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Abstract

Based on an cooperation with the group of Inna Lavrik at the DKFZ Heilderberg we
assessed the requirements and constraints that are imposed on the automatic reduction
of signaling models in an experimental context. We developed a set-based strategy of
structuring the reduction process that allows a global analysis of the possible reductions
of a model. Using Boolean logic we derived conditions that help us recognize invalid
and redundant reductions on a logical basis without the need for simulation. The par-
tial analysis of a large signaling model of the extrinsic apoptotic pathway allowed us to
demonstrate the ability of our framework to handle models with a reduction space of >
10'° possible reductions. Since computational limitations inhibited a complete analysis
of the large model we used a smaller artificial model to demonstrate the possible analy-
ses that can be performed based on our framework and their relevance for experimental
groups.

Auf der Basis einer Kooperation mit der Gruppe von Inna Lavrik am DKFZ Heidelberg
analysierten wir die Anforderungen und Einschrénkungen welche fiir die automatische
Reduktion von Signaling Modellen in einem experimentellen Kontext gegeben sind. Wir
entwickelten einen Set-basierten Ansatz die automatische Reduzierung zu strukturieren
um so globale Analysen eines models zu erméglichen. Durch die Verwendung Boolscher
Logik konnten wir Bedingungen entwickeln die uns dabei helfen logisch unmégliche und
redundante Reductionen zu erkennen ohne sie zu simulieren. Die partielle Analyse eines
groflen Signaling Systems des extrinsischen Pathway der Apoptose erlaubte uns zu demon-
strieren, das unsere Implementierung in der Lage ist Modelle mit einem Reductionsspace
> 10'° méglichen Reduktionen zu analysieren. Da eine komplette Analyse des Experi-
mentalmodels auf der Basis der zur Verfiigung stehenden Rechenkraft nicht moglich war
analysierten wir ebenfalls ein kleineres kiinstliches Model. Dieses Modell erlaubte uns
die in unserem Framework moglichen Analysen zu demonstrieren und ihre Relevanz fiir
Experimentalgruppen zu beurteilen.
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1. Introduction

The reduction of biochemical models is a problem that, in a broad view, is significantly
older than modern systems biology. The derivation of the Michaelis Menten approxima-
tion for enzyme kinetics from a multi step model of binding, unbinding and processing
reactions over 90 years ago can be considered one of the first practical applications of
biochemical model reduction.

Even one of the main reasons for performing model reductions stayed identical. The
baseline model for enzymatic reactions prior to the work of Michaelis and Menten consisted
of three separate reactions. Each of this reactions had it’s own kinetic parameter, so
that the characterization of one enzymatic reaction required the determination of three
parameters. To make things worse at least two of this parameters couldn’t easily be
determined in experimental setups as it usually wasn’t possible to isolate the intermediate
complex that was formed during the multiple step model.

Michaelis and Menten reduced the three steps model by analytical simplification of the
basic equations that constituted the multiple step model, making certain assumptions
regarding the parameters of the original model. This resulted in a way to characterize
the behavior of an enzyme with only two parameters (the Michaelis Menten constant
Ky, and the maximum reaction speed vpq,), both of which can be measured in simple
experimental setups. The success of this method can be witnessed by the fact that the
Michaelis Menten kinetic is up to this day considered the standard “textbook” model for
enzyme kinetics.

With the advent of modern system biology the focus in biochemics shifted from the
detailed analysis of single or few reactions to the analysis of large interacting networks.
Modern experiments such as co-immunoprecipitation, DNA micro array analysis and the
analysis of knockout-mutants will often be performed on a large scale, generating data for
models that include dozens or even up to thousands of interacting species.

Creating quantitative models on the basis of such large amounts of data is one of the
main challenges of system biology. Recent proceedings [1] and analyses “identified the
lack of such quantitative information as a major barrier for the use of systems biology
approaches to drug development” [2].

Unfortunately the experimental data available will often not suffice to create exact
quantitative models, instead resulting in under determined models [3]. In under deter-
mined model some or even most parameters can have a wide range of values. This usually
results in numerous alternative parameter sets that all explain the experimental data but
make different predictions regarding the behavior for initial conditions that differ from
the experimental setups.

This effect is even present in models where all reactions are confirmed with 100% accu-
racy and only their kinetic parameters are unknown [4]. This is similar to the situation



of Michealis and Menten 90 years ago; a complex model is characterized by a number
of experimentally inaccessible parameters. In this situation model reduction is employed
to reduce the number of parameters that characterize a complex model. Various stan-
dard approaches to the reduction of biochemical models exist; by making assumptions
regarding such factors as the speed of certain reactions, steady states, equilibria or moi-
ety preservation the number of parameters in the model is reduced.

This process does not in itself remove the problem of model under determination. The
reduced models will usually still show alternative predictive behaviors. However clever
model reduction often allows us to identify possible key parameters, e.g. a model that
did depend on the parameters p;-ps prior to the reduction might now depend on only
two parameters preqi and prege. If the model reduction was performed with experimental
conditions in mind p,.q1 and p,eq2 are both experimentally accessible, thus allowing us to
focus future experimental setups on these key parameters.

The problem of model under determination becomes even worse if we consider models
where not all reactions in the model are confirmed with certainty but some are only
assumed to take place. While this seems an unlikely situation it actually occurs frequently.
Sometimes it is possible to determine the substrate and the product of a reaction (for
example by introducing radioactive carbon into the substrate as a marker) but not to
identify the enzyme that catalyzes the reaction. Possible candidates for the catalyzing
enzyme can be identified using co-localization by immunocoprecipitation.

In this cases the goal of model reduction will often be the identification of "minimal
models"; e.g. models that contain as few unconfirmed reactions as possible. Analysis of
this minimal models might reveal key reactions among the hypothetical reactions. For
example all minimal models derived from the initial model may contain either reaction 1
or reactions 2 and 3. Once such key reactions have been identified they can be used in
the design of further experimental setups.

Biochemical models are used to model regulatory systems of numerous different prop-
erties. The size of models can range from a few dozen to thousands of states, chemical
interactions can be modeled with various levels of detail, from boolean networks where
a chemical species can either be present or not to the exact calculation of concentration
values using differential equations. This has to be considered when talking about model
reduction; for example a reduction strategy designed for boolean networks will often not
be applicable to continuous systems.

While attempts have been made [5] to structure the engineering of biochemical mod-
els depending on these properties, we will often find a high degree of diversity in the
way models are created. This is deleterious to the development of standardized reduc-
tion frameworks. Instead we will often find that, while standard approaches to model
reductions exist their application to a biochemical model will require a significant amount
of adaption. Both algorithmic (for example compatibility of data structures used) and
logical (are the assumptions the standard approach involves applicable to the modeled
system) problems have to be considered.

In this bachelor project we focus on this adaption part. In cooperation with the exper-
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imental group of Inna Lavrik at the DKFZ in Heidelberg we try to create a framework
that is suitable to perform automatic model reduction on one of the groups models. We
consider the requirements imposed by their experimental context and the compatibility
of model reduction standard approaches.

We will start by introducing a small formalism regarding the structurization of the
mathematical models of biochemical system we intent to use. We consider a model to be
composed of two components:

Definitions 1. A models topology defines which reactions exist in a model. It contains
the information which states are consumed in a reaction, which states catalyze a reaction
and what the products of each reaction are. For a given system the topology suffices to cre-
ate a mathematical model of this system. However this does not include the actual value
of the kinetic parameters. This definition can be expanded to include the introduction
of minimal an mazimal values that a kinetic parameter can have, for example it could be
a possible constraint that all kinetic parameters values k,, have to be between 1 and 1E—10.

A models parametrization is the set of all its kinetic parameters. The kinetic parame-
ters are numerical values; each kinetic parameter is assigned to one reaction. Without the
topological information the kinetic parameters offer no informations regarding the model.

Combining the information of a models topology with a possible parametrization results
in a complete model that can be used to simulate the biochemical systems behavior for
different initial conditions. This definition allows us to make a distinction between model
reduction and model fitting.

e Model fitting is the process of changing the parametrization of a model. Usually
model fitting will be used to change the models behavior to confirm with experimen-
tal observation. A wealth of standard algorithms (simulated annealing, differential
evolution, parameter scanning and more) exist for this operation. It should be noted
that model fitting is often computationally expensive.

e We will refer to the manipulation of a models topology as Model reduction. This
will usually be done to simplify a biochemical model. It includes but is not limited
to changing the kinetic (not the kinetic parameters) of a reaction, removing or
replacing reaction and even removing or merging different chemical species.

Model fitting has no influence on a models topology, while changing a models topology

will invalidate a models parametrization. Performing model reduction will usually require
subsequent model fitting to the experimental data.
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2. Evaluation of requirements imposed
by experimental context

In this bachelor thesis we had to focus on the reduction of models with certain limited
properties. This was required due to the numerous different ways biochemical systems can
be modeled as mentioned in chapter 1. A limiting factor in the choice of model type was
the availability of unreduced biochemical systems of this type. Most published models
are already reduced, limiting their usefulness in evaluating a reduction framework.

We managed to enter into a cooperation with the group of Dr. Inna Lavrik at the DKFZ
in Heidelberg. This cooperation gave us access to an unreduced version of a large bio-
chemical signaling model and experimental data for this model. Personal conference with
Nicolai Fricker and Dr. Inna Lavrik allowed significant insights into the possible use of a
computational reduction framework for experimental groups, as well as the requirements
such a framework would have to fulfill to be applicable in an experimental environment.
In this chapter we will discuss these requirements as they profoundly influenced our work.

2.1. Biological background

The signaling system provided by Nicolai Fricker models the initiation of a cells apop-
tosis mechanism through the FADD or extrinsic pathway. The pathway is started by
the binding of CD95 ligand, an secreted signaling molecule to the CD95 receptor, a re-
ceptor spanning the outer cell membrane. Binding of the ligand causes the formation
of the intracellular membrane bound DISC (death inducing signaling complex). FADD
is recruited to the cytosolic domains of the CD95 receptor and forms the basis of the DISC.

Further steps in the apoptosis pathway are less clear. The FADD part of the DISC
is able to bind both procaspase 8 (called C8 in the model) and the two F'LIP subtypes
FLIP;, and FLIPs. Experimental sources [6] suggest that the bound procaspase 8 is
processed to the intermediate product p43/p10 and the final product p18 without disso-
ciating from the DISC. This implies that the states CD95 FADD, FADD-FS, FADD-FL,
FADD-CS8, C8FS dimer, C8 homo/heterodimer and p43 homo/heterodimer are all bound
to the DISC.

The DISC is assumed to have two binding sites, both of which can bind procaspase 8,
FLIP;, and FLIPs. FLIP; has an unclear role in apoptosis, sometimes acting anti- and
sometimes pro apoptotic. FLIPs always acts anti apoptotic. This model formulates a
possible hypothesis for these different roles. F'LIPs inhibits apoptosis by binding to the
DISC (FADD-FS). Any DISC F LI Ps has bound to is unable to process bound procaspa-
sis 8 (C8FS-dimer). FLIP; also binds to the DISC and can act inhibitive by depleting
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the amount of DISC available for procaspase 8. If two molecules F'LI Py, bind to a DISC
this DISC is effectively blocked from procaspase 8.

The pro-apoptotic effect F'LI Py, is assumed to occasionally display is explained by a fa-
vorable change in kinetics when a DISC bind each one molecule of F'LLI P;, and procaspase
8, resulting in the C8heterodimer. The exact nature of the positive effect is however un-
known. One possibility is that the procaspase 8 in the C8heterodimer is processed faster
than procaspase 8 in the C8homodimer. Other possibilities include scenarios where the C8
heterodimer is not in itself faster processed, but recruits factors that help C8homodimers
to be processed faster. All these possibilities are modeled by the wealth of possible reg-
ulatory interactions between the states C8 homo/heterodimer and p43 homo/heterodimer.

