, the currently set parameters
can be exported from the GUI version as a text string that can then be used directly as
command line argument of the console version. The current settings can also be exported
to a file that can be loaded again at any time. This way parameter sets for different types
of experiments can be maintained. To make finding the correct parameters as easy as
possible, the GUI includes a powerful preview feature showing segmentation results for
the currently set parameters (see section 2.2 for more details).

Segmentation and tracking results are saved in well defined binary formats that have been
designed for high performance (see appendix A and B). This enables users to perform the
computationally expensive image segmentation part only once for an experiment, for
example using the Sun Grid Engine, and then use the results for automated cell tracking
several times to test different tracking parameters. This is helpful, since in contrast to
the tracking settings, optimal segmentation parameters can be found efficiently using the
preview feature. It also makes it easier to integrate external tools for image analysis like
ilastik [25], whose output just has to be converted into the format used by our software
and can then be loaded and used for tracking cells.

When tracking cells, even one error can be sufficient to render complete lineage trees
useless for further analysis. This can happen, if two cells are accidentally mistaken for
each other during tracking, which causes all daughter cells to be associated with the
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wrong progenitors making analysis of the maturation process impossible. The fact that
such errors can be very hard to find by manual inspection worsens this problem. Therefore,
in this work the main focus is put on avoiding errors rather than automatically generating
lineage trees that are as big as possible.

For that reason, the tracking algorithm has been designed to avoid unsure decisions and
leave them to the user instead. Concretely, this means that a cell trajectory is interrupted
if the correct successor cell in the next frame cannot be detected with high confidence. The
required level of certainty can be set by adjusting corresponding thresholds (see section
2.2). Especially in experiments with many cells, this leads to the generation of many
rather small lineage trees, which will be called tree fragments therefore. A powerful and
easy to use GUI has been developed to let users inspect and connect the generated tree
fragments. It requires only as little manual interaction as possible and therefore the effort
required for tracking cells is reduced to a minimum compared to manual tracking.

a b

Fig. 5 Our work-flow with and without automated cell tracking. a) Without automated cell
tracking a lot of data cannot be made available for analysis within reasonable time.
b) Work-flow after integration of automated cell tracking. The time consuming task of
clicking on the same cell throughout every time point is now done automatically, only
clumping cells and cell divisions have to be examined manually. So, much more cells can
be tracked and further analyzed.

The software perfectly fits into our work-flow. The previously mentioned GUI to analyze
the tracking results has been integrated into Timm’s Tracking Tool (TTT), which is the
software currently used for manual cell tracking. The cell lineage trees created in TTT
that are based on the automatically generated tree fragments can then easily be saved
in the binary format already used by TTT, which can be read by other tools that are
already part of our work-flow, such as TTTStats for statistical analysis or Aided Manual
Tracking (AMT) [26, 27] for quantitative analysis of fluorescence intensities. The trees
generated by automated cell tracking include a confidence level that can be visualized in
TTT with an intuitive color scheme to make finding errors as easy as possible. Fig. 5
gives an overview of the current work-flow and how it will ideally look after integrating
the new software for automated cell tracking.

To make further development and maintenance as easy as possible and to ensure high
quality, all complex modules were designed with tools provided by the Unified Modeling
Language (UML) [28] before starting with the actual implementation. The created UML
diagrams now serve as an excellent documentation of the software design on a more
abstract level than, for example, the comments in the source code.
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2. Methods

2.1. The Algorithmic Approach

2.1.1. Overview

Fig. 6 Overview of the algorithmic approach used in this work. The upper box describes the
image processing part. It is done independently for every picture and consists of image
preprocessing and segmentation. The lower box illustrates the steps of the tracking
algorithm, which is run after segmentation. For each time point, the segmentation results
are loaded and it is attempted to identify the correct successors of all cells from the
previous time point. After resolving ambiguities that possibly occurred in the previous
step, new trees are started for all newly found cells and finished trees are saved.

Fig. 6 gives an overview of the algorithmic approach used in this work. Notably, image
processing and cell tracking are carried out separately. The image processing part is done
independently for every picture and is therefore perfectly scalable to an arbitrary number
of threads (see 2.2 for more details). For technical reasons, multi-threading does not
scale equally well for the tracking part. All steps and the corresponding parameters are
explained in more detail in the following sections.

2.1.2. Image Enhancement

For images with low contrast, the first step of preprocessing is contrast enhancement
using Contrast Limited Adaptive Histogram Equalization (CLAHE) [29]. CLAHE is a
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Fig. 7 Excerpts of histograms of pixel intensity values of an image before and after using
CLAHE. a) The very thin histogram results in low contrast in the corresponding im-
age (b). c) After using CLAHE, the histogram has become wider and contrast in the
corresponding image (d) has increased notably.

special form of image histogram equalization, which is a technique to adjust the contrast
by spreading out frequent intensity values. Since the intensity histograms of images can
change depending on which region of the image is observed, the results can be improved
notably by computing several histograms corresponding to distinct regions of the image
rather than only one. This technique is called Adaptive Histogram Equalization and
improves the local contrast of an image. It can, however, cause notable noise amplification,
especially in homogeneous regions. To avoid this problem, CLAHE limits the contrast
enhancement and thereby effectively reduces noise amplification. The value used as limit
for contrast enhancement is specified by the ClipLimit parameter. The higher it is, the
stronger is the contrast enhancement. Apart from that, the number of regions in x and y
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direction, for which a distinct histogram should be computed, and the number of greybins
can be specified. The number of bins determines how many different intensity values the
output image will have, which influences processing time and image quality. In this work,
it is always set to 256, since the processing time of CLAHE is only responsible for a tiny
fraction of the overall computation time required for segmentation. Fig. 7 illustrates the
effects of applying CLAHE to a cell image obtained by bright field microscopy.

Since cell images are mostly noisy, no matter if CLAHE has been used or not, in the
next step Gaussian Blurring is used to reduce noise. Gaussian Blurring simply averages
the intensity value of every pixel with the ones of its neighbors. For weighting the pixel
intensities a Gaussian Distribution, characterized by its parameter σ, is used and applied
to all pixels within the specified kernel size. Thus, the higher σ and the bigger the kernel
size are, the stronger is the blurring effect.

