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1 Introduction

1 Introduction
In systems biology one of the main interests is to thoroughly understand biological
systems. Therefore, a system is modelled into a simplified version, which can
easier be analysed, predicted and optimized than the original biological system
itself (Chou & Voit 2009).
Research is interested in systems with a small amount of molecules interacting.

Often, e.g. in the case of cell fate, molecular events of one cell may have an
influence on every subsequent process (Munsky & Khammash 2006). This situation
cannot be modelled using deterministic models as they are not able to capture the
randomness of the biological processes, thus, stochastic models are required. Boys
et al. (2008, p. 125) state that "conventional deterministic chemical kinetics fail
to describe the development of systems of coupled biochemical reactions correctly
when both concentrations of reactants and reaction rates are low".
To understand the biological system and to be able to develop and distinguish

among possible systems, information about the parameters of the system, i.e.
kinetic rate constants, is necessary. This knowledge is important "for the end-
applications like analysing system properties (e.g. robustness) or predicting the
effects of genetic perturbations". (Poovathingal & Gunawan 2010, p. 1)
This thesis deals with parameter estimation in stochastic systems. As a com-

putation of the likelihood is analytically very complex and often not possible, the
likelihood-free methods Approximate Bayesian Computation (ABC) and ABC Se-
quential Monte Carlo (SMC) are used. Parameter estimation is currently a main
research topic and highly important as Poovathingal & Gunawan (2010, p.1) opine:
"Despite the availability of high-throughput cell biology, the estimation of unknown
(kinetic) model parameters from experimental data is still considered as the bot-
tleneck in biological model identification, especially for dynamical models". Boys
et al. (2008, p. 125) reckon that "One of the most important challenges in develop-
ing systems-level models of stochastic gene regulatory processes is how to estimate
the values of the key rate parameters."
In this thesis, different distance functions for the ABC (SMC) algorithm are

defined. They are based on the mean, standard deviation, negentropy, probability
and cumulative distribution function, and on the correlation of the data. In a

1



1 Introduction

computational study, using two distinct gene expression models, they are tested
thoroughly with different prior distributions. The aim is to get an understanding,
which distance functions result in the best estimation.
Chapter 2 contains theoretical background of modelling chemical reactions and

methods for parameter estimation. In section 2.3 the ABC and ABC SMC algo-
rithm are introduced. Two gene expression models, the one-stage and two-stage
model, which are used in the computational study, are explained in chapter 2.4.
The distance functions and summary statistics, which are used for the ABC (SMC),
are explained in chapter 3. Chapter 4 shows how the ABC and ABC SMC algo-
rithm have been implemented, introduces the parameter settings for the computa-
tional study and defines a statistic to evaluate the quality of parameter estimation
of the posterior distribution. An overview of the conducted simulations and the
computational time is additionally given. The results of the computational study
for the ABC algorithm is presented in chapter 5. The results for the ABC SMC
are discussed in chapter 6. A summary and an outlook is given in chapter 7.

2



2 Background

2 Background
This chapter deals with the theoretical background. In the first two parts of
the chapter, the modelling of chemical reactions is described and an overview
of methods for parameter estimation is given. In section 2.3 the Approximate
Bayesian Computation algorithm is presented. The last section explains the gene
expression models, which are used throughout the thesis.

2.1 Modelling chemical reactions

There is a vast amount of ways to model genetic regulatory systems and thus
biochemical reactions. De Jong (2002) and Karlebach & Shamir (2008) give an
overview of different ways. The second authors divide the systems into three
categories: I) logical models, including e.g. boolean networks or petri nets, II)
continuous models, including, among others, linear models or ODEs and III) single-
molecule level models, which contain the later described stochastic simulation
algorithm.
In general a system of (bio-)chemical reactions can be specified by reactions

written in common chemistry stoichiometric notation of the form

c1X1 + ...+ ckXk → p1Y1 + ...+ plYl. (1)

The reactants X1, ...Xk are consumed and transformed into the products Y1, ...Yl.
The coefficients c1, ...ck and p1, ...pl denote the number of molecules of reactants
and products consumed and produced, respectively. Usually this equations show
elementary reactions, i.e. the transformation from reactants to products does not
involve other intermediate reactions.
In the following the different modelling possibilities are illustrated with a com-

mon biochemical model (Thattai & van Oudenaarden 2001), the single gene ex-
pression model, also known as two-stage model, which is shown in figure 1. The
system consists of three molecule species DNA, mRNA and protein and the fol-
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2 Background
2.1 Modelling chemical reactions

lowing four reactions.1

DNA
θ(1)
−−→ DNA+mRNA transcription (2a)

mRNA
θ(2)
−−→ mRNA+ protein translation (2b)

mRNA
θ(3)
−−→ ∅ degradation of mRNA (2c)

protein
θ(4)
−−→ ∅ degradation of protein (2d)

In this model the mRNA is a transcript of the DNA, and the mRNA is further
translated into protein. Both the protein and mRNA are degraded, thus lowering
the existing amount of molecules.

Figure 1: Scheme of the single gene expression model. Solid arrows indicate synthe-
sis, jagged arrows indicate degradation. DNA is transcribed into mRNA
with rate θ(1). mRNA decays with rate θ(3) and is translated into protein
with rate θ(2). The protein decays with rate θ(4).

The rate constants (sometimes called reaction rates) are denoted by θ(1), ..., θ(4)

and quantify the speed of the reaction.2 Note that the rate constants may change
due to changes in the parameters which influence the reaction rate, such as volume,
temperature and pressure.

1The following chapter is partly based on Hayot & Jayaprakash (2008).
2From the rate constants θ(3) and θ(4) one can derive the half-life of the mRNA τ3 = log(2)/θ(3)

and protein τ4 = log(2)/θ(4) respectively (Schwanhäusser et al. 2011, supplementary).
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2.1 Modelling chemical reactions

In the following part, possibilities to model chemical reactions are described.

2.1.1 Markov Jump Process (MJP)

This paragraph is partly based on Boys et al. (2008). Taking the rate constants
θ(1), ..., θ(4) into account the probability that DNA is transcribed to mRNA in a
small time interval dt is θ(1)dt+ o(dt).
In modelling this system as a Markov Jump Process (MJP), the number of

molecules of each species is of interest and defines a state. If a reaction occurs, it
will change the state of the system, which defines the number of molecules of each
species. Reaction 2a from the two-stage model for instance leads to the change
from state S1 to state S ′1 as

S1 → S ′1
DNA

mRNA

protein

→


DNA

mRNA+ 1
protein

 . (3)

This state change has the probability

P (S ′1, t+ dt|S1, t) = a1dt+ o(dt) (4)

with o(dt)/dt→ 1 as dt→ 0 and a1 = θ(1)d(t), where d(t) is the amount of DNA
at time t.
For all reactions with states S1, S

′
1, ..., S

′
4 the probabilities of a state change are

given by

P (S ′r, t+ dt|Sr, t) = ardt+ o(dt) ∀r. (5)

5



2 Background
2.1 Modelling chemical reactions

The propensity functions are3

a1 = θ(1)d(t) a2 = θ(2)m(t) a3 = θ(3)m(t) a4 = θ(4)p(t), (6)

with m(t) and p(t) denoting the number of mRNA and protein molecules. The
propensity function is a function whose product with dt gives the probability ar
of reaction r occuring in the next infinitesimal time dt.
Because in the model each transition probability only depends on the current

state and not on previous states of the system, the system is Markovian of order
one and the chemical reactions can be seen as a MJP. Thus the time τ , until the
next reaction occurs, is exponentially distributed with τ ∼ Exp(∑r ar), and the
probability for an occurring reaction is ar/

∑
i ai.

2.1.2 Reaction Rate Equations (RRE)

Often the chemical rate equations are formulated as a set of ordinary differential
equations (ODEs). Considering all four equations (2a)–(2d), the rate equations
are

dm(t)
dt = θ(1)d(t)− θ(3)m(t) (7a)

dp(t)
dt = θ(2)m(t)− θ(4)p(t) (7b)

dd(t)
dt = 0. (7c)

The concentration of DNA does not change over time, as the DNA molecules
are not used in the transcription to mRNA, so d(t) = c ∈ R. Thus, in equation
(7c), d(t) stays constant and, therefore, this equation is often not considered. In
the steady state it holds that m(t) = θ(1)

θ(3) and p(t) = θ(1)θ(2)

θ(3)θ(4) (see chapter 2.4.2).
Considering equations (7a) and (7b), biochemical reactions can be described by
a set of coupled ODEs, which are often called the reaction rate equations (RRE)
(Gillespie 2007).

3Note that the θ′s used in calculating the propensity function have the dimension of an inverse
time. Regarding the gene expression model, this is the case as can be seen in 7a and 7b. If in
a reaction two reactants are involved, the chemical constant θ has dimension of volume/time,
and to calculate the propensity functions one needs to divide each θ by the volume V .
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2.1 Modelling chemical reactions

These equations state the change in the concentration of each species as a func-
tion of the concentration level of some other species. It is assumed that the con-
centrations are continuous.
Simple ODE systems can be solved analytically and the set of resulting algebraic

equations describe how the mean of the concentration evolves over time. For an
overview of ODEs in biology with examples one can consider Klipp et al. (2005).
Originally it was proposed by Goodwin (1963) to model regulatory networks with

ODEs. Chen et al. (1999), for instance, use ODEs to model biological regulatory
networks.

2.1.3 Chemical Master Equation (CME)

Another possibility to model chemical reactions is through a chemical master equa-
tion (CME). It describes the evolution over time of a system. The biochemical
system is modelled as being in only one of several states at a given time. The
changes between states are probabilistic. A derivation can be found in Higham
(2008) or in more detail in Gillespie (1992).
For a system of chemical reactions, let P (x, t) be the probability that X(t) = x

where X is an S-dimensional vector representing the number of molecules of each
of the S species. A well stirred volume, i.e. the concentrations are homogeneous,
is implied. Assume the system had the state x− vr at time t. After reaction r

occurred in the interval [t, t+dt], the system is in state x. So vr defines the changes
in the number of molecules of the S species through reaction r. The propensity
functions are defined by ar. The Chemical Master Equation is given by

dP (x, t)
dt =

R∑
r=1

ar(x− vr)P (x− vr, t− ar(x))P (x, t). (8)
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For the simple gene expression model, the CME is (Hayot & Jayaprakash 2008)

∂P (nP , nM , t)
∂t

= θ(2)nM [P (nP − 1, nM , t)− P (nP , nM , t)]

+ θ(3)[(nM + 1)P (nP , nM + 1, t)− nMP (nP , nM , t)] (9)

+ θ(1)nD[P (nP , nM − 1, t)− P (nP , nM , t)

+ θ(4)[(nP + 1)P (nP + 1, nM , t)− nPP (nP , nM , t)]

where P (nP , nM , t) is the probability that nP proteins and nM mRNAs are found in
the volume at time t. The parameter nD indicates the number of DNA molecules.
The CME can be solved exactly, which is possible only for systems involving a

small number of species. Due to the course of dimensionality, the CME cannot be
solved with increasing number of species (Gillespie 1977). Therefore, stochastic
simulations are necessary. In the following the stochastic simulation algorithm is
introduced.

2.1.4 Stochastic Simulation Algorithm (SSA)

The stochastic simulation algorithm (SSA) takes the assumption that only reac-
tions involving at most two species as reactants occur4, and that only one reaction
can happen at a time.
Biological systems involve many species and many reactions and, therefore, it is

often too complicated to solve the CME numerically. Gillespie (1977) introduced
an algorithm and showed that it gives the same results as solving the CME of a
system. He named the algorithm stochastic simulation algorithm, which is also
known as Gillespie’s algorithm. A detailed derivation of the algorithm can be
found, for instance, in Higham (2008).
The aim of SSA is to simulate trajectories of the species over time. It is based

on the assumption that the time to the next reaction is exponentially distributed,
and the probability of each reaction is known.
In the following the SSA is described for a system with S species, where the

number of molecules is denoted by Xj, j = 1, ..., S. There are R reactions with

4in nature the probability that three or more species react, i.e. the molecules clash together, is
very low and thus negligible
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reaction rates θ(r), r = 1, ..., R and propensity functions ar, r = 1, ..., R. The time
is measured from t = 0 until Tobs.

Stochastic Simulation Algorithm

1. Initialize values for Xj, j = 1, ..., S and θ(r), r = 1, .., R and set t = 0.

2. Calculate ar for all r and a0 = ∑R
r=1 ar.

3. Draw the time to the next reaction τ ∼ Exp(a0).

4. Draw which reaction r occurs where P (r) = ar/a0.

5. Set t = t+ τ and update the number of molecules according to reaction r.

6. Continue with step 2 until maximum time Tobs is reached or maximum num-
ber of iterations are executed.

The main advantage of using SSA to model chemical reactions is that SSA is ap-
plicable even for small populations. Due to biological variance, small populations
show deviation from predictions of deterministic ways of modelling, e.g. modelling
by ODEs. Moreover, models such as the RRE consider the amount of molecules
as a continuous concentration. This is approximately correct for a large number of
molecules. If there are only a few molecules, the discreteness plays an important
role, which is not considered by RRE. As it is shown by Tian et al. (2007), param-
eter estimation and model prediction is poor if deterministic models are used for
stochastic data.

2.2 Literature based overview of methods for parameter
estimation

In this section a non-exhaustive overview of methods for parameter estimation is
given. To the knowledge of the author, there does not exist a publication yet which
gives an overview of the different parameter estimation methods. A short overview
of methods can be found in the introduction of Lillacci & Khammash (2010).
Poovathingal & Gunawan (2010) describe three ways for estimating the kinetic

parameters for models described as a CME and which have a low number of
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molecules. The first criterion used is the likelihood function, which can be de-
rived from the CME model. The parameters are estimated by maximizing the
likelihood. The other two criteria are based on the probability density function
(pdf) and cumulative density function (cdf) of the data. The pdf (cdf) of the
experimental data is estimated and the pdf (cdf) for a given set of parameters k
is simulated using SSA. For experimental and simulated data the pdf and cdf are
estimated using histograms and the cumulative sums of the pdf, respectively. The
parameter vector k, which minimizes a defined distance between simulated and
experimental pdf (cdf), is calculated. Each method was evaluated and compared
on toy data resulting that the maximum likelihood method is applicable with a
low number of molecules. The methods based on the density functions, especially
the method based on the cdf, are more robust than the likelihood method.
Reinker et al. (2006) propose two methods based on modelling the chemical re-

actions as a Markov Jump Process. The first method can be used for systems with
a low number of reactions in each sampling interval, because one of its assump-
tions only holds if the sampling rate is relatively high in comparison to the reaction
rates. They determine the likelihood and approximate it to be able to evaluate its
maximum with numerical optimization algorithms. The second method deals with
the data as exact molecule counts and approximates the amount of reactions in
each interval. This approximation is done by solving a linear equation. They are
able to derive a likelihood which is maximised with numerical optimisation meth-
ods. The second estimation method works even for systems with many reactions
occurring in each time interval.
Based on modelling the chemical reactions as REE, Lillacci & Khammash (2010)

propose an algorithm, which is based on Kalman filtering and extends it, thus being
able to handle large parameter spaces and sparse and noisy data. The algorithm
can be used for model selection as well. The authors demonstrate their algorithm
on two examples.
Munsky et al. (2009) show how to estimate the kinetic parameters by consider-

ing the cellular noise which is inherent due to the random movement of reacting
molecules. They examine the simple gene expression model and show that, by cal-
culating the first two moments of the number of proteins and mRNA, it is possible
to estimate the parameters with a high success rate. The success rate depends on
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the number of time measurements and the number of experiments.
Boys et al. (2008) use Bayesian inference to estimate parameters of the Lotka-

Volterra model (Lotka (1925),Volterra (1931)). They describe methods how infer-
ence can be made depending on the richness of information (complete data trace,
discrete data at certain time points and partially observed data). They describe
different Markov Chain Monte Carlo (MCMC) algorithms and analyse the per-
formance of the different algorithms with simulated data on the Lotka-Volterra
model.
Tian et al. (2007) use a simulated maximum likelihood method for genetic reg-

ulatory networks with small molecular numbers. Parameters are estimated for
stochastic models which are described by stochastic differential equations or dis-
crete biochemical reactions. They test their method on a one-stage and two-stage
model and on a genetic toggle switch. It results that only the method based on
discrete biochemical reactions has a robust estimation for small molecule numbers.

2.3 Approximate Bayesian Computation (ABC)

If model parameters are estimated using inference methods based on the likelihood,
the likelihood function needs to be computable. If this is not possible because the
likelihood does not exist in a closed form or is too costly to evaluate, "likelihood-
free" methods can be used to infer the parameters because they simulate from the
likelihood instead of evaluating it.
One possibility to not evaluate the likelihood but simulate the data from the

associated model is called Approximate Bayesian Computation (ABC). The first
to describe explicitly an algorithm for Approximate Bayesian Computation was
Pritchard et al. (1999).
The ABC algorithm was developed continuously from the ABC rejection algo-

rithm (Pritchard et al. 1999) and other variations exist, i.e. the ABC MCMC
(Marjoram et al. 2003) or ABC SMC (Sisson et al. 2007).
Yet implemented algorithms exist for different purposes. For instance, Lopes

et al. (2009) offer an ABC implementation for historical demographic parameters,
and a do-it-yourself ABC (DIY ABC) is provided by Cornuet et al. (2008). Liepe
et al. (2010) have an open source package called ABC-SysBio that supplies an
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implementation of the ABC rejection sampler and an ABC SMC, both for param-
eter inference and model selection for models written in Systems Biology Markup
Language (SBML).
Didelot et al. (2011) give an overview of different ABC methods in the chapter

dealing with the background before introducing new approaches for model com-
parison based on likelihood-free methods.
A genetic regulatory system consists mostly of several reactions, where the ve-

locity is determined by the kinetic rate θ(r) of reaction r. The following table 1
gives an overview of the notation, which is used in this chapter, whereby the sym-
bols are introduced on their first occurrence. Note that different combinations of
indices are possible. This can be seen in the example θ(i,r)

t , which denotes the i-th
drawn parameter value (=particle) for the r-th reaction and t-th population.

symbol explanation index and range
θ parameter vector for all reactions
θ(·,r) parameter for reaction r 1 ≤ r ≤ R
θ(i,·) i-th parameter value, called particle 1 ≤ i ≤ N
θt parameter vector of population t 0 ≤ t ≤ T

{θ(i,r)
t }1≤i≤N set of parameter values of r-th reaction and

t-th population, consisting of N particles
wi,rt weight of the i-th particle of reaction r and

population t in the ABC SMC
R number of reactions in the genetic regulatory

system
N number of accepted particles
T number of populations in the ABC SMC

Table 1: Notation for the ABC Algorithm.

