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Abstract

Hematopoiesis is the process of generating distinct blood cells in higher
eukaryotes and keeping them in balance. This procedure is accomplished
by hematopoietic stem cells which can differentiate into more specialized
progenitor cells which further differentiate in fully functional blood cells.
In this work, we focus on a particular differentiation step and try to elu-
cidate molecular mechanisms behind it. The transcription factor PU.1
plays a major role in the process of myeloid progenitors differentiating into
granulocyte/macrophage-progenitors or erythrocyte/megakaryocyte-progeni-
tors. In our experiments we monitor common myeloid progenitor cells of
mice with YFP-tagged PU.1 proteins. With fluorescence image time-lapse
microscopy it is possible to observe the process of cell differentiation in
individual cells. In this thesis we present a normalization method of fluo-
rescence images in order to the clean cellular expression signal of PU.1. A
custom software is developed which applies a cell detection algorithm and
offers an easy way to correct for automatic detection errors in order to get
most accurate expression data. Furthermore, we present several methods to
normalize and visualize single-cell time courses and analyze correlations in
general properties like protein production rates and cell life times. We inves-
tigate if a certain amount of PU.1 is maintained over several cell generations
(memory effect). A specific surface marker which only appears in granulo-
cyte/macrophage progenitor cells and their offspring allows to investigate
whether a particular expression pattern can lead to a lineage commitment.
Finally, we show that myeloid progenitor cells divide symmetrically and es-
timate the absolute protein amount of PU.1 in the cells.



vi



vii

Zusammenfassung

Unter Hämatopoese versteht man die Blutbildung in höheren Eukaryoten, in
welcher das Gleichgewicht zwischen verschiedenen Blutzellen gehalten wer-
den muss. Dafür verantwortlich sind Blutstammzellen, die im Knochen-
mark angelagert sind und über mehrere Reifungsschritte zu verschiedenen
Vorläuferzellen und letztendlich zu den Blutzellen werden. In dieser Ar-
beit konzentrieren wir uns auf einen bestimmten Teil der Blutzelldifferen-
zierung und untersuchen die zugrunde liegenden molekularen Mechanis-
men. Der Transkriptionsfaktor PU.1 spielt eine maßgebliche Rolle in der
Differenzierung der myeloiden Vorläuferzellen und führt bei hoher Expres-
sion zur Differenzierung in Granulozyt-/Makrophagenvorläufern, während
bei geringer Expression Erythrozyt/Megakaryozyt-Vorläufer entstehen. In
unseren Experimenten beobachten wir myeloide Vorläuferzellen in trans-
genetisch veränderten Mäusen, die ein fluoreszenzmarkiertes PU.1 Protein
exprimieren. Die Vorgängerzellen können mittels zeitaufgelöster Mikro-
skopieverfahren über längere Zeit beobachtet und der Reifungsprozess von
individuelle Zellen explizit verfolgt werden. In dieser Arbeit untersuchen wir
zunächst die Eigenschaften von Fluoreszenzbildern und stellen eine Normal-
isierungsmethode vor, die Lampenflackern und Ausleuchtungsungenauig-
keiten korrigiert. In einem von uns entwickeltem Programm, wird im weit-
eren Verlauf eine automatische Zellerkennung angewandt, die eine einfache
manuelle Nachkorrektur der automatischen Erkennungsprozesse ermöglicht.
Wir stellen unterschiedliche Normalisierungs- und Visualisierungsmethoden
zum Vergleich von Expressionsverläufen einzelner Zellen vor und unter-
suchen grundlegende Eigenschaften wie Lebensdauer oder Protein-Produkt-
ionsraten. Wir beschreiben einen charakteristischen Expressions-Verlauf
über den Zellzyklus einer Zelle hinweg und ermitteln, ob ein bestimmtes
PU.1 level über mehrere Generationen hinweg erhalten bleibt (memory ef-
fect). Im Hinblick auf eine spezifische Zelloberflächenmarkierung, die erst-
mals in Granulozyt-/Makrophagen-Vorläufern auftritt, untersuchen wir, ob
spezifische Expressionsmuster in den Zellen Hinweise auf die Linienentschei-
dung geben. Schließlich zeigen wir, dass sich myeloide Vorläuferzellen sym-
metrisch teilen und wenden daraufhin eine statistische Methode zur Ab-
schätzung der PU.1 Proteinanzahl in den Zellen an.
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Chapter 1