2.1.3. Segmentation

In this work, Maximally Stable Extremal Regions (MSER) [30], an approach strongly re-
lated to thresholding techniques, is used for segmentation. Thresholding methods such
as Otsu’s algorithm [31] have been used successfully for segmentation of cell images gen-
erated by time-lapse microscopy [32]. The idea of this approach is to identify regions in
the image that are darker (or brighter) than the background by applying a threshold to
separate foreground from background pixels. This process is also called binarization and
the detected regions are often referred to as blobs. Using the MSER algorithm, however,
is an approach that has not been used in this context before. Though, it has been used
successfully to track objects like car license plates or human faces [33] and for segmenting
blood smear images [34].

The general idea of MSER is not to use one or a few thresholds for separating foreground
from background, but to apply all thresholds that are possible for a given picture. Re-
gions detected by applying different thresholds are compared and if the size of a region
remains stable over a range of thresholds, it is called a maximally stable extremal region.
In other words, MSERs are regions where local binarization is stable over a range of
different thresholds. The required minimum size of this range is specified by the Delta
parameter, which strongly influences the required contrast for a blob in order to be de-
tected. The higher it is, the bigger is the required threshold interval and the higher has
to be its contrast to the background. The required degree of stability is specified by
the MaxV ariation parameter. Apart from that, the minimum and maximum sizes of
the blobs to be detected are specified by the MinArea and MaxArea parameters, and
the DarkOnBright and BrightOnDark specify if the algorithm should look for dark on
bright or bright on dark spots.

This approach makes MSER very robust against variations of brightness and contrast,
which is especially useful in this context. The standard algorithm to detect MSERs runs
in quasi-linear time (O(n · log(log(n))) where n is the number of pixels in the image) and
by now, algorithms running in true linear-time have been published (see section 4.1).

The blobs returned by the MSER algorithm are then further analyzed. Regions that are
touching the borders of the image are marked as cutoff and ignored in the following steps,
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Fig. 8 Various cell images with segmentation results. Detected blobs are colored according to
their classification: dark red is used for blobs that are too big or too small, white for blobs
that have a valid size but contain smaller blobs that are still valid (i.e. not too small)
and green for blobs that have a valid size and contain no child blobs of valid size. These
blobs are most likely to correspond to single cells and are marked as normal. Centroids
of green blobs are shown with a red dot and centroids of all other blobs are with a dot
colored in magenta. a) Image obtained by fluorescence microscopy. Although contrast
varies greatly, all cells are detected correctly. The two upper cells are very close together
but were successfully separated by investigating the tree of detected blobs as described
in the text. b) Images obtained by phase-contrast c-d) and bright field microscopy.

since it is mostly not possible to determine their sizes correctly. This is usually no problem
as adjacent positions in our experiments are always overlapping. Then the areas of the
found blobs are calculated and the ones that are too big or too small according to the
corresponding parameters minCellArea and maxCellArea are marked as such. Sometimes
the detected blobs do not cover the whole areas of cells but only sickle-shaped parts of
their borders (see Fig. 8b and d). Therefore, the areas of the detected regions can be
much smaller than the actual cell areas. This can be confusing for the users, since they
have to specify these parameters. For that reason, by default the area of the convex hull
of every detected blob is calculated and used for classification.

Another advantage of MSER over simpler thresholding methods is that it does not simply
perform a binarization of the pixels into foreground and background. Instead, a hierar-
chical tree of nested blobs is returned where one blob can contain several other smaller
ones which can itself contain even more smaller ones and so on. This situation actually
occurs very often in cell images when cells are very close together. In that case MSER
typically returns one large blob that contains several smaller blobs, each corresponding
to a single cell. By applying the classification based on minimum and maximum cell
sizes, this makes it possible to separately detect cells that would typically be returned as
one blob with no further information by other segmentation methods. Therefore, in this
work no further algorithms like Watershedding [35] are used to separate detected blobs.
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The minimal size difference of two nested maximally stable extremal regions in order to
be detected as distinct nested blobs is specified by the MinDiversity parameter. If the
relative area variation of two nested regions is below this threshold, only the most stable
one is returned.

Fig. 8 shows that this approach can successfully segment different cell images that were
obtained by fluorescence, phase-contrast and bright field microscopy. It can be seen also
that the cell areas found by this approach are often smaller and do not perfectly match
the actual cell areas, but this is no problem as long as the segmentation results are only
used for automated cell tracking. For each picture, the segmentation results are saved to
the HDD in a well defined binary format (see appendix A).

2.1.4. Tracking of Cells

The cell tracking algorithm is based on nearest neighbor search, an approach that has
already been used successfully for this purpose [36, 37]. During tracking, the current
time point is always stored in t and all currently tracked cells are stored in a list called
openTracks, which is empty in the beginning. As soon as tracking of a cell stops, for
example because no successor blob has been found, the corresponding cell is marked as
finished and removed from openTracks.

As shown in Fig. 6, at first the segmentation results for all images at the current time
point t are loaded. Then, matchCurrentTracks (see Algorithm 1) tries to identify the
correct successor blobs for all currently tracked cells. For that purpose, it iterates over all
cells in openTracks, predicts their next positions at time point t (line 3) and then finds
all blobs within the range specified by searchRange. If position prediction is enabled,
the last 2 coordinates ~vt−1 and ~vt−2 of the cell at time points t− 1 and t− 2 are used to
predict the position of the cell at time point t: ~vt = ~vt−1 +(~vt−1−~vt−2) = 2 ·~vt−1−~vt−2. If
prediction is disabled, ~vt = ~vt−1 is used instead. In case more than 1 blob has been found,
all blobs that are at least blobThreshold µm further away than the blob that is closest to
the predicted position are removed from foundBlobs (lines 5 to 14).

Ideally, foundBlobs contains only one blob now, which means that a unique successor blob
(foundBlobs[1]) for the current cell has been found with the required confidence level. In
that case (lines 16 to 23), a new track point is created at the position of foundBlobs[1]
and appended to the current cell. An initial confidence level for the new track point is
obtained by calculating the distance of foundBlobs[1] to the predicted position (dist) and
comparing it to searchRange: confidence := 1 − (dist/searchRange). Since it always
holds that 0 ≤ dist ≤ searchRange, this yields a value between 0 and 1. The closer the
found blob is to the predicted position, the closer confidence is to 1. The current cell
is then associated with the found blob by adding it to foundBlobs[1].possibleTracks. If
this list contains 2 cells now, a cell has already been associated with foundBlobs[1] before
and foundBlobs[1] is added to the ambiguousBlobs list, which will be investigated later.

