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Abstract 

Based on previous work by D. Rickert at the Helmholtz-Zentrum München, we 
developed a toolbox for the automated reduction of biological models using Boolean 
logic. The method is very versatile and can be used to reduce any set of elements 
with constraints that can be expressed in Boolean algebra. We focused our work on 
the reduction of interaction networks, where usually a costly simulation using 
parameter optimization is required to validate or invalidate a reduced model. 
However, we designed a method that can automatically deduce constraints from the 
network topology to strongly limit the amount of possibilities that need testing. 
Further, as a simulation usually requires parameter optimization, certain models can 
be skipped when others are accepted or rejected. Finally, since the order in which we 
test the possible models greatly influences the computational costs, we developed 
strategies to improve the order of testing. Our toolbox is easily applicable with a 
simple Matlab interface and direct support for the SB model format. We put a special 
emphasis on providing various options to represent the different resulting models. 
The toolbox was exhaustively benchmarked and successfully used to help in the 
development of a fatty acid ߚ-oxidation model and to give valuable input in the 
reduction of a zirconium ingestion compartment model. 

Aufbauend auf bisheriger Forschung von D. Rickert am Helmholtz-Zentrum München 
haben wir eine Toolbox für die automatische Reduktion von biologischen Modellen 
mit Hilfe von boolescher Logik entwickelt. Die Methode ist sehr vielseitig gestaltet 
und kann für die Reduktion einer jeden Menge von Elementen, auf welcher sich 
Bedingungen in boolescher Algebra definieren lassen, verwendet werden. Der 
Schwerpunkt unserer Arbeit lag auf der Vereinfachung von Interaktionsnetzwerken, 
für welche meist eine aufwendige Simulation mit Parameteroptimierung benötigt 
wird, um ein reduziertes Modell auf seine Korrektheit zu prüfen. Jedoch war es uns 
möglich eine Methode zur automatischen Herleitung von Bedingungen anhand der 
Netzwerktopologie zu gestalten, welche die Anzahl an möglichen Modellen stark 
einschränkt. Zusätzlich können, da eine Simulation meist Parameteroptimierung 
benötigt, bestimmte Modelle übersprungen werden falls andere bereits geprüft 
wurden. Schlussendlich hat die Reihenfolge in der wir die Kombinationen testen einen 
starken Einfluss auf die Laufzeit, weswegen wir Strategien entwickelt haben um diese 
Reihenfolge zu verbessern. Allgemein ist unsere Toolbox, durch ein einfaches Matlab-
Interface und eine eingebaute Unterstützung für das SB Format, sehr leicht 
anzuwenden. Besonderer Wert wurde auf die Darstellung der Ergebnisse eines 
Reduktionsdurchlaufs gelegt, wodurch eine Vielzahl von übersichtlichen 
Repräsentationen entstand. Die Toolbox wurde ausgiebigen Benchmark-Tests 
unterzogen und konnte bereits erfolgreich bei der Entwicklung eines Fatty-Acid-
Oxidation Modells einen Beitrag leisten und bei der Reduktion eines Modells für den 
Abbau von Zirkonium verwendet werden.  
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1. Introduction 

1.1 Modeling in biology 
The modeling of biological systems has become a main topic in bioinformatics. High 
throughput methods such as micro array analysis or co-immunoprecipitation produce 
large amounts of data. Unfortunately building quantitative models describing the 
biological data has proven to be very difficult, as there are still many processes that 
cannot be measured, especially not inside a living organism. 

Instead most measurements are performed on isolated compartments so called in 
vitro experiments or merely on chips. However, particularly in the case of chips, the 
interactions are highly theoretical as the compounds might never meet in reality and 
therefore the interaction would never take place. In a living organism, the interacting 
species may be separated in different compartments or involved in completely 
different pathways. 

Still measuring the concentrations of different species and determining whether a 
pairwise interaction exists can be done fairly well compared to the rate of the 
reaction. When it comes to the kinetics, extensive in vitro experiments emulating the 
exact conditions of the interacting species would have to be done to measure how 
much substrate gets processed. Therefore only vague estimates or no kinetics at all 
are known for most reactions. 

1.2 Parameter optimization of models 
The rate or kinetic of a reaction is usually referred to as parameter. Since the 
parameters of a model are usually unknown due to experimental limits, we look for 
ways to circumvent this problem. What we usually did not use up to this step when 
building a model are the concentration measurements of the species which are 
performed over a series of time. 

The measured concentrations can be compared with predictions we make using the 
model and certain parameters, usually by means of simulating the model. We define 
this comparison as an error-function ݂ that returns a measure of distance for the 
prediction of our model with parameter values ݌ଵ to ݌௡ and the expected data. If 
defined like this, a high value generally stands for a bad prediction.  ݂(݌ଵ, … , (௡݌ =  ݎ݋ݎݎ݁

This comparison between predicted and expected data is called a fit. It is clear that 
only certain combinations of parameter ranges will produce good fits with a low error 
value. Finding these combinations can be transferred to the field of parameter 
optimization, a very developed field of numerical analysis in informatics. 

