LUDWIG-MAXIMILIANS-UNIVERSITAT
TECHNISCHE UNIVERSITAT MUNCHEN

Wissenschaftszentrum Weihenstephan:
Lehrstuhl fiir Genomorientierte Bioinformatik

Bachelorarbeit
in Bioinformatik

A Toolbox for
Systematic Model Reduction

Manuel Kroiss

Aufgabensteller: Prof. Fabian Theis

Betreuer: Prof. Fabian Theis
Dennis Rickert

Abgabedatum:  15.09.2011



Ich versichere, dass ich diese Bachelorarbeit
selbstandig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

15.09.2011 ./t'\"“’\“"”k vet g

Manuel Kroiss



Abstract

Based on previous work by D. Rickert at the Helmholtz-Zentrum Miinchen, we
developed a toolbox for the automated reduction of biological models using Boolean
logic. The method is very versatile and can be used to reduce any set of elements
with constraints that can be expressed in Boolean algebra. We focused our work on
the reduction of interaction networks, where usually a costly simulation using
parameter optimization is required to validate or invalidate a reduced model.
However, we designed a method that can automatically deduce constraints from the
network topology to strongly limit the amount of possibilities that need testing.
Further, as a simulation usually requires parameter optimization, certain models can
be skipped when others are accepted or rejected. Finally, since the order in which we
test the possible models greatly influences the computational costs, we developed
strategies to improve the order of testing. Our toolbox is easily applicable with a
simple Matlab interface and direct support for the SB model format. We put a special
emphasis on providing various options to represent the different resulting models.
The toolbox was exhaustively benchmarked and successfully used to help in the
development of a fatty acid f-oxidation model and to give valuable input in the
reduction of a zirconium ingestion compartment model.

Aufbauend auf bisheriger Forschung von D. Rickert am Helmholtz-Zentrum Miinchen
haben wir eine Toolbox fiir die automatische Reduktion von biologischen Modellen
mit Hilfe von boolescher Logik entwickelt. Die Methode ist sehr vielseitig gestaltet
und kann fiir die Reduktion einer jeden Menge von Elementen, auf welcher sich
Bedingungen in boolescher Algebra definieren lassen, verwendet werden. Der
Schwerpunkt unserer Arbeit lag auf der Vereinfachung von Interaktionsnetzwerken,
fiir welche meist eine aufwendige Simulation mit Parameteroptimierung bend&tigt
wird, um ein reduziertes Modell auf seine Korrektheit zu priifen. Jedoch war es uns
moglich eine Methode zur automatischen Herleitung von Bedingungen anhand der
Netzwerktopologie zu gestalten, welche die Anzahl an moéglichen Modellen stark
einschrankt. Zusétzlich konnen, da eine Simulation meist Parameteroptimierung
benotigt, bestimmte Modelle iibersprungen werden falls andere bereits gepriift
wurden. Schlussendlich hat die Reihenfolge in der wir die Kombinationen testen einen
starken Einfluss auf die Laufzeit, weswegen wir Strategien entwickelt haben um diese
Reihenfolge zu verbessern. Allgemein ist unsere Toolbox, durch ein einfaches Matlab-
Interface und eine eingebaute Unterstiitzung fiir das SB Format, sehr leicht
anzuwenden. Besonderer Wert wurde auf die Darstellung der FErgebnisse eines
Reduktionsdurchlaufs  gelegt, wodurch eine Vielzahl von iibersichtlichen
Repréasentationen entstand. Die Toolbox wurde ausgiebigen Benchmark-Tests
unterzogen und konnte bereits erfolgreich bei der Entwicklung eines Fatty-Acid-
Oxidation Modells einen Beitrag leisten und bei der Reduktion eines Modells fiir den
Abbau von Zirkonium verwendet werden.



Contents

1. INtTOAUCTION et 5
1.1 Modeling in biology ...coouuuiiiiii e 5
1.2 Parameter optimization of models..........ccoooiiiiiiiiiiii 5
1.3 Model TedUCTION. ......uiiiiiiis e 6
1.4 Toolbox for systematic model reduction ............ocoeeiiiiiiiiiiiiiiiiieiiiie e 7

2. Set based reduction based on Boolean algebra............ccccoooiiiiiiiiiiiiiiiii, 8
2.1 Boolean operations for reductionsS............uoveiiiiiiireiiiiiiie e 9
2.2 Accepting or rejecting a redUucCtion............coeiiiiiiiiiiiiiiiii e 10

3. Analyzing the network tOPOlOZY .. ..ceeiiiiiiiiiiiiii e 11
3.1 Reactions must be activated............ooooiiiiiiii 12
3.2 Output states must be activated ...........ooeeeiiiiiiiiiiiiii e 12
3.3 Reactions must have an impact........c.cooiveiiiiiiiiniii e 12
3.4 ODE-model analySis .......ccouuuuiiiiiiiiiieeie e 13

4. RedUCtiON SETATEGZIES ..eeeiiiiiiiiiiiieeeeeee ettt e e e e e e ettt e e e e e e e e eeeaaaaa e e e eeaeeeeesnsnes 13
4.1 Simple BFS and DFS approaches..........cooooiiiiiiiiiiiiiieee e, 13
4.2 Maximum average information gain ..........ccccoooviiiiiiiiiiiiiiiiiii 14
4.3 Heuristic approachi.........oooiiiiiii e 15
4.5 Benchmarking.......ccoouuiiiiiiii e 18

5. Output of the reduction tOOIDOX ........uiiiiiiiiiiiiiii e 19
0.1 DECISION TTOE ...ttt 20
5.2 Boolean formula ..........oooiiiii e 20

6. Application of the Reduction ToolbOX .........oviiiiiiiiiiiiiiiii e, 22
6.1 Setting up the reduction method .............ccoooiiiiiiiii 22
6.2 Determining a cutoff value ..o 23
6.3 Modeling the dynamics for fatty acid B-oxidation ................cooooo 23
6.4 Compartment model for Ingestion of Zirconium in Human Body..................... 26

7. Discussion and PErSPECTIVES ..c...uiiiuiiiiiieiii e 27

RELETEINCES ... 29

Table Of FIGUIES......uuiiiiiii i 30



1. Introduction

1.1 Modeling in biology

The modeling of biological systems has become a main topic in bioinformatics. High
throughput methods such as micro array analysis or co-immunoprecipitation produce
large amounts of data. Unfortunately building quantitative models describing the
biological data has proven to be very difficult, as there are still many processes that
cannot be measured, especially not inside a living organism.

