

Wi
Lehrst

S

ssensch
tuhl für

System

Aufgab
Betreu

Abgab

haftsze
r Genom

Bac
in B

A To
matic

Ma

bensteller:
er:

edatum:

entrum
morient

chelorar
Bioinform

oolbox
Mode

anuel Kro

: Prof. F
Prof. F
Dennis
15.09.2

Weihe
tierte B

rbeit
matik

x for
el Red

oiss

Fabian Th
Fabian Th
 Rickert
2011

ensteph
Bioinfo

ductio

eis
eis

han:
ormatik

n

Ich ve
selbstä

Que

15.09.2

ersichere, d
ändig verfas
ellen und H

011

2

ass ich dies
sst und nur
ilfsmittel v

 Man

se Bachelor
r die angeg
erwendet h

uel Kroiss

rarbeit
ebenen

habe.

 .

3

Abstract

Based on previous work by D. Rickert at the Helmholtz-Zentrum München, we
developed a toolbox for the automated reduction of biological models using Boolean
logic. The method is very versatile and can be used to reduce any set of elements
with constraints that can be expressed in Boolean algebra. We focused our work on
the reduction of interaction networks, where usually a costly simulation using
parameter optimization is required to validate or invalidate a reduced model.
However, we designed a method that can automatically deduce constraints from the
network topology to strongly limit the amount of possibilities that need testing.
Further, as a simulation usually requires parameter optimization, certain models can
be skipped when others are accepted or rejected. Finally, since the order in which we
test the possible models greatly influences the computational costs, we developed
strategies to improve the order of testing. Our toolbox is easily applicable with a
simple Matlab interface and direct support for the SB model format. We put a special
emphasis on providing various options to represent the different resulting models.
The toolbox was exhaustively benchmarked and successfully used to help in the
development of a fatty acid ߚ-oxidation model and to give valuable input in the
reduction of a zirconium ingestion compartment model.

Aufbauend auf bisheriger Forschung von D. Rickert am Helmholtz-Zentrum München
haben wir eine Toolbox für die automatische Reduktion von biologischen Modellen
mit Hilfe von boolescher Logik entwickelt. Die Methode ist sehr vielseitig gestaltet
und kann für die Reduktion einer jeden Menge von Elementen, auf welcher sich
Bedingungen in boolescher Algebra definieren lassen, verwendet werden. Der
Schwerpunkt unserer Arbeit lag auf der Vereinfachung von Interaktionsnetzwerken,
für welche meist eine aufwendige Simulation mit Parameteroptimierung benötigt
wird, um ein reduziertes Modell auf seine Korrektheit zu prüfen. Jedoch war es uns
möglich eine Methode zur automatischen Herleitung von Bedingungen anhand der
Netzwerktopologie zu gestalten, welche die Anzahl an möglichen Modellen stark
einschränkt. Zusätzlich können, da eine Simulation meist Parameteroptimierung
benötigt, bestimmte Modelle übersprungen werden falls andere bereits geprüft
wurden. Schlussendlich hat die Reihenfolge in der wir die Kombinationen testen einen
starken Einfluss auf die Laufzeit, weswegen wir Strategien entwickelt haben um diese
Reihenfolge zu verbessern. Allgemein ist unsere Toolbox, durch ein einfaches Matlab-
Interface und eine eingebaute Unterstützung für das SB Format, sehr leicht
anzuwenden. Besonderer Wert wurde auf die Darstellung der Ergebnisse eines
Reduktionsdurchlaufs gelegt, wodurch eine Vielzahl von übersichtlichen
Repräsentationen entstand. Die Toolbox wurde ausgiebigen Benchmark-Tests
unterzogen und konnte bereits erfolgreich bei der Entwicklung eines Fatty-Acid-
Oxidation Modells einen Beitrag leisten und bei der Reduktion eines Modells für den
Abbau von Zirkonium verwendet werden.

4

Contents

1. Introduction ... 5

1.1 Modeling in biology .. 5

1.2 Parameter optimization of models .. 5

1.3 Model reduction .. 6

1.4 Toolbox for systematic model reduction ... 7

2. Set based reduction based on Boolean algebra ... 8

2.1 Boolean operations for reductions ... 9

2.2 Accepting or rejecting a reduction .. 10

3. Analyzing the network topology .. 11

3.1 Reactions must be activated ... 12

3.2 Output states must be activated .. 12

3.3 Reactions must have an impact .. 12

3.4 ODE-model analysis ... 13

4. Reduction Strategies .. 13

4.1 Simple BFS and DFS approaches ... 13

4.2 Maximum average information gain ... 14

4.3 Heuristic approach .. 15

4.5 Benchmarking ... 18

5. Output of the reduction toolbox .. 19

5.1 Decision Tree .. 20

5.2 Boolean formula ... 20

6. Application of the Reduction Toolbox ... 22

6.1 Setting up the reduction method .. 22

6.2 Determining a cutoff value ... 23

6.3 Modeling the dynamics for fatty acid β-oxidation .. 23

6.4 Compartment model for Ingestion of Zirconium in Human Body 26

7. Discussion and perspectives ... 27

References .. 29

Table of Figures ... 30

5

1. Introduction

1.1 Modeling in biology
The modeling of biological systems has become a main topic in bioinformatics. High
throughput methods such as micro array analysis or co-immunoprecipitation produce
large amounts of data. Unfortunately building quantitative models describing the
biological data has proven to be very difficult, as there are still many processes that
cannot be measured, especially not inside a living organism.

Instead most measurements are performed on isolated compartments so called in
vitro experiments or merely on chips. However, particularly in the case of chips, the
interactions are highly theoretical as the compounds might never meet in reality and
therefore the interaction would never take place. In a living organism, the interacting
species may be separated in different compartments or involved in completely
different pathways.

Still measuring the concentrations of different species and determining whether a
pairwise interaction exists can be done fairly well compared to the rate of the
reaction. When it comes to the kinetics, extensive in vitro experiments emulating the
exact conditions of the interacting species would have to be done to measure how
much substrate gets processed. Therefore only vague estimates or no kinetics at all
are known for most reactions.

1.2 Parameter optimization of models
The rate or kinetic of a reaction is usually referred to as parameter. Since the
parameters of a model are usually unknown due to experimental limits, we look for
ways to circumvent this problem. What we usually did not use up to this step when
building a model are the concentration measurements of the species which are
performed over a series of time.

The measured concentrations can be compared with predictions we make using the
model and certain parameters, usually by means of simulating the model. We define
this comparison as an error-function ݂ that returns a measure of distance for the
prediction of our model with parameter values ݌ଵ to ݌௡ and the expected data. If
defined like this, a high value generally stands for a bad prediction. ݂(݌ଵ, … , (௡݌ = ݎ݋ݎݎ݁

This comparison between predicted and expected data is called a fit. It is clear that
only certain combinations of parameter ranges will produce good fits with a low error
value. Finding these combinations can be transferred to the field of parameter
optimization, a very developed field of numerical analysis in informatics.

