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Abstract

The unique properties of embryonic stem cells (ESCs) and their potential usage in future
medicine have raised the research endeavors worldwide. ESCs are capable of producing all
cell types in the body of mammals and thus serve as a putative source for patient-specific cell
therapies, alleviating cancer or eliminating the rejection of donated organs by breeding them
in vitro. Despite several breakthroughs in deciphering the regulatory mechanisms of these
cells, numerous secrets are far from being disclosed. The question of how they are capable of
indefinite reproduction on the one hand and the creation of more than 200 functional cell types
on the other hand has been treated by experimental and theoretical research. Laboratory
experiments have created large amounts of data, and computational studies have further
revealed valuable insights. Due to the complexity of the system, wholistic modeling is hardly
applicable. Instead a multi-stage approach has been proposed, covering different aspects
from noisy chemical reactions to system-level dynamic patterns. In this work, a Boolean
regulatory network describing the first lineage decisions of a murine embryo is constructed
of key transcription factors and its properties under different culture conditions analyzed.
Additionally, the robustness against perturbations is assessed and the approach is compared to
former studies. From this model, two biological hypotheses are conjectured and experimental
strategies for their resolution are proposed. We propose a suppressive function of LIF on
the inhibition of Nanog by Gata6 and Genf, and a similar function of Activin on the action
of Erk, disallowing the suppression of Nanog and Oct4 by Erk if Activin is present. As
the qualitative states of a Boolean network are not sufficient on a single gene scale, the
heterogeneous expression of Nanog in murine ESCs is quantitatively analyzed with single cell
time-lapse movies. An asymmetry in the allocation of Nanog molecules to nascent daughter
cells and a substantial loss of Nanog during cell division are surveyed. The cell cycle times of
the ESCs are shown to be independent from their Nanog expression level, and the existence
of a slowly fading expression memory is revealed. With the help of a simple molecular model
these features are studied as possible sources of the heterogeneity, revealing the high relevance
of the asymmetric division. Additionally, former models of the heterogeneity in Nanog are
validated against the data, indicating their possible inadequacy. The high impact of close
experimental and theoretical collaboration is underlined with this work.
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Zusammenfassung

Die einzigartigen Eigenschaften von embryonalen Stammzellen (ESCs) und ihre méglichen
zukiinftigen Anwendungen in der Medizin intensivierten die Forschung auf diesem Gebiet welt-
weit. ESCs besitzen die Fihigkeit, alle Gewebe und Zelltypen des Korpers in einem Sdugetier
zu bilden und sind deshalb eine geeignete Quelle fiir patientenspezifische Zelltherapien. Diese
konnten beispielweise dazu dienen, Krebs zu behandeln oder durch spezifische Ziichtung von
Organen in wvitro die Abstoflung von transplantierten Organen zu umgehen. Trotz zahlrei-
cher Fortschritte im Verstdndnis der regulotarischen Zusammenhénge dieser Zellen sind noch
viele Geheimnisse ungeliiftet. Sowohl die experimentelle als auch die theoretische Forschung
beschéftigt sich mit der Frage, wie Stammzellen einerseits unbegrenzte Selbsterneuerung und
andererseits die Erzeugung von mehr als 200 Gewebetypen des Korpers intern ausbalancieren
und regulieren. Experimente im Labor haben mittlerweile zu umfangreichen Datensammlun-
gen gefiihrt, und theoretische Studien haben in Zusammenarbeit damit weitere wertvolle Ein-
sichten erbracht. Auf Grund der Komplexitét des Systems ist eine vollstdndige Modellierung
von Stammzellen im Computer nicht erreichbar. Stattdessen wurde ein Multiskalen-Ansatz
vorgeschlagen. Die Idee dahinter ist die Abbildung von Vorgéingen auf einer bestimmten Ebe-
ne des Systems, von verrauschten chemischen Reaktionen bis zu systemweiten dynamischen
Vorgéngen. In dieser Arbeit wird ein Boolesches Netzwerk mit zentralen Transkriptionsfak-
toren erstellt, welches die ersten Differenzierungen in einem M#useembryo beschreibt. Dessen
Eigenschaften werden under verschiedenen Kulturbedingungen analysiert. Zuséatzlich wird die
Stabilitit des Netzwerks gegen Storungen gemessen und ein Vergleich mit fritheren Studien
gezogen. An Hand der Ergebnisse werden biologische Hypothesen aufgestellt und mogliche
experimentelle Methoden zu deren Evaluation vorgeschlagen. Wir vermuten, dass LIF eine
einddmmende Wirkung auf die Inhibition von Nanog durch Gata6 und Genf ausiibt. Parallel
dazu gibt es Hinweise auf eine #hnliche Funktion von Activin, das die inhibierende Wirkung
von Erk auf Nanog und Oct4 aussetzt. Da die qualitativen Zusténde in einem Booleschen
Netzwerk auf der Ebene von einzelnen Genen nicht ausreichend sind, wird die nicht ein-
heitliche Expression von Nanog in Méuse-ESCs mit Hilfe von Einzelzellen in Zeitrafferfilmen
quantitativ analysiert. Wir beobachten sowohl eine Asymmetrie in der Zuteilung von Nanog
auf neu entstehende Tochterzellen als auch einen substanziellen Verlust von Nanog wéhrend
der Zellteilung. Wir zeigen die Unabhéngigkeit der Zellzyklenzeiten von der Menge an Na-
nog und die Existenz eines langsam verblassenden Expressionsgedéchtnisses. Mit Hilfe eines
einfachen molekularen Modells werden diese Eigenschaften als mogliche Quellen der Hete-
rogenitit analysiert und dabei der bedeutende Einfluss der asymmetrischen Zellteilung her-
ausgestellt. Zusétzlich werden mit Hilfe unserer Daten bestehende Modelle der heterogenen
Nanog-Expression evaluiert und deren moégliche Probleme dargestellt. Der positive Einfluss
der engen Zusammenarbeit von experimenteller und theoretischer Seite wird durch diese Ana-
lysen hervorgehoben.
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Chapter 1

Introduction

“Life is a study in contrasts between randomness and determinism” [139]. This citation defines
the vital necessity of life to find a balance between both extremes, the inherently random
nature of chemical processes on the one hand, and the execution of precisely defined actions
on the individual or population level on the other. Since this task seems challenging and prone
to errors, it is astonishing how tremendously complex life on earth can be. To unravel the very
nature of this balance has been a desire of many researchers in the last decades, especially in
the field of mammalian development. Developmental biology is engaged with the processes
that define the way from a fertilized egg cell (zygote) to a fully grown individual, be it
human, mouse or chimpanzee. On a cellular level, the pathways of development are already
understood quite well (see [84] (158 [168] for reviews), but the subcellular mechanisms behind
these ways are far from being conceived. A key role in this development is played by stem
cells, subject of both laboratory and theoretical studies.

1.1 The importance of stem cells

A stem cell is defined as a cell with two pivotal properties: the ability to regenerate itself
for an indefinite time and the ability to give rise to cells with different phenotypesE] The
first action is termed self-renewal, while the latter is coined differentiation, referring to the
separation of distinct functional lines of cells from one common progenitor. Stem cells are
split into various subtypes, according to their origin and developmental potential. The first
distinction is made between embryonic (taken from unborn embryos) and adult (taken from
grown individuals) origin. The second distinction is defined by the number of different cell
lineages a stem cell can generate. The least restricted cells are called totipotent (or omnipo-
tent) stem cells, which are able to give rise to all organismic and extra-embryonic lineages.
Usually only the zygote is totipotent. The second most potent stage form the pluripotent
stem cells that can differentiate into all lineages of the body, but not extra-embryonic ones.
A certain type of cells extracted from the Inner Cell Mass (ICM), a tissue forming during the
early development of a mammalian embryo, is called embryonic stem cells (ESCs). These are
pluripotent and give rise to all three germ layers (mesoderm, endoderm, ectoderm) that form
the body and the germ cells, which are necessary for reproduction. More restricted are the
multipotent cells that can produce offspring cells of usually more than one functional type
of one lineage. An example are hematopoietic stem cells (HSCs) that produce all blood cell

'Definitions are leaned on [47, [76} [196].
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types, or neuronal stem cells (NSCs) which can generate all cell types of the brain. The stem
cells with the least potential are the unipotent ones, which give rise to exactly one cell type,
like e.g. spermatogonial stem cells producing only sperm. Adult stem cells in general have
less developmental potential than embryonic ones, since there are no adult omnipotent or
pluripotent stem cells. Adult or embryonic progenitor cells (PCs) also have the ability to dif-
ferentiate into other cell types of one or multiple lineages, but lack the long-term self-renewal
ability of stem cells.

The first idea about the existence of stem cells was born in the 1950s after the atomic bomb
drops over Hiroshima and Nagasaki, where many people died from degenerative diseases
shortly after the disaster. The diseases primarily arose from the radioactive destruction of the
hematopoietic stem and progenitor cells, impairing the production of fresh blood cells [184].
Some decades after this initial discovery, several other types of stem cells were identified and
their putative medical potential has constantly increased. Nowadays they are considered as
a great hope for curing heritable diseases, cancer or other genetic defects, for fundamentally
eliminating the problems with blood and organ donations by breeding patient-specific artifi-
cial tissues, for in vitro drug screening, and also for understanding the essence of mammalian
development [190} [193]. ESCs play a special role in this concert with their putative ability to
generate whole tissues in vitro, which is already under clinical trial for several mesenchymal
stem cells [59, 149], optic-cup formation [45] and othersE] During the last decades, great
progress has been achieved in the field of stem cell research, but many key questions still
remain open.

1.2 Ethical considerations

Simultaneously with the successful derivation of human embryonic stem cells (hESCs) ethical
issues concerning this research field were raised. Although ESCs (both murine and human)
can be maintained and expanded in vitro for indefinite time, if appropriately cultured, the
first isolation requires the killing of unborn organisms. This has not been a great issue for
mice, but the more for humans, as many religious and ethical groups oppose to the usage of
human embryos and hESCs in research or their genetic modification. They claim that life
starts with fertilization of the egg, bestowing the right to life and physical integrity also on
unborn potential beings. The result of the ongoing discussions is a separation of countries
into countries that allow research with hESCs rather easily (e.g. Great Britain or Singapore),
while others more or less severely restrict it (e.g. the USA or Germany). Nonetheless, the
debates help to clarify the concept of human dignity and also shed light on the relation
between possibly curing ill people on the one side and destroying embryos on the other side.
A recent breakthrough to bypass the ethical problems was achieved in 2006, when a Japanese
group reported the derivation of induced pluripotent stem cells (iPSCs) from fibroblast (skin)
cells [I67]. The iPSCs do not require fresh embryonic tissues anymore, but cells taken from
the skin of adult organisms and are then reprogrammed with defined factors (either proteins
or chemicals) in vitro. This seminal study gave rise to the search for human equivalents, and
in 2007 the same group reported the induction of human iPSCs from adult human fibroblasts
[166]. Although the complete equivalence of iPSCs and true ESCs has been falsified in some

2See e.g. http://clinicaltrials.gov/ct/search?term=stem+-cell&submit=Search for current clinical trials with
stem cells.
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aspects (e.g. chromatin structure [86] or gene expression [34]) and some of the reprogramming
factors are actually oncogenes (that can trigger cancer), these issues are currently under
focus to be resolved [68], 97, 189, [190] and a very active research community is dealing with
improving the induction protocols and understanding the mechanisms behind it [65] 1T2].
The ethical controversies are continuing, and although a resolution might seem near at hand, a
completely different approach could help to alleviate the concerns about genetic modifications
of organisms and embryonic research: computer aided or theoretical stem cell research.

1.3 Previous studies about embryonic stem cells

In the following, the numerous experimental and theoretical studies about ESCs are shortly
summarized.

1.3.1 Experimental studies

The ESC system is studied in many laboratories all over the world. The main model organism
in the laboratory is the mouse (Mus musculus), a welcome research organism which is easy
to breed and which develops rapidly with only three weeks from fertilization to birth. Mice
and men share about 90% of the genome and many results from mouse are transferable to
human [I83], but there are often fundamental differences especially in the early development
[193]. In particular, the ESC lines derived from both species differ in their signal response
pathways and possibly their developmental stage, which resulted in 17 years of delay from
the first derivation of murine ESCs (mESCs) [48, [107] to the first isolation of human ESCs
[173].

Through numerable experimental studies, the transcription factor network behind pluripo-
tency has been unraveled both in mouse [101] 132, 177, 181] and human [I5] (see [31} [85] for
combined studies), and the core triad of the genes Nanog, Sox2 and Oct4 has been estab-
lished as the key regulatory entity in ESCs [127]. Additionally, epigenetic modifications like
histone accessibility [10, [50} 55, 113] or methylation and acetylation [52] have been identified
as essential for pluripotency. Only recently, Ronin was discovered as an essential epigenetic
factor that acts independently of the established triad [43]. Regulation on the mRNA level
of genes is performed by microRNAs, where ESCs have been found to contain a unique set of
[56, (70, [169] 170} [188]. The roles of these microRNAs are diverse, from reducing noise over
controlling the cell cycle to enabling rapid response to external stimuli in differentiation.
After a seminal publication [27] in 2007, which reported the heterogeneity of Nanog abundance
in ESCs, several pluripotency-associated genes were found to be far from homogeneously ex-
pressed [66, 174]. These findings shifted the paradigm of a homogeneous ESC population
towards a stable, but heterogeneous steady-state distribution of cells with different combi-
nations of expression levels, defining pluripotency as a stimulus-sensitive ground state with
promiscuous gene expression [61, 116} [123], 155] 160, 192] 196].

Several studies have delved into the role of noise in pluripotency and development, resulting
in the acknowledgment of fluctuations as an essential driving force of development rather than
a nuisance to be eliminated [46], [71], 99, [135], [141].

Altogether, the regulation of ESCs is understood at different levels, from the noisy expression
patterns of single genes up to large deterministic transcription factor networks.
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1.3.2 Computational modeling

The increasing knowledge about embryonic development and pluripotency of mammalian cells
has also raised the need for theoretical models to cope with the growing amount of data. The
ideal goal would be to model a cell with all its regulatory levels on the computer and to com-
pletely simulate experiments in silico instead of taking the burden of slow and error-prone
laboratory work. However, even a single cell is tremendously complex and it will clearly
never be possible to incorporate the different and intertwined regulations into one model.
Thus computational simulations or theoretical analyses can only focus on certain aspects of
regulation at a time. But these single aspects can often be combined to a large picture of
regulation, which is then termed multi-scale modeling. Nonetheless, this has often lead to
valuable insights and hypotheses or spared experimentators from potentially futile work.

A systemic perspective has been pursued and become standard in the modeling of pluripo-
tency regulation, laid out in several studies which try to decipher the dynamics of transcription
factor or protein networks in ESCs. An overview of the models described here and discussed
in the following chapters is given in Table For example, Chickarmane et al. [33] im-
plemented the core triad of Oct4, Sox2 and Nanog and associated genes as a deterministic
all-or-nothing switch (with ordinary differential equations, ODEs) that is able to capture the
differentiation of embryonic cells into separate functional lineages (Primitive Endoderm [PE],
Trophectoderm [TE] and pluripotent stem cells). A similar approach (with stochastic differ-
ential equations, SDEs) persecuted the cascade-like unidirectional differentiation of ESCs into
three other cell lineages (osteogenic, chondrogenic and adipogenic) [I04]. The authors also
studied possible mechanisms to reprogram the terminally differentiated cells into pluripotent
iPSCs, and found that amplification of the inherent transcriptional noise is sufficient for re-
programiming.

The heterogeneity of protein expression levels inspired the construction of systems that re-
produce this pattern by the incorporation of regulated fluctuations. In [78], the authors study
an excitable system composed of only Nanog and Oct4. It tries to explain their experimental
findings about the heterogeneity of Nanog and homogeneity of Oct4, but fails in vital aspects
(see chapter [3| for details). The authors in [60] study two distinct systems that each are a
possible explanation for the observed heterogeneity of Nanog. One model incorporates pro-
tein production noise as the only source of diversity, while the other utilizes an additional
hypothetical protein and a negative feedback loop to produce oscillating expressions of Nanog.
Two experimental strategies are designed to distinguish between the two models, one on pop-
ulation level and the other one on single-cell level.

An intriguing study showed that imperfect cell divisions with random allocation of cell con-
tents to the daughter cells can result in exactly the same patterns of heterogeneity as tran-
scriptional or translational noise, putting previous conclusions from experimental observations
into question [73].

Theoretical descriptions of models for protein expression have been studied for almost a decade
now, allowing, for example, the estimation of expression [90] or network [120] parameters or
the distinction of diverse noise sources [165].

In [I4], the author suggests a multi-scale approach to capture all features of cell regula-
tion. On the one hand, highly detailed molecular models try to capture all essential chemical
aspects of gene expression, from promoter status over transcription and translation to post-
transcriptional or post-translational modifications, but cannot explain higher-level dynamics
of individual cells. On the other hand, large-scale deterministic gene regulatory networks (e.g.
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Authors ‘ Model ‘ Cell type(s) ‘ Main aspect

Chickarmane et al. [33] | ODE | Murine embryo | Differentiation of zygote into four dif-
ferent lineages

MacArthur et al. [104] | SDE | mESC Hierarchical differentiation of mESCs
into three lineages

Kalmar et al. [78] ODE | mESC Fluctuating Nanog levels as an ex-
citable system
Glauche et al. [60] ODE | mESC Two distinct models of fluctuating

Nanog levels

Table 1.1: Theoretical models of mESC/embryonic properties and differentiation. For each model the
mode of implementation is given in the second column, the organism and cell type studied in the third
and the main aspect of this model in the fourth column.

Boolean networks) can account for cell behavior on a coarse level, but do not consider the
details and inherent stochasticity or indetermancy of chemical reactions. Thus each model
has its own scale and range of explanation. But in order to gain wholistic insights into cells,
diverse levels have to be regarded.

1.4 Embryonic development

A scheme of the zygotic development of mouse is shown in Figures and In the first
figure the development of a murine embryo until the late blastocyst stage is shown. In the
second figure the schematic development of a murine zygote into all extraembryonic and em-
bryonic tissues over numerous rounds of division and differentiation events is depicted. Each
developmental stage or cell type has a unique set of genes that are expressed or not expressed
(in the rounded boxes aside each stage), and many of the transitions between two different
stages can be triggered by certain genes (denoted along these edges). The marker genes are
not exhaustive, but represent a manually selected subset of genes curated from literature.
Note that the transfer of in vitro results from ESCs, which might be a cell culture-dependent
artifact not occurring in normal development, to true in vivo events is an open issue. How-
ever, the study of differentiation and self-renewal mechanisms in ESCs can generate valuable
insights and accumulate knowledge, which could be relevant for later application, e.g. in cell
therapy.

1.5 Aim of this thesis

One of the questions currently addressed in stem cell research is how the pluripotent ESCs
manage to tilt into the direction of either self-renewal or differentiation on demand. These
processes are supposed to be under tight regulatory control [63] since they lay out the basis for
all future developments of the organism and any disbalance could result in lethal damage. This
thesis will deal with different levels of abstraction of this balance in mESCs. Two distinct
systems are studied, both following current trends in research. A deterministic Boolean
network incorporating defined culture conditions is analyzed in chapter[2] The expression of a
single gene is studied and stochastic molecular models are analyzed in chapter|3] Implications
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E0.5 E1.0 E1.5 E2.0 E2.5 E3.0 E3.5 E4.0

Zona pellucida Partially Cdx2-positive

Zygote Two-cell Early
blastocyst Late
blastocyst
%
zo
%,
%

Figure 1.1: The development of a mouse embryo from the zygote (E0.5) until the formation of the late
blastocyst (E4.5) after the implantation of the early blastocyst into the uterus. The numbers in the
top row denote the days of embryonic (E) time after the fertilization. In the late blastocyst, the green
cells represent the Primitive Endoderm (PE) tissue (Gata6 positive), the red cells the Trophectoderm
(TE) tissue (Cdx2 positive) and the blue cells the Epiblast (Epi) cells (Oct4 and Nanog positive).
In the early blastocyst, the yellow cells are the ICM cells (Oct4 positive). The image is taken and
modified from [36].

for future research are investigated in both approaches.

The close collaboration with the Institute for Stem Cell Research at the Helmholtz-Zentrum
Miinchelfl is a vital aspect of this thesis since our results can directly be incorporated in the
laboratory investigations there and some of the experimental propositions deduced from our
models are already being tested in the laboratory. Thus both sides benefit from the close
contact, which allows our models to be fit to real data (in this case, unique single cell time-
lapse movies) but also helps the experimentators to gain further insight into the secrets of
ESCs.

3http://www.helmholtz-muenchen.de/isf/haematopoese
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ZP3(N7), Fig-alpha(N7), Stella(N7), Oct4(B6),
Sox2(B6), Nanog(G0), Gata6(G0), Esrrb(GO)

[Cdx2(N7),
inh. by Sall4(Y9)] [Oct4ND] _/®
[ Trophecto-
derm (TE)

[Eomesodermin(S5)]

| Zygote

Cdx2(N7), Genf(N7), Erk1/2(16),
-Fgf4(G0), Gata6(G0), Tpbp(NO), 1d2(G0),|
-Oct4(P7), -Sox2(P7), -Nanog(P7)

Inner Cell | Oct4(B6), Sox2(B6), Esrrb(16), miR302(MOb), Fgf4(A9),
Mass (ICM)| Nanog(B6), Rif1(B6), -let7(MO), Jarid2(B6), Tcl1(B6),
I Tbx3(B6), Rex1(W8), Sall4(V0), -Fgf5(E9), Stella(E9),
Gata6(P7), miR290(M0), KIf4(N9)

[Nanog(N7)] [Gata4(F2), Gata6(N7), Sox17(MOa)]

Sox2(N7), Oct4(N7), Otx2 (16),

Extraembr. | Hand 1(N0), Epiblast | -Gata6(GO), Nanog(N7), -Rex1(W8), | [ FriMiVe | Garaa(Cs), Gata6(C8), -Cdx2(A9), Sox17(M0a),
Ectoderm | Sox2(A3) (Epi)  [Pitx2 (16), Fgf4(GO), FgfS(LO), Tcf3(M8), 0 -50x2(G0), Sox7(V9), -Nanog(G0), ~Fgf4(GO)
Let7(M8), Sox18(16), -Stella(E9), T(HO),
-miR145(X9), Smad1(S9), -Gsc(Y5),
-Sox17(Y5), -Cdx2(G0)
[inh. by Esrrb, Thx3, Tcll (16)]
Primitive |Fgf5(W8), Nanog(K0), Visceral FoxA2(B0), uPa(B0), Parietal
Ectoderm |-Rex1(LO), -Stella(LO) Endoderm [Gata4(C8), -Gata6(C8), |[ gndoderm | Cta4&6(C8), tPa(B0)
-Gsc(Y5), Sox17(Y5),
Lefty(E9), Otx2(P7)
[Blimp1(S9b),

BMP4(09), Wnt3a(09)]

Nanog(B6), Stella(L6),
Germ Cells | c_kit(L6), Oct4(B6), DAx4(S6),
Sox2(B6), Esrrb(B6)

Somatic
Cells

-Oct4(N7), -Nanog(N7),

-Stella(S9), ~-miR290(MOb) Yolk sac

[BMP4(K5), Fgf(Z0), miR145(X9),
miR302(10), inh. by Sox2(16)]

Primitive
TKS), Gscl)

[Fgf(0),
inh. by miR302(10)]

Ectoderm | “50,5(v9), Cxcl12(16)

Otx1(M8), mir708(M8), ]

[miR133(10)]

T(W8), Sox6(M8), mir708(M8), Sox17(M0a),

Mesoderm | Smad1(S9), Gsc(16), Endoderm 511 (i6), Foxa2(16),

- -Sox17(Y5) - :Gsc(Y5)

[BM P4(K5)1;

Neuronal
precursors

Tbx18(A9), Gsn(A9), Let7(M8),
-Nanog(B8), -Sox(B8)

Sox2 (B6) ] | MEF |

Figure 1.2: The developmental path of a murine zygote. Each developmental stage or cell type is
associated with a distinct set of expressed or absent(-) genes, noted aside each stage in the rounded
boxes. The codes (letter + number) after each gene reference to the study the expression state
has been taken from. A map of these codes to the original studies is provided in Appendix .1}
Transitions between stages can often be triggered by the expression or suppression(-) of certain genes,
denoted by gene names along the edges. ESCs are derived from the Inner Cell Mass (ICM), but occur
only transiently in the normal developmental path of mouse. The dotted lines summarize several

differentiation steps into functional cell types.
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Chapter 2

Boolean networks of embryonic
development

2.1 Boolean networks

In this chapter, the applicability of Boolean networks to model the first stages of murine
embryonic development is studied.