The rest of the model, e.g. the interactions between Parp, Bid and C3 are of a less
regulatory nature. Parp, Bid and C3 are known downstream targets of p18. They are
mainly included in this model since they are used as indicators of the onset of apoptosis
in the experimental setup.

It should be noted that this model is only a simplification of the complete FADD
signaling pathway. Other factors (like FAP-1, FLASH, RIP, Daxx and more) are known
to bind to the DISC and have different influences. The number of downstream interactions
of p18 was limited to those of experimental relevance. These simplifications are acceptable
as long as we keep in mind that this model does only focus on the interactions of CD95L /R,
FLIP;, FLIPs and procaspase 8 and is no complete model of this apoptosis pathway.
Significant changes to other signaling molecules that couldn’t be modeled here might
change the DISC based apoptosis signaling in a way that is not predicted by this model.
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2.2. Modeling techniques used for the CD95 model

We already mentioned that different ways exist to model a biochemical system, such
as different kinds of kinetics, simulation of concentrations using differential equations
and boolean approximations. The apoptosis model discussed in section 2.1 was designed
using mass action kinetics. Actual concentrations of chemical species were modeled using
ordinary differential equations. As different ways exist to formally model mass action
kinetics we will state the formal definitions we used:

e The model has a number of states S and reactions R. Each state represents the con-
centration of one biochemical species. Each reaction R is one biochemical reduction.
All reactions are considered irreversible.

e The change of the states is described by a set of ODE’s.

e The ODE’s can be formulated in the following way:
d/dt(Si) = XvkireeRproati) Th(E) * Mk — v Reons (i) T3 (1) % 12

e R,.04(7) is the set of all reactions that produce S;. Reons(?) is the set of all reactions
that consume S;. 7;(t) is the reaction value of the reaction i at the time t. n; is
a stoichiometric parameter; e.g. if a reaction consumes or produces one molecule

e The reaction value of a reaction i can be formulated as
ri(t) = ki * I1vjis; €S0oms (i) 53 % Iviisi€8uara (i) S

e S.ons(i) is the set of all states that are consumed by reaction i. Seq, () is the set of
all states that catalyze reaction i but are not consumed. k; is a kinetic parameter
determining the speed of the reactions

e As an additional constraint only reactions of at most second order are allowed, this
means ||Seons(1)]| + ||Seata(?)]| =< 2 : Vi.

It should be noted that the model contained a large number of enzymatic reaction.
These reactions have one state that is consumed and another that catalyzes the consump-
tion, so for these reaction is || Scons(?)|| = || Seata(?)|| = 1.

Formulating enzyme kinetics in such a way using mass action kinetics is a valid approx-
imation; it is usually employed when the Michaelis Menten parameters can’t be estimated
for technical reason or reasons of model complexity.

A model designed in this way can be simulated utilizing standard ODE solvers that
are supplied by numerous mathematical programs like matlab; specialized packages like
the SBtoolbox [13] we used offer a complete framework for the simulation of biochemical
ODE-based models.
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2.3. Experimental restrictions to error estimation and
parameter fitting

The CD95 apoptosis model is subject to certain experimental restrictions regarding the
measurements of the biochemical species involved. These restrictions have to be consid-
ered in the parameter fitting of the mathematical model. All of these restrictions are
common in experiments in molecular biology.

All measured values, both for “input” and “output” states have a signifi-

cant experimental error associated with them.
We will consider all states to be input states that have a concentration > 0 at t = 0; output
states are all states that we measure experimentally. This also implies that a state can be
both an input and output state. The problem of random experimental error is common
to most experimental measurements, but especially common in experiments that involve
measuring concentrations in living cells. Isolating and measuring specific molecules in
cells requires a tedious process of breaking up cell walls and membranes, separating pro-
teins, DNA, membrane fragments, small soluble molecules and other contents of the cell.
If a protein is measured the next step will usually involve some kind of antibody selection
like a western blot. Most of these steps, even if conducted with extremest caution will
introduce some kind of error; this is considered unavoidable. Keeping this in mind is
less important for modeling a biochemical system. Instead we have to consider this error
when interpreting and comparing different parameter sets for a model and how well they
explain the experimental data.

A common misconception often encountered is that a model that explains the exper-
imental observations with 0% error has to be “correct” and prefered over a model that
simulates a behavior that differs by 10% from the observed data. This is statistically
speaking incorrect because of the error associated with the experimental data. Consider
the following small example:

If we assume that the experimental error is Gaussian distributed (a common assump-
tion when dealing with random error) with a standard deviation of 10%, we expect:

68% of all experimental measurements to have between 0%-10% error
27% of all experimental measurements to have between 10%-20% error
4% of all experimental measurements to have between 20%-30% error
less then 1% of all experimental measurements to have >40% error

In this situation a common rule of thumb is to consider up to two standard deviations
as an acceptable deviation. In this case we would decide that any model that explained
the experimental data with an error of less than 20% is supported by the experiment.
We would accept any model with less then 20% error and reject any with more but we
wouldn’t consider a model with 5% error better than a model with 15% error. This may
seem trivial right now but will later be of importance when we discuss possible heuristics
to determine reduction strategies; it invalidates most reduction strategies that try to eval-
uate the "error" of allready considered reductions to choose the next possible reduction.
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For our considerations we will use an error cutoff of an relative error of 40%. This value
was supplied by the group of Inna Lavrik as a cutoff they have used previously.

Some states can’t be measured as isolated species but only together with

other species.
It has already been mentioned that the experimental measurement of proteins is difficult.
This isn’t limited to the numerical error of measured concentrations. Common techniques
like anti body identification of proteins or fluorescence analysis can result in false positive
signals especially from structurally similar proteins. If markers are used to measure the
concentration of a protein it will often be impossible to distinguish monomers and dimers
of this protein. While more complex techniques like mass spectrometry will usually be
able to distinguish even extremely similar enzyme it is often impossible to perform these
on a large scale.

If a system contains different species that can’t be measured separately with acceptable
experimental effort these species will be treated as a single entity for the calculation of
the error between the model and the measured data but still be modeled separately. This
is the case for multiple proteins in the CD95 model:

e Caspase 8 is measured as a single entity, independently of its binding status. This
includes unbound C8, Fadd-C8, C8-heterodimer, C8-homodimer and C8-FSdimer.
The C8 homodimer contributes with double intensity, e.g. one mol C8homodimer
is measured with the same value as two mol C8. Technically this measurement also
include the C8 part of the procaspase 43 complex, however since procaspase 43 can
be measured separately its contribution can be subtracted from the measured value.

e Procaspase 43 is measured as a single entity both with C8 homodimer and het-
erodimer bound.

e Once C3 has been cleaved it is impossible to distinguish between active C3 and C3
that has been inhibited by TAP.

The technical aspect of this problem is rather small; most toolboxes already support
the ability to define "variables', e.g. weighted sums of different states that can simulate
this kind of experimental constraint. However the ability to determine the behavior of a
system using such combined states is diminished compared to the information gain that
measuring each state individually would provide.

Measured values aren’t absolute concentrations but rather relative values.
Absolute concentrations are often unknown.
Another limitation of many experiments is the difficulty of determining actual concen-
trations. Often the experimental output will be a relative value that can be compared
between different experiments. For some experiments standards exist that allow us to
convert this relative values to absolute concentrations. In the cases of other proteins no
such standard is available. Dealing with this problem usually involves the introduction of
various new parameters.

If the initial concentration of a species is unknown this concentration is introduced as
a new parameter that has to be fitted.

17



Figure 2.2.: Artificial model used to estimate the effect of initial condition fitting vs.
kinetic parameter fitting

While this feature is easily implemented we found it to be a major problem in the
actual fitting run. Treating initial parameters as fitable values' will often result in un-
wanted conflicts with the error function used. The initial conditions heavily influenced
the behavior of the entire system and commonly produced fitting results that were stuck
in local minimal with biologically nonsensical parameters.

A situation that commonly occurred when trying to fit the model parameters to the
experimental data was that the initial randomized model tended to show "longer" periods
of growth and more rapid growth than the experimental data suggested. This resulted in
the difference between the simulated and the measured concentrations being greater than
the value of the experimental concentration itself, leading to a difference of over 100%.

We will illustrate this using the small toy model illustrated in figure 2.2. We simulated
an experiment using a small artificial model with 12 reactions, and 7 different states. The
model contained two states (S1 and S2) with an initial concentration > 0. This model was
used to simulate experimental data. Then we randomized all kinetic parameters but kept
the initial conditions constant and run another simulation. The initial simulation using
randomized data was called "RandParal". We started a fitting run using RandParal as
initial parameter values. Some steps taken from this fitting run show how the parameters
are slowly fitted to the experimental data. In contrast we also started a fitting run where
all kinetic parameters were kept constant at the initial randomized values and only the
initial concentration of S1 and S2 was changed. After three steps the fitting finished with
the time series "reduced input".

'Tt should be noted that if data of multiple experiments is available all initial condition have to be fitted
in a way that keeps the relation between the experimental values. For example if two experiments
have been performed where the initial concentration of state A in the second experiment was twice
the concentration of state A in the first experiment, A; = 100 and A, = 200 is a valid fit of the initial
conditions, however A; = 100 and A = 1000 would be invalid!
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Figure 2.3.: Comparison of kinetic parameter and initial condition fitting
Plot of data generated using a toy model. Original data is the data generated using a
toy model. RandParal-5 are steps taking from a fitting run after the kinetic parameters
of the toy model have been randomized. Reduced Input is a separate fitting run that
used the same initial set of parameters as RandParal, but instead of fitting kinetic
parameters only the input concentration was fitted.

It should be stressed that "RandParal" and "reduced input" both used identical kinetic
parameters. RandParal used the correct concentration while the concentration "reduced
input" was fitted to, was only 1/4 of the correct concentration.

Upon closer investigation the randomized parameters showed a behavior that, unlike
the original models behavior was barely regulated. Instead the reactions that produced
the measured output state proceeded unregulated at a high speed until the supply of S1
was completely consumed and converted into SO. The kinetic parameter based fitting, if
observed over a complete fitting run did indeed reconstruct the regulatory connection. On
the contrary a fitting run that allowed both the fitting of kinetic parameters and input
concentrations (not shown) behaved identically to the "reduced input" run.

It should be noted that this kind of behavior could be suppressed using specialized error
functions and adapted fitting parameters (simulated annealing using slow cooling sched-
ules, high starting temperature and a large number of allowed failed fitting steps). While
this reduced the problem of "input dominated fitting" it also increased the running time
by a significant amount. We were not able to find parameters that allowed the fitting of
the complete CD95 model with reasonable computational effort. More details regarding
our adapted error function can be found in appendix [Ref einfiigen].
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If no standard exists that allows the conversion of measured "intensities” into absolute
concentrations a normalization parameter has to be introduced to allow such a conversa-
tion. It will usually be possible to optimize this parameter using Linear Optimization.

The optimization of this normalization parameter is performed during the calculation

of the difference between the simulated model and the experimental data. This can be
written formally:

T is the set of all times a measurement was performed

e 57" € R is the normalization variable for State i

erp
%

e s;"P(t) € R is the intensity measured for State i at the time t

e s{™(t) € R is the concentration simulated for State i at the time t

e crror(a(t),b(t),T)— > R is a formulation for a generalized error function, for ex-
ample

e crror(a(t),b(t),T) = \/I%I x Y per(a(t) — b(t))? is the RMSD

o crror(s;P(t),si™(t),T) is the experimental error if no normalization is used

? %

norm . s7'P(t), s5™(t), T') is the experimental error if normalization is used

i 7 )27

e error(s

norm
2

norm
K3

e to determine s choose s = argmin(error (s x s (t), s5(t), T))

Since optimization over one parameter is implemented in most math environments the
implementation of this normalization parameter is trivial.