If foundBlobs contains more than one blob, it means that a unique successor blob with
the required confidence level could not be found. In that case (lines 24 to 32), the current
cell is added to the ambiguousTracks list, which will also be investigated later. In the
next step, all found blobs are associated with the current cell by adding them to the

13



Algorithm 1 Match current tracks

1: procedure MatchCurrentTracks(openTracks, searchRange, blobThreshold)
2: for all currentTrack ∈ openTracks do
3: predictedPosition := predict next position of currentTrack
4: foundBlobs := find blobs in searchRange around predictedPosition

sorted by distance
5: if |foundBlobs| > 1 then
6: closestBlob := foundBlobs[1]
7: distClosestBlob := distance closestBlob to predictedPosition
8: for i := 2, |foundBlobs| do
9: distOfThisBlob := distance foundBlobs[i] to predictedPosition

10: if distOfThisBlob− distClosestBlob ≥ blobThreshold then
11: Remove this and all following blobs from foundBlobs
12: break
13: end if
14: end for
15: end if
16: if |foundBlobs| = 1 then
17: dist := distance foundBlobs[1] to predictedPosition
18: confidence := 1− (dist/searchRange)
19: currentTrack.addTrackPoint(foundBlobs[1].position, confidence)
20: Add currentTrack to foundBlobs[1].possibleTracks
21: if |foundBlobs[1].possibleTracks| = 2 then
22: Add foundBlobs[1] to ambiguousBlobs
23: end if
24: else if |foundBlobs| > 1 then
25: Add currentTrack to ambiguousTracks
26: for all curBlob ∈ foundBlobs do
27: Add curBlob to currentTrack.possibleSuccessorBlobs
28: Add currentTrack to curBlob.possibleTracks
29: if |curBlob.possibleTracks| = 2 then
30: Add curBlob to ambiguousBlobs
31: end if
32: end for
33: else
34: openTracks.remove(currentTrack)
35: Finish currentTrack
36: end if
37: end for
38: end procedure

currentTrack.possibleSuccessorBlobs list and by adding the current cell to every blob’s
possibleTracks list. Again it is tested, if any blob is now associated with 2 cells and
therefore has to be added to the ambiguousBlobs list.

However, if foundBlobs contains no blob, it means that no blob has been found within
the specified search range. In that case, the current cell is simply marked as finished and
removed from openTracks (lines 33 to 35).
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Algorithm 2 Resolve Ambiguities

1: procedure ResolveAmbiguities(trackThreshold, searchRange)
2: for all curBlob ∈ ambiguousBlobs do
3: Sort curBlob.possibleTracks by distance to curBlob
4: if ¬curBlob.possibleTracks[1].finished()∧
¬ambiguousTracks.contains(curBlob.possibleTracks[1]) then

5: distClosest := distance curBlob.possibleTracks[1] to curBlob.position
6: distNext := distance curBlob.possibleTracks[2] to curBlob.position
7: if distNext− distClosest ≥ trackThreshold then
8: if ¬curBlob.possibleTracks[1].hasTrackPointAt(t) then
9: confidence := 1− (distNext/searchRange)

10: curBlob.possibleTracks[1].addTrackPoint(curBlob.position, confidence)
11: end if
12: if distNext− distClosest > 0 then
13: confidence2 := 1− (trackThreshold/(distNext− distClosest))
14: trackpoint := curBlob.possibleTracks[1].getTrackPoint(t)
15: trackpoint.setConfidence(min(trackpoint.confidence(), confidence2)
16: end if
17: curBlob.possibleTracks.removeF irst()
18: end if
19: end if
20: for all curTrack ∈ possibleTracks do
21: if curTrack has track point at t then
22: curTrack.removeTrackpoint(t)
23: end if
24: openTracks.remove(currentTrack)
25: Finish currentTrack
26: if curTrack ∈ ambiguousTracks then
27: ambiguousTracks.removeTrack(curTrack)
28: end if
29: end for
30: end for
31: for all curTrack ∈ ambiguousTracks do
32: if detectCellDivisions ∧ |curTrack.possibleSuccessorBlobs| = 2 then
33: (child1, child2) := Create child tracks
34: openTracks.add(child1, child2)
35: end if
36: Finish curTrack
37: openTracks.remove(curTrack)
38: end for
39: end procedure

Now a unique successor blob with the required confidence should have been found for most
cells in openTracks. But there are probably also blobs that have been assigned to more
than one cell (ambiguousBlobs) and cells, for which more than one possible successor
blob has been found (ambiguousTracks). These blobs and cells are dealt with in the
resolveAmbiguities function (see Algorithm 2).

It starts by investigating all blobs in ambiguousBlobs (lines 2 to 30). For each blob, the as-
sociated tracks are sorted by the distance of their predicted position to the blob in ascend-
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ing order (line 3). Then it is tested if the closest associated track (curBlob.possibleTracks[1])
can be chosen according to the threshold trackThreshold (lines 4 to 19). This is the
case, if curBlob.possibleTracks[1] is not finished, is not in ambiguousTracks and if for
the distance of the closest track (distClosest) and the one of the second closest track
(distNext) to the current blob the following condition is met: distNext− distClosest ≥
trackThreshold. If that is the case, it is ensured that the cell has a track point at t
and a new confidence level is calculated based on how close the difference of distClosest
and distNext is to trackThreshold: confidence2 := 1 − (trackThreshold/(distNext −
distClosest)). Since it holds that trackThreshold ≤ distNext− distClosest, this yields
a value between 0 and 1 that is the closer to 1, the bigger distNext is compared to
distClosest. The confidence level of the track point is then set to the minimum of its initial
confidence level and confidence2. After that, all tracks remaining in curBlob.possibleTracks
are marked as finished and removed from openTracks and from ambiguousTracks.

In the next step, the cells in ambiguousTracks are investigated (lines 31 to 38). If
detectCellDivisions is enabled, it is tested if exactly two successor blobs were found.
In that case, it is assumed that a cell division has occurred. Despite its simplicity, this
primitive approach has successfully detected cell divisions in tests. However, usually the
two daughter cells are very close together after the division and if their distance is below
blobThreshold or trackThreshold, this can cause the algorithm to immediately abort
tracking of the daughter cells. This problem underlines the fact that maximizing the size
of the tress and minimizing the number of errors are competing aims. All tracks from
ambiguousTracks are then marked as finished and removed from openTracks.