A parameter optimizer will, in theory, try all possible combinations of parameters
and attempt to minimize the result of the error function. As this is not feasible and

not eve
of the s
case th

Simulat
finds a
algorith
advant
shown

The re
produce
there is
results
examin
functio
possibly
ones.

1.3 M
We alr
conditio
occur. M
redund
kinetics

Anothe
modele

en finite in
space with
e best fit.

ted anneal
good solut

hm would
age that i
in Figure 1

sult of an
e the best
s no guara
of a mere

ning the co
n, this met
y describe

Model red
ready disc
ons in a c
Models tha
ant interac
s.

er case tha
d as two d

Lo

a continuo
minima (s

Figure

ling is a g
tion and d
stop at t

it can esc
1.

optimizat
fit possibl

antee that
error min
mplete par
thod shoul
measured

duction
cussed tha
cell properl
at are cons
ctions and

at we did
different sta

ocal Minim

ous space,
see Figure

1: Simulat

good exam
oes not sca
he first lo
ape such

tion metho
e. Unfortu
the found
imization h
rameter sp
ld preferab
data, but

at chips a
ly. This le
structed fro
even wron

d not discu
ates, when

ma

6

the optim
1) and foll

ted anneal

mple for a
an the who

ocal minim
local mini

od is a set
unately due
solution is
have no bi

pace or incl
bly only be
t not claim

and in vit
eads to un
om the da
ng if we on

uss and m
n it is in fac

izer will at
low them t

ing (Dama

parameter
ole space. W

ma, simulat
ima by pe

 of param
e to the na
s really the
iological re
luding oth
e used to c
m that the

ro experim
confirmed
ta would t

nly allow a

might occu
ct a single

Global Mi

ttempt to a
to their hig

a, 2009)

r optimizat
While a sim
ted anneali
erforming

meters that
ature of th
e best one.
elevance. T
er constrai
heck wheth
parameter

ments cann
reactions

then be ove
ctive react

ur is a com
compound

inima

approxima
ghest point

ation meth
mple hill c
ing has th
chaotic ju

should in
he approxim
. Furtherm
Therefore,
ints into th
her a mod
rs are the

not replic
that migh
erly compl
tions with

mpound w
d.

te areas
t, in our

od that
climbing
he great
umps as

n theory
mations,
more the
without
he error
el could
correct

ate the
ht never
lex with
positive

which is

7

In model reduction, the goal is now to clean up and remove or modify these
unnecessary parts. The result will be a less complex model with fewer reactions or
states. A common approach to do this is to follow a rule based system that detects
certain motifs and transforms then into smaller ones. While this method is very
simple and fast, it holds many disadvantages. An example is that certain motifs
might only be applicable for specific network types or may perhaps not be found at
all. Furthermore the order in which the motifs are transformed could result in
different outcomes which are often not considered.

A more sophisticated approach would be to perform all possible reductions and check
all smaller models individually. In order to do this we need to define a finite space of
possible models. While merging states is possible, we first only focused on the
operation of removing a reaction. For a model with 20 reactions, this will still lead to 2ଶ଴ − 1 different combinations of reactions that can be removed, which all require
testing when no rules are defined.

To test whether a reduction is valid, we can simply perform a parameter optimization
on the sub-model and compare it with the original one. If the result is not worse than
a specific cutoff value, then it will be considered valid. Obviously, checking all
possible reductions is not feasible in most cases, only perhaps on very small models or
ones with many constraints.

However, since we perform a parameter optimization to analyze whether the model is
valid, we can use the fact that the optimizer will try all possible values for a
parameter, even the one nullifying the effect of the parameter. Therefore when we try
to remove additional parameters, the result of the error function can only be equal or
worse, given that the optimizer performs correctly.

Considering this, if a reduction now turns out to be invalid, it will include all sub-
models where we remove additional parameters. In parallel, when the error function
classifies a reduction as valid, the models where we remove less parameter will also be
valid. This is the fundamental theorem of this method that makes a complete model
reduction possible.

1.4 Toolbox for systematic model reduction
The focus of our work was to build a toolbox that allows the automated reduction of
such models with the defined operations and our core theorem.

Dennis Rickert already established the core ideas of this method with set based
reduction, binary decision diagrams and topology analysis in his bachelor thesis on
empirical reduction of signaling networks (Rickert, 2009). Based on these ideas, we
simplified and rebuilt the methods as a reference implementation for a well-structured
base of the reduction framework.

8

Around this core we added algorithms and crucial strategies to allow for an easy to
interface and fast end user application of the method. A run of the reduction method
can be structured the flow chart depicted in Figure 2.

Figure 2: Flowchart of the reduction method

This figure is just to convey a quick overview of the toolbox and its structure, all
parts will be explained in detail. Basically, if a network exists, constraints will be
deduced from its topology and given to the core of the method defines all the rules
based on Boolean logic. The analysis is necessary to limit the amount of possible
reductions in order for the toolbox to be usable on medium size networks. This core is
so versatile that it could also be applied on a simple set of elements, while the
constraints could be defined by the user himself.

The reduction strategy repeatedly picks one of the remaining untested reductions to
test with the error function. A clever strategy does not pick the reductions randomly,
but tries to maximize the information that is gained when the reduction is accepted
or rejected. For each picked element, the result will be reported to the core reduction
method. After all calculations are done, there might be many possible models. We
put a special emphasis on designing algorithms that give a clear and quick
representation of these results.

2. Set based reduction based on Boolean algebra
The finite space of possible reduced models is the list of all combinations of reactions
that can be removed. The attempt of removing a combination can be generalized as a
set based reduction. While reactions/parameters are simply different elements, for
example A, B, C and D, an actual reduction is defined as a set of these elements e.g.
{A,B,D} which will be called ABD as an abbreviation.

In search for a basic structure that allows for an efficient representation of these sets,
as well as combining them with other rules and constraints that describe the network
topology, we decided to use Boolean algebra. A direct way to implement Boolean
formulas and their operations are Binary Decision Diagrams (BDD). For the toolbox
we used the JavaBDD implementation (Whaley, 2007).

Core: Boolean Set-based
reduction

Network topology analyzation

Output formatting

Reduction Strategy

User defined
error function

9

We defined three Boolean formulas which hold different information and when
combined, allow us to efficiently identify the whole solution space of the reduction.

 the constraints that can be made using the network topology of the :ݕ݃݋݈݋݌݋ݐ •
model

 all tested valid sets and their subsets :݀݁ݐ݌݁ܿܿܽ •
 all tested invalid sets and their supersets :݀݁ݐ݆ܿ݁݁ݎ •
The topology variable is filled in the network analysis of our method and defines all
combinations that could work and where the models make sense. For the reduction
results we took too separate variables accepted and rejected are filled by the results
when using the error function.

