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Abstract

Asymmetric cell division is presumed to be an intrinsic mechanism which keeps the popula-

tion of self-renewal capable hematopoietic stem cells constant within the blood system. Cellular

genealogies originating from time-lapse microscopy experiments potentially encode information

about cellular development and division patterns of the observed cell colonies. In this thesis we

develop statistical methods which are suitable to find evidence of asymmetric division processes

in cellular genealogies. We focus on the modeling of dichotomous fates of cell siblings. We apply

our models on genealogies with annotated cell death originating from in vitro experiments with

mice hematopoietic stem cells under TGF-β1 positive culture conditions. In our analysis we use

cell death as an indicator for the loss of self-renewal capacity. We could not find clear evidence

of asymmetric cell division.

Zusammenfassung

Es wird angenommen, dass sich die Population von zu Selbsterneuerung fähigen hämatopoetis-

che Stammzellen im Blutsystem durch asymmetrische Zellteilung konstant hält. Zellgenealogien,

die gewöhnlich mithilfe von Videomikroskopieaufnahmen erstellt werden, enthalten Informatio-

nen über Zellentwicklungs und Zellteilungsprozesse der beobachteten Zellkolonien. In dieser Ar-

beit entwickeln wir statistische Verfahren, die auf solche Zellgenealogien angewendet werden

können und mit deren Hilfe Evidenz für asymmetrische Zellteilung gezeigt werden kann. Wir

beschränken uns auf die Modellierung von dichotomischen cell fates von Geschwisterzellen. Die

Modelle wenden wir auf Zellgenealogien an, die aus in vitro Experimenten mit hämatopoetischen

Mäuse-Stammzellen unter TGF-β1 positiven Kulturbedingungen stammen. Wir verwenden dabei

Zelltod als Indikator für den Verlust der Selbsterneuerungsfähigkeit der betreffenden Zellen. Wir

konnten keinen eindeutigen Hinweis auf asymmetrische Zellteilung finden.
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Chapter 1

Introduction

1.1 Haematopoesis

The blood system in mammalian organisms undergoes a continuous replacement process of cells.

Every second millions of blood cells die and are replaced by the right amount of new cells [16].

The underlying process, which describes the regeneration and formation of new blood cells is

referred to as haematopoesis. In the classical understanding of haematopoesis, the cells of the

blood system are hierarchically ordered according to their differentiation potential. Hematopoi-

etic stem cells (HSCs) have the highest differentiation potential within in this hierarchy. That

means, that progenitors of this cells have the capacity to differentiate into any type of mature

blood cells. During this differentiation process cells are assumed to undergo subsequent levels of

differentiation. Cells of this intermediate levels are vastly classified as multipotent progenitors

(MPP), oligopotent progenitors, and unipotent progenitors. Unipotent progenitors merely have

the potential to differentiate to one specific mature cell type, whereas oligopotent progenitors

can differentiate to a specific group of unipotent cell types. Multi potent progenitors have the

same differentiation potential as haematopoietic stem cells. However, they can maintain their

differentiation potential only for a limited number of cell divisions, as well as all other cell types

with differentiation potential below haematopoietic stem cell level. Hematopoietic stem cells take

on a unique role in the haematopoietic system, since they are the only cells which can keep there

differentiation potential over an unlimited number of divisions. This property is referred to as

self-renewal capacity. In healthy organisms the pool of HSCs stays approximately constant over

the whole lifetime [16]. The presence of HSCs in the blood system is crucial for the survival an

organism. Since all other cells in the haematopoietic system loose their differentiation potential

after a limited number of divisions, these cells need to be replaced by differentiating HSCs. Un-

til now it is poorly understand by what mechanism a balance is kept between HSCs and more

mature cell types. One possible mechanism is extrinsic control like cell to cell communication

and cell-niche interactions [5]. However, there are also attempts to explain this balancing by
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12 CHAPTER 1. INTRODUCTION

intrinsic differentiation patterns of haematopoietic stem cells. In particular, it is presumed that

the balance could be maintained by asymmetric cell division of the haemeatopoietic stem cells.

1.2 Asymmetric cell division

The term of asymmetric cell division is not consistently used in literature. In order to avoid

misunderstandings we first formally specify this term as well as the related concepts of asymmetric

segregation and asymmetric cell fate before discussing the presumed function of asymmetric cell

division in hematopoiesis.

1.2.1 Cell fate

Any feature assigned to a cell either by direct observation of this cell or retrospectively by

observation of its progenitors can be referred to as the fate of this cell. For example, we will

later refer to haematopoietic stem cells in terms of their survival fate (cell died/died not), or

self-renewal fate (cell lost-self renewal capacity/maintained self renewal capacity).

1.2.2 Formal definition of asymmetric cell division

Cell division can produce two daughter cells of identical or distinct fates. Identical fates of the

daughter cells are referred to as symmetric fates. Distinct fates of the daughter cells are called

asymmetric fates. During cell division it can happen, that certain components (e.g. proteins or

even organelles) are distributed asymmetrically on the daughter cells. We refer to this physical

process as asymmetric segregation. In case there is a causal relation between asymmetric segre-

gation and asymmetric fate, we refer to the corresponding division as an asymmetric division and

the asymmetrically distributed components causing this asymmetry are called fate determinants.

1.2.3 Functional evidence for asymmetric cell division in model organ-

isms

The difficult part in the identification of asymmetric cell division is to show evidence for the

causal relation between the asymmetric segregation and asymmetric fates. In well understood

model organisms like Drosophila melanogaster or Caenorhabditis elegans functional evidence for

this causality was shown by identification of the underlying biological processes. For example

the division of neuroblast progenitor cells during the early development of the central nervous

system in Drosophila melanogaster has been shown to be asymmetric. The basic process, which

causes asymmetric fates in this division has been identified as the asymmetric segregation of

Numb proteins along the daughter cells [12]. Numb proteins are synthesized in neuroblast cells,

but suppress the Notch signaling pathway of the cell in case of high concentration. The Notch
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signaling pathway is essential for the cell to stay in undifferentiated state. Therefore the Numb

proteins function as the cell fate determinants.









⇓

⇑ 


Figure 1.1: Inference methods for asym-
metric cell division: By definition asym-
metric cell division implies asymmetric
fates of the corresponding daughter cells
as well as asymmetric segregation. In
case of observed asymmetric segregation
functional evidence for asymmetric cell
division can be shown by identification
of the underlying biological processes. In
case of observed asymmetric cell fates
statistical evidence for asymmetric cell
division can be shown by quantitative
analysis of cellular genealogy data.

1.2.4 Asymmetric cell division in haematopoiesis

Asymmetric cell division has been proposed as an intrinsic mechanism which could sustain a

constant pool of HSCs in the blood system [16]. The idea behind this assumption is that by

asymmetric cell division of haematopoietic stem cells one daughter cell always remains it self-

renewal capacity, while the other one looses it. Whereby a perfect balance of differentiating cells

and HSCs would be assured by this intrinsic mechanism. Various studies have been made in

this field [17], which have shown the existence of asymmetric segregation processes of specific

components during cell division in the haematopoietic system, but could not proof any functional

evidence for this asymmetries, i.e. it is not known, if these asymmetries induced different fates

of the daughter cells.

1.2.5 Statistical evidence for asymmetric cell division

Instead of showing functional evidence for asymmetric cell division by analysis of the underlying

biological mechanism an alternative approach is to show statistical evidence for asymmetric cell

division by a quantitative analysis of differentiation patterns in cellular genealogies. The basic

idea of this approach is that asymmetric cell divisions cause statistical dependencies between

cell siblings, which potentially are encoded in the structure of the cellular genealogies. Work in
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this field has been done in the past by [20, 6]. Glauche et al. proposed to measure the depen-

dency between sibling cells by their mutual information. Global measures for the symmetry or

asymmetry of trees have been extensively studied in context of the analysis of phylogenetic trees

[11, 1, 10, 18]. However as described in [6] these measures have only weak sensibility for asym-

metries in the genealogies caused by only a few asymmetric cell division events and are therefore

presumably not usefull in order to find evidence for asymmetric cell divisions.

1.3 Content of this thesis

In this thesis we pursue the approach of a quantitative analysis of cellular genealogy data. We

focus on the modeling of dichotomous fates of sibling cells. This approach is conceptual closely

related to the analysis of genotype frequencies in populations. In particular the core concept

in this field, the so called Hard-Weinberg principle [9], will also take a central role within this

thesis. We put particular attention on a well-founded theoretic basis of the methods, which we

developed in context of this thesis. We suppose that this aspect distinguish our work from most

other attempts in this field. Furthermore it makes generalization of our methods possible. This

is, as we will see in our application results, necessary in order to deal with the complexity of

the processes encoded in cellular genealogies. The latent variable structures described in our

methods are motivated by the experimental data, which was provided by Dirk Loeffler from the

Stem Cell Dynamic group at Helmholtz-Zentrum, München. He performed several time-lapse

microscopy experiments with hemeatopoetic stem cells, where he added the cytokine TGF-β1

in the culture condition. The assumed effect of TGF-β1 is, that it increases the mortality of

committed progenitor cells but does not significantly affect the mortality of HSCs. Therefore

it functions as an indicator for the self-renewal fate of cells. The analysis on this data is done

in context of the question, whether HSCs divide asymmetrically. So far, our statistical analysis

yielded no evidence for this hypothesis.

1.4 Structure of this thesis

This thesis comprises four parts. In chapter 2 we revise some basic stochastic and statistical

concepts and describe the main generic models developed in context of this thesis. In chapter 3,

we give a general overview on the experimental data used for our analysis. In chapter 4 we show

how our models can be applied on the experimental data and infer the parametrization of these

models. In chapter 5 we try to interpret the inferred results in terms of the question of possible

asymmetric cell division processes encoded in the genealogies. In the chapter 6 we give a brief

description of a possible generalization of our methodical approach.



Chapter 2

Methods

2.1 Mathematical preliminaries

In this section, we present some basics from probability theory, statistics and graph theory, which

we will use in the later sections.

2.1.1 Probability theory

Let Ω be a non empty set.

Definition 2.1.1 (σ-Algebra). Let P(Ω) be the power set of Ω and let A be a subset of P (Ω).

A is called a σ-Algebra if

(i) ∅ ∈ A, Ω ∈ A

(ii) A ∈ Ω⇒ Ω \A ∈ A

(iii) (An)n∈N ⊆ A⇒
⋃

n∈N
An

Let E ⊂ P(Ω), then σ(E) denotes the smallest σ-algebra on Ω, which contains the family E .

Definition 2.1.2 (Probability measure). Let A be a σ-Algebra. A map µ : A → [0,∞] is called

a measure if

(i) µ(∅) = 0

(ii) For (An)n∈N ⊆ A pairwise disjoint ⇒ µ
(
⋃

n∈N
An

)

=
∑

n∈N
µ(An)

If µ(Ω) = 1, we refer to µ as a probability measure.
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Let A be a σ-algebra on Ω and µ a measure defined on A. A 2-Tuple of the form (Ω,A) is called

a measurable space. A 3-tuple (Ω,A, µ) is referred to as a measure space. In particular, if

P is a probability measure, (Ω,A, P ) is called a probability space and subsets A ∈ A are called

events.

