LUDWIG-MAXIMILIANS-UNIVERSITAT
TECHNISCHE UNIVERSITAT MUNCHEN

Institute of Bioinformatics and Systems Biology
Helmholtz Center Munich; computational
modeling in biology

Bachelorarbeit

in Bioinformatik

A quantitative model to
study the role of pitchfork
and the primary cilium in the
hedgehog signaling pathway

Cedric Landerer
Aufgabensteller: Prof. Dr. Fabian Theis

Betreuer: Dr. Dominik Lutter
Abgabedatum:  15.07.2011



IT



Ich versichere, dass ich diese Bachelorarbeit
selbstandig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

15.07.2011

Cedric Landerer

I1I



IV



Contents

1 Introduction

1.1  The mechanism of the hedgehog pathway . . . . . . . ... ... ... ...
1.2 Motivation . . . . . . . ..
2 Methodology
2.1 Data . . . . . e
2.1.1 Normalization . . . . . . . .. . ...
2.2 Modeling . . . . . . .
2.2.1 Model training . . . . ...
2.2.2  Simulated annealing . . . . .. .. ..o
2.2.3 Model selection . . . . . .. ...
2.3 One compartment Model . . . . . . . . .. ...
2.4 Two compartment Model . . . . . . . . . .. ... L
3 Results
3.1 Omne compartment model . . . . . . . . . .. ... ... ... ... . ...
3.2 Two compartment model . . . . . . . . . ... ...
3.3 Comparison . . . . . . . ...
3.4 Prediction . . . . ..

4 Discussion

5 Conclusion and Outlook

10
10
15
15
16
20
20
21
22

25
25
26
26
27

35

39



Abstract

Sonic hedgehog (Shh) controls the early development of embryonic cells in vertebrates
and is conserved over many taxa. Sonic hedgehog is secreted by a signaling cell into
the extracellular matrix. Shh binds to the receptor protein Patched (Ptc) that is placed
in the plasma membrane of the receiving cell. So the Shh signal is transduced into the
cell. Here we introduce two quantitative models based on ordinary differential equations
(ODE) to simulate and analyze the Shh signal pathway. At the end we will show which
model describes the data most likely. We will present the data and how it is processed
for the training. The models are trained on experimental data by a simulated annealing
approach. We also include Pifo to the models. Pifo is assumed to be important for ciliary
trafficking. We analyze the role of Pifo in the Shh signaling pathway with the ODE models
presented in this work and will show that Pifo does enhance the expression of the Shh
target genes by turning Pifo off. So we can compare the results of the fitting and the
prediction.

Zusammenfassung

Sonic hedgehog (Shh) ist verantwortlich fir die Kontrolle der frithen Entwicklung von
embryonalen Zellen in Vertebrata. Shh ist dabei iiber viele Taxa konserviert. Shh wird
von einer signalisierenden Zelle in die extrazellulare Matrix sekretiert wo es dann an das
Rezeptorprotein Patched (Ptc) bindet. Durch das binden an Ptc wird die Inhibierung von
Smo durch Ptc aufgehoben und das Shh-Signal kann in die Zelle induziert werden. Wir
werden in dieser Arbeit zwei quantitatives Modell, basierend auf ODE’s vorstellen um
den Shh Signalweg zu simulieren und zu analysieren. Zum Schluss wird wiedergegeben
welches Modell am wahrscheinlichsten fiir eine Erklarung der Daten sorgt. Wir werden
die zur Verfligung gestellten experimentellen Daten vorstellen und aufzeigen wie sie zum
trainieren der Modelle verwendet wurden. Die Modelle wurden mit Hilfe einer Simulated
Annealing Methode auf die experimentellen Daten trainiert. Wir haben den Shh Signal-
weg um Pifo ergdnzt, ein Protein welches sich fiir den Transport ins Cilium verantwortlich
zeigen soll. Ziel ist es die Rolle von Pifo im Shh Signalweg mit Hilfe der bereitgestell-
ten ODE-Modelle zu analysieren. Dabei werden wir zeigen das Pifo die Expression der
Gene welche auf das Shh-Signal reagieren verstiarkt. Dafiir wurde Pifo eliminiert um die
Ergebnisse mit und ohne Pifo im System vergleichen zu kénnen.



Chapter 1

Introduction

The hedgehog (Hh) signaling pathway plays a major role in the early development of
embryonic cells, but is not understood in detail yet. The hedgehog signaling pathway is
responsible for the growth, patterning and morphogenesis of many different regions within
the body plans of vertebrates and insects|[1]. The hedgehog pathway is present in most
organs and tissues of the most vertebrates and is conserved over many taxa which shows its
important role. For example, in Drosophila, hedgehog plays a role in larval body segment
development. In annelid (also called 'ringed worms’) it is involved in the segmentations
process. Therefore it is important to understand this pathway in detail. In 2010 Pitchfork
(Pifo) was discovered which also plays a role in the hedgehog signaling pathway. Pifo is a
protein that is associated with ciliary targeting complexes and accumulates at the basal
body during cilia disassembly[2]. To understand the role of Pifo, we created a quantitative
ODE-model based on the current knowledge and trained on western blot data given from
our collaborators. We want to answer the question, what the role of Pifo in the hedgehog
pathway is and if it is responsible for ciliary trafficking.

1.1 The mechanism of the hedgehog pathway

Sonic hedgehog (Shh), a member of the hedgehog protein family, binds after secretion by
a signaling cell to a receptor placed in the plasma membrane of the primary cilium of the
receiving cell called Patched (Ptc)(Figure 1.1). Shh and Ptc form a complex which then is
internalized. Ptc is a transmembrane protein with five extracellular and seven cytoplasmic
regions. It is expressed in several tissues like brain, lung, liver and heart. The cilium is a
sensorial organelle found in eukaryotic cells. The Patched protein represses the function
of the signal transducer Smoothened (Smo) in the absence of Shh. Smo is a seven-pass
transmembrane protein|[6] and G-protein coupled receptor. It has a shorter extracellular
domain of around 200 amino acids and a longer cytoplasmic domain of around 500 amino
acids. If Shh binds to Ptc, the repression of Smo ends and the Shh signal is transduced
to the cytoplasm|3].

In absence of the Shh signal, the target genes of Shh are repressed. As activator and
repressor for the Shh target genes, the Gli protein family has been identified. The Gli
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Figure 1.1: The sonic hedgehog pathway. (Left panel) Shh is autoprocessed and modi-
fied by Ski and then released by Disp into the extracellular matrix. (+Hh) Shh binds to
Ptc present in the membrane which is then internalized. Now Smo can enter the mem-
brane and the Shh signal is transduced. Cos2 is released from the microtubules and the
Cos2/Fu/Su(fu)/Ci complex releases Cubitus interruptus (Ci) which is then translocated
to the nucleus to activate the transcription of the target genes. (-Hh) Ptc inhibits the
Smo and the Cos2/Fu/Su(fu)/Ci complex remains at the microtubules and Ci is cleaved
by Cos2. The cleaved Ci acts as a repessor.[6].

family is a group of zinc finger transcription factors which are associated with the Shh
signaling pathway. There are three members of this family present in vertebrates[4], Glil,
Gli2 and Gli3. With an active Shh signal, Glil is processed by phosphorylation into an
active form (GliA) in the cilium. The activated Gli is then translocated into the nucleus
where it acts as a transcription factor. Gli2 also acts as a transcription factor. Gli3 exists
in two forms. In a full length form (Gli3) that acts as an activator after phosphorylation
and translocation into the nucleus, and in a shorter C-terminally truncated form which
acts as a transcriptional repressor (GliR). The cleavage is inhibited by Shh. Without Shh,
Gli3 is phosphorylated by the Protein Kinase A (PKA) and then bound to the ubiquitin
ligase 5-TrCP4].