While it is obvious that all formulas could be combined into one variable to define
our solution space, we needed to keep them separately as the information was treated
differently in the reduction strategies.

2.1 Boolean operations for reductions
We will now try to convey a quick overview of how to combine our topology accepted
and rejected variable to get the different information spaces needed in the course of
the reduction method.

As we established, a reduction can be defined as a set of elements. To check whether
a reduction has already been accepted or rejected, we take the reduction and
transform it into its Boolean representation. ݊݋݅ݐܿݑ݀݁ݎ = ሥ ݁௘∈ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦ ∧ ሥ ¬݁௘∈ா௟௘௠௘௡௧௦\ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦

To test whether this reduction is rejected, we can simply combine this variable with
the topology and the rejected combinations: (݊݋݅ݐܿݑ݀݁ݎ)݀݁ݐ݆ܴܿ݁݁ݏܫ = ∧ ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݆ܿ݁݁ݎ ݊݋݅ݐܿݑ݀݁ݎ

Same can be done to check if it was accepted: (݊݋݅ݐܿݑ݀݁ݎ)݀݁ݐ݌݁ܿܿܣݏܫ = ∧ ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ ݊݋݅ݐܿݑ݀݁ݎ

In the reduction strategy we often need to enumerate all remaining reductions that
still require testing. For this we do not need to check every reduction individually,
but can simply transform combine the spaces as follows and get all satisfying
combinations of the Boolean formula (All-SAT). ݃݊݅݊݅ܽ݉݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ¬ ∧ ݀݁ݐ݆ܿ݁݁ݎ¬

Finally when all reductions have been tested we get our final space and perform an
All-SAT operation again.

10

ݐ݈ݑݏ݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ ∧ ݀݁ݐ݆ܿ݁݁ݎ¬
2.2 Accepting or rejecting a reduction
A reduction is a set of elements we want to reduce and can either result in a valid or
invalid model. When the reduction is valid, then automatically all subsets of this
reduction-set have to be valid as well, since the parameter optimizer also allows for
removing elements.

Similarly if the reduction has turned out to be invalid, then we can assume that all
supersets are also invalid for the same reason. By using the parameter optimizer, we
guarantee that subsets always have to perform equal or better and supersets always
have an equal or worse result.

We will try to illustrate this on a quick example for four elements A, B, C, D and
their combinations that we want to test for reduction. In a reduction, for each
element we can either decide to include an element or not, leading to 2ସ = 16
different reductions. As a given situation we assume that we are somewhere in the
middle of our reduction process and the reductions B, CD were valid and ABC, BCD,
ABCD are invalid (see Figure 3).

Figure 3: Example for a reduction graph when testing BC

When the test of the reduction AB identified a valid model, we can skip the
reductions A, B, {} because they are subsets of AB. If reducing AB was invalid then
we can skip ABC, ABD, ABCD since they are supersets of AB. Skipping a result

A B C D

AB BCAC CD BDAD

ABC ABD ACD BCD

ABCD

11

reduction means that it will be added the list of accepted or rejected reductions. As
keeping every reduction individually in a list is very inefficient, the lists are described
by Boolean formulas.

For the valid reductions the representing formula is called ܽܿܿ݁݀݁ݐ݌ and can be
constructed by or-connecting the working reductions and their subsets. The subsets
are represented by AND-linking all elements that are not in this reduction. ܽܿܿ݁݀݁ݐ݌ = ଵ݀݁ݐ݌݁ܿܿܽ ∨ ଶ݀݁ݐ݌݁ܿܿܽ ∨ … ∨ ௡݀݁ݐ݌݁ܿܿܽ ௡݀݁ݐ݌݁ܿܿܽ = ሥ ݁௘∈஺௟௟ா௟௘௠௘௡௧௦\ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦

The invalid reductions are described be the ݀݁ݐ݆ܿ݁݁ݎ formula and is basically and
OR-connection of all reductions-sets. ݀݁ݐ݆ܿ݁݁ݎ = ଵ݀݁ݐ݆ܿ݁݁ݎ ∨ ଶ݀݁ݐ݆ܿ݁݁ݎ ∨ … ∨ ௡݀݁ݐ݆ܿ݁݁ݎ ௡݀݁ݐ݆ܿ݁݁ݎ = ሥ ݁௘∈ோ௘ௗ௨௖௧௜௢௡ா௟௘௠௘௡௧௦

3. Analyzing the network topology
In interaction networks, we try to decrease the amount of possible reductions we have
to test by defining a series of constraints from the network. This is necessary, as a
testing a model is very computationally intensive due to the parameter optimization
and the problem would not be feasible for an unconstrained set of elements. Dennis
Rickert used a concept called controllability and observability (Rickert, 2009), which
we transferred to our work. However, we used different constraints which we feel are
easier to understand and implement.

In a network the compounds are often called states. We declare a subset of states as
input and another one as observed/output states. Input states are compounds with a
beginning concentration before the simulation starts, while output states are the
compounds that are measured and where we expect a resulting concentration. Note
that subsets can overlap.

The three constraints that we defined are:

A) Every reaction must originate from a state that is activated.
B) Every output state must be at least activated by one input state.
C) Every reaction must originate from a useful state; one that is activates an

output state or is involved in a reaction of such a state.

12

3.1 Reactions must be activated
The first topological basically states that for every reaction that is not reduced, there
must be a possibility that it will be used at some point. In order for it to be used, one
of the origin states must reach a concentration higher than zero, meaning it must be
activated. This rule can be recursively defined as follows. ሥ .ݎ)ܴܿ݁݁ݒ݅ݐܿܣ ,݊݅݃݅ݎ݋ ሼ ሽ)௥∈௎௡௥௘ௗ௨௖௘ௗோ௘௔௖௧௜௢௡௦ = ݁ݑݎݐ

,݁ݐܽݐݏ)ܴܿ݁݁ݒ݅ݐܿܣ (݀݁ݐ݅ݏ݅ݒ
= ൞ ∋ ݁ݐܽݐݏ ∋ ݁ݐܽݐݏ݁ݏ݈݂ܽ :݀݁ݐ݅ݏ݅ݒ ሧ :݁ݏ݈݁݁ݑݎݐ :ݏ݁ݐܽݐܵݐݑ݌݊ܫ .ݎ)ܴܿ݁݁ݒ݅ݐܿܣ ,݊݅݃݅ݎ݋ ݀݁ݐ݅ݏ݅ݒ ∪ ௥∈ூ௡௖௢௠௜௡௚ோ௘௔௖௧௜௢௡௦(௦௧௔௧௘) (݁ݐܽݐݏ

The case where a reaction has several substrates/origins is not shown in the formulas
for simplicity but is covered in the implementation as reactions can have different
combinations of origin states to be activated.