After that, the tracking algorithm creates new trees for all blobs that were classified as
normal and were not associated with any currently tracked cells. Then, finished tree
fragments, i.e. ones with no cells that are contained in openTracks, are saved to disk in a
binary file format (see appendix B). Finally, the loaded segmentation results are released
from memory and the algorithm goes to the next time point. Approaches to improve the
tracking algorithm are discussed in section 4.2.

2.2. Implementation

The presented software solution includes a stand-alone executable for segmentation and
automated cell tracking and an interface, which has been integrated into TTT, to further
analyze the results. Both modules are described in more detail in the following sections.

2.2.1. Autotracking Software

As mentioned before, the program for tracking is available with and without a GUI. Its
design is based on a multi-tier architecture, which is an approach that is often used to keep
software of arbitrary complexity robust and maintainable. In a multi-tier architecture,
parts of the software (packages) are grouped into a hierarchy of tiers, where each one can
only access tiers below it.
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Fig. 9 Overview of the program architecture. As in UML’s package diagrams, each box repre-
sents a package and the arrows describe the interactions between them. The program
is divided into two tiers and the Tools package. According to the rules of the used
multi-tier architecture, the logic tier does not directly access the presentation tier, which
contains either the GUI or the Console Frontend package. Furthermore, various external
libraries are used.

Fig. 9 gives an overview of the software design. The Presentation Tier contains the
GUI and the Console Frontend. Since the Logic Tier below does not directly access any
part of the presentation tier, the two modules in there are interchangeable. This has the
advantage that the console and the GUI version of the program can be compiled without
changing a single line of code. Since the Application Backend and the Core Algorithms
packages access each other, they are not divided into different tiers.

Apart from the two tiers, the software also contains a Tools package providing functional-
ity used by all parts of the software, mainly for error handling and settings management,
and accesses external libraries. This currently includes vlFeat [38] for the MSER imple-
mentation, OpenCV [39] for Gaussian Blurring and the CLAHE implementation provided
by K. Zuiderveld [29]. The whole code also heavily relies on QT, which is a C++ library
currently developed by Nokia [40]. It is platform independent and does not only provide
tools to create powerful GUIs but also a lot of low level functionality e.g. for data-storage,
input/output and multi-threading.

Both the segmentation algorithm and the tracking algorithm use multi-threading to re-
duce the required computation time. As mentioned before, this works very well for the
segmentation algorithm as every picture can be processed independently. In order to
distribute the required work as efficiently as possible over the available threads, the im-
plementation is based on the thread pool design pattern. This means that all images to
process are put in a queue (the job-queue) and every thread requests one image, processes
it and then requests the next image, until the queue is empty. The tracking algorithm
uses multiple threads only for finding possible successor blobs for the current cells (i.e.
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for algorithm 1) using the openTracks list as job-queue (see 2.1.4). This improves per-
formance especially, if many positions have been selected which results in a large number
of blobs per time point.

Fig. 10 AutoTracking GUI - experiment selection. As in TTT, the positions are laid out ac-
cording to their actual sizes and coordinates in the experiment and can be selected or
deselected by clicking on them. Furthermore, the time points for tracking and various
experiment specific options can be set here.

The corresponding code is part of the Application Backend package. In both cases, access
to the job-queue and other data structures was made thread-safe by using locks. This
is necessary, since write access to the same variable by several threads can lead to race-
conditions. This means that the result of a calculation depends on the order in which
instructions are executed, which can be controlled by using locks. For example, the
outcome even of a simple instruction like i = i+ 1 is undefined if several threads execute
it using the same variable i. The communication of the worker threads, which run in the
background to prevent the GUI from freezing, with the frontend is handled by using events
and a thread-safe event-queue, which is provided by the signal/slots mechanism of QT.
The same technique is also used by the logic tier to send notifications to the presentation
tier without needing a direct association to the frontend at compile time, as required by
the multi-tier architecture.

Fig. 10 shows the GUI of the auto tracking program after loading an experiment and
selecting the positions 8, 9, 10 and 11. The positions are displayed according to their
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actual place in the experiment and can be conveniently selected or deselected by clicking
on them with the mouse. In the example, time points 1 to 5000 were specified for tracking.
To be as intuitively as possible to use, the GUI has been divided into 3 consecutive steps
where this part corresponds to the first step.

Fig. 11 AutoTracking GUI - segmentation and tracking settings. Here the necessary parameters
for segmentation and tracking can be adjusted. In the lower half, the segmentation
results with the current settings can be previewed. The same color scheme as in Fig. 8
is used.

Fig. 11 shows the part of the GUI corresponding to the second step. Here, all relevant
settings have to specified. To make this easier, the parameters have been divided into the
3 groups basic, advanced and very advanced. Basic settings have to be changed very often
for different experiments, but are also very easy to understand without requiring knowl-
edge of the used algorithms. Currently, this group includes the segmentation method,
the minimum and maximum cell areas in pixels, if contrast should be enhanced, if the
segmentation algorithm should look for dark on bright spots, bright on dark spots or both
to detect cells, and general settings. As segmentation methods, currently only MSER
and load from files to use previously computed results are supported. Here, the current
settings can also be exported to a text file or imported from a previously exported file.

The lower half of the image shows the preview feature, which can be used to quickly see
how segmentation works with the current settings. It can automatically propose an image
for preview, or the user can select any image file from the loaded experiment. There are
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also buttons to conveniently go to the picture at the previous or at the next time point of
the same position. The left part always shows the original image and the right part shows
the image after preprocessing with the segmentation results. The same color scheme as in
Fig. 8 is used. In the preview, the user can scroll and zoom conveniently using the mouse
as in Google maps. Scrolling and zoom are always synchronous in the left and the right
part.

Fig. 12 AutoTracking GUI - advanced and very advanced settings. They have to be changed
less often than the basic settings, and understanding them requires more knowledge
about the underlying algorithms.

Fig. 12 shows the advanced and the very advanced settings pages. In the General Settings
group of the advanced settings page, the user can specify an optional limit for the number
of worker-threads to use, the minimum track length (all cells with less track points will be
filtered out) and the parameters for the tracking algorithm (searchRange, blobThreshold
and trackThreshold). If no maximum number of worker-threads was specified, the pro-
gram attempts to automatically detect the number of available physical CPU cores to
determine the optimal number of threads. In the Segmentation group, the delta parame-
ter of MSER (see 2.1.3) and the ClipLimit used by CLAHE (see 2.1.2) can be specified.
Convex Hull specifies if the convex hull should be used to calculate cell areas (see 2.1.3).
Here it can also be set, if it should be attempted to detect cell divisions and if the next
position should be predicted for each cell (see 2.1.4).