Instead most measurements are performed on isolated compartments so called in
vitro experiments or merely on chips. However, particularly in the case of chips, the
interactions are highly theoretical as the compounds might never meet in reality and
therefore the interaction would never take place. In a living organism, the interacting
species may be separated in different compartments or involved in completely
different pathways.

Still measuring the concentrations of different species and determining whether a
pairwise interaction exists can be done fairly well compared to the rate of the
reaction. When it comes to the kinetics, extensive in vitro experiments emulating the
exact conditions of the interacting species would have to be done to measure how
much substrate gets processed. Therefore only vague estimates or no kinetics at all

are known for most reactions.

1.2 Parameter optimization of models

The rate or kinetic of a reaction is usually referred to as parameter. Since the
parameters of a model are usually unknown due to experimental limits, we look for
ways to circumvent this problem. What we usually did not use up to this step when
building a model are the concentration measurements of the species which are
performed over a series of time.

The measured concentrations can be compared with predictions we make using the
model and certain parameters, usually by means of simulating the model. We define
this comparison as an error-function f that returns a measure of distance for the
prediction of our model with parameter values p; to p, and the expected data. If
defined like this, a high value generally stands for a bad prediction.

f(Pp1, .., Pn) = error

This comparison between predicted and expected data is called a fit. It is clear that
only certain combinations of parameter ranges will produce good fits with a low error
value. Finding these combinations can be transferred to the field of parameter
optimization, a very developed field of numerical analysis in informatics.

A parameter optimizer will, in theory, try all possible combinations of parameters
and attempt to minimize the result of the error function. As this is not feasible and



not even finite in a continuous space, the optimizer will attempt to approximate areas
of the space with minima (see Figure 1) and follow them to their highest point, in our
case the best fit.

Profit

Parameter 2

Simulated
Annealing
Path Slart _.:_.'{

Parameter 1

Figure 1: Simulated annealing (Dama, 2009)

Simulated annealing is a good example for a parameter optimization method that
finds a good solution and does not scan the whole space. While a simple hill climbing
algorithm would stop at the first local minima, simulated annealing has the great
advantage that it can escape such local minima by performing chaotic jumps as
shown in Figure 1.

The result of an optimization method is a set of parameters that should in theory
produce the best fit possible. Unfortunately due to the nature of the approximations,
there is no guarantee that the found solution is really the best one. Furthermore the
results of a mere error minimization have no biological relevance. Therefore, without
examining the complete parameter space or including other constraints into the error
function, this method should preferably only be used to check whether a model could
possibly describe measured data, but not claim that the parameters are the correct
ones.

1.3 Model reduction

We already discussed that chips and in vitro experiments cannot replicate the
conditions in a cell properly. This leads to unconfirmed reactions that might never
occur. Models that are constructed from the data would then be overly complex with
redundant interactions and even wrong if we only allow active reactions with positive
kinetics.

Another case that we did not discuss and might occur is a compound which is
modeled as two different states, when it is in fact a single compound.



In model reduction, the goal is now to clean up and remove or modify these
unnecessary parts. The result will be a less complex model with fewer reactions or
states. A common approach to do this is to follow a rule based system that detects
certain motifs and transforms then into smaller ones. While this method is very
simple and fast, it holds many disadvantages. An example is that certain motifs
might only be applicable for specific network types or may perhaps not be found at
all. Furthermore the order in which the motifs are transformed could result in
different outcomes which are often not considered.

A more sophisticated approach would be to perform all possible reductions and check
all smaller models individually. In order to do this we need to define a finite space of
possible models. While merging states is possible, we first only focused on the
operation of removing a reaction. For a model with 20 reactions, this will still lead to
220 — 1 different combinations of reactions that can be removed, which all require
testing when no rules are defined.

To test whether a reduction is valid, we can simply perform a parameter optimization
on the sub-model and compare it with the original one. If the result is not worse than
a specific cutoff value, then it will be considered valid. Obviously, checking all
possible reductions is not feasible in most cases, only perhaps on very small models or
ones with many constraints.

However, since we perform a parameter optimization to analyze whether the model is
valid, we can use the fact that the optimizer will try all possible values for a
parameter, even the one nullifying the effect of the parameter. Therefore when we try
to remove additional parameters, the result of the error function can only be equal or
worse, given that the optimizer performs correctly.

Considering this, if a reduction now turns out to be invalid, it will include all sub-
models where we remove additional parameters. In parallel, when the error function
classifies a reduction as valid, the models where we remove less parameter will also be
valid. This is the fundamental theorem of this method that makes a complete model
reduction possible.

1.4 Toolbox for systematic model reduction
The focus of our work was to build a toolbox that allows the automated reduction of
such models with the defined operations and our core theorem.

Dennis Rickert already established the core ideas of this method with set based
reduction, binary decision diagrams and topology analysis in his bachelor thesis on
empirical reduction of signaling networks (Rickert, 2009). Based on these ideas, we
simplified and rebuilt the methods as a reference implementation for a well-structured
base of the reduction framework.



Around this core we added algorithms and crucial strategies to allow for an easy to
interface and fast end user application of the method. A run of the reduction method
can be structured the flow chart depicted in Figure 2.