Pifo is now propagated to be an adapter protein which is important for ciliary trafficking|2].

1.2 Motivation

The motivation of this work is to provide a quantitative model to clarify the role of Pifo
in the Shh signal pathway. The Shh signaling pathway is not yet understood in detail,
and the role of Pifo in the pathway is absolutely unclear yet. We want to answer mainly
the question, what is the function of Pifo and the primary cilium in the Shh pathway.
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Therefore, we created different models based on ordinary differential equations (ODE)
with and without the differentiation between cytoplasm and cilium. We tested how the
models will act with and without Pifo in its assigned role as an adapter protein for ciliary
trafficking. So Pifo should enhance the system. Another question which came up during
the work was about how the interaction between Smo and Ptc happens. We also tried to
address this question. There are two possibilities known to us, one at which Ptc inhibits
the import of Smo into the membrane and one where Smo and Ptc are both placed
in the membrane. We have the chance to address this question also, just by taking the
compartmentation into account(see. Section 2.2). Lai et. al published a one compartment
ODE-model to investigate the function of the Shh pathway as a genetic switch[17]. They
do not take the ciliary trafficking into account. Also we want to include Pifo in our system
to investigate the role of Pifo in the Shh pathway.



Chapter 2

Methodology

We first did a literature search to understand the known mechanisms of the Shh signaling
pathway to create two initial models which are both contain two compartments. They
both included the trafficking of all proteins, but as this model was to complicated, detailed
and also contained a lot of unmeasured protein, we decided after a discussion with our
collaborators to start again. This time with a simple model, just containing the basic
players. So we could extend this model if necessary. One advantage over the initial
models was to get rid of a lot of unmeasured proteins in the model.

We used an ODE-approach to define the model of the Shh system because the progres-

sion of chemical and biochemical reactions are well described by mathematical equations.
And as the derivative of a function provides the rates at which the equation is changing,
we assumed that an ODE-model will characterize the Shh signaling pathway well.
First we created a new initial model without any compartmentation (see Section 2.2).
This model was the base for further exploration. With just one compartment, we could
also address the question about the interaction between Smo and Ptc. If Ptc inhibits
the function of Smo by binding, the inhibition of Smo by Ptc is done by an interaction
in the membrane[3]. Therefore we canceled Smo in the one compartment model out by
setting it to the ShhPtc-complex (Figure 2.1). A 1:1 relation between Ptc and Smo is
assumed here. For the other case a two compartment model was created which takes the
import of Smo into the cilium in to account. Here we used a logistic function to model
the dependency of the Smo import by Ptc, so this would be a non-binding inhibition. We
will describe this in detail in Section Section 2.2.

The one compartment model causes numerical issues because we relinquish GliA to
keep this model as simple as possible. From there we added GliA also to the one com-
partment model. We will describe this in detail in Section 2.2

2.1 Data

The data we used for the parameter training was provided by our collaborators from the
group of Dr. Heiko Lickert.
For Glil we had 3 time courses with 7 time points. 2 time courses with 7 and 6 time
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Figure 2.1: Illustration of a simplified possible inhibition mechanism of Ptc on Smo. The
Gli family is condensed to Cubitus interruptus (Ci). There is no distinction between Glil
and Gli3 shown. (A) Without Shh, Ci is phosphorylated by Protein Kinase A (PKA)
and cleaved into the repressor by supernumerary limbs (Slimb), because Ptc inhibits the
function of Smo. So, no transcription of the Shh responsive genes take place. Both
proteins - Ptc and Smo - are present in the membrane and interacting directly. With an
active Shh signal, the inhibition of Smo sag. So Ci is no longer cleaved into the repressor
and an activation of the responsible genes can take place[3].

points for GliR, and for Pifo and Gli3 we had 1 time course, each with 7 time points. All
datasets are in a range of 24h. We had data for the time points Oh, 0.5h, 1h, 2h, 4h, 6h
and 24h after Shh induction. The raw data is shown in Figure 2.2.

For the later model training we calculated the mean p and the standard deviation o for
each time point of Glil and GIli3 and assumed that Glil and Pifo share the same o and
Gli3 and GliR as well, because we were not able to calculate a standard deviation of Pifo
and Gli3 from just one time course. For Gli3 and GIliR this assumption is made because
of the conservation of mass should keep the standard deviation at the same scale. In the
case of Glil and Pifo, as we had to estimate a standard deviation, we used the one of Glil
just because the expression of the proteins are in the same range.

The normalized data is shown in Table 2.1 and Table 2.2. In Figure 2.3 also the
rescaled data is shown. For GliR we have a systematical shift in the data due to a
different reference point. We corrected this shift by normalizing the data. Shh is induced
at time point Oh. As we have no absolute molecule count, all concentrations are on an
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| time(h) | Glily [ Glily, | Glily [ Glilyean | Pifo | o Glil/Pifo |
0 | 1773.437 [ 1856.319 | 2685.249 [ 2105.015 | 1282.234 |  504.201
0.5 | 4300.246 | 3888.75 | 4523.166 | 4237.387 | 11452.19 |  321.845
6264.581 | 6204.306 | 6718.516 | 6395.801 | 26273.56 |  281.01
8037.702 | 8115.743 | 8519.3 | 8224.248 | 27776.63 |  258.484
17823.72 | 11894.83 | 11261.46 | 13660 | 21662.96 | 3619.76
18644.56 | 20678.84 | 19200.02 | 19507.81 | 13258.06 |  1051.48
24 | 48829.57 | 40477.33 | 51214.99 | 46840.63 | 5375.853 |  5638.37

(@) BTSN N

Table 2.1: The normalized time courses of Glil, Pifo, and the respective standard devia-
tion and mean.

| time(h) | Gli3 | GliRy | GliRy | GliRyean | 0 Gli3/GliR |
0 4671.146 | 8052.794 | 9348.136 | 8700.465 915.944
0.5 | 6297.095 | 9960.986 | 10593.97 | 10277.48 447.59

1 7025.409 | 12421.11 | 11037.47 | 11729.29 978.38
2 16242.94 | 12547.74 | 12064.24 | 12305.99 341.889
4 21952.39 | 13373.69 | 11816.51 | 12595.1 1101.09
6 18433.37 | 14902.11 | —— 10754.34 1626.42

24 9209.167 | 3145.397 | 6386.233 | 4765.815 2291.61

Table 2.2: The normalized time courses of Gli3, GliR and the respective standard devia-
tion and mean.

arbitrary scale. The o’s were later used for the calculation of the likelihood.

Because in the second time course of GliR the time point at 6h is missing, we calculated
the standard deviation for this time point by combining the time point 6 hour from time
course one with the means of the time point 4h and 24h. With these 3 points, we were able
to calculate a mean p and a standard deviation o. But because the standard deviation
was significant larger as the other o of the time course, we calculated the mean over all
standard deviations of the time course GIliR,. So we got a ¢ in the same range as the
data points from which we derived the o.

After Shh induction, we see a change of the equilibrium in the cleavage reaction of Gli3.
The equilibrium which is on the GliR site, is changing towards Gli3 (figure 2.2 B/D). This
may have two reasons. First is, that the ShhPtc complex or Smo inhibits the cleavage,
which is the most common reason, the second is that the Shh signal is stimulating the
Gli3 transcription. It is yet unclear whether the ShhPtc or Smo inhibits the cleavage by
inhibiting the PKA. We first tried both variants, but with respect to our collaborators we
decided to use the variant with Smo as the inhibitor. The data shows that there is still a
production of GliR while the Shh signal is active. So there is no complete shut down of
the inhibition by GliR.
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Figure 2.2: Shows the raw data of Glil(A), Gli3(B), Pifo(C) and GliR(D). (A) The three
time courses for Glil. They show a small deviation in the first 4 hours and an increasing
deviation in the later hours. (B) One time course for Gli3. After Shh activation (Oh),
one can find a substantial increase of the Gli3 concentration which should be due to the
changing of the equilibrium. (C) For Pifo, also just one time course is available. One
can see a sizable increase in the early hours until 2h, after that, Pifo decreases to a mid
level. (D) Two time courses are available for GliR. One can see a notable increase at the
beginning and a decrease in the later hours.