2.1.1 Background

To study dynamical properties of a gene regulatory network (GRN) on a large scale, a Boolean
network can be used. A Boolean network is an ensemble of players (e.g. genes) which
are either present (on) or not (off) with connections between them. These networks are
named in honor of George Boole, an English mathematician, who invented the mathematics
of logical reasoning. Despite their simple structure such networks can depict certain aspects
of real processes very well. In a seminal publication from 1969, S. Kauffman proposed a
random Boolean network and stated its applicability for biological questions [79]. Successful
application in biology has been shown in several follow-up studies, for example analysis of
T cell signaling [145] [185], segmentation of the Drosophila embryo [3] and the control of the
mammalian and yeast cell cycle [49, 41]. A recent publication used a Boolean network to
study the differentiation of hematopoietic stem cells from common myeloid progenitors into
four mature blood cell lineages [92]. In [I86] an extension of the two states of a Boolean
network to multiple discrete states is performed and the biological relevance shown.
The main reason for studying a Boolean network is its capacity to model systems on a large
scale and its lacking requirement for detailed kinetic parameters (which are often not known).
In this chapter a class of Boolean networks is set up to understand the first cell division
and differentiation events in a developing mouse embryo: from the fertilized egg (zygote) to
the formation of the 64-cell blastocyst with Trophectoderm (TE), Primitive Endoderm (PE)
and Epiblast (Epi) cells. The latter two cell types are descendants of the Inner Cell Mass
(ICM), as depicted in the upper part of Figure The modeling process consists of two
parts: in the first part we show that a Boolean network is sufficient to derive qualitative
results that are consistent with the biological knowledge of the analyzed cell system. In the
second part the Boolean network is extended to gain further insights into both the influences of
various culture conditions and the development beyond the blastocyst stage. All networks are
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validated against knowledge of murine embryogenesis. Robustness measures are calculated to
test the stability of the networks, and testable biological hypotheses are derived. A workflow

Petri net is shown in Figure [2.1
Model
capacity
hickarmane Data Boolean Network Inter- :
et al. (2008) > integration | networks analysis —_I l |—> pretation T?::irgelf]'tc:l

Network Biological
Expression
patterns

motifs hypotheses
Figure 2.1: The Boolean analysis pipeline. The workflow is modeled as a Petri Net, a bipartite graph
connecting states (data or results, in circles) with transitions (actions, in squares) [136].

P99

2.1.2 Definitions and concepts

There are various ways to define a Boolean network [82]. In this WOI‘kE| a Boolean network M
comprises a directed graph G with n nodes, in which each node 7 represents one geneﬂ and has
incoming edges from k; other genes. A state s(t) = (s1(t),...,s,(t)) of the network at time ¢
is a vector of the states of all nodes at time ¢. The state of node i at time ¢, s;(t), is a logical
(Boolean) function f; of its input gene states at time t — 1, s;(t) = fi(s;, (¢ —1),...s;, (t—1)).
The collectivity of all f; is F, and together with G it defines the Boolean network corlnpletely,
M = (G,F). The state space S of a Boolean network is defined as the set of all possible
states of the network and consists of 2" nodes. The state transition graph T = (T, Tg)
is a directed graph with the nodes Tg C S and the edges Tg representing all allowed
transitions in the network (a directed edge between two states s(t) and s(¢ + 1) is present
iff the transition from s(¢) to s(¢ + 1) is possible). It can be calculated (possibly for a given
initial state) asynchronously, where exactly one of the possible updates in a certain state is
chosen by some preference function, or synchronously, where all updates are performed at the
same timeﬁ In this work only asynchronous updates are used and the preference function is
uniformly distributed, assigning equal probability to each edge. An attractor of the network
is a state with no outgoing edges (excluding self-loops). This implies that once an attractor
is reached it cannot be left anymore (Vi € {1...n} : s;(t + 1) = s;(t)). The basin of an
attractor is the set of all nodes that exclusively converge into this attractor. The potential
of an arbitrary state is the set of attractors this state can fall into. Potentials and basins

'The notion of definitions is largely based on [J1].

?In this chapter, genes, proteins and mRNAs are subsumed as single units (no distinction).

3Synchronous updates are of questionable use in biology, as many biological processes have an underlying
stochastic nature, rarely enabling transitions to happen at the very same time.
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can be used to analyze the hierarchy of the state transition graph. A shortest path between
a given pair of nodes is defined as the path with the minimum number of traversed edges.
From this, the betweenness of a node is the number of shortest paths that run through it
[121]. Note that there are also other betweenness measures, e.g. based on random walks [12].
If a node in T has a high betweenness it possesses a possibly large destructive potential if
knocked out [121], a putative indication of an important role in the network. In the following
betweenness is measured in relative terms with values from 0 to 1, increasing from the lowest
(0) to the highest betweenness (1) (within the given graph).

2.1.3 Capacities and limitations

A Boolean network is qualitative by nature. Qualitativeness implies clearly distinctive results,
like existence statements, stability measures or hierarchies, with the input of only qualitative
data. This is especially important with respect to biology because many data sources only
provide qualitative information, namely expression or absence of a gene (but not its precise
level) or the type of a regulatory interaction (but not the strength of the effect). The non-
quantitative design allows for a parameter-free analysis, a property highly valuable when
precise data is lacking. Additionally, a Boolean network is easily extensible with new nodes
or interactions. Last but not least, the simple notion allows for the creation and analysis of
large networks that would otherwise neither be analytically tractable nor interpretable, for
example when modeled with differential equations or stochastic models [I4]. This feature
is extremely helpful in the light of systems biology, where functional modules and global
dynamics are of interest rather than a fine-grained examination of individual genes.

Diverse questions can be addressed by a Boolean network, some of which will be dealt with
in this thesis. First, one can analyze the attractors of the model and test whether these
can be mapped to physiological cell states [72, 80, [81]. Second, the structure of the state
transition graph can be interpreted (e.g. as the shape of Waddington’s epigenetic landscape
[179]). This might also unravel bottlenecks in the model, i.e. nodes that must be passed to
reach a certain state and whose malfunction would destroy a substantial part of the system.
Third, the stability of the network against perturbations can be analyzed, either with local
perturbations (changing the state of a single node), or the global disruption of nodes or
interactions. Finally, the influence of different choices of F on the model behavior can be
analyzed.

Of course, the qualitative nature of Boolean networks is inadequate if quantitative re-
sults are desired. For example, in cells the precise protein level is often important (see e.g.
[125, 131] for graded effects of Oct4 expression), which mostly cannot be captured by an
on/off-switch. The molecular details of gene expression and other processes are neglected in
a Boolean network, they are sacrificed for insights into global dynamics. Finally, there is no
notion of time in a Boolean network, making it difficult to interpret intermediate states or
trajectories in T.

Note that there are models with intermediate levels of complexity [14], [I86] that try to in-
corporate both system-level features (meso-scale networks) and detailed dynamics of single
genes.
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2.2 Data sources

All input to our networks, from construction over analysis to validation, is extracted from
previous peer-reviewed publications. This ensures that the networks incorporate the latest
results, but also demands the integration of various sources of data into one model. The
details of this integration are listed for each data source where it is relevant.

2.2.1 The GRN by Chickarmane et al.

In 2008, Chickarmane et al. [33] developed a model of the first two lineage decisions (between
TE and ICM, and between Epi and PE) in the mouse embryo. Their model is based on a
publication by Niwa [126] and is shown in Figure This model is used as a seed for our
Boolean network, as all genes and interactions are adopted.

2.2.2 The PluriNetWork by Som et al.

In 2010 G. Fuellen’s lab published a comprehensive and highly informative network called
the PluriNetWork [162]. This network is comprised of genes/proteins that play a role for
either the maintenance or loss of pluripotency in mESCs. The network consists of 274 nodes
and 574 interactions and is, to our knowledge, the largest systematic collection of protein
interactions in mESCs when compared to other networks in mouse [187], or human [118]. It
contains various types of proteins, including transcription factors, epigenetic modifiers and
receptor proteins for extracellular signals, and three interaction types: activation, inhibition
and interaction (unknown direction and effect). A gene only enters the network if it plays a
role in pluripotency, evidenced in literature by an effect on mESC behavior. An interaction is
only added if three criteria are fulfilled: (i) the interaction must be direct without intermediate
agents; (ii) it must be analyzed for the mouse model; (iii) it must be involved in pluripotency.
The curation is a manual process with weekly updates, currently based on 177 publications.
The scope of the PluriNetWork, however, is limited if cellular events beyond pluripotency
or other regulatory agents (e.g. microRNAs) are analyzed. The PluriNetWork is published
as a Cytoscape [I51] file. The authors demonstrate the applicability of the network with a
tool called ExprEssence which identifies genes and interactions with the highest fold-change
between two expression data sets [182].

2.2.3 Expression data

Gene expression levels are extracted from the literature, relying both on textual descriptions
from Pfister et al. [I37] (P), Niwa [126] (N), Silva et al. [I56] (S) and Boyer et al. [16] (B),
as well as on large-scale mRNA expression measurements from Aiba et al. [2] (A) and Guo
et al. [62] (G) (the uppercase letters serve as a reference in Table [2.1]). It needs to be stated
that neither has the comparability of these studies been systematically analyzed, nor is it
clear in general whether the mRNA levels correlate with the protein levels. Nonetheless, to
validate our qualitative models, it seems a reasonable choice to make use of this simplified
data set. Table[2.1]shows the expression states of all genes involved in the subsequent Boolean
networks, used as a reference to compare network states with physiological cell states. If an
explicit expression value (present or absent) for a gene/mRNA is found, a +/- is noted in
the table. Two assumptions are made, namely the presence of Cdx2 in the zygote (due to
a lacking upstream activator) and the expression of Erk in the Epi (as its activator Fgf4 is
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present but no inhibitor). Additionally, all genes for which no expression value is found are
assumed to be not expressed - which is reasonable in the light of lacking positive expression
reports.

Expression/absence of a gene was considered evident if it is literally mentioned in one of
the papers. For the transcriptional studies [2] [62] a twofold cutoff is applied to distinguish
between expression and absence. In case of conflicts the literal description is assumed to be
correct.

Gene | Zygote TE ICM/ESC  Epi PE  Germ cell Somatic cell
Oct4 +B) -(N) +(B) +(N)  -(A) +(B) -(N)
Sox2 +B) -(P) +(B) +(N)  -(G) +(B)
Nanog | +(G) -(P) +B) +N) -(G)  +(B) -(N)
Cdx2 | +(*)  +(P) -(A) -(G)  -(A)
Gata6 | +(G) +(G) +(P) -(G)  +(A)

Genf +(N) +(A) +(A)

Erk +(A) +(**)  -(A)

Fgf4 -(G) +A)  +(G) -(G)

Rex1 +(A) -(S)  -(A)

Table 2.1: Gene expression table, showing expression (4) or lack (-) of mRNA in various cell types.

)

If a value is missing, it is either not found in literature or unclear; in these cases, a ’-’ is assumed.
(*) The putative expression of Cdx2 in the zygote is a model necessity, since no upstream activator
of Cdx2 is included. (**) In the Epi state, expression of Erk is assumed as its activator Fgf4 is also
present. Uppercase letters in brackets refer to the following papers: (P) = Pfister et al. [137], (N) =
Niwa [126], (S) = Silva et al. [I56], (B) = Boyer et al. [16], (A) = Aiba et al. [2], (G) = Guo et al.
[62].

2.2.4 Embryonic development tree

A reduced version of the murine embryonic development tree shown in the introduction (Fig-
ure is displayed in Figure This part of the tree represents the first three lineage
decisions of a fertilized mouse egg cell (zygote) and is used as a benchmark for the state
transition graph hierarchy. The development starts with the zygote, and after four rounds
of divisions (about three days), the 16-cell stage is reached where ICM and TE are already
separatedﬁ While the TE cells seam the outer layer of the embryo and are responsible for
proper implantation of the embryo into the uterus and also its nourishment, the ICM is only
an intermediate stage. Nonetheless, it is the source of pluripotent mESCs in vitro. With two
further division events the 64-cell blastocyst stage develops where the ICM splits up into the
Epi(blast) and PE cells. The Epi is still pluripotent as it can give rise to all cell types of the
embryo (summed up with ’somatic cells’) and germ cells. The PE is a cell layer that shields
the Epi on the outer margins and provides both differentiation stimuli and nutrients.

It has to be noted that this tree contains some possible inconsistencies with literature knowl-
edge. First, there is evidence that Gatab is required, but not sufficient to drive PE formation
[115]. However, this finding is contradictory to previous results [54], and for consistency with
former models [33] [127] Gatab6 is assumed to be sufficient for PE formation. Further, Nanog is

“The developmental stages can be found in detail in [62} [84].
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assumed to enable the distinction between germ and somatic cells, as it is expressed in germ
cells [16] but not in somatic cells [126]. Yet there is no evidence that Nanog levels actually
drive these different fates.

Zygote

[Cdx2] [Oct4]

ICM/

TE ESC

[Nanog] [Gata6]

PE

[Nanog, Oct4] [-Nanog, -Oct4]

Figure 2.2: The upper part of the murine development tree, used as a reference for assessing the
hierarchy of the state transition graphs. The genes written on the edges are both required and
sufficient to form the corresponding cell type below (with the exception of somatic cells where the
pluripotency genes Oct4 and Nanog have to be switched off). For references to these differentiation
events, please refer to Figure The expression signature for each cell type can be found in Table
Primitive Ectoderm and Epiblast are combined to one node (Epi) as their expression profile is
equal with regard to the genes in Table

2.3 A Boolean network of murine blastocyst creation

In this section a Boolean network is constructed from the data sources in and analyzed
with regard to the concepts above.

2.3.1 Network construction

For the network construction the GRN published in [33] (shown in Figure [2.3(a))) is used as a
network base by adopting all genes and interactions. The interactions missing in that model,
but present in the PluriNetWork, (see below for details) are included in our network. Our
network topology can be seen in Figure For a detailed explanation of each protein’s
role in embryonic development and the reason why it is included in the network, please refer
to Appendix

The logical rules (shown in Table are the same for all proteins, with one inhibitor sufficient
to switch off a target gene (in short ’one inhibitor suffices’). Activators act in a non-exclusive
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and separate fashion, and so do inhibitors. Thus a protein is present if at least one activator
and no inhibitor is present. The only exception from this rule is the heterodimer of Oct4
and Sox2, which is known to form when both proteins are present [32]. In the following this
Boolean network is referred to with the shorthand CME (Chickarmane Model Enhanced).

Octd4 Octd4 Sox2

[Oct4
Sox2]

Genf Genf

(a) (b)

Figure 2.3: Two GRN topologies based on the ODE model by Chickarmane et al. [33] and the
PluriNetWork [162]. Each box represents one gene, green arrows denote activation, and red (diamond)
arrows denote inhibition. (a) The network with the interaction structure as in [33]. The dashed
activation from Oct4 to Gata6 is a hypothesis by the authors in [33]. (b) The CME network, an
extended version with the originally missing interactions included. These are the mutual inhibitions
between Cdx2 and Nanog, and inhibition of Genf on both Nanog and Sox?2.

Oct4 = (04S2 v Nanog) &— (Cdx2 V Genf) Sox2 = (0452 V Nanog) &— (Genf)
Nanog = (0452 V Nanog) &— (Gata6 vV Genf vV Cdx2) 0452 = (Oct4 & Sox2)

Cdx2 = (Cdx2) &— (Oct4 vV Nanog) Gata6 = (Gata6 v Oct4) &— (Nanog)

Genf = (Cdx2 Vv Gata6)

Table 2.2: Logical functions for each gene in the CME (Figure [2.3(b)). 04S2 serves as a shorthand
for the heterodimer Oct4-Sox2. V is a logical OR, & is a logical AND, and - is a logical NOT.

2.3.2 Analysis of the state transition graph

The state transition graph Toas g calculated with a zygote as starting state (see Figure for
a compressed version) is acyclic, implying a clear developmental direction. The graph maps
well to the development tree in Figure How can we measure the quality of this bijection?
First, the attractors (yellow rectangles) need to correspond to true cell types. This is the case
for all attractors (listed in Table . These attractors can be mapped onto physiological cell
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states, a technique which has been established in numerous publications [79] 80, 81l [72]. The
attractors could also be interpreted as the terminal basins at the bottom of Waddington’s
epigenetic landscape [I79]. The PE attractor corresponds exactly with the expression values
in Table[2.1]for the physiological PE state. The Epi state matches with both pluripotent states
above (ICM/ESC and Epi), but a lacking distinctor (e.g. Rexl) leaves us with uncertainty
about which state it exactly is. In the following, we will assume this state to match with the
Epi state. The all-off state can either be considered a modeling artefact (a gene can go off if
no activator is present) or the true somatic state (for which no positive marker is included).
The (TE) state does not completely match with the TE expression values in Table since
Gatab is missing. This is not the case in the TE state where Gatab is also expressed, now
clearly marked as TE. The lack of Gata6 in the (TE) state is due to a lacking activator of
Gatab if Oct4 is off, which thus allows for the formation of a TE-like attractor without Gata6.
Second, to recover the hierarchical character of the embryonic development tree (Figure
there should be an intermediate state that maps to the ICM, if we assume the second attractor
to be Epi (see below). This ICM state is characterized by its potential to give rise to the
Epi, PE and somatic state but not the TE state. Such a state is indeed present, marked in
light green. This state has also the highest betweenness (1.0) of all states (range of the other
states is 0-0.8), suggesting a highly important role in development because most paths to the
PE, Epi and somatic state lead through this state.

It has to be noted that some facts do not fit well to the tree, namely one node (the lower one
with three members) can fall into either Epi, (TE) or somatic cell, but not PE. So it avoids
any known physiological interpretation since it does not match with any possible intermediate
state of the development tree. However, the connectivity of this node is low and only one edge
leads to the Epi state, suggesting a modeling artefact. Additionally, different on/off-switching
dynamics of the genes might play a role in the decision for one or the other lineage (namely
Nanog turning off faster than Cdx2 in this case) in a real cell.

Gene Starting state Attractors

Oct4 1 0 1 0 0 0
Sox?2 1 0 1 0 0 0
Oct4-Sox2 1 0 1 0 0 0
Nanog 1 0 1 0 0 0
Cdx2 1 0 0 0 1 1
Gata6 1 1 0 0 0 1
Genf 0 1 0 0 1 1

Zygote PE Epi somatic (TE) TE

Table 2.3: The zygotic starting state (second column) and the attractors of the CME (Figure
in columns 3-7. The dimer Oct4-Sox2 is assumed to be present in the zygote, as both Oct4 and Sox2
are present, too. A possible physiological interpretation of each attractor is given in the last row; for
details please refer to the text.

2.3.3 Stability

An interesting feature of the attractors and the network itself is its robustness against per-
turbations. To quantify both the global and local stability, two methods are designed and
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Figure 2.4: Compressed state transition graph Tepy g for the CME (in Figure with a zygote
as starting state. Compression is performed by grouping nodes with the same potential into one
supernode, and edges connecting the same supernodes into one superedge. Numbers in the nodes
indicate the true node count that is compressed into one. Edge numbers represent the edge count
compressed into one, respectively. The uncompressed graph contains 101 nodes and 278 edges.

The yellow states denote the attractors with physiological interpretation, while the green one at the
top is the zygotic starting state. The light blue state (27) represents the putative ICM state. The
dashed edges all have weight 1 (singular edges also in the original state transition graph).

applied. The global stability is measured by removing single nodes or edges and checking
Tome for changes. A systematic knock-out of each gene and interaction is performed; the
results are listed in Tables (genes) and (interactions). For each disruption the number
of missing (M) and new (N) attractors in comparison with the original attractors is counted.
If the removal of one component changes the set of attractors, it is considered essential.
However, there are different levels of essentiality, indicated by the gravity of the disruption
effects. The knock-out of Nanog disrupts three attractors, underlining the high importance
of Nanog for murine embryonic development. The interactions whose failure causes the most
problems are the auto-activations of Cdx2 and Gata6. The removal of these self-stimulating
loops disables the formation of either TE or PE, alluding to the relevance of these genes in
those tissues. Interestingly, the removal of the auto-activation of these genes yields the same
effects as the knock-out. This underlines the necessity of auto-activation for creating regions
of bistability [9, [175]. The destruction of the self-binding site in the promoter of these genes is
a possible method to test this experimentally: if the tissues do not form, the auto-activation
is confirmed to be required.

The local stability, or stability of the attractors, is measured differently. In every attractor, b
bits of its state vector are flipped, and subsequently the newly reachable attractors from this
perturbed state are calculated. A bit is the expression state of a gene. The bit flips could be
interpreted as expression noise or transient down-turn (1 — 0) or overexpression (0 — 1) of a
gene. To measure stability quantitatively one can count the number of bit flips that end up
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in exactly the same attractor, then those that end up in either the same attractor and some
more, and those that end up in completely different attractors (a related measure of stability
has been introduced in [89]). We devised a simple scoring scheme with assigning two points
to an unchanged attractor (p; = 2), one point to a mixture (p; = 1) and zero points to com-
pletely different attractors (p; = 0). The number of possible simultaneous bit flips is m = (TbL)
and the total sum P, = Y ;" p; is used to calculate I, € [0, 1] with I, = 2%1. The higher I,
the more stable an attractor is considered, as it is less prone to changes if one protein alters
its expression. This measure is calculated for flips of 1 and 2 bits, and the results are given
in Table It can be seen that I; and I5 rank the attractors in an equal fashion, indicating
the consistency of the measure. The numbers tell us that Epi is the most stable attractor,
although the stability of any attractor is not far apart from the rest. The high stability of
the pluripotent state may be due to its gene expression similarity with the zygote, yielding a
higher chance to fall into any attractor after a perturbation, thus also itself. Additionally, this
is in line with the idea of a pluripotent ’ground state’ proposed in [I55], 123]: pluripotency
is not a state that needs constitutive enforcement from outside, but rather a passive stable
state that needs extrinsic signals to be exited. The PE attractor state is the second most
stable, possibly generated by its shared ancestry with the Epi state. The equal stability of
the TE and (TE) attractors underline both its similarity and our interpretation of equating
(TE) with TE. The least stable attractor is the somatic state, which can be explained by its
lack of any positive marker gene, rendering it susceptible to small changes.

KO Gene | M N | Comment

Oct4 - - | (no changes); loss possibly compensated by Nanog and Sox2
Sox2 - - | (no changes); loss possibly compensated by Nanog and Oct4
Nanog 3 - | Epi, (TE) and somatic state are missing; consistent with the high

importance of Nanog in pluripotency and development [26], 27,
1141 [155], [16], 126]; the missing (TE) state could be explained by a
required intermediate state with Nanog

Cdx2 2 - | (TE) and TE are missing; consistent with the requirement of Cdx2
for TE [128]

Gatab 2 - | PE and TE missing; consistent with Gata6 expression in both
tissues [22] [62]

Genf 1 1 | The somatic state is missing, possibly a modeling artefact; a mix-

ture of Epi with PE is an attractor now, consistent with the
pluripotency-silencing role of Genf in PE [126] [117]

Table 2.4: Global stability as knock-out analysis of genes in the CME network. For each change the
state transition graph with a zygotic starting state is calculated, and the attractors are compared with
the original ones. The first column shows the knocked-out gene, column 2 lists the number of missing
attractors (M), and column 3 the number of new attractors (N). In the comment column the changes
are listed in detail for each knock-out.