Network topology analyzation

i _______________________ |

Core: Boolean. Set-based < Reduction Strategy
rediiction y
Output formatting User defined

error function

Figure 2: Flowchart of the reduction method

This figure is just to convey a quick overview of the toolbox and its structure, all
parts will be explained in detail. Basically, if a network exists, constraints will be
deduced from its topology and given to the core of the method defines all the rules
based on Boolean logic. The analysis is necessary to limit the amount of possible
reductions in order for the toolbox to be usable on medium size networks. This core is
so versatile that it could also be applied on a simple set of elements, while the
constraints could be defined by the user himself.

The reduction strategy repeatedly picks one of the remaining untested reductions to
test with the error function. A clever strategy does not pick the reductions randomly,
but tries to maximize the information that is gained when the reduction is accepted
or rejected. For each picked element, the result will be reported to the core reduction
method. After all calculations are done, there might be many possible models. We
put a special emphasis on designing algorithms that give a clear and quick
representation of these results.

2. Set based reduction based on Boolean algebra

The finite space of possible reduced models is the list of all combinations of reactions
that can be removed. The attempt of removing a combination can be generalized as a
set based reduction. While reactions/parameters are simply different elements, for
example A, B, C and D, an actual reduction is defined as a set of these elements e.g.
{A,B,D} which will be called ABD as an abbreviation.

In search for a basic structure that allows for an efficient representation of these sets,
as well as combining them with other rules and constraints that describe the network
topology, we decided to use Boolean algebra. A direct way to implement Boolean
formulas and their operations are Binary Decision Diagrams (BDD). For the toolbox
we used the JavaBDD implementation (Whaley, 2007).



We defined three Boolean formulas which hold different information and when
combined, allow us to efficiently identify the whole solution space of the reduction.

e topology: the constraints that can be made using the network topology of the
model
e accepted: all tested valid sets and their subsets

e rejected: all tested invalid sets and their supersets

The topology variable is filled in the network analysis of our method and defines all
combinations that could work and where the models make sense. For the reduction
results we took too separate variables accepted and rejected are filled by the results
when using the error function.

While it is obvious that all formulas could be combined into one variable to define
our solution space, we needed to keep them separately as the information was treated
differently in the reduction strategies.

2.1 Boolean operations for reductions

We will now try to convey a quick overview of how to combine our topology accepted
and rejected variable to get the different information spaces needed in the course of
the reduction method.

As we established, a reduction can be defined as a set of elements. To check whether
a reduction has already been accepted or rejected, we take the reduction and
transform it into its Boolean representation.

reduction = /\ e /\ —e

e€ReductionElements e€Elements\ReductionElements

To test whether this reduction is rejected, we can simply combine this variable with
the topology and the rejected combinations:

IsRejected(reduction) = topology A rejected Areduction
Same can be done to check if it was accepted:
IsAccepted(reduction) = topology A accepted Areduction

In the reduction strategy we often need to enumerate all remaining reductions that
still require testing. For this we do not need to check every reduction individually,
but can simply transform combine the spaces as follows and get all satisfying
combinations of the Boolean formula (AIl-SAT).

remaining = topology A —~accepted A —rejected

Finally when all reductions have been tested we get our final space and perform an
All-SAT operation again.



result = topology A accepted A —rejected

2.2 Accepting or rejecting a reduction

A reduction is a set of elements we want to reduce and can either result in a valid or
invalid model. When the reduction is valid, then automatically all subsets of this
reduction-set have to be valid as well, since the parameter optimizer also allows for
removing elements.

Similarly if the reduction has turned out to be invalid, then we can assume that all
supersets are also invalid for the same reason. By using the parameter optimizer, we
guarantee that subsets always have to perform equal or better and supersets always
have an equal or worse result.

We will try to illustrate this on a quick example for four elements A, B, C, D and
their combinations that we want to test for reduction. In a reduction, for each
element we can either decide to include an element or not, leading to 2* =16
different reductions. As a given situation we assume that we are somewhere in the
middle of our reduction process and the reductions B, CD were valid and ABC, BCD,
ABCD are invalid (see Figure 3).

B
AB AC AD “BC BD CD
/
A B C D

Figure 3: Example for a reduction graph when testing BC

When the test of the reduction AB identified a valid model, we can skip the
reductions A, B, {} because they are subsets of AB. If reducing AB was invalid then
we can skip ABC, ABD, ABCD since they are supersets of AB. Skipping a result

10



reduction means that it will be added the list of accepted or rejected reductions. As
keeping every reduction individually in a list is very inefficient, the lists are described
by Boolean formulas.

For the valid reductions the representing formula is called accepted and can be
constructed by or-connecting the working reductions and their subsets. The subsets
are represented by AND-linking all elements that are not in this reduction.

accepted = accepted, V accepted, V ...V accepted,

accepted, = e

e€AllElements\ReductionElements

The invalid reductions are described be the rejected formula and is basically and
OR-connection of all reductions-sets.

rejected = rejected, V rejected, V ...V rejected,

rejected, = /\ e

e€EReductionElements

3. Analyzing the network topology

In interaction networks, we try to decrease the amount of possible reductions we have
to test by defining a series of constraints from the network. This is necessary, as a
testing a model is very computationally intensive due to the parameter optimization
and the problem would not be feasible for an unconstrained set of elements. Dennis
Rickert used a concept called controllability and observability (Rickert, 2009), which
we transferred to our work. However, we used different constraints which we feel are
easier to understand and implement.

In a network the compounds are often called states. We declare a subset of states as
input and another one as observed/output states. Input states are compounds with a
beginning concentration before the simulation starts, while output states are the
compounds that are measured and where we expect a resulting concentration. Note
that subsets can overlap.

The three constraints that we defined are:

A) Every reaction must originate from a state that is activated.

B) Every output state must be at least activated by one input state.

C) Every reaction must originate from a useful state; one that is activates an
output state or is involved in a reaction of such a state.

11



3.1 Reactions must be activated

The first topological basically states that for every reaction that is not reduced, there
must be a possibility that it will be used at some point. In order for it to be used, one
of the origin states must reach a concentration higher than zero, meaning it must be
activated. This rule can be recursively defined as follows.