2.4. Unconfirmed reactions in the CD95 model

The CD95 model contains a number of unconfirmed reactions. These are focused around
the activation of procaspasis 8 (labeled C8 in the mathematical model) and mainly re-
sult from the attempt to model the role of FLIP; (FL) in the CD95 apoptosis sig-
naling pathway. Large amounts of F'LIP; act anti apoptotic by inhibiting the CD95
activation pathway of apoptosis. The suggested mechanism for this is the blocking of
the DISC(CD95FADD). The mathematical model of this mechanism is the binding of
FADDFL to FL, depleting the amount of FADD available. Recent experiments suggest
that smaller amounts of F'LIP; actually act pro apoptotic and might be required in the
CD95 signaling pathway. Knockout mice without any FLIP; expression will die dur-
ing development with a phenotype reminiscent of procaspasis 8 or FADD knockout mice.
Further experimental evidence exist, but are outside of the scope of this thesis; more
details regarding the experimental background of this mechanism can be found in [6].
Evidence suggests that a heterodimer of procaspase 8 and F'LIP; bound to the DISC
(C8heterodimer) will show enhanced activation of procaspase 8 compared to a procaspase
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Subnet of the activation of procaspasis 8 in the Example for a possible reduction R1:
unreduced rmodel with all possible unconfirmed - the states p43 homo- and heterodimer have been merged
reactions

Figure 2.4.: Example for a possible reduction of a subnet of the CD95 model

8 dimer bound to the DISC (C8heterodimer). The mechanism for this enhancement is un-
known; the mathematical model we analyzed contains reaction that model the possibilities
that:

e (C8homodimer and C8heterodimer auto catalyze their cleavage, resulting in the in-
termediate states p43homodimer / p43 heterodimer

e C8homodimer and C8heterodimer catalyze each others cleavage, resulting in the
respective intermediate states p43homodimer / p43 heterodimer, e.g. C8homodimer
catalyzes C8heterodimer vice versa.

e p43homodimer / p43 heterodimer catalyze the cleavage of C8homodimer.
e p43homodimer / p43 heterodimer catalyze the cleavage of C8heterodimer.

e p43homodimer / p43 heterodimer catalyze the cleavage of p43homodimer resulting
in p18.

e p43homodimer / p43 heterodimer catalyze the cleavage of p43heterodimer resulting
in pl8

e active C3 catalyzes the activation of procaspasis 8, resulting in p43homodimer.

e any form of partially activated C8 (C8homo/heterodimer, p43homo/heterodimer,
p18) is a possible candidate for the cleavage of C3.
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These unconfirmed reactions are the main focus of our analysis of the CD95 model.
In its unreduced state it is very difficult to design experimental setups that help us to
restrict the proposed reactions to a smaller number. A reduced version of the model
could allow us a more focused experimental design. An example for a possible reduction
could be to merge both p43 variants. The resulting model would have significantly less
parameters that have to be fitted. An illustration of this reduction is given in figure 2.4.
If this reduction would be supported by the experimental data further experiments could
be designed to explicitly check this model and further validate it.
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3. Overview of different reduction
strategies

Since model reduction can be considered an established field of biochemical analysis var-
ious standard approaches exist. However while these established approaches are utilized
with great success their application is usually limited to certain conditions. In the follow-
ing chapter we will introduce two standard approaches to biochemical model reduction
(timescale analysis and quasi steady state assumption) as well as two reduction strategies
that we derived from other backgrounds (motif based reduction and set based reduction).
We will evaluate their applicability to the requirements discussed in section 2.

3.1. Timescale analysis

Time scale analysis is a method based on the observation that while complex models will
often have complex internal kinetic behavior this behavior is often "obfuscated" if only
a few downstream nodes are directly observed. A common situation where this occurs
results from a complex interaction of fast reactions followed by a very slow reaction. In
other cases some reactions may follow a complex mechanism when observed for a long
time but are almost constant during the time frame we observe.

An extreme example for these cases is the integration of different signaling pathways.
Both the hormone pathway and neurological pathways show, if we consider their behavior
separately, complex behaviors over time. However, if we model the response of a cell that
integrates both hormone induced and neural signals to a neuronal stimulus we will find
that the hormone induced part of the behavior will stay almost constant during the time
frame we model.

But timescale analysis isn’t limited, or in fact even focused on these extreme examples.
Even reactions that differ only a few orders of magnitude in reaction speed can obfuscate
the behavior of other reactions. Usually time scale analysis tries to classify every reaction
in one of three classes depending on it’s speed:

e slow reactions: Very slow reactions are considered to show an approximately con-
stant behavior during the time frame we wish to model. Instead of creating ODE’s
for the reaction value of slow reactions their activity is modeled as a fix parameter.

e medium reactions: These reactions are modeled as normal.

e fast reactions: Are considered to happen instantly. This can be modeled in different
ways. For example consider two states A and B that will always tend towards an
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equilibrium where B = 1.5 * A. If the reactions that create the equilibrium are

considered ’fast’ they wont be modeled. Instead B will always be considered to be
1.5 % A.

The classification required for this is non trivial. While very simple approaches may
just consider kinetic parameters this usually isn’t sufficient. Some reactions may appear
to be slow but don’t show a constant behavior during simulation. Some fast reactions can
perform a regulatory function that is lost if they’'re considered instantaneous.

A considerable problem we expect to encounter while trying to apply an timescale
separation approach to a model with the properties as discussed in chapter 2 is that the
heuristics for timescale separation will often depend on kinetic parameters to be at least
partially known. To utilize time scale analysis in this framework would require us to fit
the parameters of the initial model to the experimental data.

Once this has been done timescale analysis could be performed to reduce any of the fit-
ted models. The timescale separations performed in different fittings would then have to
be analyzed. Both trivial (how often is reaction X classified as fast/slow) and non-trivial
properties (if we classify reaction X as slow, how much will this simplify the model? If we
consider reaction X as fast, does that influence how we can classify reaction Y?) could be
analyzed. Based on these properties some kind of heuristic would have to be designed to
find good reductions.

While this approach seems feasible a problem that we can’t address in this way is the
problem discussed in 2.4, e.g. that some reaction where only substrate and product are
known for sure are included in different "versions" that use different catalyzing enzymes.
Early fitting attempts revealed that these reactions are strongly under determined and
the reaction parameters can have a wide range of values in different fitting runs '. In the
worst case this could lead to a situation where most of the critical reactions are sometimes
classified as slow and sometimes as fast.

3.2. Quasi steady state approximation

The quasi steady state approximation originates from the analysis of enzyme kinetics.
It was first used by Briggs and Haldane [8] to formulate an enzyme kinetic that didn’t
depend on the assumptions made by Michaelis and Menten. The quasi steady state as-
sumption in its classic application states that during an enzymatic reaction the absolute
amount of enzyme substrate complex ES is generally constant, except for a very small
time fraction after the start of the reaction (until equilibrium has been achieved) and the
time when the substrate supply has been largely depleted.

We will use QSSA as an collective term for all methods that focus on making as-
sumptions regarding the behavior of certain states or reaction to analytically simplify the

'Tt should be noted that these fitting runs could not be performed with a satisfactory quality, therefore
we can not state with certainty to which degree the reactions are under determined.
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mathematical equations of the model, even if these assumptions do not necessarily involve
steady states. We will use the derivation of the Briggs and Haldane kinetic to illustrate
the application of the QSSA in model simplification.

In the following E is the concentration of an enzyme, S is the concentration of a sub-
strate, ES is the enzyme substrate complex and P is the product of the enzymatic reaction.
Ey is the initial or total amount of enzyme, compromised of both unbound enzyme and
enzyme substrate complex. Most classic approaches assume the substrate to be in massive
excess of the enzyme, so that the consumption of substrate is less relevant to the speed
of the reaction. Most enzymatic reactions are assumed to follow a simple scheme:

e The enzyme binds the substrate and forms the enzyme-substrate complex.

e The enzyme substrate complex can either dissociate without reaction (reforming
enzyme and substrate) or react and form the product reform the unbound enzyme.

e The reaction is reversible until the product is formed. In almost all cases the creation
of the product is considered an irreversible step.

E+ S5 ES (3.1)
ESB P+ E (3.2)
ESB E+S (3.3)

Equations 3.1-3.3 formulate an enzymatic reaction as a sequence of three mass action
reactions. This set of equations is the baseline for the approximation of most enzyme
kinetics and is mostly considered the most accurate. It is also the most unwieldy, as it
requires the measurement of three distinct kinetic parameters that aren’t easily experimen-
tally accessible (e.g. the inability to isolate a stabilized ES-complex without permanently
changing the enzyme will make it impossible to estimate ks and k).

If certain relations between ki, ks and k3 are assumed these equations can be used to
derive the Michaelis Menten equation. The Briggs and Haldane assumption states that
in most experimental setups d/dt(ES) = 0 will hold. This is the quasi steady state as-
sumption, as it is assumed ES is in a steady state. We can use these equations to show:

d/dt(ES) =4k * ExS —kox ES — k3« ES
0=+k xExS — (ko+ ks)*x ES
since b= F+ ES=FE=Fy,— ES
0:+k1*(E0—ES)*S—(k2+I{?3)*ES
kix ES %S+ (ko + k3) « ES = +ky * Eg xS
(k1 %S+ (ks + k3)) * ES = 4+ky x Egx S
ES = (k1% EyxS)/(ky %S+ (ks + k3))

ES = (Ey* S)/(S + (ks + k3) /1) (3.4)

In 3.4 the term (ko + k3)/k; can be treated as a single parameter, thus massively sim-
plifying the enzymatic reaction. If we further assume k3 = 0 we can simplify the Briggs

25



Haldane equation to the Michaelis Menten equation.

This general approach, despite being over 80 years old is still the foundation for mod-
ern QSSA. Various heuristic strategies exist to assume constant reaction rates or state
values in biochemical models under different conditions, such as enzyme excess instead
of substrate excess. Identifying states or reactions that can reasonably assumed to be in
a steady state will often allow us to analytical simplify the mathematical equations of
a model by replacing several parameters with a single combined parameter. While this
approach has been explored extensively in the past it is still subject to modern research
(for example by [14]).

The main weakness in this approach is the identification of suitable steady state as-
sumptions to simplify the equations compromising the model. Considering the signaling
model system discussed in 2 is observed only in a time frame where we don’t expect any
kind of steady state or equilibrium most "classical" assumptions won’t work.

A further possible deterrent to the application of an QSSA approach to our work is
that especially more modern approaches will often add further assumptions regarding the
relation of kinetic parameters that could be simplified. In an under determined network
the kinetic parameters of multiple reactions might still be unclear to a degree that doesn’t
allow us to decide whether an assumption is valid.

An approach to create an automated reduction framework could try to heuristically
check for states or reactions that could be assumed to be in some kind of steady state
or equilibrium. Analysis of current different equilibrium and steady state definitions
could be performed to derive algorithms that check a biochemical model for any subnets
that could be assumed to fulfill some of these conditions. Once candidate states and
reductions are identified some kind of heuristic evaluation would be employed to decide
which assumptions we expect to provide the best model simplification to information
loss ratio. These assumptions would then have to be taken into account to simplify the
equations of the model. This kind of automated analytical simplification, while non trivial
seems reasonably achievable, considering that symbolic math toolboxes (for example the
Symbolic Math Toolbox for Matlab) provide a sophisticated framework for the automated
manipulation of mathematic formulas.

3.3. Motif based approach to reduction

The general idea of this approach is to find recurring subnet motifs that occur with in-
creased frequency in biochemical models. Once such motifs have been identified, we try to
find smaller motifs that approximate the behavior of the original motif. A trivial example
could be replacing the "motif" of a cascade with three steps with a single first order step.

The motif based approach to reduction shows a lot similarities to the QSSA. The
difference is that the QSSA focuses on the assumptions that allows us to simplify the
mathematical equations, while the motif based approach focuses on finding recurring
mathematical regularities in the equations and then tries to make assumptions suitable
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to simplifying these regularities.