The settings in the Very Advanced group mostly refer to details of the algorithms used
for segmentation (see 2.1.3) and have carefully chosen default values. Changing them
rarely improves segmentation results and is more likely to cause the affected algorithms
not to work properly anymore or other unexpected results (hence the warning at the
bottom). The MinArea and MaxArea parameters for MSER are not used, since this
would cause the segmentation algorithm to return no information about blobs with invalid
sizes. However, this is very helpful for finding optimal parameters by using the preview
feature (compare Fig. 11) and it is also planned to use this information for tracking (see
4.2).
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Fig. 13 AutoTracking GUI - progress display. After clicking on the Start button, the pro-
gram starts image segmentation and/or tracking. The overall progress, the estimated
remaining time and important status messages or errors are shown here.

Fig. 13 shows the part of the GUI corresponding to the last step. After the user has
clicked on the Start button, the program begins with image processing and/or automated
cell tracking, depending on the specified settings. Based on the time required so far,
it is estimated how much remaining time the current task will need to complete. The
operation can be canceled at any time.

2.2.2. TTT Interface

In Fig. 14 the Autotracking - Main Window of the interface to analyze the tracking results
is shown. After specifying the folder with the tracking results, the position overview shows
how many tree fragments start in each position. In the example, only position 20 was
tracked. On the right, all fragments for the currently selected position are displayed.
For each fragment, the starting time point, the unique fragment number, the number
of tracks and the number of track points are shown. The rightmost column indicates if
the fragment has already been used to create or has been integrated into a regular TTT
lineage tree by displaying the file name of the corresponding .ttt file. These fragments
can also be hidden from the list by activating the corresponding option below.
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Fig. 14 TTT Interface - Main Window. For each position the number of available automatically
generated tree fragments is displayed. After selecting a position, all fragments starting
in it are shown in the list on the right together with statistical information and if the
fragment has already been integrated into a regular tree.

In the regular Movie Window of TTT, all track points for the current time point are
shown as circles by default (compare Fig. 15). The used color represents the confidence
level of the corresponding track point, where green is used for high confidence levels close
to 1 and red for low confidence levels close to 0. To be able to quickly get a list of all track
points for a given time point, all track points are put into a hash table when loading the
tree fragments, which uses time points as keys and lists of track points as values. This
way, the user can scroll through the experiment fluently while all cells are being displayed.

In the Autotracking - Main Window the user can select a fragment and click on the
button below or just double-click on it in the list to create a regular TTT tree from it.
The tree is then shown in the Autotracking - Tree Window (Fig. 16). On the right, the
fragments used for the current tree are displayed and the lower part of the window can be
used to connect tree fragments manually. After selecting a cell from the tree, the image
with the last track point of the cell (or its mother cell if it has no track points yet) is
automatically displayed and view is centered on its position. Using the mouse wheel, the
user can conveniently go to the previous or next time point, which works fluently since
the corresponding images are automatically preloaded in the background. The program
also determines which fragments could be the correct successors of the current cell and
displays the corresponding cell circles in red. The fragments are also shown in the tree
view next to the current tree. The user can then select the next fragment by clicking
on the corresponding cell circle. This way, fragments can be connected requiring only
minimal user interaction. Cell circles corresponding to fragments that have already been
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Fig. 15 TTT Interface - track points are displayed in the regular movie window. The color used
for the circles corresponds to the confidence level of the displayed track points, where
green is used for high and red for low confidence.

used for a tree are displayed in dark green. The buttons next to the tree can be used to
close or to save the current tree. When saving the tree, a .log file is created for all used
tree fragment files, which contains the file name of the current tree.

The user can also click on the Track Manually button to track the selected cell manually
in TTT. In that case, the cell circles of possible successor tree fragments are also displayed
in the window used for manual tracking and can be selected with one click.
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Fig. 16 TTT Interface - Tree Window. In this window the generated tree fragments can be
used to create regular TTT lineage trees as described in the text.
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3. Results

3.1. Benchmarking

3.1.1. Comparison with Manual Tracking

We first want to study, how quality and size of the generated tree fragments are affected
by the values specified for the two thresholds BlobThreshold and TrackThreshold (see
section 2.1.4) by comparing automated cell tracking results with data generated by manual
cell tracking. Since there are exactly two thresholds, it actually makes sense to use 3D-
plots for that purpose. This way it can be directly visualized, how each combination of
thresholds affects the quality and size of the generated tree fragments. Since the most
interesting kind of error is, when two cells are accidentally mistaken for each other, an
algorithm has been developed that attempts to detect such errors by comparing auto
tracking with manual tracking results.

a b c

d e f

Timepoint 332

Timepoint 337Timepoint 336Timepoint 335

Timepoint 333 Timepoint 334

Fig. 17 Example for highly inaccurate manual tracking results in experiment 100104PH43.
a-f) Images of consecutive time points show a moving cell, the corresponding track
points of cell 2 of tree 100104PH4 p001-004PH generated by manual tracking (red
circles) and of cell 1 of fragment 9003 generated by automated tracking (green circles).
The high accuracy of automatically generated track points will make further analysis
using tools like AMT easier and more reliable.

The algorithm works by iterating over all cells of every manually tracked tree and iden-
tifying corresponding tree fragments generated by auto tracking. It is then tested, if the
distance between the track points generated by manual tracking to the ones generated
by auto tracking exceeds a certain threshold. This is what happens mostly if cells were
assigned wrongly during auto tracking, since the selected cell and the actual successor
cell will usually move into different directions. However, if the two cells stay in close
proximity or if the automatically generated trajectories are interrupted immediately after
the wrong assignment, errors can also remain undetected by this approach.

25



For testing, first the experiment 100104PH43 had been chosen, since a lot of manually
tracked trees are available for it. However, tests quickly revealed that almost all detected
errors were actually caused by inaccurately manually set track points, as demonstrated
in Fig. 17. This problem has also been observed by others before [13]. It can be seen
clearly that the automatically generated track points are much more accurate than the
ones that were set manually. The improved quality of available tracking data will make
further computational analysis, like fluorescence quantification with AMT, much easier
and more reliable.