ActiveRec(r.origin,{}) = true

reUnreducedReactions

ActiveRec(state, visited)
state € visited: false
state € InputStates: true

else: \/ ActiveRec(r.origin, visited U state)
relncomingReactions(state)

The case where a reaction has several substrates/origins is not shown in the formulas

for simplicity but is covered in the implementation as reactions can have different

combinations of origin states to be activated.

3.2 Output states must be activated

Secondly every output state must be connected to at least one input state. There
must be a directed way leading from an input state to an output state, as otherwise
the output state could never get a concentration below zero.

ActiveRec(o,{}) = true
o€OutputStates

3.3 Reactions must have an impact

The last rule states that every reaction must have some impact on an output state;
otherwise it has to be removed. If the origin state of the reaction never activates an
output state or is never involved in a reaction with a state that does, then its
concentration does not make a difference for the observed states. Reductions which
have reactions without impact are not valid and can be skipped.

/\ \/ UsefulRec(o) = true

TEReactions o€r.origins

UsefulRec(state, visited)
I[ state € visited: false
4 state € OutputStates: true

\/ UsefulRec(n,visited U state)

ner.origins U r.targets

else: \/
reQutgoingReactions(state)

12



3.4 ODE-model analysis

These above defined rules for the network topology can be applied to most models
governed by interactions. Ordinary Differential Equations are one possible way of
describing the reactions. Generally, an ODE-model in the SB-Toolbox format
contains states, reactions, variables and parameters (H. Schmidt, 2005).

While separately defining reactions and variables usually results in a clean and
structured model, one can also solely use states and parameters. As we want to
account for the most general case, we first resolve all reactions and variables used in
the definitions of the states, resulting in a model where we only have states and
parameters.

To derive the activating reactions, we have to investigate the influence of each
parameter on a state. We set all parameters of the reactions except one to zero or its
nullifying value. Assuming the parameters are independent, we get the direct impact
of the parameter on the state and all states which are involved in the reaction.

As this part is conveniently implemented in Matlab, we can simply check if the
formula can ever get above or below zero, indicating whether the influence of this
formula on the states is activating, inhibiting or both.

4. Reduction Strategies

Clearly the order in which we try the reductions greatly influences the total runtime
of our reduction method. A reduction strategy is a method that simply picks the next
reduction attempt and determines the order in which we visit the reduction graph
discussed in Figure 3. Two simple methods for visiting the graph are BFS or DFS.
However, these have very poor performance and a strategy should maximize the
information gain, which of course can only be estimated using heuristics.

4.1 Simple BFS and DFS approaches

Very simple approaches are the two common methods for graph traversal, namely
breadth first search and depth first search. In the case of model reduction, BFS takes
the sets of reduction in order of their size. When doing the usual BFS, we would first
take combinations reducing only a few elements and later the ones with many
elements.

This method is good when we only expect very few reductions to work or almost all
of them. In case many reductions are possible, we simply reverse the BFS to start
with long reductions first and taking short reductions at the end. Unfortunately in
other cases especially when the result is unknown, both methods have a very bad
performance, as the information gain is very little in the average case.

Depth first search is also a common method to visit the nodes in a graph. It adds
additional elements to the set of reduction and then uses backtracking if there are no

13



more elements to be added. In our test (see 4.5 Benchmarking) this strategy has not
proven to be a good reduction method.

4.2 Maximum average information gain

A very intuitive approach is to maximize the average information gain by taking a
reduction that performs well in either case, both when rejected and accepted. To
retrieve this reduction, we iterate over all reductions and see how many remaining
reductions we have when accepted or rejected.

To efficiently iterate over the remaining reductions we first perform the BDD-Allsat
operation which returns a list of patterns describing the remaining combinations.
Each pattern consists of n numbers strung together, where n is the number of
elements that we initially wanted to perform the reduction method on. The numbers
of a pattern are either 0 for false, 1 for true or -1 as a wildcard for either 0 or 1. Now
replacing all wildcards recursively by either a zero or one gives us all possible
combinations of remaining reductions.

Finding out the amount of reductions that can be skipped when the current reduction
is accepted or rejected could be done by assuming that it was reported and using the
Boolean formulas made in 2.2 Accepting or rejecting a reduction. Unfortunately it
turns out that this operation takes very long for great amounts of reductions.

Therefore we preprocess the patterns from the BDD-Allsat of the remaining
reductions into a directed acyclic word graph (DAWG). To first get the reductions
that can be skipped when accepted, we build a binary representation of the reduction,
which matches the BDD-Allsat format, while ones are replaced with wildcards. With
this pattern, the DAWG will be recursively visited while comparing the node value
with the respective value in the pattern. When following a branch we keep track of
the possibilities when matching wildcards in the pattern by doubling the possibilities
we found so far. We do the same process for the rejection case by simply replacing all
zeros by wildcards.

As a result we now got the two values n,.. and n,; for each reduction, which are the
number of elements that can be skipped when accepted and when rejected. It is
obvious that these values are usually indirect proportional. If we have a high ng,..
value, we expect a low n,,; value (for illustration see reduction graph in Figure 3).
Since we do not know the probability that a reduction is accepted or rejected, we
want to maximize the information gain for both cases. This is done by the following
formula:

max(nacc * nrej)

This strategy resulted in a great increase in performance and helped us solve the
Zirconium model reduction (see 6.4 Compartment model for Ingestion of Zirconium in

14



Human Body). The calculation was not finished after two days with both normal and
reverse BF'S, but after an hour with this strategy.

4.3 Heuristic approach

To further improve the runtime, we wanted to calculate the probabilities that a
reduction is accepted or rejected and combine this with the number of elements that
can be skipped. Furthermore the cost if accepted or rejected will also be taken into
account, as we expect different runtimes for the two cases. Often reductions are
immediately accepted on the first optimization attempt, but we have to run it several
times when rejected if not using a deterministic parameter optimizer.