Expanding this approach into an automated framework would at first involve integrat-
ing data of multiple biochemical networks into a common format and then search for
recurring motifs. The motif definition could be derived by expanding the work of Milo et.
al. [12] regarding network motifs to hyper graphs. Hyper graphs are a common network-
based representation of biochemical models, were all substrates of a reaction constitute
the start, and all products of a reaction constitute the end of a hyper edge. The behavior
of the most prominent motifs could then be analyzed and hopefully assumptions could
be found for some motifs that would allow analytical simplification of the equations that
compromise the motif.

This approach has some potential problems. It isn’t clear how well the motif concept
could be expanded to hyper graph structures as the number of distinct motifs that are
combinatorial possible grows significantly in respect to the number of nodes in a motif for
hyper graphs than for normal graphs.

If we only consider reactions of at most second order, not allowing any self loops the
number of reactions in a hyper graph is

e first order reactions: NV % (N — 1)

e second order reactions: (N x (N — 1))/2 % (N — 2) (where (Nz(N — 1))/2 is the
number of all pairs of start nodes of a second order hyper edge)

As we can see this grows by one potency faster than the number of reactions in normal
graph (which is compromised of only the first order reactions), thus potentially generating
more possible motifs even for few nodes. Since all possible motifs have to be counted in a
large number of networks this could result in a significant increase in computational time
required.

Another problem is that Milo et.al. employed a sophisticated randomization algorithm
to compare the occurrence of motifs in real networks to the number of occurrences in
random networks. Unfortunately the randomization of hyper graphs is a field that has
been explored a lot less than the randomization of normal graphs for which extensive
work exists (for example the graph evolution model by Erdés and Renyi [9]) regarding
how to keep properties such as degree distribution invariant in randomization.

However the largest problem we encountered in our initial exploration of this field was
the unavailability of integrated data for non reduced biochemical models in a data format
that allowed the application of graph based motif search.

Sites such as biocyc [15] and reactome.org [16], while using standardized exchange for-
mats focus on models that have already been reduced pretty thoroughly. These models
are obviously unsuited for searching motifs that are common in unreduced models.

Models that have not or only partially been reduced are mainly available directly from

publishers. While some models can be found in this way, they show a significant inho-
mogeneity regarding to the format used. We estimated the effort to integrate enough of
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these models into a common data format to run motif searching algorithms on them to
be to large to be accomplishable in the scale of this work.

3.4. Set based approach to reduction

This approach has been less formally explored than those we discussed up to now. By set
based reduction we suggest that the reduction should be structured in a way that allows
the application of standard set based optimization algorithms such as discrete branch and
bound algorithms and greedy search. Ideally we would want the following conditions to
be fulfilled:

e Reductions are compromised by elementary reduction steps (for example removing a
reaction from a model might be an elementary reduction). These steps are handled
in a discrete fashion, i.e. can either be performed or not performed but do not
depend on continuous parameters.

e The number of possible reductions for a given model is finite.

e No elementary reduction may depend on another reduction to be applicable to a
model.

In such a framework the reduction problem has the following properties:

e While any set of elementary reduction steps is a possible reduction not every reduc-
tion is supported by experimental evidence.

e The challenge lies in identifying which reactions are NOT supported by experimental
data.

e Brute force checking of every reduction will usually not be possible.

e Heuristic strategies need to be employed to speed up the identification of not sup-
ported reductions.

In such a framework the total number of possible reductions of a model may not exceed
2Nposs where Nposs 1s the number of possible elementary reduction steps for the model. This
reduction space contains all reductions for a model under a given definition of elementary
reduction steps. While the reduction space is of exponential size we believe it might be
reasonable to assume we can apply heuristic strategies and clever structurization of the
reduction space to explore it in more reasonable time.

These heuristics do obviously depend on the definition of elementary reductions utilized.
For example if we consider removing a reaction from the model an elementary reduction
we can limit the reduction space we need to explore by automatically invalidating all
combinations of elementary reductions that completely disconnect an output node. This
and other examples will later be discussed in chapter 6.
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This approach offers several advantages. The definition of a clear reduction space allows
us to perform reductions in a less subjective way. As an example this framework makes
it easy to define a "smallest" model supporting some experimental data as the model that
results from the application of the most elementary reduction steps. This allows us to
justify our reduction based on the principle of Ockhams Razor. Of course this kind of
reasoning does only hold within the defined elementary reduction framework. It is there-
fore necessary to define elementary reductions in a way that allows us to reproduce the
reductions that experimental groups perform now on an expert knowledge basis.

In a way this characterizes the set based reduction approach as a "meta-strategy". It
might be reasonable to define a framework where the elementary reduction steps consist
of timescale analysis or QSSA analysis steps. However such endeavors, while possibilities
for future projects seem outside of the scope of this bachelor project.

A set based approach implemented in the limited time of this project would have to
focus on small elementary reductions without complicated side conditions. Analyzing
the properties of the reduction space resulting from a simple definition of elementary
reductions to allow exploration of the reduction space would be a main focus of this kind
of project. The set based organization of the problem would allow us to employ standard
set based algorithms and evaluate their behavior in the reduction space.

3.5. Comparison of different strategies

We will start our analysis of the different approaches considered with a short summary of
advantages and disadvantages of the different strategies:

time scale analysis:
+ established method
+ implementations of standard algorithms are available
- classification of different timescales in under determined networks seems problematic

- doesn’t address the problem of uncertain network topology

QSSA:
+ established method
+ strong mathematical foundation

+ the mathematical assumptions applied to a successful reduction might be used to
derive hypothesizes about biological implications (e.g. interpreting an equilibrium
in the model in a biological context)

- standard assumptions can be expected not to hold due to model acting far away from
steady state
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- more advanced assumptions might depend on properties that can’t be checked due to
under determined state of network

- doesn’t address the problem of uncertain network topology

Motif based approach to reduction:

+ statistical analysis allows focusing on relevant motifs e.g. motifs expected to be found
in many models

+ can be based on prior work regarding network motifs

- expanding the idea of graph motifs to hyper graph motifs can result in various problems
(few models exist for hyper graph randomization, number of possible motifs for a
given number of nodes grows very fast)

- the number of integrated non reduced models required for a statistically relevant anal-
ysis of over representation of certain motifs seems unobtainable

Set based approach to reduction:

+ set based approach "structures" the space of possible solutions and makes it easier to
determine properties such as how "small' a model is and if a smaller model could
exist

+ standard algorithms for set based optimization problems can be utilized to have a
foundation for possible heuristics

+ /- can be considered a meta method focused on more structured analysis
- depends strongly on finding suitable heuristics

- in the worst case the space of possible reductions can’t be reduced from exponential size

As we can see both classical approaches don’t address the specific problem of uncertain
network topology. While it might have been possible to reduce some parts of the network
using these approaches the information gain we expected about the reactions with uncer-
tain catalyst was pretty small.

The motif based approach was excluded as a possibility pretty fast; the technical ob-
stacles in integrating different non reduced networks from the various data structures
provided by prior publications was deemed prohibitive.

Based on this considerations we decided to try and implement a set based reduction
framework. We planed to focus on a simple elementary reduction to demonstrate the
general concept of using a set based problem definition to limit the space of possible
solutions in a structured way.
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4. Basic definitions and implications of
set based reduction

In our overview of different reduction strategies we characterized set based reduction as a
meta strategy. We will now take a closer look on this characterization and consider its im-
plications. A core idea of this approach is to define elementary reductions, e.g. reductions
that can be applied without the need of further continuous parameters. Any reduction
may either be applied to a biochemical system or not; however if it is applied its effect
on the systems topology should be a strictly defined change of the system that does not
depend on further random factors or parameters. Please note the distinction made in def-
inition 1; while the model topology should be clearly defined the models parametrization
is still subject to random factors. We will also demand that any set of reductions applied
to a model will always have the same effect on the models topology, independently of the
order in which the reductions are applied.

It should be noted that it is possible to define elementary reductions with discrete
parameters, if the space these parameters can be taken from is limited using generalized
logical formalisms as defined in [10]. A possible idea for the definition of an elementary re-
duction might be to constrict a specific kinetic parameter to a range of certain parameter
values; for example we might want to constrict parameter p; so that 0.5 <= p; <0.6. We
could define a set of basic elementary reduction prior to the start of the reduction algo-
rithm & € [1 : 10], Rx(7) =: constrict the parameter p; to a value (k—1)*0.1 <= p; < kx*0.1.
This set of elementary reduction is obviously finite. Applying Rg(1) would result in the
desired reduction.

4.1. Set based reduction - an approach on two levels

The set based definition of elementary reactions will often contain redundant and/or obvi-
ously! invalid reductions. The exact nature of these redundancies and invalidities depends
on the exact definition of the elementary reductions. A small example of redundant and
obviously invalid reductions is given in figure 4.1.

A possible approach to this problem is considering it on two interacting but generally
separate levels. One level is the the structurization of the "reduction space’, e.g. the set of

Tt should be clarified that we’ll call a reduction obviously invalid if it can be shown without running
a fitting algorithm that it is impossible to fit the reduction to the given experimental data; it should
not be misunderstood to imply that this proof is "simple" or "trivial"
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all possible reductions that can be derived by combining any number of elementary reduc-
tions. The second level is the actual application of a reduction to the biochemical model.
The structurization part is focused on identifying redundancies, while the application of
reductions focuses on efficient checking for invalid reductions.

Clnput > CInput Clnput Clnput lnput >
(1) 0 () ) 1
(2) @ @ @) (2
Cutput> Dutput Dutput> Dutpuf>
Model A Model B Model C Model D Model E

hodel A is the original model. Only the state "output” is measured. Model B and C are redundant, both prevent that
output is formed by consuming species 2, model B prevents the formation of species 2 while model C lacks the
reaction that converts species 2 to output. Mote that the behavior of B + C is different from Model D; in Model D all
input will eventually be converted to output, while in models BE+C some input can be "drained away" This illustrate s that
checking for redundancy has to be implemented carefully. Model E is obviously invalid if any measurement shows the
farmation of output, since no reactions remain that could produce output.

Figure 4.1.: Illustration of the concepts of redundancy and obvious invalidity

4.1.1. Basic formalisms

We will now give some basic definitions to better illustrate the different levels.
R, is the set of all elementary reductions.

Reompiete = {7k : 7, C Ree} is the set of all subsets of the set of all elementary reactions.

evaluate]%odel,ExperimentalData : Rcomplete - [07 1]
is an evaluation function. Given the model of an experimental system and experimental

data it evaluates whether it is possible to reduce the initial model and still fit it to the
experimental evidence.

Rvalid = {vrk S Rcomplete . 6’UaluateModel,EacperimentalData(rk) = 1}
is the set of all valid reductions.

Rinvalid = {V'f’k € Rcomplete . evaluate]V[odel,E:EperimentalData(rk) = 0}
is the set of all invalid reductions.

Jit BaperimentaiData (M odel topology)— > Model .parametrization

is a standard fitting function that tries to find a parametrization for a given model topol-
ogy that explains some experimental data
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model__error geperimentalData( Model)— > R
is a standard error function (for example RMSD) that calculates the difference between
the simulated data and the experimental data.

4.1.2. Applying reductions to the biochemical model

This "level" of the set based reduction approach is mainly focused on an efficient imple-
mentation of the evaluation function. While a trivial implementation can be achieved
simply enough by combining standard error- and fitting functions (see Pseudocode 1
simple__evaluate), the performance of such an implementation often won’t suffice. The
evaluation function should ideally implement a efficient way of checking whether a reduc-
tion is obviously invalid.

function simple_evaluate(Reduction, Model, ExperimentalData,
qualityCutoff, maxAttempts) = {

new_topology = apply Reduction to Model.topology

for (i = 1:maxAttempts)

new_parameters = fit(Experimental Data, new_topology)
currentModel = new Model();
currentModel.topology = new_topology
currentModel .parametrization = new_parameters
currentError = model_error(Experimental Data, currentModel)
if (currentError <= qualityCutoff ) return 1; endif

endfor

return O;

3

function improved_evaluate(Reduction, Model, ExperimentalData,
qualityCutoff, maxAttempts) = {
new_topology = apply Reduction to Model.topology
for (i = 1:maxAttempts)
new_parameters = fit(Experimental Data, new_topology)
currentModel new Model();
currentModel.topology new_topology
currentModel .parametrization = new_parameters
if checkModellsObviouslyInvalid(currentModel)
currentError = 00
else

currentError = model_error(Experimental Data, currentModel)

if (currentError <= qualityCutoff ) return 1; endif
endif
endfor
return O;

}

Pseudocode 1: Example for a simple and an improved version of the evalua-
tion function
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Checking whether a model is obviously invalid is no trivial task. Various concepts de-
rived from the basic analysis of nonlinear systems like observable and influenceable states
can be used to formalize a framework that helps with this decision, an approach utilized
by [17]. In chapter 6.1 we will discuss the implementation of an checking algorithm.