For benchmarking, a set of high quality trees was then generated for one position of
experiment 110322PH5 by using automated cell tracking combined with manual tracking
to connect the generated fragments without gaps. It contains about 20 trees and 20,000
track points, which is slightly more than the set of manually tracked trees of experiment
100104PH43 contains per position.
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Fig. 18 The 3D plots shows how the chosen thresholds affect the average tree size, which is
indicated by the number of track points in a tree, and the number of detected errors.
For each threshold combination, a) the average tree size of all generated fragments and
b) the absolute number of detected errors are shown.

Fig. 18 shows how the average size (i.e. the average number of track points) and the
absolute number of found errors is influenced by the thresholds. To create these plots,
position 20 of experiment 110322PH5 was tracked automatically for all 1681 possible
combinations of values between 0 and 40 for the two thresholds. The minimum track
length was set to 1 to prevent the results from being influenced by filtering out very short
tree fragments.

Since processing the binary files with segmentation results is very fast in C++, tracking
the complete position with about 3000 pictures took only a few seconds and all combina-
tions could be tested within a few hours using a normal computer. For that purpose, a
Perl script was written that executes the console version of the auto tracking program for
each combination of the thresholds. The results were then analyzed by using C++ and
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the plots were created using R. An assignment error was assumed, if the distance between
a manually and an automatically set track point exceeded 15 µm.

As expected, both the average tree size and the number of found errors decrease if the
thresholds are increased. If both are set to 0 (i.e. disabled), the average tree fragment
size is ∼ 33.1 track points and the number of errors is 29, which corresponds to an error
rate of only ∼ 0.14% relative to the number of track points in the manually created set
of trees. The number of errors reaches 0 and the average tree size ∼ 19.9 track points per
tree fragment for the first time if TrackThreshold is set to 14 and BlobThreshold to 15.

Surprisingly, the error count also increased again in a few cases for higher thresholds.
Manual inspection of one such error revealed that it was caused by two cells that moved
into each other’s direction until they eventually clumped together for some time points. If
BlobThreshold exceeded a certain value, one of the two cell trajectories was interrupted,
before the cells touched each other, but the other one was not. The latter was then
assigned to the two clumping cells, which were detected as one blob, causing an assignment
error. On the other hand, if BlobThreshold was lower, the first cell trajectory was not
interrupted due to that, but tracking of both cells was stopped later because of the
TrackThreshold and the error was avoided. After all, it can be said that the aim of
avoiding errors has been fulfilled. Nevertheless, most of the generated tree fragments are
very small, but it is probably possible to improve that without causing more errors (see
section 4 for a discussion of possible algorithmic improvements).
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Fig. 19 Histograms of tree size distributions for (a) manual tracking, (b) automated track-
ing with BlobThreshold = 0 ∧ TrackThreshold = 0 and (c) BlobThreshold =
15 ∧ TrackThreshold = 14.

Fig. 19 shows the histograms of the sizes of manually and automatically tracked trees
using either 0 for both thresholds or the combination of 15 for BlobThreshold and 14 for
TrackThreshold. It can be seen that the sizes of the manually tracked trees by far exceed
those of the automatically generated ones and that higher values for the two thresholds
result in the generation of more, smaller tree fragments.
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Fig. 20 Required runtime (seconds) for segmentation (a) and tracking (b) of 1 to 1000 images
using either one thread only (red) or two threads (blue). Only one position was used
for tracking, thus the number of time points in (b) is equal to the number of pictures.
For testing, an Intel Core2 Duo CPU with 2.66 GHZ was used.

3.1.2. Runtime

The required runtime for segmentation (Fig. 20 a) and tracking (Fig. 20 b) using one or two
threads is compared. It can be seen clearly that the image processing part is responsible
for most of the required computation time. The plot also shows that segmentation scales
very well when using multi-threading. It has been observed that in some cases, however,
the used MSER implementation requires much more time for processing an image if several
threads are running simultaneously. For that reason, segmentation speed improves notably
but is not doubled if two threads are used instead of one. Section 4.1 discusses alternative
MSER implementations.

As expected, the tracking algorithm does not scale equally well to a higher number of
threads, since only parts of it make use of multi-threading. If two threads are used,
however, the increase of required runtime for tracking is much more stable. This is
probably caused by the fact that the number of cells in the used images increases and,
therefore, the number of tracked cells and blobs that have to be considered per time point
also becomes higher. As mentioned before, this increases the effects of multi-threading
(see section 2.2.1). For the same reason, the effects of multi-threading would also be much
higher if more than one position had been used for tracking.

3.2. Analysis of Cell Movement

To analyze cell movement, time points 1 to 3000 of position 20 of experiment 110322PH5,
which contained HSCs and early multipotent progenitors (MPPs), were used for auto-
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mated cell tracking. A minimum track length of 15 was specified and both tracking
thresholds were set to 15, which resulted in the generation of 1991 tree fragments.
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Fig. 21 a) Histogram and b) estimated density function of average cell speed in µm / minute.

The speed of the cells was analyzed first. For that purpose, a histogram of the average
cell speed of the trees in µm per minute was generated (Fig. 21 a). It was calculated by
measuring the distances of successive track points of all tree fragments and the seconds
between the acquisition times of the corresponding images. In addition to the histogram,
kernel density estimation [41] was used to estimate the probability density function of the
random variable underlying the dataset (Fig. 21 b). Although the data was not generated
by a random experiment, this makes sense since the resulting plot is very similar to a
histogram, but is usually much smoother and does not depend as much on parameters
like the number of bins for histograms. It can be seen that most cells are moving very
slowly with a few exceptions. During manual inspection of the movie, some very fast
moving variants of debris were observed, which were also tracked and probably caused
these exceptions. The two peaks could be caused by MPPs that differentiated into MEPs
and GMPs, since it has been observed that the former move less than the latter [42].

For further analysis, the average speed along the (Fig. 22 a) x- and (Fig. 22 b) y axis of
all cells existing at a given time point were plotted. This plot confirms that most cells are
moving only very slowly in both directions. Furthermore, it can be seen that in average
there is no movement along the x-axis, but a lot downwards along the y-axis. In both
directions, average cell speed seem to fluctuate, which could be caused by the movement
of the experiment stage. The movement along the y-axis seems to become much stronger
after time point 800, but this is probably caused by the very low number of cells before
about time point 1000.