3.2 Output states must be activated
Secondly every output state must be connected to at least one input state. There
must be a directed way leading from an input state to an output state, as otherwise
the output state could never get a concentration below zero. ሥ ,݋)ܴܿ݁݁ݒ݅ݐܿܣ ሼ ሽ)௢∈ை௨௧௣௨௧ௌ௧௔௧௘௦ = ݁ݑݎݐ

3.3 Reactions must have an impact
The last rule states that every reaction must have some impact on an output state;
otherwise it has to be removed. If the origin state of the reaction never activates an
output state or is never involved in a reaction with a state that does, then its
concentration does not make a difference for the observed states. Reductions which
have reactions without impact are not valid and can be skipped. ሥ ሧ ௢∈௥.௢௥௜௚௜௡௦௥∈ோ௘௔௖௧௜௢௡௦(݋)ܴ݈ܿ݁ݑ݂݁ݏܷ = ݁ݑݎݐ

,݁ݐܽݐݏ)ܴ݈ܿ݁ݑ݂݁ݏܷ (݀݁ݐ݅ݏ݅ݒ
= ۔ۖەۖ

ۓ ∋ ݁ݐܽݐݏ ∋ ݁ݐܽݐݏ݁ݏ݈݂ܽ :݀݁ݐ݅ݏ݅ݒ ሧ :݁ݏ݈݁݁ݑݎݐ :ݏ݁ݐܽݐܵݐݑ݌ݐݑܱ ሧ ,݊)ܴ݈ܿ݁ݑ݂݁ݏܷ ݀݁ݐ݅ݏ݅ݒ ∪ ௡∈௥.௢௥௜௚௜௡௦ ∪ ௥.௧௔௥௚௘௧௦௥∈ை௨௧௚௢௜௡௚ோ௘௔௖௧௜௢௡௦(௦௧௔௧௘)(݁ݐܽݐݏ

13

3.4 ODE-model analysis
These above defined rules for the network topology can be applied to most models
governed by interactions. Ordinary Differential Equations are one possible way of
describing the reactions. Generally, an ODE-model in the SB-Toolbox format
contains states, reactions, variables and parameters (H. Schmidt, 2005).

While separately defining reactions and variables usually results in a clean and
structured model, one can also solely use states and parameters. As we want to
account for the most general case, we first resolve all reactions and variables used in
the definitions of the states, resulting in a model where we only have states and
parameters.

To derive the activating reactions, we have to investigate the influence of each
parameter on a state. We set all parameters of the reactions except one to zero or its
nullifying value. Assuming the parameters are independent, we get the direct impact
of the parameter on the state and all states which are involved in the reaction.

As this part is conveniently implemented in Matlab, we can simply check if the
formula can ever get above or below zero, indicating whether the influence of this
formula on the states is activating, inhibiting or both.

4. Reduction Strategies
Clearly the order in which we try the reductions greatly influences the total runtime
of our reduction method. A reduction strategy is a method that simply picks the next
reduction attempt and determines the order in which we visit the reduction graph
discussed in Figure 3. Two simple methods for visiting the graph are BFS or DFS.
However, these have very poor performance and a strategy should maximize the
information gain, which of course can only be estimated using heuristics.

4.1 Simple BFS and DFS approaches
Very simple approaches are the two common methods for graph traversal, namely
breadth first search and depth first search. In the case of model reduction, BFS takes
the sets of reduction in order of their size. When doing the usual BFS, we would first
take combinations reducing only a few elements and later the ones with many
elements.

This method is good when we only expect very few reductions to work or almost all
of them. In case many reductions are possible, we simply reverse the BFS to start
with long reductions first and taking short reductions at the end. Unfortunately in
other cases especially when the result is unknown, both methods have a very bad
performance, as the information gain is very little in the average case.

Depth first search is also a common method to visit the nodes in a graph. It adds
additional elements to the set of reduction and then uses backtracking if there are no

14

more elements to be added. In our test (see 4.5 Benchmarking) this strategy has not
proven to be a good reduction method.

4.2 Maximum average information gain
A very intuitive approach is to maximize the average information gain by taking a
reduction that performs well in either case, both when rejected and accepted. To
retrieve this reduction, we iterate over all reductions and see how many remaining
reductions we have when accepted or rejected.

To efficiently iterate over the remaining reductions we first perform the BDD-Allsat
operation which returns a list of patterns describing the remaining combinations.
Each pattern consists of ݊ numbers strung together, where ݊ is the number of
elements that we initially wanted to perform the reduction method on. The numbers
of a pattern are either 0 for false, 1 for true or -1 as a wildcard for either 0 or 1. Now
replacing all wildcards recursively by either a zero or one gives us all possible
combinations of remaining reductions.

Finding out the amount of reductions that can be skipped when the current reduction
is accepted or rejected could be done by assuming that it was reported and using the
Boolean formulas made in 2.2 Accepting or rejecting a reduction. Unfortunately it
turns out that this operation takes very long for great amounts of reductions.

Therefore we preprocess the patterns from the BDD-Allsat of the remaining
reductions into a directed acyclic word graph (DAWG). To first get the reductions
that can be skipped when accepted, we build a binary representation of the reduction,
which matches the BDD-Allsat format, while ones are replaced with wildcards. With
this pattern, the DAWG will be recursively visited while comparing the node value
with the respective value in the pattern. When following a branch we keep track of
the possibilities when matching wildcards in the pattern by doubling the possibilities
we found so far. We do the same process for the rejection case by simply replacing all
zeros by wildcards.

As a result we now got the two values ݊௔௖௖ and ݊௥௘௝ for each reduction, which are the
number of elements that can be skipped when accepted and when rejected. It is
obvious that these values are usually indirect proportional. If we have a high ݊௔௖௖
value, we expect a low ݊௥௘௝ value (for illustration see reduction graph in Figure 3).
Since we do not know the probability that a reduction is accepted or rejected, we
want to maximize the information gain for both cases. This is done by the following
formula: max൫݊௔௖௖ ∗ ݊௥௘௝൯
This strategy resulted in a great increase in performance and helped us solve the
Zirconium model reduction (see 6.4 Compartment model for Ingestion of Zirconium in

15

Human Body). The calculation was not finished after two days with both normal and
reverse BFS, but after an hour with this strategy.

4.3 Heuristic approach
To further improve the runtime, we wanted to calculate the probabilities that a
reduction is accepted or rejected and combine this with the number of elements that
can be skipped. Furthermore the cost if accepted or rejected will also be taken into
account, as we expect different runtimes for the two cases. Often reductions are
immediately accepted on the first optimization attempt, but we have to run it several
times when rejected if not using a deterministic parameter optimizer.