Introduction

Hematopoiesis is the process of building all blood cell types and keeping
them in balance in order to continuously maintain the blood system [35].
The word hematopoiesis is derived from Ancient Greek (haima = blood,
poiesis = to make). The complicated process of maintaining a defined com-
position of blood cells in homeostasis as well as in stress situations has to
be managed. The continuous destruction of millions of blood cells in every
second must be countervailed by a sophisticated procedure of regenerat-
ing new cells [46]. There is great effort in this research field due to the
biomedical impact of hematological diseases like leukemia or anemia. One
major goal is the understanding of the regulatory processes of blood stem
cell differentiation. Over the last 50 years hematopoiesis has become one of
the best studied mammalian systems [14]. Despite this long period of re-
search there is still incomplete knowledge about the molecular mechanisms
of differentiation [9].

New technologies allow to analyze single-cells of a specific cell type over
time on a molecular level. Time-lapse microscopy and protein labeling tech-
niques make it possible to investigate the expression of certain proteins [54].
Creating movies of a cell population permits tracking of individual cells,
leading to observations of their properties like cell fate or lifetime. Addition-
ally, measurements of protein levels give information of the real-time protein
expression which could explain cell-cycle dynamics and decision making in
differentiating cells [49].

1.1 The blood system

During embryonic development a very small population of hematopoietic
stem cells (HSCs) is built up in different anatomical sites which later col-
onize the bone marrow [32, 7]. HSCs do not fulfill directly the request
of the blood system but are responsible for the constant renewal of ma-
ture blood cells [52]. HSCs can be furthermore distinguished into two sub-
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2 CHAPTER 1. INTRODUCTION

classes: cells in the first class remain in a steady-state, have a very low
self-renewal rate, divide only once in around 57 days and are therefore
called long-therm HSCs (LT-HSCs). A LT-HSC can become more spe-
cialized by differentiating into a short-therm HSC (ST-HSC) which has
lost the feature of self renewal and will differentiate into a more specific
cell. ST-HSCs have the capability to differentiate into all mature cell types
and are also called multipotent progenitor cells (MPPs). Differentiated
blood cells can be categorized into myeloid and lymphoid lineages. T, B
and natural killer (NK) cells are known as lymphoid cells whereas erythro-
cytes, megakaryocytes, granulocytes (which can be distinguished into neu-
trophils, eosinophils and basophils) and macrophages belong to the myeloid
lineage [22]. The development of MPPs into specific mature cells is guided
by the specific regulation of several transcription factors [25]. The com-
plete commitment to a specialized cell type passes through several inter-
mediate steps [37]. A first distinction is given by differentiating into com-
mon myeloid progenitors (CMPs) or common lymphoid progenitors (CLPs).
These again can become more specialized by differentiating one step further.
CMPs will give rise to megakaryocyte/erythrocyte-progenitors (MEPs) or
granulocyte/macrophage-progenitors (GMPs) [2]. CLPs differentiate into
T, B and NK progenitor cells (Figure 1.1).

To understand the mechanisms of the blood system all kinds of blood
cells including HSCs are required for experiments. Since there are only few
HSCs in the bone marrow (about 1 HSC in 10.000 bone marrow cells) and
even less in the blood stream (about 1 HSC in 100.000 blood cells) the
research on the human blood system is challenging and expensive [1]. Inves-
tigating hematopoiesis in model organisms like zebrafish or mouse provides
easier experimental conditions. Furthermore, results of these organisms are
transferable on the human blood system since the process of hematopoiesis
is generally conserved throughout vertebrates [37].

1.2 Lineage-specific surface markers

Every specific cell type ranging from hematopoietic stem cells to mature
blood cells has different morphological and phenotypic properties and can
readily be identified by these characteristics. Cells committed to GM lineage
will develop FCγ receptors [15, 47] whereas CD150 is a highly expressed
surface molecule in HSCs and the erythroid lineage but repressed in the
myeloid lineage [41]. FC receptors are required to fulfill the role of monocytes
or macrophages in the immune system [21].