2.3.1 Basic ABC Algorithm

The aim of the ABC algorithm is to derive a posterior distribution in situations
where the likelihood function cannot be calculated in a reasonable time.
Let θ = (θ(1), ..., θ(r)) be the parameter vector of interest. A prior distribution

p(θ) is known and the aim is to approximate the posterior distribution p(θ|x) for
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a given data set x. Particles are drawn from the prior distribution and either
accepted or rejected according to a decision rule until N particles are sampled.
The posterior distribution consists of the accepted particles.
The Bayes theorem states that (Fahrmeir et al. 2009)

p(θ|x) = f(x|θ)p(θ)∫
f(x|θ)p(θ)dθ , (10)

i.e. the density of the posterior distribution p(θ|x) can be calculated with the
knowledge of the likelihood of the data f(x|θ) and the prior distribution p(θ) of
the parameter and the integral

∫
f(x|θ)p(θ)dθ. In some cases the evaluation of

this integral is too costly or not possible, but considering that it is a constant, it
holds that p(θ|x) ∝ f(x|θ)p(θ).
Moreover, a data set x0 is given, which is, for instance, experimental data from

the model. In the following it is named experimental data.
The basic ABC algorithm or ABC rejection sampler is described as follows:

1. Draw θ∗ from p(θ).

2. Simulate a dataset x∗ from f(x|θ∗), using for instance the Stochastic Sim-
ulation Algorithm (SSA). The conditional probability distribution f(x|θ∗)
describes the genetic model.

3. Calculate the distance between the simulated and the experimental data
d(x0, x∗) and accept θ∗ if d(x0, x∗) < ε for a chosen threshold ε. If θ∗ is
accepted, set θ(i,·) = θ∗ and i = i+ 1.

4. While i < N start from 1.

One of the main topics of this thesis is to examine different distances for their
ability in the ABC algorithm. The distances are defined in chapter 3.
If the prior distribution is similar to the posterior distribution a large portion

of the drawn θ∗ are accepted. If the prior distribution is not similar, the distance
d(x0, x∗) is rather high and, therefore, the rate of accepted θ∗ is lower thus resulting
in a higher number of drawn θ∗ and, therefore, a higher computational effort.
An extension tries to avoid the low acceptance rate, the ABC MCMC algorithm,

which includes the ABC into an MCMC algorithm. It was first proposed by
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Marjoram et al. (2003) and is described in Toni et al. (2009) and Didelot et al.
(2011).
"Potential disadvantages of the ABC MCMC algorithm are that the correlated

nature of samples coupled with the potentially low acceptance probability may result
in very long chains and that the chain may get stuck in regions of low probability
for long periods of time. The above-mentioned disadvantages of ABC rejection
[the acceptance rate is low when the prior distribution is very different from the
posterior distribution] and ABC MCMC methods can, at least in part, be avoided
in ABC algorithms based on SMC methods [...]" (Toni et al. 2009, p. 188 f.)
The ABC MCMC algorithm is, therefore, not described in detail, as it is not

used in the later part of this thesis.

2.3.2 ABC Sequential Monte Carlo (SMC)

Sisson et al. (2007) was the first to propose an ABC approximation within a
Sequential Monte Carlo (SMC) sampler, which was proposed by Del Moral et al.
(2006). The following ABC SMC algorithm was proposed by Toni et al. (2009)
and is similar to the algorithm from Sisson et al. (2007). The main difference is in
the calculation of the weights. More details are described in the appendix of Toni
et al. (2009).
The ABC SMC algorithm constructs the posterior distribution sequentially

through intermediate distributions. It can be seen as a sequence of ABC rejection
algorithms. In each step a number of parameter values (here called particles) are
accepted. They form the posterior distribution, which serves as the prior distribu-
tion for the next step. With each step t = 1, ..., T , the threshold level εt decreases,
thus resulting in the final posterior distribution p(θ|d(x0, x∗) < εT ). The values for
ε1 > ... > εT are defined at the beginning. No rules or remarks could be found how
to specifically set these values. The drawn parameter values (particles) forming
the posterior distribution are weighted, whereby they receive higher weights if they
are more probable in the primary prior distribution. Besides, a sampled particle
is perturbed to ensure that the entire particle space is considered effectively.
The algorithm proceeds as follows:

1. Set t = 0 and initialize values for the thresholds ε1, ..., εT .
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2. Set i = 1, whereby i is counting the accepted particles.

3. If t = 0 draw θ∗∗ from p(θ).

4. If t > 0 draw θ∗ from the population {θ(i,·)
t−1}i with weights {w(i,·)

t−1}i.

5. Use a perturbation kernelKt(·|·) to perturb the particle θ∗ with θ∗∗ ∼ Kt(θ|θ∗).

6. If p(θ∗∗) = 0, return to step 4.

7. Simulate a dataset x∗ ∼ f(x|θ∗∗).

8. If d(x0, x∗) > εt, return to step 4, otherwise set θ(i,·)
t = θ∗∗

9. The weight for particle θ(i,·)
t is calculated as follows

w
(i,·)
t =


1, if t = 0

p(θ(i,·)
t )∑N

j=1 w
(j,·)
t−1Kt(θ

(i,·)
t |θ(j,·)

t−1 )
, if t > 0

(11)

10. If i < N , set i = i+ 1 and proceed with step 4.

11. Normalize the weights so ∑iw
(i,·)
t = 1.

12. If t < T , set t = t+ 1 and proceed with step 2.

Note that particles drawn from the previous distribution have a single asterisk
and particles which are perturbed have a double asterisk. The first step of the
ABC SMC for population t = 0 is equal to the ABC rejection sampler.
To get a deeper understanding of the weights and perturbation kernels, two

examples are offered which are based on Filippi et al. (2011).

Uniform perturbation kernel The first kernel considered is a kernel based on the
uniform distribution. The particle θ∗ which is perturbed in step 5 of the algorithm
is, in the following, noted by θ(i,·)

t to underline that it is the i-th particle in popula-
tion t. The particle θ(i,·)

t is perturbed component-wise, i.e. each component of the
vector representing a reaction r is perturbed independently. Each of the particles
θ

(i,r)
t is perturbed by using a uniform distribution U [θ(i,r)

t − σ(r)
t , θ

(i,r)
t + σ

(r)
t ].
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The parameters which define the width of the uniform distribution {σ(r)
t }1≤r≤R

can be set at the beginning of the simulation. Alternatively, parameters are used,
which depend on the previous population. This is expressed by the index t. For
the uniform distribution, σ(r)

t is often set to (Filippi et al. 2011)

σ
(r)
t = 0.5

(
max

1≤i≤N
{θ(i,r)

t−1 } − min
1≤i≤N

{θ(i,r)
t−1 }

)
, (12)

which presents the width of the previous population.
Calculating the weights of equation (11) for a uniform perturbation kernel with

a uniform prior distribution p(·) with constant width results in equal weights
w

(i,r)
t = 1

N
∀r. For t = 0 this is obvious. Taking t = 1 as an example, the

numerator p(θ(i,r)
t ) = p(θ(i,r)

1 ) = cr ∈ R ∀r is constant as p(·) is a uniform distri-
bution. In the denominator w(j,r)

t−1 = w
(j,r)
0 = 1

N
∀r. Therefore, after normalization

all weights w(i,r)
1 = 1

N
∀r. This continues for t = 2, 3, ... as well.

Gaussian perturbation kernel The second kernel is taken as a component-wise
perturbation kernel based on a normal distribution N(θ(i,r), σ(r)) with mean θ(i,r)

and variance σ(r), here named Gaussian kernel. Beaumont et al. (2009) show that
the value

σ
(r)
t = 2V ar

(
{θ(i,r)

t }i
)

(13)

minimizes the Kullback-Leibler divergence between true posterior distribution and
the estimated posterior distribution.
Using the Gaussian kernel to perturb the particle θ(i,r)

t as in step 5 of the ABC
SMC algorithm, one draws the value of the perturbed particle from the normal
distribution N(θ(i,r)

t , σ
(r)
t ).

In calculating the weights in equation (11), the expression Kt(θ(i,·)
t |θ

(j,·)
t−1 ) states

the probability of the particle θ(i,·)
t in the normal distribution N(θ(j,·)

t−1 , σ
(·)
t−1) with

mean θ(j,·)
t−1 and standard deviation σ(·)

t−1. As the perturbation kernel perturbs the
particle component-wise, i.e. separately for every reaction, a more exact notation
in this case would be Kt(θ(i,r)

t |θ(j,r)
t−1 ).

Filippi et al. (2011) additionally specify other perturbation kernels which are not
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component-wise, i.e. a multivariate normal perturbation kernel and a perturbation
kernel which is based on the Fisher information.
The last part gave an overview of different perturbation kernels. The perturba-

tion kernels, which are used in the simulation, are U [0.75 · θ(i,r)
t , 1.25 · θ(i,r)

t ] and
N
(
θ(i,r), 0.25

1.96 · θ
(i,r)

)
. Their parameter σ(r)

t is less than in equation (12) and (13).
The choice of the kernels are discussed in detail in chapter 4.4.

2.4 Gene expression models

In this section two gene expression models are described, which are used later for
simulation. For each model a network figure is shown. Additionally, the reactions
and reaction rate equations are formulated. Several trajectories of the species for
different parameter values are presented, and the steady state is derived.

2.4.1 One-stage model

The one-stage model, which is shown in figure 2, is one of the simplest models
with regards to the number of reactions and species. It consists of only DNA and
protein, where the DNA is processed directly into a protein and the protein decays.

Figure 2: Scheme of the one-stage model. Solid arrows indicate synthesis, jagged
arrows indicate degradation. DNA is processed into protein with rate β.
The protein decays with rate δ.
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Thus the reactions are

DNA
β−→ DNA+ protein (14a)

protein
δ−→ ∅. (14b)

RRE In a deterministic framework the species concentrations are described by
ODEs, which can be inferred from the above reactions. In the one-stage model
the ODE is given by

dp(t)
dt = β − δp(t) (15a)

dd(t)
dt = 0, (15b)

whereby p(t) and d(t) denote the concentration of protein and DNA respectively.
As the concentration of DNA does not change due to reaction (14a), d(t) stays con-
stant, and equation (15b) is, therefore, often omitted. Compared with a stochastic
representation, the ODE describes the evolution of the mean of the different tra-
jectories over time. A trajectory in a stochastic model represents one possible
evolution of the concentration of a species.

Trajectories Figure 3 shows three exemplary trajectories of the number of protein
molecules.
The trajectories were simulated using the package GillespieSSA (Pineda-Krch

2010), version 0.5-4, in R (R Development Core Team 2010). For simulating
the trajectories, the maximum time was set to 23, as this time was used for the
simulations in chapter 5, and the initial number of DNA and protein molecules was
set to one and zero respectively. The black solid line represents the mean of 1000
realizations. One can see that the mean converges. The exact time of convergence
is calculated in the following paragraph.
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Figure 3: Trajectories of the number of protein molecules for three realizations of
the one-stage model with β = 2, δ = 0.7 and d(0) = 1, p(0) = 0 using
SSA. Additionally, the mean of 1000 realizations with its 5%-95% point
wise interval is plotted. The dotted horizontal line is at the steady state
β/δ ≈ 2.86, and the dotted vertical line is at t ≈ 11.368.

Steady state To determine the mean amount of protein molecules, one has to
solve the ODE (15a), which results with initial condition p(0) = P0 in

p(t) = β − (β − P0δ) exp(−tδ)
δ

(16)

The mean number of molecules in the steady state equals β
δ
, as lim

t→∞
p(t) = β

δ
.

For determining the time until steady state is reached in the simulation, one
has to define a bound how close the mean number of molecules should be to their
theoretical steady state. Let ε be this bound, thus p(t) !

< β
δ
− ε which solves for
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β − P0δ > 0 to

t > − log
(

ε · δ
β − P0δ

)
· 1
δ
. (17a)

For β − P0δ < 0, i.e. P0 > β/δ, the number of proteins reaches steady state by
declining from P0 to the final amount of β/δ. Therefore, the condition p(t) !

< β
δ

+ε

solves to

t > − log
(

ε · δ
−β + P0δ

)
· 1
δ
. (17b)

For the case β − P0δ = 0, i.e. P0 = β/δ, equation (16) is p(t) = β/δ = P0 ∀t, thus
the steady state for the mean number of protein molecules does not change during
time.
For the parameter settings which were used in figure 3,P0 = 0 β = 2 and δ = 0.7,

equation (17a) solves for ε = 10−3 to t > 11.368, and the steady state of protein
is β/δ ≈ 2.86. One can see in figure 3 that the simulation produces a very similar
result.

2.4.2 Two-stage model

The two-stage model is also known as the single gene expression model (Thattai
& van Oudenaarden 2001) and extends the one-stage model by one species and
two reactions. This model was already used as an example in chapter 2.1 and
is explained in this chapter in more detail. Figure 4 shows the scheme of the
two-stage model. The reactions for the two-stage model are the following

DNA
α−→ DNA+mRNA (18a)

mRNA
β−→ mRNA+ protein (18b)

mRNA
γ−→ ∅ (18c)

protein
δ−→ ∅. (18d)
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Figure 4: Scheme of the two-stage model. Solid arrows indicate synthesis, jagged
arrows indicate degradation. DNA is transcribed into mRNA with rate
α. mRNA decays with rate γ and is translated into protein with rate β.
The protein decays with rate δ.

RRE Deriving the system of ODEs from equations (18a)–(18d), one obtains the
following equations

dm(t)
dt = α− γm(t) (19a)

dp(t)
dt = βm(t)− δp(t) (19b)

dd(t)
dt = 0 (19c)

Solution of the ODEs The RREs (19a) and (19b) were solved with the initial
conditions m(0) = M0 and p(0) = P0, resulting in the following equations

m(t) = α− (α−M0γ) exp(−tγ)
γ

(20a)

p(t) = exp(−tγ)M0β − exp(−tδ)(M0β + P0γ − P0δ)
−γ + δ

+

αβ − exp(−tγ)αβ
γ(−γ + δ) − αβ − exp(−tδ)αβ

δ(−γ + δ) (20b)
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For γ = 0, i.e. the mRNA does not decay, equation (20a) solves tom(t) = M0 +αt.
For γ = δ, equation (20b) solves to p(t) = P0−αβ/γ2+tβ(M0−α/γ)

exp(tγ) + αβ
γ2 .

Steady state Using equations (20a) and (20b), one can derive the mean number
of mRNA and protein molecules in the steady state. It holds that

lim
t→∞

m(t) = α

γ
(21a)

lim
t→∞

p(t) = αβ

γδ
. (21b)

Trajectories For the trajectories which are shown in figure 5, the set of param-
eters for α, β, γ and δ are chosen from Komorowski et al. (2011, supplementary
information, chapter 4.1). Table 2 provides an overview of the kinetic rates. The
initial value for DNA, mRNA and protein was set to d(0) = 1,m(0) = 0 and
p(0) = 0.

parameter Set 1 Set 2 Set 3 Set 4
α 100 100 20 20
β 2 2 10 10
γ 1.2 0.7 1.2 0.7
δ 0.7 1.2 0.7 1.2

Table 2: Different sets of kinetic rates for the two-stage model (Komorowski et al.
2011). Sets 1 and 3 have a slow protein degradation rate δ and sets 2
and 4 have a high protein degradation rate. Sets 1 and 2 have a high
transcription/translation ratio α/β and sets 3 and 4 have a low ratio.

The time until steady state is reached for the protein and mRNA concentration
can be calculated numerically from equations (20a) and (20b). Steady state is
defined as being at most 10−3 away from the theoretical steady state for t → ∞.
Table 3 shows the time until steady state is reached. One can see in figure 5
that the steady state for the mean number of protein is the same for all sets with
αβ
γδ
≈ 238.1. The steady state for the mean number of mRNA equals approximately

83.3, 142.9, 16.7, 28.6 number of molecules for set one to four.
The interpretation of the steady state for mRNA is the same as for the protein
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time t [h] until steady state set 1 set 2 set 3 set 4
mRNA 9.45 16.957 8.1 14.657
protein 18.937 18.937 18.937 18.937

Table 3: Time until steady state is reached for the mean number of mRNA and
protein respectively.

in the one-stage model. Thus, for an initial condition α−M0γ > 0, i.e. M0 < α/γ,
the time until steady state is reached, is t > − log

(
ε·γ

α−M0γ

)
· 1
γ
.

For α−M0γ < 0, i.e. M0 > α/γ, it solves to t > − log
(

ε·γ
−α+M0γ

)
· 1
γ
.

For α−M0γ = 0, i.e. M0 = α/γ, it holds that m(t) = M0 ∀t.
As shown in table 3, the time until steady state is reached for mRNA is lower

for sets one and three. The reason for this is the following. For a high degradation
rate of mRNA γ, the time t can be low so that the equation t > − log

(
ε·γ

|α−M0γ|

)
· 1
γ

holds.
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a) trajectories for set 1. b) trajectories for set 2.

c) trajectories for set 3. d) trajectories for set 4.

Figure 5: Trajectories for the number of molecules of mRNA and protein for differ-
ent sets of kinetic parameters for the two-stage model. The dotted lines
indicate the steady state for the mean number of protein and mRNA.
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3 Distance functions and summary statistics for the
ABC (SMC)

In the ABC and ABC SMC algorithm, described in chapter 2.3, the function
d(x0, x∗) is necessary to calculate the difference between experimental and simu-
lated data. In most cases, the data is first summarized by a summary statistic
S(·) before calculating the distance d(S(x0), S(x∗)).
In chapter 3.1 the types of experimental data are described. In chapter 3.2

the different distance functions d(x0, x∗), which were used in the simulation to
determine the distance between the experimental data x0 and the simulated data x∗,
are described. For all distance functions, except S-Cor and S-CC, the experimental
and simulated data is summarized independently from each other, and the distance
is measured between the summarized data of S(x0) and S(x∗). For the functions
S-Cor and S-CC the data x0 and x∗ is summarized as the correlation between x0

and x∗. Based on the correlation, the distance between x0 and x∗ is calculated.
Therefore, in most cases a summary statistic is used. To calculate the distance

between the summary statistics, the Euclidean distance is often taken (Nunes &
Balding 2010). In this thesis the absolute value is taken due to better interpretation
of the results.
The choice of the summary statistic is crucial for the result of the ABC algorithm

(Nunes & Balding 2010).5 Also Fearnhead & Prangle (2012) stress the importance
of the summary statistic and provide a method how to construct appropriate sum-
mary statistics.
In all distance functions, except S-Cor and S-CC, the important part is the

summary statistic because the distance is measured afterwards as the absolute
difference of the summary statistics of the experimental and simulated data. To
underline this, the distance functions are labelled for instance with S-Mean, with
"S" for summary statistic.
In the literature the following approaches are used among others and might be

of interest for further research.

5The authors also describe algorithms for automatic selection of efficient summary statistics.
These algorithms are implemented in R in the ABCME package and available at http:
//www.maths.lancs.ac.uk/~nunes/computerstuff/ABC.html, last retrieved: 09.12.2011.
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Tellier et al. (2011) describe different summary statistics, which are based on
the joint site-frequency spectrum (JSFS). The JSFS is used for polymorphism
data that contain information about parameters in the context of the isolation-
migration model. Dealing with a different model type, the summary statistics can,
therefore, not be adapted to this thesis.
Sousa et al. (2009) use an ABC without summary statistics as they use the full

distribution of the allele in the model. Therefore, the whole data is involved in the
ABC approximation.