2.3.4 Role of the Gata6 activation by Oct4

In [33], the authors suggest an activation of Gata6 by Oct4. This hypothesis is based on the
knowledge that on the one hand Oct4 activates the pluripotency machinery with Oct4, Sox2
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KO Interaction M N | Comment

Nanog — Oct4 - 1 | Epi without Oct4 is new; this is not pluripotent by definition
23]

Nanog — Sox2 - 1 | Epi without Sox2 turns up; this is not pluripotent by definition
[51]

Cdx2 — Cdx2 2 - | Both the TE and (TE) states are missing; consistent with the
high relevance of Cdx2 in the formation of TE [12§]

Nanog — Gata6 | 3 - | The three missing states are Epi, somatic and (TE); this indi-

cates the relevance of Gata6 suppression for the formation of
these tissues

Gatab — Gata6 | 2 - | Missing are PE and TE; consistent with the expression main-
tenance of Gata6 in both tissues [22] 62]

Cdx2 — Genf 1 1 | The (TE) state has no Genf expressed

Gatab — Genf 1 2 | The PE state has no Genf expressed, and an Epi-like attractor,
but without Nanog and with Gata6 is new - this is possible as
Gatab6 does not turn off the pluripotency genes Oct4 and Sox2
by itself.

Table 2.5: Global stability as knock-out analysis of interactions in the CME network. For each change
the state transition graph with a zygotic starting state is calculated, and the attractors are compared
with the original CME attractors. The first column shows the knocked-out interaction (A — B denotes

activation of B by A, whereas A — B denotes an inhibitory function of A on B), column 2 lists the
number of missing attractors (M), and column 3 the number of new attractors (N). In the comment
column the changes are listed in detail for each knock-out. Only those disruptions that actually cause
the attractor set to change are listed.

Attractor | I I
Epi 0.71 | 0.55
PE 0.64 | 0.48
TE 0.57 | 0.33

(TE) 0.57 | 0.33
Somatic | 0.43 | 0.26

Table 2.6: Local attractor stability of the CME (Figure [2.3(b)). The higher I,, the more likely the
attractor will return to itself after a perturbation of b = 1 or b = 2 bits, respectively. The Epi state is
the most stable, while the somatic state is the least stable in both cases.

and Nanog [I01], while on the other hand an excess of Oct4 triggers PE formation [125] [131].
This suggests that intermediate levels of Oct4 activate Nanog while high levels repress it.
One possible mechanism generating this pattern is the activation of Gata6 (which is known
to repress Nanog) by Oct4 (another mechanism is analyzed in [78]). However, in our CME
network, the knock-out of this activation yields no visible effect if the starting state of T
is the zygote from Table But when the starting state used in [33] (without Gata6) is
applied to the CME network, this activation is indeed required for the formation of PE. As
there is no activator of Gata6 it would never be turned on if not present right from the start.
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So we conclude that the hypothetical activation of Gata6 by Oct4 is not a necessity for PE
formation in our Boolean network, but nonetheless it is kept in the CME to enable a better
comparison of our network with the ODE approach in [33] (see below).

2.3.5 The ODE approach by Chickarmane et al.

The network shown in Figureis originally implemented in [33] with ordinary differential
equations (ODEs). These describe the change of concentration over time for each protein,
depending on the current state of its promoter (no difference between genes and proteins in
their model) and the concentration of its associated regulators. Chickarmane et al. model the
time courses of six transcription factors (TFs), starting from a defined state and for different
levels of an external stimulator of Oct4. With this setting they obtain three steady states of
the model, which they assign to TE, PE and ’stem cell’ (SC). Additionally, they study the
switching behavior of an antagonistic gene pair, Nanog and Gata6. From their model they
derive two hypotheses, namely Oct4 activating Gata6 and a heterodimer of Oct4 and Gata6
repressing Nanog instead of Gata6 only.

This model is able to explain biological facts (see section for details), but their approach
contains two serious problems. First, the six stated players require 44 modeling parameters
(basal transcription rates, decay rates and interaction strengths), all of which are chosen
without proper biological motivation. This makes the model very susceptible to subtle mod-
ifications, as shown in Figure [2.5(c), where the system falls into PE rather than SC when
the parameter by, the binding strength of the heterodimer Oct4-Cdx2, is halved. Second,
four interactions are missing, two of which have been reported before the time of publication
(see Figure for a comparison). After incorporating these interactions, the ODEs showed a
completely different behavior (Figure , resulting in PE instead of SC under the same
starting conditions. This change already occurs at very low rates of inhibition (0.5/time
unit), compared to the values of the already included inhibitions (between 5/time unit and
15/time unit). Taken together, this would imply a very unstable regulation of embryonic
development, which is not likely, as the critical process of embryogenesis is supposed to be
under tight regulative control and to some extent buffered from environmental noise [63].

A similar approach as in [33] has been analyzed in [104], which essentially suffers from the
same problems.

Summing up, the results of the parameter-based ODE approach are very hypothetical for
large systems without measured rate parameters as all conclusions are based on thin ground.

2.3.6 Result comparison between the CME and the ODE approach

Although the high level of detail of an ODE model is probably of importance to model complex
biology, the relatively coarse Boolean approach is capable of reproducing the relevant ODE
results, as well as additional results. What matters, however, is not the comparison of both
modeling approaches, but how well embryonic development can be explained by each. In the
following some essential biological aspects are considered, and for each it is stated whether
the Boolean network CME and/or the ODE model from [33] captures this aspect.

Levels of Oct4 expression are known to be decisive for the distinction between PE, TE
and ESC [125] 131]. This fact is not captured by our Boolean network. However, modeling
precise gene levels is not impossible, as shown in Appendix What we can state is that no
TE can be formed if Oct4 is present (data not shown). For the same reasons we can neither



2.3. A BOOLEAN NETWORK OF MURINE BLASTOCYST CREATION 21

o

coxe

gent
gatas

Vil

0 50 w50 200 250 300 o 50 100 150 200 250 a0 o 10 z0 80 400 so0 600 700
Time [a.u] Time [a.u] Tirne [a.u]

(a) (b) ()

Figure 2.5: Time courses for the ODE model in [33] (x-axis: time in arbitrary units, y-axis:
gene/protein concentration). Each line denotes the concentration of one gene over time. The flat
trajectories at the end represent a steady state of the model, which can possibly be mapped on a
physiological cell state. (a) Time courses obtained from the original equations and parameter setting
as in [33] (b) Time courses after inclusion of the omitted interactions (taken from the PluriNetWork).
Inhibition strengths are moderate in comparison to the original values (c) Time courses with original
interactions only, but one parameter changed (by = 5). Note that there is no steady state yet at time
300, which occurs only later. For all time courses the value of the external signal A equals 10.

confirm nor reject the hypothetical activation of Gata6 by Oct4 and the putative heterodimer
of Oct4 and Gata6 suppressing Nanog (rather than Gata6 alone). Up to now there has been
no evidence for both hypotheses (activation and dimerization) in the literature.

The mutual inhibition of Nanog and Gata6, as well as Cdx2 and Oct4, along with the auto-
activation of these genes, creates bistability in both our Boolean and the ODE model. This
bistability is of importance in embryonic development to foster distinction between lineages
[47], and the two mentioned motifs reflect the first two lineage decisions in the development
tree: Octd vs. Cdx2 decides about ICM or TE, and Nanog vs. Gata6 decides about Epi or
PE. If the two genes of such a motif are expressed simultaneously, the decision between them
is a random process and the cell fate can be defined by either winner. This is evidenced by
an inspection of Tcme, in which all states with two antagonistic genes expressed at the same
time are not stable and can fall into either of two trajectory sets.

The explicit modeling of time courses with ODEs is a great advantage of this model type
over Boolean networks, which have no notion of time. However, as stated above, interpreting
the temporal development of expression is only reasonable if the input parameters are taken
from biological experiments. Thus the authors in [33] only consider the steady states of
their model. In contrast, in our CME network the time course of expression is visible in
the hierarchy of the state transition graph, which contains a clear direction from the zygote
to differentiated states. This hierarchy is a strength of the Boolean network, where it is
implicitly incorporated in the network structure and the logical functions of the nodes. Here,
the terminally differentiated nature of the attractors is shown by their attractor property
and the acyclicity of the state transition graph. Additionally, developmentally important
intermediate states can be found along the trajectories from the zygote to the final cell
states. This novel finding is (to our knowledge) not yet published and resembles the results in
[92], suggesting a general incorporation of differentiation hierarchy in the transcription factor
network.
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The robustness of the GRN has been assessed with our network on both local and global

scale. The results underline the known physiological function of either genes or interactions.
In the ODE model this has not been treated. In the publication by Chickarmane et al. [33],
four inhibitions that are present in the PluriNetWork are missing. These are (i) the mutual
antagonism between Cdx2 and Nanog [29] and (ii) the inhibition of both Nanog and Sox2 by
Genf [126]. The network topology without these inhibitions can be seen in Figure To
study the roles of these interactions a simultaneous knock-out of all four of them is performed
and the state transition graph calculated. The attractor set of the disrupted model is extended
by one attractor which is a mixture of the TE and Epi states. This state is not consistent
with any cell state from Table since it expresses both pluripotency (Sox2, Nanog) and TE
(Cdx2, Genf) markers. Although this could be interpreted as an intermediate state between
ESC/Epi and TE, it can be seen in the state transition graph that this state originates if a
cell begins to turn into TE (switching on Cdx2 and switching off Oct4), but fails to shut down
Nanog and Sox2, since no inhibitor of them is present. Thus one can consider this state to
be unphysiological. Additionally, a mapping of the structure of T onto the development tree
fails because there are some states with the potential to fall into TE or PE, but not Epi, and
also states that converge into either TE or Epi, but not PE. These states cannot be mapped
to any differentiated or intermediate state within the tree.
Taken together, we can conclude that the missing interactions are of biological importance in
the network. The two inhibitions from Genf to both Nanog and Sox2 are obviously necessary
to finally switch off the pluripotency genes in the TE, while the mutual inhibition between
Cdx2 and Nanog could be of importance for a fostered distinction between ICM /Epi (where
Nanog is expressed and Cdx2 is lacking) and TE (where Cdx2 is expressed and Nanog is
lacking).

In [33], the authors claim that the reprogramming from PE to the SC state is better
achieved with overexpression of Nanog than by suppression of Gata6. We confirm this finding
since the suppression of Gata6 in the PE attractor yields the all-off (somatic) state, whereas
constitutive Nanog expression enables reprogramming to Epi.

In the ODE model there is a steady state which the authors name ’Differentiated Stem Cell’.
This state shows markers of TE (Cdx2, Gata6, Genf), but Oct4 is also expressed, and they
do not explain what physiological state this should represent. In our network this possibly
unphysiological state does not occur.

Additionally, we confirmed the known master roles of Nanog and Oct4 in pluripotency. In our
network, ESC/Epi cells with only Nanog off are prone to (but can revert to Nanog on), while
ESC/Epi cells with only Oct4 off are determined to differentiate into either PE or somatic
cells (data not shown). This is consistent with the role of Nanog as a ’safeguard’ [27], and
Oct4 as a marker of pluripotency [23].

2.3.7 Summary

In this section we have shown that a Boolean network is able to capture the essentials in
murine embryonic development. Additionally, it has been shown that for qualitative inputs
a Boolean network is at least as informative as an ODE model, while being robust against
parameter changes (as there are none). In the next section the CME network constructed here
is extended to give a deeper insight into the development of murine embryos under certain
culture conditions.
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2.4 An extended network with culture

In the previous section we have shown that Boolean modeling is sufficient for qualitative
insights into murine development from the zygote to the 64-cell blastocyst. Now our aim is to
gain further insights into the behavior of murine embryonic stem cells in vitro under certain
established culture conditions used every day in the laboratory to maintain and proliferate
different types of stem cells.

2.4.1 Culture conditions and network construction

First we delve into the role of LIF (leukemia inhibitory factor), which together with a spe-
cific (fetal calf) serum is used to maintain mESCs in vitro for unlimited time and passages
[30, 42 161]. The serum contains nutrients and, among others, the protein BMP4 (bone mor-
phogenetic protein 4) which is necessary to maintain pluripotency. The second medium of
interest is Activin, used together with FGF2 (fibroblast growth factor 2) and another serum
to arrest mEpiSCs (murine Epiblast stem cells) in their current state [I8], [42] [176]. In the
following, mEpiSCs and Epi(blast) are used interchangeably.

The construction of the Boolean network with culture conditions, in short NCC, starts
with the adoption of the CME network, shown in Figure The hypothetical activation
of Gata6 by Oct4 is not included since there is no literature affirmation for this interaction.
The two culture media of interest, LIF + serum (in short LIF only) and Activin + FGF2 +
serum (in short Activin only), are added and the six interactions of these proteins with the
other players are taken from the PluriNetWork [162]. In order to distinguish between mESCs
and mEpiSCs the protein Rex1 (also known as Zfp42, zinc finger protein 42) is added since
it is known to be a marker of mESCs that is tuned down when differentiating into Epiblast
[18]. This downregulation is known to be mediated by FGF4, activating Erk1/2 (extracellular
signal-regulated kinase) signaling [I8| [96]. Therefore we include these two proteins as well.
As previously the activations and inhibitions between these three genes are taken from the
PluriNetWork. Four further interactions are added that are not present in the PluriNetWork.
These are the inhibition of Rex1 and Oct4 by Erk, evidenced in [94], the inhibition of Nanog
by Erk, taken from [28], and the inhibition of Erk signaling by LIF, as shown in [96]. The
final network is shown in Figure [2.6
In section it has been shown that rather simple logical rules, where one inhibitor is
sufficient to stop the expression of a gene, are adequate to model embryonic development.
Here we follow that approach, with the exception of the Oct4 and the Nanog rule. It is known
that LIF and Activin activate Nanog and Oct4, while Gata6 inhibits Nanog and Genf and Erk
inhibit both Nanog and Oct4. If the ’one inhibitor suffices’ rule is adopted for Nanog, ESCs
cannot be stably maintained because even in the presence of LIF, PE can still be produced
from ICM cells. An inspection of the state transition graph for that network reveals that this
is due to the stochastic switch between Nanog and Gata6 in the ICM state. If Gata6 and
Genf are off, the PE state cannot be reached. Thus we assume LIF to exert an activation
effect on Nanog that is stronger than the suppression effect of Gata6 or Genf. Furthermore,
the suppression of Nanog and Oct4 by Erk signaling impairs the maintenance of Epi cells in
the presence of Activin if the default rule is applied. Thus we also assume Activin to activate
Nanog and Oct4 even in the presence of Erk. These rule modifications are hypotheses only,
as no literature evidence is found for such activation effects. Possible strategies to test this
hypothesis experimentally include a promoter inspection of Nanog and Oct4 (do they contain
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LIF |;ctivin

Figure 2.6: The NCC network used for analyzing the role of culture conditions.

The two orange top nodes represent the two culture media, LIF + serum ("LIF’) and Activin + FGF2
(’Activin’), while the yellow nodes in the center are the core nodes inherited from the CME and the
three green nodes are genes added to model the differentiation from mESCs to mEpiSCs. There are
four edge colors, representing the origin of each interaction. Black edges are present in the CME only,
orange indicates a common existence in the CME and the PluriNetWork, blue denotes existence in
the PluriNetWork only and green stands for the four additional interactions described in the text.
Diamond edges denote inhibition, while arrow edges represent activation. Note that the explicit Oct4-
Sox2 dimer is removed, as its formation is hidden in the logical functions (a downstream gene is only
activated if both Oct4 AND Sox2 are present). This does not change the behavior of the model.

binding sites for LIF /Activin that sterically hinder the binding of Erk?), or expression analysis
with microarrays (are Nanog and Oct4 expressed in the presence of Erk only and LIF and
Erk together?).

All logical rules for the NCC can be seen in Table Note that LIF and Activin have
constant values, manually set before the calculation of the state transition graph, so there are
no Boolean functions for these two proteins. This manual control of culture media allows us
to model the action of the experimentator, removing LIF and driving cells to differentiation.
Moreover, it gives us the possibility to combine three hierarchically organized differentiation
steps (from zygote to 16-cell stage (A), from ICM to Epi and PE (B) and from Epi to somatic
cells (C); Figure into one model.

2.4.2 Analysis of the state transition graph

The NCC model can be analyzed with the same methods described above for the CME
network. However, the state transition graph can now be calculated under four different
conditions (with varying presence of LIF and Activin).

The state transition graphs for various conditions are shown in Figure and the attractors
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Table 2.7: Logical functions F for the NCC network in Figure All rules follow the ’one inhibitor
suffices’ rational, with the exception of Nanog, which Gata6 and Genf can only inhibit if neither LIF
nor Activin are present. There are no functions for LIF and Activin as their values remain constant
after manually setting them. V is a logical OR, & is a logical AND and - is a logical NOT.

of these are listed in Table In the case of no culture medium being present (-LIF/-
Activin) and with LIF only (+LIF/-Activin), a zygote is used as starting state. If LIF is
not present but Activin (-LIF/+4Activin), the ICM/ESC state is the starting state as Activin
is used for either maintaining mEpiSCs or deriving them from mESCs, not from zygotes.
The last condition with both LIF and Activin (+LIF/+Activin) is not analyzed in detail as
such a culture is not used in the laboratory. Nonetheless, an inspection of its state transition
graph shows that it has the same effect as +LIF/-Activin, suggesting a dominance of LIF
over Activin - a fact that could be tested experimentally by adding both cultures at once and
counting the number of resultant ESCs and EpiSCs. A possible physiological interpretation
of the attractors is provided in Table It can be seen that the attractors are essentially the
same as in the CME, but now we are able to distinguish between ICM/ESC and Epi by the
expression or absence of Rex1, respectively (and vice versa for Erk). Only for one condition
(-LIF /-Activin), the all-off or somatic cell state can be reached. If either LIF or Activin
are present, the somatic state is not steady, as constitutive expression of Nanog, Oct4 and
Sox2 are enforced by either culture medium. The (TE) state is similar to the one in the CME
network, an impaired TE state with missing Gata6. The difference between LIF and Activin is
the reachability of the ESC state, which is steady only with +LIF /-Activin, and the other way
round for the Epi and PE states. This is consistent with the known roles of LIF maintaining
mESCs and Activin maintaining mEpiSCs. At first glance it might seem unreasonable to
obtain the TE and (TE) state even in the presence of LIF or Activin. However, this is no
inconsistency of our network as LIF is usually applied to ESCs or ICM cells, and not to
zygotes. It would be interesting nonetheless to study the resulting cell types if LIF is applied
to zygotes in vitro. The attractors of the network under +LIF/-Activin conditions with the
ICM/ESC as the starting state do not contain any of the TE-like states. Similar reasoning
is valid for Activin: the attractors of the network under -LIF/+Activin conditions with Epi
as starting state do not contain the PE state. Note that the ESC attractor does not entirely
match with the ICM state given in Table as both Gata6 and Genf are absent in the
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Boolean ’ESC’ attractor state. However, the ICM state would not be steady in this network
as the inhibition between Gata6 and Nanog would force the ICM state to take one of two
routes, either to Epi (with Nanog) or to PE (with Gata6). So we assume that the presence of
LIF does not allow suppression of Nanog (cf. also the change in the Nanog rule) and therefore
accept the absence of Gata6 and Genf in the ESC state. In the following we assume the ESC
attractor state to match with the ICM state from the expression table above.

Note that in the -LIF /-Activin case only those states are attractors that are not intermediate
on the way to other other cell types (which is the case for ICM and Epi).

+LIF
=Activin

. -LIF
c
13

Somatic

Figure 2.7: The compressed and combined state transition graphs for three different network condi-
tions. The cultures used in each part (divided by the horizontal lines) are written in the top right of
each part. A is the state transition graph for a zygotic starting state with LIF on and Activin off.
B is the state transition graph for an ICM initial state with LIF off and Activin on. C is the state
transition graph for no culture conditions and an Epi starting state. Numbers in nodes and on edges
are used as in Figure Yellow nodes are attractors, while green nodes represent initial states. The
dashed vertical lines across the horizontal lines do not represent a developmental event but rather a
re-usage of a former attractor as an initial state under different conditions. Crossing the line between
A and B is equal to switching culture conditions from LIF to Activin, while the line between B and
C is crossed when Activin is removed from Epiblast cells. Germ cells are derived from Epi cells, but
this is not analyzed in detail here.

Three state transition graphs are analyzed: (A) for a zygotic starting state with LIF on
and Activin off (+LIF/-Activin), (B) for an ICM initial state with LIF off and Activin on
(-LIF /4+Activin), and (C) for an Epi initial state with both culture media off (-LIF /-Activin).
A picture of each compressed state transition graph is shown in Figure (see Figure
for an explanation of the compression). The hierarchy of parts A and B perfectly matches
with the upper part of the development tree in Figure if the (TE) and TE states are
combined into one TE state. Crossing the upper horizontal line (between A and B) is equal
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LIF and Activin presence
Gene -LIF /-Activin +LIF /-Activin -LIF /+Activin
Oct4 1 0 0 0 0 0 1 0 1 1 0
Sox?2 1 0 0 0 0 0 1 0 1 1 0
Nanog 1 0 0 0 0 0 1 0 1 1 0
Cdx2 1 1 0 1 0 1 0 1 0 0 0
Gatab 1 1 1 0 0 1 0 0 1 0 1
Genf 0 1 1 1 0 1 0 1 1 0 1
Erk 0 0 0 0 0 0 0 0 0 1 0
Fgfa 0 0 0 0 0 0 1 0 1 1 0
Rex1 0 0 0 0 0 0 1 0 1 0 0
LIF 0 0 0 0 0 1 1 1 0 0 0
Activin 0 0 0 0 0 0 0 0 1 1 1
[Zygote] TE PE (TE) somatic | TE ICM (TE) | ICM] Epi PE

Table 2.8: Starting states (in square brackets) and attractors of the NCC model for different combina-
tions of LIF and Activin. In the left part (-LIF/-Activin) no culture medium is present and a zygote is
used as the initial state. In the middle part (+LIF/-Activin) only LIF is present and a zygotic starting
state is used, too; this part corresponds to part A in Figure In the right part (-LIF/+Activin),
only Activin is present and the starting state is an ICM cell; this part corresponds to part B in Figure
A possible physiological interpretation of each state is provided in the last row.

to switching culture conditions from mESC maintaining (+LIF /-Activin) to Epi maintaining
(-LIF/+4Activin). One can consider this line as an artificial stop in development, which actu-
ally corresponds to the murine diapause, a transient (LIF-induced) developmental stop [15§].
The lower horizontal line (between B and C) is traversed by removing the Activin medium
from stage B. Note that the differentiation of an Epi into a germ cell cannot be made visible
in our network as there is no gene that switches off Fgf4 and Erk.

Interestingly, an Epi cell can be reprogrammed into an ESC by changing culture conditions
from Activin to LIF (data not shown, see also [64]).

A betweenness calculation (as performed above for the CME network) is less informative in
this case as obviously the ICM and Epi attractors that are reused as initial states have the
highest betweenness in the compressed state transition graph.

2.4.3 Stability

The stability of the network and the attractors is calculated as above for the CME network.
The local attractor stability, derived from single or double bit flips, is listed in Table For
calculation details, please refer to section Again, the pluripotent states (ESC or Epi) are
more stable than the others (0.95 vs. 0.73 and 0.91 vs. 0.68), which is consistent with the idea
of a pluripotent ’ground state’ as proposed in [123] [I55]. As above, the (TE) and TE state
have equal stability, so further indicating the similarity of these two states. The somatic state
is rather stable against perturbations, which might be due to the lack of a positive marker
for this state.

