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1 Introduction

Metabolomics is a new field of biology which tries to comprehensively study organisms’
metabolomes and their corresponding metabolic reactions. The field has been developing
rapidly over the past couple of years. Recent discoveries in the field of metabolomics
have led to a lot of new insights on epidemiology and molecular cell biology [22]. which
is not surprising as the metabolome is thought of as the best indicator of an organism’s
phenotype [6]. This is a consequence of the fact, that metabolites function as immediate
signatures of biochemical activity and thus are easier to link to a phenotype [27].

There is a number of advantages of analyzing metabolomics data over other ”omics”
data, such as the relatively small amount of metabolites in an organism compared to,
for example, its number of gene products. Additionally, metabolites are biochemical
phenotypes which result from genetic, transcriptomic and proteomic variability and thus
represent biological status in an integrated way. Finally metabolomics can be used to
identify possible toxicological effects of drug treatments [3].

The aim of metabolomics is to identify and quantify all metabolites in a tissue, cell
or biofluid under different conditions [24]. This information can then be used to create a
metabolic profile for a cell, providing a quick overview of its physiology. This information
can then be used to contribute to the understanding of biological functions in vivo [16].
All in all the possibility of determining, how mechanistic biochemistry relates to cellular
phenotype, is created [27].

Because of the rapid development of biological analysis techniques such as nuclear
magnetic resonance (NMR) and mass spectrometry (MS) it has become possible to mea-
sure and quantify a large number of metabolites in blood and urine samples on a high
throughput scale [21].

With the huge amount of metabolomics data provided through the rapid development
of high-throughput experimental methods, it is a very important task for computational
biology to make some sense of this data. Biochemistry shows that metabolite concentra-
tions have a direct relationship with the activity of their respective enzymes. A popular
way to determine enzyme activity is to measure the amount of mRNA in a cell, that
translates to the enzyme. MRNAs, along with other types of RNAs are part of the tran-
scriptome, which consists of the entirety of RNAs in a cell. The aim of transcriptomics
approaches is to measure the transcriptome of a cell at a given point in time and under
specific environmental circumstances [38].

All in all this leads to the conclusion, that integrating metabolomics data and tran-
scriptomics data appears to be very promising in order to achieve biological insights and
knowledge.

In this work, we present a novel approach to integrate our metabolomics and transcrip-
tomics data called MONA metabolite, which is a gene set enrichment tool that can deal
with transcriptomics and metabolomics data simultaneously in order to predict changes
in metabolic pathways. We apply our methods to a data-set, which was very recently
generated for a new study, called Mouse 200 and which consists of mRNA and metabolite
measurements. Using our program, we try to gain insights on how diabetes and different
medical treatments for diabetes affect the metabolism of the mouse.
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2 Background

Metabolites represent small molecules. They are chemically transformed throughout the
process of metabolism [27]. Thus,

"metabolites are the end products of cellular regulatory processes and their
levels can be regarded as the ultimate response of biological systems to genetic
or environmental changes” [14].

Up to now, a number of up to 200 000 such metabolites are estimated to occur in the
plant kingdom, and there are probability a lot more across multiple kingdoms [14]. The
entirety of all metabolites synthesized by an organism represents its metabolome [26].

2.1 High-throughput metabolite measurment techniques

There are two kinds of approaches to experimentally measure metabolite concentrations.
Which of these approaches is used, is dependent on the scientists personal motivation.

2.1.1 Targeted metabolomics

In this procedure the concentrations of a list of metabolites of distinct interest in a sample
is measured. This is usually the case when experiment aims to shed light on certain
metabolic pathways of interest [13]. Targeted metabolomics studies are best performed
using nuclear magnetic resonance (NMR) [27].

2.1.2 Untargeted metabolomics

In contrast to targeted metabolomics, the focus in untargeted metabolomics is to create
a metabolic profile of all metabolites in a sample. The methods which can fulfill this
task the best are liquid chromatography and mass spectrometry (LC/MS) methods. The
data files produced by untargeted metabolomics approaches are very complex and have
file sizes of several gigabytes per sample [27].

As most metabolomics studies investigate on metabolomics levels depending on a
given phenotypic state, e.g. a certain disease [24]. Measuring metabolomics levels under
different conditions quickly results in a big, confusing bulk of data. In order to make sense
out of such a large amount of available metabolomics data, it becomes more and more
important to develop tools in order to automatically analyze this data using statistical
methods, as it becomes impossible to gain any information out of the data by just simply
looking at it.

2.2 Transcriptomics

The transcriptome is the term that describes the entirety of transcripts contained in one
cell and how much of these transcripts are available at a given point in time or during
a specific environmental condition. This makes the understanding of the transcriptome
a key task in order to understand the genome and its functional elements as well as the
development of diseases [38]. To do this, it is necessary to catalog all kinds of transcripts,
including mRNAs, non-coding RNAs and small nuclear RNAs. We present a popular
method which allows the measurements of these RNAs and thus provide the possibility
to generate transcriptomics data.
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Microarrays A microarray analysis always starts with a set of oligonucleotide probes.
Each probe is complementary to a certain genomic DNA. The probes are designed
according to known sequences. Once these probes have been constructed they are
immobilized on a solid substrate and thus represent the microarray. After that,
transcripts of interest, marked with fluorescent dyes, can hybridize to their targets
and their expression can be measured using light intensity [25].

2.3 Integrating metabolomics and transcriptomics data

Changes in the environment of an organism results in alterations of this organism’s
metabolite concentration levels [28]. As transformation reactions between metabolites
are catalyzed by specific metabolic enzymes, there is a strong correlation between the
activity of those enzymes and the exchange rates of their corresponding metabolites [23].
From this follows, that altered metabolite abundances result in differential expression of
their corresponding enzymatic genes in order to reestablish biological stability meaning
the organism’s adaption to the new environmental conditions [28]. Certain patterns in
metabolite profiles along with expression rates of their corresponding enzymes can allow
inspection off the organism’s strategies of dealing with altered environmental conditions

[28].

2.4 Recent attempts to integrate metabolomic and genomic data

Reconciling metabolomics and transcriptomics data is an important biological task for
many reasons. As a consequence, a number of studies have been performed where
metabolomics and transcriptomics have been examined in parallel. In the following we
present three such approaches as examples.

Prediction of pathway co-memberships between metabolites and genes One method
which tries to link metabolomics to transcriptomics data was presented by Henning
Redestig and Ivan G. Costa in 2011 [28]. This approach tries to predict metabolites
and genes which belong to the same metabolic pathway based on correlated response
to applied stress. This method uses Pearson correlations and Hidden Markov Mod-
els (HMM) to capture the temporal abundance of each metabolite in a pathway and
after that evaluates for all gene expression time courses the likelihood with each
HMM where a high likelihood alludes to a correlation between gene and metabolite.

The O2PLS multivariate regression method Another approach in order to combine
”omics” types of data is using the O2-PLS method [35] [36]. which is a further de-
veloped version of the orthogonal projections to latent structures (O-PLS) method.
This method can be used to detect systemic variation overlaps across multiple plat-
forms, and dissociate them from the systemic variation belonging to only one of
the examined platforms. This theory can be applied to find overlaps between
metabolomics and transcriptomics data. The O2PLS modeling process requires
the scientists to estimate the complexity of the different platforms [9].

Network analysis of data from population studies The last attempt to integrate
metabolomics and transcriptomics data we are going to briefly introduce, is the at-
tempt to analyze networks built from population studies data. Here, first a genetic
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co-expression network was built showing co-expressed gene modules. This informa-
tion was then used to determine correlations between genetic expression profiles and
metabolite distributions [18].