A parameter optimizer will, in theory, try all possible combinations of parameters 
and attempt to minimize the result of the error function. As this is not feasible and 
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In model reduction, the goal is now to clean up and remove or modify these 
unnecessary parts. The result will be a less complex model with fewer reactions or 
states. A common approach to do this is to follow a rule based system that detects 
certain motifs and transforms then into smaller ones. While this method is very 
simple and fast, it holds many disadvantages. An example is that certain motifs 
might only be applicable for specific network types or may perhaps not be found at 
all. Furthermore the order in which the motifs are transformed could result in 
different outcomes which are often not considered. 

A more sophisticated approach would be to perform all possible reductions and check 
all smaller models individually. In order to do this we need to define a finite space of 
possible models. While merging states is possible, we first only focused on the 
operation of removing a reaction. For a model with 20 reactions, this will still lead to 2ଶ଴ − 1 different combinations of reactions that can be removed, which all require 
testing when no rules are defined. 

To test whether a reduction is valid, we can simply perform a parameter optimization 
on the sub-model and compare it with the original one. If the result is not worse than 
a specific cutoff value, then it will be considered valid. Obviously, checking all 
possible reductions is not feasible in most cases, only perhaps on very small models or 
ones with many constraints.  

However, since we perform a parameter optimization to analyze whether the model is 
valid, we can use the fact that the optimizer will try all possible values for a 
parameter, even the one nullifying the effect of the parameter. Therefore when we try 
to remove additional parameters, the result of the error function can only be equal or 
worse, given that the optimizer performs correctly. 

Considering this, if a reduction now turns out to be invalid, it will include all sub-
models where we remove additional parameters. In parallel, when the error function 
classifies a reduction as valid, the models where we remove less parameter will also be 
valid. This is the fundamental theorem of this method that makes a complete model 
reduction possible. 

1.4 Toolbox for systematic model reduction 
The focus of our work was to build a toolbox that allows the automated reduction of 
such models with the defined operations and our core theorem.  

Dennis Rickert already established the core ideas of this method with set based 
reduction, binary decision diagrams and topology analysis in his bachelor thesis on 
empirical reduction of signaling networks (Rickert, 2009). Based on these ideas, we 
simplified and rebuilt the methods as a reference implementation for a well-structured 
base of the reduction framework.  
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Around this core we added algorithms and crucial strategies to allow for an easy to 
interface and fast end user application of the method. A run of the reduction method 
can be structured the flow chart depicted in Figure 2. 

 

Figure 2: Flowchart of the reduction method 

This figure is just to convey a quick overview of the toolbox and its structure, all 
parts will be explained in detail. Basically, if a network exists, constraints will be 
deduced from its topology and given to the core of the method defines all the rules 
based on Boolean logic. The analysis is necessary to limit the amount of possible 
reductions in order for the toolbox to be usable on medium size networks. This core is 
so versatile that it could also be applied on a simple set of elements, while the 
constraints could be defined by the user himself. 

The reduction strategy repeatedly picks one of the remaining untested reductions to 
test with the error function. A clever strategy does not pick the reductions randomly, 
but tries to maximize the information that is gained when the reduction is accepted 
or rejected. For each picked element, the result will be reported to the core reduction 
method. After all calculations are done, there might be many possible models. We 
put a special emphasis on designing algorithms that give a clear and quick 
representation of these results.  

2. Set based reduction based on Boolean algebra 
The finite space of possible reduced models is the list of all combinations of reactions 
that can be removed. The attempt of removing a combination can be generalized as a 
set based reduction. While reactions/parameters are simply different elements, for 
example A, B, C and D, an actual reduction is defined as a set of these elements e.g. 
{A,B,D} which will be called ABD as an abbreviation. 

In search for a basic structure that allows for an efficient representation of these sets, 
as well as combining them with other rules and constraints that describe the network 
topology, we decided to use Boolean algebra. A direct way to implement Boolean 
formulas and their operations are Binary Decision Diagrams (BDD). For the toolbox 
we used the JavaBDD implementation (Whaley, 2007). 

Core: Boolean Set-based 
reduction

Network topology analyzation

Output formatting 

Reduction Strategy 

User defined 
error function 
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We defined three Boolean formulas which hold different information and when 
combined, allow us to efficiently identify the whole solution space of the reduction. 

 the constraints that can be made using the network topology of the :ݕ݃݋݈݋݌݋ݐ •
model 

 all tested valid sets and their subsets :݀݁ݐ݌݁ܿܿܽ •
 all tested invalid sets and their supersets :݀݁ݐ݆ܿ݁݁ݎ •
The topology variable is filled in the network analysis of our method and defines all 
combinations that could work and where the models make sense. For the reduction 
results we took too separate variables accepted and rejected are filled by the results 
when using the error function.  

While it is obvious that all formulas could be combined into one variable to define 
our solution space, we needed to keep them separately as the information was treated 
differently in the reduction strategies. 

2.1 Boolean operations for reductions 
We will now try to convey a quick overview of how to combine our topology accepted 
and rejected variable to get the different information spaces needed in the course of 
the reduction method. 