The global stability is assessed with the individual knock-out of each protein and each gene.
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No culture media are used (-LIF /-Activin) for this analysis. To measure the differences after
a network disruption the attractors are compared with the original NCC attractors. For
each knock-out the number of missing and new attractors is calculated. All disruptions that
caused the attractors to change are listed in Tables and for genes and interactions,
respectively. The last column contains a comment and literature references for each knock-
out. The results are similar to the ones above in the CME network; for details please refer to
the tables.

Additionally, the dependence of the attractors on the starting state is examined. To assess
this the state transition graphs are calculated for slightly modified zygotic starting states (one
bit flipped in turn) with no culture media and the resulting attractors examined. The results
are listed in Table in a similar fashion as above with missing and new attractors. It can
be seen that the perturbation results are similar to the gene knock-out results, as the lack
of Nanog impairs the formation of three tissues, and a missing Cdx2 does not allow for TE
formation.

Culture Attractor | I I
+LIF/-Activin ESC 0.95 | 0.91
TE 0.73 | 0.53
(TE) 0.73 | 0.52
-LIF /4 Activin Epi 0.91 | 0.81
PE 0.68 | 0.47
-LIF/-Activin | Somatic | 0.82 | 0.69

Table 2.9: Local attractor stability of the NCC network (Figure . The higher I; is, the more likely
the attractor will return to itself after a perturbation of b = 1 or b = 2 bits, respectively. The first
column denotes the culture conditions and starting state.

2.4.4 Regulatory motifs in the network

[Oct4
0

Nanogkﬁ# Gataé

Nanog Erk

(a) C)] (c)

Figure 2.8: Three different network motifs occurring in the CME or NCC network. (a) Mutual
inhibition with auto-activation, mostly responsible for tilting the balance into either one of two possible
lineages. (b) Positive feedback loop between three genes, fostering their own expression and thus
stabilizing the states which require their expression. (c) Suppressive feedback loop, where one gene
activates two others in chain, eventually causing its own downregulation.
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KO Gene | M N | Comment

Oct4 - 1 | A state with Sox2, Erk and Fgf4 only occurs; this could be an
impaired Epi state, underlining the importance of Oct4 in pluripo-
tency [23]

Sox2 - - | (no changes); loss possibly compensated by Nanog and Oct4

Nanog 2 - | (TE) and somatic state are missing; consistent with the high im-

portance of Nanog in development [26] 27, 114}, [155] [16, 126]; the
missing (TE) state could be explained by a required intermediate
state with Nanog

Cdx2 2 - | (TE) and TE are missing; consistent with Cdx2 requirement for
TE [128]

Gatab 2 - | PE and TE missing; consistent with Gata6 expression in both
tissues [22], [62]

Genf - - | (no changes); consistent with the enforcing, but not decisive role
of Genf

Erk 0 1 | An ESC state occurs; consistent with Erk necessary to switch off
pluripotency [94]

Fgfd 0 1 | An ESC state occurs; consistent with Fgf4 requirement for differ-
entiation [18] 906]

Rex1 - - | (no changes); Rex1 does not seem to play a role in the establish-

ment of the four original attractor states

Table 2.10: Global stability as knock-out analysis of genes in the NCC network. For each change the
state transition graph with a zygotic starting state is calculated, and the attractors are compared with
the original NCC attractors with LIF and Activin off. The first column shows the knocked-out gene,
column 2 lists the number of missing attractors (M), and column 3 the number of new attractors (N).
In the comment column the changes are listed in detail for each disruption.

It has been shown in several publications that most, if not all, biological networks consist of
few basic building blocks, so-called motifs, which play decisive roles in the network dynamics
[]. In the CME and NCC network (Figure[2.6), several regulatory network motifs are present.
There are mutual inhibitions between pairs of genes which auto-activate themselves (see
Figure[2.8(a)) - a motif which can create a distinction between two different trajectories (cell
lineages) in the state transition graph. Namely, these are Oct4 and Cdx2 (which distinguishes
between the ICM or TE lineages), Nanog and Gata6 (which distinguishes between the Epi
and PE lineages), and Nanog and Cdx2 (which does not directly correspond to a lineage
decision, but obviously fosters the distinction between the ICM/Epi and the TE lineage).
The triad of Oct4, Sox2 and Nanog comprises a self-reinforcing loop (see Figure [2.8|b)),
which is responsible for the stability of the pluripotent states. There is also an incoherent
feed-forward loop (in the CME only), with Oct4 activating Gata6 and Nanog, but Gata6 also
inhibiting Nanog, creating the suppression of Nanog at high Oct4 levels (not in our Boolean
network). Of importance for the downregulation of the pluripotency triad are the suppressive
feedback loops (see Figure [2.8)(c)), e.g. Oct4 activating Gata6, which activates Genf and this
gene in turn suppresses Oct4, or the activation of Erk via Fgf4 by Nanog and Oct4, eventually
causing their own downregulation.

There are further motifs in the NCC network that are not described in detail, but it is
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KO Interaction

Comment

Sox2 — Oct4 A new state with Oct4 as the only active gene arises; so the
dimerization of Oct4 and Sox2 seems to play an important
regulatory function [32]

Erk — Oct4 - 1 | An Epi-like state without Nanog is new; Erk might thus play
a role in enforcing the decision to leave pluripotency

Oct4d — Sox2 - 1 | A new state with Sox2 as the only active gene arises; so the
dimerization of Oct4 and Sox2 seems to play an important
regulatory function [32]

Erk — Nanog - 1 | An Epi-like state without Oct4 is new; Erk might thus play
a role in enforcing the decision to leave pluripotency

Cdx2 — Cdx2 2 - | Both the TE and (TE) states are missing; consistent with
the high relevance of Cdx2 in the formation of TE [12§]

Nanog — Gata6 | 2 - | The two missing states are somatic and (TE); this seems to

indicate a requirement of Gatab suppression for the forma-
tion of these tissues

Gatab — Gatab | 2 - | Missing are PE and TE; consistent with the expression of
Gatab in both tissues [22] 62]

Cdx2 — Genf 1 1 | The (TE) state has no Genf expressed

Gata6 — Genf 1 1 | The PE state has no Genf expressed

Fgf4 — Erk - 1 | An ESC state arises; consistent with the repression of this
state by the Fgf4/FErk chain [94]

Table 2.11: Global stability as knock-out analysis of interactions in the NCC network. For each change
the state transition graph with a zygotic starting state is calculated, and the attractors are compared
with the original NCC attractors with LIF and Activin off. The first column shows the knocked-out
interaction, column 2 lists the number of missing attractors (M), and column 3 the number of new
attractors (N). In the comment column the changes are listed in detail for each knock-out. Only those
disruptions are listed that actually cause the attractor set to change. A — B denotes activation of B

by A, whereas A — B denotes an inhibitory function of A on B.

already obvious from the few listed ones that the dynamic patterns of the complete network
are only a combination of the simple dynamics of the motifs. Thus, the full Boolean network
could actually be reduced to its motif components [14], allowing for the assessment of more
complicated networks.

2.5 Discussion

Boolean modeling in general can be used to gain insights into the dynamic capabilities of
GRNs on a system level. In this chapter we have constructed two Boolean networks which
try to capture the early development of a fertilized murine egg cell, both with physiological
cell types and the timing and hierarchy of the involved lineage decisions.
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Gene | M N | Comment

2 - | (TE) and somatic state are missing; consistent with the high importance
of Nanog in development [26, 27, 114} [155] [16], [126]; the missing (TE)
state could be explained by a required intermediate state with Nanog
Cdx2 2 - | (TE) and TE are missing; consistent with requirement of Cdx2 for TE
[128]
Gata6 | 2 - | PE and TE are missing; consistent with the expression of Gata6 in these
tissues; this indicates that Gata6 must either be activated intrinsically
(e.g. by Oct4, see or be present in the zygote

Nanog

Table 2.12: Dependence of the attractors on the starting state. Each bit in the zygotic starting state
(no culture conditions applied, -LIF/-Activin) is flipped in turn, and the change in the attractor set
of the state transition graph in comparison with the original NCC attractors is reported here. The
second column lists the number of missing attractors (M), and column 3 the number of new attractors
(N). In the comment column the changes are listed in detail for each flip. Only those flips are listed
that actually cause the attractor set to change.

2.5.1 Result summary

The state transition graphs of the networks contain attractors and hierarchies that resemble
the true zygotic development astonishingly well. Although no prior information about this
hierarchy is used when building the network, the topology of the involved GRN and the logical
rules convey it. It has been shown that culture conditions can be modeled appropriately with
a Boolean network. The roles of essential genes during embryo maturation have been analyzed
and the findings are conform with literature. The first network has been compared to an ODE
modeling approach of murine zygotic development, and it has been shown that the essential
dynamic properties are sufficiently covered by a Boolean network, too, but the necessity for
any parameters is avoided. This requirement for qualitative data only is one of the great
advantages of a Boolean network. Given the abundant lack of quantity in mESC studies,
mostly due to the complexity of the researched system, a qualitative model thus seems a
natural choice. Furthermore, the stability of the networks against perturbations has been
assessed, confirming results of earlier analyses.

From our network analysis we conclude two hypotheses that require further investigation
in the laboratory. The first one states that the presence of LIF does not allow the suppression
of Nanog by Gata6 or Genf, and it is motivated by the disequality of the ICM/ESC attractor
state and the expression values curated from literature. In our models the ICM state has
neither Gatab nor Genf expressed, although studies suggest that. One possible explanation is
that the ICM state would not be stable if Nanog and Gata6 were expressed at the same time,
as they exert a mutual inhibition. However, it could be possible that Gata6 is maintained
at a low basal level that is not ’visible’ in our Boolean network. A recent study showed that
Nanog and Gata6 are expressed in a salt-and-pepper fashion in the ICM, with some cells
expressing Nanog and others Gata6, but no cells expressing them simultaneously [28|, [157].
Following this point of view, we only see the Nanog-expressing ICM cells in our network. A
different explanation could be the direct suppression of Gatab6 and Genf by LIF.

Our second hypothesis is similar, incorporated in the Nanog and Oct4 logical functions. Both
genes are known to be inhibited by Erk, and we suggest that this inhibition is only possible
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if Activin is not present. This reasoning results from the knowledge that Activin maintains
mEpiSCs for indefinite time in wvitro. To check these two proposals in the laboratory a
promoter inspection of Nanog, Oct4 and Gatab together with a microarray gene expression
analysis could create valuable insights.

Note that the ’one inhibitor suffices’ logical rational is not directly motivated by experimental
findings but is rather a general idea about the regulatory nature of transcription factors.
Thus proposing a different function for developmentally highly important genes as Nanog
and Oct4 is not contradictory by itself, but rather shows a glimpse of the bandwidth of
possible regulations in a cell.

The attractors of both Boolean networks match with biological cell types, identified as
PE, TE, ESC, Epi and somatic cells by their expression values. The only imperfect match is
the (TE) state which lacks expression of Gata6. As explained above, an activator of Gata6 in
the TE tissue would cure this problem, but to our knowledge there is none within the set of
genes that are included in the network. One could interpret the (TE) state as an intermediate
state on the path to TE, which transiently has switched off Gata6; this remains to be tested
biologically. Evidenced by the close grouping of the (TE) state with the TE state in the state
transition graphs and the equal stability against perturbations, the difference between these
states is not a major problem.

All logical rules used in the networks follow the rational of ’one inhibitor suffices’, with the
exceptions of the heterodimer Oct4-Sox2 and Nanog and Oct4 (in the NCC network only).
Although this rule might seem too simplistic, it is sufficient to capture the essentials of mESC
development. Interestingly, there is increasing evidence that many developmentally important
genes in mESCs have a 'poised’ state. They bear both activating and inhibiting histone marks
[6, 10k 127] or their promoter is occupied by activators and inhibitors at the same time [126].
One explanation for this phenomenon is to have the genes ready for fast transcription if a
development switch toggles [126] and the (single) inhibitor is removed. Nonetheless, one could
try to infer the logical rules from literature, either by large-scale promoter occupancy studies
similar to [85] 15, 101], or by the nature of regulation shown in microarray and knock-out
studies like [109].

Note that the missing notion of time makes it hard to interpret intermediate states or path
lengths in the transition graph (e.g. in the betweenness calculation). These can be used as a
primer for intuition, but do not necessarily have any biological meaning.

The benchmarks for our networks (the development tree in Figure and the expression
values in Table are curated from different data sets and the previous work of many
groups. On the one hand, this has been necessary as to our knowledge there is no study that
provides this table as one, but on the other hand, this requires to take special care of the
comparability of the sources. For our purposes we have considered two expression studies as
comparable, if they are performed for the same cell type (e.g. mESC), and the fold change
between expression or absence is at least two. The equality of gene, mRNA and protein is
a necessary simplification, as there has been few proteomics data for mESCs up to now (see
e.g. [8]). We argue that this assumed equality is adequate for a qualitative network.

The moderate network size (11 players for the NCC network) is a result of the following
two considerations. On the one hand, the size of the state space rises exponentially with
the network size, and also the number of artificial attractors rises with the network size
[89]. Thus keeping the network as small as possible as long as it explains the data is a
reasonable design principle, conform with Occam’s razor. On the other hand, for each of the
players there is abundant literature about their roles in pluripotency and development, which



2.5. DISCUSSION 33

is a clear motivation to include them. Additionally, the knock-out analysis of both genes
and interactions yielded that most of them are required, as disruption changed the network
behavior. Considering that the knock-outs are single disruptions, unable to capture the effect
of simultaneous failures (e.g. synthetic lethals), it is reasonable to assume that all included
genes and interactions are of importance.

It has to be mentioned that some of the knowledge found in the literature is not considered
in our networks. For example, Nanog actually requires homodimerization before acting as a
TF [119]. This is not included since protein numbers are not part of a Boolean network, so the
dynamics of the system would not change. The lacking inclusion of the Oct4 dose dependence
[125, 131] has been discussed above. However, dose dependence does not necessarily imply
that the level of a protein is exactly the same in all cells, but rather that the average is
within a strict range, while the amount in individual cells can differ [139]. Thus we argue
that the simplification to two values in our networks is reasonable at least for a subpopulation
of mESCs. For the same reasons the auto-inhibition of Oct4 mentioned in the PluriNet Work
is not considered, as this suppression is possibly necessary to maintain Oct4 at a precise level
in pluripotency [I31] or to reduce noise effects [139]. Nonetheless, an incorporation of more
than two (or continuous) Oct4 levels is desirable and could be treated with ODEs (if kinetic
rates are available) or discrete models (as proposed in [I86]). The expression of Rex1 is used
as discrimination between mESCs (on) and murine EpiSCs (off), but only in vitro [18], and
two recent studies indicate that this view might be too simple [64] [I74]. Nonetheless, in our
network Rex1 is used as a mESC marker. A recent publication states that an overexpression
of Sox2 inhibits Fgf4 [13], indicating a necessity for intermediate levels not only for Oct4, but
also for Sox2. This is, as discussed for the Oct4 case, not considered in our networks.
From the heterogeneity and dose dependence of various genes in the network we can also
conclude that time-resolved data of single cells are of utmost importance as only these can
help to gain insight into the noisy nature of the genes.

Summing up, our Boolean networks reproduce the established biological patterns despite
inherent drawbacks of the modeling approach and minor inconsistencies. This underlines the
importance of considering a simple approach first before delving into more detailed models.

2.5.2 Outlook

Of course, the embryonic development is not finished when the somatic state is reached. In
contrast, the true differentiation into the different cell types of the body merely begins at
this point, and it is a thrilling challenge to model this part of development, coarsely shown in
Figure with a Boolean network. The opposite direction is the reprogramming of a termi-
nally differentiated cell back to pluripotency, as outlined in [I67] and numerous subsequent
studies (nicely summarized and reviewed in [68, 07]). It is desirable to know whether such
a reprogramming process is equal to a reverse walk along the developmental trajectories, or
rather a way completely off the beaten paths. To study this in a Boolean network one would
have to generate mouse embryonic fibroblasts (MEFs) along their default developmental path,
then add the reprogramming factors (Oct4, Sox2, Klf4, c-Myc) and inspect the pathway of
the following events.

Another possible extension of the networks proposed here is the inclusion of epigenetic mod-
ifiers like Polycomb group proteins (PcG), responsible for the accessibility of the genome in
ESCs [6l 126, 110], or microRNAs, which are known to play essential roles both in the main-
tenance of pluripotency [56l, [70, [180] and in development [35, [75], [133].
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An approach currently studied in [I03] (unpublished work) is to supply a network selection
algorithm with a number of genes and a coarse interaction structure, along with an expression
table with missing values similar to Table The algorithm then could perform a search
for those networks/interaction structures that are able to reproduce the provided expression
values as attractors, and additionally fill the missing values in the expression table with rea-
sonable entries. If one value stays constant over all networks, one could deduce a testable
hypothesis about the state of this gene. This network sampling might also be a measure for
the uniqueness (or privilege of interpretation) of the provided network structure.
An interesting question is the applicability of our networks for other species, especially hu-
mans. All the networks and statements above have been made for the mouse model and do
not necessarily apply for human embryonic development. Currently the overwhelming amount
of data is available for mouse (e.g. the PluriNetWork is for mouse only). Nonetheless, the
human developmental pathway [140] is quite similar to mouse and most of the genes used
in our networks are also known to be essential for human embryonic stem cells (hESCs) or
development as well (Nanog, Oct4, Sox2: [7, [15]; Other genes: [21, 40]), though the details
are often critically different [58, (147, [140]. Especially the culture conditions act differently,
as LIF is known to fail in maintenance of hESCs [39], while Activin culture can maintain
hESCs [77]. This suggests that hESCs are closer to mEpiSCs [I71]. Altogether, the core
nodes and interactions of our networks should apply for human development, too, but some
essential differences currently limit the applicability. An extensive literature search to check
all interactions could change this.

In the next section, the opposite of a network extension is analyzed. One gene that is
essential in pluripotency is picked from the network and studied in more molecular detail:
Nanog, the "land of the ever young’ [26].



Chapter 3

Nanog dynamics in single
embryonic stem cells

3.1 Nanog and its role in pluripotency

In 2003, Chambers et al. finally identified a protein that had already been anticipated to play
an essential role in sustaining the pluripotency of mESCs [27]. The authors performed a large-
scale functional screening approach, while another group executed a combined bioinformatics
and experimental approach [114] and found the same transcription factor. This protein was
named Nanog by Chambers, after the mythological Celtic land of the ever young because its
overexpression enables mESCs to proliferate indefinitely, i.e. to stay ’forever young’. It is a
homeodomain protein located on chromosome 6 (in mouse) which comprises 305 amino acids
and is conserved in human, chimpanzee, dog, cow, rat and mousef_-] It builds homodimers
[119] and functions as a transcription factor regulating key eukaryotic development processes.
Nanog expression had been considered a requirement for pluripotency [26] [114], but in 2007
the discoverers of Nanog themselves brought this role into question [27]. Chambers et al.
found that the levels of Nanog are actually heterogeneous in mESCs, and that even cells
with virtually no Nanog expression still have the potential to form colonies and contribute
to all three germ lines (mesoderm, endoderm and ectoderm) - a unique feature of pluripo-
tency. Along with Nanog, heterogeneity in expression was also reported for other pluripotency
marker proteins, namely Rex1 [I74] and Stella [66]. Thus the former consideration of pluripo-
tency as a state with stable gene expression values went awry. Now pluripotency is rather
assumed to be a highly dynamic state [61, 116l [160] with heterogeneous expression values
of certain genes. Proposed explanations are the robustness against small perturbations (by
not requiring stiffly regulated protein levels) or quick response times to external stimuli (by
fostering one expression regime over the others) [61) [160].

After the initial description of Nanog heterogeneity subsequent studies [60, 78] tried to un-
ravel the mechanism behind these fluctuations of Nanog. The authors in [60] propose two
different computational models that both explain the observed bimodality of Nanog intensi-
ties and also suggest experimental strategies to distinguish between the two of them. In [78]
another model is suggested and analyzed, both theoretically and experimentally. The lacking
conformity of these three models with our experimental observations is discussed below and
a new model is proposed.

nformation extracted from PubMed, with Gene ID 71950 and Protein ID AAI44997.1.
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Today the molecular mechanism behind the heterogeneous expression of Nanog is still un-
known, and in this chapter we try to shed light on it by taking advantage of novel and unique
high-quality observations of mESCs on population and single cell level. A workflow of the
computational analysis can be seen in Figure All laboratory experiments were conducted
by Adam Filipczyk (AF) at the Institute for Stem Cell Research (ISF) at the Helmholtz-
Zentrum Miunchen and have not been published yet. The close and fruitful collaboration of
the Computational Modeling in Biology (CMB) group at the same center with the ISF group
is of vital role for this thesis and also for current and future research.
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Figure 3.1: The Nanog fluorescence analysis pipeline. The workflow is modeled as a Petri Net, a
bipartite graph connecting states (data or results, in circles) with transitions (actions, in squares)
[136].

3.2 Data types and sources

3.2.1 ES cell lines

Chambers et al. [27] and a subsequent study [78] used a transcriptional reporter mESC line
to quantify Nanog expression in a FACS (fluorescence activated cell sorting) analysis. This
cell line has one allele of the Nanog gene removed and replaced by an eGFP (enhanced green
fluorescent protein) gene sequence, allowing for quantification of the transcription of Nanog
by measuring the fluorescence intensity of eGFP.

In this study, data from a NanogeGFP fusion ESC line are analyzed. This cell line has one
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Figure 3.2: Schematic depiction of the data generation in the laboratory. (a) E14 control cells FACS
plot. P7 is the negative gate that contains all control cells, P6 is the gate defined as the brightest five
percent of Nanog positive cells (not necessary for the control cells, see (b)). The x-axis is the forward
scatter (FSC), which sorts cells according to their size, the y-axis is the eGFP intensity. (b) ESC
fusion line FACS plot. Axes are labeled as in (a). Now five percent of the cells are in gate P6 (actually
the definition of the gate). (c) Section of a fluorescent image of one ESC time-lapse movie. The bright
balls are the fluorescent beads utilized to calibrate the microscope and to compare the fluorescence
intensity between different positions. The other shining spots are ESCs which express Nanog. (d)
Quantification of a cell genealogy. Each curve displays the intensity of a single cell. The x-axis denotes
experiment time in hours, the y-axis denotes the Nanog intensity in arbitrary units. The intensity of
each cell is rising during the growth phase of the cell cycle and is approximately halved during division.

Nanog allele replaced by a sequence comprised of the Nanog sequence and the eGFP sequence
in the 3-end, so that the resulting protein is a fusion of Nanog and eGFP (at the Nanog-
C-terminus). This construction allows for a more authentic quantification of Nanog protein
abundance. In the following ESC always refers to this fusion cell line if not explicitly marked.
All cell lines were cultured under +LIF (with fetal calf serum) conditions to maintain the
pluripotent ESC state (see chapter [2| for details about LIF).