2.5 Gene set enrichment

Gene set enrichment is a method to interpret genome-wide expression data provided by
high throughput experiments. In most gene expression experiments a big number of genes
is measured in samples that belong to one of two different classes. To perform gene set
enrichment, first a subset of genes is defined, that is differentially expressed between
the two classes. After this a gene set enrichment tool determines for different sets of
genes, for example genes that belong to a certain metabolic pathway or share the same
GO-Term, whether these genes are statistically over-represented within the list of genes
differentially expressed in the experiment and thus whether the gene set is correlated with
the phenotypic class distinction [33]. A GO-Term is a term created by the Gene Ontology
project. It is part of a fixed set of terms and it can represent a molecular function, a
biological process or a cellular component [11].

Until now, gene set enrichment could only be performed for one kind of data on a single
level, for example for gene expression rates or for metabolic concentrations. Abusing the
correlations between different levels of data in order to improve the quality of gene set
enrichment predictions, however, is a task which up to now, cannot be fulfilled to a
satisfying degree.

2.6 MONA

That is the reason a new tool called MONA (Multilevel ONtology Analysis) has recently
been developed. MONA is the first gene set enrichment tool that can take data from
multiple "omics” levels into account, meaning that several input sets of different data
types can be dealt with simultaneously, and at the same time is able to deal with term
redundancies and multiple testing problems, resulting from the hierarchical arrangement
of these terms. MONA models the gene set enrichment problem as a Bayesian network
with multiple layers. The whole model consists of a base model, where a estimated
probability is linked to every ontology term which are linked to a gene response layer.
This base model extended with an additional model which can be chosen individually for
a given type of input data. The model we are going to focus on here is the cooperative
model where the gene response layer is is linked to an additional observation layer, which
indicates for every measured gene whether it is differentially expressed within which of
the input data sets. These observations of differential expression are linked to a final
error rate layer which links to every observation the estimated probability whether it is a
false positive or a false negative observation. After this Bayesian network model is built
from the input, the probabilities for each ontology term to be active is estimated through
inference of the network by probabilistic programming using the Infer. NET framework
[29] [5].

2.6.1 Comparison with other gene set enrichment algorithms

In order to evaluate the performance of MONA for the integration of metabolomics and
transcriptomics data, it was compared to two already existing popular methods for gene
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set enrichment analysis. In the following the Methods MGSA and Fisher’s exact test will
be described briefly.

MGSA The Model-based Gene Set Analysis (MGSA) tool is a Bayesian modeling ap-
proach for gene set enrichment. It investigates all pathways simultaneously by
modeling gene response as a function of the combination of active pathways. After
that the Metropolis-Hasting algorithm is used to perform probabilistic inference and
thus achieving probabilities for each pathway. Like MONA, MGSA takes category
overlap into account and thus avoids the need for multiple testing correction [4].

Fisher’s exact test Fisher’s exact test is a statistical significance test. Contingency
tables are used in order to make statements about the input data. It provides a
p-value for each pathway, signaling whether the pathway is predicted to be altered
or not. The pathways are analyzed one after another.

2.7 Mouse 200 - A systematic analysis of anti-diabetic drugs

In this thesis we investigate the biological effects of different anti-diabetic drugs. We do
this by performing gene set enrichment for the data provided by the Mouse 200 project.
This allows as to get insight on changes in metabolic pathways which can the be biolog-
ically interpreted. The Mouse 200 dataset can be divided into metabolite concentration
and gene expression level measurements.

The first part of the data-set represents two tables. These tables include measurements
for a total of 25,649 genes from different experimental mice. These measurements were
generated from liver-cell samples using Illumina gene expression microarray chips. The
observed mice can be divided into five categories. The first category represents healthy
wild type mice. The second category consists of mice diseased with type II diabetes
mellitus without any medical treatment. The mice in the third group also have type II
diabetes but have been medically treated with a drug called metformin, which is a widely
known and used drug for the treatment of type II diabetes. The fourth group is similar
to the third group, but here, instead of metformin, a newly developed drug, which we will
just call Drug x, was used to treat the sick mice. The fifth an last group includes diabetes
mice who were treated with a combination of the previously mentioned medicaments. As
mentioned before, this part of the data set contains two table, where one table includes
measurements from samples, which were taken after four hours of treatment and the other
table contains measurements from samples taken after two weeks of treatment.

The second part of the data set consists of metabolite concentration measurements.
The numbers of metabolites measured ranges from about 20,000 to 30,000. The reason for
the difference in metabolite numbers measured, is that a measurements were sometimes
excluded due to quality control. These to tables just described exist in two versions. The
data set comes as a number of tables containing the aforementioned metabolite concen-
tration methods from gut-cell samples taken from the same kinds of mice as presented in
the description of the first part of the data set. Again the measurements were made after
four hours and after two weeks of the beginning of the treatment respectively.

14
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Figure 1: Workflow for the data MONA data pre-processing, starting with microarray data and
ending with a valid and biologically meaningful input for the MONA core application.

3 Methods

For all the methods previously introduced in section 2.4, which try to integrate metabolomics
and transcriptomics data, correlations between genetic expression and metabolite concen-
tration patterns played an important role. This is also the case for our integration attempt
we will present in this thesis. Our method will use these correlation between metabolite
levels and gene expression in combination with gene set enrichment analysis, to gain in-
formation about which metabolic pathways might be perturbated as the consequence of
the change in an organism’s environment.

3.1 Integration of metabolomics data for MONA

As of now MONA allowed simultaneous input of data across multiple ”omics” levels,
however these data had to be of the same data type, e.g. Entrez IDs or gene symbols. In
this work we will describe how we improved MONA such that it allows predictions based
on an input of mRNA and Metabolon names, trying to abuse the correlation between
gene expression and metabolite concentration patterns in order to link abnormalities in
expression levels directly to corresponding metabolic pathways. This was accomplished

by pre-processing the input in an appropriate way, such that the cooperative model of
MONA could be used for predictions (see Fig.1).
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3.2 Data collection

In order to perform gene set enrichment MONA accesses data mappings, e.g. genes
and their corresponding GO-Terms, from its associated database. In order to be able
to integrate metabolomics data for MONA’s cooperative model two kinds of information
had to be added to the database: 1) Associations between metabolites and their corre-
sponding catalytic enzymes. 2) Associations between metabolite-enzyme-reactions and
the metabolic pathways they belong to. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [20] [19] contains metabolic pathways in the form of networks, where
metabolites are nodes which are connected through edges corresponding to metabolic en-
zymes. These pathways are available in an XML-like format. We used the KEGGGraph
R package [40] available from Bioconductor [15] to parse the XML-files for all metabolic
pathways known in the mouse and extracted the information required in order to perform
gene set enrichment with MONA. The algorithm for extracting this information works the
following way: For every pathway, first a list of corresponding reactions is determined.
After this the algorithm identifies the corresponding substrates and products for each
reactions and creates a table with unique reaction to metabolite relationships. The same
happens for reaction to enzyme relationships. Finally these two tables are merged by
the reaction name column leading to the desired compound to enzyme relations. These
mapping steps are required as the KEGG XML files do not provide metabolite to enzyme
relationships directly. In order to map KEGG compound IDs to Metabolon names which
are used by MONA we used the data provided by the Reconstruction of The HUman
Genome (Recon x) project [12] . MONA uses Metabolon names as they provide a stable
set of name terms for each metabolite. This is necessary in order to avoid confusion based
off different metabolite name notations.