Definition 2.1.3 (Random variable). Let (E ,F) be a measurable space and (Ω,A, P ) a probability

space. A map X : Ω→ E is called a random variable, if it is measurable, i.e.:

∀A ∈ F : X−1(A) ∈ A,

where

X−1(A) := {ω ∈ Ω : X(w) ∈ A}.

In the above setting, a set A ∈ F is referred to as a realization or observation of the random

variable X . The Random variable X induces a probability measure PX on (E ,F), where

PX(A) := P (X−1(A)) = P ({ω ∈ Ω : X(ω) ∈ A}).

Let Y be a random variable, which maps onto the same measure space as X . We say that X and

Y are identically distributed, if PY = PX . It is customary to use the notation

P ({X ∈ A}) := PX(A)

and

P (X = a) := PX({a})

for sets consisting of only one element.

Definition 2.1.4 (Density function). Given a measure space (Ω,A, µ), let f → [0,∞) be a non

negative A-measurable map. Then

µf (A) :=

∫

A

fdµ,A ∈ A

defines a measure on (Ω,A), which is referred to as the measure with density f with respect to

µ. In case µf is a probability measure, then f is referred to as a probability density.

In most practical cases, there is a measure µ′ defined on (E ,F). In case E ⊂ Rn, n ∈ N, this

is usually the restriction of the Lebesque-Borel measure on E . In case the cardinality of E is at

most infinit countable, this is usually the counting measure. In case that X is a multidimensional

real valued random variable and PX = λf with respect to the corresponding product measure

of the Lebesque-Borel measure λ, then we denote this by X ∼ f . Analogously, if X is a discrete

random variable and f is a density function with respect to the counting measure on E so that

PX = λf , then we write X ∼ f .
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Note! Not every probability measure can be represented by a probability density. A sufficient

condition for the existence of a probability density is given by the Radon-Nykodym theorem. [14]

2.1.2 Statistics

A finite sequence X = X1 . . . Xn of independent and identical (i.i.d) distributed random variables

is called a random sample. If Xi ∼ f, i = 1 . . . n, then we refer to f as the underlying density

of X . All random variables mentioned in this section are assumed to be real valued or discrete.

Definition 2.1.5. Let X = X1 . . . Xn be a random sample parameterized by θ ∈ Θ i.e.

Xi ∼ fθ, i = 1 . . . n. Let α ∈ [0, 1]. A statistic C with values in S ⊂ P(Θ) is called a confidence

region estimator of significance level α, if

P (C(X) ⊃ {θ}) ≥ 1− α

Let X be a random sample of (E ,F)-valued random variables and let (fθ)θ∈Θ be a family of

probability density functions defined on (E ,F). A parametric test problem is defined by two

mutually exclusive hypotheses on the parametrization θ of the density fθ. We formally write this

as

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

where Θ0 and Θ1 are disjoint subsets of the parameter space Θ. We refer to H0 and H1 as the

null hypothesis and the alternative hypothesis, respectively.

Definition 2.1.6 (Hypothesis test according to Neyman-Pearson [13]). Given a parametric test

problem

H0 : θ ∈ Θ0 v.s. H1 : θ ∈ Θ1,

a statistic

φ : X→ {0, 1},

where values 0, 1 are interpreted as “Null Hypothesis accepted” and “Null Hypothesis rejected”,

respectively, is referred to as a test statistic of significance level α ∈ [0, 1] with respect to the

corresponding test problem, if

P (φ(X) = 1|H0) := sup
θ∈Θ0

Pθ(φ(X) = 1) ≤ α,

where Pθ refers to the probability measure induced by the density function fθ for θ ∈ Θ, respec-

tively.

Definition 2.1.7 (P-value). For a given test problem

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1
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and a statistic T , which defines the extremeness of an outcome in terms of deviation from the

null hypothesis, the p-value statistic p : X→ [0, 1] is defined as

p(x) =
∑

y∈X̃:T (y)≥T (x)

P (X = y|H0)

where X̃ is a certain subset of X.

The choice of X̃ depends on the specific test problem. The p-value can be interpreted as the

probability of observing a result at least as extreme as the observed one under the assumption

that the null-hypothesis is true.

Remark 2.1.8. Let T (y) := f(y) and f ∼ X |H0, then

φ(x) :=

{

0 : p(x) ≤ α

1 : p(x) > α

defines a test statistic of significance level α ∈ [0, 1] for the corresponding test problem.

The relation between the concepts of parametric testing and confidence region estimators is given

in the following theorem:

Theorem 2.1.9 (Correspondence theorem). Given a test problem H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1

and let Cα : X→ S ⊂ P(Θ) be a confidence region estimator of confidence level 1− α, then

φ(x) =

{

1 : Cα(x) ∩Θ0 = ∅
0 : Cα(x) ∩Θ0 /= ∅

defines a test statistic of significance level α.

Conversely, let (φi)i∈I be a family of test functions of significance level α for the test problems

Hi0 : θ ∈ Θi vs. Hi1 : θ ∈ Θ \Θi,

where
⋃

i∈I Θi = Θ and Θi ∩Θj = ∅ for i /= j. Then

C : X→ P(Θ), C(x) =
⋃

φi(x)=0

Θi

defines a confidence region estimator of confidence level 1− α.

Likelihood methods

In the following, let X be a random sample with corresponding density function fθ0 parametrized

by θ0 ∈ Θ:

X ∼ fθ0
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.

Definition 2.1.10 (Likelihood function). Given a realization x of the random variable X, the

function

L(x| . ) : Θ→ [0, 1], θ 0→ fθ(x)

is referred to as the likelihood function with respect to the realization x.

The value L(x|θ) is called the likelihood of the parameter θ. Global maxima of L are called

maximum likelihood estimates of θ0 and are denoted as θ̂.

Absolute values of the likelihood function L bear no meaning. Only by comparison of the likeli-

hood values statistical properties of corresponding parametrizations can be derived. The following

statistic is central for likelihood-based statistical methods.

Definition 2.1.11 (Likelihood ratio statistic). Given a parametric test problem

H0 : θ ∈ Θ0 vs. θ ∈ Θ \Θ0. The statistic

Λ(x) :=
supθ∈Θ0

L(x|θ)
supθ∈ΘL(x|θ)

is referred to as the likelihood ratio statistic of H0.

Usually the exact distribution of Λ is unknown. Under certain regularity conditions, one can

show by Taylor expansion of the corresponding log-likelihood function the following asymptotic

distribution of −2 logΛ:

Theorem 2.1.12 (Wilks theorem, [19]). Let Θ ⊂ Rp. If the corresponding maximum likelihood

estimator θ̂ is unique, consistent and asymptoticly normal distributed and if there exists ∆ ⊂
Rr, r < p and a diffeomorphism ψ ∈ C2(∆,Θ0), then the statistic −2 logΛ(X) is asymptoticly

χ2(p− r) distributed under assumption of H0.

In many situations, the asymptotic χ2-distribution of the transformed likelihood ratio statistic

makes construction of tests and confidence region estimators straight forward. In the models,

presented later in the thesis, we will make extensive use of theorem 2.1.12.

In case θ is multi-dimensional and we are only interested in certain components of θ, the so called

profile likelihood function is used as a generalization of the normal likelihood function.

Definition 2.1.13 (Profile likelihood). Let X ∼ fθ,η, where η is considered as a nuisance

parameter. Given the normal likelihood function L(x|θ, η) with respect to the parameters (θ, η)

and a realization x of the random variable X. The function Lp defined as

Lp(x|θ) := max
η

L(x|θ, η)

is called the profile likelihood with respect to θ.
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The profile likelihood has similar statistical properties as the likelihood. In particular, under

some regularity assumptions for the density f and the parameter spaces corresponding to the

test problem, theorem 2.1.12 is also valid for the profile likelihood Lp [8].

2.1.3 Graph theory

We give a short summary of elementary graph theory notations and concepts, which we will need

in the next section in order to formally describe cellular genealogies.

An ordered pair G := (V,E) comprising a set V of vertices and a set E ⊂ V × V of edges is

referred to as a directed graph. Any map defined on the vertex set of a graph is referred to

as a (vertex) labeling. A finite sequence (vi)1≤i≤n ⊂ V , where (vi, vi+1) ∈ E, 1 ≤ i ≤ n − 1,

is called a path from the vertex v1 to the vertex vn of length n − 1. A directed graph, which

has exactly one vertex r with the property, that there is exactly one path from r to every other

vertex of the graph is referred to as a rooted tree and r is called the root of the tree. Let

G := (V,E) be a rooted tree. A vertex v1 ∈ V is called a child node of v1 ∈ V , if (v1, v2) ∈ E.

A rooted tree, where each vertex has at most two child nodes is referred to as a binary tree.

An ordered pair G′ = (E′, V ′) of subsets V ′ ⊂ V ,E′ ⊂ E is referred as subtree of G, if G′ is a

rooted tree. Let v ∈ V , we denote the biggest subtree of G, which has the vertex v as a root as

G[v].

2.2 Mathematical modeling of cellular genealogies

In this section, we will first introduce the graph theoretical description of a cellular genealogy

as a binary rooted tree. In order to perform statistical inference on cellular genealogy data on a

consistent basis, we need to embedded this graph structure in a measure theoretic framework.

The aim of our work is to infer evidence for asymmetric cell division processes from the occurrence

of specific cell fates in the genealogy data. We therefore focus on a formulation, which enables

us to characterize the dependency between the fates of cell siblings. This issue will be covered

by the introduction of unordered random pairings as the central concept of this thesis.

2.2.1 Graph theoretic description of cellular genealogies

A cellular genealogy is a labeled binary rooted tree G = (C,D). Cells are represented by the

vertices C of the tree and parent-daughter relations are described by the edges D of the graph.

Within this structure, cells are ordered into subsets Cg according to their generation g, which

corresponds to the path length from the root cell c1 to the specific cell in the graph. Cell specific

features are given by the labelings of the tree. For a cell ci ∈ C of the genealogy, the subtree

C[ci] is referred to as the colony of ci.
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c1

c2 c3

c4 c5 c6 c7

c8 c9 c10 c11

Generation 2

Generation 1

Generation 0

Generation 3

Figure 2.1: Graph representation of a
cellular genealogy. Vertical lines corre-
spond to the nodes of the underlying
rooted tree, which are associated with
the cells ci ∈ C. Horizontal lines cor-
respond to cell division events and in-
dicate the parent-child relations of the
rooted tree. Usually the canonical in-
dexing, where the child nodes of a node
i ∈ N are indexed by 2i and 2i + 1,
is used. For time labeled trees the cell
cycle time of a cell is indicated by the
length of the corresponding line in the
graph.