The formula we want to maximize now looks as follows:

N(RED) N(=RED)

Predicting the costs is pretty straight forward by averaging all the costs observed so
far when accepted or rejected. In each case we not only report the result but also the
runtime and create new cost averages that will be used in the next prediction.

Calculating the probabilities was much harder and slowly became the main focus of
this bachelor thesis. It seemed very natural to apply the theory of conditional
probability to this problem, but creating a feasible solution became very hard.

As an example we will again take our four element scenario, where the elements that
we wanted to were A, B, C and D.

15



< > 4\

AB AC AD BC CD

Ve

Figure 4: Reduction graph for BC with Bayes Theorem

We want to determine the probability that the reduction BC is valid, given the
situation that A and C worked and BD and ABC did not work. This can be
expressed with conditional probability as follows.

P[AB|AANC A=BD A =ABD A -BCD A -ABC A -ABCD]

The idea now was to solve this formula in a way so it could be easily computed for
every probability. We tried to rearrange the equations for a long time, but
unfortunately this did not lead to easily computable formulas. Nevertheless, one could
solve this formula using Bayesian networks, but for each probability of a reduction
we want to get, a new network needs to be created and this is not feasible for the
amount of nodes we may get.

Simulating the probability graph

After reading several books (including Bishop, 2007), the idea came to mind to solve
this network of probabilities by means of simulation. The underlying assumption is
for each node we know the probability conditioned to the full situation. Here we
again tried to use conditional probability to find a formula that would allow updating
a node.

When rearranging the formulas, the aim was to update a node only using the
probabilities of the neighboring nodes one layer below and above. It was possible to
solve this formula using an approximation:

16



P(ABC|X) = P(ABC|ABABC ANACAX)-P(ABABC ANAC|X)

P(AB|X)P(BC|X)P(AC|X)

= P(ABC|AB ABC AAC AX) - P(AABAC|X)

P(AB|X)P(BC|X)P(AC|X)

= P(ABC|ABABC ANAC AX) - P(AIX)P(BIX)P(C|X)

= [P(ABC|AB ABC AAC AX A (—ABCY:VY))P(~ABCY:VY|AB ABC AAC A X)
+ P(ABC|AB ABC ANAC AX A =(=ABCY:vY))(1
P(AB|X)P(BC|X)P(AC|X)

— P(~ABCY:VY|AB ABC A AC A X))]- PCAIX)P(BIX)P(CIX)

= [P(ABC|AB ABC AAC AX A (=ABCY:VY))P(—~ABCY:VY|ABABC ANAC AX) + 1
P(AB|X)P(BC|X)P(AC|X)

- (1 — P(=ABCY:VYY|AB ABC AAC A X))] - P(AIX)P(B|X)P(C|X)

~ [P(ABC|AB ABC AAC AX A (=ABCY:VY)) 1_[ P(—ABCY|ABABC ANACAX) +1
vY

P(AB|X)P(BC|X)P(AC|X)
P(AIX)P(BIX)P(C|X)

_ P(=ABCY|AB ABC ANAC A X)] .
vY

_ _ P(ABCY|X)
= IP(ABC|AB ABC AAC AX A (—ABCY:VY)) nvya ~ PAB A BC /\AC|X)) +1
) P(ABCY|X) _P(AB|X)P(BCIX)P(AC|X)
B HW " P(AB ABC NAC|X) P(AIX)P(BIX)P(C|X)

The approximation is because we just did not see another way but to assume
independence in this case. P(ABC|AB ABC ANAC AX A (=ABCY: VY)) is the remaining
unknown term which can be recursively solved as follows:

Let Y; be the different possible Y-Elements where i = 1,...,n and n is the amount of
different possibilities for Y.

P(ABC|AB A BC A AC A X A (-ABCY: VY)) = P(ABC|AB A BC A AC A (=ABCY: VY))
= P(ABC|AB ABC ANAC A (=ABCY;:i=1,..,K))
_ P(ABC|ABABCAACA (=ABCY;:i = 1, ...,k — 1)) — P(ABCYJABABCAACA (=ABCY;:i = 1,...,k— 1))
B 1 — P(ABCY,|AB A BC AACA (mABCY;:i = 1,..,k— 1))
P(ABC|ABABCAACA (=ABCY;:i = 1,...,k — 1)) — P(ABCY,|AB A BC A AC)
- 1 — P(ABCY(JAB A BC A AC)
P(ABC|AB A BC AAC A (ABCY;:i = 1, ...,k — 1)) — 5 B8BCY)

P(ABABCAAC)
~__P(ABCYp
P(AB A BC A AC)

1

The only thing that is not given now is the probability of a reduction when not
knowing anything, for example P(ABCY;). This value will be learned during the

17



process of the reduction and can be estimated with different criteria. A simple
assumption would be that all reductions of a given length follow the same
distribution.

As a starting distribution for the currently implemented learning table we used:
lo =1 li == (li_l)i * 05

Where i > 0 and the index represents a reduction of that length. This table can be
easily updated by averaging the values with the reported ones. Another idea we had
was the distance to observed nodes as a learning table. We can basically put any
criteria as an underlying distribution for the unknown nodes.

With this formula the implementation is very straightforward. The nodes are updated
in each simulation cycle using the formula and when the probabilities converge or we
reached a maximum of runs the simulation is aborted. A simply iteration of the
remaining solutions combined with the formula to maximize the information gain
with probabilities returns the best reduction when using this strategy.

Unfortunately, we realized, that due to the topology analysis we do prior to executing
a reduction strategy, the formula cannot be applied to the problem so easily, as our
theorem that smaller and bigger reductions are included does not hold. We can
circumvent this by not using such an invalid node from the graph and instead define
this node by going one layer further and so on. This should allow for a proper
implementation, but we did not manage to do so in time.

4.5 Benchmarking

After developing all these different reduction strategies it was critical to build a
benchmarking framework that allows a fast comparison of the strategies. As reduction
runs can take several days or might never finish using certain unsuited strategies, we
had to cache the results of the calculations and the costs for accepting or rejecting
were averaged. This allowed easy emulation of the strategies and quite accurate
comparison.