3.1 Types of experimental data

Data from cells can be measured by methods such asWestern blotting, Fluorescence-
activated Cell Sorting (FACS) or time-lapse microscopy (Pawley (2006) and Larson
et al. (2009)). These methods are able to measure the concentration of a species
over time, either coupled to a cell, as the single concentrations of the population
for each time point, or as the mean of the entire population for each time point.
Therefore, depending on whether the measurement can be coupled with the

cell and the frequency of measurement (discrete data or continuous data) one
can distinguish between population data, time point measurements (TP) and time
series data (TS).6

Population data This data contains the lowest amount of information with only
the mean of species measured. An example is shown in figure 6, where the mean of
the experimental and real data is denoted by an asterisk. For detecting proteins,
the western blot (Burnette 1981) can be used, for DNA detection the Southern
blot and for RNA detection the Northern blot, for instance.

Time point measurements Figure 6 also shows an example for time point
measurements, i.e. discretely observed data. For instance, for each time point
t = 1, ..., Tobs the amount of protein molecules in each of N = 3 cells is measured.
Thus at each time point there are N0 = 3 data points for the experimental data

6The naming of the data types is based on Komorowski et al. (2011).
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and N∗ = 4 data points for the simulated data with x∗t denoting the vector of data
and x∗t,j, j = 1, ..., N∗ denoting a single data point.
The data x∗t is denoted by an asterisk, the experimental data x0

t is denoted by
the superscript zero.
To measure protein concentration in single cells FACS is used.
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Figure 6: Example for time point measurements and population data. The asterisk
represents the mean of the number of species in the population of all
measured cells. There are five equidistant measurements.

Time series data For time series data, the development of the number of species
for each cell over the time period is tracked. An example is shown in figure 7.
The data is, therefore, a function z(t) depending on the time, which represents
the number of molecules for a given species at time t. In the experimental setting
there are multiple cells measured at discrete time points t. Therefore, the notation
is extended to zj(t), j = 1, ..., N to indicate the value for the j-th cell at time t.
To gain TS data, time-lapse microscopy can be used. An overview of different

methods to receive TS data are given in Pawley (2006, ch. 19).
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Figure 7: Example for time series data. Each sharp bend is indicating a time
point where the data is collected. Although TS data is assumed to be
continous, in reality it is only possible to measure it at discrete time
points.

3.2 Distance functions

To keep notation simple, the distances in the following are described for experimen-
tal and simulated data which have only one dimension of species. For multivariate
data, i.e. data consisting of more than one species, the distance is calculated for
each species j and then summed over all species, i.e. d(x0, x∗) = ∑

j
d(x0

j , x
∗
j).

S-Mean Munsky et al. (2009) investigate among others the mean in the two-stage
model as a statistic for parameter estimation. In this thesis S-Mean is defined as

d(x0,x∗) =
Tobs∑
t=1

∣∣∣mean(x∗t)−mean(x0
t )
∣∣∣ (22)

with | · | indicating the absolute value of its argument and mean(x) = 1
N

N∑
i=1

xi.
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S-Std Munsky et al. (2009) use also the variance (in combination with the mean)
for parameter estimation. In this thesis the standard deviation is chosen because
it has the same unit as the mean.

d(x0,x∗) =
Tobs∑
t=1

∣∣∣std(x∗t)− std(x0
t )
∣∣∣ (23)

with std(x) =
(

1
N−1

∑N
i=1(xi −mean(x))2

) 1
2 .

S-M&Std This distance is a combination of the mean and standard deviation.

d(x0,x∗) =
Tobs∑
t=1

∣∣∣mean(x∗t)−mean(x0
t )
∣∣∣+ Tobs∑

t=1

∣∣∣std(x∗t)− std(x0
t )
∣∣∣ (24)

S-NE Negentropy is used as a measure of normality (Hyvärinen et al. 2001).
Thus the idea of the following distance is to determine the degree of normality of
the experimental and simulated data at each time point and to take the difference
as a measure of deviance from the true reaction rates.
To approximate the negentropy, two ways, among others, are described in Hyväri-

nen et al. (2001). The approximation in S-NE is cumulant-based, and in S-NE II
it is based on nonpolynomial functions.
The distance S-NE is defined as

d(x0,x∗) =
Tobs∑
t=1

∣∣∣J(x∗t)− J(x0
t )
∣∣∣ (25)

with J(x) being the negentropy, which, using the cumulant based approximation,
can be calculated7 for a standardized variable x as (Hyvärinen et al. 2001, p. 115,
eq. (5.35))

J(x) =
( 1

12
[
E{(x)3}

]2
+ 1

48 [kurt{x}]2
)

(26)

7Equation (26) only holds approximately, as approximations were used in its derivation. For
calculation it was used as an exact equation.
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where kurt(x) is the bias-corrected kurtosis of x. The kurtosis is estimated by

k1 =
1
n

∑n
i=1(xi −mean(x))4(

1
n

∑n
i=1(xi −mean(x)2

)2 (27a)

and the bias corrected kurtosis is given by

kurt = n− 1
(n− 2)(n− 3) ((n+ 1)k1 − 3(n− 1)) + 3 (27b)

and the expected value E is estimated by the mean(x).
To calculate the negentropy, the data x∗t and x0

t are standardized first. If
var(x) = 0, i.e. only the same number of molecules appear in the sample set,
kurt(x) is set to zero.

S-NE II In S-NE II the negentropy J(x) is approximated by non-polynomial
functions. The distance is defined as for S-NE with

d(x0,x∗) =
Tobs∑
t=1

∣∣∣J(x∗t)− J(x0
t )
∣∣∣ . (28)

Hyvärinen et al. (2001, p. 119, eq. (5.48)) propose the following equation to approx-
imate the negentropy by non-polynomial functions. They state that this approxi-
mation8 is more robust and accurate as the approximation of the former distance
function in equation (26):

J(x) = k1
(
E{x exp(−0.5x2}

)2
+ k2

(
E{exp(−0.5x2} −

√
0.5
)2

(29)

where k1 = 36
8
√

3−9 and k2 = 24
16
√

3−27 and the data x∗t and x0
t is standardized.

S-pdf Poovathingal & Gunawan (2010) use the pdf and cdf as distance measures
between model prediction and experimental data for estimating reaction rates
in models, which are represented by a chemical master equation. The idea is
to measure the difference between two distribution functions, and, therefore, to
determine if the distribution of the simulated data is close to the distribution of

8Equation (29) only holds approximately, as approximations were used in its derivation. For
calculation it was used as an exact equation.
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the experimental data.
The distance is defined as

d(x0,x∗) =
Tobs∑
t=1

 +∞∫
−∞

|p(xt)− q(xt)| dxt

 (30)

where p(xt) and q(xt) are the pdfs of the real and simulated data for time point t
respectively. The geometrical interpretation of d(x0,x∗) is the sum over all t of
the difference of the area between the probability density functions of x∗t and x0

t .
For computation, the pdfs are approximated by histograms and

d(x0,x∗) = 1
nχ

Tobs∑
t=1

∑
x∈χt

∣∣∣Px0
t
(x)− Px∗t (x)

∣∣∣ (31)

with Px0
t
(x) being the height of the histogram at x. The set χt defines the range

[min(x0
t ,x∗t),max(x0

t ,x∗t)], which is divided in nχ equidistant intervals.9 To con-
struct the histograms, the number of bins were set to n0

t = min(unique(x0
t ), d
√
N0e)

and n∗t = min
(
unique(x∗t), d

√
N∗e

)
. The function unique(·) is the number of

unique values.

S-cdf This distance function is defined as

d(x0,x∗) =
Tobs∑
t=1

 +∞∫
−∞

∣∣∣F ∗(xt)− F 0(xt)
∣∣∣ dxt

 , (32)

and the geometrical interpretation of d(x0,x∗) is the sum over all t of the area
between the cumulative density functions F ∗(x∗t ) and F 0(x0

t ).
For computation, the distance is approximated by

d(x0
t ,x∗t) = 1

nχ

T∑
t=1

∑
x∈χ

∣∣∣F̃ ∗(x)− F̃ 0(x)
∣∣∣ , (33)

where F̃ ∗(x) and F̃ 0(x) are the empirical cdfs (Fahrmeir et al. 2009) of x0
t and x∗t

respectively. χ is defined analogous to S-pdf.

9For simulation nχ was set to 200.
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For TS data the previous mentioned distances would not utilize all information
which are available in the data. Therefore, two distances are described, which are
based on correlation. The idea is that experimental and simulated data are similar
to each other if their trajectories have a high correlation. To measure correlation,
both Pearson’s correlation and cross-correlation is used.

S-Cor The distance is defined as

d(z∗, z0) = ‖D‖, (34)

where D is the distance matrix between z∗ and z0, which is defined as 1 − COR
with 1 being a matrix containing only ones. COR is the correlation matrix of z∗

and z0, i.e. an entry ci,j, i = 1, ..., N∗, j = 1, ..., N0 in this matrix is defined as

ci,j = ρ(z∗i , z0
j). (35)

ρ(·, ·) is the Pearson’s correlation coefficient. If ρ(z∗i , z0
j) is not defined due to

var(z∗i ) or var(z0
i ) being zero, because for instance z∗i only consists of the same

values, ci,j is set to 0 so that the corresponding distance di,j in D is set to one,
and, therefore, it is not taken into account when the norm of D is calculated.
In D the rows correspond to the simulated data and the columns the experi-

mental data. For the norm ‖D‖ the smallest distance from each simulated time
trace to all experimental time traces is taken and summed over all simulated data,
formally

‖D‖ =
N∗∑
i=1

min
j
dij. (36)

Often the Frobenius norm ‖ · ‖F is used for measuring the norm of a matrix

with ‖D‖F =
N∗∑
i=1

N0∑
j=1

d2
ij. As non typical time traces can enlarge the distance

considerably, the formally explained norm is preferred over the Frobenius norm.
In chapter A.3 the result of a simulation performed with the Frobenius norm is
illustrated. In summary, the parameter estimation is less accurate as with the
norm (36). As shown in chapter 3.3, it is not a norm in the strict mathematical
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sense, but it is used here because of its intuitive approach for comparing distances
based on correlations between trajectories of experimental and simulated data.

S-CC This distance is similar to S-Cor, and it is based on TS data as well.
Instead of Pearson’s correlation, it uses the cross-correlation. It is defined as

d(z∗, z0) = ‖D‖ (37)

with D = 1 − COR. The entries of the correlation matrix are defined as the
maximum of the cross-correlation between z∗i and z0

j , i.e.

ci,j = max
τ

(
Rz∗i ,z

0
j
(τ)
)
, (38)

where Rx,y(τ) is the cross-correlation between x and y. Consider discrete time
points τ . Although TS data is measured, the measurements can only be performed
at discrete time points. The not-normalized cross-correlation is calculated as

R̂x,y(τ) =


∑T−τ−1
t=0 xt+τyt τ ≥ 0

R̂y,x(−τ) τ < 0
(39)

Before determining ci,j, the cross-correlation R̂x,y(τ) is normalized, so an auto-
correlation with τ = 0 has value 1.0.

3.3 Analysis of the metric characteristics

In this section the defined distance functions are analyzed if they are metrics.
For neither the ABC nor ABC SMC algorithm no publication could be found,
which states if the distance function has to be a metric or what implications can
be derived if d(·, ·) is or is not a metric. For example, Toni et al. (2009) and
Pritchard et al. (1999) do not mention if d(·, ·) should be a metric or not. Joyce
& Marjoram (2008) or Liepe et al. (2010), for instance, use the word ’metric’ to
describe the distance metric but it cannot be derived from the context if it is used
in the strict mathematical sense.
A function d : X ×X → R is called a metric on a set X if for all x, y, z in X the
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following conditions are fulfilled (Krause 1986):

M1 d (x, y) ≥ 0

M2 d (x, y) = 0⇔ x = y

M3 d (x, y) = d(y, x)

M4 d (x, y) ≤ d(x, z) + d(z, y)

M1 is implied by M2-M4 as 2d (x, y) = d (x, y) + d (x, y) = d (x, y) + d (y, x) ≥
d (x, x) = 0 and is, therefore, often not proofed separately.
A special metric is the taxicab metric10 which defines a metric (Krause 1986).

The taxicab metric for two vectors a, b ∈ Rn is defined as

d(a, b) =
n∑
i=1
|ai − bi| (40)

In the following the distances are examined if they are metrics.

S-Mean, S-Std, S-NE and S-NE II The distances S-Mean, S-Std, S-NE and
S-NE II can be written as

d(x0,x∗) =
Tobs∑
t=1

∣∣∣(S(x0
t )− S(x∗t)

∣∣∣ (41)

with S(·) being the respective summary statistic. Thus, these distances would
be metrics if the value of S(x0

t ) and S(x∗t) is different for a different x0
t and x∗t .

This is not true, as the mean, standard deviation or negentropy are non-injective
functions. Therefore, M2 is violated and the distances are pseudometrics. M1,
M3 and M4 still hold. As the sum of pseudometrics is a pseudometric, S-M&Std
represents also a pseudometric.

10also known as rectilinear distance, L1 distance, city block distance or Manhattan distance
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S-pdf, S-cdf For S-pdf for a certain time point t the distance can be written in
the form of the taxicab metric

d(x0
t ,x∗t) = 1

nχ

∑
x∈χ

∣∣∣Px0
t
(x)− Px∗t (x)

∣∣∣ (42)

The approximation of the pdf is a non-injective function, therefore, M2 is violated
and d(x0

t ,x∗t) presents a pseudometric.
The entire distance S-pdf for all time points is d(x0,x∗) = ∑Tobs

t=1 d(x0
t ,x∗t) thus

the sum of pseudometrics and, therefore, represents a pseudometric as well.
The same argument holds for S-cdf.

S-Cor, S-CC For S-Cor and S-CC, M3 is violated as in d(z∗, z0) = ‖D‖ the rows
contain the simulated data and ‖D‖ is defined as the sum of the minimum of all
columns. For d(z0, z∗) the rows would contain the experimental data, thus ‖D‖
would yield another result.
Taking a norm which is the same forD and the transpose ofD, e.g. the Frobenius

norm ‖ · ‖F , this would result in the acceptance of M3.
However, for S-Cor M2 is still violated. Assume w.l.o.g. that only one cell is

measured and let X and Y be two random numbers representing these measure-
ments with X ∼ F and Y = X+a, a ∈ R where F can represent any distribution.
Their distance is

d(X, Y ) = ‖D‖ = ‖1− COR(X, Y )‖ = ‖1− COR(X,X)‖ = ‖1− 1‖ = 0 (43)

But as X 6= Y , M2 is violated.
A similar argument holds for S-CC, as max

τ
(RX,Y (τ)) = 1 for τ = 0 .

The proof of M4 is omitted, as M2 and M2 are violated.
In summary, all distances are pseudometrics except S-Cor and S-CC.

Investigating the norm of S-Cor and S-CC In this paragraph it is shown
whether or not the expression (36), i.e. ‖D‖ = ∑N

i=1 minj dij, is a norm for D.
To be a norm the following properties must hold (Prugovecki 2006, p. 20). It is
defined for vectors in general, here matrices A and B are taken.
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N1 ‖A‖ = 0⇒ A = 0

N2 ‖α ·A‖ = |α| · ‖A‖

N3 ‖A+B‖ ≤ ‖A‖+ ‖B‖

N1 is violated as any matrix A which has at least one zero element as the minimum
in each row has a norm of zero although it is not the zero matrix.
N2 only holds for α ≥ 0. Let the minimum of each row be ãij(i). So, ‖α ·A‖ =

N∗∑
i=1

minj α · aij
α≥0= ∑N∗

i=1 α · ãij(i) = α · ‖A‖. For α < 0 the maximum of each row of
A multiplied by a negative α becomes the minimum.
N2 would hold if ‖ · ‖ is changed to ‖D‖ = ∑N

i=1 minj |dij|. This holds for our
case even without the absolute value, as all dij are greater than zero.
N3 does not hold, which is shown by means of an example.

‖A+B‖ =

∥∥∥∥∥∥∥∥∥


0 1 1
3 0 2
2 0 3

+


1 0 2
0 1 2
0 1 2


∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


1 1 3
3 1 4
2 1 5


∥∥∥∥∥∥∥∥∥ = 3 �

∥∥∥∥∥∥∥∥∥


0 1 1
3 0 2
2 0 3


∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥


1 0 2
0 1 2
0 1 2


∥∥∥∥∥∥∥∥∥ = 0 + 0 = 0 (44)
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4 Preface to computational study
For the computational study the ABC algorithm was slightly changed. In sec-
tion 4.1 the changes are presented, and the choice of the parameters for the algo-
rithm are explained. A statistic, the sum of normalised absolute residuals, which
measures the quality of the posterior distribution w.r.t. parameter estimation, is
introduced in section 4.2. Moreover, an overview of the conducted simulations is
presented in section 4.3. The computational time necessary for simulation is ex-
plained in section 4.1.2. In the last section the implementation of the ABC SMC
and the choice of its parameters are presented.
The following questions are tried to be answered with the simulations. The

results of the simulations are discussed in chapter 5.

• How is the overall performance of the different distances?

• How is the distance d(x0, x∗) distributed?

• What parameters out of the number of drawn particles Nall, the acceptance
rate τ and the sampling frequency ∆ are affecting the estimation?

• How does the performance of the ABC algorithm depend on the informa-
tiveness of the prior distribution?

• Is the ABC SMC performing better than the ABC for the same amount of
drawn particles?

4.1 Implementation of the ABC algorithm & choice of
parameters

This section explains how the ABC algorithm has been implemented and explains
the parameters, which have to be set.

4.1.1 Implementation of the ABC rejection algorithm

The ABC algorithm described in chapter 2.3.1 was adjusted so that all drawn
particles θ∗ are accepted at first. Then the particles with the lowest distance were
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accepted to form the posterior distribution. To determine how many particles
are accepted, an acceptance rate τ is introduced, which states the percentage
of accepted particles of all drawn particles. The number of drawn particles are
denoted by Nall and the number of accepted particles are then N = Nall · τ . This
approach is used for instance in Beaumont et al. (2009) and Tellier et al. (2011).
Thus from step 3 onward, the algorithm, described in chapter 2.3.1, is changed

accordingly to

3. Calculate the distance between the simulated and the experimental data
d(x0, x∗) and record θ∗ as θ∗i .

4. While i < Nall start from step 1.

5. Accept the N = Nall · τ particles from θ∗j , j = 1, ..., Nall with the lowest
distance, which are then recorded as θ(i,·), i = 1, .., N .