There was a number of metabolites about which i could not derive any information
regarding their association with an enzyme from the KEGG database. As it is not in-
tended that these metabolites are ignored in MONA predictions we determined direct
metabolite to pathway relationships from the Recon project data and transferred these
relations for the mouse. This makes biological sense, as the close evolutionary relationship
between human and mice indicates strong similarities between the metabolic pathways
and metabolic reactions between human and mouse [30].

As we integrated metabolomics data for MONA not only for mouse but also for human
input data, we also created the required mappings for human genes. For enzyme to
pathway relationships we used the KEGG.db R package [10] and the Recon project data
to create the required mappings.

3.3 MONA metabolite

In order to make the usage of MONA with metabolite data as user friendly an easy as
possible, we added an extra metabolite model option to the surface of the web application.
The input that is required for the prediction is very straight forward. There are four lists
that have to be provided for the application. The first list contains a set of differentially
expressed mRNAs in the form of Entrez IDs or gene symbols. The second list is a back-
ground list of all the mRNAs that have been measured in the experiment. The third
list contains a set of metabolites with differential concentrations and the fourth and last
list contains the background of all the metabolites measured. Metabolon names are used
for metabolites to eliminate the risk of unintentional ignoring of some input because of
different metabolite name notations in the input and the database.
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Figure 2: Input list upload Figure 3: Model selection

3.3.1 Data pre-processing

After metabolite data has been submitted the data is pre-processed in a specific way
such that it can be used for predictions by the MONA core application. First of all, a
number of metabolites from the input differentially expressed metabolites is determined,
which cannot be mapped to an enzyme. These metabolites are taken away from the set
of differentially expressed metabolites and are added to the set of differentially expressed
mRNAs as well as to their corresponding background. After that the differentially ex-
pressed metabolites are replaced by their corresponding enzymes. Finally those mRNAs
in the mRNA background which could not be mapped to any metabolite, as well as the
metabolites that could not be mapped to an mRNA, are added to a list of missing entities.
The fact that the metabolites which couldn’t be mapped to an enzyme are switched to
the list of differentially expressed mRNAs is a necessary step as the cooperative model
of MONA is only able to deal with missing values in the second input species. After the
input has been transformed like this, it can be converted to the standard MONA input
and predictions can be done using the cooperative model of the MONA core application.
This input pre-processing is very quick and doesn’t increase the computational time of
the application in a noticeable way. This implies that in the model, mRNA and metabo-
lites are regarded as independent noisy observations with a common enzymatic response,
meaning that corresponding mRNA and metabolites are expected to follow similar pat-
terns of differential expression and concentration, taking estimated false positive and false
negative ratios into account. These mRNA and metabolite observations link to a hidden
node in the model, which representing the common enzymatic response, marking it as
active or not, depending on the observations. A result term in the model can only be
active if at least one corresponding hidden node is active (see Figure 4).

3.4 performance assessment

To assess the performance of the integrated metabolite model for MONA we compared
prediction results of gene set enrichment tools for a large number of randomly generated
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Figure 4: The MONA metabolite model. Each hidden enzymatic response is linked to a mRNA
and a corresponding metabolite observation, taking false positive rate alpha and false negative
rate beta into account. The hidden enzymatic response nodes are linked to metabolic pathway
terms which are linked to a probability for them to be active.

test datasets. we compared three methods: 1) MONA with metabolite data integration,
2) gene set enrichment using Fisher’s exact test [17] [7] and 3) gene set enrichment using
Model-based Gene set Analysis (MGSA) with the corresponding R package used for im-
plementation [4] . Both, Fisher’s exact test and MGSA are only capable of using a single
level input set for their predictions. The random test sets were created the following way:
First we created a mRNA assignment matrix. This assignment matrix has a column for
every KEGG-pathway in the MONA database and a row for every mouse gene that is
associated with at least pathway. If a pathway is associated with a gene the respective
field of the matrix contains 1 else 0. A second matrix of similar kind was built for all
mouse metabolites in the database that are associated to at least one pathway. After that
a sample of three to seven pathways were randomly selected from the total set of pathways
and were marked as activated. Now all genes corresponding to the activated pathways
were estimated from the gene assignment matrix. After adding false negatives and false
positives to this set of genes, the set was used as set of differentially expressed genes
serving as input for the prediction methods. For MONA an additional set of differentially
expressed metabolites was created in a similar fashion, serving as second input data set
for the MONA metabolite model. Finally all three prediction methods were run using
the generated input. MONA was used on both, metabolite and gene level simultaneously,
while MGSA anf Fisher’s exact test were only used on gene level. The prediction results
were evaluated. For the evaluation different ratios of false positives and false negatives
for the test sets were used.

3.4.1 MONA metabolite

The MONA-predictions were made using the MONA metabolite model we developed in
the exact same way as described in chapter ”MONA metabolite”.
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3.4.2 MGSA

As already mentioned, the MGSA method was implemented using the "mgsa” R package
provided by Bioconductor [4] [15] . The prediction method provided by the said package
gets two lists as input. The first list is a boolean typed list of the same length as the
mRNA background, indicating for each mRNA whether it is differentially expressed or
not. The second list is an assignment containing information about which mRNA belongs
to which pathway.

3.4.3 Fisher’s exact test

The prediction method using Fisher’s exact test [7] [17] was implemented using the
"fisher.test” method which comes with R by default. For each metabolic pathway, the
prediction method gets a two times two matrix as input, containing information about
how many genes corresponding to this pathway are differentially expressed, about how
many of them are not differentially expressed, and about how many of the genes not
corresponding to the pathway are bzw. are not differentially expressed. Thus, a p-value
which signals, whether a pathway is active or not is calculated for every pathway. The
total number of these p-values represents the gene set enrichment analysis resullt using
Fisher’s exact test.

3.4.4 Performance assessment process

The whole process of assessing and comparing the performance of MONA metabolite is
directly controlled by a .NET console application, calling the required R-scripts in the
appropriate order. The application can be provided with the number of test runs supposed
to be made and false negative and false positive rates to be used for the test set generation.
Then, for each run, first the test data sets are generated. After that the predictions for
each method are made. The prediction results are stored as temporary data files on the
hard disk. After the last run is finished, all the predictions are evaluated and compared
by a final R-script, using the ROCR R package [31] to plot results.

3.5 M 200 extraction of differentially expressed genes

In Order to use MONA metabolite to perform gene set enrichment analysis for the M
200 dataset, we had to extract lists of differentially expressed genes between pairs of two
classes of mice.

The following classes were compared:

Wild type with type II diabetes untreated

Diabetes untreated with diabetes treated with metformin

Diabetes untreated with diabetes treated with drug x

Diabetes untreated with diabetes treated with a comibnation of metformin and drug
X
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3.5.1 Determination of differential expressed genes and metabolites

The data came in form of Microsoft Excel spreadsheet files. In order to use MONA
metabolite for predictions, the data was pre-processed as follows. First of all the spread-
sheet files were read into R using the "read.xls” function from the gdata R package. [39]
. The data contains p-values describing the differential expression the measured mRNAs.
These p-values were determined by a linear modeling approach implemented in the R
package "limma” [32]. Multiple testing correction was performed for the p-values. A p-
value of 0.05 was set as the threshold for a gene to be regarded as differentially expressed.