13



Gli1 Gli3

. 15
A 250( B
—~ 200 %} — %
< c
Q Q L
8 g1 %’
& 150 =
= f= Q
S k]
2 100 g
(0] [ [}
5 e g 4
X x
(o] % [} &
50
4 ‘1’
&
¢
0 . . . . ol . . . .
0 5 10 15 20 25 0 5 10 15 20 25
time(h) time(h)

Pifo GliR
T T T 20— T T

€
R
-

-
NS
o O
——

expression (protein)
o @ 8
o O O
4
L=
[ —
expression (protein)
S
o
——

NS
S o
-4

o

0 5 10 15 20 25 0 5 10 15 20 25
time(h) time(h)

Figure 2.3: Shows the normalized and rescaled data of Glil(A), Gli3(B), Pifo(C) and
GliR(D).(A) Gli one is increasing over the whole time. But as we have no differentiation
in the data between Glil and GIliA, we can not reveal anything about a change in the
equilibrium. (B) As just one time course is available for Gli3, we used the standard
deviation of GliR. Because of the conservation of mass, this should cause no issues and
should be accurate enough. The origin time course is used as mean. (C) For Pifo, just
one time course is available as well. So we used the standard deviation of Glil because
th data points are in the same range. The origin time course is used as mean. (D) Two
time courses are available for GliR. One can see an increase of the concentration until 4h.
After 4h the concentration is decreasing until 24h.
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2.1.1 Normalization

For normalizing the data, we used first the RMSD (Equation 2.1) to calculate comparable
time courses for Glil and GliR for which we have 3 and 2 respectively. So we calculated
the RMSD for each time point with respect to each other data point at this time. x7 and
2y are vectors to compare. n is the count of the elements in the vectors. If we take an
unbiased estimate as basis for our data, the RMSD is just the standard error which is the
square root of the variance.

\/Z?zl(l'l,i — 224)? (2.1)

n
f RMSD(x,y) = RMSD(x,y); //calculates the RMSD between 2 points x and y
f_optl(a) = f RMSD(x, axy); //search for the a which minimizes the RMSD between x and y
f_opt2(b) = f RMSD(x, bxz); //search for the b which minimizes the RMSD between x and z
f_opt3(c) = f RMSD(axy, c*z); //search for the ¢ which minimizes the RMSD between axy and z
f_optd(c) = mean(f_opt2(c), f_opt3(c)) // calculates the mean constant for b*xz and c*z to minimize the
RMSD between x, y and z.
—> multiply y and z with the obtained constants to normalize the data

Listing 2.1: Using the RMSD to compare different time courses of the same protein.

To do this, we minimized the RMSD between the corresponding data points by search-
ing for proper constants like it is shown in Listing 1. After that, we got comparable time
courses which we used for the model training. Next step was to normalize the data again
to the time point ty. This is done by dividing each time point by the time point ty. After
that, we rescaled the data to 10 for easier handling. We will describe this in detail in
Section 2.2.1.

2.2 Modeling

For defining and solving the ODE-models we used the SBTOOLBOX2|7| package which
is available for MATLAB®). All models are derived from the literature, the meetings with
our collaborators and, at the points where we had doubts, derived from the given data.
For the transcription we assume for all proteins a base transcription rate. We additional
use a hill function[12] where we have knowledge about the transcription factors[20]. This
is not the case for Gli3 and Smo. In the case of Gli3 we can see an increasing after Shh
induction at time point Oh. As we have no knowledge about the activation of Gli3, we
assume a positive feedback by the Shh signal, so we use the ShhPtc-complex to model the
stimulation of the Gli3 transcription. For Smo, we have even no data of the concentration
in the cilium to derive a model for the transcription. So we could just assume a base
transcription rate for Smo. As Glil is proposed to be the major transcription factor, we
decided to ignore the transcriptional activity of Gli3. This also simplifies the models.

1t
Kq+[L]"

The Hill function is used to describe the ligand binding to a molecule. As we have
here the transcription factor which binds to the DNA. [L] is the concentration of unbound

0 (2.2)
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ligands and the exponent n describes the cooperativity. We decided to set n to 1. This
means we do not assume any cooperative behavior of the transcription factors. K is the
dissociation constant and as we do not know this constant for our proteins, K, is one of
the parameter we try to fit.

In the cases where we haave conservation of mass, like in the case of the ’transformations’
of Gli3 into GliR or Glil into GliA, we used a Mass action kinetic[13] (Equation 2.3).
The mass action kinetic is also used for the transport from one compartment to another.

const = aA+ BB = ~yC + 0D (2.3)

The law of mass action tells us that no matter how the equilibrium will change, the
total concentration in the system remains constant. So we do not produce or lose protein
by changing the equilibrium.

We first started, as mentioned before, with a very simple one compartment model (Figure
2.4). This model, we extended than to a two compartment model with the transport
between cilium and cytoplasm. Both models will be described in detail in

SHH

re14
re17

Patched

SHH
Patched

ShhPtc

Figure 2.4: A one compartment model of the Shh signaling pathway from which we derived
the final models. As Glil and GIliR share the same targets, there is a permanent contest
between these players. As we see an increase also of GliR and Gli3 after Shh induction, we
assume some influence of the ShhPtc complex and Pifo onto this proteins. Also we assume
an influence of Pifo onto the Shh signal, which is in this model shown by enhancing the
Glil self activation to amplify the system.

2.2.1 Model training

The parameter training for the models is done with a simulated annealing approach|5]
(see Section 2.2.2). The models were trained on the change, relative to the time point

16
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Figure 2.5: Fit of the Shh system without the pre-calculation of the base transcription
rates and the normalization to fixed initial conditions. Shown is the change of the system
relative to the initial value which is scaled to 1 for each protein. Shh is induced at Oh. (A)
Simulation of Glil which fits very well. (B) Fit for Gli3. Just the data point at 0.5h is
missed. (C) Fit for Pifo. The correct course of the data is reproduced. (D) Gli3 decrease
in the early hours while it should increase.
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to (f—;) We decided to train on the change, as this is what is represented by the derivative
of a function. We also rescaled the data to 10 for the time point to except for Gli3, here
we assumed that the Gli3 and the GliR data are comparable. So we calculated the value
at which we scaled the Gli3 data from the GliR data by searching the coefficient that
describes the quotient.

First we tried to fit also the initial conditions as we had no absolute molecule count. But
this leads to the problem that we obtain different parameter set for the steady state and
the dynamical simulation, and the system did not fall back into the steady state. This
method leads to relative good fits but got stuck in a local minimum(Figure 2.5), and also
did not fulfill our requirements. The system is in the steady state if the change at each
time point is 0. To avoid this problem we assumed that the system starts in the steady
state. To do so, we set all Shh dependent parameter and all concentrations of proteins
which are not present without Shh activation to 0. The now simplified equations are set
to 0 to solve it for one parameter. So we could decrease the number of parameter at the
one hand, and we could be sure that our system starts in a steady state. To illustrate
this, an example is given in the Equations 2.4 to 2.7

dGli3 Smo; . . .
dtl — base3 + ag X (O%) — (k1 + Fo X Pifo) x Gli3— fs x Gli3 (2.4
cleavage degradation
activation
0= base3 + « X(M)—(m + ko X Pifo) x Gli3 — B x Gli3 (2.5)
n o7 N aq + Smo; ! 2 6 '
0 = base3 — (k1 + K2 X Pifo) x Gli3 — Bs x Gli3 (2.6)

base3 = (k1 + Ky X Pifo) x Gli3 + fg x Gli3

Figure 2.6 illustrates the switch between the steady state and the Shh activation. The
parameters are random chosen. Also it is shown how the system reaches the steady state
again after eliminating the Shh signal. The proteins which we assumed to be not present
without Shh activation are GliA, the ShhPtc-complex, and also Smo is assumed to stay
just in the cytoplasm and not in the cilium at this time.