As we established, a reduction can be defined as a set of elements. To check whether 
a reduction has already been accepted or rejected, we take the reduction and 
transform it into its Boolean representation. ݊݋݅ݐܿݑ݀݁ݎ = ሥ ݁௘∈ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦ ∧ ሥ ¬݁௘∈ா௟௘௠௘௡௧௦\ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦  

To test whether this reduction is rejected, we can simply combine this variable with 
the topology and the rejected combinations: (݊݋݅ݐܿݑ݀݁ݎ)݀݁ݐ݆ܴܿ݁݁ݏܫ = ∧ ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݆ܿ݁݁ݎ   ݊݋݅ݐܿݑ݀݁ݎ

Same can be done to check if it was accepted: (݊݋݅ݐܿݑ݀݁ݎ)݀݁ݐ݌݁ܿܿܣݏܫ = ∧ ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ   ݊݋݅ݐܿݑ݀݁ݎ

In the reduction strategy we often need to enumerate all remaining reductions that 
still require testing. For this we do not need to check every reduction individually, 
but can simply transform combine the spaces as follows and get all satisfying 
combinations of the Boolean formula (All-SAT). ݃݊݅݊݅ܽ݉݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ¬ ∧  ݀݁ݐ݆ܿ݁݁ݎ¬

Finally when all reductions have been tested we get our final space and perform an 
All-SAT operation again. 
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ݐ݈ݑݏ݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ ∧   ݀݁ݐ݆ܿ݁݁ݎ¬
2.2 Accepting or rejecting a reduction 
A reduction is a set of elements we want to reduce and can either result in a valid or 
invalid model. When the reduction is valid, then automatically all subsets of this 
reduction-set have to be valid as well, since the parameter optimizer also allows for 
removing elements. 

Similarly if the reduction has turned out to be invalid, then we can assume that all 
supersets are also invalid for the same reason. By using the parameter optimizer, we 
guarantee that subsets always have to perform equal or better and supersets always 
have an equal or worse result. 

We will try to illustrate this on a quick example for four elements A, B, C, D and 
their combinations that we want to test for reduction. In a reduction, for each 
element we can either decide to include an element or not, leading to 2ସ = 16 
different reductions. As a given situation we assume that we are somewhere in the 
middle of our reduction process and the reductions B, CD were valid and ABC, BCD, 
ABCD are invalid (see Figure 3). 

 

Figure 3: Example for a reduction graph when testing BC 

When the test of the reduction AB identified a valid model, we can skip the 
reductions A, B, {} because they are subsets of AB. If reducing AB was invalid then 
we can skip ABC, ABD, ABCD since they are supersets of AB. Skipping a result 

A B C D

AB BCAC CD BDAD

ABC ABD ACD BCD 

ABCD
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reduction means that it will be added the list of accepted or rejected reductions. As 
keeping every reduction individually in a list is very inefficient, the lists are described 
by Boolean formulas. 

For the valid reductions the representing formula is called ܽܿܿ݁݀݁ݐ݌ and can be 
constructed by or-connecting the working reductions and their subsets. The subsets 
are represented by AND-linking all elements that are not in this reduction. ܽܿܿ݁݀݁ݐ݌ = ଵ݀݁ݐ݌݁ܿܿܽ ∨ ଶ݀݁ݐ݌݁ܿܿܽ ∨ … ∨ ௡݀݁ݐ݌݁ܿܿܽ ௡݀݁ݐ݌݁ܿܿܽ = ሥ ݁௘∈஺௟௟ா௟௘௠௘௡௧௦\ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦  

The invalid reductions are described be the ݀݁ݐ݆ܿ݁݁ݎ formula and is basically and 
OR-connection of all reductions-sets. ݀݁ݐ݆ܿ݁݁ݎ = ଵ݀݁ݐ݆ܿ݁݁ݎ ∨ ଶ݀݁ݐ݆ܿ݁݁ݎ ∨ … ∨ ௡݀݁ݐ݆ܿ݁݁ݎ ௡݀݁ݐ݆ܿ݁݁ݎ = ሥ ݁௘∈ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦  

3. Analyzing the network topology 
In interaction networks, we try to decrease the amount of possible reductions we have 
to test by defining a series of constraints from the network. This is necessary, as a 
testing a model is very computationally intensive due to the parameter optimization 
and the problem would not be feasible for an unconstrained set of elements. Dennis 
Rickert used a concept called controllability and observability (Rickert, 2009), which 
we transferred to our work. However, we used different constraints which we feel are 
easier to understand and implement. 

In a network the compounds are often called states. We declare a subset of states as 
input and another one as observed/output states. Input states are compounds with a 
beginning concentration before the simulation starts, while output states are the 
compounds that are measured and where we expect a resulting concentration. Note 
that subsets can overlap. 