To do a thorough benchmarking of the reduction strategies, we implemented a
random network generator and a random solution generator. The random networks
were generated using a random amount of states and random reactions between the
states following a given distribution. For each reaction a random target and several
origins were chosen. However, as we were unsure about the special attributes of
biological models, we opted to take three biological models we already worked with as
our benchmark models.

Using these models we built random results with a probability value following a
uniform distribution from 0.00 to 1.00, indicating how many solutions we get in
relation to the total amount of possible models in the beginning. For example when

18



generating solutions for a value of 0.75 case, we will randomly pick a remaining
possibility from the network which will be set to valid with a 75 percent chance and
rejected with a 25 percent chance. This step is repeated until there are no more
remaining reductions.

Strategy Time to solve with Time to solve with
high rejection cost equal costs

Greedy 102 5)

BFS 115 26

BFS-Reverse 898 26

DFS 307 9

Heuristic ? ?

Figure 5: Benchmark of the reductions strategies

The benchmarking results (see Figure 5) were created with 3 different models and 20
different solutions for each model and then averaged over 10 runs. Each time value in
the table indicates the amount of minutes the reduction strategy would have needed
to find the solution and test all models.

While the BFS strategies have the same runtime with equal costs when accepted and
rejected, the reverse BFS needed much more time to find the solution when the costs
for a rejection are ten times as high, since it would run into more costly rejections on
its way to calculate the solution.

5. Output of the reduction toolbox

After a run of the reduction toolbox and all possible reductions have been tested for
validity, we can directly retrieve the result by intersecting the topology with all
working reductions:

result = topology A accepted A —rejected

To get a list of patterns that represent all possible models that fulfill this variable, we
use the BDD-Allsat operation like before (4.2 Maximum average information gain).
This returns a matrix where each row is a solution and a cell indicates whether an
element /parameter is included in this solution.

There are three possible values a cell can assume. It is zero when the element is
excluded from the solution, one when it is included and minus one when it can be
both. In our case a possible solution always includes all supersets, meaning that we
can simply replace all -1 values by 0.

After we replaced all wildcards by zero, there are rows that are redundant and
included by others. A solution s; is included by another one s, when the only
differences are ones in s; where there are zeros in s,. A solution s; can be removed
when the following is true:

19



3sy, 5, € solutions:s; # s; AVi=1,..,n:5,;, =1Vs;; =5;;
The cleaned up matrix with all solutions will be referred to as the solution matrix.

5.1 Decision Tree

As the solution matrix can get very long for many solutions, a clearer representation
for the results was necessary. This can be achieved by transforming the solution
matrix into a decision tree, which is a good visual representation of the solutions.
Figure 8 shows an example of such a tree which really improves the readability of the
output.

At each node in a decision tree, we decide either to take an element or to go another
way and not collect the element at this step. A complete valid model is reached,
when walking from the root to a leaf of the tree and including every visited node into
the model. Alternatively we can also create the opposite tree which tells us what
elements not to take for a model.

To create the decision tree, we used a divide and conquer approach that separates the
rows into two subgroups at each step, building a node in the tree. The two subgroups
stand for either taking an element or not taking it. The remaining rows of each
subgroup are then again split recursively.

Which element we split, is determined by maximizing the information gain. There are
different information gain criteria, but when creating a decision tree a well-
established one is entropy. The general definition in this case is, that “the expected
information gain is the change in information entropy from a prior state to a state
that takes some information as given” (Wikipedia, 2011)

H(x) = x *log, x
1G(e) =H(r) — (%* H(n,) + —¢+H(r — ne))

r

Where r is the amount of rows in the current subgroup and n are the number of ones
in the examined column. The information gain will be maximized by trying
every e € Elements.

In our case, we can also leave out the explicit option where we do not take an
element, as reaching a leaf without visiting an element implies that it was not taken.
Additionally, chains with no options can be merged into one node to minimize the
height of the diagram.

5.2 Boolean formula

The decision tree can easily be transformed into a representation of the solutions as a
Boolean formula. When visiting the nodes of the tree generated in 5.1 Decision Tree
with a depth-first-search we simply attach a Boolean AND as well as a bracket
opener if we go one layer deeper. We add an OR operation if we go up and

20



immediately down again. Closing brackets are appended to the Boolean string every
time we go up a layer.

21



6. Application of the Reduction Toolbox

6.1 Setting up the reduction method
Even though the core of the toolbox was implemented in Java, we mainly focused on

an easy Matlab accessibility. This was done to support the popular SB format for
ODE models (see 3.4 ODE-model analysis).

In the following we will discuss a quick example in Matlab on how to use the toolbox:

addpath ../redbox

% Model

sbm = SBmodel('model.txt');
SBPDmakeMEXmodel (sbm, 'model_mex');

% Setup reducer

inputStates ={ 'y9' };

outputStates ={ 'y1', 'y7' };

roots = SBparameterZeros(sbm) ;

red = REDsbmodelReducer (sbm, inputStates, outputStates, roots);

% Constraints
red.addConstraint(red.getVar(4-1) .not());

% Process

cutoff = 154;

optimizer = @(x)user_fitting(x, cutoff);

solutions = REDcalculate(red, 'incl-bfs', optimizer, cutoff, 1);
% Output

display(solutions);

display(red.getSolutionsFormula(true));

red.drawSolutionsDiagram(true, true, 'result.jpg', 150, 100);
display(red.getSolutionsList()+1);

In the beginning of the code we basically add the reduction toolbox to our path and
open a model file, which is compiled into a MEX-file to allow for faster simulation in
the error function. In the next step we let the toolbox analyze the network topology
by setting our input and output states (see 3. Analyzing the network topology). The
zero points which nullify the parameters must also be provided, but can be
automatically retrieved when the model uses reactions. In addition we can define
constraints by getting a variable using the JavaBDD variables.