The reason for this adjustment was to be able to compare the different distances
w.r.t. their ability for estimating the true reaction rates. Without introduction of
an acceptance rate, each distance would have a different number of drawn particles
and, therefore, a different acceptance rate until N particles were accepted. This
would make comparison of the distances unfair.
The trajectories were simulated using a software called StochKit2 (stochastic

simulation kit, Sanft et al. (2011)), which implements the SSA in the programming
language C. Version 2.0.2 was used, and it was accessed through Matlab with a
wrapper for Matlab provided by Michael Strasser11. To simulate the trajectories
with the SSA, a number of parameters need to be set. These are described in
table 4. The values of the parameters are explained in the following paragraphs.

4.1.2 Determining the observation time Tobs

The final time, until the evolution of protein was observed, was set to T = d2 · Tsse
with Tss being the time until steady state, as defined in chapter 2.4.1, is reached
for all species. For the chosen parameter settings, this resulted for the one-stage
model in T = d2·11.368e = 23 and for the two-stage model in T = d2·18.937e = 38.
11PhD student at the Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum,

München under supervision of Fabian Theis.
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parameter explanation
model the model for which the trajectories should be simulated, e.g.

the one-stage model
θ(r), r = 1, ..., R the reaction rates of the model
Xj(t = 0) the initial condition of the number of molecules for each

species
Ntraj the number of simulated trajectories
Tobs the maximal time until the trajectories are simulated
∆ the number of species are recorded at certain equally spaced

time points. The frequency ∆ determines the time between
two time points. The number of recorded time points are then
Tobs/∆ + 1

Table 4: Parameters for the SSA in the computational study.

4.1.3 Determining sampling frequency ∆

The sampling frequency ∆ is defined as the time between subsequent observations
ti − ti−1, assuming equidistant sampling. The sampling frequency is set, based on
the determinant of the Fisher information matrix (FIM). Komorowski et al. (2011)
propose a method to numerically calculate the FIM without the need for Monte
Carlo simulations. To sum their method up, the kinetic model is written using the
linear noise approximation (LNA). This is the basis for deriving the likelihood of
the experimental data. From the likelihood the FIM can be calculated.
The idea to determine the sampling frequency is because "the amount of infor-

mation in a sample does not depend solely on the type of data (TS,TP), but also on
other factors [... like] the sampling frequency [...] The amount of information in a
sample was understood as the determinant of the FIM." (Komorowski et al. 2011,
p.8648)
Therefore, to determine the sampling frequency, the determinant of the FIM

was calculated using a Matlab package called StochSens.12

One aspect, which needs to be considered, is that for calculating the likelihood
of the experimental data, estimates of the kinetic rates and the model underlying
the data must be given. Thus for model selection, where neither the kinetic rates
12This package is available from the website of Michał Komorowski, Imperial College, London

at http://www.theosysbio.bio.ic.ac.uk/resources/stns/.
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nor the underlying model is known, this proposes a challenge.
Figure 8 shows the determinant of the FIM plotted against sampling frequency

for the one-stage and two-stage model.
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Figure 8: Determinant of the FIM for the one-stage and two-stage model with
reaction rates α = 100, β = 2, γ = 1.2, δ = 0.7. It is assumed that
Ntraj = 100. The maximum of det(FIM) for the one-stage model is at a
frequency of 0.09 h and 1.35 h for TP and TS data respectively. For the
two-stage model it is at 0.11 h and 0.84 h.

4.1.4 Choice of the acceptance rate τ

As can be seen in the results of the computational study in chapter 5, the choice of
the acceptance rate τ influences the quality of the posterior distribution w.r.t the
parameter estimation. The following publications use different acceptance rates.
Tellier et al. (2011) report that 1% of 300,000 simulated data were accepted using
an isolation-migration model. Toni et al. (2009) use a threshold ε to determine if a
particle is accepted. This results in τ = 7 ·10−5 for 14.1 million simulated particles
in a Lotka-Volterra model. Beaumont et al. (2009) use τ = 0.01 in a mutation
model. Sousa et al. (2009) state that typical values for τ are from 10−5 to 10−2.
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4.1.5 Choice of the prior distribution

Table 5 gives an overview of exemplary prior distributions, which were used in
the literature. The exact model and the meaning of the parameter is described
in detail in the corresponding publications, here, only a short explanation can
be given. The aim of this overview is to give an insight into the choice of prior
distributions. The SNAR value for each prior was calculated as well. The SNAR
values are defined in chapter 4.2.

author model true pa-
rameter

prior SNARp(θ) explanation

(1) mutation m. 0.0005 U[10−4, 10−3] 0.456 mutation rate
1,000 U[10, 104] 4.105 time of divergence
10,000 U[102, 105] 4.105 effec. population

size
(2) Lotka-

Volterra
1 U[-10,10] 5.05 pred.-prey inter-

action
(3) neutral IM m. 0.01 to 9 U[0.01, 10] 499.69 -

0.455
divergence time

0.01 to 9 U[0.01, 10] 499.69 -
0.455

migration rate

(4) mutation m. 1000 U[200,2000] 0.456 population size
0.7 U[0.1,0.9] 0.357 admixture rate
30 U[2,150] 1.71 effec. population

size
(5) cyclic chain 2 U [10−3, 103] 249.07 kinetic rate

1.5 U [10−3, 103] 332.41 kinetic rate
3.2 U [10−3, 103] 155.21 kinetic rate

Table 5: Choice of prior distributions in recent papers of (1) Beaumont et al.
(2009), (2) Toni et al. (2009), (3) Tellier et al. (2011), (4) Robert et
al. (2011) and (5) Müller et al. (2012).

For the computational study a lognormal distribution LN(µ, σ) was chosen as
the prior distribution. The parameters were set so that the mode exp(µ − σ2)
of the distribution is at the true reaction rate θ. Therefore, exp(µ − σ2) != θ

and thus µ = log(θ) + σ2. This setting was chosen because one can regulate the
prior distribution by only adjusting the parameter σ. By increasing σ, the prior is
becoming less informative.
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4.2 Sum of normalised absolute residuals (SNAR)

In the publications which are concerned with ABC sampling, the quality of the
posterior distribution is most often checked visually by means of density estimates.
Often the mean, median or 95% quantile range is reported as well. But there is
no statistic which measures the gain of accuracy in parameter estimation from the
prior to the posterior distribution.
Therefore, to measure the accuracy of the posterior distribution with regards

to the true reaction rate, the sum of normalized absolute residuals (SNAR) is
introduced. For the true reaction rates θ = {θ(1), ..., θ(r)} and the estimated values
θ∗ = {θ∗(·,1), ..., θ∗(·,r)} the SNAR is defined as

SNAR =
R∑
r=1

∣∣∣∣∣ N∑i=1

(
θ∗(i,r) − θ(r)

)∣∣∣∣∣
N · θ(r) =

R∑
r=1

mean
(
θ∗(·,r)

)
θ(r) − 1. (45)

The posterior distribution is estimated from N data points. For each data point
the difference to the true reaction rate is measured. For comparison between the
different reaction rates, it is normalized with the value of the true reaction rate.
For instance a SNAR value of 2.5 for the reaction rate θ(r) means that on average
a particle from the posterior distribution has a distance of 2.5 · θ(r) from θ(r).
A SNAR value of zero can only be achieved if the posterior distribution consists

of only the true reaction rate θ(r). The width of the posterior distribution is
reflected in the SNAR, as narrow distributions have a small SNAR because the
difference to the true reaction rate is small.
To consider the influence of the prior distribution in the parameter estimation,

the SNAR of the prior, SNARp(θ), is computed as well. Therefore, the estimated
values θ∗(i,r) are taken as realisations from the prior distribution. A ratio between
SNARp(θ) and the SNAR of the posterior distribution SNARp(θ|x) is calculated,
thus

SNAR ratio = SNARp(θ)

SNARp(θ|x)
. (46)

A SNAR ratio greater than one means that in average the posterior distribution
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is closer to the true reaction rate than the prior distribution.

4.3 Overview of simulations

Table 6 shows the different simulations, which were conducted. Each simulation is
identified by an ID to be able to refer to them, and the reaction rates and initial
conditions of the one-stage and two-stage model are stated. In all simulations the
observed species is protein. The number of simulated trajectories in the SSA is
100. The maximum observed time T is set to twice the length until the mean of
all species has reached the steady state, see chapter 4.1.2 for further explanation.
The frequency of the observed data is based on the maximum of the determinant
of the FIM, see chapter 4.1.3. The number of drawn particles Nall is either 10,000
or 100,000. The parameter σLN means that the log-normal distribution was chosen
with σ2

LN for its second parameter. For simulations 1–4, the sampling frequency
was set to the maximum of the FIM for TP data. This was done even for S-
Cor and S-CC, which use TS data. The reason was to use the same simulated
data for all distances. Simulations with the maximum of the FIM for TS data
are handled in simulations 5 and 6. The parameters which change compared to
the basic simulations, i.e. ID 1 and ID 3 for the one-stage and two-stage model,
are in bold. For the two-stage model, σLN was set to 1.5 and not to 2 as in the
one-stage model. This is due to the following: simulations showed that the data
creation by the SSA is time consuming if the kinetic rates are large. Test runs
for σLN = 2 were aborted after not having simulated enough data even after a
couple of days. Other approaches, which replace the SSA, are computationally
more efficient. They are mentioned in the outlook, chapter 7.

4.4 Implementation of the ABC SMC algorithm & choice of
parameters

This section deals with the implementation of the ABC SMC. Additionally, the
parameters which have not been yet introduced for the ABC algorithm are ex-
plained.
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ID model θ(r) Xj (t=0) obs.
species

Ntraj Tobs ∆ Nall

[103]
prior

1 one-
stage

β = 1.2
δ = 0.7

d(0)=1
p(0)=0

prot 100 23 0.09 10 σLN = 0.2

2 one-
stage

————— as ID 1 ————— σLN = 2

3 two-
stage

α = 100
β = 1.2
γ = 2
δ = 0.7

d(0)=1
m(0)=0
p(0)=0

prot 100 38 0.11 10 σLN = 0.2

4 two-
stage

————— as ID 3 ————— σLN = 1.5

5 one-
stage

————— as ID 1 ————— 1.35 10 σLN = 2

6 two-
stage

————— as ID 3 ————— 0.84 10 σLN = 1.5

7 one-
stage

————— as ID 1 ————— 100 σLN = 2

8 two-
stage

————— as ID 3 ————— 100 σLN = 1.5

Table 6: Conducted simulations for the ABC. Parameters which change for the
respective model compared to ID 1 and ID 3 are in bold.

Implementation of the ABC SMC algorithm In the ABC algorithm an accep-
tance rate τ is used instead of a threshold ε to determine which particles form the
posterior distribution. Accordingly for the ABC SMC, the threshold ε is not used
either. The algorithm, described in chapter 2.3.2, is changed from step 8 onwards
to

8. Calculate the distance between the simulated and the experimental data
d(x0, x∗) and record θ∗∗ as θ∗∗i .

9. While i < Nall start from step 4.

10. Accept the N = Nall · τ particles from θ∗∗j , j = 1, ..., Nall with the lowest
distance, which are then recorded as θ(i,·), i = 1, .., N .
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11. For i = 1, .., N calculate the weights for particle θ(i,·)
t according to equa-

tion 11.

12. Normalize the weights so ∑iw
(i,·)
t = 1.

13. If t < T , set t = t+ 1 and proceed with step 2.

So, in each population, instead of accepting the particles with a distance below
a threshold εt, the τ ·Nall particles with the lowest distance are accepted.
As the threshold εt decreases with each population t, one could define a different

acceptance rate τt for each population. In the simulations conducted, τt was set
to the same value for all populations. This is because the resulting posterior
distribution should be formed from the same number of particlesN . As the number
of drawn particles Nall stays constant for each population, τt has to stay constant
as well.

Choice of parameters for the ABC SMC To perturb the particles, a component-
wise perturbation kernel was used, as the prior distribution was component-wise
as well. Both an uniform and a gaussian perturbation kernel were used. The uni-
form perturbation kernel perturbs a particle θ(i,r)

t by using a uniform distribution
U [θ(i,r)

t −σ(r)
t , θ

(i,r)
t +σ

(r)
t ]. As discussed in chapter 2.3.2, according to Filippi et al.

(2011), often the width of the previous population, equation (12), is used for σ(r)
t .

Due to the time consuming computational runtime for simulating the data, as
described in chapter A.2, σ(r)

t could not be set as the width of the previous pop-
ulation.13 Especially for the second population this would result in particles with
a large value, which would make the simulation of the data very time consuming.
With the same argument, σ(r)

t = 2V ar
(
{θ(i,r)

t }i
)
, as described in equation (13),

could not be chosen for the gaussian perturbation kernel. It would result in σ(r)
t =

14, 498 for σLN = 1.5 and θ
(r)
t = 1, σ(r)

t = 144.98 · 106 for σLN = 1.5 and θ
(r)
t =

100,σ(r)
t = 17.45 · 106 for σLN = 2 and θ(r)

t = 1 and σ(r)
t = 174.47 · 109 for σLN = 2

and θ(r)
t = 100.

13The following population widths σ(r)
t were calculated on average from drawing 100 times 107

particles from a log-normal distribution with σLN and reaction rate θ(r)
t . σ(r)

t = 15, 497 for
σLN = 1.5 and θ(r)

t = 1, σ(r)
t = 1.36 · 106 for σLN = 1.5 and θ(r)

t = 100, σ(r)
t = 1.21 · 106 for

σLN = 2 and θ(r)
t = 1 and σ(r)

t = 1.21 · 108 for σLN = 2 and θ(r)
t = 100.
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For the simulation the uniform perturbation kernel was set to

U [0.75 · θ(i,r)
t , 1.25 · θ(i,r)

t ] (47)

and the gaussian perturbation kernel was set to

N
(
θ(i,r),

0.25
1.96 · θ

(i,r)
)
. (48)

The variance of the gaussian perturbation kernel is chosen to equal 0.25/1.96,
meaning that 95% of the perturbed values lie within [0.75 · θ(i,r), 1.25 · θ(i,r)], i.e.
the 2.5%-quantile Q2.5% = 0.75 · θ(i,r) and Q97.5% = 1.25 · θ(i,r).
The other parameters, including the observation time, the sampling frequency

and the prior distribution were set as in the ABC algorithm, which is described in
chapters 4.1.2, 4.1.3 and 4.1.5.

ID model θ(r) Xj

(t=0)
obs.
species

Ntraj Tobs ∆ Nall

[103]
σLN of
prior

T τt Kt(·, ·)

9∗ one-
stage

————— as ID 1 ————— 2 0.2 5 0.005 U [·, ·]

10∗ one-
stage

————— as ID 1 ————— 2 2 5 0.005 U [·, ·]

11∗ one-
stage

————— as ID 1 ————— 2 2 5 0.005 N(·, ·)

12† two-
stage

————— as ID 3 ————— 2 0.2 5 0.005 U [·, ·]

13‡ two-
stage

————— as ID 3 ————— 2 1.5 5 0.005 U [·, ·]

14‡ two-
stage

————— as ID 3 ————— 2 1.5 5 0.005 N(·, ·)

∗ S-M&Std, S-NE II, S-cdf and S-MC were used as distance functions.
† S-M&Std, S-NE, S-cdf and S-MC were used as distance functions.
‡ S-M&Std, S-cdf and S-MC were used as distance functions.

Table 7: Conducted simulations for the ABC SMC.

Table 7 summarizes the parameter settings, which were used in the simulations
for the ABC SMC.
The acceptance rate τ was set to 0.005 so that from each population the resulting
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posterior is built from the ten best particles. In the ABC simulations the best
results were achieved for τ = 0.001, which means that the posterior is made of ten
particles. Thus, τ has to be set to 0.005 in the SMC to achieve ten particles from
a population of 2,000 particles.
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5 Computational study for ABC rejection
In this chapter, the results from the computational study are presented. Chap-
ter 5.1 deals with the results from 10,000 drawn particles. The one-stage model
is discussed in chapters 5.1.1 and 5.1.2, and the two-stage model is described in
chapters 5.1.3 and 5.1.4. For both models two prior distributions with a different
degree of informativeness are used. Then chapter 5.2 deals with results for an
optimal sampling frequency for TS data, which influences the distances S-Cor and
S-CC. Using the information gained from the previous chapters, a new distance
function S-MC is defined in chapter 5.3. It is a combination of S-Mean and S-Cor.
Then simulations with 100,000 drawn particles for a non-informative prior have
been conducted, which are presented in chapter 5.4 for the one-stage and two-stage
model. The results from the two-stage model lead to the idea to estimate the ki-
netic rates in two steps. First γ and δ are estimated, then, based on these results,
α and β are estimated. This approach is presented in section 5.5. A summary of
the results from the simulations with the ABC algorithm is in section 5.6.

5.1 Results for 10,000 drawn particles

This chapter presents the results when Nall is set to 10,000. First, an informative
prior distribution is used to analyse the performance of the ABC. Then, a less
informative prior is taken to see how the estimation quality changes. Different
analyses were conducted to try to gain insights into the distribution of the dis-
tance, into the behaviour of the distance functions, and into the importance of
the acceptance rate τ and the number of drawn particles Nall. All analyses are
presented and explained in chapter 5.1.1.

5.1.1 One-stage model with informative prior

In this section the informative prior distribution is used. It has a SNARp(θ) of 0.34
for the two kinetic rates together, i.e. for each kinetic rate the SNARp(θ) is about
0.17.
Table 8 shows the SNAR statistics for simulation 1. Comparing the SNAR ratio

across the different acceptance rates, it has its greatest value at τ = 0.001 for
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distance Mean Std M&Std NE NE II pdf cdf Cor CC
SNARp(θ) 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
τ = 0.001
SNARp(θ|x) 0.19 0.19 0.13 0.3 0.27 0.22 0.19 0.74 0.89
ratio 1.79 1.79 2.57 1.12 1.25 1.57 1.78 0.47 0.39
τ = 0.01
SNARp(θ|x) 0.2 0.19 0.19 0.37 0.23 0.19 0.19 0.56 0.72
ratio 1.73 1.78 1.8 0.92 1.48 1.77 1.77 0.61 0.48
τ = 0.05
SNARp(θ|x) 0.22 0.21 0.2 0.36 0.25 0.22 0.2 0.48 0.57
ratio 1.58 1.61 1.68 0.96 1.37 1.58 1.67 0.72 0.6

Table 8: SNAR statistics for simulation 1 for acceptance rates τ = 0.001, τ = 0.01
and τ = 0.05.