The formula we want to maximize now looks as follows:

(ܦܧܴ)ܩܫ = (ܣ)ܲ ∗ (ܦܧܴ)ܥ(ܦܧܴ)ܰ + (ܦܧܴ¬)ܲ ∗ (ܦܧܴ¬)ܥ(ܦܧܴ¬)ܰ

Predicting the costs is pretty straight forward by averaging all the costs observed so
far when accepted or rejected. In each case we not only report the result but also the
runtime and create new cost averages that will be used in the next prediction.

Calculating the probabilities was much harder and slowly became the main focus of
this bachelor thesis. It seemed very natural to apply the theory of conditional
probability to this problem, but creating a feasible solution became very hard.

As an example we will again take our four element scenario, where the elements that
we wanted to were A, B, C and D.

16

Figure 4: Reduction graph for BC with Bayes Theorem

We want to determine the probability that the reduction BC is valid, given the
situation that A and C worked and BD and ABC did not work. This can be
expressed with conditional probability as follows. ܲ[ܣ|ܤܣ ∧ ܥ ∧ ܦܤ¬ ∧ ܦܤܣ¬ ∧ ܦܥܤ¬ ∧ ܥܤܣ¬ ∧ [ܦܥܤܣ¬
The idea now was to solve this formula in a way so it could be easily computed for
every probability. We tried to rearrange the equations for a long time, but
unfortunately this did not lead to easily computable formulas. Nevertheless, one could
solve this formula using Bayesian networks, but for each probability of a reduction
we want to get, a new network needs to be created and this is not feasible for the
amount of nodes we may get.

Simulating the probability graph

After reading several books (including Bishop, 2007), the idea came to mind to solve
this network of probabilities by means of simulation. The underlying assumption is
for each node we know the probability conditioned to the full situation. Here we
again tried to use conditional probability to find a formula that would allow updating
a node.

When rearranging the formulas, the aim was to update a node only using the
probabilities of the neighboring nodes one layer below and above. It was possible to
solve this formula using an approximation:

A B C D

AB BCAC CD BDAD

ABC ABD ACD BCD

ABCD

17

(ܺ|ܥܤܣ)ܲ = ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ ܤܣ)ܲ ∧ ܥܤ ∧ (ܺ|ܥܣ
= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ ∧ ܤ ∧ (ܺ|ܥ

= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ

= ൣܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ܲ(¬ܻܥܤܣ: ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)+ ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬)¬ ∀ܻ)൯൫1− :ܻܥܤܣ¬)ܲ ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)൯൧ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ

= [ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ܲ(¬ܻܥܤܣ: ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ) + 1∙ ൫1 − :ܻܥܤܣ¬)ܲ ܤܣ|ܻ∀ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)൯] ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ

≈ ൤ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ ෑ ܤܣ|ܻܥܤܣ¬)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)∀௒ + 1− ෑ ܤܣ|ܻܥܤܣ¬)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܺ)∀௒ ൨ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ

= ቈܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ ෑ (1 − ܤܣ)ܲ(ܺ|ܻܥܤܣ)ܲ ∧ ܥܤ ∧ ௒∀(ܺ|ܥܣ) + 1
− ෑ (1 − ܤܣ)ܲ(ܺ|ܻܥܤܣ)ܲ ∧ ܥܤ ∧ ௒∀((ܺ|ܥܣ ቉ ∙ (ܺ|ܥ)ܲ(ܺ|ܤ)ܲ(ܺ|ܣ)ܲ(ܺ|ܥܣ)ܲ(ܺ|ܥܤ)ܲ(ܺ|ܤܣ)ܲ

The approximation is because we just did not see another way but to assume
independence in this case. ܲ൫ܥܤܣหܤܣ ∧ ܥܤ ∧ ܥܣ ∧ ܺ ∧ :ܻܥܤܣ¬) ∀ܻ)൯ is the remaining
unknown term which can be recursively solved as follows:

Let ௜ܻ be the different possible ܻ-Elements where ݅ = 1, … , ݊ and ݊ is the amount of
different possibilities for ܻ. P൫ABCหAB ∧ BC ∧ AC ∧ X ∧ (¬ABCY: ∀Y)൯ = P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABCY: ∀Y)൯= ܤܣ|ܥܤܣ)ܲ ∧ ܥܤ ∧ ܥܣ ∧ ܥܤܣ¬) ୧ܻ: i = 1, … , k))= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − P൫ABCY୩หAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯1 − P൫ABCY୩หAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − P(ABCY୩|AB ∧ BC ∧ AC)1 − P(ABCY୩|AB ∧ BC ∧ AC)= P൫ABCหAB ∧ BC ∧ AC ∧ (¬ABC ୧ܻ: i = 1, … , k − 1)൯ − ୔(୅୆େଢ଼ౡ)୔(୅୆∧୆େ∧୅େ)1 − P(ABCY୩)P(AB ∧ BC ∧ AC)

The only thing that is not given now is the probability of a reduction when not
knowing anything, for example ܲ(ܥܤܣ ௞ܻ). This value will be learned during the

18

process of the reduction and can be estimated with different criteria. A simple
assumption would be that all reductions of a given length follow the same
distribution.

As a starting distribution for the currently implemented learning table we used: ݈଴ = 1 ݈௜ = (݈௜ିଵ)௜ ∗ 0.5

Where ݅ > 0 and the index represents a reduction of that length. This table can be
easily updated by averaging the values with the reported ones. Another idea we had
was the distance to observed nodes as a learning table. We can basically put any
criteria as an underlying distribution for the unknown nodes.

With this formula the implementation is very straightforward. The nodes are updated
in each simulation cycle using the formula and when the probabilities converge or we
reached a maximum of runs the simulation is aborted. A simply iteration of the
remaining solutions combined with the formula to maximize the information gain
with probabilities returns the best reduction when using this strategy.

Unfortunately, we realized, that due to the topology analysis we do prior to executing
a reduction strategy, the formula cannot be applied to the problem so easily, as our
theorem that smaller and bigger reductions are included does not hold. We can
circumvent this by not using such an invalid node from the graph and instead define
this node by going one layer further and so on. This should allow for a proper
implementation, but we did not manage to do so in time.

4.5 Benchmarking
After developing all these different reduction strategies it was critical to build a
benchmarking framework that allows a fast comparison of the strategies. As reduction
runs can take several days or might never finish using certain unsuited strategies, we
had to cache the results of the calculations and the costs for accepting or rejecting
were averaged. This allowed easy emulation of the strategies and quite accurate
comparison.

To do a thorough benchmarking of the reduction strategies, we implemented a
random network generator and a random solution generator. The random networks
were generated using a random amount of states and random reactions between the
states following a given distribution. For each reaction a random target and several
origins were chosen. However, as we were unsure about the special attributes of
biological models, we opted to take three biological models we already worked with as
our benchmark models.