These proteins are accessible from the surface and bind to certain an-
tibodies. Therefore, the surface proteins can be used to visualize the cell
lineage by adding colored antibodies into the culture medium. The anti-
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Figure 1.1: Illustration of the differentiation process of hematopoiesis. Long-
term hematopoietic stem cells (LT-HSCs) become more specialized by differ-
entiating into multipotent progenitor cells (MPPs). These can further differ-
entiate into common myeloid progenitor cells (CMPs) or common lymphoid
progenitor cells (CLPs). CMPs can give rise to megakaryocyte/erythrocyte
progenitors (MEPs) or granulocyte/macrophage progenitors (GMPs). In
this project we focus on the PU.1 expression in MPPs and CMPs which
plays a major role in the lineage decision between MEPs and GMPs. The
lineage of CLPs cannot be investigated due to experimental conditions.

bodies will colonize around the corresponding membrane proteins and and
radiate if excited with a specific wavelength.

1.3 The myeloid lineage decision

The transcription factors PU.1 and GATA-1 play major roles in the lineage
decision of CMPs. The interaction of these two factors is a highly discussed
topic in the research field [9, 19]. The DNA binding protein GATA-1 is
required for the development of erythrocytes and megakaryocytes [36]. It
has been shown that over-expression of GATA-1 induce the expression of
erythroid-megakaryocyte-affiliated lineage markers and furthermore repress
the monocytic and granulocytic markers. GATA-1 competes with the Ets
family transcription factor PU.1 which is required for non-lymphoid leuko-
cyte cell development [13]. A high expression of PU.1 even in erythroid-
megakaryocyte progenitors induce a conversion into monocytic lineage by
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repressing GATA-1 [53, 16]. PU.1 and GATA-1 interact physically and in-
hibit each other’s transcriptional activity [57]. In addition both factors also
control their own expression, forming autoregulatory loops [48, 6]. As long
as the balance of these two players is kept the cell stays in CMP state oth-
erwise a winner arises which will make the the cell differentiate either into
ME or the GM lineage [34].

There exist several different mathematical approaches which attempt to
model the characteristics of this lineage decision. A model formalizes the
interaction and represents a simplified system which can easily be modified.
Several combinations of inhibitions or activations can be simulated in silico
in order to gain a model which describes the biological observations best
possible [44, 20, 8]. Most of the models describing genetic switches are based
on differential equations suitable if many molecules (transcription factors)
are present in a cell [17]. But there are also other approaches which include
probabilities and noise leading to stochastic modeling since many lineage
decisions are based on stochastic processes [29].

1.4 The PU.1-YFP mouse

In this study we focus on the transcription factor PU.1. We study mice where
PU.1 is tagged with a fluorescent marker, namely the yellow fluorescent
protein (YFP). YFP is a mutant of the green fluorescent protein (GFP)
and is a widely used reagent [12, 4]. The technique of tagging proteins is a
long biochemical process where the protein of interest is separated from the
DNA by several restriction enzymes. After combining it with the DNA of an
fluorescent protein and amplifying the tagged protein its natural function
has to be tested. Since fluorescent proteins are known to be not toxic,
the technique of fluorescence tagging allows to express a labeled protein in
living cells [30]. After assuring that a cell with the reinserted tagged protein
still remains its natural function it is possible to express this protein even
in animals without changing the common phenotype. From the measured
fluorescent signal one can now directly infer the expressed amount of tagged
protein as we assume the intensity grows proportional to the number of
proteins.

In our experiments the YFP tagged PU.1 transcription factor has been
inserted into the model organism mouse which is healthy and has no strange
phenotype [24]. The mice are bred over several weeks and their hematopoi-
etic cells are extracted from the femoral bone-marrow. These cells are sorted
in order to gain only MPPs.

The surface proteins described above are also used in fluorescence-acti-
vated cell sorting (FACS) technique where different cells can be sorted in
a high-throughput manner by flow cytometry [55]. Colored antibodies are
added to the cell medium which bind to cell specific surface markers which
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can then be excited. Ranges of intensities as well as cell size and granularity
are defined which can be used to separate the different healthy cell types.

1.5 General workflow

We focus only on a small part of the whole differentiation process and con-
centrate on the event of MPPs differentiating into MEP or GMP cells. The
technology of live-cell imaging uses fluorescently tagged PU.1 MPPs to in-
vestigate this particular differentiation process. This work is a continuation
of a former diploma thesis performed by Jan Krumsiek [26]. There, a quali-
tative model of a regulatory interaction network containing the main myeloid
development players as well as a quantitative model of the PU.1-GATA-1
switch was presented. A first examination of the early live-cell imaging
experiments was discussed including an image analysis pipeline. Here, we
developed better methods to improve the imaging processing and cell detec-
tion technique and present new results.