The three constraints that we defined are: 

A) Every reaction must originate from a state that is activated. 
B) Every output state must be at least activated by one input state. 
C) Every reaction must originate from a useful state; one that is activates an 

output state or is involved in a reaction of such a state. 
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3.1 Reactions must be activated 
The first topological basically states that for every reaction that is not reduced, there 
must be a possibility that it will be used at some point. In order for it to be used, one 
of the origin states must reach a concentration higher than zero, meaning it must be 
activated. This rule can be recursively defined as follows. ሥ .ݎ)ܴܿ݁݁ݒ݅ݐܿܣ ,݊݅݃݅ݎ݋ ሼ ሽ)௥∈௎௡௥௘ௗ௨௖௘ௗோ௘௔௖௧௜௢௡௦ =  ݁ݑݎݐ

,݁ݐܽݐݏ)ܴܿ݁݁ݒ݅ݐܿܣ (݀݁ݐ݅ݏ݅ݒ
= ൞ ∋ ݁ݐܽݐݏ ∋ ݁ݐܽݐݏ݁ݏ݈݂ܽ :݀݁ݐ݅ݏ݅ݒ ሧ :݁ݏ݈݁݁ݑݎݐ :ݏ݁ݐܽݐܵݐݑ݌݊ܫ .ݎ)ܴܿ݁݁ݒ݅ݐܿܣ ,݊݅݃݅ݎ݋ ݀݁ݐ݅ݏ݅ݒ ∪ ௥∈ூ௡௖௢௠௜௡௚ோ௘௔௖௧௜௢௡௦(௦௧௔௧௘) (݁ݐܽݐݏ  

The case where a reaction has several substrates/origins is not shown in the formulas 
for simplicity but is covered in the implementation as reactions can have different 
combinations of origin states to be activated. 

3.2 Output states must be activated 
Secondly every output state must be connected to at least one input state. There 
must be a directed way leading from an input state to an output state, as otherwise 
the output state could never get a concentration below zero.  ሥ ,݋)ܴܿ݁݁ݒ݅ݐܿܣ ሼ ሽ)௢∈ை௨௧௣௨௧ௌ௧௔௧௘௦ =  ݁ݑݎݐ

3.3 Reactions must have an impact 
The last rule states that every reaction must have some impact on an output state; 
otherwise it has to be removed. If the origin state of the reaction never activates an 
output state or is never involved in a reaction with a state that does, then its 
concentration does not make a difference for the observed states. Reductions which 
have reactions without impact are not valid and can be skipped. ሥ ሧ ௢∈௥.௢௥௜௚௜௡௦௥∈ோ௘௔௖௧௜௢௡௦(݋)ܴ݈ܿ݁ݑ݂݁ݏܷ =  ݁ݑݎݐ

,݁ݐܽݐݏ)ܴ݈ܿ݁ݑ݂݁ݏܷ (݀݁ݐ݅ݏ݅ݒ
= ۔ۖەۖ

ۓ ∋ ݁ݐܽݐݏ ∋ ݁ݐܽݐݏ݁ݏ݈݂ܽ :݀݁ݐ݅ݏ݅ݒ ሧ :݁ݏ݈݁݁ݑݎݐ :ݏ݁ݐܽݐܵݐݑ݌ݐݑܱ ሧ ,݊)ܴ݈ܿ݁ݑ݂݁ݏܷ ݀݁ݐ݅ݏ݅ݒ ∪ ௡∈௥.௢௥௜௚௜௡௦ ∪ ௥.௧௔௥௚௘௧௦௥∈ை௨௧௚௢௜௡௚ோ௘௔௖௧௜௢௡௦(௦௧௔௧௘)(݁ݐܽݐݏ  
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3.4 ODE-model analysis 
These above defined rules for the network topology can be applied to most models 
governed by interactions. Ordinary Differential Equations are one possible way of 
describing the reactions. Generally, an ODE-model in the SB-Toolbox format 
contains states, reactions, variables and parameters (H. Schmidt, 2005).  

While separately defining reactions and variables usually results in a clean and 
structured model, one can also solely use states and parameters. As we want to 
account for the most general case, we first resolve all reactions and variables used in 
the definitions of the states, resulting in a model where we only have states and 
parameters. 

To derive the activating reactions, we have to investigate the influence of each 
parameter on a state. We set all parameters of the reactions except one to zero or its 
nullifying value. Assuming the parameters are independent, we get the direct impact 
of the parameter on the state and all states which are involved in the reaction.  

As this part is conveniently implemented in Matlab, we can simply check if the 
formula can ever get above or below zero, indicating whether the influence of this 
formula on the states is activating, inhibiting or both. 

4. Reduction Strategies 
Clearly the order in which we try the reductions greatly influences the total runtime 
of our reduction method. A reduction strategy is a method that simply picks the next 
reduction attempt and determines the order in which we visit the reduction graph 
discussed in Figure 3. Two simple methods for visiting the graph are BFS or DFS. 
However, these have very poor performance and a strategy should maximize the 
information gain, which of course can only be estimated using heuristics. 

4.1 Simple BFS and DFS approaches 
Very simple approaches are the two common methods for graph traversal, namely 
breadth first search and depth first search. In the case of model reduction, BFS takes 
the sets of reduction in order of their size. When doing the usual BFS, we would first 
take combinations reducing only a few elements and later the ones with many 
elements.  