Using these models we built random results with a probability value following a
uniform distribution from 0.00 to 1.00, indicating how many solutions we get in
relation to the total amount of possible models in the beginning. For example when

19

generating solutions for a value of 0.75 case, we will randomly pick a remaining
possibility from the network which will be set to valid with a 75 percent chance and
rejected with a 25 percent chance. This step is repeated until there are no more
remaining reductions.

Strategy Time to solve with
high rejection cost

Time to solve with
equal costs

Greedy 102 5
BFS 115 26
BFS-Reverse 898 26
DFS 307 9
Heuristic ? ?

Figure 5: Benchmark of the reductions strategies

The benchmarking results (see Figure 5) were created with 3 different models and 20
different solutions for each model and then averaged over 10 runs. Each time value in
the table indicates the amount of minutes the reduction strategy would have needed
to find the solution and test all models.

While the BFS strategies have the same runtime with equal costs when accepted and
rejected, the reverse BFS needed much more time to find the solution when the costs
for a rejection are ten times as high, since it would run into more costly rejections on
its way to calculate the solution.

5. Output of the reduction toolbox
After a run of the reduction toolbox and all possible reductions have been tested for
validity, we can directly retrieve the result by intersecting the topology with all
working reductions: ݐ݈ݑݏ݁ݎ = ݕ݃݋݈݋݌݋ݐ ∧ ݀݁ݐ݌݁ܿܿܽ ∧ ݀݁ݐ݆ܿ݁݁ݎ¬
To get a list of patterns that represent all possible models that fulfill this variable, we
use the BDD-Allsat operation like before (4.2 Maximum average information gain).
This returns a matrix where each row is a solution and a cell indicates whether an
element/parameter is included in this solution.

There are three possible values a cell can assume. It is zero when the element is
excluded from the solution, one when it is included and minus one when it can be
both. In our case a possible solution always includes all supersets, meaning that we
can simply replace all -1 values by 0.

After we replaced all wildcards by zero, there are rows that are redundant and
included by others. A solution ݏଵ is included by another one ݏଶ when the only
differences are ones in ݏଵ where there are zeros in ݏଶ. A solution ݏଵ can be removed
when the following is true:

20

,ଵݏ∃ ଶݏ ∈ ଵݏ :ݏ݊݋݅ݐݑ݈݋ݏ ≠ ଶݏ ∧ ∀݅ = 1, … , ଵ,௜ݏ :݊ = 1 ∨ ଵ,௜ݏ = ଶ,௜ݏ
The cleaned up matrix with all solutions will be referred to as the solution matrix.

5.1 Decision Tree
As the solution matrix can get very long for many solutions, a clearer representation
for the results was necessary. This can be achieved by transforming the solution
matrix into a decision tree, which is a good visual representation of the solutions.
Figure 8 shows an example of such a tree which really improves the readability of the
output.

At each node in a decision tree, we decide either to take an element or to go another
way and not collect the element at this step. A complete valid model is reached,
when walking from the root to a leaf of the tree and including every visited node into
the model. Alternatively we can also create the opposite tree which tells us what
elements not to take for a model.

To create the decision tree, we used a divide and conquer approach that separates the
rows into two subgroups at each step, building a node in the tree. The two subgroups
stand for either taking an element or not taking it. The remaining rows of each
subgroup are then again split recursively.

Which element we split, is determined by maximizing the information gain. There are
different information gain criteria, but when creating a decision tree a well-
established one is entropy. The general definition in this case is, that “the expected
information gain is the change in information entropy from a prior state to a state
that takes some information as given” (Wikipedia, 2011) (ݔ)ܪ = ݔ ∗ logଶ (݁)ܩܫ ݔ = (ݎ)ܪ − ൬௡೐௥ ∗ (௘݊)ܪ + ௥ି௡೐௥ ∗ ݎ)ܪ − ݊௘)൰

Where ݎ is the amount of rows in the current subgroup and ݊ are the number of ones
in the examined column. The information gain will be maximized by trying
every ݁ ∈ .ݏݐ݈݊݁݉݁ܧ

In our case, we can also leave out the explicit option where we do not take an
element, as reaching a leaf without visiting an element implies that it was not taken.
Additionally, chains with no options can be merged into one node to minimize the
height of the diagram.

5.2 Boolean formula
The decision tree can easily be transformed into a representation of the solutions as a
Boolean formula. When visiting the nodes of the tree generated in 5.1 Decision Tree
with a depth-first-search we simply attach a Boolean AND as well as a bracket
opener if we go one layer deeper. We add an OR operation if we go up and

21

immediately down again. Closing brackets are appended to the Boolean string every
time we go up a layer.

22

6. Application of the Reduction Toolbox

6.1 Setting up the reduction method
Even though the core of the toolbox was implemented in Java, we mainly focused on
an easy Matlab accessibility. This was done to support the popular SB format for
ODE models (see 3.4 ODE-model analysis).

In the following we will discuss a quick example in Matlab on how to use the toolbox:

addpath ../redbox

% Model
sbm = SBmodel('model.txt');
SBPDmakeMEXmodel(sbm, 'model_mex');

% Setup reducer
inputStates = { 'y9' };
outputStates = { 'y1', 'y7' };
roots = SBparameterZeros(sbm);
red = REDsbmodelReducer(sbm, inputStates, outputStates, roots);

% Constraints
red.addConstraint(red.getVar(4-1).not());

% Process
cutoff = 154;
optimizer = @(x)user_fitting(x, cutoff);
solutions = REDcalculate(red, 'incl-bfs', optimizer, cutoff, 1);

% Output
display(solutions);
display(red.getSolutionsFormula(true));
red.drawSolutionsDiagram(true, true, 'result.jpg', 150, 100);
display(red.getSolutionsList()+1);

In the beginning of the code we basically add the reduction toolbox to our path and
open a model file, which is compiled into a MEX-file to allow for faster simulation in
the error function. In the next step we let the toolbox analyze the network topology
by setting our input and output states (see 3. Analyzing the network topology). The
zero points which nullify the parameters must also be provided, but can be
automatically retrieved when the model uses reactions. In addition we can define
constraints by getting a variable using the JavaBDD variables.

The main process is started using the REDcalculate function by providing a user
defined error function and a cutoff. In most cases the error function has to be nested
into parameter optimizer function which tries to minimize the error function. See the
examples on how to setup a parameter optimizer and an error function. After all
calculations are done, the different representations discussed in 5. Output of the
reduction toolbox are used as an output.