P (w1 — 2,)?

- (2.8)

To calculate the loss of each parameter set, we derived an error function from the
mean squared error (MSE) (Equation 2.8) which is also similar the the RMSD. But we do
not divide the squared error by the number of data points which are taken into account.
We divide the squared error by the standard deviation o to tolerate large error if o is
also large. If we would divide by the number of data points, we would rate an error at a
protein with multiple time courses higher than the same error at a protein with just one
time course.
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Figure 2.6: Illustration of the switch in the system by adding and removing Shh for a
random parameter set. At time point 20, the Shh signal is induced, and stay active until
time point 50. So as we can see all shown players reach a steady state under the shh
activation, and fall back into the origin one after the Shh signal is shut down.
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2

m
loss =YY" (i = y)” (2.9)
Voyj=1 Oz
We sum up over all players and over all time points. Where z; is the mean of the
measured data points at time ¢ and y; is the point produced by the model respectively
to the given parameters. o,, is the standard deviation of the data point z at time 7. So
if the standard deviation is large at this time, it produces a smaller loss if the simulated
point is also farther.
For the training, we generated 1000 random parameter sets for each model as starting
points and tried to fit the models with these initial parameters to the data. As cutoff for
the loss (Equation 2.9), we have chosen a value of 500, which is not to selective, but also
sensitive enough. The results will be shown in section Section 3.

2.2.2 Simulated annealing

Simulated annealing is a probabilistic meta heuristic for approximating a global optimum
of a given function by using an adaption of the Metropolis-Hastings algorithm [5]. The
goal of simulated annealing is, to find a acceptably good solution rather then the best.
But in a guaranteed time.

Simulated annealing solves a problem which is described by a co-domain D, a fitness
function f : D — R, a neighborhood V' (x) and a stop criterion. The first step is to choose
an initial parameter set #. We used a normal distribution N(0,1) to choose a random
set of initial parameters. Now the simulated annealing changes the initial parameter set
randomly until the stop criterion is reached. For each change, the algorithms decides so
keep or decline the change by using the following selection.

If f(y) < f(z) then set x = y whereat z is the old parameter vector and y is the new one.
If f(y) > f(x) then set x = y with probability exp (—%@), whereat T; is the actual
temperature.

Here we see, if the temperature decrease, the acceptance probability decreases as well.
For our training runs, we have chosen a initial temperature of 100 to allow the acceptance
also of worse parameter sets at the beginning. To also perform large changes in the
parameter set, we used a logarithmic transformation for our parameter set which is shown
in Equation 2.10. This function allows us not just to change a parameter in the short
range given by the standard deviation, but to change the order of magnitude.

10loglo(f)+/\/(u70) (2.10)

Where we define 4 = 0 and ¢ = 0.3. The standard deviation is determined by testing
multiple o.

2.2.3 Model selection

To compare the different models, we used the AIC[9] and the BIC|[10] to score each model.
As the models differ in the amount of parameter, it was necessary to use a criterion that
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takes the number of parameter into account to compare the models. The AIC and the
BIC are based on the likelihood of a model. Also it is important to take the number
of parameter into account as it is possible to increase the likelihood of a model by just
adding parameters. This would lead to an overfitting. Therefore, the AIC and the BIC
address this problem by introducing a penalty term for the number of parameter. The
penalty is larger in the BIC then in AIC. The likelihood is defined as L(0) = P[x|6]. So
the likelihood function L(#) of a sample is the function that assign each parameter value
0 the value of the shared density function (L(0) = f(x:0) (Equation 2.11).

In our case, we devised the likelihood function as a normal distribution[19]. To simplify
the calculation and as both criterion uses the logarithm of the likelihood, we directly
calculated the log-likelihood for each model. The function for the log-likelihood is show
in Equation 2.12. The AIC and the BIC are shown in Equation 2.13 and Equation 2.14

L) = /:’O 11 f(#)dz (2.11)

06) = log <U 127Te($”)2/202> (2.12)
AIC =2k — 2In(L) (2.13)
BIC = —21In(L) + k1n(n) (2.14)

k is the number of parameter and n is the number of data points used to train the model.

2.3 One compartment Model

We derived the one compartment model from the origin one shown in Figure 2.4. Because
the origin one was numerically instable we had to add the activated form of Glil. We
had to do this because of the self excitation of the Glil protein. As we calculated the
steady state, a small change of the Gli concentration lead the system out of its steady
state. So the system starts to act dynamically just because of numerical errors due to the
ODE-solver. By adding GliA, we now avoid this problem because GliA is just produced
if the model is activated by Shh. GIliA is activated by the ShhPtc-complex. We used
this complex due to the assumption that there is a 1:1 relation of Ptc and Smo like it
is mentioned in Section 2. So one missing Ptc in the membrane leads to one activated
Smo which transduces the signal into the cell. Therefore the ShhPtc-complex should be
in the same scale as Smo in the membrane. We assume the procession of the Gli family
(Glil and Gli3) as non-reversible. So there is no back reaction in the model. In the case
of Gli3 it is obvious that the reaction is non-reversible, because of the cleavage. In the
case of Glil, we also assume the phosphorylation as non-reversible so no back reaction is
included. For the ShhPtc-complex we did not take a back reaction into account just to
simplify the model. So after complex building, the complex degradates.

The one compartment model get along with less parameter then the two compartment
model, so it should be more difficult to fit it on the one hand, but it also should be simpler
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ShhPtc

Figure 2.7: One compartment model of the sonic hedgehog signaling pathway. No com-
partmentation into cilium and cytoplasm is taken into account. Pifo enhances the activa-
tion of Glil to take into account that Pifo is important for the transport into the cilium
where Gli is activated. Due to the increasing of Gli3 and GIliR in the data after Shh
activation, we assume also an influence of Pifo and the Shh signal on these proteins. See
ODE description in Appendix 1

to find a minimum as the parameter space is smaller.

The mathematical description can be found in Appendix 1.

2.4 Two compartment Model

To test if the translocation process into the cilium is necessary, we needed also a model
which provides the translocation. Therefore we created a second model with two com-
partments. The cytoplasm and the cilium. Here we also had the chance to test if Ptc is
inhibiting the import of Smo into the plasma membrane. So we can compare the results
with the results from the one compartment model which is based on the assumption that
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Smo and Ptc interact directly in the membrane. Here we do not assume a 1:1 relation
between Smo and Ptc. In this model, a high concentration of Ptc in the membrane should
lead to a total absence of Smo in the cilium. This corresponds to the steady state, because
the activator GliA is produced just by interacting with Smo in the cilium. We did not
model the transport of GliA into the cilium.

With the input of Shh, Ptc is displaced. Shh and Ptc form a complex which stimulates
the transcription of Gli3. Given that, the concentration of Ptc in the cilium is decreasing,
so Smo can be placed there.

1
flw) = 1+ exp(x)

To model the dependency of Smo by Ptc, we introduced a logistic function (Equation
2.15). Logistic functions are often used to describe saturation processes. The membrane
is completely saturated if the logistic function is 0. Due to the computational limitations
of representing double values, this happens at a value of 710 in our arbitrary scale.