2.2.2 Stochastic description of cell siblings

The graph structure of a cellular genealogy does not define an order on the daughter cells. An

adequate stochastic description is given by the random variable structure of an unordered random

pairing, which models the commutability of cell sibling pairs.

Unordered pairings

Let X1 and X2 be two identically distributed random variabels. We refer to an ordered pair

X := (X1, X2)

as a random pairing and we call X1, X2 the pair components of X .

Let Xi, i = 1, 2 be (E ,F)-valued. The standard approach would be then to choose X to be

(E ×E ,F ⊗F)-valued. In this case we refer to X as an ordered random pairing. If we assume

that we cannot distinguish between realizations of the components X1 and X2 in our observation,

we can model this by assuming X to be (E × E ,A) valued, where the set of observable events A

is chosen as the biggest σ-algebra contained in F ⊗ F , which has the property

∀E ∈ A : (a, b) ∈ E ⇒ (b, a) ∈ E (2.1)

In the latter case, we call X an unordered random pairing. In this thesis, we will only deal

with unordered random pairings where the components X1 and X2 are either binary or positive

real valued, with corresponding measure spaces ({0, 1},P({0, 1}) and ([0,∞),B+), respectively.

B+ denotes the trace of the Borel σ-Algebra on [0,∞). In the following example we illustrate

condition (2.1) for the binary case.

Example 1. Let X be an unordered random pairing with ({0, 1},P({0, 1}))-valued components
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Xi, i = 1, 2. The measure space of the corresponding ordered pairing is given by

({0, 1} × {0, 1},P({0, 1}× {0, 1}))

According to condition 2.1 the measure space of the corresponding unordered pairing is given by

(

{0, 1} × {0, 1}, σ(
{

{(0, 0)}, {(0, 1), (1, 0)}, {(1, 1)}
}

)
)

,

Note that in case of the unordered binary pairing the elements (0, 1) and (1, 0) are grouped in

one set, within the set of observable events. This feature models the non distinctiveness of this

events.

To make notation more compact we will denote the sets {(0, 0)}, {(0, 1), (1, 0)} and {(1, 1)} as

00, 01 and 11 respectively. Moreover we will refer to realizations in 00 or 11 as symmetric

outcome and to realizations in 01 as asymmetric outcomes. For the sake of simplicity we refer

to unordered random binary valued pairings just as binary pairings .

Parametrizations of binary pairings

Let X be an unordered pairing with binary valued components. Due to the structure of our

observation space, we can treat X as multivariate bernoulli distributed with corresponding cat-

egories 00, 01, 11. We denote this in terms of a three categorial multinominal distribution with

one draw:

X ∼ Mult3(1, θ),

where the probabilities θ ∈ ∆2 of the categories 11, 01 and 00 is given as an element of the

standard 2-simplex

∆2 := {(x1, x2, x2) ∈ [0, 1]3 : x1 + x2 + x3 = 1}.

In order to emphasize the correspondence between the categories 11, 01, 00 and the components

of θ, we use the indexing

θ := (θ11, θ01, θ00),

where

θA = P (X ∈ A), A ∈ {00, 01, 11}.

Since we assumed in the definition of a binary pairing, that the components are identi-

cal distributed, we can define the marginal probability of the components Xi, i = 1, 2 as

π := P (Xi = 1) = θ11 + 1
2θ01, i = 1, 2 in a consistent way. In the following, we will some-

times use the notation π(θ) for the marginal probability, in order to emphasize the dependency

to the parametrization θ.
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Theorem 2.2.1. Let X be a binary pairing and let X ∼ Mult3(1, θ), where

θ ∈ ∆2 \ {(1, 0, 0), (0, 0, 1)}, then the correlation ρ := corr(X1, X2) is given by

ρ =
θ11 − π2

π(1− π)
, (2.2)

and the parametrization θ can be represented as

θ =







π2 + ρπ(1 − π)

2π(1− π)− 2ρπ(1− π)

(1− π)2 + ρπ(1 − π)







&

(2.3)

Proof. It is E[Xi] = π, i = 1, 2 and Var(Xi) = π(1− π), i = 1, 2. Therefore the correlation of the

components X1 and X2 is given by

corr(X1, X2) =
E[(X1 − E[X1])(X2 − E[X1])]

√

Var(X1)Var(X2)
=

E[(X1 − π)(X2 − π)]

π(1 − π)
=

θ11 − π2

π(1 − π)
,

which shows equation (2.2). Equation (2.3) directly follows by substitution of ρ by the use of the

just shown equality.

We refer to the right side of equation (2.3) as the correlation based representation of θ. We

use the short notation

θ(ρ, π) :=







π2 + ρπ(1 − π)

2π(1 − π)− 2ρπ(1− π)

(1− π)2 + ρπ(1 − π)







&

for ρ ∈ [0, 1] and π ∈ [0, 1]. From the above theorem it follows that the correlation based

representation is well defined, if

θ ∈ ∆2 \ {(1, 0, 0), (0, 0, 1)}.

In particular, we have

{θ(ρ, π) : ρ ∈ (0, 1), π ∈ (0, 1)} =
◦

∆2,

where
◦

∆2 denotes the topological interior of ∆2.

Classification of parametrization of binary pairings

We define the set K0 as

K0 := {θ(ρ, π) : π ∈ [0, 1], ρ = 0}

From the foregoing explanations it follows that the components of an unordered binary pairing

are independent if and only if the parametrization lies in K0, which is equivalent to the case that

ρ = 0 i.e. the components X1 and X2 are uncorrelated.
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The set K0 partitions ∆2 into two subsets

K+ := {θ ∈ ∆2 : θ01 < 2π(θ)(1 − π(θ))}

and

K− := {θ ∈ ∆2 : θ01 > 2π(θ)(1 − π(θ))},

For parametrizations with values in K+ the probabilities for the symmetric outcomes 00 and 11

are higher than they would be under the assumption of independence and same marginal proba-

bility. For parametrizations with values in K+ the probability for the asymmetric outcome 01 is

higher than it would be under the assumption of independence and same marginal probability.

We therefore refer to parametrization with values in K+ as symmetric and to parametrization

with values in K− as asymmetric parametrizations. The notation is motivated by the fact that

parametrizations in K+ can also be characterized by their property to describe binary pairings

with positive correlated components, whereas parameterizations in K− describe binary pairings

with negative correlated components. This classification is graphically illustrated in the following

Figure 2.2. We will use this setup to present parametrizations of binary pairings throughout this

thesis.
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Figure 2.2: Graphical representation of classification of parametrizations of binary pairings: Pro-
jection of the standard 2-simplex ∆2 on the span of θ00 and θ11. For parametrizations with values
in K+ the probabilities for the symmetric outcomes 00 and 11 are higher than they would be
under the assumption of independence and same marginal probability. For parametrizations with
values in K+ the probability for the asymmetric outcome 01 is higher than it would be under the
assumption of independence and same marginal probability. In context of population genetics
the set K0 is referred to as Hardy-Weinberg equilibrium.
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2.3 Parameter inference on binary pairings

In the following section we will present some basic methods for parameter inferences for binary

pairings in case of observable states as well as in some simple latent variable structures. The focus

lies on the construction of confidence regions for the parametrization θ and on the construction

of tests for the null hypothesis

H0 : θ ∈ K0

stating independence of the components. One-tailed tests for the null hypothesis

H+ : θ ∈ K+

stating positive correlation and for the null hypothesis

H− : θ ∈ K−

stating negative correlation can be constructed by simple variations. The main methods for each

model are summarized in a figure at the end of each model section.

General notations

For the description of the following inference methods, we need to consider random samples of

independent and identical distributed unordered random pairings. In order to avoid confusion

between the indices of the sample components and the indices of the pair components of the

unordered random pairings, we use the following notation.

Definition 2.3.1 (Notation of random samples of unordered random pairings). Let n ∈ N and

let X be a random sample of n unordered random pairings. We denote the sample components

of X with superscript inidices in round brackets, i.e. X = X(1) . . . X(n). Let X(j) be a sample

component of X. We denote the pair components of X(j) with subscript indices, i.e. X(j) =

(X(j)
1 , X

(j)
2 ).

In case X is a random sample of binary pairings, then we denote the absolute frequencies of

the types 00, 01, and 11 in the random sample as X00, X01 and X11 respectively. Since the

components in the random sample are independent and identical distributed the statistic

N(X) := (X11, X01, X00) ∼ Mult3(n, θ),

is multinominal distributed, whereby n denotes the number of sample components and θ refers

to the parametrization of this components. Furthermore, let n1 := 2x11+x01 denote the absolute

number of pair components with value 1 in the sample.
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2.3.1 Basic model

We refer to the case of observable pair components as our basic model. In this case inferences are

based on realizations (x11x01, x00) of the multinominal distributed statistic N(X). We present

two different statistical tests for the null hypotheses H0, H+ and H− and four different types of

confidence region estimators. The presented banana confidence region estimators are specific for

binary pairings.

Permutation Test for H0, H+ and H−

This test is a variation of the exact fisher test. It is well known as an exact test for Hardy-

Weinberg equilibrium [3].

Under assumption of the null hypothesis H0, the restriction of N(X) on the set

Γn0,n := {(n00, n01, n11) ∈ N
3 : 2n11 + n01 = n1, n00 + n01 + n11 = n}

is (Fisher noncentral) hypergeometricly distributed with odds ratio 2 i.e.

P (N(X) = (n00, n01, n11)|N(X) ∈ Γn0,n) =

(

n
n00,n01,n11

)

2n01

(2n
n1

) =: T ((n11, n01, n00))

This makes it possible to directly calculate the corresponding p-value p0 under the Null-

Hypothesis H0 by

p0(x) :=
∑

T (y)≤T (x)

T (x) (2.4)

According to Remark 2.1.8, p0 can be used to construct a test statistic for H0. With some

additional arguments the same can be shown for the the p-value p− corresponding to the Null-

hypothesis H−, if it is defined by

p−(x) :=
∑

T−(y)≤T−(x)

T (x),

where

T−(X) :=

{

1 : N(X) ∈ S−

T (X) : otherwise
(2.5)

and

S− := {(n11, n01, n00) ∈ N
3 : n01 ≤ 2

√
n00n11}.
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Likelihood ratio test for H0, H+ and H−

For sufficiently large sample size and under the assumption that θ lies in the topological interior

of ∆2, the hypothesis H0, H+ and H− can easily be tested by the corresponding likelihood

ratio test: Since N(X) ∼ Mult3(n, θ) and by definition 2.1.11 the likelihood ratio statistic Λ0

corresponding to the test problem H0 vs. H1 is given by

Λ0(x) :=
supθ∈K0

L(x|θ)
supθ∈∆2 L(x|θ)

=
supθ∈K0

θx11

11 θx01

01 θx00

00

supθ∈∆2 θx11

11 θx01

01 θx00

00

. (2.6)

Using the correlation based representation for θ the statistic Λ can be written as

Λ0(x) :=
supπ∈(0,1),c=0 θ

x11

11 θx01

01 θx00

supπ∈(0,1),c∈(−1,1) θ
x11

11 θx01

01 θx00
. (2.7)

It follows by theorem 2.1.12 that −2 logΛ0(N(X)) is asymptotical χ2(1) distributed. For a given

significance level α ∈ [0, 1] this yields the test statistic

φ(X) :=

{

0 : −2 logΛ0(N(X)) ≤ χ2
α(1)

1 : −2 logΛ0(N(X)) > χ2
α(1)

(2.8)

Test statistics for the one tailed tests corresponding to the null hypothesis H+ and H− are given

by substitution of K0 in (2.6) by K+ and K−, respectively.