The main process is started using the REDcalculate function by providing a user
defined error function and a cutoff. In most cases the error function has to be nested
into parameter optimizer function which tries to minimize the error function. See the
examples on how to setup a parameter optimizer and an error function. After all
calculations are done, the different representations discussed in 5. Output of the
reduction toolbox are used as an output.

In the example we chose ‘incl-bfs’ as a strategy, which will perform a BFS search
while following the theorem of included sub and super-sets for reduction. We
implemented the following different strategies:

22



Strategy Abbreviation Description

Explicit explicit Explicitly tests all possibilities without assuming
the theorem.
BFS incl-bfs Uses theorem and performs breadth first search,

reducing few elements first
BFS (reverse) incl-bfsreverse Same as BFS but reverse, reducing many
elements first

DFS incl-dfs Uses theorem and performs depth first search

Greedy incl-greedy Uses theorem and tries to reduce as possibilities
as possible on average

Heuristic not done Uses theorem and performs a probability
estimation using a heuristic based on Bayesian
networks

6.2 Determining a cutoff value

When determining a cutoff we have to ask ourselves what models do we want to
filter. The best possible result should occur, when we remove no parameters at all. A
common application of the toolbox is to simply get all models that are not more than
10% worse than the one with the lowest error. In this case we would multiply the
best error for no removed parameters by 1.1 and this would be our cutoff.

Another way is when our reference model is not the one without any parameters
removed, but a model that is only a sub model of the complete one. In this case we
usually want to know what parts we need to add in order to improve the error value.
When we want to improve the model by at least 10%, the cutoff would be 0.9 times
the error of our reference model. It is clear that determining a cutoff is pretty straight

forward.

6.3 Modeling the dynamics for fatty acid 3-oxidation

Our first real application was to aid in the improvement of a model for the fatty acid
B-oxidation, which was developed by Ferdinand Stiickler and Alexandra Grigore. The
core of the model is called the B-oxidation cascade and is structured as a chain (see
Figure 6) where a small portion directly reaches the last output state.

k10 k11 k12 k13 k14 k15 k16 k17

Figure 6: B-oxidation cascade

When comparing measured data from patients with a simulation of this model, it
became clear that the chain cannot be everything that is needed. Ferdinand and
Alexandra made the assumption that there might be some linear reactions leading in
and out from every state in the chain and added them with unknown states to the
model (see Figure 7).

23



k2 k3 k4 k5 k6 k7 k8 k9

k10 k11 k12 k13 k14 k15 k16 k17

k19 k20 k21 k22 k23 k24 k25 k26

Figure 7: Extension of the B-oxidation chain

The reduction method was now used to reduce this blown up model and get the
reactions that are really necessary to reach a significantly lower error value.
Conveniently Alexandra managed to combine the patient data into 3 different
clusters.

For each dataset we had to determine a proper cutoff which was done by simulating
the model with all parameters and then when removing all but the core chain. The
cutoff was chosen slightly above the best error of all parameters to account for
optimization approximation errors.

Datasets all parameters error core chain error cutoff <= error
all patients 0.4236 0.5964 0.45
cluster 1 0.9255 1.6441 0.95
cluster 2 1.3641 1.5647 1.40
cluster 3 0.4735 0.6602 0.55

Each of these runs returned a set of different models that has an error value below
this cutoff.

All patients:

k 10 & k 11 & k 12 & k 13 & k 14 & k 15 & k 16 & k 17 & (k 4 & k 21 | k_5)

Cluster 1:

k5& k4 &k 10 & k 11 & k 12 & k 13 & k 14 & k 15 & k 16 & k 17 & (k 2 &
k 20 & k23 & (k24 & (k18 | k19 | k6) | k3) | k21 & (k_18 | k 19 |
k2 | k23 | k24 | k25 | k3 | k7)) | k22 | k4 &k6 &k10 &k 11 &

k 12 & k 13 & k 14 & k 15 & k 16 & k 17 & (k 21 | k22 & (k. 2 | k. 3))

24



g
6
O OGO COHCOEe

Figure 8: Decision tree for the solutions of Cluster 1

Cluster 2:

k5 & k8 &k 10 & k 11 & k 12 & k 13 & k 14 & k 15 & k 16 & k 17 & k 21 &
k 23 & k_25

Cluster 3:

k 10 & k 11 & k 12 & k 13 & k 14 & k 15 & k 16 &« k 17 & (k 4 & (k 20 | k 21
| k22 | k6) | k5| k8| k. 9)

We can see that these formulas can get pretty messy. Usually one would try to
further lower the cutoff in order to decrease the number of possible models, but as
the simulated annealing already had problems with the 24 parameters, we had to give
it some room for error. For Cluster 1 the decision tree was attached as the formula is
hardly readable anymore, but when looking at the decision tree the result becomes
quite clear.

25



What all these results have in common is an incoming reaction at C-10 with k5 or at
C-12 with k4, which works for most of them. In some cases it is even enough to only
have input reactions at the end. It seems that starting from C-12, there is definitely
some input missing, as we always need more concentrations when we further get
down the chain.

However, we have to note that the error was only lowered by an average of 25% for
the different data sets. This might not justify adding an additional parameter when
we want to keep the model complexity to a minimum.

As our results were a bit unspecific and did not directly indicate which model to use,
a comparison run was made using BCI, a method which basically does a similar
calculation, but it punishes for every additional parameter we add so we can simply
use one parameter optimizer. The results of BCI confirmed our results in almost
every case, since the best results indicated an input reaction at C-12 and C-10 or C-2,
or no input parameter at all as the punishment was very high.

6.4 Compartment model for Ingestion of Zirconium in Human Body
In an interesting talk by Sabine Hug we heard that she and Daniel Schmidl, two
other group members of the CMB of the Helmholtz Zentrum, were working on a
compartment model (called HMGU) for the biokinetics of zirconium in the human
body after ingestion (Schmiedl, Hug, Bo Lie, Greiter, & Theis, 2011). This model was
compared with another one that models the same process but is from the
International Commission on Radiology Protect (IRCP). Both models contain only
reactions have Mass action kinetics and each reaction only has one substrate and one
product.