S-Mean, S-Std, S-M&Std and S-cdf. Intuitively this should be the case, as the
smaller the τ , the smaller the distance of the particles, which are accepted for the
posterior, and, therefore, the closer the value of the particles to the true reaction
rate.
Although the SNAR value for the prior is simulated out of 107 random samples,

the SNAR ratio varies slightly when calculated, and it will vary when the same
simulation is conducted again. This is also due to the fact that the SNAR value for
the posterior depends on a small number of particles. Therefore, a slight change
of the SNAR ratio is not necessarily indicating a change in the estimation quality.
The SNAR ratio is approximately the same for all acceptance rates for S-Mean,

S-Std and S-cdf. A considerably decrease of the SNAR ratio is for S-M&Std
between τ = 0.001 and τ = 0.01.
For S-Cor and S-CC the SNAR ratio is less than one. This means that sampling

from the prior distribution yields a better result for the estimation of the reaction
rate than sampling from the posterior distribution. Although S-Cor and S-CC
use TS data, i.e. the data containing the most information, this advantage of
information is not reflected in the SNAR ratio. For S-NE it is approximately one,
meaning that on average there is no improvement from the prior to the posterior
distribution.
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In figure 9 the prior and posterior distribution for the selected distances S-Mean,
S-pdf and S-Cor are illustrated. The parameters are in log-scale, thus the lognor-
mal prior distribution has the shape of a normal distribution. The acceptance
rate was set to τ = 0.01 meaning that the posterior distribution is estimated from
100 particles. For τ = 0.001 the posterior would have been narrower for some
distances, but the kernel estimation would be based on 10 particles. The plot for
all distances can be found in figure A.44.
It becomes clear that the SNAR ratio reflects the behaviour of the posterior

distribution, as distances such as S-Mean and S-pdf, which produce a posterior
closer to the true value, have a SNAR ratio greater one. The posterior for S-Mean
and S-pdf have approximately the same quality of estimating the true value, which
is also reflected in a similar SNAR ratio of 1.73 and 1.77 respectively. S-Cor has
a SNAR ratio of 0.61, and its posterior distributions is both for β and δ further
away from the true value than the prior.
To identify the true reaction rates, the distance around the true reaction rates

should be the lowest. Figure 10 shows the logarithm of the distance against the
values of each reaction rate sampled from the prior. In an optimal scatterplot the
distribution of the distance would be U-shaped with its minimum at θ. This does
not hold for any distance function. For S-Mean, S-Std, S-M&Std, S-pdf and S-cdf,
the maximum of the distance grows for reaction rates which are further from the
true value. S-Cor and S-CC have a linear dependence of parameter value and
distance.
For all distance functions, for the same value of reaction rate, a wide distribu-

tion of different distances result. The only exception is S-Cor for rate δ. From the
former observations it can be assumed that the distance is influenced by both re-
action rates. To investigate this, a scatterplot of the distance is shown in figure 11.
The distance is colored in nine steps, which represent nine equidistant quantiles,
i.e. the quantiles Q0.11, Q0.22, etc. A darker orange color implies a larger distance.
For β and δ, 0.1% of the largest data points were omitted so that the plots are
visually clearer. A desired distribution of the distance would be that the distance
is the lowest around the true parameter values, i.e. a bright circle in the center of
each plot. The distance functions S-Mean, S-Std, S-M&Std, S-pdf and S-cdf show
their lowest distance values along the ratio of δ and β. One should keep in mind
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Figure 9: Kernel density estimation of the prior and posterior distribution for
S-Mean, S-pdf and S-Cor for the one-stage model (simulation 1), τ =
0.01.

that the steady state in a one-stage model is β/δ. Thus these distance functions
can estimate correctly the steady state. The distance functions S-NE and S-NE
II do not show this attribute, their distance is somewhat evenly distributed with
a tendency to have higher distance values for smaller values of β. The distance
functions S-Cor and S-CC have their lowest distances for small values of δ.
The results imply that for certain distance functions the particles with approx-
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a) reaction rate β. b) reaction rate δ.

Figure 10: Scatterplot of the logarithm of the distance for nine distance functions
for reaction rates β and δ for the one-stage model (simulation 1). The
dashed line indicates the logarithm of the true reaction rate.

imately the lowest 11.11% distance values are centered along the ratio of the re-
action rates. It is assumed that a smaller acceptance rate than τ = 0.1111 yields
parameter estimations closer to the true values. Therefore, the sampled reaction
rates with the lowest distance values are plotted. Figure 12 contains the prior
distribution of the kinetic rates in cyan, with yellow signalling a higher density.
Additionally, the posterior distributions for τ = 0.05, τ = 0.01 and τ = 0.001
are plotted in black, red, and blue respectively. The point size of the posterior
distributions is double the size of the points of the prior to be able to differentiate
the different posteriors. For the distance functions which result in a low distance
along the ratio of the reaction rates, the acceptance rate does not have a major
influence on the quality of estimation, as for all τ the posterior has approximately

52



5 Computational study for ABC rejection
5.1 Results for 10,000 drawn particles

Figure 11: Distance values for the nine distance functions depending on both re-
action rates β and δ for the one-stage model (simulation 1). The solid
lines indicate the true reaction rates and the ratio δ/β.

the same width of distribution. Only for S-M&Std the blue points lie closer to the
true value. This is reflected in a higher SNAR ratio as for τ = 0.01 or τ = 0.05 as
well. For S-Cor and S-CC the parameters closer to the right bottom corner, i.e.
high β and low δ value, have a smaller distance. The distribution of the distance
for S-NE and S-NE II does not seem to change with a different acceptance rate.
To investigate this further, if the quality of the posterior distribution depends on
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Figure 12: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the one-stage model (simulation 1).

the acceptance rate, the SNAR ratio is plotted in figure 13 against the acceptance
rate τ . The plot is for τ up to 0.5 as for ABC sampling an acceptance rate greater
0.5 is rare.
The lowest τ for the calculation in figure 13 was τ = 0.001, i.e. only the ten

particles with the lowest distance were accepted.
S-Cor and S-CC have an increasing SNAR ratio for increasing τ . This is the
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Figure 13: SNAR ratio depending on the acceptance rate τ for all distances for the
one-stage model (simulation 1).

case as for a small τ the particles are far away from the true reaction rate values,
and with increasing τ the accepted particles move towards the true reaction rate
values.
The SNAR ratio of S-NE tends to be around one. Therefore, this distance does

not have the ability to identify the particles which represent a good estimation.
Instead, random particles from the prior seem to build the posterior distribution.
S-NE II shows a sharp increase at the beginning up to a maximum of around

1.75 and then decreases. S-pdf shows a similar behaviour with a maximum of
about 1.8. The increase at the beginning can be due to the small number of
accepted particles. All other distances have an almost exact characteristic, only
the maximum value at τ = 0.001 differs. For S-Mean it is approximately 1.79, for
S-Std around 1.79, for S-M&Std around 2.57 and for S-cdf about 1.78.
The following figure 14 examines the SNAR ratio against the number of drawn

particles for two acceptance rates τ = 0.01 and τ = 0.05. The rate τ = 0.001 was
not investigated as for the lowest Nall = 1000, the posterior would only consist of
one particle.
As for τ = 0.01 the fluctuation of the SNAR ratio is still rather large even for

large Nall, an investigation with a higher amount of drawn particles is necessary
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Figure 14: SNAR ratio depending on the number of drawn particles Nall for all
distances for the one-stage model (simulation 1) and two acceptance
rates τ = 0.01 and τ = 0.05.

to see if the ratio stays constant for increasing Nall.
Figure 15 shows the theoretical threshold ε for different acceptance rates τ and

three exemplary distances S-Mean, S-NE II and S-Cor. The threshold for a certain
acceptance rate is the largest distance for which a particle is still accepted. The
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Figure 15: Threshold ε depending on the number of drawn particles Nall for three
distance functions and five acceptance rates for the one-stage model
(simulation 1).

56



5 Computational study for ABC rejection
5.1 Results for 10,000 drawn particles

threshold is approximately constant and does not depend on the number of drawn
particles. It only depends on the acceptance rate. Therefore, it can be assumed
that, for a given prior distribution, a fixed threshold ε always leads to the same
expected acceptance rate. A sketch of the proof is in the appendix, chapter A.11.

5.1.2 One-stage model with less informative prior

The difference between this simulation and simulation 1 is the prior distribution,
which is less informative. The parameter σLN was set to σLN = 2. Table 9 contains
the SNAR values for the prior and posterior distributions. The prior has a SNAR
value of SNARp(θ) ≈ 801.9. Compared with a value of 0.34 in simulation 1, the
estimation of the reaction rates is based on much more less information. Compared
with simulations conducted in other publications, the prior is considerably less
informative. In table 5 the SNAR value of the prior for a single parameter is only
in Tellier et al. (2011) for certain settings about 500, for the other papers it is less
than 5. As the relative width of the prior is the same for both parameters, the
SNARp(θ) divides equally to each of the two parameters, thus resulting in about
402 for each parameter.

distance Mean Std M&Std NE NE II pdf cdf Cor CC

SNARp(θ) 806.21 806.21 806.21 806.21 806.21 806.21 806.21 806.21 806.21

τ = 0.001
SNARp(θ|x) 8.19 4.14 8.01 2627 2.14 13050 6.24 1728 2978
ratio 98.39 194.66 100.69 0.31 376.38 0.06 129.2 0.47 0.27

τ = 0.01
SNARp(θ|x) 181.01 168.18 188.27 1046 143.97 6756 181.04 726.46 531.12
ratio 4.45 4.79 4.28 0.77 5.6 0.12 4.45 1.11 1.52

τ = 0.05
SNARp(θ|x) 264.34 261.9 267.11 1215 412.86 3072 266.33 354.01 842.67
ratio 3.05 3.08 3.02 0.66 1.95 0.26 3.03 2.28 0.96

Table 9: SNAR statistics for simulation 2 for acceptance rates τ = 0.001, τ = 0.01
and τ = 0.05.

S-Mean, S-Std, S-M&Std, S-NE II and S-cdf have a large SNAR ratio for τ =
0.001, and its SNAR value increases for larger τ . The distances S-NE, S-pdf
and partly S-CC do not achieve a better parameter estimation than the prior
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distribution. The SNAR ratio of S-Cor is increasing for larger τ meaning that,
similar to simulation 1, the particles with the lowest distance are further away
from the true value.
The figures of the prior and posterior distributions for S-NE II, S-pdf and S-CC

are illustrated in figure 16. The parameters are in log-scale, thus the lognormal
prior distribution has the shape of a normal distribution. As the prior is chosen
with the mode being at the true value θ, the normal distribution has the mean
log(θ) + σ2 and standard deviation σ, which is reflected in the aspect that the
mode of the normal distribution is far to the right of the reaction rate log(θ).
For τ = 0.01, S-NE II has the best SNAR ratio, which is the case as the posterior

is moved to the true values for both reaction rates. S-pdf and S-CC have a better
estimation of δ. Their estimation of β, however, is far worse than the prior, which
results in a SNAR ratio less than one. The kernel density estimations for all
distances are in figure A.49.
The scatterplots showing the distribution of the distance against the single value

of a reaction rate are shown in figure A.45 in the appendix.
In figure A.46 the distribution of the distance is plotted against the logarithm of

both reaction rates β and δ. As the results are similar to simulation 1 it is shown
and commented in the appendix.
The distribution of the prior and the distribution of the resulting posterior for

τ = 0.001, τ = 0.01 and τ = 0.05 are shown in figure 17. Similar to simulation 1,
S-Mean, S-Std, S-M&Std and S-cdf estimate the ratio of the parameters β and δ
very accurate. For τ = 0.01 and τ = 0.05 the posterior seems to have about the
same width, however, for τ = 0.001 the accepted particles are closer to the true
values. S-Cor and S-CC estimate δ well, but for β the particles are distributed
widely. The accepted particles of S-pdf seem to be on a line as well, whereby the
line is parallel to the ratio β/δ.
For selected distances the SNAR value increases for smaller τ , as can be seen

in table 9 as well. A plot with the SNAR ratio depending on the acceptance rate
shows the same and is, therefore, in figure A.47 in the appendix.
The SNAR ratio depending on the number of drawn particles is also discussed

in the appendix in figure A.48 as the result is similar to simulation 1.
Similar to simulation 1, the threshold ε is approximately constant for a given τ
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Figure 16: Kernel density estimation of the prior and posterior distribution for S-
Mean, S-pdf and S-Cor for the one-stage model (simulation 2), τ = 0.01.

regardless of the number of drawn particles. As it is shown in chapter A.11 that
this holds in general, no plots are drawn.

Comparing simulation 1 and 2 Comparing simulation 1 and simulation 2, the
question arises if the improvement in the posterior is the larger, the less informative
the prior is. It seems that this is the case as most of the distances yielded a higher

59



5 Computational study for ABC rejection
5.1 Results for 10,000 drawn particles

Figure 17: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the one-stage model (simulation 2).

SNAR ratio for a less informative prior. To check this, other simulations were
conducted. The result is presented in figure 18.14 The distances S-NE, S-pdf,
S-CC and S-Cor have a SNAR ratio around one or less for almost all σLN and
the three acceptance rates. These distances provide a good estimation of the

14For better illustration, the measured SNAR ratios are interpolated with straight lines, although
it does not necessarily represent the true evolution of the ratio.
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Figure 18: SNAR ratio depending on σLN of the prior distribution and acceptance
rates τ = 0.001, τ = 0.01 and τ = 0.05 for the one-stage model.

parameter δ for the less informative prior, even a better estimation than the other
distances, but the estimate of β is less accurate than by the prior. For the prior
with σLN = 0.2, only S-pdf estimated both parameters correctly. S-NE, S-CC and
S-Cor result for both parameters in a worse estimation than the prior.
For S-Mean, S-Std, S-M&Std and S-cdf the SNAR ratio develops roughly the

same for different σLN over all acceptance rates.
NE II has the highest SNAR ratio for τ = 0.001 and τ = 0.01 for the least

informative prior with σLN = 2, but it does not provide such a good estimation
for more informative priors than the former mentioned group of distances.

Summary The following findings and presumptions result from the previous sim-
ulations.

• The distances can be grouped in three groups. The first group being S-Mean,
S-Std, S-M&Std and S-cdf, which estimate the ratio of β/δ very well, and
which yield for different σLN and different τ approximately the same im-
provement. The second group being S-NE, S-pdf, S-Cor and S-CC, which
have quite an exact estimation of the parameter δ, but cannot estimate β
resulting in a poor overall performance. The third group is S-NE II, which
does not estimate the ratio β/δ as well as the first group nor one parameter
as the second group, but has an acceptable overall performance, especially
for σLN = 2 being the best distance function there.
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• For a smaller τ the distance functions have a better estimation. For group
one this is true for σLN = 0.2 and σLN = 2, for group three especially for
σLN = 2. For the second group this holds for the estimation of parameter δ
and a less informative prior.

• Using a high informative prior, the improvement, which can be achieved in
estimating the true kinetic rates, is not as strong as for a less informative
prior. But still, for the informative prior an improvement could be achieved,
especially with the first group of distance functions.

• The SNAR ratio and, therefore, the quality of the posterior does not seem
to depend mainly on the number of drawn particles Nall. It seems to depend
on the acceptance rate τ , as the SNAR ratio stays roughly constant for a
given τ after enough particles have been drawn. This assumption needs to
be checked with a higher amount of drawn particles.

• The threshold ε stays approximately constant for a given τ after enough
particles have been drawn. Thus one can conclude that every acceptance
rate τ is equivalent to a threshold ε, depending only on the chosen distance.

• The distance depends on all kinetic rates. Analyzing it separately for each
kinetic rate does not give all the information gained from observing a com-
bination of kinetic rates.

5.1.3 Two-stage model with informative prior

The two-stage model, its parameters and exemplary trajectories are presented and
discussed in chapter 2.4.2. This chapter deals with the results of parameter es-
timation with the two-stage model. The findings are interpreted in the context
of the two-stage model and with comparison to the one-stage model. First, pa-
rameter estimation is done with an informative prior, then, in section 5.1.4 a less
informative prior is used.
Table 10 contains the SNAR statistics for simulation 3.
The distances S-Mean, S-M&Std and S-cdf have approximately the same SNAR

statistics for all acceptance rates and a higher SNAR ratio for lower τ . The ratio
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distance Mean Std M&Std NE NE II pdf cdf Cor CC
SNARp(θ) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69
τ = 0.001
SNARp(θ|x) 0.42 0.57 0.41 0.56 0.65 1.24 0.39 1.42 1.32
ratio 1.62 1.21 1.67 1.23 1.06 0.55 1.76 0.48 0.52
τ = 0.01
SNARp(θ|x) 0.5 0.57 0.47 0.64 0.65 0.61 0.47 1.12 1.17
ratio 1.38 1.21 1.45 1.07 1.05 1.12 1.45 0.61 0.58
τ = 0.05
SNARp(θ|x) 0.58 0.57 0.58 0.67 0.65 0.6 0.57 0.9 0.97
ratio 1.19 1.2 1.19 1.03 1.05 1.15 1.2 0.77 0.71

Table 10: SNAR statistics for simulation 3 for acceptance rates τ = 0.001, τ = 0.01
and τ = 0.05.

does not change for S-Std and S-NE II for different τ . For S-Cor and S-CC the
SNAR ratio is less than one for the different acceptance rates.
The SNAR ratio reflects the overall picture of the posterior distributions of

the four kinetic rates. The prior and posterior distributions of selected distances
are in figure 19. S-NE II, with a SNAR ratio slightly greater one, has posterior
distributions, which are a bit narrower than the prior but do not gain a lot of
information in estimating the parameter. For S-cdf, with the highest SNAR ratio,
all of its posterior distributions have its mode very close to the true reaction
rate. For S-CC the posterior is shifted further from the true value than the prior
distribution. It is a similar behaviour as for the one-stage model. Interestingly, for
α and β the posterior is shifted to the right of the true value, for γ and δ to the
left. A similar attitude has S-Cor. The kernel density estimations of S-Cor and all
distances are presented in figure A.52.
The scatterplot of the distance value against the value of each single reaction rate

are not shown as there cannot be gained any further insights as from simulation 1.
There are six possible combinations for plotting two of the four reaction rates

against each other. Pre analysis showed that the most interesting of these com-
binations is α versus γ as the ratio of these parameters is the steady state for
mRNA. The other combination, for the steady state of protein, is αβ versus γδ.
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Figure 19: Kernel density estimation of the prior and posterior distribution for S-
NE II, S-cdf and S-CC for the two-stage model (simulation 3), τ = 0.01.

The distribution for the distance values for these two combinations are shown in
the appendix in figures A.50 and A.51, as the main information can also be seen
in the scatterplot of the prior and posterior distributions. Figures 20 and 21 show
these plots.15

15For better visualization the 50 particles being at the extreme of the x- and y-axis have been
removed. This results in a compacter illustration for the expense that some points of the
posterior distributions are only half visible.
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Figure 20: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the two-stage model (simulation 3) for α versus γ.

For figure 20, none of the distances estimates the steady state of mRNA, i.e. the
ratio α/γ, correctly. A reason could be that only protein was observed. The pos-
terior of S-Cor is more in the bottom right, meaning higher values for α and lower
values for γ than the true reaction rates. For S-CC the posterior overestimates α
but is distributed closely around the true reaction rate for γ.
For the steady state of protein, represented in figure 21, S-Mean, S-M&Std and
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Figure 21: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the two-stage model (simulation 3) for αβ versus γδ.

S-cdf estimate the ratio very exact. S-Std has a larger variance at estimating the
ratio. For S-pdf not all particles, which form the posterior, are centered along the
ratio. For S-Cor and S-CC a similar behaviour as in the one-stage model can be
seen, as the particles forming the posterior are particles with rather large αβ value
and low γδ value.
The development of the SNAR ratio depending on the acceptance rate is shown
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in figure A.53 in the appendix, as it does not provide new insights compared with
the knowledge gained from the one-stage model.
The SNAR ratio against a different number of drawn particles will be analysed

in detail for 100,000 drawn particles in chapter 5.4.