Exact banana confidence region

The permutation test described above can be generalized to certain differentiable submanifolds

of ∆2. Using the correspondence theorem 2.1.9, we can construct exact confidence regions as

unions of this submanifolds.

Definition 2.3.2 (γ-curve). Let γ ∈ [0,∞), we refer to the set

∆2
γ := {θ ∈ ∆2 : θ11 + 2γ

√

θ11θ00 + θ00 = 1}

as a γ-curve .

Examples of γ-curves are illustrated in Figure 2.3. It can be easily validated that

⋃

γ∈[0,∞)

∆2
γ = ∆2 \ {θ ∈ ∆2 : θ00 = 0 ∨ θ11 = 0}.

In particular, it follows for the topological closure that

⋃

γ∈[0,∞)

∆2
γ = ∆2.
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Let γ ∈ [0,∞). Under the assumption of the null hypothesis Hγ : θ ∈ ∆2
γ , the restriction of

N(X) on Γn0,n is (Fisher noncentral) hypergeometricaly distributed with odds ratio 2γ i.e.

P (N(X) = (n00, n01, n11)|N(X) ∈ Γn0,n) =

(

n
n00,n01,n11

)

(2γ)n01

Dγ,n0,n
=: Tγ ((n11, n01, n00)) (2.9)

where

Dγ,n0,n :=
∑

(m11,m01,m00)∈Γn0,n

(

n

m00,m01,m11

)

(2γ)m01 .

Analogously to (2.4) we can define the corresponding p-value by

pγ(x) :=
∑

Tγ (y)≤Tγ(x)

T (x).

Under the general asumption θ ∈
⋃

γ∈[0,∞)∆
2
γ it follows for given α ∈ [0, 1] by theorem 2.1.9 and

remark 2.1.8 that the set

C1−α(x) :=
⋃

γ:φγ(x)=0

∆2
γ , (2.10)

where

φγ(x) :=

{

0 : pγ(x) ≤ α

1 : pγ(x) > α
(2.11)

defines a confidence region of confidence level 1−α. As shown in Figure 2.4b, confidence regions

constructed by this method have shapes similar like a banana.

Simultaneous confidence intervals

For large sample-sizes it can be reasonable to construct confidence regions for θ by the use of

simultaneous confidence intervals for two of the three components θ00, θ01, θ11 due to compu-

tational reasons. The corresponding confidence regions have rectangular shapes (Figure 2.4d).

Common methods are based on variations of the customary χ2 statistic

∑

A∈{11,00,01}

(xA − nθA)2

nθA
.

For details we refer to [7].

Likelihood based confidence regions

For sufficiently large sample size we can use likelihood methods to construct confidence regions

for θ.
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Likelihood confidence region: From theorem 2.1.12 it follows that

−2 log θ
X00

00 θX01

01 θX00

00

θ̂X11

11 θ̂X01

01 θ̂X00

00

is asymptoticaly χ2(2) distributed. By theorem 2.1.9 a confidence region estimator for θ of

confidence level α ∈ [0, 1] is therefore given by

C1−α(X) :=

{

θ ∈ ∆2 : −2 log θ
X00

00 θX01

01 θX00

00

θ̂X11

11 θ̂X01

01 θ̂X00

00

≤ χ2
1−α(2)} (2.12)

As demonstrated in Figure 2.4c the corresponding confidence regions are shaped similar to twisted

ellipsoids.

Likelihood based banana confidence region: With the same arguments as for Λ0 in (2.7)

one can show that

Λr(x) :=
supπ∈(0,1),c=r θ

x11

11 θx01

01 θx00

00

supπ∈(0,1),c∈(−1,1) θ
x11

11 θx01

01 θx00

00

(2.13)

is asymptotically χ2(1) distributed under the assumption that the correlation between the com-

ponents of the corresponding binary pairings has the value r. By the use of theorem 2.1.9 a

confidence region estimator of confidence level 1− α is then given by:

C1−α(X) :=
{

θ(c, π) : −2 logΛc(X) ≤ χ2
1−α(1)

}

. (2.14)

Particularly, for parametrization θ with corresponding correlation close to zero this confidence

regions have similar shapes as the above presented exact banana confidence regions (Figure

2.4a). However, for parametrization θ with corresponding correlation close to -1, the shapes of

exact banana confidence regions and correlation based confidence regions can strongly differ

(Figure2.3).
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Figure 2.3: Comparison of γ-curves and correlation level curves: Line labels indicate correspond-
ing the correlation level or γ-level, respectively. a) Contour-plot of selected correlation levels:
K0 corresponds to the contour line of correlation level 0. Curves corresponding to negative or
positive correlation levels lie in K− or K+, respectively. b) Contour-plot of selected γ-curves: K0

corresponds to the contour line of γ-level 1. Curves corresponding to γ-level > 1 or < 1 lie in K−

or K+, respectively. Correlation level curves corresponding to negative correlation values only
cover a proper subset of [0, 1] of corresponding marginal probabilities, whereas γ-curves cover
the whole range [0, 1] for all γ-levels. As a consequence the curvature of γ-curves is unbounded
for increasing γ-level.



32 CHAPTER 2. METHODS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of binary pairing 11

Pr
ob

ab
ilit

y 
of

 b
in

ar
y 

pa
iri

ng
 0

0
a)                                                                            

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of binary pairing 11

Pr
ob

ab
ilit

y 
of

 b
in

ar
y 

pa
iri

ng
 0

0

b)                                                                            

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of binary pairing 11

Pr
ob

ab
ilit

y 
of

 b
in

ar
y 

pa
iri

ng
 0

0

c)                                                                            

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of binary pairing 11

Pr
ob

ab
ilit

y 
of

 b
in

ar
y 

pa
iri

ng
 0

0

d)                                                                            

11 01 00
0

10

20

30

Pairing type

Ab
so

lu
te

 fr
eq

ue
nc

y Sample

Figure 2.4: Concept figure for basic model: Illustration of different types of 95%-confidence region
estimators based on a sample with absolute frequencies 15, 15 and 25 for the binary pairing values
11, 01 and 00 respectively. a) Banana confidence region calculated by the use of the correlation
based estimator stated in (2.14) b) Banana confidence region calculated by the use of the exact
banana confidence region estimator stated in (2.10) c) Likelihood confidence region based on the
estimator stated in (2.12) d) Confidence region based on simultaneous confidence intervals for
multi nominal proportions proposed by Goodman in [7]
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2.3.2 Treatment-Control model

In this model we assume that the values of the binary pairing of interest can not be directly

observed. Under certain assumptions, we can instead infer the corresponding parametrization by

the comparison of the outcomes of a control and a treatment experiment.

General latent variable structure

Let Z and Y be two equal sized independent random samples, whereas each sample consists

of identical distributed and independent binary pairings Z(1) . . . Z(n), Z(i) ∼ Mult3(1, θZ) and

Y (1) . . . Y (n), Y (i) ∼ Mult3(1, θY ) respectively. We can associate Z and Y with the outcomes of

an experiment conducted under two different conditions. Z is referred to as the outcome under

treatment condition and Y is referred as the outcome under control condition.

For each sample component in Z and each sample component in Y we assume two latent binary

valued states and we assume that the underlying distribution for this latent states is identical

under treatment and control conditions. Formally we can denote this latent states as random

samples of binary pairings X := (X(i,j))1≤i≤2,1≤j≤n and E := (E(i,j))1≤i≤2,1≤j≤n where the

sample components (X(1,j))1≤j≤n and (E(1,j))1≤j≤n correspond to the latent states in the control

sample and (X(2,j))1≤j≤n and (E(2,j))1≤j≤n correspond to the latent states in the treatment

sample. Moreover the sample components X(i,j) ∼ Mult3(1, θX) and E(i,j) ∼ Mult3(1, θE) are

independent and identical distributed respectively.

We now assume that the sample components in Y (1) . . . Y (n) and Z(1) . . . Z(n) are the result of

a condition specific deterministic interaction between the corresponding latent states i.e. there

are statistics Sc, St : {0, 1}2 × {0, 1}2 → {0, 1}2 so that Y (i) := Sc(X(i), E(i)) and Z(i) :=

St(X(i), E(i))

Multiple, though finite numbers of interactions modeled by Sc and St are possible. Under certain

conditions for this interactions, we can infer the parametrization of the latent states X and E by

comparison of the treatment and the control sample. In the following we will present parameter

inference methods for a special case of interactions Sc and St, which we will later use in our

application.

Latent variable structure with logical AND interaction

In the following, we set

Sc(X
1,j , E1,j) := E1,j (2.15)

St(X
2,j , E2,j) := (min{X2,j

1 , Y 2,j
1 },min{X2,j

2 , Y 2,j
2 }) (2.16)

for the statistics Sc and St. According to (2.15) we have Y = E and E can be treated as an

observable variable under treatment conditions. In particular we have θX = θE . The interaction
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St between the components of the binary pairings Ej and Xj can be interpreted as logical

AND interaction, if we associate the values 0, 1 with boolean states true, false respectively. This

interpretation is in most cases of application more intuitive than the above stated definition with

component wise minima.

Parameter inference for logical AND interaction

Since θY and θZ can be directly inferred from observations under control conditions and treat-

ment conditions respectively and according to (2.15) we have θE = θY . In the following we show

how the parametrization θX of the latent states X can be inferred.

The interactions stated in (2.15) and (2.16) induce the following dependencies between the

parametrizations θX , θY and θZ .

θZ11 = θX11θ
Y
11

θZ01 =
1

2
θX01θ

Y
01 + θX11θ

Y
01 + θX01θ

Y
11

θZ00 = θX00 + θY00 +
1

2
θX01θ

Y
01

which in matrix-vector notation can shortly be written as:

θZ = R(θX)θY
&

(2.17)

where

R(θX) :=







θX11 0 0

θX01 θX11 +
1
2θ

X
01 0

θX00 θX00 +
1
2θ

X
01 1






(2.18)

We refer to the matrix R(θX) as the effectmatrix of θX .