In the example we chose ‘incl-bfs’ as a strategy, which will perform a BFS search
while following the theorem of included sub and super-sets for reduction. We
implemented the following different strategies:

Strate
Explic

BFS

BFS (r

DFS
Greed

Heuris

6.2 De
When
filter. T
commo
10% wo
best err

Anothe
remove
usually
When w
the erro
forward

6.3 M
Our fir
β-oxida
core of
Figure

When
became
Alexan
and ou
model (

egy
cit

reverse)

y

stic

etermini
determinin

The best p
on applicat
orse than
ror for no r

er way is
ed, but a m
y want to k
we want to
or of our re
d.

Modeling t
st real app

ation, whic
f the mode
6) where a

comparing
e clear tha
dra made

ut from eve
(see Figure

Abbrevi
explicit

incl-bfs

incl-bfsre

incl-dfs
incl-greed

not done

ng a cut
ng a cutof
ossible res
ion of the
the one w
removed p

when our
model that
know what
o improve
eference m

the dyna
plication w
h was deve

el is called
a small por

g measured
at the cha
the assum
ery state i
e 7).

iation D
Ex
th
U
re

everse Sa
el
U

dy U
as
U
es
ne

off value
ff we have
ult should
toolbox is

with the lo
parameters

reference
 is only a
 parts we
the model

model. It is

amics for
was to aid i
eloped by
the β-oxid

rtion direct

Figure 6:

d data from
ain cannot
ption that
n the chai

23

Descriptio
xplicitly te
he theorem

Uses theore
educing few
ame as B
lements firs

Uses theorem
Uses theore
s possible o

Uses theor
stimation u
etworks

e
e to ask ou

occur, wh
to simply

owest error
by 1.1 and

model is
sub mode
need to ad
l by at lea
clear that

r fatty ac
in the impr
Ferdinand

dation casc
tly reaches

β-oxidatio

m patients
 be everyt
 there mig
in and add

n
ests all pos

m.
m and per
w elements
BFS but
st
m and perf
m and trie
on average
rem and
using a he

urselves w
hen we rem

get all mo
r. In this c
d this woul

not the o
l of the co

dd in order
ast 10%, th
determinin

cid β-oxi
rovement o

d Stückler a
cade and is
s the last o

on cascade

s with a s
thing that
ght be som
ded them w

ssibilities w

rforms brea
first
reverse,

forms dept
es to reduc

performs
euristic ba

what model
move no par
odels that a
case we wo
ld be our c

ne without
omplete on
r to improv
he cutoff w
ng a cutoff

dation
of a model
and Alexan
s structure
utput state

simulation
t is needed

me linear re
with unkno

without as

adth first

reducing

th first sea
ce as possi

s a prob
ased on Ba

ls do we w
arameters a
are not mo
ould multi
cutoff.

ut any par
ne. In this
ve the erro
would be 0.
f is pretty

for the fat
ndra Grigo
ed as a ch
e.

of this m
d. Ferdina
eactions lea
own states

suming

search,

many

rch
ibilities

bability
ayesian

want to
at all. A
ore than
iply the

ameters
case we

or value.
.9 times
straight

tty acid
ore. The
ain (see

model, it
and and
ading in
s to the

The re
reaction
Conven
clusters

For eac
the mo
cutoff
optimiz

Dataset
all pati
cluster
cluster
cluster

Each o
this cut

All pat

k_10 &

Cluster

k_5 &
k_20 &
k_2 |
k_12 &

eduction m
ns that a
niently Ale
s.

ch dataset
odel with a
was chose
zation appr

ts
ients
1
2
3

of these run
toff.

ients:

k_11 & k_

r 1:

k_4 & k_1
& k_23 &
k_23 | k_
k_13 & k_

Figure

method was
are really
exandra m

we had to
all paramet
en slightly
roximation

all param
0.4236
0.9255
1.3641
0.4735

ns returne

_12 & k_1

10 & k_11
(k_24 & (
_24 | k_25
_14 & k_1

 7: Extensi

s now use
necessary

managed t

o determin
ters and th
above th

n errors.

meters erro

d a set of

3 & k_14

& k_12 &
k_18 | k_
5 | k_3 |
5 & k_16

24

ion of the

ed to redu
y to reach
to combin

ne a proper
hen when

he best err

or co
0.
1.
1.
0.

different

& k_15 &

k_13 & k
_19 | k_6
 k_7) | k
& k_17 &

β-oxidation

ce this blo
h a signif
e the pat

r cutoff wh
removing
ror of all

ore chain e
5964
6441
5647
6602

models tha

k_16 & k_

_14 & k_1
) | k_3)
k_22) | k_
(k_21 | k

n chain

own up m
ficantly lo
tient data

hich was do
all but th
parameter

rror c
0
0

0

at has an

_17 & (k_4

5 & k_16
| k_21 &
_4 & k_6
22 & (k

model and
ower error

into 3 d

one by sim
he core cha
rs to acco

cutoff <=
0.45
0.95
1.40
0.55

error valu

4 & k_21 |

& k_17 &
 (k_18 |
& k_10 &

_2 | k_3))

get the
r value.
different

mulating
ain. The
ount for

error

e below

 k_5)

(k_2 &
k_19 |
k_11 &

Cluster

k_5 &
k_23 &

Cluster

k_10 &
| k_22

We can
further
the sim
it some
hardly
quite cl

F

r 2:

k_8 & k_1
k_25

r 3:

k_11 & k
| k_6) |

n see that
lower the

mulated ann
e room for
readable a
lear.

Figure 8: D

10 & k_11

k_12 & k_1
k_5 | k_

t these for
e cutoff in
nealing alre
error. For
anymore, b

Decision tr

& k_12 &

3 & k_14
8 | k_9)

rmulas can
order to d

eady had p
Cluster 1

but when

25

ree for the

k_13 & k

& k_15 &

n get pret
decrease th
problems w
the decisio
looking at

solutions o

_14 & k_1

k_16 & k_

tty messy.
he number
with the 24
on tree wa
t the decis

of Cluster 1

5 & k_16

_17 & (k_4

Usually o
r of possib
4 paramete
as attached
ion tree th

1

& k_17 &

4 & (k_20

one would
ble models,
ers, we had
d as the for
he result b

k_21 &

| k_21

d try to
, but as
d to give
rmula is
becomes

26

What all these results have in common is an incoming reaction at C-10 with k5 or at
C-12 with k4, which works for most of them. In some cases it is even enough to only
have input reactions at the end. It seems that starting from C-12, there is definitely
some input missing, as we always need more concentrations when we further get
down the chain.

However, we have to note that the error was only lowered by an average of 25% for
the different data sets. This might not justify adding an additional parameter when
we want to keep the model complexity to a minimum.

As our results were a bit unspecific and did not directly indicate which model to use,
a comparison run was made using BCI, a method which basically does a similar
calculation, but it punishes for every additional parameter we add so we can simply
use one parameter optimizer. The results of BCI confirmed our results in almost
every case, since the best results indicated an input reaction at C-12 and C-10 or C-2,
or no input parameter at all as the punishment was very high.