5.1.4 Two-stage model with less informative prior

Different to the one-stage model, the parameter σLN for the less informative prior
was set to 1.5 instead of 2. This is due to the high simulation time and is explained
in chapter A.2. The SNARp(θ) of all prior distributions is about 113, i.e. for each
single kinetic rate it is one fourth of it.

Mean Std M&Std NE NE II pdf cdf Cor CC

SNARp(θ) 113.19 113.19 113.19 113.19 113.19 113.19 113.19 113.19 113.19

τ = 0.001
SNARp(θ|x) 42.83 27.28 15.68 132.69 267.53 563.63 26.88 125.66 90.41
ratio 2.64 4.15 7.22 0.85 0.42 0.2 4.21 0.9 1.25

τ = 0.01
SNARp(θ|x) 124.71 52.47 114.95 82.82 97.88 315.88 119.39 100.72 84.53
ratio 0.91 2.16 0.98 1.37 1.16 0.36 0.95 1.12 1.34

τ = 0.05
SNARp(θ|x) 90.14 81.08 89.34 92.43 104.63 232.34 89.26 86.92 87.58
ratio 1.26 1.4 1.27 1.22 1.08 0.49 1.27 1.3 1.29

Table 11: SNAR statistics for simulation 4 for acceptance rates τ = 0.001, τ = 0.01
and τ = 0.05.

S-Mean, S-M&Std and S-cdf have a SNAR ratio greater one for τ = 0.001, which
drops below one for τ = 0.01. In simulation 3, these three distances had about the
same SNAR values for different τ , for simulation 4 they differ considerably for τ =
0.001. S-Std shows a decreasing SNAR ratio for increasing τ . The distances S-NE
II, S-pdf, S-Cor and S-CC perform partly better than in simulation 3 regarding
their SNAR values, but their ability for constructing a good posterior for all kinetic
rates is low.
Figure 22 shows kernel density estimations for the prior and posterior distribu-

tions of selected distances. S-NE II estimates γ and δ well, and for α and β the
posterior is almost the same as the prior. The SNAR ratio less than one for S-pdf
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is due to its estimation of α and β where the posterior is further away from the
true value than the prior. But the estimation of γ and δ is very accurate. S-CC
has the best estimation for γ and δ.
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Figure 22: Kernel density estimation of the prior and posterior distribution for S-
NE II, S-pdf and S-CC for the two-stage model (simulation 4), τ = 0.01.

The distribution of the distance for parameters α versus γ and αβ versus γδ are
shown and described in the appendix, figures A.54 and A.55.
Figures 23 and 24 show the prior distribution and the posterior distribution for
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two combinations of the reaction rates.

Figure 23: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the two-stage model (simulation 4) for α versus γ.

The distribution of the posteriors in figure 23 is similar to simulation 3 w.r.t.
the large variance of the points. They are not centered around the true reaction
rates. For τ = 0.001, S-Cor and S-CC estimate γ well. The points of the posterior
for S-Mean, S-M&Std and S-cdf are roughly along the ratio line.
For αβ versus γδ, the distances S-Mean, S-M&Std and S-cdf estimate, as in
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Figure 24: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the two-stage model (simulation 4) for αβ vs. γδ.

simulation 3, the ratio very well, S-Std estimates it too, but its posterior has
a larger variance. The posterior for S-pdf for simulation 3 was mainly on the
ratio line. Now it is shifted right parallel to the ratio as in the one-stage model in
simulation 2. S-Cor and S-CC estimate very accurate the value of γδ for τ = 0.001.
The SNAR ratio plotted against the acceptance rate does not provide new in-

sights, therefore, it is not shown.
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Comparing simulation 3 and 4 Figure 25 shows the SNAR ratio of all distances
against σLN for different acceptance rates. S-Cor and S-CC, as well as S-NE and
S-NE II, are very similar. For the one-stage model S-NE and S-NE II differed in
their SNAR ratios for different σLN . The SNAR ratio of S-pdf decreases for a less
informative prior.
The distances S-Mean, S-Std, S-M&Std and S-cdf together have a similar devel-

opment of the SNAR ratio although S-Std deviates from the others for τ = 0.01.
For these distance functions the SNAR ratios are higher for a lower acceptance
rate.
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Figure 25: SNAR ratio depending on the parameter σLN of the prior distribution
and the acceptance rates τ = 0.001, τ = 0.01 and τ = 0.05 for the
two-stage model.

Summary Summing up the simulations from the two-stage model results in the
following:

• As in the one-stage model, the distances can be grouped, although the groups
differ slightly. The first group consists again of S-Mean, S-Std, S-M&Std and
S-cdf. They are able to estimate the ratio of the steady state of protein. The
second group is S-pdf, S-Cor and S-CC where only S-pdf has a somewhat
good estimation for σLN = 0.2. For σLN = 1.5, they all show the same
behaviour, as their posterior is close to the true value for γ and δ but far
from it for α and/or β. The third group being S-NE and S-NE II, which
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estimate γ and δ quite well and for which the posterior of α and β is about
the same as the prior. This means that S-NE and S-NE II do not improve
nor worsen the estimation of these two parameters.

• The ratio α/γ, i.e. the mean number of mRNA at its steady state, is not
estimated highly accurate by any distance. This is probably due to mRNA
being not observed.

• As well as in the one-stage model a smaller τ results in a better estimation.
The distance functions from group one estimate all kinetic rates better than
the prior. The distance functions from group two and three only improve
the estimation of γ and δ.

5.2 Simulation with optimal frequency for time series data

For simulations 1–4 the frequency was set according to the maximum of det(FIM)
for TP data. This frequency was used to test all distances, including S-Cor and
S-CC, which use TS data.
In this section the outcome for the one-stage and two-stage model for S-Cor and

S-CC, using an optimal frequency based on TS data, is presented. As discussed
in section 4.1.3, this frequency is ∆ = 1.35h and ∆ = 0.84h for the one- and
two-stage model respectively. The other parameter settings for these simulations
5 and 6 can be seen in table 6 and are identical as simultions 2 and 4.
Figure 26 shows the result of the SNAR ratio against the acceptance rate τ for

the frequency based on an optimum for TS and for TP data. For the one-stage
model the frequency ∆TS outperforms the other frequency clearly. Therefore, it is
advisable for the one-stage model to take the frequency based on TS data if S-Cor
or S-CC is used. For the two-stage model it is the other way round. The SNAR
ratio with ∆TP is better than with ∆TS. But one has to take into account that
the difference between the SNAR ratios for S-Cor with ∆TS and ∆TP is marginal
and can be due to chance. Moreover, the SNAR ratio reflects the estimation of
all parameters. It might be that γ and δ is estimated even more accurate using
∆TS but α and β has a worse estimation. To check this, the SNAR values of the
posterior distribution for τ = 0.001 for each kinetic rate is presented in table 12.
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Figure 26: SNAR ratio depending on the acceptance rate τ for S-Cor and S-CC
for the one- and two-stage model (simulation 5 and 6). The optimal
frequency is either based on TS data (solid lines) or TP data (dotted
lines).

SNARp(θ) of the prior distribution of each kinetic rate is about 28.29.

S-Cor S-CC
rates α β γ δ α β γ δ

∆TP 101.32 21.18 0.67 2.49 68.27 20.6 0.6 0.94
∆TS 126.62 22.31 0.63 2.26 85.9 43.05 0.83 2.47

Table 12: SNARp(θ|x) of the posterior distributions for all kinetic rates for the two-
stage model using frequency ∆TP (simulation 4) and ∆TS (simulation
6), τ = 0.001.

For S-Cor merely the estimation of α is better using ∆TP . For all other kinetic
rates the SNAR value is approximately the same. For S-CC the SNAR value for
all parameters with ∆TP is smaller than with ∆TS. For the two-stage model this
result is in contrast to the theory that maximisation of det(FIM) results in a better
estimation.
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5.3 Combination of the distances S-Mean and S-Cor

Although S-Cor and S-CC use TS data, i.e. the data containing the most informa-
tion, the estimation of the kinetic rates are not as accurate as using other distances.
This is true even if an optimal frequency is used, which is discussed in chapter 5.2.
One reason could be that the distance d(x0, x∗) is low for highly correlated data,
although the mean of x0 and x∗ might be considerably different. In other words
this means that although the trajectories of the simulated and experimental data
might be very similar, the trajectories of x0 and x∗ might be somewhat parallel to
each other.
To check this, the particles which are chosen for τ = 0.01 from S-Cor and S-CC

are taken. For each of these particles the quantile at other distances are calculated.
The resulting boxplots are shown in figure 27. As the plots are very similar for
S-Cor and S-CC, only S-Cor is presented.
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Figure 27: The quantiles of other distances for the best 1% of particles of S-Cor
for the one-stage (simulation 2) and two-stage (simulation 4) model.

The boxplots underline the grouping of the distance functions as distance func-
tions being in the same group have a similar boxplot.
The particles with the lowest values for S-Cor have the highest values for S-

Mean. That means the data x∗ which has a high correlation to x0 usually has a
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large difference of means between x∗ and x0. To adjust for this, a combination of
S-Mean and S-Cor is considered. To combine both distance functions, they first
need to be standardized because their range is different.
Each distance function d(·, ·) can be seen as a function from the set of kinetic

rates θ to the set of resulting distances, defined by d(x0, x∗(θ)) with x∗(θ) indicating
that the simulated data depends on the choice of the kinetic rates θ. In short, this
is θ 7→ d(x0, x∗(θ)).
To form the new distance function for each θ(i,·) it is determined which percentile

the resulting distance d(x0, x∗(θ(i,·))) holds in S-Mean and S-Cor. This percentiles
are then summed. The new distance S-MC is, therefore, defined as

d(·, ·) =
Nall∑
i

F̂Mean(θ(i,·)) + F̂Cor(θ(i,·)) (49)

where F̂Mean and F̂Cor are the empirical cumulative distribution functions of the
distances S-Mean and S-Cor.
To check if the resulting distance S-MC produces good estimations of the kinetic

rates, their posterior distribution for different τ is plotted for the one-stage and
two-stage model in figure 28.
The estimation of S-MC in the one-stage model, figure 28a), improves the poste-

rior clearly. Both rates β and δ are well estimated, and the width of the posterior
of β and δ is much smaller than with S-Mean. For the two-stage model for pa-
rameters α and γ, S-MC does not improve the estimation compared with S-Mean
or S-Cor. For αβ and γδ in figure 28c) S-MC does not estimate γδ as well as
S-Cor, and the ratio is less accurate estimated as by S-Mean. But the width of
the posterior for τ = 0.01 and τ = 0.05 is less compared with S-Mean.
Figure 29 shows the kernel estimation of the posterior for S-MC.
For the one-stage model the estimation of β is done best by S-MC compared

with all other distance functions, see for comparison figure A.44. The estimation
of δ is only better with S-Cor and S-CC. For the two-stage model the rates α
and β are estimated well and only S-Std has such a good estimation, too. For
comparison see figure A.56. The estimation of γ is severely worse than with S-Cor
or S-CC, and the estimation of δ is about the same as with S-Cor and S-CC.

75



5 Computational study for ABC rejection
5.3 Combination of the distances S-Mean and S-Cor

a) one-stage model (simulation 2)

b) two-stage model (simulation 4)

c) two-stage model (simulation 4)

Figure 28: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
the one-stage and two-stage model for S-MC.

In summary, the estimation with the distance S-MC is very accurate for the

76



5 Computational study for ABC rejection
5.3 Combination of the distances S-Mean and S-Cor

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

log(β), S−MC
−2 0 2 4 6

0.
0

0.
4

0.
8

1.
2

log(δ), S−MC

true value 5%−95% interval prior posterior

a) one-stage model (simulation 2)

4 6 8 10

0.
00

0.
10

0.
20

0.
30

log(α), S−MC
0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

log(β), S−MC
0 4 8

0.
0

0.
1

0.
2

0.
3

log(γ), S−MC
−2 0 2 4

0.
0

0.
2

0.
4

log(δ), S−MC

true value 5%−95% interval prior posterior

b) two-stage model (simulation 4)

Figure 29: Kernel density estimation of the prior and posterior distribution for
S-MC for the one-stage and two-stage model, τ = 0.01.

one-stage model. For the two-stage model the estimation of α, β and γ performs
well compared with the other distance functions, but the estimation of γ is worse.
Therefore, a separate estimation of γ with S-pdf, S-Cor or S-CC should be consid-
ered.
This section combined the distance functions S-Mean and S-Cor, using equal

weights. Different combinations of distance functions with optimal weights need
to be considered as well. This is described in the outlook, chapter 7.
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5.4 Results for 100,000 drawn particles

This chapter presents the results for Nall = 100, 000. Both for the one-stage and
two-stage model a prior distribution with little informative was chosen.

5.4.1 Results for the one-stage model

In this section the results of simulation 7 and 8 are presented. The aim is to answer
questions which have arisen during the first simulations. These are the following:

• Is the estimation of the reaction rates more accurate for a higher number of
drawn particles?

• Does the SNAR ratio or the threshold ε only depend on τ but not on the
number of drawn particles?

To answer the first question for the one-stage model, the SNAR statistics are
presented in table 13.

distance Mean Std M&Std NE NE II pdf cdf Cor CC MC

SNARp(θ) 806.23 806.23 806.23 806.23 806.23 806.23 806.23 806.23 806.23 806.23

τ = 0.0001
SNARp(θ|x) 0.44 1.43 0.35 424.87 19.28 24616 0.37 8883 2434 0.6
ratio 1842 562.89 2296 1.9 41.83 0.03 2198 0.09 0.33 1345

τ = 0.001
SNARp(θ|x) 4.42 13.16 3.68 438.28 82.77 24996 3.57 3972 3344 1.46
ratio 182.25 61.26 219.2 1.84 9.74 0.03 225.73 0.2 0.24 554.01

τ = 0.005
SNARp(θ|x) 108.9 175.23 127.11 954.41 221.01 11451 96.54 2733 1665 4.12
ratio 7.4 4.6 6.34 0.84 3.65 0.07 8.35 0.3 0.48 195.73

Table 13: SNAR statistics for simulation 7 for acceptance rates τ = 0.0001, τ =
0.001 and τ = 0.005.

The acceptance rates are chosen so that the number of accepted particles is
10, 100 and 500 which are the same number of accepted particles as with Nall =
10, 000. The overall picture is similar as for simulation 2 with Nall = 10, 000.
The first group of distance functions, S-Mean, S-Std, S-M&Std and S-cdf, result
in a very good estimation. The second group of distance functions have a poor
overall estimation quality and S-NE II as third group does a modest job. The best
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estimation is with S-M&Std for τ = 0.0001. The best estimation along different
acceptance rates is with S-MC which only performs third best for τ = 0.0001.
These results can be seen in figure 30 in more detail.16 Especially the good

estimation with S-MC is illustrated, as for different acceptance rates the posterior
is quite compact around the true values of β and δ. For the second group of distance
functions, the behaviour of estimating δ well but not being able to estimate β is
visible as well.

Figure 30: Prior distribution of the kinetic rates (cyan,yellow) and the resulting
posterior for τ = 0.005 (black), τ = 0.001 (red) and τ = 0.0001 (blue)
for the one-stage model (simulation 7).

Compared with simulation 2, the possibility to have a lower acceptance rate, as
more particles have been drawn, results in a better estimation of β and δ by the
first group of distance functions. As more particles have been drawn, there are
more particles close to the true kinetic rates in the prior distribution. So increasing
the number of drawn particles results in a better estimation of the kinetic rates if
τ is decreased accordingly.

16For better visualization one percent of the data with highest β and δ values have not been
plotted.
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To answer the second question, figure 31 shows both the SNAR ratio and the
threshold ε against the number of drawn particles Nall.
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Figure 31: SNAR ratio and threshold ε against number of drawn particles Nall for
the one-stage model, simulation 7.

The SNAR ratio is not constant, even for a large number of drawn particles it
still fluctuates slightly. In figure A.47 for Nall = 10, 000 it seemed to converge.
But the SNAR ratios in figure 31b) for Nall = 10, 000 fluctuate considerably for
larger Nall.
Differently, the threshold ε stays constant, and it does not depend on the num-

ber of drawn particles. The following consideration gives an explanation for both
observations. The resulting distances d(x0, x∗(θ(i,·)) for all particles θ(i,·) are dis-
tributed according to FD. Drawing a finite number of particles means we approx-
imate the distribution FD. The threshold ε for a certain τ equals, therefore, the
τ · 100-percentile of FD. Drawing a large enough number of particles Nall, the
approximation of FD becomes stable and, therefore, a certain percentile has ap-
proximately the same value as for another Nall. This value is the threshold ε. But
the particles below this threshold do not seem to form the same posterior distri-
bution. One reason might be that the SSA produces similar x∗ for two particles,
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although these particles are quite different. Due to the stochastic character of the
SSA this is possible.
To sum it up, a larger Nall results in a better estimation of the reaction rates

as a smaller τ can be applied. But the behaviour of the distance functions stays
similar, for instance the second group of distance functions still only estimates δ
well.

5.4.2 Results for the two-stage model

The SNAR statistics are presented in table 14. Compared to simulation 4 with

distance Mean Std M&Std NE NE II pdf cdf Cor CC MC

SNARp(θ) 113.06 113.06 113.06 113.06 113.06 113.06 113.06 113.06 113.06 113.06

τ = 0.0001
SNARp(θ|x) 84.75 47.81 64.06 113.08 59.71 1299.81 68.49 189.56 179.34 552.28
ratio 1.33 2.36 1.76 1 1.89 0.09 1.65 0.6 0.63 0.2

τ = 0.001
SNARp(θ|x) 50.2 51.75 39.21 78.16 96.71 753.83 45.69 174.39 120.8 105.95
ratio 2.25 2.18 2.88 1.45 1.17 0.15 2.47 0.65 0.94 1.07

τ = 0.005
SNARp(θ|x) 69.28 51.52 55.23 86.44 90.01 459.1 65.4 136.79 109.05 66.88
ratio 1.63 2.19 2.05 1.31 1.26 0.25 1.73 0.83 1.04 1.69

Table 14: SNAR statistics for simulation 8 for acceptance rates τ = 0.0001, τ =
0.001 and τ = 0.005.

Nall = 10, 000, the SNAR statistics do not indicate a better estimation of the
kinetic rates. This is underlined by the posterior distributions, which are shown
as a scatterplot in figure A.57 and A.58 in the appendix.
In figure 32 the kernel estimation for 100 accepted particles, i.e. τ = 0.001

for simulation 8, are presented for S-M&Std, S-NE II and S-CC. Compared to
simulation 4 with 100 accepted particles, i.e. τ = 0.01, S-NE II estimates α
similarly, β is estimated further from the true value, and γ and δ are estimated
slightly better, thus resulting overall in a similar SNAR ratio (1.17 for simulation 8
versus 1.16 for simulation 4). For S-CC the rate α is estimated worse, β and γ

are estimated about the same, and δ is estimated slightly better. For S-M&Std
all kinetic rates are estimated better, especially δ. One observation is that the
estimation of γ and δ is becoming better with more particles being drawn. An
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explanation for this is given below.
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Figure 32: Kernel density estimation of the prior and posterior distribution for
S-M&Std, S-NE II and S-CC for the two-stage model (simulation 8),
τ = 0.001.