For given observations y = y1 . . . yn and z = z1 . . . zn of Y and Z respectively, the corresponding

likelihood function is given by

L(θY , θZ |N(y), N(z)) = L(θY |N(y))L(θZ |N(z)) =
(

n

z11, z01, z00

)

θZ11
z11
θZ01

z01
θZ00

z00
(

n

y11, y01, y00

)

θY11
y11
θY01

y01
θY00

y00
,

since by assumption the samples Y and Z are independent and N(Y ) and N(Z) are multi nominal
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distributed. By substitution of θZ with R(θX)θY
&

, we can derive the profile likelihood for θX

Lp(y, z|θX) := max
θY

L(R(θX)θY |z)L(θY |y) =

max
θY

(

n

z11, z01, z00

)

(

R(θX)θY
&
)z11

11

(

R(θX)θY
&
)z01

00

(

R(θX)θY
&
)z00

00
(

n

y11, y01, y00

)

θY11
y11
θY01

y01
θY00

y00
= max

θY

(

n

z11, z01, z00

)

(θX11θ
Y
11)

z11(
1

2
θX01θ

Y
01 + θX11θ

Y
01 + θX01θ

Y
11)

z01

(θX00 + θY00 +
1

2
θX01θ

Y
01)

z00

(

n

y11, y01, y00

)

θY11
y11
θY01

y01
θY00

y00

As stated in the statistical preliminary section for sufficient large sample size the profile likelihood

can be treated as in the same way as the common likelihood. Likelihood based confidence regions

for θX and tests for the null hypothesis is H0, H+ and H− stating θX ∈ K0, θ
X ∈ K+ and

θX ∈ K− respectively can therefore be constructed in the same way as described in the basic

model part.

Separating orbits

In the following we will sketch an alternative approach to construct tests for the null hypothesis

H0 : θX ∈ K0, H+ : θX ∈ K+ and H− : θX ∈ K−, which makes use of so called separating orbits.

For fixed θY , equation (2.17) can be interpreted as a mapping rule θX 0→ R(θX)θY , where the

corresponding map maps the parametrization θX on the parametrization θZ of the treatment

sample. Under the assumption of the null hypothesis this map can be parametrized with the

domain [0, 1].

s( . )θY : [0, 1]→ ∆2, π 0→ R(π)θY , (2.19)

where

s(π) := R
(

(π2, 2π(1− π), (1 − π)2)
)

Sets s([0, 1])θY , θY ∈ ∆2 are uniquely defined by their start point θY . We use the short notation

τ(θ) := R([0, 1])θ and refer to the sets τ(θ), θ ∈ ∆2 as orbits. This designations is motivated by

the fact that sets τ(θ), θ ∈ ∆2 are invariant under multiplication with matrices s(π), π ∈ [0, 1]

i.e.

∀π ∈ [0, 1]∀θ ∈ ∆2 : s(π)τ(θ) ⊂ τ(θ) (2.20)

It follows by the definition of s( . )θY , that under the null hypothesis H0 : θX ∈ K0, the

parametrization θY must be contained in the image of s( . )θY i.e. with the above notation we

can rewrite the null hypothesis H0 as

H0 : θZ ∈ τ(θY ) (2.21)
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Theorem 2.3.3. Let ∆̃2 := ∆2 \ {θ ∈ ∆2 : θ00 = 0 ∨ θ01 = 0}. The restriction of the family

(τ(θ))θ∈∆̃2 of separating orbits on ∆2 \{(0, 0, 1)} forms a partition of ∆2 \{(0, 0, 1)} and each

orbit τ(θ) separates ∆2 into two subsets

Kτ(θ)+ := conv
(

γ(θ) ∪ {θ ∈ ∆2 : θ00 = 0}
)

and

Kτ(θ)− := ∆2 \ Kτ(θ)+

whereas conv(A) denotes the convex hull of the corresponding set A.

Proof. Can be derived by the use of (2.20), the continuity of the mapping R( . )θY and the fact

that (0, 0, 1) ∈ τ(θ) for all θ ∈ ∆2.

The following theorem states sufficient criteria for the rejection of the null hypothesis H0 by the

use of separating orbits, which have been defined within the above theorem.

Theorem 2.3.4. Let α ∈ [0, 1] and let CY and CZ be two confidence region estimators of

simultaneous confidence level 1 − α for the parametriztions θY and θZ respectively. For two

realizations y and z of Y and Z respectively H0 : θX ∈ K0 can be rejected with significance level

α if there exists a separating orbit τ(θ), θ ∈ ∆̃2 so that either

CY (y) ⊂ Kτ(θ)− and CZ(z) ⊂ Kτ(θ)+ (2.22)

or

CZ(z) ⊂ Kτ(θ)− and CY (y) ⊂ Kτ(θ)+ (2.23)

i.e. there is no separating orbit that intersects the interior of CX(x) and CY (y).

Proof. Under the assumption of H0, the parametrization θZ has to be contained in the image of

s( . )θY = γ(θY ) i.e.

H0 : θZ ∈ γ(θY ) (2.24)

By definition the simultaneous covering probability of the confidence region estimator CX and

CY with respect to the parametrizations θX and θY does not fall below 1 − α. In particular it

follows by (2.24) that the probability for the existence of an orbit intersecting CX and CY is

equal or greater than 1− α.

With some additional arguments one can show, that in case of (2.22) we can reject the null

hypothesis H− and in case of (2.23) we can reject the null hypothesis H+ with correspondinging

significance α.
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Figure 2.5: Treatment-control model with logical AND interaction: a) Barplot of the observed
samples under treatment conditions (red) and control conditions (blue). b) Parameter inference
for sample presented in a): Maximum likelihood estimates and likelihood based 97.5%-confidence
regions for the parametrization of the control sample Y and the treatment sample Z are colored
in blue and red respectively. The maximum likelihood estimate and the 95%-confidence region for
the parametrization of the latent states X is colored in green. A separating orbit for significance
level α = 0.05 is colored in cyan. The p-value calculated on basis of the corresponding likelihood
ratio statistic for the null-hypothesis H0, which states independent components of X , is 2.3·10−9.
For given significance level α = 0.05 the hypothesis H0 can either be rejected by arguments of the
corresponding p-value, existence of a separating orbit fulfilling condition (2.22), or no intersection
of the 95%-confidence region for the parametrization of the latent effect state with K0.

2.3.3 Special mixture model

This model describes the case of a mixture distribution with binary pairings as underlying latent

variables.

Latent variable structure

Let X(1) . . . X(n) be a random sample of identical and independent distributed binary pairings

and let Y (1) . . . Y (n) where Y (j) ∼ f, 1 ≤ j ≤ n be a random sample of independent and identical

distributed real valued unordered pairings. We assume that the dependency between the pairing

components of Y (j) and X(j) can be described by Y
(j)
i |(X(j)

i = 0) ∼ f0, i = 1, 2 and Y
(j)
i |(X(j)

i =

1) ∼ f1, i = 1, 2. Moreover we assume the components Y
(j)
1 and Y

(j)
2 of the observable variables

Y (j) to be independent, given the corresponding component values X
(j)
1 and X

(j)
2 of the latent
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states X(j), respectively. That means:

Y (j)|(X(j) = A) ∼ θAfA, A ∈ {11, 01, 00},

where

X ∼ Mult3(1, θ)

and

f11(y
(j)) := f1(y

(j)
1 )f1(y

(j)
2 )

f01(y
(j)) :=

1

2

(

f0(y
(j)
1 )f1(y

(j)
2 ) + f0(y

(j)
1 )f1(y

(j)
2 )

)

f00(y
(j)) := f0(y

(j)
1 )f0(y

(j)
2 )

for realizations y(j) = (y(j)1 , y
(j)
2 ) of Y (j).

Likelihood function

According to the above stated dependencies the likelihood function with respect to the parameters

θ, λ1, λ2 for a realization y := (y(j))1≤j≤n of Y is given by

L(y|θ, λ1, λ2) =
n
∏

j=1

∑

A∈{00,01,11}

θAfA(y
(j)|λ0, λ1), (2.25)

where

f11(y
(j)|λ0, λ1) := f1(y

(j)
1 |λ1)f1(y(j)2 |λ1)

f01(y
(j)|λ0, λ1) :=

1

2

(

f0(y
(j)
1 |λ0)f1(y(j)2 |λ1) + f1(y

(j)
1 |λ1)f0(y(j)2 |λ0)

)

f00(y
(j)|λ0, λ1) := f0(y

(j)
1 |λ0)f0(y(j)2 |λ0).

Analogously to the situation in the forgoing treatment-control model, we can infer the parameter

θ by using the corresponding profile likelihood

Lp(y|θ) := max
λ0,λ1

n
∏

j=1

∑

A∈{00,01,11}

θAfA(y
(j);λ0, λ1). (2.26)
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Figure 2.6: Special mixture model: a) Probability density plot of special mixture distribution
with component densities f0 := log(N )(3, 1) and f1 := log(N )(4.5, 0.3), and mixture propor-
tion θ = (0.1, 0.4, 0.5) b) Scatterplot of raw data generated as toy data on basis of the special
mixture distribution graphically illustrated in a). Soft classification based on the maximum like-
lihood estimatea θ̂ = (0.0670, 0.4361, 0.4970), λ̂0 = (3.0344, 1.0323), λ̂1 = (4.4853, 0.3163) for the
parametrization of the underlying mixture distribution is indicated by the coloring. Blue, green
and red color indicates high probability for a latent state of type 11, 01 and 00 respectively. c)
Maximum likelihood estimate of θ and 95% cofidence region calculated on basis of the profile
likelihood (2.26) d) Profile likelihood for the correlation of the latent binary pairing under the
assumption of log-normal distributed components (blue).
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Choice of the density function class

If we statistically infer the parameterization of the binary pairing in this latent variable struc-

ture, we have to assume the class of parameterized density functions on which we perform the

maximization of the likelihood. The choice of this class has huge impact on the point estimate

for θ. Therefore a carefull choice for the class of density functions is crucial. We presume that

a combination of this method with a suitable equivalence test, which ensures that the induced

error doesn’t exceed a certain threshold is a possible approach to deal with this problem.

2.4 Mixture effects

In applications we often face the situation, that we don’t know wether the data we observe really

originate from (at least approximate) identical distributed binary pairings. In such situations

attempts to estimate the correlation of the of the binary components are questionable, since the

correlation tends to be overestimated:

Theorem 2.4.1 (Wahlund effect, [2]). Let Y,X(i), 1 ≤ i ≤ n binary pairings, where X(i), 1 ≤
i ≤ n are independent with corresponding parametrizations θ(i). Moreover let the parametrization

θY of Y be a convex combination of the parametrizations of the X(i), 1 ≤ i ≤ n i.e.

θY :=
n
∑

i=1

αiθ
(i).

Then the inequality
n
∑

i=1

αicorr(X
(i)) ≤ corr(Y )

holds. In particular, we have equality if and only if the components of all X(i) have the same

marginal probability π i.e.

π(θY ) = π(θ(i)) for all i ∈ {1, . . . , n}.

Proof. Follows by the convexity of the correlation level curves (Figure 2.3).



Chapter 3

Data

3.1 Experimental setup description

3.1.1 Experiments

The genealogical data analyzed in this thesis comprises four datasets, which originate from time-

lapse movie experiments with mice haematopoietic cells conducted by Dirk Löffler from the Stem

Cell Dynamics (SCD) group of T. Schroeder at the Helmholtz Zentrum München.