6.4 Compartment model for Ingestion of Zirconium in Human Body
In an interesting talk by Sabine Hug we heard that she and Daniel Schmidl, two
other group members of the CMB of the Helmholtz Zentrum, were working on a
compartment model (called HMGU) for the biokinetics of zirconium in the human
body after ingestion (Schmiedl, Hug, Bo Lie, Greiter, & Theis, 2011). This model was
compared with another one that models the same process but is from the
International Commission on Radiology Protect (IRCP). Both models contain only
reactions have Mass action kinetics and each reaction only has one substrate and one
product.

When we approached them they were interested to see in what kind of model a
reduction of a merge between the IRCP and their HMGU model would result in.
They claimed that the HMGU model made more biological sense hoped it would be
the result of the reduction. Further they wanted to know whether the HMGU model
is final or whether parts of it are unnecessary for the model to reach the same cutoff.

We used parameter estimations from prior experiments to define a 95% confidence
interval as an upper bound for our parameter values. The lower value was not used
as we have to allow the parameters to reach zero. Unfortunately both the IRCP and
HMGU had a similar error when sum of squared residuals (SSR) over all patients as
an error function. Thus a reduction for the merged models does not make sense as it
would in the best case only return both models separately.

Howeve
We set
the resu

The int
from t
Second
not bot
x22 wh

x4 and
impact
that aft

7. Dis
The de
explorin
are not
strategy
the gre
we hav

er, the red
 constraint
ult made s

x1 & x2 &

terpretatio
the Transf
ly, we only
th. As a di
hich first go

d x5 were
on the bl

ter removi

scussion
velopment
ng differen
t shown in
y that per
eedy strate
ve prior info

Figure 9:

duction for
ts to consi
sense from

& x3 & x6

on of the r
fer compa
y need one
irect conne
oes through

reduced fr
lood or uri
ng x9 and

n and pe
t of the red
nt reductio
the bench

rformed we
egy is perfo
ormation a

HMGU m

the HMG
ider only m
a biologica

& x7 & x8

result is th
rtment (b
e way leadi
ection from
h the urina

rom the m
ine, but sh
x10, the m

rspectiv
duction too
n strategie

hmark due
ell for ever
orming wel
about the r

27

model for in

GU model (
models tha
al perspect

8 & x11 &

hat we do
basically b
ing to the

m the blood
ary bladder

model as th
hould not b
model looks

ves
olbox went
es. We trie
to poor pe
ry model.
ll on avera
results we

ngestion of

(see Figure
t followed
ive.

x12 & x20

o not need
blood) to
Urine, eith
d to the bl
r should su

hey cannot
be remove
s even mor

very smoo
ed many d
erformance
Judging fr

age, but is
expect.

zirconium

e 9) looked
certain ru

0 & x21 &

x10, whic
the Upper
her x9 or x
ladder doe
ufficient.

t be obser
d from the

re biologica

oth until w
ifferent str
e. It was ve
rom the b
not better

d more pro
ules to ensu

(x22 | x9)

ch is the r
r large in
x22, but de
es not mak

rved and h
e model. I
ally realisti

we hit a roc
rategies, bu
ery hard t

benchmark
r than the

omising.
ure that

reaction
ntestine.
efinitely

ke sense,

have no
It seems
ic.

ck when
ut most
o find a
results,

e BFS if

28

Unfortunately we did not manage to implement the heuristic strategy in time. The
approximation of the model probabilities in combination with the maximum
information gain seemed to be the best way to go. We still hope that our heuristic
will be able to drastically improve the runtime of the reduction toolbox and make the
method applicable even for a great amount of initial possibilities.

Still, the current implementation the toolbox is very versatile and we feel it is quite
easy to apply the reduction method to most network based problems. In the very end
we even decided to split the main theorem of inclusion from the core reduction
toolbox. This allows for a general application of the method, where we can do explicit
model reduction given that we define enough constraints to keep the amount of
possible models to a minimum.

So far we only allowed the removal of different reactions in the reduction method.
The next step would be to include additional reduction operations, such as the
merging of different states. To add this option, we would need to define the merging
of two states with simple Boolean logic.

We could define a series of Boolean variables that indicate whether two states are
merged in a pairwise manner. To account for all possible mergers, we need ௦∗(௦ିଵ)ଶ
variables, where ݏ is the amount of states. In case we merge three states together, we
would only need two variables and not three to represent the merger. Therefore we
perform a prior analysis of all possible combinations of values for the variables. For
our example we would restrict the third variable to true. Additionally, we can
prohibit self-loops of states and other motives that would not make sense in a
biological way.

This structure would allow an easy representation of the possible mergers. However,
the method would only be feasible if we could somehow apply the theorem of
inclusion to the merging of states. This would depend highly on the type of model
and at this point we have not done enough investigation into the issue.

To conclude this work, we think that the main objective of building a toolbox for the
systematic reduction of models was achieved successfully. During the development,
the toolbox was extensively tested and was able to provide valuable input for other
groups as shown in the results of the examples. We feel the method might be a
valuable tool for other research groups that work on developing models to describe
biological systems.

29

References
Bishop, C. M. (2007). Pattern Recognition and Machine Learning.

Dama, M. (2009). Simulated Annealing in Trading Optimizartion. Retrieved from
http://maxdama.blogspot.com/2008/07/trading-optimization-simulated.html

H. Schmidt, M. J. (2005, November). Systems Biology Toolbox for MATLAB: A
computational platform for research in Systems Biology. Bioinformatics
Advance Access.

Rickert, D. (2009). Empirical reduction of signaling networks.

Schmiedl, D., Hug, S., Bo Lie, W., Greiter, M., & Theis, F. (2011, August 12).
Bayesian Model Selection determines the Biokinetics of Zirconium in the
Human Body after Ingestion.

Whaley, J. (2007). JavaBDD. Retrieved from http://javabdd.sourceforge.net

Wikipedia. (2011). Information gain in decision trees. Retrieved August 5, 2011,
from http://en.wikipedia.org/wiki/Information_gain_in_decision_trees

30

Table of Figures
Figure 1: Simulated annealing (Dama, 2009) ... 6
Figure 2: Flowchart of the reduction method .. 8
Figure 3: Example for a reduction graph when testing BC .. 10
Figure 4: Reduction graph for BC with Bayes Theorem .. 16
Figure 5: Benchmark of the reductions strategies .. 19
Figure 6: β-oxidation cascade ... 23
Figure 7: Extension of the β-oxidation chain ... 24
Figure 8: Decision tree for the solutions of Cluster 1 ... 25
Figure 9: HMGU model for ingestion of zirconium .. 27