The observation that the estimation for all kinetic rates is not becoming better,
although more particles are drawn and a smaller τ is applied, was not expected.
A reason might be that due to four rates which have to be estimated there are
still not enough numbers of drawn particles which are close to the true values for
all reaction rates. Therefore, the particles with the smallest distance might not
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be close to the true values and thus even a worse estimation than with a smaller
amount of drawn particles result.
To check this, the number of particles from the prior are counted which have an

average SNAR ratio less than one. That means for all four kinetic rates the SNAR
ratio on average is less than one. For simulation 4 with Nall = 10, 000 there are 26
particles, for simulation 8 with Nall = 100, 000 there are 252 particles. Therefore,
there are enough particles which are close to the true kinetic rates.
Another reason might be that the overall distance is mainly dependent on γ

or δ. As the estimation of only γ or δ has becoming better for a larger Nall

this consideration comes up. To control this consideration, a barplot is shown in
figure 33. There is one barplot for each kinetic rate α to δ. Each barplot only
considers the particles which have a SNAR value of less than one for the specific
kinetic rate. The composition of the barplot is explained by means of an example.
The barplots for S-Mean and α considers all particles with a SNAR value for α
less than one at the distance function S-Mean. From these particles the levels of
the barplot indicate the number of particles which have additionally a SNAR value
less than one for β, γ or δ. For instance, there are about 5 particles which have an
α and β with a SNAR value less than one (the blue shaded part of the barplot).
Consider that it might be that these 5 particles have also a SNAR value less than
one for γ and/or δ. This information is not contained in the graphic.
The part of the barplot with the same kinetic rate as the barplot counts the

number of particles where only this specific kinetic rate has a SNAR value less
than one and all other rates have a SNAR value greater one. For instance taking
the γ-barplot for S-Mean, the green shaded area means, that there are about 12
particles where only γ has a SNAR value less than one. The SNAR values for α,
β and δ for these particles are greater than one.
The barplot can have a total number of more than 100, as it is possible that

particles are counted more than once, if three or four kinetic rates in one particle
have a SNAR value less than one.
For all distance functions the distance is mainly determined by the value of δ.

This can be seen as the purple part of each δ-barplot17 is large for all distance
functions. This means that for these particles the value of δ, being close to the
17this counts the particles where only the SNAR value of δ alone is smaller one.
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Figure 33: Barplots for simulation 8 for the best 100 particles (τ = 0.001) which
have a SNAR value for each particle less than one.

true value, is important for the total distance. In other words, if one particle with
a good estimation of δ is drawn, the resulting total distance is in most cases small
with the values of α, β or γ having no strong influence. A similar, but weaker
effect exists for γ. These effects have a particular strong intensity for S-pdf, S-Cor
and S-CC, which represent the second group of distance functions. In this group
there are almost none SNAR(α) or SNAR(β) values less than one. This gives
another insight for the observation that these distance functions only estimate γ
and δ well.
Highly remarkable is the fact that for all particles either SNAR(γ) or SNAR(δ)

has a value less than one. From the figure it can be seen that there are no par-
ticles with only SNAR(α) or only SNAR(β) being less than one. An additional
calculation showed that there is no particle which has a SNAR value of both α or
β less than one with neither SNAR(γ) or SNAR(δ) being less than one.
The reason for this observation lies probably in the fact that only protein was

observed.
The SNAR ratio and the threshold against the number of drawn particles are

shown in figure A.59 in the appendix as the result is similar to the result for the
one-stage model.
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In short, the result for Nall = 100, 000 show that a larger amount of drawn
particles increases the quality of estimation as a lower acceptance rate can be
taken. The typical behaviour of each distance function does not change, i.e. a
distance function which could only estimate certain kinetic rates for Nall = 10, 000
estimates these rates better for Nall = 100, 000, but it cannot estimate other
reaction rates for a larger amount of Nall.
For the two-stage model the overall distance is determined strongly by the esti-

mation of δ and γ. A particle which has a good estimation for δ and γ is probable
to have a low distance although the estimation of α and β might not be very
accurate.
Therefore, another approach is tried, which first estimates γ and δ and based

on these results α and β. This is presented in the following chapter.

5.5 Estimation of the kinetic rates in two steps for the
two-stage model

The results showed that the distance functions from the second group estimated γ
and δ well in the two-stage model, but could not estimate α or β. In the following,
first γ and δ are estimated. Their posterior is used as their prior distribution in a
new simulation. The new simulation aims to estimate α and β.
For this simulation, the best 10 particles from S-Cor from simulation 4 have

been taken to form the new prior for γ and δ. For α and β the same prior as
in simulation 4 was used, i.e. a log-normal distribution with σLN = 1.5. This
simulation is named simulation 4∗.
From simulation 4, γ and δ have been well estimated by S-Cor, with a SNARp(θ|x)

of 0.67 and 2.49 for the single kinetic rates respectively. The estimations for α and
β have not been that accurate for any distance function, though.
Figure 34 shows the posterior distributions for α and β from simulation 4∗.
For the first group of distance functions, the estimation of the two kinetic rates

is very accurate. Additionally, only S-MC estimates β well. All other distance
functions are not able to estimate α and β.
The question comes up if the estimation of γ and δ became worse in comparison

to the results from simulation 4. To check this the SNARp(θ|x) values of all four
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Figure 34: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.05 (black), τ = 0.01 (red) and τ = 0.001 (blue) for
α and β for the two-stage model (simulation 4∗).

kinetic rates were calculated for simulation 4 and 4∗. The result is presented in
table 15.

S-Mean S-M&Std S-Cor S-MC
sim 4 sim 4∗ sim 4 sim 4∗ sim 4 sim 4∗ sim 4 sim 4∗

α 11.19 0.87 3.74 0.82 101.32 307.25 15.43 33.11
β 4.41 1.10 4.24 0.64 21.18 39.41 12.06 0.44
γ 24.53 0.58 10.56 0.58 0.67 0.68 550.18 0.74
δ 2.76 4.41 8.74 4.51 2.49 2.03 0.46 2.93
SNARp(θ|x) 42.83 6.96 27.28 6.55 125.66 349.37 578.12 37.22

Table 15: SNARp(θ|x) of the posterior distributions for all kinetic rates for the two-
stage model for simulation 4 and 4∗ for τ = 0.001.

For the distance functions presented in table 15, the estimation for γ is becoming
better or stays the same. The estimation for δ is approximately the same for S-Cor.
For S-Mean and S-MC it becomes worse, for S-M&Std it gets better.
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To sum it up, the best estimation for all kinetic rates consists of two steps.
First estimate γ and δ with a distance function from the second group using a
non-informative prior for all kinetic rates. Then run the simulation again, taking
as prior for γ and δ the posterior of the first simulation.
As final estimations take α, β and γ from the second simulation from a distance

function of the first group. The rate δ is best estimated by S-Cor or S-CC, whereby
the first and second simulation result in approximately the same estimation.

5.6 Summary

The simulation with the ABC algorithm yielded the following results.

• No single distance function was best for both the one-stage and two-stage
model. In the one-stage model the distance functions from the first group,
i.e. S-Mean, S-Std, S-M&Std and S-cdf, yielded, additional to S-MC, the
best estimation of the kinetic rates. In the two-stage model the distance
functions from the first group performed best.

• Increasing the number of drawn particles Nall only resulted in a better es-
timation for the one-stage model. For the two-stage model the SNAR ratio
did not improve. This is because in the two-stage model, with only protein
being observed, the reaction rates γ and δ are estimated very accurate. If
one particle has a value for γ or δ close to the true reaction rates, the parti-
cle has a low distance nearly regardless of the values of α and β. Therefore,
increasing Nall results in a better estimation of γ and δ. But the estimation
of α and β is not necessarily improving as particles have a low distance due
to a good estimation of γ and δ.

• S-Cor and S-CC, the distances using TS data, do not have the best estimation
for all kinetic rates although they use the data with the most information.
This holds even if an optimal sampling frequency based on TS data is used.
However, the estimation of γ and δ in the two-stage model is very accurate
with these distance functions.

• The particles which yielded a low distance with S-Cor and S-CC had a high
distance with distance functions from the first group. To adjust for this,
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a new distance function S-MC was introduced which corrected the values
of S-Cor with S-Mean to consider the difference of the mean of the experi-
mental and simulated data. For the one-stage model this resulted in a very
accurate estimation, for the two-stage model, the estimation of α and β and
δ improved at the expense of the estimation of γ.

• As there is no best distance function which estimates all kinetic rates of
the two-stage model, one possible way of parameter estimation might be the
following. Estimate γ and δ with distance functions from the second group,
i.e. S-pdf, S-Cor or S-CC or the third group, i.e. S-NE or S-NE II. Use
the resulting posterior distribution as prior for γ and δ for another ABC
run where α and β are estimated using distance functions from the first
group. The estimation from this approach is very accurate. It is discussed
in chapter 5.5.
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6 Computational study for ABC SMC
For the ABC SMC only certain distances were chosen due to the computational
effort for creating the simulated data being otherwise too high. This could be the
case if the kinetic rates would move further from the true values with each popu-
lation. Pre simulations showed that the simulation by the SSA is time consuming
if the kinetic rates are large.
Therefore, no distances were taken, which produced for one kinetic rate a pos-

terior worse than the prior in the ABC. This includes the members of the second
group S-NE, S-pdf, S-Cor and S-CC for the one-stage model, as the estimation of
β is becoming worse. For the two-stage model, with the same argumentation, this
is the second group as well, including S-pdf, S-Cor and S-CC, as the estimation of
α and β is worse compared to the prior.
For the two-stage model, σLN was set to 1, as pre simulations with σLN = 1.5

showed that for some distance functions the posterior in later populations became
worse resulting in a highly large run time for creation of the simulated data.
Thus for the one-stage model S-M&Std was chosen as representative of the first

group and S-cdf, also from the first group, but with the difference that it is not
based on moments. Additionally, S-NE II was chosen as having the best estimation
for σLN = 2.
For the two-stage model S-M&Std and S-cdf were chosen for the same reasons

as with the one-stage model. From the third group S-NE was selected as having a
slightly better performance than S-NE II.
For both models S-MC was selected as well because of its convincing performance

at the ABC and because it uses TS data.
For each simulation the ABC SMC was conducted with 5 populations. For each

population 2,000 particles are drawn and the best 10 particles are accepted to
build the posterior distribution. The number of drawn particles is the same as in
simulations 1–4 from the ABC algorithm. Therefore, the results from ABC and
ABC SMC can be compared.
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6.1 Results for the one-stage model

Simulation 9: σLN = 0.2, uniform perturbation kernel In figure 35 the progress
of the SNAR ratio for each population is shown. The SNAR ratio is always calcu-
lated with SNARp(θ|x) from the current population and SNARp(θ) from the prior
distribution of the first population.
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Figure 35: SNAR ratio for each population for ABC SMC for the one-stage model
(simulation 9).

Comparing the SNAR ratio from population 5 with population 1, only for S-cdf
the SNAR ratio increased slightly. For all other distance functions the SNAR ratio
decreases. Therefore, for the chosen settings, the ABC SMC for an informative
prior does not yield better results than for the ABC algorithm.
The result for the first population of the ABC SMC is theoretically the same as

the result of the ABC algorithm. Comparing the result with simulation 1, though,
shows differences. For simulation 9 all SNAR ratios are less than the SNAR ratios
which result when one takes the first 2,000 particles from simulation 1 and applies
a τ = 0.005. These are 2.31, 1.36 and 2.56 for S-M&Std, S-NE II and S-cdf
respectively.
There are two possible reasons for this. First, due to chance, the 2,000 particles

drawn for the first population of the ABC SMC are different as for the ABC. This

90



6 Computational study for ABC SMC
6.1 Results for the one-stage model

can have an influence, but out of these 2,000 particles there surely are 10 particles
which are close to the true kinetic rates.
The other reason is that the resulting trajectories are simulated stochastically by

the SSA. Thus, the distances from similar particles can be different. To check this,
two simulations have been conducted with parameter settings as in simulation 1
with the difference that Nall = 2, 000. The drawn values for α and β are the same
for both simulations. The first simulation achieved a SNAR ratio of 1.56, 0.64, 1.7,
0.96 for S-M&Std, S-NE II, S-cdf and S-MC respectively. The second simulation
achieved a SNAR ratio of 2.56, 0.99, 2.07 and 0.9. For both simulations τ was set
to 0.005.
The SNAR ratios for the two simulations are different, although the same values

for α and β have been chosen for the simulations. This indicates that there is an
influence by the SSA on the resulting distance, as the simulated trajectories differ
for the same reaction rates.
In figure 36 the prior distribution and posterior distributions for each population

is shown. As there are less particles drawn for the prior distribution (2,000 instead
of 10,000) the prior distribution is not as dense as in the simulations of the ABC.
The first posterior distribution is in black, the second in violet and the third,
fourth and fifth in orange, red and blue.
The posterior for S-M&Std always stays on the ratio of β and δ. However, it

moves further from the true rate values. For S-NE II the particles chosen for the
posterior distribution seem to be chosen randomly, as no clear direction can be
identified. For S-cdf only the first posterior is not centered along the ratio δ/β. The
other posterior distributions seem to move further from the true rate values with
increasing number of populations. For S-MC the posterior stays approximately
along the ratio but moves away from the true values.

Simulation 10: σLN = 2, uniform perturbation kernel For a less informative
prior, the estimation improves with the ABC SMC for the analysed distance func-
tions.
The SNAR ratio plotted against the number of populations is in the appendix,

figure A.60. The good estimation of the kinetic rates with the last posterior dis-
tribution can be seen in figure 37.
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Figure 36: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for the
one-stage model (simulation 9).

For S-M&Std and S-cdf the third population (green) has a posterior very close
to the true kinetic rates. For the fourth and fifth population the good estimation
remains. This means that the posterior does not move away from the true reaction
rates, as it is the case with S-MC. There, the estimation of the kinetic rates is
along the ratio δ/β, but it moves further from the true kinetic rates up to the fifth
population. This is probably due to the influence of the distance which is based
on the correlation, as S-MC is a combination of S-Mean and S-Cor. As in the
results of the ABC, the estimation of the kinetic rates is best with S-MC for the
first population.
S-NE II estimates β very good, but underestimates δ slightly. This underesti-

mation seems to stay constant for populations three to five.
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Figure 37: Prior of the first population (cyan, yellow), and the posterior distribu-
tion for each of the five populations (black, violet, orange, red, blue)
for the one-stage model (simulation 10).

Simulation 11: σLN = 2, gaussian perturbation kernel Now a Gaussian pertur-
bation kernel is taken. For this perturbation kernel, no simulation with σLN = 0.2
was conducted, as the simulation with a uniform perturbation kernel did not show
an improvement in estimation.
The development of the posterior distributions along the populations is shown

in figure 38.
S-M&Std, S-cdf and S-MC estimate all along the ratio of δ/β. Compared with

simulation 10, the posterior is still too far from the true kinetic rates. With each
population, it moves only slowly towards the true rates. This is due to the chosen
variance of the gaussian perturbation kernel. 95% of the perturbed particles are
within [0.75θi,r, 1.25θi,r], with the modus of the perturbed particles being at θi,r.
Thus, in most cases the particle θi,r is only perturbed slightly. Therefore, each
posterior only differs slightly from the previous one.
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Figure 38: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for the
one-stage model (simulation 11).

To gain a better estimation, the number of populations or the variance of the
gaussian perturbation kernel can be increased.

Summary and comparison to ABC For both the ABC and ABC SMC 10,000
particles have been drawn in total. In the following the results are compared.

• For an informative prior distribution, the estimation with the ABC SMC is
not better compared with the ABC. For some distance functions it is even
worse.

• For a less informative prior the estimation from the ABC SMC with a uniform
perturbation kernel is closer to the true reaction rates than the estimation
from the ABC. This is true, except for S-MC. There, the posterior moves
away from the true reaction rates with each population.
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• In summary, for the one-stage model a distance function from the first group
(S-M&Std, S-Std, S-Mean, S-cdf) should be taken within an ABC SMC.

6.2 Results for the two-stage mode

Simulation 12: σLN = 0.2, uniform perturbation kernel For an informative
prior, similar to the one-stage model, there is no improvement of the estimation
along the populations. The figures are, therefore, shown and shortly commented in
the appendix. The posterior distributions for the kinetic rates α and γ is presented
in figure A.61 and figure A.62 shows the posterior distributions for αβ versus γδ.

Simulation 13: σLN = 1.5, uniform perturbation kernel Preliminary simula-
tions showed that the estimation is considerably becoming worse for S-NE, which
resulted in a long runtime for the creation of the simulated data by the SSA. There-
fore, the simulation for S-NE was aborted after three days and is not presented
here.
Figure 39 shows the posterior distributions for the different populations for the

kinetic rates α and γ. For S-M&Std and S-cdf, the posterior distributions are not
along the ratio, which is similar to the result of the ABC. The final posterior for
both distance functions is approximately centered at log(α) = 6.5 and log(γ) = 3.5.
For S-MC the final posterior is neither centered around the true kinetic rates.
The posterior distributions for αβ and γδ, which are shown in figure 39, are

along the ratio of the kinetic rates. The final posterior distribution is not located
around the section of αβ and γδ.

Simulation 14: σLN = 1.5, gaussian perturbation kernel Using a gaussian per-
turbation kernel, the result of the posterior distributions for α and γ is similar to
the uniform perturbation kernel. The distributions are not centered along the ratio
of the kinetic rates. The final posterior distribution has approximately the same
location for the three distance functions.
For the posterior distributions of αβ and γδ, the result is also similar to simula-

tion 13. The posterior distributions are located along the ratio of the kinetic rates
and the distributions of the final population are not estimating the kinetic rates
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Figure 39: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for the
two-stage model (simulation 13) for α versus γ.

Figure 40: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for αβ
versus γδ for the two-stage model (simulation 13).

accurately.

Summary In the following a summary is given. Especially, the results are com-
pared with the ABC simulations.

• Compared to the ABC, the estimation of the kinetic rates with the ABC SMC
has not the same quality. No simulation could estimate the kinetic rates very
accurately, and the estimation did not improve along the populations. This
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Figure 41: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for the
two-stage model with gaussian perturbation kernel (simulation 14) for
α versus γ.

Figure 42: Prior of the first population (cyan, yellow) and the posterior distribution
for each of the five populations (black, violet, orange, red, blue) for αβ
versus γδ for the two-stage model with gaussian perturbation kernel
(simulation 14).

is probably due to the effect which is described in chapter 5.4.2. Therefore,
it is proposed to use a similar two-step approach within the ABC SMC as in
chapter 5.5.