Nomenclature

Each dataset corresponds to one experiment. SCD internal designations of the experiments are

111012DL6, 110603DL5, 110722DL6, 111210DL2. For clarity, we refer to these experiments

as experiment 1, experiment 2, experiment 3, experiment 4. For experiment 4, two

different cell sortings schemes were used, while the time lapse movie was recorded on the same cell

culture dish. With respect to this two different cell sortings, we distinguish between experiment

4a and experiment 4b.

Cell sorting

The cells in the experiments 1-3, 4a were sorted by FACS (Fluorescence-activated

cell sorting) using the marker combination CD150+CD48−CD34−Lin−MAC-1−GR-1−TER-

119+B220−CD3E−CD19−CD41+. Transplantation experiments showed that sorting by this

markers leads to an enrichment of long-term haematopoietic stem cells (LT-HSC) of ap-

proximate 50% [16]. The cells in experiment 4b were sorted using the marker combinations

CD150−CD48−CD34+, which leads to an enrichment of short-term haematopoietic stem cells

(ST-HSC) and multi potent progenitors (MPP)[16].

41
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Culture conditions

The basic cell culture condition in the experiments was SFEM (Serum-Free Expansion Medium),

100ng/ml SCF (stem cell factor), 100ng/ml TPO (thrombopoietin), 1% penicillin. The cell culture

dishes used for this experiments were subdivided in physically separated segments. In half of the

segments TGF-β1 (Transforming growth factor beta 1) was added to the cell culture. We refer to

the culture condition where TGF-β1 was added as the treatment condition and to the culture

condition, where TGF-β1 was not added as the control condition.

Time Lapse microscopy movies

The experiments were performed over a period of about 6-9 days. During this time the cell culture

dish was continuously filmed by a camera taking pictures of each position on the cell culture dish

around every 90 seconds. Compared to the average cell-cycle time of the observed cell, which is

around 12 hours, this time resolution is more than sufficient.

3.1.2 Tracking and data representation

The generation of cellular genealogies i.e. the tracking of the cell lines in the time lapse movies was

done manually with Timm’s Tracking Tool (TTT)[15], a software for interactive manual tracking

of single cells. The documented cellular genealogies have three labelings: The time labelings tstart
and tend are non negative and real valued. The values tstart(c) and tend(c) are the time points

at which the observation of a cell c ∈ C started and terminated, respectively. The third labeling,

denoted as s encodes the reason, why the observation of a cell terminated:

s(c) :=











0 : cell tracking aborted

1 : cell divided

2 : cell died

(3.1)

Depending on the experiment, the tracking was performed in different ways: Abortion of the

tracking of single cells occurred, if the cell was lost or exceeded the end of the time lapse movie.

The duration of the movies are 145, 142, 233 and 161 hours for the experiments 1-4, respectively.

In experiment 1 and 3, only genealogies comprising at least two generations have been considered.

Experiment 4 was performed to analyze the colony survival time tcolony of the root cell. In this

experiment the tracking of a tree was not continued after a descendant cell that reached the end

of the movie was found. Basic data information are summarized in table 3.1. Plots of typical

genealogies with the described labeling are presented in Figure 3.2.
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
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

tcolony(c2)

tstart(c2)

tend(c2)
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Figure 3.1: Time labeling of genealogies: Red
crosses indicate cell death. Let ci be a cell in
the genealogy. Time labelings tstart and end(ci)
refer to the time point of begin and end of
the observation of cell ci, respectively. The
colony survival time tcolony(ci) := tstart(ci) −
maxc∈C[ci] tend(c) is defined as the time from
cell birth of the corresponding cell until the
death of its last descendant.

Experiment 1 Experiment 2 Experiment 3 Experiment 4a Experiment 4b
Sorted for cell-type HSC HSC HSC HSC MPP
# Trees 41|84 110|99 59|61 41|30 37|50
# Complete tracked trees 2|35 85|92 7|58 36|29 37|49
# 1-Generation trees 0 85|76 0 35|21 16|36
Movie duration 145h 142h 233h 161h 161h

Table 3.1: Overview table Data: Left and right values in each column refer the numbers in the
control and treatment condition, respectively. Row label Sorted for cell type refers to the
target cell type in the preprocessing of the cells with FACS. For detailed FACS parameters see
section 3.1.1. Labels #Trees, #1-Generation trees and #Complete tracked trees refer to
the total number of trees, trees comprising only of one cell and trees, where all leaves comprise
dying cells, documented in the experiment, respectively. Row label Movie duration refers to
the duration of the corresponding time-lapse movie of the experiment.
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Figure 3.2: Treeplot of selected genealogies in experiment 2: Each vertical bar corresponds to
one cell and indicates the life time of the corresponding cell. A red cross indicate that the
corresponding cell died at the end of observation. A blue cross indicates that the tracking of
the corresponding cell terminated, because the cell was lost or the duration of the movie was
exceeded.
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Figure 3.3: generation structure of genealogies: Experiment 1-4: Stacked barplot of the number
of trees observed in the experiment comprising of exactly the number of observed generations
indicated on the x-axis. Trees comprising only one generation have not been documented in
experiments 1, 3. Trees in Experiment 4 comprise at most two generations, which is interesting
for modeling since it justifies a generation based model approach for the death kinetic of MPP
cells. Experiment 4 features an even higher number of cells dying in the first generation than
Experiment 3. This phenomena could be explained by a high amount of differentiated cells in
the beginning of the experiment.
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Figure 3.4: Kaplan-Meier estimators (lines) and point-wise 95% confidence intervals (dashed
lines) for the colony survival time of cells in Experiment 1, 2, 3 (first row) and Experiment
2, 4a, 4b (second row), respectively. Cells in experiment have approximately similar survival
curves. Under treatment condition cells live longer, than under control conditions. This effect
is particular strong in experiment 4b, which mainly comprises of MPP cells. This supports the
assumption, that MPP cells are more effected by TGF-β1 than HSC.



Chapter 4

Results

In the following we apply the generic models of chapter 1 on the genealogy data we presented in

the previous chapter.

The experiments described in the previous chapter 2 have been performed in order to analyze

cell fate choice in terms of transitions from HSC state to ST-HSC or MPP state. This three cell

types differ in their self-renewal capacity. Unfortunately the self-renewal capacity of a cell can

only be determined by elaborate transplantation experiments and can not be observed during

experiments. The approach on which the experimental setup of the experiment 1-4 is based, is

therefore to deduce the cell fate by death events under treatment (TGF-β1+) conditions. The

approach is based on the assumption that cells without self-renewal capacity have a lower chance

to survive under treatment conditions than cells with self-renewal ability. This assumption is

justified by the comparison of the death kinetic of the cells in experiments 1-3 with the death

kinetic of the cells in experiment 4 under treatment conditions. (Figure 3.3, Figure 3.4)

The models presented in the following are applications of the generic models described in chapter

2. Each model is based on different assumptions regarding the dependence between cell fates and

death events. The basic methodological approach of corresponding generic models is to assume

that a cells state can be characterized by one dichotomous feature. In this case of application this

is the self-renewal ability. Instead of discriminating between sub categories of cells with different

levels of self renewal capacity, we assume the self renewal capacity of a cell to be a dichotomous

feature. Due to simplicity reasons we will use in the term HSC and the term MPP synonymously

for cells with self-renewal capacity and for cells without self-renewal capacity, respectively. We

associate HSC and MPP cells with the binary values 1 and 0, respectively. The goal of our

statistical analysis is to infer the parametrization θ := (θ11, θ10, θ00) of the binary pairing X

describing the states of sibling cells after a division.

47
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General proceeding

For each presented model, the assumptions and the basic structure are summarized in Figures

4.1, 4.3, 4.5. The graphical representation of the random variables can be interpreted in terms

of a random markov field. Random variables in squared box are assumed to be observable, ran-

dom variables in round ellipses are assumed to be latent. All parameter inferences were done

accordingly to the methods of the corresponding generic models described in chapter 2. Param-

eter inferences were performed on experiments 1-3 separately in order to avoid mixing effects

as described in theorem 2.4.1(Wahlund effect), which could lower the power of our statistical

analysis. Moreover we fix α = 0.05 as the significance level for our test decisions.

4.1 Model 1 (application of the basic model)

Biological assumptions

In this introductory model we assume that cells with self-renewal capacity never die under treat-

ment conditions, whereas cells which loose their self-renewal capacity will immediately die in the

same generation i.e. we assume observable states in the sense that under treatment conditions

death events correspond to the loss of the self-renewal capacity of the corresponding cell.

Corresponding generic model and parameter inference















Figure 4.1

The situation of observable states corresponds

to the setup of the basic model described in

chapter 2. According to the biological assump-

tions stated above a pair of two dividing cells

corresponds to a pair of two HSC. A pair of

one dividing cell and one dying cell corre-

sponds to a pair of one HSC and one MPP

cell . A pair of two dying cells corresponds to

a pair of two MPP cells. In binary notations

we associate the latter states with the pair-

ings 11, 01 and 00, respectively. We performed

parameter inference on all generations sepa-

rately. Only division events comprising two

completely tracked cells have been considered.

For the genealogy trees presented in Figure

3.2, that would mean that for the parame-

ter inference on generation 1 level trees b), c)

would be accounted as pairing types 00. Tree
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d) would be accounted as pairing type 01. The trees e), f) would be accounted as pairing types

11. In generation 2 the subtree C[c3] of tree d) would be not considered, since it is not completely

tracked. Subtrees C[c2] and C[c3] of tree e) would both be accounted as binary pairing types

00 and subtrees C[c2] and C[c3] of tree f) would be accounted as binary pairings 11 and 00

respectively.

Parameter inference

Likelihood based confidence region for the parametrizations of the corresponding binary pair-

ings are illustrated in Figure 4.1. In all three experiments the maximum likelihood estimates

for generation 1-3 lie in the region of symmetric parametrizations K+. In all cases, this behav-

ior is statistical significant (Table 4.1). Only for parametrizations in the fourth generation the

maximum likelihood estimates in experiment 2 and 3 fall in K−. However, there is no statistical

significance given for this behavior, since the corresponding sample size is very small and the

corresponding confidence regions cover a big range of K+ as well as of K−. In general throughout

all experiments one can see an increase of the marginal probability π with higher generations.

One interesting feature is, that in experiment 3 the difference between the marginal probabil-

ity corresponding to the parametrization in generation 1 and the marginal probability for the

parametrization in generation 2, respectively is much bigger than in the other experiments.