3.2.2 Fluorescence activated cell sorting (FACS)

Both ESC lines described above (reporter and fusion line) were subjected to FACS analysis to
quantify the intensity of eGFP and thus the expression of Nanog in a population of individual
cells at single timepoints. In a first step the intensity of unmodified control cells (E14 cells,
see e.g. [25] 192]) was measured with the same laser wavelength used for eGFP activation
(488 nm). These cells define the background intensity that is present by default and marks
the cutoff between Nanog positive (expressing) and negative (not expressing) cells in the later
analyses (see Figure. The intensity region of these control cells is called the negative gate,
and all cells within this gate are considered negative. The second step was to quantify the
intensity of the modified cells (either reporter or fusion line) and to divide them into positive
and negative cells. With the reporter ESCs a bimodal Nanog intensity distribution with a
large peak (about 70% of the cells) in the positive gate and a small peak (about 30%) in
the negative gate was observed (see the figures in [27, [78]). A bimodal distribution is termed
“macroheterogeneous” [71]. With the fusion ESCs a skewed distribution was observed, but not
a bimodal one - there is only a peak in the positive gate, while the negative gate is trailing off to
the left without a peak. Such a distribution is called “microheterogeneous” according to [71].
Nonetheless, the numbers within each gate were roughly the same (20-30% in the negative and
80-70% in the positive gate). The discrepancy between the cell lines could be explained by
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the different half-lifes of eGFP (5.5 hours [38]) and the NanogeGFP fusion (about 3.6 hours,
unpublished data). There could be a bias towards higher values in the reporter line data,
since eGFP can still be present even though Nanog has already decayed, which produces the
negative peak. The fusion line does not suffer from the problem of differing half-lifes, as both
the Nanog and NanogeGFP half-lifes are equal (Western blot analysis by AF, unpublished
data). Additionally, the fusion line is sensitive to post-translational modifications (PTM) of
Nanog and possible regulations on the Nanog mRNA level, resulting in a high correlation
between eGFP intensity and true Nanog abundance. Note that the measured intensities
represent only half of the real amount of Nanog since only one allele is replaced by the fusion
protein. This, however, does not change the qualitative and quantitative conclusions if equal
transcription from both loci is assumed. A more detailed method description of FACS can be
found in Appendix

3.2.3 Single cell time-lapse movies

The fusion ESCs were subjected to long-term (about 7 days) time-lapse microscopy resulting
in temporally and spatially highly resolved time-lapse movies. The cells plated on the wells
were unsorted, a random sample of the whole population of ESCs with diverse Nanog expres-
sion levels. Pictures with fluorescence activation of eGFP were taken every 30 minutes, and
the resolution was about 1um per pixel. From these movies, the cell genealogies were recon-
structed for four generations (about 66.2 £ 19.8 hours) with Timm’s Tracking Tool (TTT,
see appendix for details). For each cell and picture the normalized fluorescence intensity
was quantified with Aided Manual Tracking (AMT, see appendix for details). The inten-
sity is thereby defined as the sum of pixel intensities within the cell nucleus (defined by a
fluorescent nuclear membrane) and the image background subtracted. As we are interested in
total Nanog abundance, different cell sizes do not have an effect due to the linear correlation
of pixel intensity with Nanog monomer counts (see below). Altogether 31 trees with 873 cells
(on average 28.16 per tree) were tracked and quantified, yielding 28,077 individual data points
(on average 32.16 per cell). Please refer to Figure for a depiction of the data generation
process, and to Table for the number of trees in individual movie positions. Figure [3.3
shows the genealogy and detailed time course of one example tree.

3.2.4 Bead normalization

In order to account for different illumination strengths of the microscope in different exper-
iments and movie positions (subsections of a well) a normalization is performed. The AMT
tool (see Appendix already normalizes within one position by correcting for the intensity
differences between picture center (brighter) and margin (darker) and temporal differences,
as the pictures get darker over time due to photobleaching. However, a normalization across
different movie positions is not available, so fluorescent beads were analyzed for each position.
These beads are tiny fluorescent balls, slightly smaller than cells, and designed to have equal
size and about the same intensity each. Thus if the beads are brighter in one position than
in another, we know that the first one is brighter as a whole than the latter one and the cell
intensities need to be corrected by a bead intensity factor. It is set to 1.0 in an arbitrary
i(Fe) (ith
i(Po)
i(P,) the intensity in position x) is the relative intensity of this position. The correction

position Py and for all other positions P, the ratio of the bead intensities R; =
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Figure 3.3: (a) One cell genealogy. Each vertical line corresponds to a division event where the mother
cell splits up into two daughter cells. The horizontal lines represent the life times of the cells, with
the x-axis in hours. The number of each cell is written above its life line. (b) Time course of Nanog
expression in this tree. The x-axis denotes movie time in hours, the y-axis the Nanog intensity (linear
scale). Each line represents the trajectory of one cell, with matching colors to (a).

factor by which the intensity of the cells is multiplied is R%. The position 100728AF1/042 is
chosen as a reference and its relative intensity is set to 1. Table summarizes the average
bead intensities and the relative intensities for all positions.

The beads are bleaching over time with each fluorescent picture acquired, rapidly within the
first hours and slowly over the rest. In order to ensure comparability, beads were quantified
at the beginning of each movie, in the middle and at the end. The middle and end beads
are used to check whether the image normalization works (they should exhibit comparable
trajectories across all positions), while the beads from the beginning of the movies are used
to calculate the average bead intensity (which is the mean intensity of the first five measured
timepoints, averaged over all beads from this position).

3.2.5 Other data

The decay rate of Nanog was determined independently with Western blot and image anal-
ysis, yielding a half-life of approximately 3.6 hours. The absolute Nanog protein abundance
was quantified with Western blots, indicating an average number of Nanog monomers per cell
of approximately 1 millionﬂ The decay rate of Nanog mRNA in mESCs was measured by
Sharova et al. [I53] and is about 5.8 hours.

3.3 Data analysis

3.3.1 Analysis of the FACS population data

The fusion ESC line shows the Nanog intensity distribution pictured in Figure[3.4]if subjected
to FACS analysis. As mentioned above, there is no peak in the left part, possibly due to the
more sensitive fusion of Nanog with eGFP instead of a transcriptional reporter.

2Note that the observed count depends on the sensitivity of the utilized antibody and is possibly subject
to change. Nonetheless, several recent experiments by AF revealed numbers of the same magnitude.



40 CHAPTER 3. NANOG DYNAMICS IN SINGLE EMBRYONIC STEM CELLS

Experiment | Position | Bead intensity (sd) | Relative intensity | Tree count
100205AF1 061 20.66 (2.78) 2.47 2
066 21.48 (1.77) 2.57 2
068 20.50 (3.65) 2.45 2
100505AF1 011 13.01 (2.42) 1.55 7
020 11.55 (1.76) 1.38 2
022 13.71 (2.23) 1.64 1
100609AF1 001 6.33 (0.47) 0.76 3
002 19.86 (2.14) 2.37 2
003 20.34 (1.96) 2.43 3
004 9.62 (3.20) 1.15 2
010 23.46 (2.41) 2.80 1
057 21.94 (1.56) 2.62 1
066 20.06 (2.34) 2.40 2
100728AF1 | 042 8.37 (1.63) 1 1

Table 3.1: The average fluorescent bead intensities and the relative intensities for each position. The
third column is the average intensity (with standard deviation) of the first five measurements of all
tracked beads in this position. At least 10 beads are tracked per position, both from the picture center
and margins. The fourth column lists the relative intensity, where the last position 100728AF1/042
was arbitrarily set to 1. Additionally, the number of trees in each position is provided in the last
column (sum = 31).

In [27] the authors claim that cells in the low Nanog expression (LN) state are able to give
rise to cells with high Nanog expression (HN). To prove this they sort their reporter ESC
line (with FACS) into LN and HN cells with high purity and culture them for six days un-
der +LIF (with serum) conditions. After this time they see a reestablishment of the initial
bimodal Nanog distribution with the large HN peak and the smaller LN peak, indicating the
capability of the LN cells to give rise to HN cells and of the HN cells to give rise to LN
cells. However, the original distribution of Nanog intensities is not completely restored, as
especially the LN sorted cells stay biased. Additionally, the authors imaged single cells in a
movie for 44 hours and analyze the transitions from the LN to the HN state. In this movie
they observe LN cells that express Nanog after 24 hours. Transitions from HN to LN are not
reported from the movies, but their results and one of their figures (1b) suggest it.
Summing up, their results indicate that the Nanog expression levels are not rigid, but cells
from either state can give rise to the other.

In the ISF laboratory the fusion ESC line was subjected to a similar analysis. From the
original skewed (but not bimodal, see above and Figure Nanog distribution the brightest
five percent and the dimmest two percent were sorted and cultured for fourteen days. Ev-
ery second day a FACS analysis of the Nanog intensities was performed and the distribution
recorded. This experiment was done twice. The filtering gates were defined as above (Fig-
ure , with LN the complete negative gate (not only the dimmest two percent, but also
brighter cells that are all within the range of the E14 control cells) and HN-5 the gate with
the brightest five percent of all cells. The data (summarized in Table suggest that low
sorted cells stay biased even after 14 days, and high cells seem to restore the original intensity
distribution better (since LN reaches its original state of 25-30%), although the HN-5 gate
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keeps to contain more than five percent. It even seems that the reestablishment gets stalled
in the low sorted cells as there is no strong change in the fraction of cells in the LN gate after
day 4. Note that two weeks correspond to roughly 24 generations with an average life cycle
of 14 to 16 hours (see below).

A similar experiment was performed for the duration of six weeks instead of two weeks, and
after this time the original Nanog distribution was completely reestablished (data not shown).
This leaves us with the possibility that the bias after two weeks is either real or stems from
a problem with the data generation or analysis.

In the following, we assume that a sorted population of cells can give rise to the full Nanog
distribution after a certain number of generations, consistent with [27] and our six weeks ex-
periment. The exact time until the full reestablishment of the distribution and the underlying
mechanism are, however, not extractable from either FACS analysis.
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Figure 3.4: FACS Nanog intensity distribution. The x-axis denotes the NanogeGFP intensity (arbi-
trary units, log-scale), the y-axis denotes the number of cells. The curve is strongly skewed to the left,
but shows no bimodality as in other studies [27] [78], possibly due to the different ESC line (see text
for details). The red line represents the upper bound of the negative gate. In FACS this is defined by
the highest intensity of the E14 control cells. All cells left of the line are considered negative, while
all cells on the right are considered positive for Nanog expression.

3.3.2 Nanog expression levels in the time-lapse movies

The FACS data from above summarize the behavior of a population of ESCs, but the question
how individual cells function to generate this skewed distribution of the Nanog intensity
remains unresolved. In order to gain insights into single cell properties the mESC time-lapse
movies are analyzed. The tracking and quantifying has been done by AF in the ISF lab, and
in this section the characteristic features of the cells are analyzed.
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LN sorted cells HN sorted cells

Day | Cells in HN-5 (sd) | Cells in LN (sd) | Cells in HN-5 (sd) | Cells in LN (sd)
0 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.00 (0.00)

2 0.01 (0.01) 0.68 (0.04) 0.21 (0.01) 0.10 (0.01)

4 0.01 (0.00) 0.59 (0.06) 0.23 (0.00) 0.15 (0.01)

6 0.01 (0.00) 0.59 (0.05) 0.18 (0.07) 0.22 (0.06)

8 0.02 (0.01) 0.63 (0.05) 0.18 (0.02) 0.28 (0.11)
10 0.03 (0.01) 0.51 (0.06) 0.16 (0.01) 0.25 (0.04)
12 0.04 (0.01) 0.53 (0.01) 0.16 (0.01) 0.28 (0.01)
14 0.05 (0.01) 0.62 (0.06) 0.30 (0.13) 0.24 (0.01)

Table 3.2: FACS analysis results of the fusion ESC line. Values are from two experiments, and are
given in fractions of cells. HN-5 is the gate of the brightest five percent, LN is the complete negative
gate (about 20-30%). The analysis was started with highly pure (99% sorting accuracy, data not
shown) cell fractions, and the rows show the data for subsequent days. The HN sorted cells seem to
repopulate the entire distribution better as they are less biased after 14 days than the LN cells. A
complete repopulation (HN-5 = 0.05 and LN = 0.2-0.3) is not observed during this time, however. The
numbers in italic in the HN-5 gate after 14 days of the HN sorted cells are probably a measurement
error, indicated by the high standard deviation.

Fraction of cells in gates
Fraction of cells in gates
o o o o o

Figure 3.5: Visualization of Table The bars show the fractions of cells in each gate, for prolonged
periods after sorting (x-axis). Cells in day 0 have a > 99% purity. (a) Low sorted cells (b) High
sorted cells

First of all it needs to be clarified whether the imaging conditions are adequate and do not
alter the cell behavior with respect to the FACS analysis. The cells are viable and stay
pluripotent over the whole period of the analysis, which is proven by tetraploid aggregation
(data not shown, experiments by AF). The Nanog intensity histogram, generated from all
cells in the movies, is shown in Figure It seems comparable to the Nanog distribution
obtained from the FACS analysis, shown in the comparative density plot in Figure [3.6] The
three lines are kernel density estimations and correspond to FACS (blue), movie with all
values (green) and movie with start values only (red, see below). All intensity ranges are
normalized to [0; 1] as FACS and movie analysis have different units. Although the FACS and
movie lines do not exhibit striking similarity, the general shape is of importance. Common
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features are a prominent peak in the right half of the distribution and the trailing-off to the
left without a second peak. The skewness of the movie distribution is -1.51, the kurtosis
is 6.71, the mean is 0.07 and the standard deviation is 0.53. Figure also shows the
Nanog distribution, but here only the first three measurements of each cell are considered to
eliminate cell cycle effects as the Nanog intensity increases with the cell size. The distribution
attributes are similar, with skewness -1.60, kurtosis 7.27, mean -0.09 and standard deviation
0.52. This effect cannot be eliminated in the FACS data as the position within the cell cycle
of the cells is not known.

An interesting feature is the close similarity of the distributions in This is suggested
visually (see also the green and red line in Figure and their relative entropy (or Kullback-
Leibler divergence) is 0.021, indicating close relationship. The shift of the mean to the left
from (a) to (b) can be explained by the increase of Nanog during the cell cycle, which is
not shown in (b). But the variance is almost equal, showing that the start values alone
are capable of producing an intensity spectrum of the same width. This proves that the
cell cycle-dependent increase of Nanog abundance is not responsible for the general shape of
the distribution, but that the skewness or heterogeneity is rather an intrinsically regulated
feature of mESCs. In [27] and subsequent modeling approaches ([60, [78], see below) this fact
is completely neglected.

The Nanog expression time courses of all 31 trees, from which the histograms are generated,
can be seen in Figure The plots show the starting intensity values of each generation.
The Nanog intensities extracted from the movies have arbitrary units, between 0 (no Nanog)
and 14.66 (very high Nanog) on a linear scale, resulting from the quantification process which
simply sums up the intensities of the cell pixels in the nucleus and subtracts the background.
However, from the similar shape of the FACS and the image Nanog distributions, a relation
between image intensities and true Nanog counts could be established by a mean comparison:
there are on average 1E6 Nanog monomers in ESCs (see above), and the mean intensity value
of all quantified cell timepoints is 1.1792 (linear scale) in the movies, resulting in a factor of
848,030 Nanog molecules per image intensity unit. However, the mean relation factor is a
very coarse measure and the measurement errors in each method are not regarded.

3.3.3 Reestablishment of the steady state Nanog levels

The FACS cell sorting experiment described above yields insights on the population
level only. However, it would be interesting to know how the reestablishment of the original
Nanog intensity distribution (if there is one) takes place at the single cell level. There are
several questions that can be asked: (i) how long does the process take?, (ii) can we see the
same speed bias as in the FACS data, meaning that LN cells take longer than HN cells to
restore it?, (iii) how volatile are single cells in Nanog expression between generations?, and
(iv) can the restoring process be explained by this general volatility, or is it rather the result
of some destined cells that bear a long-term program for change?

As the cells in the movies are a random sample of the complete distribution, the sorting
needs to be done in a post-hoc fashion. To execute this cell sorting cells from generation 1
(the daughter cells of the first division event in a tree) are used to group the trees according
to their intensity values. Generation 0 (the first cell) is not utilized here because its state
within the cell cycle is not known. Unfortunately, there are no trees whose generation 1 cells
fall into either the dimmest two percent or the brightest five percent range, the gates used
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Figure 3.6: Nanog intensity distributions of the FACS population data (blue line), the time-lapse
movies with all measurements (green line) and the time-lapse movies with start values only (red line).
The x-axis shows the Nanog intensity (normalized to [0;1]) and the y-axis the frequency. The curves
are kernel density estimations of the underlying histograms.

for the FACS sorting experiment. Thus the sorting of the movie cells is performed slightly
differently, which eventually might cause differences to the FACS results. The observation
of FACS sorted cells (2% dimmest and 5% brightest) in time-lapse movies is currently un-
derway in the ISF laboratory. The Nanog intensity distribution of the start measurements
(to exclude cell cycle effects) is split into percentiles or compartments. A cell belongs to a
certain compartment if its measured intensity value is within the boundaries of this compart-
ment. Figure |3.9(a)| shows the compartments of the distribution and the number of cells in
each of them. We consider cells to lack Nanog completely if they are within the lowest ten
percent, and to have a large abundance of Nanog if they are within the highest ten percent
of the intensity distribution. The boundaries of the compartments which are used to group
the trees according to their generation 1 Nanog intensities are thus 0.1,0.25,0.5,0.75 and 0.9,
where the 25-, 50 and 75-percentiles are introduced to split up the center of the distribution
for studying the cell dynamics in there in a more detailed way. The number of trees in each
compartment is given in Figure |3.9(a)l Table shows the repopulation analysis in detail,
providing the number of cells in each compartment over four generations. A visualization of
this table as pie diagrams is shown in and an interpolation of the minimum number
of generations until the full reestablishment of the distribution is pictured in Figure [3.11
The first column of the table is the compartment number and the second column shows its
boundaries. Column three lists the number of trees in each compartment. Column four shows
the fraction of cells in generations g € {1,2, 3,4}, with one generation per row. Each entry in
the probability vectors represents one compartment. The fifth column shows the difference
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Figure 3.7: Nanog intensity distributions. (a) The Nanog intensity distribution of all cells in gener-
ations 0 to 4. Values on the x-axis are log-scale and arbitrary but have a linear correlation with the
FACS intensities (see text). The y-axis denotes frequency of the events. All measurements of the cells
are included. (b) The Nanog intensity distribution of all cells in generations 0 to 4. Here, only the
first three measurements of each cell are included to eliminate cell cycle-effects. Axes are equal to (a).
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Figure 3.8: Time courses for all trees. The y-axis shows the Nanog expression level of the start values
(linear scale), the x-axis the experiment time in generations. The color of the points corresponds with
the expression level (from blue = low to red = high).

dy of the frequency vector f, in generation g to the original distribution 7 provided in the
first row, calculated as the sum of differences dy = > ; | f4(¢) —7(¢)|, with n = 6 the number
of compartments. The last column shows the Kullback-Leibler divergence K L, of the vectors
fg and r, which is an established measure of the distance between two distributions.
Generation 1 cells by definition fall completely into their sorted compartment, and with
each further generation the distribution of cells in the different compartments approaches the
original Nanog distribution. Both distance measures d, and KL, exhibit the same trends,
decaying rapidly in the extreme compartments, but staying rather constant after an initial
decrease in the middle ones.

The best correspondence between the original distribution and a sorted one is observed in
generation 4 of the third compartment, where d; = 0.4 and KL, = 0.1. Although the
reestablishment is not yet completed here (probably because the movies last only for four
generations), it supports the idea that cells with medium expression level have a stronger
tendency to repopulate the complete Nanog distribution due to their flexibility in Nanog ex-
pression (see below and Figure. It is also clear that cells from the tails of the distribution
need to traverse to the respective opposite end of the distribution, which necessarily takes
more time than spreading out from the middle to both extremes simultaneously.

Summing up, question (i) about the duration of the reestablishment cannot be fully answered
due to the censored data, but the data indicate that already after three rounds of division
(from generation 1 to 4), a subset of the cells is capable of almost reproducing the original
distribution.
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Figure 3.9: Definition of the intensity distribution compartments. (a) The histogram shows the
distribution of Nanog intensities of the first cell measurements (x-axis is the intensity, y-axis the
frequency). The red vertical lines represent the compartment boundaries and each compartment
(noted in square brackets) spans between two red lines. For example, compartment 1 contains cells
with intensities between —4 and —0.77, corresponding to the 0 and 0.1-percentiles. The number of trees
n in each compartment is given. (b) The pie diagram shows the relative amount of each compartment,
and is used as a reference in Figure

Question (ii) about the rate bias in LN and HN cells equally struggles with the difficulty
that the movies are too short to observe a complete reproduction. An interpolation of the
measured differences KL, (Figure shows that the low and middle cells would need about
five to six generations to restore the complete distribution (assumed if KL, < 0.01), while the
high and extreme high cells would need longer, up to 13 generations. The fastest restoring
can be seen in compartment 3. This is valid only if the KL divergences decay exponentially,
which seems to be a reasonable assumption for compartments 1, 5 and 6, but not so much
for the others. Taken together, we can conclude that the high cells need longer to reestablish
the original distribution, contradictory to the FACS results from above. The current experi-
ment in the ISF laboratory (see above) might bring clarification on this issue by deciphering
whether one of the former experiments ran awry or whether there is a real difference between
the 2/5% sorted and the 10% sorted cells.

Question (iii) about the expression flexibility or volatility is best answered by the plot in
Figure It depicts the range of fluorescence intensities of the two daughter cells (y-axis),
given that the current cell expresses Nanog at a certain level (x-axis). Low cells are observed
to give rise to low cells preferentially and high cells tend to divide into high cells, too, while
cells with an intermediate Nanog expression exhibit a broad spectrum of intensities in the
next generation. This underlines the idea that cells from the middle of the distribution can
repopulate the entire distribution faster than cells from the extremes.

The question (iv) about the mechanism of the distribution reestablishment is also answered
by the volatility plot (Figure , showing that cells anywhere in the distribution are ca-
pable of producing offspring with slightly or heavily different expression levels. These cells
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Figure 3.10: Reestablishment of the original Nanog intensity distribution. The pie diagrams visualize
the numbers in Table |3.3| and show the fractions of cells within each compartment over generations 1
to 4. Each row represents one generation, each column one compartment. Moving from generation 1
to 4, the reestablishment can be observed by the changing fractions of cells in each compartment. The
reference pie of the original Nanog distribution is given in Figure

can then further split into daughters with distinct levels, until the steady state distribution is
reached. Since this expression flexibility is not a rare property of few cells only (boxes are not
very narrow), it can be stated that all cells bear the capability of restoring the steady state
distribution of Nanog expression. Nonetheless, the timing of this process can substantially
diverge, depending on the type of cells selected (extremely changing or not). The time scale
of restoring is addressed in Figure (see above) and the analysis of the expression memory
below.

Another interesting aspect is whether the cells communicate to induce this diversification in
Nanog intensities. This is not addressed here, but could be examined by observing whether
cells in clumps behave differently than isolated cells, or by measuring signal molecules in
the medium surrounding the cells. Current experiments in the laboratory of Ian Chambers
suggest an effect of the plating density on the Nanog intensity (personal communication, un-
published data). If the assumption of LN cells taking longer to restore the skewed distribution
(from the FACS experiment) turns out right, this might partly be due to the fact that LN
cells are a mixture of ESCs and cells already committed to differentiation - which cannot give
rise to HN cells anymore.

In the following we assume that all cells randomly picked from a population have the
potential to restore the complete spectrum of Nanog expression. This is sound in the light
of the six weeks FACS sorting experiment (data not shown) and the (interpolated) single cell
data.
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Figure 3.11: Generations before the full reestablishment of the original Nanog distribution. Each
subplot represents one compartment indicated in the plots. The x-axis denotes generations, the y-axis
the KL, distance measure. The blue points are the measured values (see Table , the red line is a
fitted exponential function. The black ball on the x-axis denotes the minimum number of generations
where y < 0.01, thus indicating the estimated waiting time until the original Nanog distribution is
restored.