This method is good when we only expect very few reductions to work or almost all 
of them. In case many reductions are possible, we simply reverse the BFS to start 
with long reductions first and taking short reductions at the end. Unfortunately in 
other cases especially when the result is unknown, both methods have a very bad 
performance, as the information gain is very little in the average case. 

Depth first search is also a common method to visit the nodes in a graph. It adds 
additional elements to the set of reduction and then uses backtracking if there are no 
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more elements to be added. In our test (see 4.5 Benchmarking) this strategy has not 
proven to be a good reduction method. 

4.2 Maximum average information gain 
A very intuitive approach is to maximize the average information gain by taking a 
reduction that performs well in either case, both when rejected and accepted. To 
retrieve this reduction, we iterate over all reductions and see how many remaining 
reductions we have when accepted or rejected. 

To efficiently iterate over the remaining reductions we first perform the BDD-Allsat 
operation which returns a list of patterns describing the remaining combinations. 
Each pattern consists of ݊ numbers strung together, where ݊ is the number of 
elements that we initially wanted to perform the reduction method on. The numbers 
of a pattern are either 0 for false, 1 for true or -1 as a wildcard for either 0 or 1. Now 
replacing all wildcards recursively by either a zero or one gives us all possible 
combinations of remaining reductions. 

Finding out the amount of reductions that can be skipped when the current reduction 
is accepted or rejected could be done by assuming that it was reported and using the 
Boolean formulas made in 2.2 Accepting or rejecting a reduction. Unfortunately it 
turns out that this operation takes very long for great amounts of reductions. 

Therefore we preprocess the patterns from the BDD-Allsat of the remaining 
reductions into a directed acyclic word graph (DAWG). To first get the reductions 
that can be skipped when accepted, we build a binary representation of the reduction, 
which matches the BDD-Allsat format, while ones are replaced with wildcards. With 
this pattern, the DAWG will be recursively visited while comparing the node value 
with the respective value in the pattern. When following a branch we keep track of 
the possibilities when matching wildcards in the pattern by doubling the possibilities 
we found so far. We do the same process for the rejection case by simply replacing all 
zeros by wildcards. 

As a result we now got the two values ݊௔௖௖ and ݊௥௘௝ for each reduction, which are the 
number of elements that can be skipped when accepted and when rejected. It is 
obvious that these values are usually indirect proportional. If we have a high ݊௔௖௖ 
value, we expect a low ݊௥௘௝ value (for illustration see reduction graph in Figure 3). 
Since we do not know the probability that a reduction is accepted or rejected, we 
want to maximize the information gain for both cases. This is done by the following 
formula: max൫݊௔௖௖ ∗ ݊௥௘௝൯ 
This strategy resulted in a great increase in performance and helped us solve the 
Zirconium model reduction (see 6.4 Compartment model for Ingestion of Zirconium in 
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Human Body). The calculation was not finished after two days with both normal and 
reverse BFS, but after an hour with this strategy. 

4.3 Heuristic approach 
To further improve the runtime, we wanted to calculate the probabilities that a 
reduction is accepted or rejected and combine this with the number of elements that 
can be skipped. Furthermore the cost if accepted or rejected will also be taken into 
account, as we expect different runtimes for the two cases. Often reductions are 
immediately accepted on the first optimization attempt, but we have to run it several 
times when rejected if not using a deterministic parameter optimizer. 

The formula we want to maximize now looks as follows: 

(ܦܧܴ)ܩܫ = (ܣ)ܲ ∗ (ܦܧܴ)ܥ(ܦܧܴ)ܰ + (ܦܧܴ¬)ܲ ∗  (ܦܧܴ¬)ܥ(ܦܧܴ¬)ܰ

Predicting the costs is pretty straight forward by averaging all the costs observed so 
far when accepted or rejected. In each case we not only report the result but also the 
runtime and create new cost averages that will be used in the next prediction. 

Calculating the probabilities was much harder and slowly became the main focus of 
this bachelor thesis. It seemed very natural to apply the theory of conditional 
probability to this problem, but creating a feasible solution became very hard. 

As an example we will again take our four element scenario, where the elements that 
we wanted to were A, B, C and D. 
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Figure 4: Reduction graph for BC with Bayes Theorem 

We want to determine the probability that the reduction BC is valid, given the 
situation that A and C worked and BD and ABC did not work. This can be 
expressed with conditional probability as follows. ܲ[ܣ|ܤܣ ∧ ܥ ∧ ܦܤ¬ ∧ ܦܤܣ¬ ∧ ܦܥܤ¬ ∧ ܥܤܣ¬ ∧  [ܦܥܤܣ¬
The idea now was to solve this formula in a way so it could be easily computed for 
every probability. We tried to rearrange the equations for a long time, but 
unfortunately this did not lead to easily computable formulas. Nevertheless, one could 
solve this formula using Bayesian networks, but for each probability of a reduction 
we want to get, a new network needs to be created and this is not feasible for the 
amount of nodes we may get. 

Simulating the probability graph 

After reading several books (including Bishop, 2007), the idea came to mind to solve 
this network of probabilities by means of simulation. The underlying assumption is 
for each node we know the probability conditioned to the full situation. Here we 
again tried to use conditional probability to find a formula that would allow updating 
a node. 