Differential metabolite concentrations were determined using a x test approach. Afer
the that, the determined differentially expressed metabolites had to be filtered such, that
only metabolites were taken into consideration, for which a Metabolon name mapping
exists, as this is obligatory for MONA metabolite to handle them as input. The resulting
sets of differentially expressed genes and metabolites, along with their respective back-
grounds for each comparison of two of the introduced mouse groups were used as input
for gene set enrichment analysis with MONA metabolite.

3.6 Using MONA metabolite to analyze the generated differen-
tial expression data from the M 200 dataet

The enrichment analysis was performed, using the MONA web application with the
MONA metabolite model. The lists of differentially expressed genes and metabolite were
uploaded manually along with their respective genetic and metabolic backgrounds.

For the comparison of wild type and untreated diabetic mice the priors were altered.
As the number of differential genes and metabolites between these classes is very large.
The prior probabilities for a pathway to be inactive which MONA uses, follow a beta
distribution. By default, no assumption is made about how many pathways are active. In
order to only get the most significant hits for the comparison of wild type and untreated
diabetic mice, the parameters for the beta distribution of pInit were set to a = 1000, 8 =1
(Figures 5 and 6). For all the other enrichments, the standard settings of MONA were
used.
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Figure 7: ROC curve for the performance com-
parison of MONA metabolite with MGSA and
Fisher’s exact test for false positive rate a =
0.25 and false negative rate 5 = 0.35

4 Results

4.1 Generated data and mappings

For mice, all in all we were able to extract 17147 unique gene to pathway relationships
including 6660 genes and 225 pathways. Furthermore 9232 metabolite to enzyme relations
with 222 metabolites were derived. Moreover, additional 83 direct metabolite to pathway
relationships were determined.

For humans, a number of 4592 unique metabolite to enzyme relationships including
153 metabolites and 546 genes, as well as 326 direct metabolite to pathway relationships
could be found.

4.2 Results performance assessment and comparison

To assess the performance of MONA we ran predictions for self-generated test data-sets
and compared the results of MONA metabolite to MGSA and Fisher’s exact test.
Figures 7 and 8 show the performance of MONA compared to MGSA anf Fisher’s exact
test. It is clearly visible, that MONA metabolite outperforms the other methods in terms
of false positive and and false negative ratios.
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4.3 M 200 extraction of differentially expressed genes

Table 1 shows, which input-sets for MONA were generated from the Mouse 200 data-
set, along with their respective sizes. There are large differences between the input sets
for wild-type against diabetic mice. Not quite as many differentially expressed genes
and metabolites are contained in the input sets for the comparison of diabetic mice with
and without treatment. The only exception here is the comparison of diabetic mice and
diabetic mice after two weeks of treatment with a combination of metformin and drug x
were a decent amount of genes were regarded as differentially expressed.

groups compared # diff. genes | # genes in background | # diff. metabolites | # metabolites in background
wild-type vs. diabetic 3697 25,649 206 279
diabetic vs. metformin-treated 1 25,649 5 279
diabetic vs. drug-x-treated 110 25,649 99 279
diabetic vs. combination treatment 208 25,649 5 280
wild-type vs. diabetic after two weeks 3856 25,649 184 274
diabetic vs. metformin-treated after two weeks 10 25,649 7 273
diabetic vs. drug-x-treated after two weeks 0 25,649 0 273
diabetic vs. combination treatment after two weeks 651 25,649 9 274

Table 1: Overview about the sizes of the generated input files for MONA from the described
mouse liver data-set. The first column contains the two compared classes and the other columns
contain the numbers of differentially expressed genes, genes in background, differentially con-
centrated metabolites and and metabolites in background from left to right.

4.4 Results M 200 gene set enrichment analysis

For each comparison of two different classes of mice from the Mouse 200 study, gene
set enrichment was performed using the integrative model MONA metabolite in order to
determine consequences of type II diabetes and different approaches of medical treatment
for the metabolism of mice. We try to evaluate the MONA metabolite output by having
a close look at what kind of pathways are predicted to be significant and which of their
corresponding genes and metabolites are differential. We also compare the results with
those, other methods like MGSA and Fisher’s exact test would have achieved for the data.

4.4.1 Wild-type mice vs. diabetic mice four hours after disease outbreak

Probability | ID Pathway name # corr. genes | # c.g. in backgr. # c.g. in diff. | # corr. meta | # c.m. in backgr. | # c.m. in diff. | # mapped meta
1.00000 03010 Ribosome 119 62 33 0 0 0 0
1.00000 04146 Peroxisome 80 75 42 0 0 0 0
1.00000 00982 Drug metabolism - cytochrome P450 87 76 39 5 0 0 5
1.00000 04610 Complement and coagulation cascades 76 71 34 1 0 0 0
0.99970 04142 Lysosome 123 115 42 0 0 0 0
0.98771 03040 Spli 3 138 86 28 0 0 0 0
0.98603 00020 (TCA cycle) 31 30 15 8 5 3 8
0.98307 03018 radation 76 61 19 0 0 0 0
0.97745 00010 bneogenesis 62 52 21 2 1 1 2
0.97018 03008 Ribosome biog in eukaryotes 86 66 22 0 0 0 0
0.95866 00520 | Amino sugar and nucleotide sugar metabolism 48 44 17 2 1 1 2
0.94799 00280 Valin ine and isoleucine degradation 50 46 22 11 3 3 11
0.94722 00270 Cysteine and methionine metabolism 39 29 13 7 3 3 7
0.94537 00260 Glycine, serine and threonine metabolism 34 33 14 12 10 9 12
0.93458 00100 Steroid biosynthesis 18 15 8 4 2 1 4

Table 2: The table shows the results of MONA metabolite for the comparison of diabetic and
wild-type mice. The columns show (from left to right) the predicted probabilty of a pathway, the
pathway identifier, the name of the pathway, how many genes correspond to that pathway, how
many of those are differentially expressed within the dataset, how many metabolites correspond
to the pathway, how many of them are differentially concentrated in the Mouse 200 data and
how many of the metabolites which correspond to the pathway could be mapped to a gene
product
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Table 2 shows the results of MONA metabolite for differentially expressed genes and
metabolites with differential concentrations between diabetic mice and healthy wild-type
mice. Having a quick look at the table it quickly becomes clear that there are a lot of
metabolic pathways predicted to be different between the two compared types of mice.
The table shows the most significant results, all of which are predicted to be differential
with a very high probability of over ninety percent. The results suggest changes in basic
cellular compartments and mechanisms like the peroxisome or the splicosome as well as
changes in basic metabolic pathways like the citrate cycle.

Figure 9 compares the results for the comparison between diabetic and wild-type mice

produced by MONA metabolite and the single level model of MONA. The figure shows
that the single level model predicts the exact same pathways to be differential as MONA
metabolite. Also the probabilities for the results are close to the same.
Regarding the overall topic of the data-set, some of the pathways predicted to be different
seem to be especially interesting. One of those is the citrate cycle as one of the most basic
and important parts of eukaryotic metabolism. Figure 10 shows the pathway and its
changes in gene expression and metabolite concentration caused by type II diabetes. A
majority of all the enzymes being part of the pathway are under-expressed. There is a
higher concentration of malate and fumarate and a lower concentration of cis-aconitate,
than expected. Another pathway which is strongly suggested to be differential by MONA
and which is of special interest is the drug metabolism pathway. Looking at Figure 11
it can be observed, that close to all enzymes which are responsible for the processing
of a number of popular drugs are under-expressed with the exception of the CYP1A2
gene which encodes cytochrome P450, family 1, subfamily A, polypeptide 2 and which is
over-expressed.