3.3.4 Division and cell cycle characteristics

In Figure the fluorescence loss [ during cell division is shown. The loss of intensity
for a cell ¢ with daughter cells f1 and f2 is calculated as [ = il(c)_isglfég_is(ﬂ), where 7;(x)
denotes the average of the last three measured intensities of cell =, and i¢(x) similarly the
average of the first three measured intensities (averaging was done to account for singular
measurement errors). In an ideal division, the intensities of the daughter cells sum up to the
intensity of the mother cell, resulting in a loss [ = 0. However, as shown in the plot, the
loss distribution is shifted to the right with an average loss of 8%, suggesting a rather messy
cell division. Current experiments in the ISF laboratory indicate that Nanog is transmitted
from the nucleus to the cytoplasm, which can account for the loss in some divisions since the
quantification in the movies takes place in the nucleus only. Whether this Nanog transport is
active, passive, or completely unregulated remains an open question. A gain in fluorescence
(negative values of [) is unexpected, but is possibly due to small measurement errors that
result in large relative losses in very dim cells (near zero intensity), owed to the calculation
of the loss. Another possible explanation is motivated by the larger prevalence of gains in
high cells: it could be possible that the Nanog production rate in these cells is high enough
to add proteins to the amount received during division until the next observed timepoint. In

Figure3.13(b)| the relative fluorescence loss is shown with respect to the mother cell intensity.
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Comp. | Bounds | Trees Generation 1/2/3/4 dg KL,

ALL 31 | r=0.10;0.15;0.25;0.25;0.15;0.10] | dyp=0 | KLo=0

1 00-0.1] 3 f1 [1.00; 0.00; 0.00; 0.00; 0.00; 0.00] | dy = 1.80 | K L; = 4.49
0.46;0.22; 0.26; 0.05; 0.01; 0.00] | do = 0.88 | KLy = 1.08
f3 = [0.34;0.29;0.18;0.07;0.08;0.04] | d3 = 0.76 | K L5 = 0.36

f1=10.26;0.23;0.28;0.10;0.05;0.08] | d4 =0.54 | KLy =0.23

2 0.1 —0.25 3 f1 =0.00;1.00; 0.00; 0.00;0.00;0.00] | dy =1.70 | KL; =4.15
fa = [0.14:0.40: 0.35: 0.08: 0.02:0.00] | dy — 0.78 | KLy = 0.74
f3 =10.25;0.31;0.39;0.04;0.01;0.00] | d3 =0.89 | KL3 =0.97
f4 = [0.11;0.33;0.33:0.10: 0.07:0.06] | dy — 0.54 | KLy = 0.19

3 [025—05] 7 | f1 =[0.00:0.00; 1.00;0.00;0.00: 0.00] | dy = 1.50 | KL, — 3.46
fy = [0.01;0.13;0.50: 0.22; 0.11; 0.04] | dy = 0.50 | KLy = 0.30
fs = [0.06:0.23: 0.43; 0.14:0.08; 0.07] | ds = 0.51 | K L3 = 0.14
Ja=

f5 = [0.00; 0.04; 0.06; 0.20; 0.32; 0.38] | do = 0.92 | KLy = 0.84
f3 = [0.02;0.02;0.09;0.17;0.25;0.43] | d5 = 0.88 | KL3 = 0.53
f4 = [0.02;0.03;0.10; 0.16; 0.22;0.47] | ds = 0.89 | KLy = 0.54
5 |075-09]| 6 | fi=0.00;0.00;0.00;0.00;1.00;0.00] | dy = 1.70 | KL; = 4.15
f5 = [0.00;0.00; 0.02; 0.22: 0.37;0.39] | do = 1.02 | KLy = 1.49
f5 = [0.04;0.01;0.07; 0.18;0.26;0.44] | d5 = 0.91 | KL3 = 0.69
f4 = [0.04;0.04;0.11;0.14; 0.23; 0.43] | dy = 0.84 | KL, = 0.43

6 0.0—1 3 0.00; 0.00; 0.00; 0.00; 0.00; 1.00
0.00;0.00; 0.01; 0.04; 0.14; 0.82
0.00; 0.00; 0.04; 0.09; 0.19; 0.67

f4 = [0.01;0.00;0.12; 0.15;0.17; 0.54

dy =180 | KL; =4.49
do =144 | KLy =2.45
ds =122 | KLz =1.54

]
]
]
]
]
]
]
]
]
|
0.10;0.23;0.37;0.13;0.08;0.09] | dy = 0.40 | KLy = 0.10
]
]
]
]
]
]
]
]
]
|
] | dy=0.93 | KLy =0.96

=
[
[
[
[
[
[
[
[
|
4 [05-075[ 9 | fi =[0.00;0.00;0.00; 1.00;0.00;0.00] | di = 1.50 | KL; = 3.46
[
[
[
[
[
[
[
= |
= |
=
[

Table 3.3: Reestablishment of the original Nanog intensity distribution in the single cell data. The
trees in the movies are sorted post-hoc into six compartments (column 1) by the starting intensities
of its generation 1 cells. The compartment bounds are listed in the second column. The third column
gives the number of trees in each compartment. Column four shows the relative frequency of cells
in generations 1, 2, 3 and 4 (one per row) respectively as frequency vectors, each entry representing
one compartment. Column five shows the difference d, of the frequency vector f, in generation g to
the original distribution r provided in the first row, calculated as dg = >0 1 |fg(i) — r(i)]. The last
column shows the Kullback-Leibler divergence K L, of the vectors f, and r. Both distance measures
exhibit the same trends, decaying rapidly in the extreme compartments, but staying rather constant
after an initial decrease in the middle ones. A visualization of this table in various ways can be found

in Figures and

The plot indicates that higher losses are more prevalent in low cells, although high cells also
exhibit a substantial range of loss values.

Figure shows the asymmetry of Nanog allocation between the nascent daughter
cells in a division. In an ideal division both daughter cells receive equal amounts of Nanog,
but as cells neither are completely homogeneous nor show perfect divisions (see loss above),
a biased repartition of a protein is actually something to be expected. Here we measure the

|Zf(f1) ir(f2))

=T eP) |, and a perfectly symmetric division would result in a = 0.

asymmetry a =
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Figure 3.12: Nanog expression volatility. The x-axis shows the intensity of the current cell (binned in
0.5 ranges), the y-axis the intensity range of the daughter cells. The notches in the boxes indicate the
95% comparison interval of the medians, showing that two medians are significantly different if the
notches do not overlap. A 1-way ANOVA test to compare the means yields a p-value of 0, supporting
the idea of differences between the daughter cell intensity ranges. The strange notch at intensity 4.0
is a consequence of few data points in this section as the notch is larger than the box itself.

The absolute value is taken since the assignment of f1 and f2 is arbitrary. The mode of
the distribution is zero and it follows the right half of a shifted and scaled t-distribution,
indicating frequent, but rather slight asymmetric divisions. The idea of asymmetry being
responsible for heterogeneity has already been explored in several studies, indicating the
adequacy and importance of quantifying asymmetry (see [73] for the difficulty of separating
segregation effects from transcriptional noise, and [71] for a comprehensive review). In Figure
the division asymmetry is plotted against the Nanog intensity. The cells exhibiting
the most asymmetric divisions are the low ones, but the asymmetry is a feature of cells with
all intensities. Similar to the fluorescence loss, the higher asymmetry in low cells could be
due to technical noise (measurement errors) and the definition of a.

We propose that the existence of fluorescence loss during division and the asymmetric

segregation of Nanog proteins are inherent features of the utilized ESCs. An accurate obser-
vation and quantification in a movie with short time intervals between pictures could help
to clarify the role and biological significance of these two processes. Current detailed exper-
iments in the ISF laboratory confirm the existence of loss and asymmetry in divisions, but
need further analysis.
An interesting question now is whether the loss of Nanog during division or the asymmetric
allotment of Nanog is responsible for the skewness of the intensity distribution. This is ana-
lyzed with a new molecular model (see modeling section and yields that the asymmetry
is an essential mechanistic feature of the heterogeneous expression of Nanog, while the loss is
not as important but should not be neglected either.
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Figure 3.13: Cell division characteristics. (a) Loss of fluorescence during cell division. The x-axis
denotes the fluorescence intensity loss in relation to the mother cell intensity (see text for calculation),
the y-axis shows the absolute frequency. Negative loss values indicate actual fluorescence gain. The
red line is a shifted and scaled t-distribution with df = 1.65, p = 0.08, o = 0.09, and a KS test yields
p = 0.97. (b) Relative fluorescence loss, split by Nanog intensity. The x-axis denotes the expression
level, the y-axis the range of relative fluorescence loss over all cells. (¢) Asymmetry of Nanog allotment
during division. The x-axis denotes the asymmetry (see text for calculation), the y-axis shows the
absolute frequency. The red line is the right half of a shifted and scaled t-distribution with df = 1.47,
u=0.01, 0 = 0.12, and a KS test yields p = 0.1. (d) Similar to (b), the division asymmetry split
by Nanog intensity. The strange notch at 3.5 is due to few data points and extends beyond the box’
width.

The average cell cycle time (from birth until division) over all cells is 15.85 hours. However,
one can ask if cells with low Nanog expression proliferate with the same rate as those with
high Nanog levels. The cell cycle times are measured in each compartment separately and
are shown in Figure as violin plots. It indicates that the cells proliferate equally fast,
independent of the Nanog intensity. A Kruskal-Wallis test (data are not normally distributed)
to compare the medians yields a p-value of 0.28, supporting this assumption. A Levene’s test
to compare the variances yields a p-value of 0.018, indicating different variances across the
compartments, an idea also supported by the different widths of the distributions.

It is tempting to interpret the median equality as natural, but it somehow contradicts present
ideas of defining ESCs. Usually, these exhibit rapid cell cycle times of approximately 12
hours [127], which increase with the level of differentiation. Thus as Nanog is considered
an ESC specific protein, the low cells (which are more prone to differentiation [27]) could
be expected to show slower proliferation rates than the high cells. This is not the case in
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our data, indicating an undifferentiated ESC nature even in the low cells - as Chambers and
co-workers already suggested [27]. Following this point of view, the difference between low
and high cells is not in their pluripotent capacity, but in the decreased stability of the low
state since these cells provide 'windows of opportunity’ [27] for differentiation. This is in
accordance with the large range of life times in the lowest compartment (tails are heavier),
indicating the existence of a substantial amount of slowly proliferating cells - which possibly
have ’the window open’. Note that outliers in the high compartments can be indicative for
quiescent cells (transiently entering into Gy).

bobea

1 1 1
1 2 3 4 5 6
Compartment

45

35~

Lifetime (hours)

Figure 3.14: The cell cycle times of cells with different fluorescence intensities as violin plots. The
x-axis denotes the compartments of the cells, the y-axis shows the life time in hours. Outliers are
more abundant in the middle range and possibly stem from cells that transiently enter into Gy during
their cell cycle. The distribution itself is broader in the lowest compartment, however. The green
squares denote the median of each distribution, the red circles the mean. The bimodality in the sixth
compartment is possibly due to few data points. For details about the intensity compartments, please
refer to the text and to Table

3.3.5 Influence of the cell history

One can also ask if the cells have a memory, meaning that their Nanog intensity is not in-
dependent from their history. To treat this question formally one can ask whether the cells
fulfill the Markov property. This property states that the chance of producing a certain level
of Nanog expression in the daughter cells depends on the current expression state only, and
not on the previous ones [I1].

The cells are split into the same six compartments as defined above (see Table and the
rates of change between these compartments are measured by counting the transitions over
one generation. Again, only the first measurements of each cell are considered to avoid any
cell cycle effects. The change rates between all compartments without regarding the history
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are listed in Table which is colored as a heatmap. The differences between the change
vectors for each compartment are calculated as average KL divergence and provided in the
last column (KL; = ﬁ Z?:l KL(i,j) with i the current compartment, j all others and n
the number of compartments). The data reflect the findings from above that low cells tend
to produce low cells and high cells tend to produce high cells, while cells with medium Nanog
expression generate daughter cells with all levels of Nanog expression. This explains why the
middle cells are found to be fastest in restoring the complete Nanog distribution.

In order to check whether the ultimate cell history (the intensity of the mother cell) has an
influence on these rates three-dimensional change rates (mother cell, current cell, daughters)
are calculated. The result is shown in Table in heatmap colors. If the change rates do not
depend on the cell’s history, the rates of one compartment to another should be equal for all
histories (the rows in one group should be similar) and similar to Table This is not the
case in our data. However, the rates tend to be more similar in currently low or high cells
than in currently middle cells, indicated by the lower average KL divergences in the extremes
(calculated as above, provided in the last row). Consider, for example, the cells which are
now in compartment 3 but have different histories: the rates change dramatically, depending
on the ultimate cell development. Interestingly, in this compartment the diagonal tends to
contain the highest values, suggesting that the cells prefer to go back to where they come
from.

Note that there is a slight discrepancy between this table and Table since in the latter
one there are, for example, cells which change from 6 to 1, which are not present here. This
is due to the limited number of generations in the trees which contain cells that have such
a history but no quantified daughter cells. Therefore they do not occur here (as this table
spans over three generations).

Concluding, this suggests that the cells know about their origin in general and that changes in
Nanog expression are usually not a quick-response program that acts within one generation
but at least partly involves a longer lasting decision. The diagonal in the third compart-
ment and the preference of more extreme cells to stay extreme support this conclusion. A
possible mechanism generating this pattern could be an epigenetic programming for change,
like chromatin rearrangements or histone modifications (see [I52] for an example of such a
fluctuation-generating mechanism). Experimental strategies to validate this supposition in-
clude longer time-lapse movies (at least eight or nine generations) to quantify the loss of
memory over time, or the time-resolved inspection of the Nanog promoter or histone methy-
lation state in cells that change their Nanog expression level.

3.3.6 The existence of subgroups

In the previous analyses the distribution has been split into six distinct compartments of
Nanog expression. The borders between the compartments have been motivated by the def-
inition of the FACS gates to define cells with either very low or very high Nanog expression
and by the idea to subdivide the mass of the cells that have a medium expression into four
subgroups. Nonetheless, the number of 6 has been chosen arbitrarily, and the question is
posed whether this compartmentalization is biologically meaningful or if it is more adequate
to have a different number of compartments or none at all.

In our view a compartment of cells is biologically reasonable if it represents a true subgroup
of cells with a distinct level of Nanog expression. Such a subgroup cannot be a rigid cage,
evidenced by the volatility of Nanog expression over one generation (see Figure , allowing
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Compartment | Number of cells | Daughter intensity (compartment) | KL;
(total = 767) 1 2 3 4 5 6
1 87 0.35
2 103 0.09
3 220 0.09
4 201 -0.10
5 96 0.10
6 60 -0.10

Table 3.4: Change rates from any compartment to any other without regarding the history of the
cell. The numbers 1 to 6 in rows and columns denote the compartments as listed in Table |3.3] The
rows represent different current intensity compartments, and columns three to eight represent different
daughter cell compartments. The first column shows the current intensity compartment and the second
one the number of cells in there. The last column provides the average KL divergence of the frequency
vector to all others.

cells to wander between different protein abundances. But on the other hand it should be
at least partly stable, defined by the probability that a cell exhibiting the distinctive level
of Nanog expression of this group stays within it over some generations. In other words, a
compartment z is defined as stable (and thus of biological interest as a putative subgroup) if
the chance of cells in this compartment to stay there in the next generation as well (denoted
by P,.) is greater than a certain threshold. This threshold can be defined in various ways,
yielding different levels of stability. The most relaxed way is to define a compartment as sta-
ble if P,, > 0 holds. Taking a look at Table (diagonal entries), all six compartments are
stable with this definition. A second way is to require Py, to be greater than all other change
rates, meaning a cell rather tends to stay in its own compartment than to roam into another
compartment y, thus Py, > Ppy,y € {1...n}\ {z}. With this definition all compartments
are stable except compartment 5, where cells preferably change to compartment 4. A further
possibility, and the most rigid one, is to define stability by P,, > 0.5, meaning the cells have
the highest chance to stay in their compartment rather than changing it. By using this form
only compartment 1 (very low expression) is stable.

Neglecting the relaxed stability definition (P, > 0) because of its indistinctive nature, the
most meaningful number of compartments can be derived from the analysis of the two plots
in Figure [3.15] In both the number of compartments is shown on the x-axis, and the number
of stable compartments on the y-axis. The compartment bounds are now defined by equal
quantile sections of the complete Nanog distribution. For example, the bounds in the case
of four compartments correspond to the quantile values of [0;0.25;0.5;0.75;1]. In
the stability is defined rigidly by P,, > 0.5, while in a compartment x is stable if
Py > Ppy,y € {1...n} \ {z}. The maximum number of stable compartments with the rigid
definition is two and it goes down to zero for 20 or more compartments, while in the less con-
servative case the number slowly increases with the compartment count. The red points show
the fraction of stable compartments, which has its peak at two compartments and decays for
both definitions until it is virtually zero after 14 or 17 compartments, respectively. From the
left plot it could be concluded that there are only two stable compartments, while the right
plot suggests the existence of more subgroups. Considering the very conservative nature of
the first (and the decreasing chance of scoring a probability > 0.5 in the case of many neigh-
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Daughter cells
1 2 3 4 5 6 | KL;
0.04

Mother | Current | Number
1 61
16
6
4
0
0
2 14
25
50
14
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Table 3.5: Change rates from any compartment to any other, regarding the ultimate history of the
cell. The numbers 1 to 6 in rows and columns denote the distribution compartments as listed in Table
The rows represent different histories (mother cell) and current intensity compartments, while
the columns represent different daughter cell compartments.

bors), Table and the fact that any positive chance of staying in the same compartment is
interesting by itself, we vote for the second definition and state that there is good reason to
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assume the existence of subgroups, albeit the exact number is hard to define.

In Figure the change rates to higher (left column) and lower (right column) compart-
ments are shown for a varying number of equally spaced compartments. Note that the six
compartments above are not equally spaced and do not occur here. Nonetheless, the plots
can be considered a continuous extension of Table The positive/negative tendency is
the sum of change frequencies to all higher/lower compartments, respectively. The individual
plots in (a,b) are summarized in (c,d), where the compartment index is in relative terms of
the total number. The bar plot in merges (c,d) by plotting the positive tendency in
blue (from (c)), the negative tendency in red (from (d)) and the remaining fraction in green
(which is the chance to stay in the same compartment). The red lines in (a-d) are polynomials
with degree two, having their minimum/maximum around 0.4 (relative compartment index)
each. The equal location of the two extremes conveys that the middle cells tend to give rise
rather to higher cells than lower ones, as previously indicated in Table [3:4] and Figure [3.12]
This is conform with the generally larger abundance of high cells, obvious in the intensity
histograms (Figure . The substantial negative tendency in the very low cells reflects the
higher propensity of low cells to stay low, while the high negative tendency in high cells
indicates an inclination to lower the expression. The fact that there is a peak or dip at all
supports the idea that extreme cells are clearly different from middle cells and thus underlines
the existence of distinct subgroups of mESCs, defined by their level of Nanog expression.
Taken together, the definition of stability and compartment boundaries is decisive for defining
the number of stable compartments or subgroups. Thus we do not provide a definite num-
ber of subgroups but rather find that the assumption of their existence is reasonable in the
light of the data. If, nonetheless, a fixed number is given, bootstrapping (omitting random
cells from the analysis) would be an interesting approach to test the robustness of this number.

Note that, although the compartmentalization of the Nanog distribution is a good hint of
the existence of subgroups, it does not explain how this distribution or division into different
cell populations is actually generated. This is treated in the next section, where both previ-
ously published mechanistic models are evaluated in the light of the data and a new molecular
model is proposed.
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Figure 3.15: Number of stable compartments vs. the number of compartments. Blue points denote
the number, while red points denote the fraction of stable compartments in both plots. (a) Stability
defined by the rigid property P, > 0.5. (b) Stability defined by the property P, > Py,.
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Figure 3.16: Compartment change rates for various numbers of equally spaced compartments. The
red lines in (a)-(d) are polynomial fits with degree 2. The compartment indices in (c, d, e) are relative,
with the highest number set to 1. (a, ¢) Sums of change rates to higher compartments (positive
tendencies). Individual plots from (a) are summarized in (c), the maximum is at 0.41. (b, d) Sums of
change rates to lower compartments (negative tendencies). Summary plot similar to the left column,
the minimum in (d) is at 0.4. (e) Bar plot of (c, d) stacked. Blue bars denote positive tendencies, red
bars negative ones and green bars the propensity to keep the expression level.
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3.4 Molecular Nanog models

After the initial publication of the fluctuating Nanog levels by Chambers et al. [27] the
question of how this fluctuation is generated at the molecular level has been posed. Few
papers have tried to shed light on this problem so far, including one purely experimental
approach [I31I], one purely theoretical modeling approach [60] and one study that combines
both strategies [78]. The literature about fluctuations in gene expression in general has been
fostered by the discovery of many genes with fluctuating expression levels in a macroscopically
homogeneous cell state (see e.g. [27, [64, [66] for pluripotent cells). A comprehensive review
of experimental and theoretical approaches to study non-genetic fluctuations in development
is given in [71]. A series of papers by Raser and Paulsson deals with modeling the inherent
stochasticity in gene expression, which are nicely reviewed in [134, [141]. In [I78] the role
of noise in generic developmental networks is assessed. The importance of understanding
heterogeneity is outlined in a pharmacological context in [124 [143], [152].

In this section the theoretical models in [60, [78] are reviewed and their validity tested in the
light of our data. Considering the results of this evaluation and the still unexplained features,
a new and simple molecular model of Nanog expression is proposed which is able to explain
parts of the previously disregarded features of ESCs.

3.4.1 The excitable system by Kalmar et al.

In [78] the authors propose a GRN (see Figure that consists of an excitable system
with transcriptional noise. An excitable system is defined as a nonlinear dynamical system
that can generate large responses to small stimuli if a certain threshold is passed. Usually the
shape of the response is not dependent on the shape of the stimulus (i.e., nonlinear) [I00].
A well-known example of an excitable system is the neuronal information propagation in the
mammalian brain [102], where a sharp output peak (an action potential) is generated if the
sum of the input signals is above a certain voltage threshold. In the Nanog model in [78]
the cell is assumed to be in a steady state with high expression of Nanog (HN), and the
input stimulus is generated by Gaussian white noise (mean 0 and normally distributed) in
transcription. The response is a transient cell state with low Nanog expression (LN). Due to
the nature of the excitable system, this state is not stable and the cell can either return to
the HN state or lose its pluripotency and differentiate. The construction of their model is
stimulated by two key observations: Nanog is fluctuating, as reported in [27], and high levels
of Oct4 seem to repress Nanog in an unknown way [101}, [125] 131]. The model is implemented
as an ODE (ordinary differential equations) system, and chemical reactions are also simulated
with a Gillespie algorithm.
The authors analyze the dynamic behavior of their cell model and postulate predictions whose
validity they assess with laboratory experiments. Their conjectures state that (i) the LN state
is unstable and returns to the HN state immediately, and (ii) the transition from HN to LN
cells should be rare while the reverse transition from LN to HN should be frequent.
To prove these two suppositions they perform FACS sorting experiments similar to the ones
described above (3.3.1]) and time-lapse movies of their ESCs. The authors conclude from their
data that the LN cells give rise to HN cells more readily than the other way round because
the sorted populations exhibit different repopulation velocities.

However, their paper suffers from some inconsistencies in the data generation and inter-
pretation. First, they do not correct for cell cycle effects - a cell that is classified as LN
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could actually be a cell having just divided and which is on its way back to the HN state.
Second, for the TNG4 (Nanog transcription reporter, see above) line no observations for the
time beyond 48 hours are shown, and there could be a substantial change in the behavior
after this time. Third, the image data they provide to show that LN cells indeed give rise to
HN cells are not accurately quantified but only inspected by eye, which could be a source of
errors. Additionally, the proof that the majority of LN cells behaves this way (as their model
predicts) is not given. Fourth, there are no data supporting the second hypothesis - there
is no reasonable background to assume that HN cells give rise to LN cells more rarely than
vice versa if not all cells are surveyed and quantified. Last, the time course generated from
their model shows the rapid and rare transitions between the LN and HN state they predict.
Yet, averaging the residence times of cells in both states from this model actually does not
generate the approximate 20/80 LN/HN distribution they refer to because the LN cells are
significantly underrepresented.

An additional line of evidence speaks against their model conjured from our single cell data:
the LN state is stable and cells in the LN state are not inevitably destined to revert to the
HN state, clearly shown by the high number of cells that stay within the low compartment in
Table Furthermore, the change rates between the HN and LN states are not significantly
different as they propose since the positive and negative change rates are rather equal and
actually the low cells tend to stay low even more than the high cells tend to stay high. This
is evidenced in Table and Figure [3.16(e)]

Summing up, the authors in [78] do not give a sound proof that the excitable model with
Oct4 and Nanog is an adequate explanation for the fluctuations of Nanog, and our data
rather suggest that it is either wrong or too simple. It should be noted that, indeed, there are
excitable systems in biology, like the neurons (see above) or the transient differentiation into
competence of B. subtilis [164], indicating that the idea itself is not futile at all. A similar
mESC system (but not excitable) was studied in [33], where the repressive effect of high Oct4
levels on Nanog is executed by the intermediate player Gata6 (see also chapter [2)).