When rearranging the formulas, the aim was to update a node only using the 
probabilities of the neighboring nodes one layer below and above. It was possible to 
solve this formula using an approximation: 

A B C D

AB BCAC CD BDAD

ABC ABD ACD BCD 

ABCD
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(ܺ|ܥܤܣ)ܲ = ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ ܤܣ)ܲ ∧ ܥܤ ∧  (ܺ|ܥܣ
= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ ∧ ܤ ∧ (ܺ|ܥ  

= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ  

= ൣܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ܲ(¬ܻܥܤܣ: ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)+ ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬)¬ ∀ܻ)൯൫1− :ܻܥܤܣ¬)ܲ ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)൯൧ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ  

= [ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ܲ(¬ܻܥܤܣ: ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) + 1∙ ൫1 − :ܻܥܤܣ¬)ܲ ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)൯] ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ  

≈ ൤ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ ෑ ܤܣ|ܻܥܤܣ¬)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)∀௒ + 1− ෑ ܤܣ|ܻܥܤܣ¬)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)∀௒ ൨ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ  

= ቈܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ ෑ (1 − ܤܣ)ܲ(ܺ|ܻܥܤܣ)ܲ ∧ ܥܤ ∧ ௒∀(ܺ|ܥܣ ) + 1
− ෑ (1 − ܤܣ)ܲ(ܺ|ܻܥܤܣ)ܲ ∧ ܥܤ ∧ ௒∀((ܺ|ܥܣ ቉ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ  

The approximation is because we just did not see another way but to assume 
independence in this case. ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ is the remaining 
unknown term which can be recursively solved as follows: 

Let ௜ܻ be the different possible ܻ-Elements where ݅ = 1, … , ݊ and ݊ is the amount of 
different possibilities for ܻ. P൫ABCหAB ∧ BC ∧ AC ∧ X ∧ (¬ABCY: ∀Y)൯ = P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABCY: ∀Y)൯= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܥܤܣ¬) ୧ܻ: i = 1, … , k))= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − P൫ABCY୩หAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯1 − P൫ABCY୩หAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − P(ABCY୩|AB ∧ BC ∧ AC)1 − P(ABCY୩|AB ∧ BC ∧ AC)= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − ୔(୅୆େଢ଼ౡ)୔(୅୆∧୆େ∧୅େ)1 − P(ABCY୩)P(AB ∧ BC ∧ AC)  

The only thing that is not given now is the probability of a reduction when not 
knowing anything, for example ܲ(ܥܤܣ ௞ܻ). This value will be learned during the 
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process of the reduction and can be estimated with different criteria. A simple 
assumption would be that all reductions of a given length follow the same 
distribution. 

As a starting distribution for the currently implemented learning table we used: ݈଴ = 1      ݈௜ = (݈௜ିଵ)௜ ∗ 0.5 

Where ݅ > 0 and the index represents a reduction of that length. This table can be 
easily updated by averaging the values with the reported ones. Another idea we had 
was the distance to observed nodes as a learning table. We can basically put any 
criteria as an underlying distribution for the unknown nodes. 

With this formula the implementation is very straightforward. The nodes are updated 
in each simulation cycle using the formula and when the probabilities converge or we 
reached a maximum of runs the simulation is aborted. A simply iteration of the 
remaining solutions combined with the formula to maximize the information gain 
with probabilities returns the best reduction when using this strategy. 

Unfortunately, we realized, that due to the topology analysis we do prior to executing 
a reduction strategy, the formula cannot be applied to the problem so easily, as our 
theorem that smaller and bigger reductions are included does not hold. We can 
circumvent this by not using such an invalid node from the graph and instead define 
this node by going one layer further and so on. This should allow for a proper 
implementation, but we did not manage to do so in time. 

4.5 Benchmarking 
After developing all these different reduction strategies it was critical to build a 
benchmarking framework that allows a fast comparison of the strategies. As reduction 
runs can take several days or might never finish using certain unsuited strategies, we 
had to cache the results of the calculations and the costs for accepting or rejecting 
were averaged. This allowed easy emulation of the strategies and quite accurate 
comparison. 

To do a thorough benchmarking of the reduction strategies, we implemented a 
random network generator and a random solution generator. The random networks 
were generated using a random amount of states and random reactions between the 
states following a given distribution. For each reaction a random target and several 
origins were chosen. However, as we were unsure about the special attributes of 
biological models, we opted to take three biological models we already worked with as 
our benchmark models. 

Using these models we built random results with a probability value following a 
uniform distribution from 0.00 to 1.00, indicating how many solutions we get in 
relation to the total amount of possible models in the beginning. For example when 
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generating solutions for a value of 0.75 case, we will randomly pick a remaining 
possibility from the network which will be set to valid with a 75 percent chance and 
rejected with a 25 percent chance. This step is repeated until there are no more 
remaining reductions. 

Strategy Time to solve with 
high rejection cost 

Time to solve with 
equal costs 

Greedy 102 5 
BFS 115 26 
BFS-Reverse 898 26 
DFS 307 9 
Heuristic ? ? 