(2.15)

The mathematical description can be found in Appendix 2.
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Figure 2.8: A two compartment version of the model shown in figure 2.7 including the
cilium as a second compartment and Smo as the ’carrier’ of the activation signal into the
cell. See ODE description in Appendix 2
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Chapter 3

Results

For each model, we started 1000 runs with a random parameter set which then are fitted
by the simulated annealing approach. So we started with 2000 initial parameter sets.
We introduced a cutoff in Section 2.2.1 of 500. This cutoff was, in the case of the one
compartment model, satisfied in 15 cases. For the two compartment model, the cutoff
was satisfied in 4 cases.

Interesting is, that in both cases, we obtain two ’best’ parameter sets. One parameter
set which provides the minimal loss calculated by the error function(we will call it 'Best
loss’) and one parameter sets producing the minimal AIC and also BIC value (we will call
it 'Best score’). To compare both models, we used a likelihood ratio testing (Equation
3.1). All results will be shown in detail in Section 3.1 and Section 3.2.

~ 44(0y)
€T =
l5(6s)
Where (4(6,) is the log-likelihood of the one compartment model with respect to the

parameter set 6 and /5 is the log-likelihood of the two compartment model with respect
to the parameter set 6. The 6; are the corresponding best parameter sets.

(3.1)

3.1 One compartment model

After 1000 runs with different initial parameter sets, 15 set satisfied the cutoff <500. The
best fit produces a loss 234.5 and an AIC of 662 and a BIC of 706 (black line in Figure
3.1). The fit with the smallest AIC and BIC values produces a loss of 332.6 and an AIC
of 636 and a BIC of 680 (red line in Figure 3.1). Figure 3.2 shows that the parameter sets
which produce the best score (set 12) and the one producing the best score (set 2) are not
in the same cluster. So we have two local minima with tolerably good results. A further
step would be to investigate if one or the other minima leads to a better fit. We see a
high diversity in the Glil time course (Figure 3.1A) after 2 to 3 hours. So the early hours
are not that parameter dependent then the later hours. The same holds for Pifo (Figure
3.1C). The drop after the peak at 2 hours seems to be a key event for this protein. The
time courses of Gli3 and GliR are fitted very badly, so here the model should probably
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revised. The best loss parameter set yield to a good fit for Pifo and an acceptable fit for
Glil. The GIliR time course is fitted just until 2h and the parameter set failed completely
to fit Gli3. The parameter set which yields to the best AIC and BIC score fits the Glil
data well but in contrast fails for Pifo. The Gli3 and GIiR fits are also unacceptable.
We clustered the parameter to check whether they are correlated or not. The clustering
shows what we expected, the parameter which are related in the model fall in the same
cluster. For example the parameter 1 (\) and bl (/1) are in the same cluster, this is not
surprisingly as A is the binding rate of Shh and Ptc to each other and f3; is the degradation
rate of the ShhPtc-complex. Interestingly, k2 (k9), which describes the rate at which Pifo
enhances the Gli3 cleavage, highly correlated with g3 ~3 which describes the repressive
influence of Gli3 on the Pifo transcription, but not so high correlated with a7 («7) which
is the transcription rate of Pifo. This could mean, that the repression 73 has a higher
influence.

3.2 Two compartment model

Just 4 parameter sets of the 1000 initial ones yield to a loss which satisfied cutoff <500.
For this model, we have also 2 interesting parameter sets, one which produce the minimal
loss and one producing the minimal AIC and BIC score. All scores for the two compart-
ment model are shown in Table 3.3. As we have just 4 parameter sets, we have a worse
overview about the behavior of the system. But we can distinguish the 4 parameter sets
in 2 classes. Each class contain one ’best’ parameter set. The best loss parameter set
(Figure 3.3 thick black lines) fits the Pifo data very well, close to over fitting, but fails
in the case of Glil, Gli3 and GliR. The best score set (Figure 3.3 thick red lines) fits the
Glil data pretty well and also provides a fit for Pifo and GIliR with the correct bias, but
fails in the case of Gli3. Because just four parameter sets are available, the clustering
of the parameter sets shown in Figure 3.4 has not much explanatory power. So we can
not give a clear conclusion if this set of parameter sets is representative. As seen for the
one compartment model, the two parameter sets producing the best loss and the best
AIC/BIC score are not in the same cluster. This can also be seen in the fits. Here, a
further investigation of the different minima could be the next step.

We also checked the correlation between the different parameter (Figure 3.4). Here we
have a2 (as) as a kind of out group, and a very large cluster which ranges from a9 (ay)
to b6 () in the graphical representation shown in Figure 3.4. The correlated parameter
are the same as in the one compartment model.

3.3 Comparison

The fits of both models are not that good as desirable but the right trend is observable.
To compare the models, we used the AIC and BIC scores and a likelihood ratio testing.
The likelihood analysis favors the simpler one compartment model, see Table 3.1. Also
the AIC and the BIC scores favor the simpler one compartment model (Table 3.2 and
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Table 3.3). So we have an evidence to focus more on the simple model in further research.
As we compared the clustering of both model, we found an equal clustering of the param-
eter in both models. So, correlated parameters in the one compartment model are also
correlated in the two compartment model. For example, al () and a8 (ag) in the one
compartment model equates to a2 (as) and a6 (ag) in the two compartment model.

o is the dissociation constant of the hill kinetic describing the expression of Ptc in the
one compartment model like ay is in the two compartment model. ag is the transcription
rate which scales the hill kinetic of Gli3 in the one compartment model like ag does in
the two compartment model.

In general the one compartment model has a smaller but still huge parameter space, so
from this point of view it is not surprising that we found more minima for the one com-
partment model as for the two compartment model. But still, both models have strong
issues to simulate the Gli3 and GliR data but fit the Pifo data well.

’ one|two H Best loss \ Best Score ‘
Best loss 0.63 0.74
Best Score 0.61 0.71

Table 3.1: Ratio of the log-likelihood for the one and the two compartment model (see
Equation 3.1).

’ H Best loss \ Best Score ‘

Loss 234.5 332.6
AIC 662 636
BIC 706 680

Table 3.2: Loss, AIC and BIC scores for the one compartment model.

’ H Best loss \ Best Score ‘

Loss 408 483
AIC 1045 896
BIC 1096 947

Table 3.3: Loss, AIC and BIC scores for the two compartment model.

3.4 Prediction

For each model we toke the two best parameter sets Best loss(BL) and Best score (BS)
to predict the influence of Pifo onto the system. Figure 3.5 show the prediction for the
one compartment model while Figure 3.6 show the prediction for the two compartment
model. For both models, we see an influence of Pifo on the transcription. In the case of

27



Glil, the one compartment model shows a strong reaction to the missing of Pifo, while
the influence in two compartment model is not that strong. The one compartment model
show no significant reactions to the absence of Pifo in the case of Gli3 and GIliR. For
the two compartment model, we can illustrate a weak response to the absence of Pifo for
these proteins.