Gen.1 Gen.2 Gen.3 Gen.4 all Gen.
Experiment 1 5.5696e-07 1.9735e-06 0.033341 0.089899 2.5924e-16
Experiment 2 0.019117 0.00038319 0.005364 1 1.8676e-08
Experiment 3 0.010103 8.8018e-06 0.0051999 1 2.4225e-16
All Data 6.3378e-09 1.3656e-14 4.4155e-06 0.13034 7.6484e-39

Table 4.1: Model 1: p-values under the null hypothesis H0 stating independent components in
generations 1-4, respectively. P-values have been calculated on basis of the permutation test
described in ??. It follows that in all experiments H0 can be rejected for generations 1-3. Only
in generation 4 the corresponding p-values exceed the given significance level α = 0.05. However
this is assumed to be a consequence of small sample sizes.
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Figure 4.2: Model 1 parameter inference on generations 1-4: Experiment 1-4: 95%-Confidence re-
gion and maximum-likelihood estimates for the parametrization of the binary pairing describing
the occurrence of death versus cell-division events under treatment conditions in sibling pairs in
generations 1-4 and the occurrence averaged over all generations respectively. Under the assump-
tions of Model 1 this parametrization corresponds to the parametrization of the binary pairing
describing the occurrence of differentiation events in sibling pairs in generation 1. P-values for
the null hypothesis stating independence of the components of the pairing have been calculated
on basis of the permutation test described in 2.3.1 and are listed in Table 4.1
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4.2 Model 2 (application of the treatment-control model)

In the foregoing model we assumed that HSCs do not die under treatment conditions at all. This

assumption is very questionable and in case it is violated dying HSCs are falsely accounted as

differentiated MPP cells, which leads to a systematic error in the parameter inference of θ. In

this model we maintain the assumption, that MPP cells always die during cell-cycle but make

broader assumptions for the death kinetic of HSCs. We infer the unbiased correlated fate choice

probability by the comparison of the correlated death probability under treatment and control

conditions with the use of the generic treatment-control model.

Biological assumptions













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Figure 4.3

As already mentioned above, we main-

tain in this model the assumption, that

MPP cells always die during cell cy-

cle. Under this assumption a minimum

requirement in order to eliminate the

above described bias is, that we can es-

timate the bias effect of dying HSC in

our sample i.e. we need to be able to

estimate the correlated death probabil-

ity of HSC under treatment conditions.

We approach this problem by estimat-

ing the correlated death probability of

HSC on basis of the control dataset and

assume the same correlated death prob-

ability of HSC under treatment condi-

tions. To our knowledge this assumption

does not stands in contradiction to any

experimental results so far. As stated be-

fore the cells used in the experiments can

not be assumed to be all of HSC type.

Therefore this approach is only valid under the additional supposition that the correlated death

probability of HSC and MPP cells is equal under control conditions. We inferred the corre-

sponding parametrization of the correlated death probability in experiment 1-3 under control

conditions and compared them with the corresponding parametrization in experiment 4b. On

this basis of data, we could not find any contradicting evidence for the latter assumption.



52 CHAPTER 4. RESULTS

Analogy to the treatment control model with logical AND interaction

According to the above stated biological assumptions we can estimate the correlated death prob-

ability of HSCs under treatment conditions by inference on the control sample. However our

actual aim is to infer the correlated death probability of cells, which died, because they differen-

tiated to MPP cells. In order to infer this probability we need to formulate how the correlated

death probability of HSCs influences the overall outcome of paired death events under treatment

conditions, which is a combination of dying HSCs and cells, which die, because they differenti-

ated to MPP cells. This can be done within the framework of the treatment control model with

logical AND interaction.

With the notation used in section 2.3.2, we describe the control sample with Y and the treatment

sample with Z. We associate the binary pairings describing the HSC dying by chance with

the hidden binary pairing E and the binary pairing describing the fate of the cells with X .

Under control conditions HSC and MPP have the same correlated death probability, therefore

Y = Sc(E,X) := E. Under treatment condition a cell will only survive, if it is a HSC and does not

die by chance i.e. Z = St(E,X) := (min{E1, X1},min{E2, X2}). Apparently, the dependencies

formulated by the mapping Sc and St exactly match with the dependencies formulated in the case

of the treatment-control model with logical AND interaction. The following parameter inferences

are based on the methods described in context of this model.

Parameter inference

Parameter inferences for this model with respect to the data of experiment 1-3 and the first

generation, respectively are graphically illustrated in Figure 4.4. For all experiments we see,

that the inferred confidence regions for the parametrization of the unordered parings describ-

ing the transitions from HSC state to MPP state are not remarkably different to the inferred

parametrizations in model 1. This can easily be explained by the fact, that the number of cells

dying under control conditions is very low. This leads to an inferred marginal survival probability

in the treatment-control model which is close to 1 and which nearly matches with the assumption

of no dying HSCs in model 1. Similar to the case in the basic model the maximum likelihood

estimated for θ lie all in the symmetric part K+. This behavior is significant for experiment 1

and 3, due to the corresponding p-values for the null-hypothesis H0 stating θ ∈ K0.
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Figure 4.4: Experiment 1-3, All Data: 95%-Confidence region and ML-estimates for the
parametrization of the binary parings describing the occurrence of differentiation events (green)
under the assumptions of Model 2 and death versus cell-division events under control conditions
(blue) and treatment conditions (red) in sibling pairs in generation 1.
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4.3 Model 3 (application of the special mixture model)

In the previous two models we assumed, that all information needed to infer the parametriza-

tion of the latent states of the daughter cells is given by 2-generation death labeled trees. This

has been enforced by assuming that cells, which loose their self-renewal ability will immedi-

ately die in the same generation. This assumption stands in contradiction to the results (see

Figure 3.3) of experiment 4 in which the survival times of purified MPP cells under treat-

ment conditions have been examined. The relative amount of cells dividing lies around 30

percent in this experiment, which emphasize that our assumption are a too vast simplifica-

tion, since it is a reasonable argument that this purified MPP cells should be effected even

more by TGF-β1 than cells we assume to just have undertaken state transition to MPP cells.

















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

Figure 4.5

However, so far there is no data which could

give us direct evidence for the death kinetic

of cells which just have undertaken state

transition to MPP cells. The motivation of

model 3 therefore is to make only very vague

assumptions about the exact effect TGF-β1

has on this cells. We do this by applica-

tion of the special mixture model. As ob-

servable unordered random pairing Y we use

the colony survival time tcolony (Figure 3.1)

of the corresponding cell sibling pairs. The

critical point of this approach is to make a

reasonable assumption for the class of distri-

butions describing the colony survival time

of HSC and MPP cells. Since survival pro-

cesses are commonly described by lognormal

or gamma distributions we did two model

inferences: One based on gamma distributed

components and one based on lognormal dis-

tributed components. This parameter infer-

ences are based on the colony survival time

of cell siblings of generation 1 and cells of

generation 0 are assumed to be HSC.

A minimal condition for a reasonable param-

eter inference based on this approach is, that under the assumption of the distribution class of

our components, the colony survival time of the considered cells is significantly better described

by a bimodal mixture distribution than by a not identifiable unimodal distribution.

At least under the assumption of lognormal distributed components we could show a significant

better fit for the case of two components using the approximation of the corresponding likelihood
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ratio statistic by the χ2-distribution with 5 degrees of freedoms proposed in [4]. However, as it

can be seen in Figure 4.6 this does not really coincide with the visual impression. In fact, in about

50% of all runs the likelihood optimization terminated in local minima or failed to converge at

all. We assume this instability to be the result of an inadequat description of the data by the

assumed mixture distribution.

The results of the parameter inference of this approach are graphically illustrated in Figure 4.8.

Since the complete parameter inference of the parametrization of the unordered binary pairing de-

scribing the fate of our cells is computational not feasible in reasonable time, we only inferred the

corresponding correlation level of the parametrization. Apparently the estimated confidence in-

tervals for the correlation lie above zero and the hypothesis of independent components is rejected

according to the corresponding p-values. However, we assume the bad convergence properties to

originate in a bad model fit. Conclusions on this basis seem to be questionable.

µ σ α µ1 σ1 µ2 σ1
111012DL6 4.0031 0.41934 0.53213 3.6166 0.4093 4.4427 0.067585
110603DL5 4.0099 0.40716 0.6166 3.6541 0.32333 4.582 0.011157
110722DL6 4.114 0.41514 0.037824 2.3573 0.36809 4.183 0.29092
All Data 4.0555 0.41822 0.18042 3.3498 0.63796 4.2109 0.23608

Table 4.2: Parametrization of maximum likelihood fits of plots in Figure 4.6 µ, σ refer to the
maximum likelihood estimates for the mean and the variance of the corresponding normal distri-
bution in the one component lognormal-fit. α refers to the mixing proportions in two component
model. µi, σi, i = 1, 2 refer to the maximum-likelihood estimates for the mean and the variance
of the corresponding normal distributions of the lognormal distributed components i=1,2 in the
two component model.
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Figure 4.6: Experiment 1-3, All Data: Estimated densities for the colony survival time of cells
of the first generation in the corresponding experiment under treatment conditions. Densities
have been estimated by using maximum likelihood fits under the assumption of one lognormal
distributed component (red) and two lognormal distributed components (blue), respectively.
Exact values of parametrization are given in table 4.2. The p-values for the Null hypothesis of
one component are 1, 1 ·10−3, 2.2 ·10−4, 5.7 ·10−3 for the experiments 1-3 respectively and 3 ·10−5

for all data. Black markers indicate observations considered for the inference.
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Figure 4.7: Data cleaning for model 3 inference: Experiment 1-3, All Data: Scatter plot describing
the colony survival time tcolony of cell sibling pairs in generation 1 under treatment conditions.
Each scatter point represents the colony survival of one cell sibling pair. Colony survival times
of cell sibling pairs which have both been fully tracked are colored in red color. Colony survival
times of cell sibling pairs where the tracking of at least one sibling’s colony has been aborted
before the end of the time lapse movie has been reached are not considered in the model inference
and are colored in blue color. Colony survival times where the tracking of the colony survival
time of both siblings terminated by the end of the time lapse movie are colored in yellow. Colony
Survival times where the observation of at least one sibling has been terminated by the end of
the time lapse movie and which fall not in one of the above mentioned categories are considered
as censored and are colored in green color.
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Figure 4.8: Parameter inference for special mixture model: Experiment 1-3, All Data: Relative
profile log likelihoods with respect to correlation of the binary pairing describing the occur-
rence of differentiation events in sibling pairs in generation 1 under the assumptions of gamma
distributed (red) and lognormal distributed (blue) components. Confidence intervals for the cor-
relation comprise exclusively positive values in experiment 1,2 and in the combination of the
experiments. Optimization of the profile log-likelihood in experiment 3 shows very bad conver-
gency rates. Constant behavior of the profile likelihood for negative correlation values are due to
the situation of a non identifiable one component best fit for the corresponding correlation level.



Chapter 5

Discussion

In the previous chapter we inferred the parametrization θ = (θ11, θ01, θ00)&, which describes the

probabilities that both cells, one cell or none of the cells in a sibling pair remain HSC. In this

part we will discuss the inferred results in context of our original question, which is whether we

can infer statistical evidence for asymmetric cell division in haematopoietic stem cells. To do so,

we first need to define how we link values of θ with asymmetric or symmetric division processes.