• There was no large difference in the estimation quality using a uniform or a
gaussian perturbation kernel.
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7 Summary and outlook
Summary In this thesis, the ABC and ABC SMC algorithms have been investi-
gated with ten different distance functions for the one-stage and two-stage model
for gene expression.
The ABC (SMC) algorithm was altered so that the particles are not accepted

when their corresponding distance is smaller than a threshold. Instead, a fixed
number of particles is drawn and the best are accepted. These two approaches
correspond to each other, as a certain threshold always results in approximately
the same percentage of accepted particles.
In the one-stage and two-stage model only protein was observed. The obser-

vation time, until protein was observed, was set to twice the amount of the time
until steady state is reached.
The sampling frequency, i.e. the time between subsequent observations, was

determined based on the determinant of the Fisher information matrix. The results
indicate that at least for the two-stage model, for the distance functions using time-
series data, the sampling frequency did not influence the estimation of the kinetic
rates.
For the prior distribution a lognormal distribution LN(µ, σ) was chosen. The

parameters were set so that the mode exp(µ − σ2) of the distribution is at the
true reaction rate θ. This is different to most publications, which use a uniform
distribution as prior.
For the ABC SMC component-wise perturbation kernels were chosen. One is

based on the uniform distribution, the other one on the normal distribution.
A statistic, the sum of normalised absolute residuals (SNAR), was introduced.

It measures the distance between the average estimation of the kinetic rate and the
true kinetic rate. The SNAR has the advantage that the distance to the true rate in
the prior distribution can be taken into account. So, different prior distributions
can be compared w.r.t their ’informativeness’. Moreover, no publication could
be found which explicitly considers the improvement through the ABC (SMC)
algorithm based on the amount of information in the prior.
For the one-stage and two-stage model, simulations with a more informative and

a less informative prior were conducted for the ABC and ABC SMC. Compared to
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other publications, the less informative prior was considerably further away from
the true kinetic rates.
For the one-stage model the best estimation could be achieved for the ABC with

a distance combined of the mean and the correlation. For the ABC SMC the best
distances were based on the mean, standard deviation or the cumulative distribu-
tion function. The estimation with the ABC SMC was highly more accurate than
with the ABC, using the same number of drawn particles.
For the two-stage model, a very accurate estimation was achieved when γ and

δ were first estimated by a distance based on correlation or on the probability
density function. Using these results, α and β are then to be estimated in a new
simulation, with distance functions based on the mean, standard deviation or the
cumulative distribution function. The reason for this is that the distance value,
although it depends on all kinetic rates, is mostly determined by the estimation
of γ or δ. When one of these rates is estimated well, the values of α or β do not
need to be estimated very accurately to achieve a low distance value.
The estimation for the two-stage model, using ABC SMC, did not improve

compared to the ABC algorithm. This is due to the fact that all kinetic rates were
estimated at once. A better approach would be to first estimate γ and δ and than
α and β for each population.
Overall, the steady state of protein, i.e. the ratio of a certain combination of

kinetic rates, in the one-stage and two-stage model was estimated very accurate by
the distance functions which are based on the mean, standard deviation, the cdf or
a combination of mean and correlation. The distance values were lowest along this
ratio. For the other distance functions no specific pattern of the distance values
could be specified.

Outlook The following list contains ideas for further research:

• The combination of S-Mean and S-Cor showed an improvement, especially
for the one-stage model. These two distances were combined using equal
weights. One might consider to weight combinations of distance functions
differently. Weighting strategies are discussed in Jung & Marjoram (2011).
The weights could be a function of time as well.
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• For the distance based on the correlation of the simulated and experimen-
tal data, Pearson’s correlation coefficient and cross-correlation was used.
There are other measures to identify a relationship between pairs of vari-
ables. Reshef et al. (2011) introduce the maximal information coefficient
(MIC), which accounts for both functional and non functional associations.

• A two-step approach was used in chapter 5.5 to estimate the kinetic rates
of the two-stage model successfully. The estimation with more complicated
models can be divided into several steps. This should increase the estimation
quality within the ABC SMC as well.

• The computational study was based on one parameter set with the same
initial conditions. The quality of estimation can be studied for different
parameter settings and different initial conditions. Moreover, the quality of
estimation can be investigated subject to the number of drawn particles.

• It needs a further investigation why the estimation for the two-stage model
for S-Cor and S-CC did not improve, although the frequency of the sampled
data was changed for simulation 5 and 6 to the optimum of the FIM for TS
data.

• Further, the implications of a not equally spaced sampling frequency can be
investigated w.r.t. the estimation quality as well.

• Moreover, for calculating the FIM, which is described in chapter 4.1.3, it is
necessary to have at least a good estimation of the true kinetic rates and the
true underlying model. It can be examined what influence the estimation
of the true kinetic rates and the model have on the FIM, on the sampling
frequency and on the estimation by the ABC (SMC).

• In the computational study the one-stage and two-stage model were sim-
ulated. The quality of estimation can be investigated for more complex
models, such as the three-stage model or models including a toggle switch.
For the latter one, a toggle switch based on a two-stage model, as discussed
in Strasser et al. (2012), might be considered.
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• As discussed shortly in chapter 6.1, the quality of estimation is different for
different data sets, i.e. different simulated data. The best distance function
changed in this small example as well. Nunes & Balding (2010, abstract)
found out ’that the optimal set of summary statistics was highly dataset spe-
cific, suggesting that more generally there may be no globally-optimal choice,
which argues for a new selection for each dataset even if the model and tar-
get of inference are unchanged.’ It is interesting if this effect still holds for a
large number of drawn particles. Additionally, the influence of the number
of simulated trajectories Ntraj on this aspect can be studied. So the question
is how the quality of estimation varies due to the simulated dataset, i.e. how
many particles or trajectories need to be simulated to achieve a stable result
for the estimation.

• The analysis showed that for the one-stage model, the distance based on
mean and correlation had the best estimation for the ABC, i.e. also for
the first population of the ABC SMC. For later populations of the ABC
SMC other distance functions resulted in a better estimation. Therefore, for
different populations different distance functions could be applied to improve
the ABC SMC.

• The simulation of the data with the SSA is time consuming. Ramaswamy
et al. (2009) propose a new way, which is called the partial-propensity direct
method (PDM). It is an exact stochastic simulation algorithm. They state
that it outperforms the SSA, especially on strongly coupled reaction net-
works. The PDM’s computational runtime scales linearly with the number
of species.

• The SSA is an exact algorithm. Other methods, which are approximations,
have a higher computational efficiency. The SSA could be replaced, for in-
stance, by the finite state projection (FSP) method (Munsky & Khammash
2006) or τ leaping algorithms (e.g. Gillespie & Petzold (2003)). More-
over, an approach, which separates the system into slow and fast partitions,
where the fast partition is approximated numerically and the slow partition
is simulated stochastically can be used. Cao et al. (2005) call this the slow-

101



7 Summary and outlook

scale SSA. Another approach includes the quasi-steady-state approximation
(QSSA) (Rao & Arkin 2003).

• Intrinsic noise, i.e. random fluctuations which are due to the discrete and
stochastic nature of chemical kinetics for low concentrations can be modelled
for instance by the SSA and are considered in this thesis. However, extrinsic
noise, which "is a fairly loosely defined term which essentially represents all
noise and heterogeneity in the system not explicitly associated with the intrin-
sic stochasticity of discrete chemical kinetics" (Stumpf et al. 2011, p. 365),
is not considered. Though, there is no theory yet for modelling of extrinsic
noise, Stumpf et al. (2011, ch. 18.3.5) give ideas for modelling extrinsic noise.
Extrinsic noise can, in the long run, be included in the estimation process.
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A Appendix

A.1 Distance function based on the Kullback Leibler
divergence

One distance based on the Kullback Leibler divergence was formulated and eval-
uated in preliminary simulations. It is defined in the following

d(x0,x∗) =
Tobs∑
t=1

(
KL(x∗t ,x0

t ) + KL(x0
t ,x∗t)

)
(A.50)

where

KL(x∗t ,x0
t ) =

∫ ∞
−∞

p(x∗t) · log2
p(x∗t)
q(x0

t ) dx (A.51)

is the Kullback-Leibler divergence with p(·) and q(·) denoting the probability den-
sity functions for x∗t and x0

t respectively.
For simulation of the Kullback-Leibler divergence, it is calculated as follows:

KS 1 A kernel smoothing density estimate is calculated for x∗t and x0
t , resulting in

P (x∗t) and Q(x0
t ). The densities are approximated with 100 equally spaced

data points in the range [min(x·t − ε), (max(x·t + ε].18 In contrast to the
standard kernel choice which is the normal kernel, the Epanechnikov kernel
is used because it does not result in extensive high density values at the end
of the ranges as it would be the case with the Normal kernel. The bandwidth
of the kernel smoothing window is estimated by default from x0

t and is used
for estimating x∗t as well.

KS 2 A set of data values χ is defined which is a discrete set of n = 200 equally
spaced values between min(x∗t ,x0

t ) and max(x∗t ,x0
t ).

18±ε is necessary for numerical reasons and it is set to ε = ±10−5.
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A.1 Distance function based on the Kullback Leibler divergence

The Kullback-Leibler divergence is approximated by

KL(x∗t ,x0
t ) = 1

n

∑
x∈χ

P (x) · log2
P (x)
Q(x) (A.52)

whereby the possible expression 0 log2(0) is interpreted as zero. The term 1/n is
added to receive the mean of the Kullback-Leibler divergence as it would otherwise
grow, if the length of the set χ is expanded and is set for simulation to 1/200.
The Kullback Leibler divergence is defined for random variables having the iden-

tical support χ (Kullback & Leibler 1951), i.e. if Q(i) > 0 for any i such that
P (i) > 0. This assumption does not hold for the given data, as in most cases the
support of x0

t and x∗t is not identical. Therefore, this distance was not used for
the final simulations.
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A.2 Computational time for the simulations

Although the results are not yet presented, the time of the simulations should
be stated beforehand because it explains why certain simulations have not been
conducted. The simulations have run on different devices, partly with other users,
resulting in shared memory and different workload. Moreover, all simulations for
the ABC have run on a queue, meaning Nall was divided into a number of smaller
packages, which run separately. The number of packages was different for the
two-stage models, as these were split into smaller packages due to their higher
simulation time. For these reasons, the time stated in table A.16 for creating the
simulated data x∗ is only an indication, from which the necessary time can be
approximately derived.

model σLN Nall total time [h]
one-stage 0.2 10, 000 0.67
one-stage 2 10, 000 3.35
one-stage 2 100, 000 48.29
two-stage 0.2 10, 000 4.0
two-stage 1.5 10, 000 283.36
two-stage 1.5 100, 000 3110.3

Table A.16: Runtime [h] for creation of x∗.

In table A.16 the runtimes for data creation are all based on splitting the data
into packages of 50, 200 or 500. The total time for creation of x∗ is the sum of all
packages. The standard deviation of the runtime for the models was about 0.001
of the total time for creation, and it is, therefore, not specified explicitly.
In table A.17 only the runtime for calculation of the distance values for the prior

with σLN = 0.2 is given, as the runtimes for other σLN are the same within ±10%
of this value.

distances Mean Std M&Std NE NE II pdf cdf Cor CC
one-stage 0.06 0.14 0.18 0.98 0.82 3.08 2.83 0.02 12.91
two-stage 0.09 0.17 0.21 0.86 0.82 3.12 3.7 0.2 13.67

Table A.17: Runtime [h] for calculation of d(x0, x∗) for Nall = 10, 000.
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The long runtime for the two-stage model using Nall = 100, 000 can be explained
with the following: from the 500 packages, which were sent to the queue, about
five to ten had a runtime of more than three days. The overall standard deviation
was 4.94 hours. Due to the long runtime, σLN = 2 could not be simulated for the
two-stage model, as the creation of the simulated data is too time consuming.
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A.3 Using the Frobenius norm instead of norm (36)

This section illustrates the result if the Frobenius norm is used for S-Cor and S-
CC instead of the norm (36). In figure A.43 the SNAR ratio is calculated for the
one-stage and two-stage model with Nall = 10, 000 and the optimal frequency for
TS data, see section 5.2 for further details.
The SNAR ratio using the Frobenius norm is for most τ less than with norm (36).

This holds especially for the one-stage model. Therefore, one can assume that the
Frobenius norm is not adequate for the distances S-Cor and S-CC.
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Figure A.43: SNAR ratio depending on the acceptance rate τ for S-Cor and S-CC
using the Frobenius norm and norm (36) for the one-stage model
(simulation 5) and two-stage model (simulation 6).
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Figure A.44: Kernel density estimation of the prior and posterior distribution for
all distances for the one-stage model (simulation 1), τ = 0.01.
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A.5 Appendix for simulation 2

a) reaction rate β. b) reaction rate δ.

Figure A.45: Scatterplot of the logarithm of the distance for nine different distance
functions for reaction rates β and δ for the one-stage model (simula-
tion 2). The dashed line indicates the logarithm of the true reaction
rate.

Description of figure A.46: The distance is lowest for the distance functions S-
Mean, S-Std, S-M&Std and S-cdf for the ratio of the reaction rates. S-pdf has a
strip of small distance values along the ratio but the bulk of the lowest distances
is for large β and small δ. S-NE and S-NE II have their lowest values right of
the ratio line. The distribution for S-Cor and S-CC looks roughly the same as
in simulation 1. The SNAR ratio is decreasing for larger τ for distances S-Mean,
S-Std, S-M&Std, S-cdf and S-NE II. The other distances show either an increasing
SNAR ratio for larger τ or stay approximately constant. This is because these
distances estimate δ very well but cannot estimate β.
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Figure A.46: Distance values for the nine distance functions depending on the re-
action rates β and δ for the one-stage model (simulation 2). The
solid lines indicate the true reaction rate and the ratio δ/β

Description of figure A.48: The SNAR ratio for different number of drawn par-
ticles is shown in figure A.48. As for simulation 1, with an increasing amount of
Nall the SNAR ratio seems to fluctuate about a certain value. Only the distances
S-NE II and partly S-Cor show some anomaly which might diminish for a larger
Nall.
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Figure A.47: SNAR ratio depending on the acceptance rate τ for nine distance
functions for the one-stage model (simulation 2).
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Figure A.48: SNAR ratio depending on the number of drawn particles Nall for nine
distance functions and two acceptance rates τ = 0.01 and τ = 0.05
for the one-stage model (simulation 2).
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Figure A.49: Kernel density estimation of the prior and posterior distribution for
all distances for the one-stage model (simulation 2), τ = 0.01.
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A.6 Appendix for simulation 3

Figure A.50: Distance values for the nine distance functions depending on both
reaction rates α and γ for the two-stage model (simulation 3). The
solid lines indicate the true reaction rate and the ratio γ/α.
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Figure A.51: Distance values for the nine distances depending on the reaction rates
αβ and γ · δ for the two-stage model (simulation 3). The solid lines
indicate the true reaction rate and the ratio (γδ)/(αβ)
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Figure A.52: Kernel density estimation of the prior and posterior distribution for
all distances for the two-stage model (simulation 3), τ = 0.01.
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Figure A.53: SNAR ratio depending on the acceptance rate τ for all distances for
the two-stage model (simulation 3).
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Figure A.54: Distance values for the nine distance functions depending on the re-
action rates α and γ for the two-stage model (simulation 4). The
solid lines indicate the true reaction rate and the ratio γ/α

For α versus γ (figure A.54) S-Mean, S-Std, S-M&Std and S-cdf have low dis-
tance values left of the ratio line. For S-NE, S-NE II and S-pdf the low values are
more to the right of the line, for S-Cor and S-CC it is for small γ values.
Considering αβ versus γδ (figure A.55) the ratio can be estimated well by S-

Mean, S-Std, S-M&Std and S-cdf. S-Cor and S-CC have their low distance values
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Figure A.55: Distance values for the nine distance functions depending on the re-
action rates αβ and γδ for the two-stage model (simulation 4). The
solid lines indicate the true reaction rate and the ratio (γδ)/(αβ)

around the true value of γδ.
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Figure A.56: Kernel density estimation of the prior and posterior distribution for
all distances for the two-stage model (simulation 4), τ = 0.01.
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A.8 Appendix for simulation 8

Figure A.57: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.005 (black), τ = 0.001 (red) and τ = 0.0001 (blue)
for the two-stage model for α versus γ (simulation 8).
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Figure A.58: Prior distribution of the kinetic rates (cyan, yellow) and the resulting
posterior for τ = 0.005 (black), τ = 0.001 (red) and τ = 0.0001 (blue)
for the two-stage model for αβ versus γδ (simulation 8).
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Figure A.59: SNAR ratio and threshold ε against number of drawn particles Nall

for simulation 8.
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Figure A.60: SNAR ratio for each population for ABC SMC for the one-stage
model (simulation 10).
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Figure A.61: Prior of the first population (cyan, yellow) and the posterior distribu-
tion for each of the five populations (black, violet, orange, red, blue)
for α versus γ for the two-stage model (simulation 12).

Description of figure A.61: Compared to the first posterior distribution, the
improvement of the estimation for both rates is low. For S-cdf, the last posterior
estimates α well.
Description of figure A.62: For S-M&Std, S-cdf and S-MC, the posterior distri-

butions are along the ratio of the kinetic rates. For S-M&Std and S-cdf it seems
to be closely to the true rate values. But as the first posterior (black points) is
covered entirely, the posterior distributions are as good as or slightly worse than
the first one. This is confirmed by considering the evolution of the SNAR ratio
along the populations (This is not shown).
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Figure A.62: Prior of the first population (cyan, yellow) and the posterior distribu-
tion for each of the five populations (black, violet, orange, red, blue)
for the two-stage model (simulation 12) for αβ versus γδ.
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A.11 Outline of the relation between the threshold and the
acceptance rate

For a reaction rate θ, one can simulate the data x∗(θ). Either x∗(θ) is deterministic,
i.e. the data x∗(θ) being identical for identical θ. For the case where x∗(θ) is
simulated using SSA, this does not hold, as for the same θ different results for
x∗(θ) might be obtained due to the stochastic character of the SSA. But if the
number of simulated trajectories Ntraj approaches ∞, we assume that for each θ
the same x∗(θ) results (this needs to be proofed).
Therefore, D is a random variable measuring the distance

D : Θ→ R

θ 7→ d(x0, x∗(θ))

with Θ as the set of all particles θ.
D is distributed according to FD. Its quantile Qτ gives the value for which

P (D < Qτ ) = τ with P (·) being the probability measure. That means, with
probability τ the distance D is less than Qτ .
Substituting Qτ by ετ means that the distance D is smaller than (the threshold)

ετ with probability τ . Therefore, it results in the same distance values, if either ετ
is set and the distances D < Qτ are taken or if τ is set and a corresponding ετ is
determined so that D < ετ .
This holds only for a distribution FD. But if we draw N realizations from the

distribution FD, we obtain the resulting frequency distribution F̂D, and it holds
that

F̂D → FD for N →∞.
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