To observe cell movement at a higher temporal resolution, the average cell speed was
plotted again along both axis (Fig. 23), but this time only for time points in the interval
[2000, 2100]. The fluctuation of average cell speed can be seen clearly in this plot.
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Fig. 22 The average speed in µm / minute of all cells at each time point along the a) x- and
the b) y-axis is shown.
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Fig. 23 The average speed in µm / minute of all cells at each time point along the a) x- and
the b) y-axis is shown, but only for time points in the interval [2000, 2100].

Finally, in Fig. 24 the average absolute cell speed is shown over time along both axis.
Despite the notable differences of the average movement along the axes, this plot shows
that the absolute cell speed is quite similar. The low values at early time points are
probably also caused by the low number of cells. The decrease after about time point
2300 could also be a result of differentiation into MEPs and GMPs.
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Fig. 24 The average absolute cell speed in µm / minute in a) x and b) y direction is shown
over time.

In Fig. 25 the histograms and estimated density functions of the displacement distribu-
tions of all cells along the x- and the y-axis are shown. As expected, the distribution of
displacement along the y-axis appears to be shifted to the left, which means that cells are
actually moving downwards along the y-axis.

To test if the different displacements along the axes observed in Fig. 25 is significant, a
paired-sample t-test was performed resulting in a significant p-value of 8.48 · 10−82. The
strong movement along the y-axis could also be caused by the movement of the experiment
stage.

In Fig. 26 the displacement of all cells is shown for their first 100 track points. For this
plot, only fragments with at least 100 track points were used, which applied to 143 of the
1991. Again, this plot indicates that cells are moving downwards along the y-axis but are
not changing their average positions along the x-axis (Compare Fig. 26 a and b), whereas
the absolute speed is very similar along both axes (Compare Fig. 26 c and d).
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Fig. 25 The displacement distributions of all cells along the a,b) x- and the c,d) y-axis are
shown. This plot confirms that the vast majority of cells is only moving along the
y-axis.
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Fig. 26 Displacement depending on time points relative to the first track point of each cell.
Only fragments with at least 100 track points were used. A LOESS (locally weighted
scatterplot smoothing) curve was fitted to the data points (red line). a,b) Displacement
in x and y directions. c,d) Absolute displacement in x and y directions.
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4. Summary and Outlook

4.1. Improving Segmentation

It has been shown that the used approach for segmentation works very well in most cases.
Despite that, there are of course still possibilities for improvement.

Otsu’s algorithm, a segmentation method based on thresholding, has already been men-
tioned before. It is much simpler than MSER and mostly generates much worse results,
when used for segmenting cell images. However, if there are only a few cells that are not
or almost not moving and if the contrast of cells to background is high for all of them,
it can still be sufficient. Since it is much simpler, it also runs much faster and therefore
it could make sense to offer segmentation using Otsu’s method and related algorithms
as an option. Though, it could be difficult to decide beforehand, whether or not Otsu’s
algorithm is sufficient for a given experiment.

The MSER implementation used in this work has been chosen, because it is widely used
and has proven to be able to extract blobs from cell images efficiently and reliably. Nev-
ertheless, since MSER is responsible for most of the required computation time, it makes
sense to look for more efficient implementations. An approach that combines detection
and tracking of MSERs to reduce runtime has been proposed in 2006 [43]. Combining
segmentation and tracking could, however, reduce the positive effects of multi-threading
on the required runtime, since it would no longer be possible to process all images of the
experiment independently. In 2008, a new method to compute MSERs has been presented
that actually runs in O(n) and has been optimized to use CPU caches more efficiently
resulting in notably reduced runtime requirements [44]. OpenCV provides a linear time
implementation of the MSER algorithm that has, however, generated unexpected results
during tests that were most likely caused by severe unresolved bugs [45].

Fig. 27 Segmentation problems caused by clumping cells. a) Of the three cells only the upper
one was recognized correctly as distinct cell, whereas the other two were detected as
one cell. b) Three cells are detected as one cell. By combining the used dark on bright
with bright on dark search, the cells in this example can be detected correctly, but
finding a universal solution to this problem is very difficult.

It has been shown that the segmentation approach based on MSER used in this works
can reliably separate cells that are very close together. However, if cells actually stick
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together with no space in between them, separation often fails as shown in Fig. 27. In
the left example, it would be possible to correctly detect the lower cell by adjusting
some parameters, but not without causing over-segmentation of other cells (i.e. several
cells are detected when there is actually only one). In the right example, it is possible
to separate the cells by combining the used dark on bright with bright on dark search.
However, developing a universal solution to this problem that does not only work for one
experiment, is very challenging. In both cases, it is probably not possible to automatically
separate the cells using the Watershedding algorithm, since the ideas behind this approach
and MSERs are very similar. Solving this problem would be especially helpful to be able
to better detect cell divisions, since the daughter cells often stick together for about 30
minutes after division.

Therefore, it could make sense to test other segmentation approaches, especially to see
how they can handle the problem of clumping cells. Methods based on active contours,
for example, have been used successfully in this context [46, 47, 48]. The idea of this
approach is to position a contour in the image in such a way that the associated energy
is minimized, which typically depends on the gradient in the image next to the contour
and on the contour’s shape. The higher the gradient is and the smoother the shape, the
lower is the associated energy. This way the outlines of smoothly formed objects can be
detected. Other successfully used methods that are not described any further here include
wavelet [49] and levelset [50, 51] techniques.

It is already planned to make it possible to use ilastik for segmentation, a tool that
has been mentioned before. Ilastik is based on Random Forest Classifiers, which is a
technique that is very different compared to the other approaches that were discussed
previously. It has been shown that it can successfully segment cell images, especially if cells
differ from background rather by texture than intensity, and it is also quite user-friendly.
Therefore, ilastik and MSER could perfectly complement each other as segmentation
methods, depending on the properties of a given experiment. A GUI is provided where
the user can load an example picture and mark areas in the image that correspond to
arbitrary user-defined classes such as background, cell boundary and cell interior. The
algorithm then uses this information to segment similar images by deciding for each pixel
to which class it belongs.