We do this in context of a model describing the assumed underlying biological processes. We

refer to this model as a the fate determining process. In the introduction we defined asymmetric

cell division as an asymmetric segregation of fate determinants during the cell division process.

In the following we formalize these terms as part of the fate determining process, which describes

the self renewal fates of the sibling cells and which can be represented as a binary pairing.

5.1 Fate determining process

We assume that a certain protein functions as a fate determinant in the differentiation process.

The self-renewal fate of a cell is determined by the amount of this fate determinant in the cell.

During the division process this fate determinant can either be segregated symmetrically or

asymmetrically along the daughter cells with probabilities β and 1 − β, respectively. If the fate

determinant is segregated asymmetrically, one daughter cell inherits the whole amount of this

fate determinant and is therefore determined to maintain its self renewal capacity until the next

division event. The other daughter cell does not inherit the fate determinant and therefore is

determined to loose its self renewal capacity (Figure 5.1a). If the fate determinant is segregated

symmetrically, it is distributed in approximately same amounts along the daughter cells. In this

case, we assume, that the amount of the fate determinant in each daughter cell is neither enough

to make it deterministically maintain its self renewal capacity nor is low enough to make it

deterministically loose its self renewal capacity. Instead, the daughter cells are undecided. Each
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daughter cell eventually maintains it self renewal capacity with a fixed probability π or looses it

with probability 1− π until the next division (Figure 5.1b).

Corresponding parametrizations

The above described fate determining process can be identified with a binary pairing with

parametrization

θ = β







π2

2π(1− π)

(1− π)2







&

+ (1− β)







0

1

0







&

.

In case all cells divide symmetrically, i.e. β = 1 the parametrization θ of the binary pairing lies

in K0 (Figure 5.1c). In case all cells divide asymmetrically i.e. β = 0 the parametrization of the

binary pairing is (0, 1, 0)& (Figure 5.1d). If the probability for a cell to divide asymmetrically is

not zero i.e. β < 1, then the parametrization lies in K− (Figure 5.1e). Note that values θ ∈ K+

can not be associated with any valid parameter values β ∈ [0, 1], π ∈ [0, 1] of this fate determining

process!
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Figure 5.1: Fate determinig process: Grey and red colored balls indicate HSCs or MPP cells,
respectively a) Cells dividing asymmetrically produce two cells of distinct cell fate by asym-
metrical segregation of the fate determinant b) Cells dividing symmetrically produce two cells
with undetermined cell fate. The daughter cells loose their self-renewal capacity independently
from each other by chance. Parametrization: c) Parametrization of the corresponding binary
pairings in case all cells divide asymmetrically, d) Parametrization in case all cells divide sym-
metrically, e) Parametrization in case of a mixture of asymmetrically and symmetrically dividing
cells.
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5.2 Composite model

In our application we performed the parameter inference for θ under assumption of certain de-

pendencies between self-renewal and survival fates. We formally described these dependencies as

the models 1-3. By combination of these models with the above described 3-state fate determin-

ing process, we get composite models (Figure 5.2). Within this framework parameter inference

of θ can be interpreted in the following way. If there is statistical significance for θ ∈ K− i.e. the

null-hypothesis H+ : θ ∈ K+ ∪K0 is rejected, then under assumption of the survival-self-renewal

fate dependency on which the inference of θ is based and the fate determining process described

above, we can conclude, that some of the observed cells divided asymmetrically i.e. there is ev-

idence for asymmetric cell division. It can also happen that there is statistical significance for

θ ∈ K+. However, as described in section 5.1 parameter values θ ∈ K+ can not be associated

with any valid parametrizations of the fate determining process i.e. the real biological process

determining the fate of the cells can not be described by the composite model. This can either

be because

1. the assumptions about the survival fate self-renewal dependency is correct, but the as-

sumption of the fate determining process is wrong.

2. the assumptions of the fate determining process is correct, but the assumption about the

survival fate self-renewal dependency is wrong.

3. the assumptions of both model parts are wrong.
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Figure 5.2

5.3 Discussion of inferred results

Regardless which self-renewal fate-survival fate dependency was assumed (model1-3), in almost

all cases we found statistical significance for θ ∈ K+. In few cases the null-hypothesis H0 : θ ∈
K0 ∪K− was not rejected i.e. the fates of sibling cells are positive correlated. There was no case,

where we found statistical significance for θ ∈ K−.
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That means that in almost all cases of inference the real biological process determining the fate

of the cells can not be described by the corresponding composite model. In particular, there is

no case, where we can deduce evidence for asymmetric cell division. Under the assumption of our

models used for the inference of θ, we can conclude, that we can not describe the self-renewal

fates of sibling cells with this fate determining process. Possible explanation for this case are cell

to cell communication, extrinsic factors, or any effect, which makes sibling cells choose correlated

fates. However it is also very likely that we inferred this results because of to simple assumptions

for our parameter inference. Here, we discuss potential shortcomings of the presented methods.

5.3.1 Contamination of experimental data

As mentioned in Chpater 4, the cells in the experiments used in our analysis are assumed to

comprise 30%-70% HSCs[16]. The other cells in the experiment are assumed to be MPP cells or

cell with even lower differentiation potential. However, in all models we assume that the mother

cells of the cell sibling pairs are HSCs. Therefore, we presumably accounted up to 70% percent of

the cells falsely as HSCs. This might bias the estimate of the correlation in the inference on the

first generation into positive direction: It seems likely that the high amount of trees, where both

siblings died in generation 1 are a consequence of this contamination. This is supported by the

fact that in experiment 4b which comprises only MPP cells, all cells died at latest in generation

1 (Figure 3.3).

5.3.2 Missing vertical dependencies

Contamination of the experimental data might explain the symmetric results for the estimate

of θ in the first generation, but it is unlikely that it has effect on the inference of θ in higher

generations. However, HSCs, which differentiated to MPP cells in the first generation can be

assumed to have a similar contamination effect on the inference of θ i.e. cells, which differentiated

to MPP in generation 1 will be falsely accounted as HSC for the inference of θ in the second

generation. As we demonstrated in Figure 5.3, such delay effects can completely distort the results

of the inference of θ. The reason why we neglected this kind of effects so far is that modeling

of vertical dependencies between cells of different generations requires a more general approach,

than binary pairings, which can only be used to model horizontal dependencies between sibling

cells. In the outlook chapter of this thesis, we will briefly sketch a suitable approach which can

be seen as generalization of binary pairings.

5.3.3 Mixture effects

For a given sample x(1), . . . , x(n) inference of the parameter θ only makes sense, if we can assume

that x(1), . . . , x(n) are realizations of a random sample of binary pairings X(1), . . . , X(n), where

all sample components are independent and identically distributed. If the underlying sample
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Figure 5.3: Illustration of a process with vertical dependencies : Generations are enumerated
relative to the start of observation. As in our applications the self-renewal fate of cells is as-
sumed to be not observable. Death events can be observed. HSC are assumed not to die and
divide asymmetrically producing two cells of distinct self-renewal fate i.e. θ = (0, 1, 0). MPP cells
resulting from an asymmetric cell division divide once producing two daughter cells which die
before dividing. Analysis with model 1 of a sample based on this process would yield a maxi-
mum likelihood estimate for θ of (0.5, 0, 0.5)&, which is a perfectly symmetric parametrization.
Apparently this result of inference would be totally wrong!
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components X(1), . . . , X(n) are not identically distributed, it follows from theorem2.4.1 that the

inference of θ yields systematic overestimation of the corresponding correlation between the

binary pairing components, which can easily result in θ ∈ K+. In the following we present two

cases, where we have evidence that the assumption of identically distributed components in our

samples is wrong.

Heterogenity in the HSC population

The basic assumption for all our models so far is that we can model the self-renewal fate as

a dichotomous feature and that the self-renewal capacity of a cell fully characterize a HSC

which justifies that we describe the fates of daughter cells of HSC with identical distributed

binary pairings. However the assumption of homogeneity within the haematopoietic stem cell

population contradicts with experimental results, which have shown, that haematopoietic stem

cells differ widely in their behavioral and molecular properties [16]. Therefore, it is questionable

to model the fate of the daughter cells of HSC by identical distributed binary pairings. A falsely

assumed homogeneity can lead to an overestimation of the correlation between the fates of the

daughter cells [2].

Time dependency of the marginal probability π

In order to avoid mixture effects, we already performed the inference of θ in model 1 separately

on all generations. We showed that the marginal survival probability π is significantly decreasing

with higher generation. However, since the time point at which a cell division occurs and the

generation of the corresponding mother cell are highly correlated, we can presume that this

decrease might origin in a time dependency of the marginal survival probability π. Since division

events in each generation are widely dispersed over time, this would also cause a mixture effect

for the inference of θ. In order to test a time dependency of the marginal survival probability we

performed for each generation and experiment a logistic regression (Figure 5.4) using the time

points of divisions as predictor variables and the number k = 0, 1, 2 of corresponding daughter

cells which divide as response variables. The results are very different among the experiments, but

at least in the regression over the data of all experiments, the decrease of the marginal survival

probability π over time is significant in all generations. That means, that in most cases we have

a decrease of the survival probability for the daughter cells within one generation i.e. cells origin

from cell divisions occurred early in the experiment have a higher probability to survive, than

cells in the same generation originating from later division events. We presume, that this kind

of mixture effects can be solved with a suitable regression approach where we assume a constant

correlation coefficient over time.
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Figure 5.4: Logit fits for the marginal survival probability π: Experiment 1-3, All data. Time
points of divisions of cells in generation 1-4 and all generations, respectively are used as predictor
variables and the number k = 0, 1, 2 of corresponding daughter cells which divide are used as
response variables. The result is very different among the experiments. In the regression over the
data of all experiments the decrease of the marginal survival probability π over time is significant
in all generations. It follows from the corresponding p-values, that in most cases of decreasing
fits this behavior is significant.



Chapter 6

Outlook

As we have shown in chapter 5 the attempt to show evidence for asymmetric cell division by a

quantitative analysis on cellular genealogies faces many problems. Some of these problems might

be solved in the future with better experimental methods (section 5.3.1) and some might be

unfeasible, like a strong heterogeneity within the HSC population (section 5.3.3). We showed by

a simple example that ignoring vertical dependencies within the genealogy can lead to wrong

inference results. In order to cope with such dependencies between cells of distinct generations,

we need a more general stochastic description for cellular genealogies. A very general approach is

to model the development of a cellular genealogy as a probability measure on the labeling space

of an infinite binary labeled tree. In order to be consistently defined, such measures need to be

invariant under graph isomorphisms, since sibling cells are not ordered in cellular genealogies.

Such probability measures can be defined recursively by a markov random field structure. Based

on this idea, one could extend model 1 such that MPP cells do not deterministically die before

division but with a certain probability produce two dying daughter cells, therefore delaying the

cell death for one generation. Using this approach we account for such delay effects that cause

artificial symmetry and might finally find evidence for asymmetric cell division.
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