The different parts of the present work are incorporated in a workflow il-
lustration (Figure 1.2). Step 1 is the sample preparation already described in
this Chapter whereas Chapter 2 discusses the techniques of live cell imaging
and tracking (step 2 and step 3) and several normalization methods (step 4
and step 5). The later process of automatic cell detection and measurement
tuning (step 6 and step 7) is described in Chapter 3. The analysis and results
of population wide-statistics and single-cell time courses (step 8 and step 9)
are finally shown in Chapter 4. We present distributions of cell populations
over time and several single-cell time course representations. We investigate
the cell-cycle as well as cell lifetime statistics. Different methods are shown
of finding particular FCγ dependent PU.1 expression profiles and a number
of analyses on the tree level are presented. The final Chapter 5 gives a
summary of the work we presented and discusses further investigations.
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Figure 1.2: The general workflow of this thesis. Step 1 to 3 are performed by
the Schroeder group at the Institute of Stem Cell Research. First the trans-
genic mice are bred and their hematopoietic stem cells are extracted (1).
These cells are cultured in medium and imaged by time-lapse microscopy
(2). The cell images are tracked by a custom software leading to cell trees
(3). The first step of our work is processing the images by several normal-
ization steps (4). We then apply a detection algorithm (5). Our results are
combined with the cell trees and used in a self developed toolbox (Aided
Manual Tracking) to correct for detection errors (6). After cleaning up the
data, single-cell time courses can be investigated (8). From the automatic
detection of cells alone population wide statistics can be achieved (7 and 9).



Chapter 2

Processing of cell microscopy
data

In the following chapter we present the experimental procedures (performed
by the Institute of Stem Cell Research (ISF)) and processing pipeline (per-
formed by our group). We highlight general issues of fluorescence images
and present a correction method tailored to the experimental settings. Fur-
thermore, we compare this correction method against previously published
methods and present a mathematical model which estimates bleaching rates
of fluorescence proteins.

2.1 Time-lapse microscopy

After the hematopoietic cells are extracted from the mouse bone marrow
and sorted by FACS, the cells are grown in medium and observed with
the new arising technology of time-lapse microscopy (Figure 1.2 step 2)
[11, 28]. Images of the cells are taken in defined time intervals giving the
opportunity to follow individual cells over time and create specific statistics
on single-cell level [43]. It is also possible to integrate fluorescent images to
measure the expression of fluorescently tagged proteins at single timepoints
in order to create single-cell expression profiles. Therefore a tracking of
single-cells is needed which is a highly discussed topic and many approaches
and algorithms are developed for this purpose [33].

2.1.1 Live cell imaging at the ISF

In our experimental setup a small robot moves the growth medium under
a camera initially containing multipotent progenitor cells (MPPs). The
plate is divided into up to 39 overlapping zones (so called positions). Every
position has its own coordinates depending on the pixel resolution where
the cells later can be well identified. Every two minutes a brightfield image

7
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A B

Figure 2.1: Small region from a brightfield image (A) and the corresponding
fluorescence image (B) showing the intensity of YFP tagged PU.1 of several
cells in the raw imaging data.

of each position is taken (for a detailed view, see Figure 2.1 A). Brightfield
microscopy is an optical microscopy technique where the probe is illuminated
by white light from behind. A limitation of this method is the low contrast
in the taken pictures, but it is still sufficient to see the cells moving over
time.

Fluorescence images are taken in a longer time interval since the irra-
diation with a specific wavelength, depending on its energy, might damage
the cells. Therefore the YFP of the tagged PU.1 is only excited every 30
minutes to assure cell health leading to fluorescent pictures of every position
(Figure 2.1 B).

There are more channels for measuring on different wavelengths. In
our experiment two additional channels are used to identify colored surface
markers. On a certain wavelength the surface marker FCγ can be observed
which, if active, can be taken as are sure evidence for GMP lineage com-
mitment. The other wavelengths of this experiment should show another
surface marker CD 150 which is the equivalent player for the MEP lineage.
This surface marker could not be used in our current study since there are
still unsolved experimental issues. These surface marker images are only
taken every ≈2 hours, still sufficient to capture the appearance of a surface
marker.