To compare the results of MONA metabolite for the Mouse 200 data-set with the
results of existing approaches we had a look at the results of MGSA when run for the
mRNA set and the metabolite set respectively. Figure 12 shows these results in compari-
son with the results of MONA metabolite. It can be seen that MONA metabolite agrees
with terms predicted to be differential by MGSA for the mRNA data-set only and for
both the mRNA and the metabolite dataset. However the terms only predicted to be
differential by MGSA for the metabolite data-set only do not show up in the results of
MONA metabolite.
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Figure 9: Comparison of the results of MONA metabolite with the single level model of MONA.
The single level results are colored red and the MONA metabolite results are shown in the plots
with blue color. The top two plots show each term with its probability as a curve showing
the overall distribution of term probabilities. The bar-plots on the bottom show the top result
pathways. The length of the bar describes how likely they are to be differential.
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Figure 10: Citrate cycle with differences between wild-type mice and diabetic mice four hours
after disease outbreak. Green signals those genes which take part course of the metabolic path-
way in the mouse. Genes and metabolites marked blue are under-expressed and orange marked
genes and metabolites are over-expressed within the medically treated mice in comparison to
the untreated diabetic mice.
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Figure 11: Drug metabolism pathway with differences between wild-type mice and diabetic
mice four hours after disease outbreak. Green signals those genes which take part course of the
metabolic pathway in the mouse. Genes and metabolites marked blue are under-expressed and
orange marked genes and metabolites are over-expressed within the medically treated mice in
comparison to the untreated diabetic mice.
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Figure 12: Comparison of MGSA predictions for the wild-type versus diabetic mice comparison
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The red lines mark the significance level of 0.5. The colored dots mark the pathways which are
also predicted to be differential by MONA metabolite with a probability of more than 0.5
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4.4.2 Wild-type mice vs. diabetic mice two weeks after disease outbreak

Probability | 1D Pathway name # corr. genes | # c.g. in backgr. | # c.g. in diff. | # corr. meta | # c.m. in backgr. | % c.m. in difl. | # mapped meta
100000 | 00982 | Drug metabolism - cytochrome P450 7 76 a1 5 0 0 5
T.00000 | 04610 | Complement and coagulation cascades 76 71 36 T 0 0 0
100000 | 04146 Peroxisome, 80 75 36 0 0 0 0
0.09856__| 00190 Oxidative phosphorylation Ti7 01 37 T T T 0
0.96765 | 00071 Fatty acid metabolism 18 [ 19 3 [ 1 3
001051 | 04142 Lysosome 123 115 37 0 0 0 0
0.84820 | 05219 Bladder cancer 3 38 7 0 0 0 0
083514 | 02010 ABC transporters 15 2 16 2 1 T 0
083437 | 00100 Steroid biosynthesis 13 15 9 1 2 1 1
056781 | 00600 Sphingolipid metabolism 1 31 1 3 3 2 3
050137 | 03050 Proteasome 45 41 15 0 0 0 0
019988 | 00010 Glycolysis / Gluconcogenesis 62 52 ] 2 T T 2
044479 | 04130 | SNARE interactions in vesicular transport 35 31 12 0 0 0 0
012681 | 01040 | Biosynthesis of unsaturated fatty acids % 23 0 26 1 il 0
039880 | 04120 Ubiquitin mediated proteolysis 140 121 37 0 0 0 0

Table 3: The table contains the results of MONA metabolite for the comparison between wild-
type and diabetic mice two weeks after disease outbreak. The columns contain the same infor-
mation as the columns of Table 2

The investigation of the data for the comparison of wild-type and diabetic mice after
two weeks using MONA metabolite also shows a number of high probability predictions,
even though not quite as many as the comparison of the mentioned classes of mice after
four hours. Again some basic metabolic pathways are contained within the results, such
as glycolysis and fatty acid metabolism. Moreover the results suggest discrepancies in
basic cell compounds and in intra-cellular transportation as shown in Table 3 by high
probabilities for results like ABC-transporters.

The results of MONA metabolite for the wild-type vs diabetic after two weeks data-set

holds some contrast to the predictions of MONA’s single model as indicated by Figure
13. The single model generally predicts slightly higher probabilities for pathways to be
altered. Some pathways which get high probabilities from the single model approach are
particularly less good of a result for MONA metabolite, e.g. RNA transport (03013)
which has a probability of roughly 80% in the single level results and only around 20% in
the MONA metabolite outcome. Other pathways are slightly more probable for MONA
metabolite though, like for example bladder cancer (05219)
A pathway which is contained in the prediction results and which is of special interest for
examining the effects of type II diabetes on the metabolism of the mouse is the steroid
biosynthesis pathway. Figure 14 shows the pathway and how it is altered within the
diabetic mice. A large number of enzymes in this pathway are over-expressed. The
metabolite cholesterol has a higher concentration than expected. Another set of genes of
interest here are the ABC-transporters subfamilies. The changes are shown in Figure 15.
A number of genes are differential in all the abc-transporter subfamilies. Some of them
are over-expressed and some under-expressed with about equal distribution.
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Figure 13: Comparison of MONA metabolite results and MONA single level results
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Figure 14: Steroid biosynthesis pathway with differences between wild-type mice and diabetic
mice two weeks after disease outbreak. Green signals those genes which take part course of the
metabolic pathway in the mouse. Genes and metabolites marked blue are under-expressed and
orange marked genes and metabolites are over-expressed within the medically treated mice in
comparison to the untreated diabetic mice.
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Figure 15: ABC-transporters subfamilies with differences between wild-type mice and diabetic
mice two weeks after disease outbreak. Green signals those genes which take part course of the
metabolic pathway in the mouse. Genes and metabolites marked blue are under-expressed and
orange marked genes and metabolites are over-expressed within the medically treated mice in
comparison to the untreated diabetic mice.
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4.4.3 Untreated diabetic mice vs. diabetic mice after different medical treat-

ments
Probability | ID Pathway name # corr. genes | # c.g. in backgr. | # c.g. in diff. | # corr. meta | # c.m. in backgr. | # c.m. in diff. | # mapped meta
0.00226 00195 Photosynthesis 0 0 0 1 1 0 0
0.00226 04111 Cell cycle - yeast 0 0 0 1 1 0 0
0.00226 00550 Peptidoglycan biosynthesis 0 0 0 1 1 0 0
0.00226 02020 Two-component system 0 0 0 1 1 0 0
0.00225 00471 D-Glutamine and D-glutamate metabolism 3 1 0 1 3 0 4
0.00225 00121 Secondary bile acid biosynthesis 0 0 0 3 1 0 0
0.00225 00785 Lipoic acid metabolism 3 1 0 0 0 0 0
0.00114 00780 Biotin metabolism 2 2 0 1 1 0 1
0.00092 00120 Primary bile acid biosynthesis 15 15 1 10 6 0 10
0.00058 00730 Thiamine metabolism 4 3 0 1 1 0 1
0.00058 00300 Lysine biosynthesis 3 3 0 1 1 0 1
0.00058 00524 Butirosin and neomycin biosynthesis 1 3 0 1 1 0 1
0.00058 00061 Fatty acid biosynthesis 6 3 0 12 5 0 0
0.00015 00400 | Phenylalanine, tyrosine and tryptophan biosynthesis 7 5 0 4 2 0 4
0.00008 00460 Cyanoamino acid metabolism 6 6 0 2 2 0 2

Table 4: MONA metabolite results for the comparison of diabetic mice and mice that have been
treated with metformin for four hours.