Figure 5: Benchmark of the reductions strategies 

The benchmarking results (see Figure 5) were created with 3 different models and 20 
different solutions for each model and then averaged over 10 runs. Each time value in 
the table indicates the amount of minutes the reduction strategy would have needed 
to find the solution and test all models. 

While the BFS strategies have the same runtime with equal costs when accepted and 
rejected, the reverse BFS needed much more time to find the solution when the costs 
for a rejection are ten times as high, since it would run into more costly rejections on 
its way to calculate the solution. 

5. Output of the reduction toolbox 
After a run of the reduction toolbox and all possible reductions have been tested for 
validity, we can directly retrieve the result by intersecting the topology with all 
working reductions: ݐ݈ݑݏ݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ ∧   ݀݁ݐ݆ܿ݁݁ݎ¬
To get a list of patterns that represent all possible models that fulfill this variable, we 
use the BDD-Allsat operation like before (4.2 Maximum average information gain). 
This returns a matrix where each row is a solution and a cell indicates whether an 
element/parameter is included in this solution. 

There are three possible values a cell can assume. It is zero when the element is 
excluded from the solution, one when it is included and minus one when it can be 
both. In our case a possible solution always includes all supersets, meaning that we 
can simply replace all -1 values by 0. 

After we replaced all wildcards by zero, there are rows that are redundant and 
included by others. A solution ݏଵ is included by another one ݏଶ when the only 
differences are ones in ݏଵ where there are zeros in ݏଶ. A solution ݏଵ can be removed 
when the following is true: 
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,ଵݏ∃ ଶݏ ∈ ଵݏ :ݏ݊݋݅ݐݑ݈݋ݏ ≠ ଶݏ ∧ ∀݅ = 1, … , ଵ,௜ݏ :݊ = 1 ∨ ଵ,௜ݏ =  ଶ,௜ݏ
The cleaned up matrix with all solutions will be referred to as the solution matrix. 

5.1 Decision Tree 
As the solution matrix can get very long for many solutions, a clearer representation 
for the results was necessary. This can be achieved by transforming the solution 
matrix into a decision tree, which is a good visual representation of the solutions. 
Figure 8 shows an example of such a tree which really improves the readability of the 
output. 

At each node in a decision tree, we decide either to take an element or to go another 
way and not collect the element at this step. A complete valid model is reached, 
when walking from the root to a leaf of the tree and including every visited node into 
the model. Alternatively we can also create the opposite tree which tells us what 
elements not to take for a model. 

To create the decision tree, we used a divide and conquer approach that separates the 
rows into two subgroups at each step, building a node in the tree. The two subgroups 
stand for either taking an element or not taking it. The remaining rows of each 
subgroup are then again split recursively. 

Which element we split, is determined by maximizing the information gain. There are 
different information gain criteria, but when creating a decision tree a well-
established one is entropy. The general definition in this case is, that “the expected 
information gain is the change in information entropy from a prior state to a state 
that takes some information as given” (Wikipedia, 2011) (ݔ)ܪ = ݔ ∗ logଶ (݁)ܩܫ ݔ = (ݎ)ܪ − ൬௡೐௥ ∗ (௘݊)ܪ + ௥ି௡೐௥ ∗ ݎ)ܪ − ݊௘)൰  

Where ݎ is the amount of rows in the current subgroup and ݊ are the number of ones 
in the examined column. The information gain will be maximized by trying 
every ݁ ∈  .ݏݐ݈݊݁݉݁ܧ

In our case, we can also leave out the explicit option where we do not take an 
element, as reaching a leaf without visiting an element implies that it was not taken. 
Additionally, chains with no options can be merged into one node to minimize the 
height of the diagram. 

5.2 Boolean formula 
The decision tree can easily be transformed into a representation of the solutions as a 
Boolean formula. When visiting the nodes of the tree generated in 5.1 Decision Tree 
with a depth-first-search we simply attach a Boolean AND as well as a bracket 
opener if we go one layer deeper. We add an OR operation if we go up and 
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immediately down again. Closing brackets are appended to the Boolean string every 
time we go up a layer. 
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6. Application of the Reduction Toolbox 

6.1 Setting up the reduction method 
Even though the core of the toolbox was implemented in Java, we mainly focused on 
an easy Matlab accessibility. This was done to support the popular SB format for 
ODE models (see 3.4 ODE-model analysis). 

In the following we will discuss a quick example in Matlab on how to use the toolbox: 

addpath ../redbox 
 
% Model 
sbm = SBmodel('model.txt'); 
SBPDmakeMEXmodel(sbm, 'model_mex');  
  
% Setup reducer 
inputStates         = { 'y9' }; 
outputStates        = { 'y1', 'y7' }; 
roots               = SBparameterZeros(sbm); 
red                 = REDsbmodelReducer(sbm, inputStates, outputStates, roots); 
 
% Constraints 
red.addConstraint(red.getVar(4-1).not()); 
 
% Process 
cutoff              = 154; 
optimizer           = @(x)user_fitting(x, cutoff); 
solutions           = REDcalculate(red, 'incl-bfs', optimizer, cutoff, 1); 
 
% Output 
display(solutions); 
display(red.getSolutionsFormula(true)); 
red.drawSolutionsDiagram(true, true, 'result.jpg', 150, 100); 
display(red.getSolutionsList()+1); 
 
In the beginning of the code we basically add the reduction toolbox to our path and 
open a model file, which is compiled into a MEX-file to allow for faster simulation in 
the error function. In the next step we let the toolbox analyze the network topology 
by setting our input and output states (see 3. Analyzing the network topology). The 
zero points which nullify the parameters must also be provided, but can be 
automatically retrieved when the model uses reactions. In addition we can define 
constraints by getting a variable using the JavaBDD variables. 