4.1.3. Structuring the reduction space

Based on the definition of the evaluation function we gave, we managed to structure the
reduction problem in a way that allows us to formally characterize it as a satisfiability
problem on a limited number of boolean variables. Each variable represents a possible
elementary reduction. A reduction composed of different elementary reductions is an as-
signment of truth values to all boolean variables, where the variables that compose the
reduction are true and the variables of all reductions that are not performed are "false". If
a reduction is possible for the given experimental data we consider the underlying boolean
function satisfied for this assignment.

The underlying boolean function is inaccessible to us and depends on the initial model,
the experimental data and the possible elementary reductions. The size of the truth table
of the boolean function is 2%l and the set of all satisfying assignments can be mapped
on Ryaig. We will call this unknown boolean function evalpoiean : [0, 117l — > [0, 1]. Tt
should be obvious that evaluatensoder, ExperimentalData 30 €Valpooiean are functionally identi-
cal except for different data structures. Since each naive checking of a possible reduction
involves a call of the evaluation function and thus a computationally expensive fitting
run, simply checking the entire truth table does not seem to be a valid strategy.

We propose the solution to define further boolean clauses that depend on the structure
of the elementary reductions. These should be structured in a way that we expect any
assignment satisfying assignment to also satisfy these additional clauses.

As a small example assume:
-A model that contains the reactions A, B, C, D, E
-The elementary reductions R4, Rg, Rc, Rp, Rg. The reduction R, is constituted by re-
moving reaction A from the model and so on.
-A fitting framework that is able to fit a kinetic parameter to the value zero.

In such a situation we might reasonably assume that it is impossible to to create a valid
reduction from an invalid reduction that couldn’t be fitted to the experimental data by
performing another elementary reduction / removing another reaction. This should be
obvious: removing a reaction is identical to setting its kinetic parameter to zero, so the
fitting algorithm could have achieved this without the need for further reductions.
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Based on this assumption we find that:
Any invalid reduction ry, invalidates all reductions r; where r,N7; = 1, e.g. any reduction
that contains all elementary reductions in ry is invalid no matter which further reduction
1t contains.

Any valid reduction r;, validates all reductions r; where r, Ur; = 7y, e.g. any reduction
that contains only a subset of the reductions in 7 is also valid.

Utilizing this conclusions we’re able to determine to multiple elements of the truth ta-
ble of evalpooiean performing a single evaluation process. For example we might check the
reduction {R4, Rp, Rc, } and find it valid; this also validates the reductions {Ra, Rp},

{RA,Rc}, {RB,Rc}, {RA}, {RB} and {RC}

The utilization of rules like these allows us to potentially explore exponential reduction
space in acceptable time. Utilizing standard search algorithms for set based / boolean
problems and maximizing the information gain from each validation step seems a plausible
strategy to completely analyze the potential reductions of a biochemical model.

4.2. Definition of basic reduction steps

We already established that both conceptual levels of the set based reduction depend
strongly on the definition of the possible elementary reductions. In theory various estab-
lished strategies like time scale analysis could be adapted; for example it seems feasible
to adapt a time scale analysis algorithm to a set based reduction strategy by defining the
classification of one reaction as either fast or slow as two possible reductions (performing
the classification as both fast and slow would automatically lead to an invalid reduction).
We considered several approaches, but in the end decided to opt for a "simple" reduction
strategy to demonstrate the general strengths of the set based reduction approach. Based
on the non automated reduction strategies that had previously been employed by the
group of Dr. Inna Lavrik we decided to consider the removal of reactions and the merging
of states as possible reduction candidates.

4.2.1. Merging of states

A possibility we considered was a reduction that merged two states. This can best be ex-
plained based on a network / hypergraph interpretation of the biochemical model, where
each state represents a node in the network graph and each reaction is a directed hyper-
edge. The classic definition for the merging of two or more nodes is achieved by removing
all merged states from the model and replacing each reference to any of them with a
reference to a new state. Three topologically different situations can occur if two states
are merged (these situations, along with some problems that can result from merging are
illustrated in figure 4.2):

e The states are parallel, the network does not contain any directed path that con-
tains both states.
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sgry. g

Initial model merged model 1 merged model 2 merged model 3

merged model 1: states 3 and B are sequential merging thern produces a selfloop that involves other states and can
nat simply be deleted as this would stop the consumption of state 4

merged model 2: states 2 and 3 are paraleiand can be merged without the creation of selfloop

merged model 3: states 6 and 7 are part of a directed circle; merging them produces a selfloop that involves no other
states

Figure 4.2.: lllustration of the different topological relations states can have and of possible
problems that can result from merging states

e The states are sequential, every directed path in the network that passes both
states will always pass them in the same sequence.

e A directed circle exists that passes through both states.

Merging states can result in problems when a self loop or circle is introduced to the
graph if none was present prior to the reduction. While the reduction created in such
a way may still be able to explain the experimental data its biological implication will
often be obscured; the introduction of new self loops into a model that contained none
previously will seldom make sense from a biological point of view. Unfortunately the
classic definition of merging nodes (derived from the merge operation in normal graphs)
will introduce a self loop if the product of a second order reaction is merged with one of
its substrates, e.g.:
old reaction: S1+ S2— > P
merge S1 and P to a new state M=>
new reaction: M + S2— > M

This forced us to abandon the classical merge operation for one that more suitable
to handle hypergraph topology. We tried various variants (for example only allow the
merging of the product of a reaction with its substrates if all its substrates are merged)
but found no strategy that avoided reductions that invalidated biological background
while still being widely applicable to the network we tried to reduce.

4.2.2. Removal of reactions

One of the simplest and most illustrative reductions possible is the simple removal of a
reaction from a biochemical model. It has the additional benefit of producing reductions
that can easily be interpreted in a biological context; any reaction removed is assumed
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either not to take place or at least not to be a determining factor of the systems behavior.
The implementation of this reduction is equally simple; setting the kinetic parameter of
a reaction to zero has the same effect as removing the equation of the reaction from the
ODE system.

Assumption of perfect fitting

For the design of our general concept we assume that every reduced model for that a
parametrization exists that explains the experimental data will indeed be confirmed by
the fitting algorithm employed. Without this assumption we would not be able to gain any
information from invalidating a reduction, requiring us to perform a evaluation process
for every reduction that is in fact invalid. During a "proof of concept' stage we considered
such an assumption to be ok. Later application of out strategy would require further
validation of this assumption. We will provide a short outline for such a validation:

e Consider all reductions that have been validated by the parameter fitting algorithm.

e (Calculate the probability for a false negative, e.g. that one fitting attempt of a
fittable reduction fails to fit the parameters

e (Calculate the probability that n fitting runs of a valid reduction all produce false
negatives where n is the number of fitting attempts that have been performed for
each reduction

e Calculate the probability that one or more of the invalid reductions are in fact false
negatives where every fitting attempt failed.

e Use this probability to either validate the assumption or re-run the simulation with
a greater number of fitting attempts.

Logical validation and invalidation rules

The rules for logical validation and invalidation in a framework based on reaction removal
have already been stated and explained as an example in section 4.1.3. We will there-
fore only restate them here as theorems and refer to the corresponding section for more
explanations.

1. Any invalid reduction 7y invalidates all reductions r; where ry N r; = 74, e.g. any
reduction that contains all elementary reductions in 7 is invalid no matter which
further reduction it contains.

2. Any valid reduction r; validates all reductions r; where r, Ur; = 7y, e.g. any
reduction that contains only a subset of the reductions in r;, is also valid.
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Maximal valid reductions and minimal invalid reductions

Based on the prior section we find that most states can (in an ideal case) be validated
without fitting them. However some states have to be fitted as no other state either
validates or invalidates them. These states can be divided in two classes:

Minimal invalid reductions are invalid reductions that become valid if any one of
the elementary reduction that compose this reduction is not performed.

Maximal valid reduction are valid reductions that become invalid if any one further
elementary reduction that hasn’t already been performed is performed.

Knowing all minimal invalid and maximal valid reductions completely defines the space
of possible reductions. This is useful in various applications. For example if we want to
validate the assumption regarding perfect fitting we don’t have to consider all reductions
we performed during the model reduction but only the minimal invalid and maximal valid
reductions. Other applications are more of a practical nature and focused on the imple-
mentation. Since the reduction space grows exponentially with the number of possible
reductions the datastructure that is utilized to save the validated and invalidated states
can become very large. Minimal invalid and maximal valid reductions offer a smaller
representation of the reduction space if actions like comparing different reduction spaces
are performed.

4.3. The reduction graph - a supporting data structure

We will now introduce the reduction graph as a supporting data structure. The reduction
graph is a hierarchical graph. For an initial model with ||Re.|| elementary reduction it
has the following properties:

e It has || Re.| + 1 hierarchical levels.

e Each level has (fjli) nodes, where n is the number of the hierarchy of the current
level.

e Each node is labeled by n-1 different elementary reductions, no two nodes are labeled
in the same way.

e This essentially means that the n-th level contains all reductions that are composed
of n-1 elementary reductions.

e The root contains the unreduced model.
e Let Label(v;) be defined as the set of all reduction that node j is labeled with.
e Two nodes vy, vy are connected if || Label(vy) N Label(vy)|| = 1.

e If two nodes are connected the node with the smaller number of labels is called the
parent, the node with more labels is the child.
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e A node v; is called the ancestor of v, if:
Label(vq) \ Label(ve) = 0 A Label(vy) U Label(vy) = Label(vy)

e A node vy is called vy’s descendant if v, is the ancestor of v

e In addition to its label each node has one of three states: valid, invalid or undeter-
mined

The reduction graph has a total of 2IFell nodes, each of which represents one possible
reduction. The three states represent our knowledge of the reduction space. When we
begin a reduction most of the reduction graph will be in a "undetermined" state. As we
evaluate different reductions states are changed to either valid or invalid

The reduction graph is in all algorithmic concerns equivalent to the prior boolean for-
mulation; however it allows significantly more illustrative description of the implemented
algorithms. For example let us consider the state validation and invalidation rules defined
in section 4.2.2:

Any invalid reduction rj, invalidates all reductions r; where 7, Nr; = 1y, e.g. any re-
duction that contains all elementary reductions in 7, is invalid no matter which further
reduction it contains.

Can be implemented as :
Whenever you mark a node as invalid, also mark all its descendants as invalid

Any valid reduction r;, validates all reductions r; where r, Ur; = 7y, e.g. any reduction
that contains only a subset of the reductions in 7 is also valid.
Can be implemented as :

Whenever you mark a node as valid, also mark all its ancestors as valid

Both rules are visualized in figure 4.3
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Figure 4.3.: Illustration of validation and invalidation in the reduction graph
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5. Standard algorithms for
combinatorial optimization

5.1. Supported set based algorithm

This algorithm is the adaption of a standard frequent item set mining algorithm. Frequent
item set algorithms are generally run on a large collection of item sets. The goal is to find
subsets of items which occur frequently together in different item sets. To illustrate this
idea better consider the following sets:

Set 1 ={ A, C, D, F}
Set 2 ={ A, B, D}
Set 3={A,C, D, F}
Set4={C,D,E,F}
Set 5 ={ A, C, D}

The item set {C, D} would have a support of four as the Sets 1, 3, 4, 5 each contain
the subset {C, D}. Likewise the Set {C, D, F} would have a support of three.