3.4.2 The two models by Glauche et al.

In [60] the authors also propose two GRNs that could explain the fluctuating expression
levels of Nanog in ESCs. The structure of the two distinct models is given in Both
models contain the Oct4-Sox2 heterodimer and Nanog. The first model is termed “fuctuation
model” by the authors and additionally contains a noise component (with unspecified source)
which influences the expression of Nanog. The second model (“oscillation model”) does not
incorporate noise, but introduces a third protein termed X which is connected with Nanog in
a negative feedback loop: its expression is increased by Nanog, but X in turn downregulates
Nanog. Having constructed these two distinct models, the authors analyze the behavior of
each model separately and predict observations both on the population and the single cell
level. With the help of these prognoses they suggest two experimental strategies that should
produce different outcomes depending on the true model - thus an experimentator could
easily define which model is correct, given the true measurements either in single cells or in
a population. In their study the authors implement the system by ODEs with an additional
noise term.

Interestingly, Glauche and co-workers initially neglect the well-known positive feedback of
Nanog on the expression of Oct4 and Sox2 [101]. They argue that this omission is reasonable
since Nanog levels fluctuate more extremely than Oct4 levels, which would not be possible
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Figure 3.17: Three (one in (a), two in (b)) models that try to explain the fluctuations in Nanog
expression. Triangle arrows denote activation, while blunt arrows denote inhibition in both networks.
(a) The GRN excitable system in [78]. Oct4 and Nanog are both auto-activating, Nanog has a positive
feedback on Oct4 and low levels of Oct4 activate the expression of Nanog, while high levels repress
it. (b) The two distinct GRN models in [60] united. Both models contain the Oct4-Sox2 heterodimer
and Nanog. These proteins are auto-activating and the Oct4-Sox2 dimer has a positive effect on the
expression of Nanog. In the first model (fluctuation’) Nanog is influenced by a ’Noise’ term, which
is not an explicit protein but rather an effect from different sources of stochastic fluctuations. The
second model (oscillation’) contains the player X, which is a hypothetical protein that is activated by
Nanog, and in turn represses Nanog.

in a strictly positive feedback loop. Although this might be true for the inevitably limited
scope of the model, it need certainly not be true for real cells. Additionally, there is an
auto-inhibiting function of Oct4 reported in [I31], which might serve exactly for the purpose
of buffering the large fluctuations of Nanog. At the end of their study the authors re-insert
the positive feedback of Nanog on Oct4 and Sox2 indirectly by a double inhibition, where
Nanog prohibits the repressing effect of external differentiation signals on Oct4 and Sox2.
This is, however, not exactly the same as the evidenced direct feedback as it potentially has
different temporal lags and generates different expression patterns in the presence of further
proteins. For the analysis of their models the Oct4-Sox2 dimer is not relevant once it has
reached a steady state because it only serves as a source of constant activation of Nanog
without feedback, and could thus be completely omitted.

From a dynamic analysis the authors in [60] conclude that the 20/80 distribution of LN/HN
cells is reproducible by both models if appropriate parameters are chosen. These parameters
are selected to match the results with previous findings about the skewed Nanog distribution.
Thus, in the following it has to be considered that all their results are based on rather arbitrary
parameter values.

The oscillation model contains an unspecified protein X (Figure which is solely
responsible for the fluctuations in Nanog expression levels. Assuming that this model is
true, and no noise in the Nanog gene expression pathway exists, a FACS sorting experiment
(see also above) which separates LN and HN cells should produce characteristic repopulation
trajectories until the original Nanog expression curve is reestablished. An “overshooting”
is predicted, meaning that the sorted cells do not continuously shift towards the original
expression distribution but rather swing as a whole entity with decreasing cohesion to the
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full reestablishment. For example, in the case of LN sorted cells, the cells would continue
to change expression levels although the steady state is already reached. This would lead to
transient states with higher numbers of cells in the opposing HN state, but the peaks of these
fluctuations would decrease in the course of time until the steady state is completely stable.
If there are single cell data present, a second experiment could be performed to assess the
validity of the model. The residence times (time before a change of expression state) of cells
in the LN state are predicted to be narrowly and symmetrically distributed around a low
mean value, while the residence times in the HN state should be more spread out and have a
slightly higher peak (but still rather symmetric).

Regarding the population data from above (Table and Figure , we do not observe
an overshooting during the reestablishment of the original distribution, rather a continuous
decrease of the initially pure LN or HN cells, respectively, and an equally smooth increase
of the opposite state cells. The residence times of the single cells seem to follow rather
an exponential distribution than a symmetric one (Figure . Additionally, the plots
in Figures |3.18(b)| and [3.18(c)| show the transitions between different expression states and
the frequency of staying constant (LN corresponds to compartments 1 and 2, while HN
corresponds to 3-6). It can be seen that there are generally few transitions between the
two compartments and oscillations (rapidly changing between compartments) almost do not
occur. Therefore, although the analysis might be skewed as the single cells are observed only
for four generations, the three results suggest that the oscillation model might be inadequate
or too simple.

The fluctuation model incorporates a Gaussian white noise term in the production of

Nanog. If this model is true then the repopulation trajectories of the FACS sorting experiment
are expected to follow rather smooth (ignoring the inherent noise) curves without overshoot-
ing. The second experimental strategy based on the single cell residence times is to yield
exponentially distributed residence times, contrary to the oscillation model above.
In our FACS data we can see the smooth repopulation behavior (although not for the gates
defined by the authors in [60] (LN and HN), but for LN and very high Nanog), underlining
the fluctuation idea. The single cell residence times partly fosters the fluctuation assumption,
too, as at least the LN cells seem to be exponentially distributed (Figure , but not
the HN cells.

Summing up, the results of the two experimental strategies that Glauche et al. suggest to
distinguish between the two model types clearly favor the fluctuation scenario, where noise
impinges on the Nanog expression levels and creates the skewed distribution. However, in the
analysis above we also have outlined the possible existence of more than two stable subgroups
- which are not considered in the fluctuation model. Indeed, in this model an intermediate
state between LN and HN cells is virtually not existent, evidenced by the section of the Nanog
distribution with zero frequency and the sharp transitions between the LN and HN states,
putting the bistability of the fluctuation model into question.

The discrepancy in fluctuation favoring and unfavoring data could partly be explained by the
short duration of our time-lapse movies, introducing a bias in the residence time analysis,
and partly by the missing definition of true time and cell cycle considerations in [60], which
leaves unclear how to define the residence time in a certain state.

The reconciliation of the contradiction between our multi-stable Nanog distribution and their
two stages in an extended fluctuation model would definitely be of interest as the fluctuation
idea itself seems to be adequate.



3.4. MOLECULAR NANOG MODELS 63

250 . 500
50~
0 L Low w3 High
0~
150 300" Y 5
g g 2
& & H
3 S 250 g
z z g
& £ g
i 100t i 200 5
100, 20 K]
kY 150~
50 - 100]
. sor
............. L L L ),
0 2 4 6 ] 10 0 2 4 6 8 10 0 1 2 3 4
time time Generation

Q\
@

S h e e
P
Ch e e e
= : = 2
N /K N 2\\
N N
c v e sy
C g e w e
s v e sy

IS
IS
~
IS
~
IS

&k
&

- N s o@

= n e oo

&
5
a
3
z
1
0 2 a
0 2 a

I
=
~
=
°
I
s
I

SN s e o®
- N w s owow
I )
SN wos e ow
SN W s e ow
AN W os e ow
- N W owow
=W oo®

IS
IS
~
=
e
~
-
°
-
=
-

|
~

k-
b
S
b
f
¢

-
S
~
=
°
~
-
~
-
°
-
~
w

Figure 3.18: Evaluation of the two Nanog models in [60]. (a) Residence times of cells in either the
LN (left) or HN (right) state. The lines are fitted exponential distributions. (b) Merged schematic
time courses of all trees, with the starting values of each cell sorted into either high or low. The x-axis
denotes generations, the y-axis denotes the intensity compartment (high or low). The thickness of
each line represents the frequency the transition occurs with. (c) The single time courses of all trees.
X-axis denotes generations as in (b), and the y-axis the six intensity compartments from Table
To compare the six compartments with the two compartments in [60] the first two (1 & 2) represent
the low state, while the rest (3 to 6) is equal to the high state. It can be seen that oscillations between
the two compartments are rare.

3.4.3 A simple molecular model

As shown above, there is currently no model that can account for all experimental observations
made about the fluctuating levels of Nanog in mESCs above. Two of the analyzed models
seem to be either too simple or inadequate, while the third one (the fluctuation model in
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[60]) possibly captures the right idea, but does not allow the existence of more than two
subgroups. The compartment analysis in the previous section, in contrast, is indicative for
certain subgroups, but is not a mechanistic explanation of how the distribution skewness or
the subgroups are actually created. Since this might be relevant for further mESC research
we develop a molecular model that is able to explain important aspects of our observed data.

Figure 3.19: The architecture of our new molecular model. The arrows denote chemical reactions with
kinetic rates k,. DNA can be inactive (DNAi, no Nanog bound) or active (DNAa, Nanog bound at
its own promoter). The transition rates between both states are k; and k,, respectively. mRNA is
transcribed from the active DNA with rate ks and decays with rate k,.. Nanog proteins are translated
from mRNA with rate k; and decay with rate k.

The model is designed as a stochastic molecular model with the architecture shown in Fig-
ure [3.19] The chemical reactions are listed in Table and are implemented with Gillespie’s
direct method [57]. It contains the Nanog gene/DNA in active (Nanog bound, “DNAa”) and
inactive (no Nanog bound, “DNAi”) mode, the Nanog mRNA (“mRNA”) and the Nanog
protein (“Nanog”). The self-activating role of Nanog is incorporated since only active DNA
can be transcribed into mRNA. mRNA and proteins are produced and decayed during the
cell cycle. The cell cycle time is sampled from the distribution of life times obtained from
the movie data, with an average of 15.85 hours and a standard deviation of 4.36 hours (via
a kernel density estimation). A distinction of life times according to current Nanog levels
is not made, which is a reasonable simplification in the light of our analysis above (see Fig-
ure A division exactly halves the amount of mRNA, but the proteins are segregated
asymmetrically. This is incorporated by adding random numbers from a shifted and scaled
t-distribution (with df = 1.47, 4 = 0.01,0 = 0.12) to the perfect division factor of 0.5 for the
Nanog protein. The inclusion of asymmetric divisions is reasonable as it is observable and also
important ([73]). However, random births and deaths of mRNA and protein are also known
to exist, so stochastic production of mRNA and protein are also considered (inherently in the
Gillespie algorithm). The loss of fluorescence is similarly handled by reducing the remaining
amount of Nanog by a t-distributed (with df = 1.65, 4 = 0.08,0 = 0.09) random number.
Although it is known that Nanog acts as a homodimer [I19], this is not included in the model
for the sake of simplicity and the implicit assumption that this inclusion would not alter the
transcription dynamics dramatically.

Note that the growing cell volume over time is only implicitly regarded by the continuing
Nanog transcription and translation. An example of the explicit treatment of the cell volume
can be found in [37].

The measured rates for the Nanog mRNA decay k, [I53] and protein decay k, (ISF, unpub-
lished) are plugged into the equations. In [I44] a method is proposed how to measure protein
production rates and how to correct for the cell cycle-dependent increase of the production
rate. Following this approach for the mESC cells with regard to the mean comparisons of
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image, FACS and Western blot intensities (see above), on average 12,183 Nanog molecules
per hour, are produced (7,071 in freshly divided cells and 17,296 shortly before division).
However, the approach in [144] was applied to bacterial cells, leaving doubt about the ap-
plicability in mESCs, and the mean relation factor is a very coarse measure. Additionally,
the production rate does not distinguish between transcription and translation, although the
relative strengths of these processes are of importance [90) 130}, 138, 165]. Thus the measured
Nanog production rate is not plugged into the molecular model, but is left to a computational
estimation.

All missing reaction rates are estimated with an optimization algorithm minimizing the cost
function f(s) = 3., (d(z;) — rs(x;))?, where s denotes the current parameter state, d the
reference Nanog distribution (calculated from all cells in all trees, see Figure , rs the
resulting Nanog distribution for state s, and ¢ runs over all x; from a kernel density estima-
tion of d. Both distributions are normalized to an intensity range of [0,1]. A perfect match
between the simulated and the reference Nanog distribution would result in f = 0, and the
quality of a state/fit s is measured by f in the following (the lower, the better the fit).

The optimization is done by a Simulated Annealing (SA) algorithm [87] which is run several
times with different starting parameters. One of the start value vectors has been selected
manually, estimated from a non-exhaustive manual search space inspection (see column 2
of Table , the others are random. All SA runs converge into (approximately) the same
parameters, given in column 3 of the same table.

Name | Chemical reaction Measured rates (h~!) | Estimated rates (h~1)
R, | DNAi + Nanog %5 DNAa [0.1] 0.0847
R, | DNAa ™ DNAi + Nanog [0.01] 0.0087
Ry | DNAa % DNAa + mRNA [6] 3.4284
Ry | mRNA ™ mRNA + Nanog [15] 28.6904
Rs | mRNA % 0.12
Re | Nanog ™% 0.193

Table 3.6: Reactions and rates in our stochastic molecular model. DNAi and DNAa denote inactive
(no Nanog bound) and active DNA (Nanog bound), mRNA denotes Nanog mRNA and Nanog denotes
the Nanog protein. The decay rates for the mRNA £, and protein k, are experimentally measured
(second column), while the other reaction rates are estimated by an optimization algorithm (third
column). The rates in square brackets in column 2 denote the manually selected starting values for
the optimization, which has been obtained from a manual search space inspection.

3.4.4 Validation of the new model

After the parameters of the model have been estimated, a validation of the model is per-
formed to test its adequacy in the light of our data. There are five observed attributes of
the single ESCs or their Nanog intensity distribution that the model should explain: (i) the
shape of the Nanog distribution, (ii) the steadiness of this distribution, (iii) the existence of
a distinct number of stable subgroups, (iv) the Nanog expression memory of cells and (v) the
repopulation of the steady state distribution of Nanog.
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Figure 3.20: Gillespie simulation results. (a) The Nanog expression distribution obtained from the
simulation, started with a random abundance of Nanog taken from the original Nanog distribution.
The rate parameters of the reactions are provided in Table [3.6] and are estimated to create a close
match between this distribution and the reference distribution from the single cell movies in Figure
The x-axis shows the Nanog intensity (in arbitrary units, log-scale), the y-axis their frequency.
(b) An example time course of the Gillespie algorithm. Each line shows the trajectory of one species.
The x-axis shows the time in hours, the y-axis the species abundance (left y-axis is for DNAi, DNAa
and mRNA| right y-axis is for Nanog). The sharp decays in mRNA and Nanog abundance are the
divisions. (c) Steadiness of the simulated Nanog distribution. The blue line is the same distribution
as in (a), the green line is the movie distribution from Figure and the gray lines are simulations
with random start values for the Nanog abundance sampled from the blue distribution. It can be seen
that the resulting distributions are similar to the original one, indicating its steadiness.

The first point (i) is obviously fulfilled, as the parameters are selected to yield exactly
such a distribution. But one can ask which of the model components (asymmetric division,
fluorescence loss during division, and different cell life times, half-lifes of mRNA and protein)
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are actually responsible for generating this skewed shape. To assess this each of the four
components is switched off in turn, and the quality of the fit is calculated for the resulting
model. The fit quality of the best solution is f(s) = 63.5, with s the four parameters in Table
3.6l The resulting fit qualities of the impaired models are given in Table [3.7, The component
with the highest impact on the fit quality is the asymmetric division, suggesting that this
feature is responsible for a large part of the heterogeneity in Nanog expression. The divisional
fluorescence loss has the least impact, indicating low relevance for the distribution skewness.
The equality of life times (division at a fixed time of 15.85 hours) and the swap of the protein
and mRNA half-lifes have roughly equal and rather high effects, showing their importance in
the process.

To test the high influence of the division asymmetry experimentally, one could perhaps plate
one ESC on a culture dish with a surface structure (e.g dips and peaks) that forces the cell to
divide asymmetrically, and an ensuing inspection of the Nanog distribution in both daughter
cells over several generations.

A parameter sensitivity assessment is performed as well. Each of the six reaction rates is
altered between 20% and 200% of its original value while the others are left constant. The
impact on the fit quality of each change is given in Figure [3.21] The variation of each pa-
rameter corresponds to one subplot. The x-axis shows the relative value and the y-axis the
quality fold change in comparison with the optimum quality. It can be seen that, as expected,
the estimated parameters have the best quality. The larger the relative change, the worse
the correspondence with the reference Nanog distribution in general, with the exception of
ko. The parameter with the least impact is the DNA inactivation rate k;, while the highest
impact can be observed if the transcription rate kg is strongly reduced. The two parameters
with experimentally measured values, k, and k,, show similar effects, but with the interesting
exception of even further reducing the quality if the mRNA decay is slowed down or the
protein decay fastened.

Altogether, the analysis underlines the optimality of the estimated parameters and indicates
the necessity of the cell to keep the reaction rates within a certain range. An experimental
strategy to assess the validity of this sensitivity measurement could consist of siRNA intro-
duction (speeds up mRNA decay and slows translation), Nanog ubiquitination enhancement
(speeds up protein decay), the suppression of Nanog binding at its own promoter (reduces
kq) or the constant activation of this promoter (enlarges k).

Model Fit quality | Fold increase
Original 63.5 1

No asymmetric division 291.2 4.59

No loss in division 130.38 2.05
Equal life times 259.6 4.09
Half-lifes exchanged 239.44 3.77

Table 3.7: Changes in the simulated Nanog distribution after separate model destructions. The first
column denotes the changed component, the second the resulting fit quality (higher values denote a
worse fit). The third column is the fold increase of this quality over the original one given in the first
row.

Point (ii) about the distribution steadiness can be tested by starting the simulation with
different starting values taken from this distribution and checking if the complete distribution
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Figure 3.21: Parameter sensitivity of our molecular model. Each subplot shows the sensitivity analysis
for one of the six reaction rates in Table The x-axis denotes the relative parameter value (from
20% to 200%), the y-axis the quality fold change with respect to the best (minimum) fit quality.

is obtained again at the end. This is shown in Figure where the resulting distributions
of ten simulations with different starting values are plotted (in shades of gray) and compared
to the original simulated one (in blue) and the distribution of the movies (in green). The
shapes and locations of the gray and blue curves are similar, and their close relationship is
additionally evidenced by the very low KL divergence of 0.02 (on average) of the gray curves
to the original simulated distribution (blue).

Point (iii) is best addressed by subdividing the Nanog start values of the Gillespie simula-
tions into different compartments and measuring the transition rates between these. Similar
to above, the distribution is separated into equally spaced quantiles and the number of sta-
ble compartments (defined as P, > 0) counted over several runs. The results are shown in
Figure The plot suggests the existence of several subgroups, independent from the
actual number of compartments. The error bars denote the standard deviations. Although
these indicate substantial variations, the general trend (also in the fraction) is obviously to
have less stable compartments the more compartmentalized the distribution is. In the case
of three or four subgroups, most of them are stable. Altogether, we state that the existence
of subgroups is a good assumption.

The memory property (iv), which states that the future Nanog expression of cells is
dependent on their history is addressed equally as above, with calculating the transition rates
between different compartments when regarding the cells’ history. If there are differences, the
history of expression is indeed of importance. The distribution is split into three subgroups
(a conclusion from the previous analysis), and the change rates are provided in Table ina
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Figure 3.22: The existence of stable compartments or subgroups in the new molecular model. The
x-axis shows the number of equally spaced compartments in the distribution, the y-axis the number
(blue points) and fraction (red points) of stable compartments (with P,, > 0) similar to Figure
The stable compartment count and fraction are averaged over multiple runs, and the error bars denote
the standard deviation.

way similar to Table It can be seen that indeed the change rates differ, depending on the
provenience of the cell, which would point to an expression memory. Although this memory
effect depends on stochasticity only and the stability of these numbers is not assessed here,
it could be concluded that cells have an inherent memory. However, a similar effect as above
(Table , where cells indeed seem to heed their history is not seen here.

Property (v) addressing the repopulation of the steady state levels is already evidenced in
the steadiness of the distribution, where after several generations the original Nanog distribu-
tion is restored independent of the starting value. Additionally, the steady state concentra-
tions of both mRNA and Nanog can be calculated analytically if their production and decay
are modeled as ODEs (ordinary differential equations, see also chapter. DNA (in)activation
is neglected, which is reasonable due to the small reaction proportions in comparison with
the others and is a simplification often applied [I50]. The equations in Figure show how
to derive the steady state concentrations, where m is the amount of Nanog mRNA, N the
amount of Nanog protein, a dot above a symbol means the derivative over time (the change
of concentration over time) and the values of the reaction rates k, are taken from Table
To be a steady state, the derivative must be 0 as there is no change in the concentration by
definition. This steady state is reached independently of the starting concentrations - they
do not occur at all in the equations. Thus the existence of a steady state and the ensuing
reestablishment of it is shown mathematically, too.



70 CHAPTER 3. NANOG DYNAMICS IN SINGLE EMBRYONIC STEM CELLS

Daughter cells

Mother | Current 1 2 3
1 1 0.33 | 0.33 | 0.33
2 0.11 | 0.33 | 0.56
3 0.43 | 0.57 | 0.00
1 2 0.40 | 0.40 | 0.20
2 0.67 | 0.17 | 0.17
3 0.17 | 0.17 | 0.67
1 3 0.30 | 0.60 | 0.10
2 0.30 | 0.30 | 0.40
3 0.14 | 0.43 | 0.43

Table 3.8: Change rates between compartments in the simulated Nanog distribution, regarding the
ultimate cell history. The rows within one current compartment are different, indicating an influence
of the history.

m = —k.*xm-+ ks

N —kp*x N + ki xm

o= 0em=-2—=2858

N = O@N:ﬁ*%:4248.50
P T

Figure 3.23: Calculation of the steady state Nanog mRNA (m) and protein (N) levels with the help
of ODEs.

Interestingly, we can observe an average 2.23 (sd = 0.2) fold increase of Nanog intensity
during the cell cycle in the simulations. The fold increase is measured by dividing the last
intensity value (mean of the last two hours) by the first intensity value (mean of the first two
hours) of each cell and averaging over all cells. This corresponds well with the expected value
of 2, as the amount of protein must double during the cell cycle if the levels after division
should be equal to the mother cell level if there is no loss during division. This is often the
case in the real cells, evidenced by the stability of the compartments and the change rates
(Table . Although the increase factor measured in the time-lapse movies is higher (2.58,
sd = 1.81), one could state that the factors are comparable and thus prove the adequacy
of our model idea. Additionally, the small standard deviation in the simulation fosters the
existence of distinct subgroups since it ensures rather equality than difference between mother
and daughter cell Nanog levels.

Summing up the results of our new molecular model, we can state that both the skewness
of the Nanog distribution and the existence of interchanging, but stable subgroups is possibly
a result of simple mechanistic processes in the cell. The most relevant one seems to be the
asymmetric segregation of Nanog molecules during division, evidenced by the high quality
fold change if it is switched off. This asymmetry can result in a long-term influence on future
Nanog levels as shown in [73].
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3.5 Discussion

In this chapter we have studied the expression pattern of Nanog, a protein with vital role in
pluripotent mESCs. Two types of experiments have been described and the resulting data
have been analyzed. Existing theoretical models of the fluctuations in expression have been
compared with these data and a new molecular model has been proposed. In general, the
power of single cell imaging over population studies has been underlined.