The main process is started using the REDcalculate function by providing a user 
defined error function and a cutoff. In most cases the error function has to be nested 
into parameter optimizer function which tries to minimize the error function. See the 
examples on how to setup a parameter optimizer and an error function. After all 
calculations are done, the different representations discussed in 5. Output of the 
reduction toolbox are used as an output. 

In the example we chose ‘incl-bfs’ as a strategy, which will perform a BFS search 
while following the theorem of included sub and super-sets for reduction. We 
implemented the following different strategies: 
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What all these results have in common is an incoming reaction at C-10 with k5 or at 
C-12 with k4, which works for most of them. In some cases it is even enough to only 
have input reactions at the end. It seems that starting from C-12, there is definitely 
some input missing, as we always need more concentrations when we further get 
down the chain. 

However, we have to note that the error was only lowered by an average of 25% for 
the different data sets. This might not justify adding an additional parameter when 
we want to keep the model complexity to a minimum. 

As our results were a bit unspecific and did not directly indicate which model to use, 
a comparison run was made using BCI, a method which basically does a similar 
calculation, but it punishes for every additional parameter we add so we can simply 
use one parameter optimizer. The results of BCI confirmed our results in almost 
every case, since the best results indicated an input reaction at C-12 and C-10 or C-2, 
or no input parameter at all as the punishment was very high.  

6.4 Compartment model for Ingestion of Zirconium in Human Body 
In an interesting talk by Sabine Hug we heard that she and Daniel Schmidl, two 
other group members of the CMB of the Helmholtz Zentrum, were working on a 
compartment model (called HMGU) for the biokinetics of zirconium in the human 
body after ingestion (Schmiedl, Hug, Bo Lie, Greiter, & Theis, 2011). This model was 
compared with another one that models the same process but is from the 
International Commission on Radiology Protect (IRCP). Both models contain only 
reactions have Mass action kinetics and each reaction only has one substrate and one 
product. 

When we approached them they were interested to see in what kind of model a 
reduction of a merge between the IRCP and their HMGU model would result in. 
They claimed that the HMGU model made more biological sense hoped it would be 
the result of the reduction. Further they wanted to know whether the HMGU model 
is final or whether parts of it are unnecessary for the model to reach the same cutoff.  

We used parameter estimations from prior experiments to define a 95% confidence 
interval as an upper bound for our parameter values. The lower value was not used 
as we have to allow the parameters to reach zero. Unfortunately both the IRCP and 
HMGU had a similar error when sum of squared residuals (SSR) over all patients as 
an error function. Thus a reduction for the merged models does not make sense as it 
would in the best case only return both models separately. 
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Unfortunately we did not manage to implement the heuristic strategy in time. The 
approximation of the model probabilities in combination with the maximum 
information gain seemed to be the best way to go. We still hope that our heuristic 
will be able to drastically improve the runtime of the reduction toolbox and make the 
method applicable even for a great amount of initial possibilities. 

Still, the current implementation the toolbox is very versatile and we feel it is quite 
easy to apply the reduction method to most network based problems. In the very end 
we even decided to split the main theorem of inclusion from the core reduction 
toolbox. This allows for a general application of the method, where we can do explicit 
model reduction given that we define enough constraints to keep the amount of 
possible models to a minimum. 

So far we only allowed the removal of different reactions in the reduction method. 
The next step would be to include additional reduction operations, such as the 
merging of different states. To add this option, we would need to define the merging 
of two states with simple Boolean logic. 

We could define a series of Boolean variables that indicate whether two states are 
merged in a pairwise manner. To account for all possible mergers, we need ௦∗(௦ିଵ)ଶ  
variables, where ݏ is the amount of states. In case we merge three states together, we 
would only need two variables and not three to represent the merger. Therefore we 
perform a prior analysis of all possible combinations of values for the variables. For 
our example we would restrict the third variable to true. Additionally, we can 
prohibit self-loops of states and other motives that would not make sense in a 
biological way. 

This structure would allow an easy representation of the possible mergers. However, 
the method would only be feasible if we could somehow apply the theorem of 
inclusion to the merging of states. This would depend highly on the type of model 
and at this point we have not done enough investigation into the issue. 

To conclude this work, we think that the main objective of building a toolbox for the 
systematic reduction of models was achieved successfully. During the development, 
the toolbox was extensively tested and was able to provide valuable input for other 
groups as shown in the results of the examples. We feel the method might be a 
valuable tool for other research groups that work on developing models to describe 
biological systems.  
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