Frequent item set mining algorithms aim to find all subsets that occur at least a certain
number of times together. Usually the size of the collection of sets will cause the opera-
tion of checking whether any given item set is frequent to be computationally expensive,
resulting in the need of efficient heuristics. One such heuristic is employed by the Apriori
algorithm as introduced by Agrawal et. al. [11]. This algorithm is optimized to find all
frequent item sets in a collection of sets while checking as few non-frequent item sets as
possible.

The general idea of this algorithm is that if a item set of N elements is frequent then
each subset of (N-1) elements of this item set also has to be frequent. This is very similar
to the assumption we made in chapter 4, namely that if it can be shown that a reduction
that removes a certain set of reactions can be fitted to support the experimental data
then it’s also possible to fit any reduction that removes a subset of these reactions.

A further common point between both problems is that checking one set for frequency
of occurrence / one reduction for support of experimental data is an expensive operation.
These similarities allow easy adaption of the Apriori algorithm; the only change we have
to perform is to check whether removing a set of reactions is supported instead of checking
whether an item set is frequent.
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@@@ 4 Supported Set Algorithm*:
: Mumber of fited node for complete analysis
Confirming 21 reductions (optimal 4)

ﬁ Falsifying 6 reductions (optimal 6)

Total 27 reductions (optimal 12, worst case 64)

Figure 5.1.: Simulation of a supported set analysis of a reduction graph

The algorithm that can be designed in this way behaves identical to applying a standard
breadth first search algorithm on the reduction graph. However we decided to introduce
this approach from the item set mining perspective to better illustrate it’s strengths and
weaknesses.

A clear strength of this approach is that it will always find all maximal valid reductions
while never considering any non-minimal invalid reductions. This is especially strong if
the reduction graph contains a large ratio of non-minimal invalid reductions, for example
in a model that allows us only to remove very few reactions. This algorithm will also pro-
vide fitted model for each reduction, which might be useful in further statistical analysis
of the kinetic parameters in reduced submodels.

However this advantage comes at a price, since model fitting has to be run for each valid
reduction (including all non-maximal valid reductions) the number of model fitting steps
required can be quite large. This disadvantage should not be under estimated; since it may
very well be possible for a model to have thousands or even millions of valid reductions
the computational time required for this approach can easily become an inhibiting factor.
However for smaller model with a moderate sized reduction graph or for the exploration
of a partial solution of a larger model this approach seems a valid strategy.
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5.2. Branch and bound algorithm

Another class of standard algorithms that is easily applied to discrete set based optimiza-
tion problems are different variants of branch and bound algorithms. It should be noted
that the classification of branch and bound for discrete algorithms isn’t entirely consis-
tent in the literature (e.g. sometimes cases that degenerate to simple depth/breadth first
graph search are explicitly excluded); we base our classification on the definitions given by
[Dieter Jungnickel Graphs, Networks and Algorithms, Springer|. Here branch and bound
algorithms are simply defined as algorithms that split the remaining solutions in each step
into two or more subsets that are then further explored using some heuristic.

This kind of algorithm can be applied to our reduction problem very easily. We start
with all possible solutions in a single set. With each step we split the remaining solutions
by assuming that some reaction isn’t included in our reduction. This is analogous to
moving to some node deeper in the reduction graph.

5.2.1. Last In First Out Branch & Bound

A very simple branch and bound strategy is to simply follow one branch of solutions until
the remaining set of possible solutions doesn’t contain any more valid solutions and then
backtrack to the last split that has some unconsidered solutions, start a new branch by
following this solutions until the entire space of solutions has been explored. This is effi-
ciently implemented using some kind of stack memory to keep track of all splits. Unless
further branch or cut criteria are employed this simple case is also identical to running a
depth first graph search algorithm on the reduction graph data structure.

The performance of this strategy is largely dependent on chance; as we stated in 4 any
complete solution will be required to attempt the fitting of all minimal valid and maximal
invalid reductions. This can be considered the best case runtime. In an "ideal" run the
branch that is followed will find all minimal invalid reductions without considering any
non minimal invalid reductions. Once this has happened all branches will proceed directly
towards the maximal valid solutions. However this event seems unlikely as in this simple
approach no heuristic is employed to steer the current branch towards maximal invalid
reductions. It’s difficult to give any amortized runtime estimation for this algorithm, as
both random factors and the model to be reduced influence the behavior of this algorithm
in non trivial ways.

A main argument that could be made against this algorithm is that it doesn’t take any
information about the model to be reduced into consideration. This seems an ineffective
strategy, as it implies that the model we try to reduce has no properties that influence
how it can be reduced that can be analyzed without actually trying to reduce it. As
our general opinion is that the analysis of kinetic parameters, topological properties and
other features of the biochemical model should be taken into consideration this algorithm
is more of a "baseline" for the design of more advanced branch and bound strategies.
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i «Branch & Bound Analysis*:
Mumber of fitted nods for complete analysis

Confirming 9 reductions (optimal 4)
Falsifying 28 reductions (optimal 6)

Total 37 reductions (optimal 12, worst case 64)

Figure 5.2.: Simulation of a Last In First Out branch and bound analysis of a reduction
graph

5.2.2. Priority Branch &Bound

The priority branch and bound adapts different heuristics to follow the branches first
that are expected to provide the best information gain. Implementation details may vary;
some implementations will re-evaluate all open branches after each step while other will
generally follow a branch and only switch to another when a heuristic "bounding score"
falls below a cutoff. The choice is very dependent on the heuristic chosen; if calculating
the priority score requires considerable computational effort recalculating it after each
step might not be the best strategy. We will the possible heuristics we considered in
section 6.2. Here we will focus on the general design idea behind heuristics. We designed
two validation /invalidation strategies for the reduction graph in 4.2.2:

e Whenever you mark a node as invalid, also mark all its descendants as invalid

e Whenever you mark a node as valid, also mark all its ancestors as valid

Heuristic search strategies should be designed to maximize the information gain from
this two rules. We can make a distinction between two general kinds of heuristics; heuris-
tics that utilize information regarding our current knowledge of the reduction graph and
those that don’t.
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7 calculations defermin the stafus of 25 reduciions

Figure 5.3.: Simulation of a single run greedy analysis analysis of a reduction graph

If we ignore that some states already might have been identified as valid or invalid it
is rather easy to estimate the expected information gain from these rules. Invalidating
a reduction also invalidates all it descendants; therefore it is beneficial to search for
invalid states with a large number of descendants. Analogous validating a reduction
with a large number of ancestors is beneficial. The hierarchic structure of the reduction
graph implies that the fewer elementary reduction constitute a combined reduction, the
more descendants it has. Likewise a reduction composed of a large number of elementary
reductions has a large number of ancestors. If we consider this two valid strategies emerge
to maximize our information gain:

e Try to find small invalid reductions.

e Try to find large valid reductions.

A different strategy is the maximization of the expected information gain when consid-
ering our knowledge of the current reduction space. It might for example be possible that
while a reduction in an unknown state has a large number of descendants most of them
have already been invalidated. In such a situation invalidating this reduction might give
us less information than invalidating a reduction with overall less descendant of which
most are still in an unknown state. We will expand this idea to a heuristic strategy in
section 6.2.1.
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5.3. Greedy search

Greedy algorithms are in most set based problems algorithms that will sort all possible
elements according to some heuristic. The algorithm will then try, according to the order
of this sorting, to include each item exactly one time. If an item is included when it is
first considered it will also be included when every subsequent item is considered. The
algorithm has now way to "trace back" later and decide to exclude a previously included
item. If multiple greedy runs are to be performed for a given problem a common strategy
is to add some kind of small random permutation to the order in which the elements are
considered. This is done to introduce a non deterministic element to the greedy search as
otherwise each subsequent search would be identical to the first greedy search.

The heuristics used for the ordering follow the same design ideas as those in section

5.2.2; advantageous strategies will usually involve the identification of small invalid or
large valid reductions. The actual heuristics used are described in section 6.2.
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6. Advanced reduction strategies

6.1. Boolean analysis of MA-network model

It has already been mentioned (for example in section 4.2.2) that one of the potential
problems of the set based reduction approaches is that both obviously invalid and redun-
dant solutions will be considered by the standard search algorithms employed unless we
explicitly check for these cases. Examples for such cases are given in illustration 6.1. As
considering a solution will involve multiple computationally expensive fitting attempts
this should be avoided.

The examples in illustration 6.1 should give a good intuitive idea of the problematic
cases which can be loosely characterized as disconnected outputs and constitutively inac-
tive reactions. We will give a more formal definition of these two cases based on standard
concepts of the analysis of nonlinear systems. This formal definition will then be used
to design Boolean expressions that allow us to determine whether a reduction is valid.
Finally we will show that reduced ordered binary decision diagrams allow us an imple-
mentation of a framework that supports efficient analysis of reductions based on these
Boolean expressions.

6.1.1. Controllability and observability

We will adapt the concepts of controllable and observable states as defined in [19]. Con-
sider a system of states where:

e Fach state has a numerical value.

e The change of each state is given by an ODE dependent on any number of states in
the system.

e A subset of states will be defined as input states.

e A subset of states will be defined as output states.

Our biochemical network model as defined in section 2.2 can be understood as a system
with this kind of properties. Each state corresponds to a signaling molecule, the numerical
value of the states denoting the concentration of the molecule. All states that have an
initial concentration > 0 are considered input states, all states that can be experimen-
tally measured are output states. For now we will ignore the case where a set of states is
measured. In this framework we consider a state Si:
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Cutput Ouwtd is not connected to any Mo reaction exists that could produce the
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Figure 6.1.: Illustration of invalid and redundant reductions

controllable by a state S2 if for any two different starting values Ss(tg); and Sa(tg)2
it can be shown that Sl<t‘|5’2(t0)1) 7£ Sl(tHSQ(tO)Q) .

globally controllable if it is controlled by any number of input states.

observable if this state controls any output state.

All input states are controllable by definition.

These are standard concepts in system analysis. We will now consider some special
adaptions to our reduction approach. As all non input states have an initial value of
zero any state not controlled by an input state will always have a concentration of zero.
Therefore any uncontrollable state that is observable will be called pseudo observable
as it could in theory be observed if it ever could have a concentration != 0.

So far these definitions are limited to the characterization of states. We will now extend
them to reactions. Analogous to the state definitions a reaction R1 is:

e controllable by a state S1 if for any two different starting values S1(to); and S;(%o)2
it can be shown that Ry (t]|S2(to)1) # R1(t||S2(to)2) - A reaction is considered glob-
ally controllable if it is controlled by any number of input states. A reaction
can only be controllable if all its substrate and catalyzing states are also control-
lable, since we already established that any uncontrolled state will always have a
concentration of zero. Therefore the product of the concentrations of all substrate
and catalyzing states of the reaction will always be zero if at least one substrate
or catalyzing state of the reaction is uncontrolled. This effect is analogous to the
distinction between pseudo observable and non-pseudo observable states.
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e We'll define observability of a reaction slightly different. A reaction is observable
if it is controlled and any of its substrate- or product states is observable. This
allows reactions to act as a sink - while the product of a reaction might not be
measured, the fact that it consumes input might influence the output.

We will note the following conclusions about the interaction between states and reac-
tions in regards to controllability and observability:

(Conclusion 6.0.1) If a reaction is controllable then all substrate and catalyzing states of
the reaction have to be controllable. If any substrate state is uncontrollable then the
reaction value will always be zero and the reaction itself would be uncontrollable.

(Conclusion 6.0.2) If the product states of an observable reaction are unobservable then
at least one of its substrate states has to be observable.

(Conclusion 6.0.3) If a non-input state is controllable then at least one of the reactions
producing this state is controllable.

(Conclusion 6.0.4) If a non-input state is observable then at least one controllable reac-
tions that produces this state is also observable.