As the prediction show, Pifo is affecting the expression of the transcription factor Glil.
And as Glil is the transcription factor for the Shh target genes, Pifo also enhances the
Shh signal.
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Figure 3.1: Results for the fitting of the one compartment model. Shown are all 15 param-
eter sets with a loss below the cutoff of 500. The black line in each subplot corresponds
to the parameter set which produces the minimal loss (BL). The red line in each subplot
corresponds to the parameter set which produces the minimal AIC and BIC (BS). (A)The
Glil simulation shows very good fit for the early hour until 4h. After 4h the results starts
to spread out. (B) For Gli3, mostly just a change in the level happens. The level at 24h
is reached mostly because of the relative large standard deviation, but the peak at 4h is
not fitted well. (C) For Pifo, we see a very nice fit until the peak at 2h, after this peak,
the simulations start to diverge. (D) Shows the fit of GliR. The results differ a lot. So no
parameter set is able to fit the data proper.
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Figure 3.2: Cluster of the different parameter sets which full fill the cutoff of 500. Each
line corresponds to a parameter set, while each row represents a parameter. We see five
major groups. four smaller ones containing (3, 12), (15, 1, 6), (10, 8, 5) and (11) and one
larger containing the most parameter sets (7, 13, 9, 14, 2 4). The value range is from -3
(green, negative correlated) to +3 (red, positive correlated).
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Figure 3.3: Results for the fitting of the one compartment model. Shown are all 4 param-
eter sets with a loss below the cutoff of 500. The black line in each subplot corresponds
to the parameter set which produces the minimal loss (BL). The red line in each subplot
corresponds to the parameter set which produces the minimal AIC and BIC (BS). (A)
We see two separate classes each containing 2 parameter sets for Glil. (B) The GIi3
simulation seems to fit the mean over all time points but do not follow the data. (C)
Two parameter sets fit the Pifo data well while the other two not. Also here we can also
distinguish two classes of parameter sets. (D) GIliR also shows a clear separation into
to classes of parameters. The class containing the BS set fits the data slightly while the
other class, containing the BL set, is increasing until 24h.
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Figure 3.4: Cluster of the different parameter sets which full fill the cutoff of 500. Each
line corresponds to a parameter set, while each row represents a parameter. As the sample
size is to small, it is not possible to distinguish classes from this. The value range is from
-3 (green, negative correlated) to +3 (red, positive correlated).
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Figure 3.5: The left site (A,C,E,G) show the best fits of the one compartment model while
the right site (B,D,F,H) shows the prediction where no Pifo is present. (A/B) Glil is in
both cases affected and the expression is highly decreased. (C/D) No significant change
in the concentration of Gli3 can be observed. (E/F) The Pifo expression is turned off.
(G/H) Also no influence of Pifo on GliR can be observed.

33



>

Gli1
B .
8 200}
s
c
2 100F
173
[
0 5 10 15 20
time(h)
C i
B .
8 20t
s
c
S 1o}
173
S WV~
Q
x
3 0 ! " " !
0 5 10 15 20
time(h)
E Pifo
<
(5]
°
=
=
kel
2
o
0 5 10 15 20
time(h)
G GliR
< ; ; :
© L —_— ]
230 BS
& —BL
Z 20t 1
kel
73
g 10
Qo
o0 ‘ ‘ ‘
0 5 10 15 20
time(h)

Figure 3.6: The left site (A,C,E,G) show the best fits of the one compartment model
while the right site (B,D,F H) shows the prediction where no Pifo is present. (A/B) A
high expression of Glil is more affected than a weak expression, but in both cases the
expression is reduced. (C/D) The BL set is not affected at all, but the BS set show an
affection in the early hours and stay in its steady state. (E/F) The Pifo expression is
turned off. (G/H) For the BL set, we see a change in the speed of reaction increases but
the steady state stays the same. The BS set is affected in the opposite direction. The
small increase with Pifo can not observed without Pifo. GliR stays in the origin steady

state
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Chapter 4

Discussion

Both models have the advantage to fit the Glil and Pifo data well, but also both have an
issue to fit the data of Gli3 and GliR. Here we have to check whether this issue is due to
the systematic shift in the GliR data which is indeed eliminated, but could cause trouble
anyhow. For the one compartment model, we obtained 15 sets of parameter which fall
below the chosen cutoff of 500. The 15 parameter sets belong to 5 minima as shown in
Figure 3.2. For the two compartment model, we obtained 4 sets of parameter which we
could not separate into different minima as the set is to small to distinguish whether they
are all in the same minima or fall in four different minima (Figure 3.4). So we use a
conservative approach and estimate the number of minima to the maximum. In this case
we got 5 minima for the one compartment model and 4 for the two compartment model.
But more realistic should be 2. We can see this in Figure 3.3 where we see two different
courses each containing 2 parameter sets. This is somehow surprisingly as the number of
parameter can increase the likelihood until overfitting[10].

That we got two best sets of parameter for each model is not sudden as the loss is
calculated with respect to the mean of the time courses while the likelihood is calculated
for each data point. So the likelihood function penalize a miss fit of Glil, for which we
have three time courses available, higher than for Pifo (just one time course available).
As we obtained two best parameter sets, one fitting Glil well and one fitting Pifo well,
for each model we should check if we can combine them to improve the fitting of the
model. As we have a high correlation between the parameter sets of both models we
could also include the best parameter sets of the other model respectively for improving
the parameter sets. The clustering of the parameter give no support for either the one
compartment model or the two compartment model as the parameter correlated in the
one compartment model are also correlated in the two compartment model.

We also analyzed the behavior of the models after the Shh signal is turned off again. The
one compartment model switches in one case its steady state for Pifo and Glil(BL) and
in the other case (BS) Glil, Pifo and GliR need about 80 to 100 days to reach the origin
steady state. Just Gli3 responds in both cases immediately. Here an active degradation
of Glil or GIliA - the transcription factor - may involved. As the scale is arbitrary, sadly
we can not compare the concentrations of the different proteins. But we can see that
Glil (BS) is still increasing while the concentration of GliA is decreasing. Pifo decreases
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immediately after the Shh signal is shut off, but stay for about 500h at a higher level
before it converge against the origin steady state.

The two compartment model show a comparable behavior. But here also GliR responds
in both cases (BL and BS) directly the the absence of Shh. For the parameter set BS,
also Glil and Pifo respond directly to the absence of Shh. For Gli3 and GliR we see a
fall back into the steady state before the Shh signal is turned off. But if we look at the
data, in both cases, we see a peak at 4h and a decreasing concentration until 24h. While
the concentration of Glil is increasing and the one of Pifo remains nearly constant. So
the decrease of Gli3 and GliR could be reasonable. So Gli3 and GliR may affected just
direct after Shh induction. For the BL parameter set, the Glil and Pifo and also the
GliA concentration decrease very slowly. This could also be an evidence for an active
degradation. As both models have an issue to fit the data of Gli3 and GIiR, it may be
necessary to also include the minor transcription factor Gli3A, the activated form of Gli3.
But as the AIC, BIC and also the likelihood ratio test support the one compartment
model, we will focus on this model in further research. So we could show that it is not
necessary to model the compartmentation.
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Figure 4.1: Analysis of the fall back after the Shh signal is turned off for the two obtained
parameter sets of the one compartment model. BS means the Best score parameter set,
and BL means the Best loss set. Shh is activated at 20h and is deactivated at 50h. (A)For
the BS set, Glil needs about 100 days to fall back to the steady state. For the BL set,
Glil falls in a different steady state. (B) In both cases, Gli3 responds immediately to the
absence of Shh. (C) For Pifo we see the same behavior like for Glil. (D) GliR also needs
around 100 days to fall back into the steady state for the BS set. The BL set responds
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Figure 4.2: Analysis of the fall back after the Shh signal is turned off for the two obtained
parameter sets of the one compartment model. BS means the Best score parameter set,
and BL means the Best loss set. Shh is activated at 20h and is deactivated at 80h. (A)
The BS set react directly onto the missing Shh signal, while the BL set needs around
250 days to fall back into the steady state. (B) The BL set increases Gli3 rapidly at
the activation, and is then slowly decreasing over time. At the deactivation of the Shh
signal, Gli3 drops rapidly back to the steady state. The BS set provides just a peak at
the activation, and a rapid decrease. The concentration then is increasing again over time
until it reaches the steady state. (C) Pifo shows for both sets, BL and BS, the same
behavior as Glil which is not surprisingly, as the transcription of Pifo is regulated by Glil
in the same way like the Glil activation itself. (D) For GliR, we see the same behavior
for both sets, BL and BS as for Gli3. But in the case of BS, the drop is not so strong.
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Chapter 5