Running MONA on the data-set, generated from differential metabolites and genes
between diabetic mice and mice and metformin-treated mice after four hours of therapy,
did not produce any good results, as revealed in Table 4. The probabilities for changes in
any pathways are overall really low.

Two weeks of treatment did also not reveal any new findings regarding the changes in
metabolism invoked through metformin (Tab. 5).

Probability | ID Pathway name # corr. genes | # c.g. in backgr. | # c.g. in diff. | # corr. meta | # c.m. in backgr. | # c.m. in diff. | # mapped meta
0.00225 00195 Photosynthesis 0 0 0 1 1 0 0
0.00225 00550 Peptidoglycan biosynthesis 0 0 0 1 1 0 0
0.00225 04111 Cell cycle - yeast 0 0 0 1 1 0 0
0.00225 02020 Two-component system 0 0 0 1 1 0 0
0.00224 00471 D-Glutamine and D-glutamate metabolism 3 1 0 4 3 0 4
0.00224 00121 Secondary bile acid biosynthesis 0 0 0 3 1 0 0
0.00224 00785 Lipoic acid metabolism 3 1 0 0 0 0 0
0.00113 00780 Biotin metabolism 2 2 0 1 1 0 1
0.00057 00730 Thiamine metabolism 4 3 0 1 1 0 1
0.00057 00524 Butirosin and neomycin biosynthesis 4 3 0 1 1 0 1
0.00057 00300 Lysine biosynthesis 3 3 0 1 1 0 1
0.00057 00061 Fatty acid biosynthesis 6 3 0 12 5 0 0
0.00015 00400 | Phenylalanine, tyrosine and tryptophan biosynthesis 7 5 0 4 2 0 4
0.00007 00460 Cyanoamino acid metabolism 6 6 0 2 2 0 2
0.00004 04122 Sulfur relay system 10 7 0 0 0 0 0

Table 5: Results for MONA metabolite for the comparison of diabetic mice and diabetic mice
after two weeks of treatment with metformin

This does also apply for the comparisons of diabetic mice and mice after four hours
of treatment with drug x (Tab. 6), diabetic mice and mice after two weeks of treatment
with drug x and diabetic mice and mice after four hours of treatment with a combination
of both medicaments (Tab. 7).

Probability | ID Pathway name # corr. genes | # c.g. in backgr. | # c.g. in diff. | # corr. meta | # c.m. in backgr. | # c.m. in diff. | # mapped meta
0.19022 04111 Cell cycle - yeast 0 0 0 1 1 1 0
0.19022 02020 Two-component system 0 0 0 1 1 1 0
0.19022 00550 Peptidoglycan biosynthesis 0 0 0 1 1 1 0
0.19022 00195 Photosynthesis 0 0 0 1 1 1 0
0.00293 00471 D-Glutamine and D-glutamate metabolism 3 1 0 4 3 1 4
0.00293 00785 Lipoic acid metabolism 3 1 0 0 0 0 0
0.00293 00121 Secondary bile acid biosynthesis 0 0 0 3 1 0 0
0.00111 00780 Biotin metabolism 2 2 0 1 1 1 1
0.00042 00730 Thiamine metabolism 4 3 0 1 1 0 1
0.00042 00300 Lysine biosynthesis 3 3 0 1 1 1 1
0.00042 00524 Butirosin and neomycin biosynthesis 4 3 0 1 1 1 1
0.00042 00061 Fatty acid biosynthesis 6 3 0 12 5 3 0
0.00006 00400 | Phenylalanine, tyrosine and tryptophan biosynthesis 7 5 0 4 2 2 4
0.00002 00460 Cyanoamino acid metabolism 6 6 0 2 2 2 2
0.00001 04122 Sulfur relay system 10 7 0 0 0 0 0

Table 6: Results of MONA metabolite for the comparison of diabetic mice and diabetic mice
after four hours of treatment with drug x

Neither MONA metabolite nor the single level model of MONA predicted any signifi-
cant metabolic changes for these classes .
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Probability | ID Pathway name # corr. genes | # c.g. in backgr. | # c.g. in diff. | # corr. meta | # c.m. in backgr. | # c.m. in diff. | # mapped meta
0.05476 00730 Thiamine metabolism 4 3 1 1 1 0 1
0.00248 00232 Caffeine metabolism 9 8 1 16 0 0 16
0.00246 02020 Two-component 0 0 0 1 1 0 0
0.00246 04111 Cell cycle - yeast 0 0 0 1 1 0 0
0.00246 00550 0 0 0 1 1 0 0
0.00246 00195 5 0 0 0 1 1 0 0
0.00245 00471 | D-Glutamine and D-glutamate metabolism 3 1 0 4 3 0 1
0.00245 00785 Lipoic acid metabolism 3 1 0 0 0 0 0
0.00245 00121 Secondary bile acid biosynthesis 0 0 0 3 1 0 0
0.00128 00780 Biotin metabolism 2 2 0 1 1 0 1
0.00067 00300 Lysine biosynthesis 3 3 0 1 1 0 1
0.00067 00524 Butirosin and neomycin biosynthesis 4 3 0 1 1 0 1
0.00067 00061 Fatty acid biosynthesis 6 3 0 12 5 0 0
0.00036 04977 Vitamin digestion and absorption 24 18 2 1 0 0 0
0.00019 03450 Non-homologous end-joining 12 12 1 0 0 0 0

Table 7: Results of MONA metabolite for the comparison of diabetic mice and diabetic mice
after four hours of treatment with a combination of metformin and drug x
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4.4.4 Untreated diabetic mice vs. diabetic mice after two weeks of treatment
with a combination of metformin and drug x

In contrast to previously described attempts of medical treatment, analyzing the com-
parison of diabetic mice and mice after two weeks of treatment with a combination of
metformin and drug x, did reveal a couple of changes. MONA metabolite predicted six
pathways to be altered with a probability of more than 0.5. There seem to be significant
changes in arginine and proline metabolism, taruine and hypotaurine metabolism and
glutathione metabolism. Moreover, there are alterations in the pathway related to type I
diabetes mellitus (Fig. 8).

Prob ID Pathway name # corr.genes | # c.g. inbackgr. | # c.g. indiff. # corr.meta | # c.m. inbackgr. | # c.m. indiff. | # mappedmeta
1.00000 00330 Arginine and proline metabolism 54 46 2 18 10 2 18
0.99935 00480 Glutathione metabolism 54 51 1 6 5 1 6
0.87412 04141 | Protein processing in endoplasmic reticulum 169 141 13 0 0 0 0
0.69025 03008 Ribosome biogenesis in eukaryotes 86 66 8 0 0 0 0
0.56860 00430 Taurine and hypotaurine metabolism 10 10 0 2 2 1 2
0.52761 04940 Type I diabetes mellitus 59 52 3 0 0 0
0.41745 03013 RNA transport 168 128 10 0 0 0 0
0.34719 04146 Peroxisome 80 75 6 0 0 0 0
0.33055 00910 Nitrogen metabolism 23 18 1 3 3 1 3
0.32533 00670 One carbon pool by folate 19 16 0 0 0 0 0
0.31208 04976 Bile secretion 71 63 5 3 0 0 0
0.23066 04150 mTOR signaling pathway 53 44 4 0 0 0 0
0.21330 04722 Neurotrophin signaling pathway 131 119 7 0 0 0 0
0.21221 03015 mRNA surveillance pathway 93 69 5 0 0 0 0
0.19534 04622 RIG-I-like receptor signaling pathway 69 62 5 0 0 0 0

Table 8: Results of MONA metabolite for the comparison of diabetic mice and diabetic mice
after two weeks of treatment with a combination of metformin and drug x

It is also to notice, that MONA’s single level model using only the mRNA expression
data as input did not predict any pathway to be altered, thus including the metabolite
data leads to very different findings (Fig. 16).