Some connection between these conclusions and the initially mentioned invalid and
redundant reductions is easily established:

e A reduction is invalid if any output state of the network is uncontrollable.

e A reduction is redundant if the reduced model contains any unobserved reactions,
as per definition any reduction that removes these unobserved reactions will behave
identically.

It should be noted that these conditions for logical redundancy / invalidity are suffi-
cient but not necessary. More sophisticated logical reasoning (such as not only considering
whether all output states are controlled by any input states but also by which input states
and whether this pattern of influence contradicts experimental evidence. We decided to
leave this as a possibility for further works since most of these advanced logical approaches
would have required significantly more implementation efforts then we deemed reasonable,
considering that the main focus of this thesis isn’t a purely logical analysis but an incor-
poration of different approaches. Practical application of these rules (see section 7.1) that
the application of the rules established here are sufficient to reduce the reduction graph
of a the CD95 model ( 20 states, 30 reactions) by several orders of magnitude.

6.1.2. Identification of invalid reduction

We will formally derive a recursive Boolean formula that helps us identify invalid reduc-
tions in the reduction space based on the model topology without any need for simulation.
We will base this Boolean expression on one of the results from the prior section. We
observed that it is a sufficient property for an invalid reduction if any output state of the
model is uncontrollable. We will need some definitions for this expression:

o Ria 1s the set of all reactions in the model.
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e Si,a is the set of all species in the model.

® Sinput is the set of all input states (states with an initial concentration > 0)
o Souput 18 the set of all output states (measured states)

o Squbstrate(?) is the set of all species that are substrates for reaction 7; € Rypta
o Scatalyze (7) is the set of all species that are catalysts for reaction r; € Rypta

® Sproauct(i) is the set of all species that are products for reaction r; € Riotal

® Ryroduces(?) is the set of all reactions that state s; € Sy is a substrate for.

® Reonsumes() is the set of all reactions that state s; € Sypq is a product of.

o R.ontrotiavie 1S the set of all controllable reactions. Note that this set is unknown to
us. We will utilize it in intermediate results but it may not be included in the final
expression.

o S.onironiabie 1S the set of all controllable states. Note that this set is unknown to us.
We will utilize it in intermediate results but it may not be included in the final
expression.

o Ropservabie 15 the set of all reactions. Note that this set is unknown to us. We will
utilize it in intermediate results but it may not be included in the final expression.

® S pservanie 18 the set of all observable states. Note that this set is unknown to us.
We will utilize it in intermediate results but it may not be included in the final
expression.

Note that all sets defined in this way result from the model topology and are known un-
less specifically stated otherwise. By definition every input state is controllable. Checking
whether a state .S; is controllable is simple, as we know which states are input states. For-
mally this can be stated as s; € Sippue. Conclusion 6.0.3 states that a necessary condition
for a non-input state to be controllable is that at least one reaction producing this state
has to be controllable. We can use this to formulate a necessary condition ¢pee contr 1(S:)
for a state s; to be controllable.

Cnec_contr_1 (Sz> - (82' S Sinput) V (Elj Ty S Rproduces(i) A rj € Rcontrollable) (61)

Since the set Reontroiiabie i only given by implicit definition but not known to us we
will further relax our necessary condition by only demanding that r; fulfills the necessary
condition defined in conclusion 6.0.1. This condition demands that all catalyzing and
substrate state of a reaction have to be controllable for the reaction to be controllable.
We will call the necessary condition for reaction r; to be controllable ¢pee contr 2(773)-
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Cnecfcontr72(ri) = (VS € Ssubstrate<ri) HENS Scontrallable) (62)
/\(VS € Scatalyze<ri) 1S € Scontrollable)

Cnecﬁcontril(si) - (si S Sinput) Vv (EI] : rj S Rproduces (Z) A CnecfcontrﬁZ (Tj)) (63)

Now we have to remove the dependency to Sconironanie @s this set is only defined implicitly

as well. We will do this again by substituting a necessary condition for the checks if
S € Scontroliabie- We will substitute this by ¢pee contr 1(5)

cnecﬁcontrﬁQ (Tz) = (VS S Ssubstrate (rz) . Cnecicontril (S) ) (64)
A (VS € Scatalyze (rz) * Cnec _conir_1 (S> )

This allows us to formulate a recursive definition for c,ec contr 1(8:):

Cnecicontril (S’L) = (Si S Sinput) V (Elj . 7’]' S Rproduces (Z)
(vs € Ssubstrate(rj) . Cnecfcontrfl((g))
(VS S Scatalyze(rj) : Cnecicontril (S)>

A (6.5)
A

Equation 6.5 is a necessary condition for all controllable states. However the imple-
mentation of this function in a logical framework has to be performed carefully as the
necessary condition might result in a self reference. Consider the following example:

Example 6.1
States A, B, C'
Outputstates : { }
Reactions AtoB, BtoC', CtoA

Cnec_contr_1(C) = (C €{})V Cnee_contr_1(B)
(Ce{HVBe{})V nee contr_1(A)
(Ce{HVvBe{h)V(Ae{})V e contr 1(C)
Cnec_contr_1(C) V ...

(6.6)

While this is obviously correct we gain no formal information. However if we consider
the implications of such a situation informally we find that the logical implication for our
system is:

In order for s; to be controlled by any other state, s; has to be controlled first

We will omit the formal proof for this, as it would be rather complicated without provid-
ing any real insight into the problem. The algorithmic implementation of this additional
conclusion is rather simple, e.g. can be achieved by some kind of tracing variable that
prevents performing a recursive call that has already been performed.
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6.1.3. Identification of redundant reductions

We will base the identification of redundant reductions on the necessary condition that
any model that contains unobserved reactions is redundant as derived in section 6.1. We
will consider the following necessary but not sufficient conditions for a reaction r to be
observable:

e Reactions that are observable have to be controllable.

e If a reaction is observable at least one of its substrate- or product states has to be
observable.

We can use the results from section 6.1.2 to check the controllability of any state. This
allows us to derive the necessary condition Cpec ops 1:

Cnec_obs_1 (Tj) = vsi € Ssubstrate(i) : Cnecicontril(si) (67)

The second necessary condition is that at least one of the substrate- or product states
of a reaction has to be observable for the reaction to be observable. We will call this

Cnec_obs_1-

Cnec_obs_1 (Tj) = s S Ssubstrate(j) HERS Sobservable(i) \ (68)
Js S Sproduct(.j) s Sobser'uable@)

Utilizing this necessary condition requires us to consider the observability of a state.
A necessary condition for an observable state is that it either is an output state or the
substrate of an observable reaction. We will use this to define a necessary condition for
observable states cpec obs 2-

Cnecﬁobsf2<3i) = S € Soutput V (69)
Elrj € Rpraduces(i) 2Ty € Robservable \%

Elrj € Rconsumes(i) c Ty S Robservable
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Now we proceed analogously to section 6.1.2, finding that:

cnecﬁobsi2(5i> = 5 € SOutput V (610)
E|rj S Rproduces (2) : Tj S Robservable V

3"ﬂj S Rconsumes@.) . Tj € Robservable

Cnec_obs_2(5i> = § € Soutput V (611)
3"ﬂj S Rproduces (Z> * Cnec_obs_ 1 (Tj) Vv

E]Tj S Rccmsumes@) . Cneciobsil (7‘]’)

Cnec_obs_1 (rj) - (332 € Ssubstrate(j) : Cnecfobsf?(si)) V (612)
(382' € Ssubstrate(j) : Cneciob372)<5i)

Cnec_obs 1 (Tj) = (3dsi € Ssubstrate(J) : 5i € Soutput V (6.13)
Ir1 € Ryroduces(?) © Cnec_obs 1(17) V
31 € Reonsumes (1) © Cnec_obs_1(11)) V
(3s; € Sproduct(j) 1 8i € Soutput V
3r; € Ryroduces(?) © Cnec_obs 1(17) V
311 € Reonsumes (1) * Cnec_obs_1(71))
(6.14)

6.1.4. Implementation of Boolean model checking using BDD'’s

The implementation of the Boolean model checking has to be performed with care. The
Boolean functions defined in section 6.1.3 and 6.1.2 describe a space of 2/Feel different
logical assignments. This will prohibit the application of explicit boolean representations
like truthtables. Binary decision diagrams are a datastructure that is often utilized for
this kind of implicit representation. We will limit us to a small review of the properties
of BDD’s and refer to other sources, such as [20] for more detailed informations.

BDD'’s are graph based representations of Boolean equations. They provide implemen-
tations for all Boolean standard operations and can be shown to be functionally identical
to other Boolean structures. A BDD allows us to check in constant time whether the func-
tion it encodes is satisfiable. This is no contradiction to the classification of SAT € NP,
as in the worst case the construction of a BDD requires exponential time complexity.
The average complexity for the construction of a BDD depends on the exact nature of
the Boolean equation. Boolean equations with high degrees of redundancy can often be
encoded in significantly better than exponential time. A main strength of BDD’s are ef-
ficient heuristics for the application of ’AND’ and "OR’ operations. This properties have
been the basis for prior analysis of biological models with BDDs by [21].

Basing our implementation strategy on the work of Garg et.al. and implementing BDDs
representing the Boolean expressions defined in 6.1.2 and 6.1.3 we found that we could
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utilize BDDs to efficiently check the validity and redundancy of models with a reduction
space > 100 possible states.

6.2. Heuristic strategies of priority estimation

We already discussed the importance of heuristic strategies to increase our probability
of evaluating reductions that provide us with a "better than random" information gain
in chapter 5. Two distinct basic strategies exist; strategies that focus on the structur-
ing of the reduction space and strategies that focus on model intrinsic properties. We
implemented several reduction heuristics. We tried to compare the performance of these
strategies but failed due to the already mentioned insufficient supply of unreduced models.
Attempts to benchmark the different heuristics on artificial models were deemed insuffi-
cient as the results were determined by the algorithm employed in the generation of the
artificial models. Most reduction strategies could be implemented in different ways that
change several aspects of their behavior. As an example kinetic parameter based analysis
might use the average, minimal or maximal value that a parameter has in different fit-
ting runs. Again, detailing these small differences without any basis for comparing their
quality seems uninteresting. We will limit us therefore to a general introduction of the
ideas of the different reduction heuristics omit a detailed description of all implemented
heuristics.

6.2.1. Maximum information gain strategy

Based on the rules for automated validation and invalidation in chapter 4.2.2 we can define
a possible strategy that focuses on exploiting the structured nature of the reduction graph.
We will use some basic definitions:

o R, is the set of all invalid reductions

R,q is the set of all validated reductions

R,.q is the set of all redundant reductions

Rane(7) is the set of all ancestors of reduction i

Resc(1) is the set of all descendant of reduction i

Let us now consider how many reductions are validated/invalidated by evaluating a
reduction. Validating a reduction validates all its ancestors. However we gain no new
information regarding reductions that have already been validated. We also assume that
redundant reductions will not provide any information gain as we expect that the reduc-
tion they are identical to will be considered in the set of ancestors. Thus we validate all
ancestors of the reduction considered that have not yet been considered or are redundant.
This can be formalized as:

i1Ga1(1) = || Rane(i) \ (Roat U Ryea)||
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We can estimate the number of states we invalidate when evaluating a single reduction
as invalid in a symmetric estimation:

ngv(z) = HRdesc<i) \ (Rmv U Rred)H

Now we can define the estimated information gain ¢g.,; when evaluating a reduction:

Z.gest(ri) = pisValid<Ti) * igval(i) + (1 - pisValid(ri)) * Zgznv@)

The core of this heuristic is the estimation of p;syanq(r;). Some strategies to estimate
pisValid(r z) are:

e Assume that p;syaiq is a constant value, e.g. pisyania = 0.5

e Estimate p;syaiq based on the fraction of all evaluated states that are valid, e.g.
DisValid = ||RvalH/H<Rval U Rznc)H

e Estimate pisvaia(r;) based on the fraction of all evaluated states with the same
number of elementary reductions as r; that are valid

6.2.2. Analysis of prior fitted kinetic parameters

The basic idea of this strategy is to derive a score based on a reductions already fitted
ancestors. This can be done in a number of ways. An example might be to consider the
average kinetic parameters of all reactions that are present in the ancestors but not in the
current reduction. A variant of this might limit the ancestors only to the parents or the
closest ancestors of a reduction. The larger the average kinetic parameter of a reduction
to be removed is, the more likely it for the reduction to influence the behavior of the
model. Depending on whether we desire try to find maximal valid or minimal invalid
reductions we can order all candidate reduction in ascending or descending order of the
average kinetic parameter of the removed reduction.
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7. Application of the reduction
algorithm

One major concern was finding a suitable way to demonstrate and analyze our reduction
framework. We already stated the problem of the lack of available unreduced networks
in integrated databases. This prohibited a large scale comparison of different reduction
strategies. As no standard approach for randomizing biochemical models while retaining
characteristic parameters could be found this essentially prohibited a quantitative com-
parison of our different heuristics.