Conclusion and Outlook

Pifo is argued to be important for ciliary trafficking. We created two quantitative ODE
models to simulate the sonic hedgehog signaling pathway to investigate the role of Pifo
in the pathway. Both model are derived from literature and experimental data. As there
is no knowledge about the Gli3 activation, we derived a own interpretation of the Gli3
activation from the data. A simulated annealing approach was used to fit the parameter
onto the experimental data. For the model and parameter comparison, the likelihood of
the two best parameter sets for each model of was calculated. The simulations show a
good understanding about, how Pifo is present in the cell, which regulatory mechanism
act on Pifo. We could also show, with a prediction for both models, that Pifo enhances the
sonic hedgehog signal. This was done by turning Pifo off and compare the results with the
best parameter sets obtained from the simulated annealing. A further step should be, to
fit the models also on the knockout data. Here, it would be interesting to investigate what
consequences different concentrations of Pifo and Shh have on the expression of the target
genes. Which influence has the strength of the Shh signal on the system. Does a smaller
concentration of Pifo require a stronger Shh signal? As Ptc inhibits its own transcription
by a negative feedback loop and also the transcription of the other Shh target genes
indirect, Margio et. al propagated that Ptc in the cilium has to be inhibited completely
to start the transcription. So in cells with an overexpression of Ptc, the Shh signal is
no longer sufficient to completely antagonize the function of Ptc [16]. This is currently
not done due to the issues which came up by fitting the models. The results show that
both models have indeterminacies in the parameter. In both cases, two parameter sets
came up. One producing the best loss of the error function, and one providing the best
AIC and BIC scores. So to determine whether one set is more likely or not, a Bayesian
sampling or a profile-likelihood method could be applied like it is proposed by Venzon et.
al to avoid the problem that the properties of a parameter set 6 can differ a lot from the
asymptotic properties if the sample size is small[18].

39



Appendix 1

dShhPt
TC — ShhPtCaubau — SAhPtCappan
Pt
ddt ¢ = Ptcaufbau — Shhptcaufbau - Ptcabbau
dGli
i ! = Gliaufbau - GliAaufbau - Gliabbau
dGliA
! = GliAaufbau - GliAabba’u
dt
Gli3
d dil = Gli3aufbau - GliRaufbau - GliBabbau
dP1i
ifo = Pifoqufbau — PifOabbau
dt
GliR
d dlz = GliR gufbau — GliR sbbau

ShhPtcayfbau = A1 X Shh x Ptc
ShhPtcappan = 81 X ShhPtc

GliA 1
e 14 (— =
o ain) <M S ang)
Ptcabbau - BQ x Ptc

Ptcay oo = base; + a5 X (

GliA < (14 1
g + GliA Yo X GliR
Gliabbau - 63 x Gli

Gligy fbau = bases + g X (

GliAgufbau = k3 X ShhPtch x Pifo x Gli + k4 X ShhPtch x Glil
GliAabbau = B7 x GliA

ShhPtc
a3 + ShhPtc
Gligabbau = 64 x Gli3

Gli3gufbau = bases + ag x

Gli3cicavage = (K1 + Ko X Pifo) x Gli3
GliRyepression = 1 + 74 X ShhPtc

GliSclea'uage

GUR, ==
wufbou GliRrepression
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GliRabbau = 55 x GliR

GliA 1
e 14 (—
o ain) U S ang)

Pifoabbau - 66 X PZfO

Pifoaufbau = basey + a7 X (
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Appendix 2

dShhPt
TC — ShhPtcyinding — ShAPtCapsan
dPtc;
dtc = Ptctrans[n — Sththmding - PtctransOut
dPt
dtcy = PtCyaufb,w + PtctransOut - Ptctrans]n - Ptcyabbau
dSmo;
7 = SmOtmmS[n - SmotransOut
dS
% = Smgyaufbau + Smotmmout - Smotransln - Smoyabbau
dGlil
dtl — Glzaufbau — GllAaufbau - Gliabbau
dGliA
! - GliAaufbau - GliAabbﬂW
dt
dGli3
dt{l = Gli?)aufbau - GliScleavage - Gligabbau
dPi
ifo = Pifoaufbau — P1f0abbau
dt
dGliR
dZ = GliRaufbau - GliRabbau

Shhptcbinding = )\1 X .PtCZ x Shh
ShhPtcappay = P1 X ShhPtc
GliA 1
Pt = basel —— X1+ ——
Coauginn = basEL ¥ ar X (O < U 2GR
Ptcyabbau = /82 X Ptcy
Ptciransin = T1 X Ptcy

PtctransOut = T2 X Ptcz

Smoyau,fbau =3
Smoy,,,.. = B3 X Smo,
SMOransin = T3 X f(Ptc;) X Pifo x Smo,
SmotransOut =Tq X SmOi

GliA 1
Gl oo — base? YT
llaufbau base2 + ay X (alpha5 + GliA % ( + Yo X GZZR))
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Gliabbau = 54 x Glil

GliAgufban = K1 X Smo; X Pifo x Glil + kg x Smo; x Glil
GliAabbau = 65 x GliA
Smo;

Gli3gufban = base3 + ag X —————
fb ase Qg o+ SmOi

Gli?’cleavage = (/{3 + Ry X P’LfO) x Gli3
Gligabbau = 66 x Gli3

GliRrepression =1+ Ya X Smoi

Gli?’cleavage
GliRrepression

GliRabbau = 57 x GliR,

GliRaufbau -

GliA < (14 1 )
a9+ GliA ~s x GliR
Pifoabbau = 68 X PZfO

The i stands for the protein in the cilium, and the y for for the protein in the cytoplasm.

Pifoayfpau = based + ag x (
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List of Figures

1.1

2.1

2.2

The sonic hedgehog pathway. (Left panel) Shh is autoprocessed and modi-
fied by Ski and then released by Disp into the extracellular matrix. (+Hh)
Shh binds to Ptc present in the membrane which is then internalized. Now
Smo can enter the membrane and the Shh signal is transduced. Cos2 is re-
leased from the microtubules and the Cos2/Fu/Su(fu)/Ci complex releases
Cubitus interruptus (Ci) which is then translocated to the nucleus to ac-
tivate the transcription of the target genes. (-Hh) Ptc inhibits the Smo
and the Cos2/Fu/Su(fu)/Ci complex remains at the microtubules and Ci

is cleaved by Cos2. The cleaved Ci acts as a repessor.[6]. . . . . ... ...