When we approached them they were interested to see in what kind of model a
reduction of a merge between the IRCP and their HMGU model would result in.
They claimed that the HMGU model made more biological sense hoped it would be
the result of the reduction. Further they wanted to know whether the HMGU model
is final or whether parts of it are unnecessary for the model to reach the same cutoff.

We used parameter estimations from prior experiments to define a 95% confidence
interval as an upper bound for our parameter values. The lower value was not used
as we have to allow the parameters to reach zero. Unfortunately both the IRCP and
HMGU had a similar error when sum of squared residuals (SSR) over all patients as
an error function. Thus a reduction for the merged models does not make sense as it
would in the best case only return both models separately.

26



HMGU model (ys somach )

y
‘Transfer X7 Sma
Y1 compartment Y10 intestine
X

A -~
XI1

Y2  Bone X20 . 4
X

X8

fys Upper Iarge]
v X21 X10 intestine

Urinary
9 (Y12 path )

A 4

\ in

X4

y
Urinary ) X2 Ve Lower large
\Z! cBIadder <& intestine
ontents

X3 r/ Xs
|)I7 Urine ) ys Feces

Figure 9: HMGU model for ingestion of zirconium

U:

However, the reduction for the HMGU model (see Figure 9) looked more promising.
We set constraints to consider only models that followed certain rules to ensure that
the result made sense from a biological perspective.

x1 & x2 & x3 & x6 & xT & x8 & x11 & x12 & %20 & x21 & (x22 | x9)

The interpretation of the result is that we do not need x10, which is the reaction
from the Transfer compartment (basically blood) to the Upper large intestine.
Secondly, we only need one way leading to the Urine, either x9 or x22, but definitely
not both. As a direct connection from the blood to the bladder does not make sense,
x22 which first goes through the urinary bladder should sufficient.

x4 and x5 were reduced from the model as they cannot be observed and have no
impact on the blood or urine, but should not be removed from the model. It seems
that after removing x9 and x10, the model looks even more biologically realistic.

7. Discussion and perspectives

The development of the reduction toolbox went very smooth until we hit a rock when
exploring different reduction strategies. We tried many different strategies, but most
are not shown in the benchmark due to poor performance. It was very hard to find a
strategy that performed well for every model. Judging from the benchmark results,
the greedy strategy is performing well on average, but is not better than the BFS if
we have prior information about the results we expect.

27



Unfortunately we did not manage to implement the heuristic strategy in time. The
approximation of the model probabilities in combination with the maximum
information gain seemed to be the best way to go. We still hope that our heuristic
will be able to drastically improve the runtime of the reduction toolbox and make the
method applicable even for a great amount of initial possibilities.

Still, the current implementation the toolbox is very versatile and we feel it is quite
easy to apply the reduction method to most network based problems. In the very end
we even decided to split the main theorem of inclusion from the core reduction
toolbox. This allows for a general application of the method, where we can do explicit
model reduction given that we define enough constraints to keep the amount of
possible models to a minimum.

So far we only allowed the removal of different reactions in the reduction method.
The next step would be to include additional reduction operations, such as the
merging of different states. To add this option, we would need to define the merging
of two states with simple Boolean logic.

We could define a series of Boolean variables that indicate whether two states are
sx(s—1)

merged in a pairwise manner. To account for all possible mergers, we need

variables, where s is the amount of states. In case we merge three states together, we
would only need two variables and not three to represent the merger. Therefore we
perform a prior analysis of all possible combinations of values for the variables. For
our example we would restrict the third variable to true. Additionally, we can
prohibit self-loops of states and other motives that would not make sense in a
biological way.

This structure would allow an easy representation of the possible mergers. However,
the method would only be feasible if we could somehow apply the theorem of
inclusion to the merging of states. This would depend highly on the type of model
and at this point we have not done enough investigation into the issue.

To conclude this work, we think that the main objective of building a toolbox for the
systematic reduction of models was achieved successfully. During the development,
the toolbox was extensively tested and was able to provide valuable input for other
groups as shown in the results of the examples. We feel the method might be a
valuable tool for other research groups that work on developing models to describe
biological systems.

28



References
Bishop, C. M. (2007). Pattern Recognition and Machine Learning.

Dama, M. (2009). Simulated Annealing in Trading Optimizartion. Retrieved from
http://maxdama.blogspot.com/2008/07 /trading-optimization-simulated.html

H. Schmidt, M. J. (2005, November). Systems Biology Toolbox for MATLAB: A
computational platform for research in Systems Biology. Bioinformatics
Advance Access.

Rickert, D. (2009). Empirical reduction of signaling networks.

Schmiedl, D., Hug, S., Bo Lie, W., Greiter, M., & Theis, F. (2011, August 12).
Bayesian Model Selection determines the Biokinetics of Zirconium in the
Human Body after Ingestion.

Whaley, J. (2007). JavaBDD. Retrieved from http://javabdd.sourceforge.net

Wikipedia. (2011). Information gain in decision trees. Retrieved August 5, 2011,
from http://en.wikipedia.org/wiki/Information gain in_decision trees

29



Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Simulated annealing (Dama, 2009).........cccoriiiiiiiimiiiieiiie e 6
Flowchart of the reduction method ...........c..coooiiiiiiiiiii e, 8
Example for a reduction graph when testing BC..............cccciiii 10
Reduction graph for BC with Bayes Theorem..............oiiiiiiiiiiiiiiiiiiiinnn.. 16
Benchmark of the reductions strategies ...........cccoooiiiiiiiiiiiiiii, 19
B-oxidation cascade...........oooviiiiiiii 23
Extension of the B-oxidation chain ............c..oooooo 24
Decision tree for the solutions of Cluster 1..........ccccoviiiiiiiiiiiiiiiiiiii. 25
HMGU model for ingestion of zirconium ..............ccooiiieiiiiiiiniiiiiiiineeeenn. 27

30