Instead and in agreement with our scientific supervisor Fabian Theiss we decided to
focus on a proof of principle analysis. We decided that a reduction of the CD95 model or
a medium sized artificial model would suffice to illustrate the capabilities of our frame-
work. A complete reduction of the CD95 model failed due to computational limitations;
a medium sized artificial model could be fitted completely. In this chapter we will detail
both the limitations to the reduction of the CD95 model and the reduction of the artificial
model.

7.1. Analysis of the CD95 model

The initial CD95 model contains 34 reactions and 25 different states. If we consider all
combinatorial possibilities to remove any subset of 34 edges we find that roughly seven-
teen billion different possibilities exist. Any analysis of a dataspace of this proportions
has to be performed with care.

Several technical challenges had to be overcome in order for our analysis algorithm
to handle the complete CD95 model. Explicit data structure could not be employed to
save intermediate results. Instead an indirect reductionspace representation had to be
designed, mapping reduction ids to binary values. Multiple BDDs were utilized to keep
track of validated, redundant and unknown reductions. To test the stability of our imple-
mentation a limited analysis was performed on the CD95 model. The analysis included
the initial analysis of obviously invalid and redundant states, the fitting of the unreduced
model and 50 fitting steps using a greedy search algorithm. This took roughly 50CPU
hours parallelized on 24 cores. Further parallelization could have reduced this time at
most by 50%. The results of this partial fitting are summarized in table 7.1

We found that our framework was able to handle the size of the reductionspace in

this partial reduction. We could confirm that the implicit representation functions as
designed since more than 10'° states could be invalidated. The greatest information gain
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Analysis performed Time required for analysis | Unknown reductions
Initial situation - ~ 1.71 % 1019

Analysis of invalid states <2 minutes ~ 2.73 % 10°

Analysis of redundant states <2 minutes ~ 2.78 x 107

Analysis of 50 steps greedy run | ~50 hours ~ 3.9 % 10°

Table 7.1.: Results: simulation of the CD95 model. Technical reasons made it impossible
to measure the time for validity and redundancy analysis seperately

was achieved by the exclusion of all invalid reductions (invalidating over 98% of the initial
reductionspace). Removing redundant reductions removed almost another 90% of the
reduction space. Without any parameterfitting 99.83% of the reduction space could be
invalidated based on logical reasoning. We consider this the confirmation that using a
setbased reduction strategy to structure the reduction graph is indeed a valid approach.
The problem that a purely setbased structurization of the reductions results in a reduc-
tionspace that contains for the most part invalid reductions can be countered by implicit
Boolean model checking based on the definitions of the elementary reductions.

The greedy run performed reduced the number of unknown states by further 89.8%,
resulting in the evaluation of 99.97% of the original reduction space. However we also have
to consider that the remaining reduction space after 50 reduction steps is still to large
to completly enumerate. Considering that a model took on average one hour to fit the
evaluation of every remaining reduction by individual fitting would require 3.9 10° hours.
This is a worst case scenario ignoring all validation and invalidation rules. We consider
the small sample size of 50 reduction steps insufficient to predict the further performance
of the greedy reduction strategy. Some factors might favor "early" fitting run; for example
the identification of an essential reduction that is required for fitting might reduce the
remaining reduction space by up to 50%. As a "best case" scenario we could assume that
the current information gain per reduction step ration remains constant, e.g. 90% of the
reduction space are evaluated every 50 reduction steps. This would imply that only about
350 more hours of analysis would suffice to completely analyze the reduction space. Based
on our lack of further data we can not estimate to which extreme the real further time
requirements tend. It is planed to explore the continued reduction of the CD95 in a follow
up project.

7.2. Analysis of a medium sized toy model

We decided to analyze the reduction of a smaller artificial model that was created in a
way that allowed easier parameter fitting. The goal of this second analysis was not an
estimation of the time requirements of different reduction strategies as we consider the
performance of our heuristics on artificial models to be possibly inconsistent with their
behavior on real models. The goal was rather to illustrate the possible analyzes that could
be gained from a complete reduction of a model.
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Complete hypothesis Experimental generator

Figure 7.1.: Complete artificial model and the submodel used to generate experimental
data

7.2.1. Model used

The artificial model was designed to resemble the DISC-dimer subnet of the CD95 model.
We used the same kinetics and focused on the presence of alternative catalyzing species
for different reductions. Some alterations had to be made to introduce asymmetry into
the model that in the CD95 model was introduced upstream of the subnet. A subset of all
reactions of the complete artificial model was used to simulate an experiment using two
different initial conditions. All kinetic parameters were randomized for this simulation.
The complete artificial model and the subgraph used to generate experimental data are
illustrated in figure 7.1. The input states were state SI1 and SI2, the only measured
output was SO

7.2.2. Methods

We reduced the model using a priority branch and bound strategy. Initial validity and
redundancy analysis was performed as described in chapter 6.1 .We performed two com-
plete reductions, one using an information gain based strategy the other using a kinetic
parameter based strategy.

7.2.3. Results & Discussion

After initial Boolean analysis the reduction space contained about 700 reductions of un-
known status. Both strategies required about 40 reduction steps to achieve a complete
reduction of the toy model. The complete reduction graph is illustrated in figure 7.2. We
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can see that the number of valid reductions decreases as we remove more reductions. We
can also recognize the way validity is promoted upward from valid descendants. Different
reduction "paths' can be recognized that get thinner deeper in the reduction graph and
"merge" in upper regions. A motivation for further analysis might be the exploration of
the branching of these paths. Identifying points where different paths merge might help in
the design of experimental setups that differentiate between different possible reductions.
Invalidating a reduction shortly after a branching invalidates most of the branch because
of the descendant-invalidation rule. If we want to design an experiment that invalidates
one of two possible reduction paths we could try to identify reductions that are one hi-
erarchy level below the branching point. The reductions identified in this way could be
simulated for different initial conditions that are reproduceable in an experimental setup.
If any of these candidates for experimental setups produces data that is supported only
by reductions in one of the two branches we expect the experimental data we can generate
in this way to invalidate at least one of the two branches.

Based on a detailed analysis of the reduction graph we can identify four different max-
imal reductions, as illustrated in figure 7.3. All of these maximal reductions are sparse;
several reactions are not included in any of the minimal solutions. Notably is the absence
of the production of output using either state S3 or S4. In fact none of the maximal
reductions produces S3 at all. This could suggest that state S3 is a possible candidate
for a state that does not influence the modeled system. A possible follow up experiment
could be designed around a S3 knockout to either confirm or reject this assumption.

Other reactions are common to almost all maximal reductions. Every maximal reduc-
tion contains a reaction that converts SI2 to SO. This reactions seems to be a key element
of the systems behavior. Initially we proposed three different possible catalysts for this
reaction: S1, S2 and S4. We find that S1 is not included in any of the reductions. This
implies that the design of further experiments should focus on distinguishing between the
possible catalysts S2 and S4.
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Figure 7.2.: Complete reduction graph of the artificial model employed; yellow states are
valid, violet states are invalid.
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tinimal solution 1 hinimal solution 2

tinimal solution 3 Minimal solution 4

Figure 7.3.: lllustration of all minimal reductions
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8. Discussion of results and further
perspectives

When comparing our results to our initial motivation we found that we could not achieve
our initial goal of running a complete reduction analysis of the CD95 model. This was
mainly caused by computational limitations, e.g. the lacking possibility of massively par-
allelized fitting. The CD95 model required a lot more time for fitting than we initially
expected. Consultation with Nicolai Fricker, the original designer of the model we used
confirmed that he could neither supply us with reasonable constraints for the kinetic pa-
rameters nor with a fast reliable fitting implementation. We consider this problem during
the analysis of the CD95 model acceptable. The problems we encountered were centered
around the implementation of efficient modelfitting which wasn’t the focus of our project.

To validate our general idea we performed automated model reduction on a number
of artificial models designed using kinetics that resembled the CD95 model on a smaller
scale. We presented the analysis of a smaller artificial utilizing the limited resources avail-
able. The result of our analysis helped to illustrate possible applications on real models
by providing data that allowed us to identify "key reactions" in the artificial model that
dominated the models behavior. We performed the reduction using two different heuris-
tics, a maximum information gain- and a prior parameter fitting analysis based heuristic,
in conjunction with a priority based branch and bound algorithm and found identical re-
sults. The limited number of real models available for testing did not allow benchmarking
different heuristic strategies within the time frame of this project.

While the complete fitting of the CD95 model failed we were able to run a limited
fitting run with 50 attempted reductions. Although no significant insight could be gained
from such a limited analysis regarding the complete reductionspace of the CD95 model
we could demonstrate the ability of our framework to handle a model with a reduction
graph of 234 possible elements. This demonstrates the power of our strategy to represent
the reduction graph in an implicit manner using binary decision diagrams as a supporting
data structure. It also demonstrates our ability to identify a significant number of redun-
dant and invalid states in the reduction graph of the CD95 model, reducing the number
of possible reductions by over 98%.

We also overcame a number of technical obstacles that were related to the fitting of
models. The framework we implemented supports parallelized fitting using a simulated
annealing algorithm in different variants. Utilizing the matlab parallelization toolbox on
a multi core machine is the easiest variant and does not require the user to be experienced
in the compilation of matlab standalone application. Using the matlab compiler we were
also able to produce stand alone binaries that allow parallelized fitting on broader variants
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of cluster architectures. This was utilized using a batch system based on the sun grid
engine to parallelize our fitting runs on a cluster of 24 cores.

Based on our frameworks ability to deal with large reduction spaces and the ability to
adapt the parallelized fitting to different cluster architectures we decided that the analysis
of the CD95 model using our framework should be continued beyond this project. It is
currently planed to adapt our framework to larger clusters and perform an analysis in the
order of 1000 cpu hours.

Although no concrete projects are planed yet we consider further applications for our
basic framework. A possible application could be the design of optimized experimental
setups. A rough outline for this application could be:

e Start by reducing the initial model using our framework.

e Identify "important" reductions in the reduction graph. Examples for important
reductions might be all maximal valid reductions as well "branching" reductions,
e.g. reductions that are ancestors of multiple maximal valid reductions while none
of their childs are ancestors to all the same maximal valid reductions.

e Cluster all important reductions by the similarity of their possible parametrization
e Try to find simulations that result in different behavior in different clusters.

e The simulations that distinguish optimally between different clusters are the basis
for further experimental design.

Considering the prospect of possible further applications we think our project succeeded
in demonstrating the possible power and flexibility of a structurized reduction framework.
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A. External tools, packages and librarys
used

We utilized the matlab statistics and bioinformatics toolbox for various calculations. The
parallelization toolbox and the matlab compiler were required for parallelized fitting. All
of these toolboxes are available as part of the matlab installation at the CMB.

We used the external matlab toolbox sbtoolbox [18] as a basic framework to solve the
ODEs of mathematical models. Fabian Theiss provided us with a matlab implementation

of an simulated annealing algorithm used for model fitting.

We utilized the Java interface JavaBDD [22] for all Boolean analyses. This interface is
based on the C++ library BuDDy [23].
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