4.2. Improving the Tracking Algorithm

Despite its simplicity, the tracking algorithm has generated usable results, but there are
some aspects that can and need to be improved. For example, cell divisions and other cell
fates like apoptosis cannot be detected reliably yet. To improve cell fate prediction, typical
features of cells that are about to divide or to undergo apoptosis could be quantified. For
example, many blood cells are perfectly round before division and the daughter cells also
remain perfectly circular and clump together for about 30 minutes. While undergoing
apoptosis, cells often become smaller and completely stop moving.

One widely used technique that can be very helpful for visual tracking problems is provided
by the Kalman filter [52]. Originally developed mainly for the purpose of handling errors
and noise in data measured by sensors, it can also be used to reliably predict the position
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of tracked objects based on their last positions. It has already been used successfully for
tracking cells in time-lapse microscopy data [53].

Apart from that, it has been shown that tracking results can be improved notably by mea-
suring similarities of cells in successive frames and using that information for assignment.
For example, features like position, cell area, intensity and compactness can be stored in
a vector for each cell. To measure the similarity of two cells in successive frames, the asso-
ciated feature vectors can then be compared. Based on statistical properties of previously
observed differences between the feature vectors associated with a cell in different frames,
this approach can be extended to estimate the likelihood that a blob in the current frame
belongs to a given cell [23]. Other approaches focusing on similarities of cells that have
been used in this context are based on image registration [54], active contours [55, 56, 57]
and Markov models [36]. However, it is important to note that cells can look very similar
and change their appearance suddenly from one frame to another. Therefore, relying too
much on similarities of cells could also introduce hard to spot errors in some cases.

Other tracking approaches that might be interesting are based on the mean-shift algorithm
[58]. It can be used, for example, to find local extrema in an image by considering
intensities as density function values and iteratively shifting the position of a kernel to
the average of data points computed in its neighborhood [59]. Mean-shift tracking can
be extended [60] and combined with other approaches like the Kalman filter to generate
better results [53].

Finally, in many tests it happened a few times that parts of cells were not visible in single
frames causing the segmentation algorithm to classify them as being too small. Since
blobs are currently neglected by the tracking algorithm if their size is invalid, this mostly
leads to the premature ending of cell trajectories or even wrong assignments. Therefore,
it is already planned to modify the tracking algorithm in such a way that blobs which are
too small can still be accepted in single frames.

Although the presented software can still be improved on the algorithmic level, it will
help to eliminate the bottleneck of manual cell tracking by making it possible to gener-
ate tree fragments of very high quality with just a few clicks. The higher accuracy of
automatically generated track points will make it much easier not only to automatically
quantify fluorescence intensities but also to, for example, predict cell fates by investigat-
ing their morphological properties [61, 42]. Since tracking data can be generated rapidly
now, it will also be possible to work on new biological questions of high relevance such
as the influence of cell contact on cell fate decisions, since this requires most cells of the
experiment to be tracked.
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A. Segmentation Results File Format

INTRODUCTION

============

- FileVersion: 01

- FileExtension: .seg

- Date: 08/01/2011

- Binary file for segmentation results for one picture

- All values are stored in Little-Endian format

- Floating point numbers are saved in the IEEE 754 format with 32 bit precision

- All coordinates are image local pixel indexes

FORMAT SPECIFICATION

====================

- 4 bytes: signature (magic number) to identify a valid segmentation data file:

0x73 0x65 0x67 0x64 ("segd" in ASCII)

- 4 bytes, unsigned integer: Fileversion

- 4 bytes, unsigned integer: Number of blobs

- for each blob:

- 4 bytes, unsigned integer: blob identifier, unique for this picture

- 2 bytes, unsigned integer: centroid coordinate X

- 2 bytes, unsigned integer: centroid coordinate Y

- 2 bytes, unsigned integer: number of pixels in this blob

- 4 bytes, float: area of convex hull or 0 if not set

- 4 bytes, unsigned integer: blob status

- 2 bytes, unsigned integer: children of this blob (blobs that are

inside this blob)

- 2 bytes, unsigned integer: children of this blob with

status = NORMAL

- for each pixel of blob (ordered in ascending order by Y, X):

- 2 bytes, unsigned integer: coordinate X

- 2 bytes, unsigned integer: coordinate Y

REMARKS

=======

- Blob status flags: 0 (Normal) or other combination of BLOB_STATUS flags

enum BLOB_STATUS_FLAGS {

NORMAL = 0x00,

CUTOFF = 0x01, // Is cut off, i.e. not completely in picture

TOO_SMALL = 0x02, // Is too small

TOO_BIG = 0x04 // Is too big

};
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B. Tracking Results File Format

INTRODUCTION

============

- FileVersion: 02

- FileExtension: .trf

- Date: 08/01/2011

- Binary file for auto tracking results containing one tree fragment

- All values are stored in Little-Endian format

- Floating point numbers are saved in the IEEE 754 format with 32 bit precision

- All coordinates are saved in experiment global micrometer values

CHANGES TO VERSION 01

=====================

- name of tree for which fragment was used is no longer saved in .trf file

but in a separate file with extension ’.log’

FORMAT SPECIFICATION

====================

- 4 bytes: signature (magic number) to identify a valid autotracking tree

file: 0x74 0x72 0x66 0x72 ("trfr" in ASCII)

- 4 bytes, unsigned integer: Fileversion

- 4 bytes, unsigned integer: Number of tracks in this tree

- for each track of the tree (sorted in ascending order by tracknumber):

- 8 bytes, unsigned integer: track number

- 4 bytes, unsigned integer: starting time point

- 4 bytes, unsigned integer: stopping time point

- 4 bytes, unsigned integer: number of track points in this track

- for each track point of current track (sorted in ascending

order by time point):

- 4 bytes, unsigned integer: time point of this track point

- 2 bytes, unsigned integer: position number of this track point

- 4 bytes, float: X coordinate

- 4 bytes, float: Y coordinate

- 4 bytes, float: confidence level between 0 and 1

.log FORMAT

===========

- Latin1 encoded string with name of associated ttt file (without path)

48


	Introduction
	Motivation
	The Problem of Automated Cell Tracking
	Overview of Existing Software
	Aims of this Work

	Methods
	The Algorithmic Approach
	Overview
	Image Enhancement
	Segmentation
	Tracking of Cells

	Implementation
	Autotracking Software
	TTT Interface


	Results
	Benchmarking
	Comparison with Manual Tracking
	Runtime

	Analysis of Cell Movement

	Summary and Outlook
	Improving Segmentation
	Improving the Tracking Algorithm

	Segmentation Results File Format
	Tracking Results File Format