3.5.1 Result summary

In the first part a brightness normalization of the time-lapse image intensities based on flu-
orescent beads has been introduced and applied to our movie data. A comparison of the
fluorescence intensities obtained from a FACS population analysis and the microscope images
has been performed, indicating the correlation between both methods to quantify fluores-
cence. Thus we conclude that the time-lapse imaging approach is applicable in general and
allows for the generation of highly resolved single cell data.

By an accurate quantification we have shown that the cell division is not perfect. First,
the amounts of Nanog distributed on the nascent daughter cells are not equal, but rather
follow the right half of a shifted and scaled t-distribution. Second, a substantial amount
(on average 8%) of the Nanog protein is lost during division (assuming that the loss is not
only due to technical effects but a real feature). There are several possible reasons for this
effect: the cell could either actively or passively transport Nanog from the nucleus into the
cytoplasm during mitosis, or Nanog is degraded during division, or a rapid shape change before
and after division (observed in some cells, data not shown) creates a quantification artifact,
or the quantification is inaccurate. Assuming grave measurement problems to be unlikely
(evidenced by the correspondence between single cell and population distribution), the other
three possibilities remain. To test them experimentally a quantification of the cytoplasm
would be helpful because currently only the nucleus is quantified. Additionally, a shorter time
interval between taking two pictures could bring clarification since a division lasts for only
about 20 minutes while images are taken every 30 minutes. Current cytoplasm quantification
experiments in the ISF laboratory seem to foster both the transportation and degradation or
shape change hypothesis (data not shown). The experimental strategy suggested in [73] to
distinguish between asymmetric partitioning or stochastic protein production as the source
of heterogeneity could be applied here, too. It could also result in differences to the current
results if the division characteristics of non-adherent cells are ignored, as these are not stuck
to the culture dish and can roam across the surface while changing their shapes, resulting in
possibly inaccurate measurements.

We have surveyed the reestablishment of the steady-state skewed Nanog intensity distribu-
tion from sorted cells both in mESC populations and single cells. The results of both methods
are not completely correlated, which could primarily be a consequence of FACS measurement
errors or the short duration of the movies. But another explanation is possible, which is more
intriguing: the lowest 2% of cells (which were sorted in FACS) are truly different from the
lowest 10% (which have been selected in the movies), comprising differences in repopulation
speed and capacity. However, the general trend seems to be equal in both experiments and
conveys that even cells that are taken from the extremes of the Nanog intensity distribution
are capable of fully regenerating the whole population of cells with various Nanog expression
levels (shown in FACS by the six week experiment). This is especially true for cells with a
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medium Nanog expression that almost perfectly reestablish the complete intensity spectrum
within three rounds of division. For the cells from both extremes this takes more generations,
since they have to roam across the full expression space. Altogether, the full Nanog distribu-
tion seems to be both a steady state (as it is observed for any random sample of mESCs) and
an attractor (as it is regenerated over time). These results are consistent with a non-genetic
memory which is passed from generation to generation, but with decreasing correlation and
strength [I, 83, [154]. This finding is also confirmed by measuring the influence of the cells’
history on their future behavior, clearly indicating that previous expression levels are remem-
bered, but are gradually lost over time. Longer lasting quantitative studies in single cells
(more than four generations) could foster these insights and additionally give hints how this
expression memory is maintained or degraded. Specifically inspecting very low cells (2%) in
the movies or sorting only the lowest 10% in FACS could help to reconciliate the two types of
experiments. A theoretical extension (if sufficient data is provided) could be the fitting of a
multi-stage Markov process to the data, with a history of one or two generations, and testing
it against the observed repopulation.

The cell cycle was not regarded in former studies of the fluctuating Nanog levels, neither

theoretically nor experimentally, and the question has been asked whether the cell cycle-
dependent increase of Nanog and its asymmetric halving in division is responsible for the
skewness of the intensity distribution. By taking only the measured intensities right at the
start of the cell cycle, we have shown that the form of the distribution is truly regulated
by the cell. Although the Nanog production during the life time of cells slightly shifts the
distribution to higher values, it does not change its general shape. As a consequence we can
state that the production and degradation during the cell cycle is not important for regulating
heterogeneous protein levels. This result cannot be obtained from a population analysis but
only from single cell data, which strengthens the importance of single cell analysis as in the
population data valuable information could be masked.
An experiment with synchronized ESCs (where all cells are roughly in the same state of
the cell cycle) or a time-lapse movie with cell cycle markers like PI (propidium iodide) or
PSLD (phosphorylation-dependent subcellular localization domain) could help to validate
our conclusion.

Detailed measurement of the cell cycle times revealed that even ESCs with very low Nanog
expression have equal proliferation rates to those with very high levels. This is intriguing as it
could be argued that high Nanog-ESCs are highly pluripotent, whereas low Nanog-ESCs are
poised for response to differentiation signals and thus would exhibit different life times — ESCs
proliferate rather rapidly, whereas differentiated cells have slow cycles or do not proliferate at
all. As a conjecture we state that the life times of ESCs are not apt to distinguish between
different levels of differentiation commitment.

Our separation of the Nanog intensity distribution into compartments revealed the exis-
tence of various subgroups with distinctive levels of Nanog expression. This is conform with
former identifications of subgroups in various protein levels [66, 174]. We have shown the
stability of these subgroups by the substantial propensity of cells to stay within their com-
partments. The existence of subgroups could be validated experimentally with an ESC line
that bears fluorescent markers for both Oct4, a pluripotency marker, and Nanog. If the cells
expressing Oct4 and a certain level of Nanog can either keep this level of Nanog (within a
certain range) or convert into another group, these cells could be considered a true subgroup
(similar to [I74]). A similar line (with Sox2 instead of Oct4) is currently under construction
in the ISF laboratory.
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The behavior of individual mESCs can be summarized in one sentence: they are flexible in
Nanog expression, but prefer higher values, and eventually tend to establish a broad steady-
state spectrum of Nanog expression independent of their original expression level, although
they only slowly forget their origin.

Having gained valuable insights into the Nanog intensity distribution in single cells, the
question about the mechanistic origin of this distribution has been treated in the modeling
section. In the beginning, three existing molecular models have been validated against our
data. It has turned out that two of them are opposed to our data, raising doubt about their
adequacy. The third model, based on random unspecified fluctuations in Nanog production,
corresponds with our population and single cell data in some aspects, but not all. Although
an extension of this model would be of interest, too, a new molecular model has been pro-
posed.

This model includes the measured characteristics of the ESCs taken from the single cell movies
and previous studies. These are the asymmetric segregation and loss/degradation of Nanog
molecules during division, the distribution of cell life times and the decay rates of both Nanog
mRNA and protein.

Since several observations from the movies can be observed in our model, too, we state that
it is highly recommendable to try simple approaches first before delving into heavily param-
eterized models that need to rely on a manifold of unmeasured factors. Indeed, it would be
very interesting to measure experimentally the decay rates (mRNA and protein) of other fluc-
tuating ESC genes like Stella or Rex1. Additionally, we have seen that the odd half-life ratio
of Nanog mRNA and protein (normally, the mRNA decays much faster than its protein) can
provide a transcriptional memory and could be responsible for some of the features observed
in the single cell movies. Many models of gene expression assume that the half-life of mRNA
is (much) smaller than that of proteins, making it possible to derive analytical solutions of
the simple DNA-RNA-Protein model [134] 150, 165, 172]. This is not the case for Nanog and
possibly some other genes, too, disallowing the neglection of transcription over translation.
Intriguingly, a recent publication derives mathematically that the segregation asymmetry dur-
ing division dominates all other noise sources, if the half-life of protein or mRNA is on the
scale of the cell cycle (which is the case for Nanog) [73]. These two facts create a necessity
for new models of gene expression that take these facts into account.

It would be interesting to see the resulting distribution of the same Gillespie simulation if the
half-lifes of Nanog mRNA and protein were exchanged with the ones of eGFP. If the distri-
bution is bimodal this would be a clear indication for the necessity of a fusion line instead of
a reporter line, as it is more accurate (the bimodality would then be due only to the different
half-lifes of GFP and Nanog, and not a feature of the Nanog expression itself).

However, our model is not able to explain the more complicated properties of the ESCs like
the memory, and it would definitely be of interest to continue searching adequate mathemat-
ical representations of these features. Additionally, the reaction rates are measured with a
SA approach only, which provides us with the maximum likelihood estimators, but not the
parameter distribution. Thus a further step could be the error estimation of these parameters
(e.g. by bootstrapping), and a Bayesian approach or Markov Chain Monte Carlo (MCMC)
algorithm to derive the distributions of these rates would be interesting.

Since the model we have suggested is rather simple and its only regulatory element is a posi-
tive feedback loop, we suggest that the heterogeneous expression of one gene is actually the
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default state and genes that are expressed within a narrow range (e.g. Oct4) need tighter
or more intricate regulation. It needs to be stated that heterogeneity does not necessarily
coincide with fluctuations, i.e. interchangeable levels of expression, which might truly be a
feature of a few genes only [71]. Recently, a study on the fundamental limits of noise suppres-
sion [99] showed that stochastic processes in the cell, be they desired heterogeneity or just
nuisance, cannot be neglected.

3.5.2 Outlook

Even though some of the secrets of ESCs with respect to Nanog expression have been revealed
with the detailed and quantitative analysis of single cell time-lapse movies, the cells keep their
incredible and scarcely understood complexity. Additionally, all the observations discussed
here are made in in vitro experiments, which leave unclear the applicability and validity in
vivo. To cure this problem, in vivo imaging is an appreciable tool that could generate novel
and unprecedented insights. Such systems are currently under development, but not yet ap-
plicable to whole organisms [148].

The medical importance of the Nanog fluctuations are currently not assessed, but fluctuations
in general can have important effects, e.g. in the treatment of cancer (where some heteroge-
neous cells are able to resist drug treatment) or the reprogramming of differentiated cells to
iPSCs [189].

The stochastic transcriptional and translational rates used in our model are actually just
a summary of more complicated effects like ribosome count, mRNA or protein elongation
time, the number of available tRNAs and numerous others, which all could be considered
in a more detailed molecular model of the Nanog expression. Furthermore, the exact values
of the reaction rates do not depend on Nanog alone, but are rather the result of thousands
of other genes with distinct expression levels that contribute to shaping these factors, which
thus are prone to change over time. Therefore, the extension of this simple molecular model
by further players could be of interest. A study with highly interesting single cell resolved
data for such a model extension is by Guo et al. [62] (already used in chapter , which
provides expression and regulation patterns for a set of genes associated with pluripotency
and development. Another possible direction is the combination of the fluctuation model by
Glauche et al. [60] with a memory module to account for the existence of more than two
subgroups and more detailed sources of the fluctuations they utilize.

An attempt to decipher the absolute abundance of mRNA in ESCs from a previous study [24]
has failed due to inaccuracies in its measurements and unclear calculations, but the coarse
results suggest a very low copy number of mRNA (about ten per cell on average) in com-
parison with the amount of protein (about five magnitudes higher). Whether the prolonged
half-life of the Nanog mRNA in comparison is a consequence of this low abundance or the
driving force behind it is an interesting question to be resolved.

The results for our analyses are obtained from single cell imaging, which is able to generate
population level data by simple aggregation. This is not possible the other way round as
population data (like FACS) cannot be resolved to single cells. Concluding from the slight
discrepancies between the FACS population and the single cell data and the impossibility of
obtaining the cell cycle characteristics or memory effects from aggregated population data,
we state that single cell analyses only can help to shed light on these issues.

A transfer of our results and models to hESCs cannot be assessed because of lacking Nanog
expression data in these cells. This would be worth future investigations, since the ultimate
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goal of stem cell research is the understanding of human diseases and their elimination. On
the long path ahead of us, the first tentative steps are already made.
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Chapter 4

Outlook

In the previous two chapters, two different levels of gene regulation and interaction have
been studied. First, a Boolean network has been constructed to explain the properties and
differentiation decisions of ESC under certain culture conditions on a systemic perspective.
Second, the expression of a single gene, Nanog, has been analyzed from single cell time-lapse
movies and several characteristic features of this gene have been extracted. Additionally,
previous theoretical models of Nanog expression have been evaluated and a new molecular
model has been proposed. Biological hypotheses have been developed from both approaches
and experimental strategies have been suggested to test them.

Although a Boolean network might be considered far too simplistic and even the molecular
model too coarse-grained, the correct level of abstraction is hard to define [14} [105] since each
stage has its own advantages and drawbacks and is fruitful for studying certain aspects and
answering a defined set of questions. Of course, understanding the details of each gene regula-
tion is of outstanding importance since it ultimately drives cell behavior and development and
eventually life itself. However, often enough an integrative view is sufficient to understand
cellular patterns or components and mercifully allows the experimentator to disregard the
chemical details.

One possible direction for further research is the modeling of cell populations, similar to [88].
Cells could be represented by agents with either a deterministic or stochastic internal pro-
gram, responding to external stimuli on the one hand, and excreting cell-cell communication
factors on the other hand. This model could account for the cross-talk between cells in the
developing embryo [08] and include spatial or polarity constraints that drive cell fates [20].
A similar approach has already been examined in [69], where the minimal requirements for
blastocyst formation are analysed with computational simulations.

This work is only a further tessera in the large picture of mammalian embryogenesis. There
are countless levels of intermediate complexity between the two studied here, important with-
out doubt and far from being understood. The clinical potential of ESCs cannot be estimated
high enough currently, and future research will surely reveal further insights paving the way
from bench to bedside.
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Chapter 5

Appendix

5.1 Reference list for the embryonic development tree

In Table[5.1] the references (letter + number) used in the embryonic development tree (Figure
are mapped to the literature in the bibliography. The entries are ordered alphabetically.

Key | Article || Key | Article || Key | Article || Key | Article
A3 5] A9 [2] BO [19] B6 [16]
B8 7 || s R2] || B9 | @7 || F2 54]
GO [62] HO [64] I0 [75] 16 [74]
KO [93] K5 [84] Lo [96] L6 [95]
MOa | [II5] | Mob | [10R] || M8 | [106] | No | [125]
N7 | [26 | No | {23 |09 | [@29 | P7 | [137
S5 [159] S6 [163] S9 [146] VO [177]
Vo | [z | W8 | [R0] || X9 | [R¥] || Y5 | [191]
Y9 [194] Z0 [195]

Table 5.1: Reference keys used in the embryonic development tree (Figure with the corresponding
articles.

5.2 Proteins and interactions in the Boolean networks

Each gene/protein used in the two Boolean networks CME and NCC in chapter [2 is found
in the PluriNetWork, indicating a role in either the maintenance or loss of pluripotency.
The following short list provides an overview of their roles in murine embryonic stem cells,
condensing the manifold information available for each of them.

e Oct4/Poubfl (OCTamer-binding transcription factor 4, or POU-domain class 5, TF 1) is
known as a marker of mESCs, indicating the loss of pluripotency when down-regulated
23, 122].

e Sox2 (Sry-bOX containing gene 2) plays a role in both maintaining pluripotency [5] as
well as neuronal differentiation of cells [51]. Sox2 forms a heterodimer with Oct4 that
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triggers its own reciprocal activation [32] and the activation of several other pluripotency
genes [101].

e Nanog is a fundamental actor in mESCs [26], [114], also called the ’safeguard’ of pluripo-
tency [27]. When Nanog levels are high, ESCs can be maintained even in the absence
of LIF [26], while cells with low Nanog levels are possibly open for differentiation [27].

e Cdx2 (CauDal-type homeoboX 2) is a driver of TE formation and an antagonist of Oct4
in the decision between TE and ICM [12§].

e Gata6 (GATA-binding protein 6) is required [22] and sufficient [54] for the formation of
PE. It is also expressed in the TE [62].

e Genf/Nr6al (Germ Cell Nuclear Factor or Nuclear Receptor Subfamily 6, group A,
member 1) is a repressor of Oct4 and Sox2 [127] and Nanog [I17] and is thus essential
for silencing the pluripotency machinery after or during differentiation.

e Fgf4 (Fibroblast Growth Factor 4) is activated by the pluripotency triad Nanog, Oct4,
Sox2 and down-regulates their expression via the FGF-signaling pathway [18] [96]. This
suppression is mediated by Erk and marks the onset of differentiation.

e Erk (Extracellular signal-Regulated Kinase) suppresses the pluripotency genes (espe-
cially Nanog, Oct4 and Sox2) and its expression is a requirement for differentiation of
ESCs into EpiSCs or further states [18, [96].

e Rexl1 is a distinction marker of mESC (expressed) vs. mEpiSC (not expressed) [18].
Although this view is currently under revision [64], the expression of this protein is
used to distinguish between the two different pluripotent states.

e LIF (Leukemia Inhibitory Factor) is used together with a specific serum (containing
nutrients and other factors, like BMP4) to maintain mESCs in vitro for unlimited time
and passages [161].

o Activin is used together with FGF2 (Fibroblast Growth Factor 2) to arrest mEpiSCs
in their current state [I8|, 42, [176] for indefinite time in wvitro.

5.3 A tristate Boolean motif

In [33] a network motif consisting of Nanog, Oct4 and Gata6 is proposed. It tries to model
both the activation of Nanog by Oct4 at intermediate levels and its suppression at high Oct4
levels. The activation is direct but the suppression is effected by Gata6 as an intermediate
player. This motif is implemented with ODEs in this paper. In chapter [2| of this thesis the
suppressive effect of high Oct4 levels is not treated, reasoned by the necessity of three distinct
states (low, medium and high Oct4) in a Boolean network, which allows only two states by
definition. However, the implementation of a tri-state node is not impossible, evidenced in
Figure [5.1} The image shows the connection pattern of Nanog, Oct4 and Gata6 as in the
CME network in chapter 2] but with an additional “High Oct4” node. The latter node is on
(1) if the levels of Oct4 are high, but off (0) if the levels are low or medium. The table shows
the states/expression values of Nanog and Gata6 under different Oct4 levels. The first row
represents low or absent Oct4, the second medium levels and the last one high Oct4 levels.
It can be seen that an equally graded effect of Oct4 levels on the expression of Nanog can be
achieved similar to the ODEs, but without any required parameters. The idea of the motif is
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based on [67].

The reason why this motif is not included in the analysis above is the lack of connections and
activation patterns between the different nodes — when is “High Oct4” on, and when is it off?
Additionally, to our knowledge there is no literature evidence of such a wiring as proposed in
[33]. Nonetheless, this motif shows the theoretical capacity of Boolean networks to capture
more than two states of one node, but at the expense of an exponentially growing network
size.

i »| Oct4
1 Oct4 ‘ High Oct4 ‘ Nanog ‘ Gatab
0 0 0 *
y ) 1 0 1 0
Gata6 —{Nanog 1 1 0 1

/

Figure 5.1: A possible Boolean network motif for capturing tristate Oct4 levels and the expression
levels of Nanog and Gata6 under different levels of Oct4. In the first case (no Oct4), the Gata6 level
is unspecified (*).

5.4 Abbreviations

The abbreviations used in the text are listed in Table in alphabetical order.

5.5 Fluorescence analysis

In chapter [3| a model for the distribution of Nanog in mESCs has been proposed. This model
has been driven by and validated against fluorescence intensity data of Nanog generated in
Timm Schroeder’s laboratoryﬂ by two distinct methods. The first is fluorescence activated
cell sorting (FACS), a common laboratory technique to sort cells according to various at-
tributes like size, granularity or fluorescence intensity. Hierarchical filter gates can be defined
to further refine the sorting. The result of the FACS process is a set of cell populations with
roughly equal attributes within each population. These populations can be subjected to fur-
ther analysis, for example culturing under certain conditions or imaging with a microscope.

The second methodology used to generate the data analyzed in chapter [3] makes use of a
unique time-lapse microscopy setup. A picture of the workflow is provided in [3.1] in chapter
In the first step a population of fluorochrome-stained cells is selected, for example by
FACS, and plated on a well. The second step is the long-term observation of this well with
a Zeiss microscope capable of taking phase contrast (bright field) and fluorescence pictures
with different excitation and emission wavelengths. A well on the plate ("experiment’) can
be segmented into different movie positions. The fluorescent activity of the cells is generated
either by genetically modified proteins (in our case Nanog is fused with eGFP) or antibodies.

"http:/ /www.helmholtz-muenchen.de/isf/haematopoese
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Abbreviation | Meaning Abbreviation | Meaning
AF Adam Filipcyzk BMP Bone morphogenetic pro-
tein
CME Chickarmane Model Ex- || Epi Epiblast
tended
FACS Fluorescence Activated || FGF Fibroblast Growth Factor
Cell Sorting
GFP Green Fluorescent Protein || GRN Gene Regulatory Network
HN High Nanog expression HSC Hematopoietic Stem Cell
ICM Inner Cell Mass iPSC Induced Pluripotent Stem
Cell
ISF Institut fiir Stammezell- || LIF Leukemia Inhibitory Fac-
forschung tor (or the German license
tag of Lichtenfels)
LN Low Nanog expression (m)EpiSC (murine) Epiblast Stem
Cell
(m)ESC (murine) Embryonic Stem || NCC Network  with  Culture
Cell Conditions
NSC Neuronal Stem Cell (O)DE (Ordinary) Differential
Equation
PE Primitive Endoderm PTM post-translational modifi-
cations
TE Trophectoderm TF Transcription Factor
TTT Timm’s Tracking Tool

Table 5.2: Abbreviations used in the text, ordered alphabetically.

Imaging can be sustained up to a duration of weeks, taking pictures at defined intervals usu-
ally in the minute or hour range. One such experiment produces up to a terabyte of image
data, stored on mobile hard disks. In step three the pictures are analysed with a software suite
called TTT (Timm’s Tracking Tool). TTT is designed to facilitate the persecution of single
cells on the images, enabling the creation of cell pedigrees in a highly time-resolved manner.
The attributes of single cells like size, motility, morphology or fluorescence intensity, and its
decisions, namely division, differentiation or commitment to a final fate can be surveyed and
comfortably annotated by continuously tracing these cells without losing their identity. This
technique allows for answers to important questions that had been unresolved for decades
due to the lack of such continuous single-cell analysis tools (see [44] [142] for examples). TTT
greatly enhances the experiment throughput by providing a reliable, scrupulously maintained
framework that allows the user to focus on the main aspects of his project and by automatising
commonly used procedures like intensity quantification and statistical analyses. The author
of this thesis has been working on TTT software for more than five years; he has designed
the programming architecture, implemented all tools in tune with the experimentators’ needs
and maintained the software usable over this whole period. A screenshot of the TTT program
is shown in Figure [5.2
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Figure 5.2: Screenshot of TTT, the program used to generate the single-cell genealogies from the
time-lapse images. It allows comfortable cell tracing, feature annotation and data analysis in one
pour.

5.6 Software

All calculations were performed in Matlab, Release R2009b, provided by The MathWorksﬂ
Graphs and networks were drawn in yEd, Version 3.6, provided by yWorksEL

The Boolean network analysis was performed with Odefy, kindly provided by the CMB group
at the Helmholtz Zentrum Miincherf]

The Gillespie algorithm is implemented with the direct method in MATLAB.

The image fluorescence quantification was done by Michael Schwarzfischer and Adam Fil-
ipczyk with Schwarzfischer’s tool AMT (Aided Manual Tracking), which normalizes the
images for different background intensities at the margins and over time and calculates the
intensity of a cell by subtracting the normalized background from the cell’s pixel intensity.
The normalization is in one position and takes into account both the unequal light distribu-

http://www.mathworks.com
3http://www.yWorks.com
“http://www.helmholtz-muenchen.de/en/cmb/research /tools-databases/odefy
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tion of the microscope lamp within one picture as well as the bleaching of the background
over time.

Literature search was done with Google Scholaif’| and the PubMed databasd®} Text mining
was performed with the Excerbt system [I11] and the LitInspector tool by Genomatix [53].
The computer used for calculations and writing this thesis is a 32-bit notebook with 2Gb
RAM and a 1.7GHz single core processor.

Shttp://scholar.google.com
Shttp://www.ncbi.nlm.nih.gov/pubmed
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