The arginine and proline metabolism pathway shows an under-expression of the Gls
gene which codes the glutaminase enzyme. Moreover, an under-expression of the Nosl
gene coding for the nitric-oxide synthase is observable. Besides these enzymes there are
also two metabolites which exist in lower concentrations in the medically treated mice
than in the untreated diabetic mice, namely glutamate and citruline (Fig. 17).

Another pathway which also yields some changes of interest, is the glutathione metabolism
pathway. In this pathway the Gene that codes the glutathione S-transferase is overex-
pressed. The metabolite L-Glutamate shows lower concentration values than expected.

Besides the two pathways just mentioned, the differences in the type I diabetes mellitus
pathway might also be a matter of concern. Here, GroEl, a molecular chaperone is over-
expressed and perforin 1, encoded by the PRF1 gene is also over-expressed.
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Figure 16: Comparison of the results for MONA metabolite and MONA'’s single level model for
the comparison between diabetic mice and diabetic mice after two weeks of treatment with a

combination of metformin and drug x.
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Figure 17: Arginine and proline metabolism pathway with differences between diabetic mice
and diabetic mice after two weeks of treatment with a combination of metformin and drug x.
Green signals those genes which take part course of the metabolic pathway in the mouse. Genes
and metabolites marked blue are under-expressed and orange marked genes and metabolites are
over-expressed within the medically treated mice in comparison to the untreated diabetic mice.
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Figure 18: Glutathione metabolism pathway with differences between diabetic mice and dia-
betic mice after two weeks of treatment with a combination of metformin and drug x. Green
signals those genes which take part course of the metabolic pathway in the mouse. Genes and
metabolites marked blue are under-expressed and orange marked genes and metabolites are
over-expressed within the medically treated mice in comparison to the untreated diabetic mice.

39



ITYPE [ DIABETES MELLITUS

Erwironrnental factors

Pancreatic islet Pancreatic rmph node

Auntgantizen?

[-cell death
| )
Oxyzen f trogen
v e i Macrophage

Trpe I dighetes mellitns

04940 5113510
{c) Kanehisa Laboratories

Figure 19: Type I diabetes mellitus pathway with differences between diabetic mice and dia-
betic mice after two weeks of treatment with a combination of metformin and drug x. Green
signals those genes which take part course of the metabolic pathway in the mouse. Genes and
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5 Discussion

5.1 Generated data and mappings

A comprehensive set of mappings could be created from the KEGG-annotations for
the pathways of mus musculus. One problem that arises, however, is that the KEGG-
mappings consist of KEGG identifiers for genes and metabolites, while MONA uses the
unique metabolon identifications to assign metabolites to pathways in order to avoid
complications which might occur from different ways of spelling etc.. Although every
KEGG-gene-identifier can in general be mapped to a Entrez-ID or a gene symbol, not all
KGG-compound-identifiers can be mapped to a metabolon term. From this follows that
known metabolite to pathway relationships cannot be taken into account by MONA be-
cause of missing metabolon name assignment. By regularly updating the MONA database
though, this problem will get less serious over time, as current annotations and assign-
ments are always going to improve. Improving the quality of metabolite to pathway
mappings will inevitable also cause a performance improvement for MONA in terms of
coverage.

5.2 Performance assessment and comparison

Comparing the performance of MONA metabolite to MGSA anf Fisher’s exact test
showed, that MONA metabolite clearly outperforms the other methods. This shows that
the additional information gained by integrating transcriptomics and metabolomics data
does indeed lead to better prediction results compared to just taking the transcriptomics
data into account.

5.3 Extraction of differentially expressed genes and metabolites
from the Mouse 200 data-set

Ignoring errors in measurement the process of extracting differentially expressed genes
and metabolites is pretty much free of complications. Two things have to be considered,
though.

The first problem that occurs is the same as for the generation of the metabolite to
pathway mappings. Only a part of the metabolites marked as differentially expressed by
statistical tests can be considered for the gene set enrichment process as a metabolon
annotation is only available for this part of metabolites. As already mentioned this flaw is
going to improve with better assignments and annotations being available in the future.

The other fact that has to be considered extracting differential mRNAs and metabo-
lites is the choice of the p-value offset. We chose a p-value of 0.05 which is a very popular
and commonly accepted offset. However, dependent on the case and different conditions,
it might be reasonable to chose another offset in order to improve results.

5.4 Mouse 200 gene set enrichment analysis

In the following, we will discuss the results of the gene set enrichment analysis performed
with MONA metabolite for the input-sets generated from the Mouse 200 data-set. We
will discuss the possible reasons for changes in metabolism caused by type II diabetes
mellitus and different approaches of medical treatment, as well as the consequences for
the organism that result from these changes.
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5.5 Wild-type mice vs. diabetic mice four hours after disease
outbreak

The gene set enrichment analysis of the differential mRNAs and metabolites from the com-
parison of wild-type mice and diabetic mice four hours after disease outbreak suggested
many alterations in quite a large number of pathways including pathways responsible for
very basic cellular and metabolic processes, such as the citrate cycle and glycolysis (See
Fig. 2). First of all it is to note here, that the results very much agree with the pre-
dicted changes by the single level model of MONA (See Fig. 9). This comes from the
huge number of genes assigned as differential leading to a number of changes in pathways
which is so big, that including metabolite information seems to not be necessary for good
enrichment results. If one has a closer look at the changes in phenotype and overall health
that type II diabetes mellitus brings with itself, it appears reasonable that such a big part
of the gene pool is altered within diseased individuals.

There are two pathways within the pathways suggested to be altered by the gene set
enrichment analysis, we will discuss more closely. We will look at changes for certain
corresponding mRNAs and metabolite concentration in detail and draw conclusions on
how these changes might affect the organism and thus lead to diabetes-related symptoms.

At first we will focus on the changes in the citrate cycle. It is clearly visible that most
enzymes along the path are under-expressed. For the metabolites, there is an under-
expression of cis-Aconitate and an over-expression of malate and fumarate. As commonly
known, type II diabetes causes defective hepatic glucose production [3], which strongly
correlates with our findings of low activity of enzymes involved in the oxidation of car-
bohydrates. The fact that malate and fumarate are over-expressed leads from the fact
that fumarate also comes from arginine and proline metabolism which is also predicted
as active by the gene set enrichment. The high concentration of fumarate and the normal
activity of the fumarase explain the high concentration of malate.

Another pathway that appears to be of special interest is the drug metabolism pathway.
It is clearly visible that the enzymes taking part in the metabolism of a number of popular
drugs are under-expressed to a big part (See Fig. 11). This correlates with already
performed studies where the inhibition of drug metabolism in liver samples of rats was
observed [1].