[lustration of a simplified possible inhibition mechanism of Ptc on Smo.
The Gli family is condensed to Cubitus interruptus (Ci). There is no
distinction between Glil and Gli3 shown. (A) Without Shh, Ci is phos-
phorylated by Protein Kinase A (PKA) and cleaved into the repressor by
supernumerary limbs (Slimb), because Ptc inhibits the function of Smo.
So, no transcription of the Shh responsive genes take place. Both proteins
- Ptc and Smo - are present in the membrane and interacting directly. With
an active Shh signal, the inhibition of Smo sag. So Ci is no longer cleaved

into the repressor and an activation of the responsible genes can take place[3]. 11

Shows the raw data of Glil(A), Gli3(B), Pifo(C) and GliR(D). (A) The
three time courses for Glil. They show a small deviation in the first 4
hours and an increasing deviation in the later hours. (B) One time course
for Gli3. After Shh activation (Oh), one can find a substantial increase of the
Gli3 concentration which should be due to the changing of the equilibrium.
(C) For Pifo, also just one time course is available. One can see a sizable
increase in the early hours until 2h, after that, Pifo decreases to a mid
level. (D) Two time courses are available for GliR. One can see a notable

increase at the beginning and a decrease in the later hours. . . . . . . . ..
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2.3

24

2.5

2.6

2.7

2.8

Shows the normalized and rescaled data of Glil(A), Gli3(B), Pifo(C) and
GliR(D).(A) Gli one is increasing over the whole time. But as we have
no differentiation in the data between Glil and GIliA, we can not reveal
anything about a change in the equilibrium. (B) As just one time course is
available for Gli3, we used the standard deviation of GliR. Because of the
conservation of mass, this should cause no issues and should be accurate
enough. The origin time course is used as mean. (C) For Pifo, just one
time course is available as well. So we used the standard deviation of Glil
because th data points are in the same range. The origin time course is
used as mean. (D) Two time courses are available for GliR. One can see
an increase of the concentration until 4h. After 4h the concentration is
decreasing until 24h. . . . ... o000

A one compartment model of the Shh signaling pathway from which we
derived the final models. As Glil and GliR share the same targets, there is
a permanent contest between these players. As we see an increase also of
GliR and Gli3 after Shh induction, we assume some influence of the ShhPtc
complex and Pifo onto this proteins. Also we assume an influence of Pifo
onto the Shh signal, which is in this model shown by enhancing the Glil
self activation to amplify the system. . . . . ... ... ... ... ... ..

Fit of the Shh system without the pre-calculation of the base transcription
rates and the normalization to fixed initial conditions. Shown is the change
of the system relative to the initial value which is scaled to 1 for each
protein. Shh is induced at Oh. (A) Simulation of Glil which fits very well.
(B) Fit for Gli3. Just the data point at 0.5h is missed. (C) Fit for Pifo.
The correct course of the data is reproduced. (D) Gli3 decrease in the early
hours while it should increase. . . . . . . . . .. ...

[llustration of the switch in the system by adding and removing Shh for a
random parameter set. At time point 20, the Shh signal is induced, and
stay active until time point 50. So as we can see all shown players reach
a steady state under the shh activation, and fall back into the origin one
after the Shh signal is shut down. . . . . . . ... ... ... ... ... ..

One compartment model of the sonic hedgehog signaling pathway. No
compartmentation into cilium and cytoplasm is taken into account. Pifo
enhances the activation of Glil to take into account that Pifo is impor-
tant for the transport into the cilium where Gli is activated. Due to the
increasing of Gli3 and GliR in the data after Shh activation, we assume
also an influence of Pifo and the Shh signal on these proteins. See ODE
description in Appendix 1 . . . . . . . ...

A two compartment version of the model shown in figure 2.7 including the
cilium as a second compartment and Smo as the ’carrier’ of the activation
signal into the cell. See ODE description in Appendix2 . . . . . . . .. ..
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3.1

3.2

3.3

3.4

3.5

Results for the fitting of the one compartment model. Shown are all 15
parameter sets with a loss below the cutoff of 500. The black line in each
subplot corresponds to the parameter set which produces the minimal loss
(BL). The red line in each subplot corresponds to the parameter set which
produces the minimal AIC and BIC (BS). (A)The Glil simulation shows
very good fit for the early hour until 4h. After 4h the results starts to spread
out. (B) For Gli3, mostly just a change in the level happens. The level at
24h is reached mostly because of the relative large standard deviation, but
the peak at 4h is not fitted well. (C) For Pifo, we see a very nice fit until
the peak at 2h, after this peak, the simulations start to diverge. (D) Shows
the fit of GliR. The results differ a lot. So no parameter set is able to fit

the data proper. . . . . . . . . .

Cluster of the different parameter sets which full fill the cutoff of 500. Each
line corresponds to a parameter set, while each row represents a parameter.
We see five major groups. four smaller ones containing (3, 12), (15, 1, 6),
(10, 8, 5) and (11) and one larger containing the most parameter sets (7,
13,9, 14, 2 ,4). The value range is from -3 (green, negative correlated) to

+3 (red, positive correlated). . . . . . ... Lo

Results for the fitting of the one compartment model. Shown are all 4
parameter sets with a loss below the cutoff of 500. The black line in each
subplot corresponds to the parameter set which produces the minimal loss
(BL). The red line in each subplot corresponds to the parameter set which
produces the minimal AIC and BIC (BS). (A) We see two separate classes
each containing 2 parameter sets for Glil. (B) The Gli3 simulation seems
to fit the mean over all time points but do not follow the data. (C) Two
parameter sets fit the Pifo data well while the other two not. Also here
we can also distinguish two classes of parameter sets. (D) GliR also shows
a clear separation into to classes of parameters. The class containing the
BS set fits the data slightly while the other class, containing the BL set, is

increasing until 24h. . . . . ...

Cluster of the different parameter sets which full fill the cutoff of 500. Each
line corresponds to a parameter set, while each row represents a parameter.
As the sample size is to small, it is not possible to distinguish classes from
this. The value range is from -3 (green, negative correlated) to +3 (red,

positive correlated). . . . . . ...

The left site (A,C,E,G) show the best fits of the one compartment model
while the right site (B,D,F,H) shows the prediction where no Pifo is present.
(A/B) Glil is in both cases affected and the expression is highly decreased.
(C/D) No significant change in the concentration of Gli3 can be observed.
(E/F) The Pifo expression is turned off. (G/H) Also no influence of Pifo

on GliR can be observed. . . . . . . . .



3.6

4.1

4.2

The left site (A,C,E,G) show the best fits of the one compartment model
while the right site (B,D,F,H) shows the prediction where no Pifo is present.
(A/B) A high expression of Glil is more affected than a weak expression,
but in both cases the expression is reduced. (C/D) The BL set is not
affected at all, but the BS set show an affection in the early hours and stay
in its steady state. (E/F) The Pifo expression is turned off. (G/H) For the
BL set, we see a change in the speed of reaction increases but the steady
state stays the same. The BS set is affected in the opposite direction. The
small increase with Pifo can not observed without Pifo. GIliR stays in the

origin steady state . . . . . .. .. L

Analysis of the fall back after the Shh signal is turned off for the two
obtained parameter sets of the one compartment model. BS means the
Best score parameter set, and BL means the Best loss set. Shh is activated
at 20h and is deactivated at 50h. (A)For the BS set, Glil needs about 100
days to fall back to the steady state. For the BL set, Glil falls in a different
steady state. (B) In both cases, Gli3 responds immediately to the absence
of Shh. (C) For Pifo we see the same behavior like for Glil. (D) GliR also
needs around 100 days to fall back into the steady state for the BS set.

The BL set responds directly. . . . . . . . . .. ... ... ..

Analysis of the fall back after the Shh signal is turned off for the two
obtained parameter sets of the one compartment model. BS means the
Best score parameter set, and BL means the Best loss set. Shh is activated
at 20h and is deactivated at 80h. (A) The BS set react directly onto the
missing Shh signal, while the BL set needs around 250 days to fall back into
the steady state. (B) The BL set increases Gli3 rapidly at the activation,
and is then slowly decreasing over time. At the deactivation of the Shh
signal, Gli3 drops rapidly back to the steady state. The BS set provides
just a peak at the activation, and a rapid decrease. The concentration
then is increasing again over time until it reaches the steady state. (C)
Pifo shows for both sets, BL. and BS, the same behavior as Glil which is
not surprisingly, as the transcription of Pifo is regulated by Glil in the
same way like the Glil activation itself. (D) For GliR, we see the same
behavior for both sets, BL and BS as for Gli3. But in the case of BS, the

drop is not so strong. . . . . . . .. ..o
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