5.6 Wild-type mice vs. diabetic mice two weeks after disease
outbreak

The gene set enrichment analysis of the comparison of wild-type mice with diabetic mice
two weeks after disease outbreak also shows a larger number of results suggesting changes
in a number of pathways. The results contain a number of pathways which were already
expected to be corresponding to type II diabetes, like fatty acid metabolism and steroid
biosynthesis, which leads to the conclusion that the results yield biological sense. One
thing that attracts attention here, however, is the fact that there are some changes between
the predictions of MONA metabolite and MONA'’s single level model. There are a number
of pathways which are marked as active by the single level model but not by MONA
metabolite. One example is the biosynthesis of unsaturated fatty acids. One of the core
strengths of MONA metabolite is, that it is able to deal with redundancies between the
terms on a multiple input scale. As the term fatty acid metabolism is already listed as
a high probability result, and unsaturated fatty acid biosynthesis is a part of the whole

42



fatty acid metabolism, biosynthesis of unsaturated fatty acids, could be regarded as a
term redundancy which is filtered out by the MONA metabolite model. For the other
terms like protein processing in endoplasmatic reticulum such an assumption cannot be
made. There could be different reasons for the high probability of these terms, for example
they could represent false positive results, as MONA’s cooperative model shows better
performance in terms of false positives as the single level model [29].

One of the pathways marked as active and which we want to have a closer look at is
the steroid biosynthesis pathway. It is commonly known that steroid levels are directly
related to diabetes [2]. Having a look at Figure 14 it is distinctly visible that almost all
the enzymes, which are part of the steroid biosynthesis are over-expressed. This leads to
a higher concentration of the metabolite cholesterol. High cholesterol levels are directly
related to a higher risk of getting type II diabetes [8].

The second change on metabolism which is predicted to be associated to type II dia-
betes by MONA metabolite is the change in ABC-transporter subfamilies. It has already
been shown that diabetes has effects on the expression of hepatic ABC-transporters [37].
This leads to another correlation of our gene set enrichment predictions and already ex-
isting biological research which suggests that the predictions of MONA metabolite are
biologically meaningful.

5.7 Untreated diabetic mice vs. diabetic mice after different
medical treatments

As the Tables 6, 4, 5 and 7 show, not pathways were predicted as differential for the
mice treated with metformin, drug x and the mice treated with a combination of both
for four hours. This is not very surprising regarding the number of differential genes
and metabolites which were inferred from the Mouse 200 data-set for the comparison
of untreated diabetic mice and the medically treated mice just described (See Tab. 1).
Regarding these numbers of differential genes and metabolites are this low compared with
the size of the measured genetic background, no results for the gene set enrichment could
have been expected.

5.8 Untreated diabetic mice vs. diabetic mice after two weeks
of treatment with a cominaation of metformin and drug x

The most interesting results were achieved from the comparison of untreated diabetic
mice and diabetic mice after two weeks of treatment with a combination of metformin
and drug x. As to see in Table 8 a number of pathways have been marked as active by
MONA metabolite. First of all it is to mention that the predictions of MONA metabolite
and MONA’s single level model differ greatly from each other for this comparison. While
MONA metabolite suggests six active pathways, the single level model was not able to
achieve any results. This shows that taking metabolite concentrations into account can
in fact make a big impact on the enrichment results. Besides this it also has to be
noted that some pathways were marked as active by MONA metabolite, but not by the
single level model, even though the pathways do not have any metabolites associated
to them. One example for such a case is the type I diabetes mellitus pathway. This
results appears to be very reasonable regarding the Mouse 200 data-set, and thus, it
seems confusing that MONA metabolite would mark this pathway as active, but the
single level model not. The reason for this is the fact that for MONA metabolite the
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whole picture of gene and metabolite to pathway associations is considered. Even though
there are no metabolites directly linked to the type I diabetes mellitus pathway, the
fact that the additional information about metabolites is there general, has a positive
effect on the performance of the inference process of the bayesian network, thus leading
to better results. This shows another core advantage of MONA metabolite, leading to
results which are not that obvious in the first place and which can not be achieved by
single level approaches.

As the number of genes and metabolites marked as differential for the comparison
of diabetic mice and diabetic mice after two weeks of treatment with a combination of
metformin and drug x is significantly lower than for the comparison of wild-type and
diabetic mice it becomes especially interesting to have a closer look at the predicted
pathways and their alterations.

The first active pathway we will have a closer look at here, is the arginine proline
metabolism (See Fig. 17). The first thing to catch the eye is the under-expression of the
nitric-oxide synthase along with its product, the metabolite citruline. The fact, that both
enzyme and product are under-expressed together again suggests that the prediction is
biologically reasonable. Besides this, there also an under-expression of both the metabolite
glutamate and the glutaminase, of which glutamate is a product. This enforces the point
just made.

It seems surprising that a pathway is predicted to be altered with a high probability
although only two genes out of over two hundred differentially expressed genes correspond
to it. An explanation for that lies in the integration of transcriptomics and metabolomics.
As there is big number of differentially expressed genes, the inference probably assumes
a big number of false positives within the mRNA input set. In contrast to that, there
are only nine metabolites with differential concentrations. Like this, great importance is
linked to the occurrence of these metabolites in combination with already a low number
of genes.

The next pathway we examine is the glutathione metabolism. Here, an under-expression
of L-glutamate occurs together with an over-expression of glutathione-S-transferase. Al-
though L-glutamate is neither a substrate nor a product of the glutathione-S-transferase
they still lie in direct neighborhood to each other in the pathway. Nevertheless a direct
relationship between the over-expression of the glutathione-S-transferase and the under-
expression of L-glutamate can not be inferred. This may be a starting point for further
examination in order to gain new biological insights.

The last pathway to look at is the type I diabetes mellitus pathway. Here the chap-
eronin GroEL and perforin I are under-expressed. According to KEGG perforin I is only
related to type I diabetes, which raises the question why it is differential as the observed
data was gained from mice diseased with type II diabetes. However recent studies have
shown that perforin also plays a role in inflammation which is characteristic for type I
and type IT diabetes [34]. This shows that the role of perforin is not yet fully known for
both types of diabetes. As perforin, the chaperonin GroEL does also not seem to have
anything to do with type II diabetes but only seems to be related to type I diabetes.
To the best of our knowledge no relation ship between GroEl and type II diabetes has
been determined yet. Nevertheless there might be such a relation which just has not been
detected yet.
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6 Conclusion

Metabolic pathways are the building blocks of an organism’s metabolism. In order to
respond to different environmental conditions, these pathways can be activated. Each
pathway consists of a set of biochemical reactions in which metabolites are converted.
It is well known that the reactions responsible for the transmutations of metabolites are
catalyzed by enzymes. The activation of a pathway leads to different concentrations of
corresponding metabolites. As the metabolites and enzymes have a direct relationship to
each other, it follows that different levels in enzyme activity cohere with the concentrations
of their substrates and products. Therefore we expect that if a pathway is active, there
are different levels of the activity of its enzymes and different concentrations of their
corresponding metabolites. A possibility to measure enzyme activity is to measure the
amount of mRNA which translates to the enzyme. The method introduced in this thesis
aims to make statements about the activity of metabolic pathways by analyzing differential
mRNAs and metabolites in a data-set by using the Bayesian Network model MONA
metabolite. We also showed that MONA metabolite outperforms existing methods

We used this method to find active pathways in the Mouse 200 data-set and were
able to find a lot of correlations with already existing research result which proves the
proves that the method provides biologically meaningful results. Moreover we found out,
how the combination of metformin and a new drug called drug x in this thesis affects
the metabolism of type II diabetic mice. These findings could serve as starting points
to further investigate the effectiveness of this new kind of medical treatment for type
IT diabetes mellitus. Finally we found some proteins whose mRNA was differentially
expressed within the Mouse 200 data but which have no association to type II diabetes
as of now, illustrating that a lot of information about type II diabetes has yet to be
uncovered.
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