The resulting data of a movie experiment leads to about more than
50 gigabytes of image files, containing 3000 to 5000 brightfield images, 250
fluorescence images and 65 images for each surface marker for every position.
Each image has a resolution of about 1300x1100 pixels depending on the
experiment. For this thesis eleven different experiments were conducted
which are described in detail in Table 2.1. Due to the collaboration of the
Institute of Stem Cell Research (ISF) with our group many technical and
experimental issues have been identified and eliminated from experiment to
experiment. In this thesis we focus on experiment three and eight since most
of the tracking data is based on these experiments.
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Experiment Date Description Time Positions trees size
1 29.12.08 initial movie 6.5d 36 20 47 GB
2 11.05.09 crashed after 2 days 2d 39 0 39 GB
3 28.05.09 new focusing method 4.5d 39 35 55 GB
4 29.05.09 fluorescine experiment - 1 0 18 MB
5 16.07.09 bead experiment 4.5d 9 0 23 GB
6 28.07.09 fluorescine experiment 2 3.5d 1 0 3.4 GB
7 31.07.09 colibri experiments 5d 1 0 5.2 GB
8 01.09.09 latest movie 7d 39 34 91 GB
9 07.09.09 same as Exp 8 7d 39 0 96 GB
10 14.09.09 background movie 2d 19 0 24 GB
11 16.11.09 population specific images - 39 0 600 MB

Table 2.1: All experiments available for this thesis. The table shows the
date, a short description, the duration, the number of positions, the number
of tracked trees and the size of each experiment. The first movie led to
first impressions and showed some technical issues. A new focusing method
was invented and used in experiment 2 and 3. Experiment 2 could not be
used for further analysis as there were technical problems after two days.
Experiments 4 to 7 were used to test for different illumination and light
source techniques. The movies 8 and 9 combine all the improvements derived
from the earlier experiments. Movie 10 gave evidence of bleaching of the
background due to some auto fluorescence in the plastic of the experimental
setup. Experiment 11 includes three population specific images of just one
timepoint. The different cell types MPPs, MEPs and GMPs were sorted by
FACS and immediately imaged in order to verify the imaging and detection
technique. The main focus of this work lies on experiment 3 and 8 since the
most tracking was performed on these experiments.

2.1.2 Tracking data

From the raw movie data further processing steps are performed. The ISF
has implemented a custom tracking software called Timm’s Tracking Tool
(TTT, step 3). Researchers at the ISF play back the experiment movie
and accurately follow the cells over their lifetime. Important facts like the
accurate location in the movie described by the position (referring to the 39
sections of the probe), the position-specific coordinates (pixel coordinates
of the position image) and the timepoint as well as additional annotations
like the status of surface markers are captured. All occurring events like cell
division, cell death or differentiation are also written down. The resulting
tracking of the first mother cell and all its progeny (daughters) leads to cell
trees, also called genealogies [18]. At every timepoint each cell is well-defined
by its position and the position-specific pixel coordinates. Since living cells
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1

2 3

4 5
6 7

Figure 2.2: The tree illustration of a cell with all its progeny and their cell
fates over time (y-axis). Different colors indicate different cell lineages, the
skull stands for cell death. Numbers are assigned by giving left cells n · 2
and right cells n · 2 + 1 whereas n represents number of mother cell. The
first cell is defined as cell 1.

always divide into two descendants such trees can easily be represented as a
binary tree (see Figure 2.2). The cell numbers are assigned as follows: The
first mothercell is defined as cell one. Every daughter cell on the left will
get the number of its mothercell (n) multiplied by two (n · 2), every right
cell will get n · 2 + 1. This method is commonly used in informatics and
assures that every cell gets a unique number. The first mothercell is also
called generation zero (cell 1), its daughters are generation one (cell 2 and
3), its grandchildren generation two (cell 4 to 7) and so on.

The amount of tracked generations, defining the tree depth, varies de-
pending on several events like e.g. cell death. The most limiting factor is
the simple case if a cell is already committed to a certain linage which can
be determined by looking at the aforementioned surface markers. Further
tracking is not necessary since the interesting part of lineage decision is
completed.

The tree files are exported as CSV files and used for our own tools in a
later process corresponding to step 6 in the workflow. Every tree file con-
tains cell number, timepoint, position, the coordinates and the annotation
informations.
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Figure 2.3: Illumination of a fluorescence image derived by imaging a fluo-
rescine dilution of experiment 6. The color represents the measured intensity
ranging from blue to red. The image should show a homogeneous intensity
over the whole area. This image is used to correct for the obvious uneven
illumination in the other experiments.

2.2 Processing of fluorescence images

Measuring the exact fluorescence intensity of a single-cell is a commonly
known task [50, 10] where one has to regard several difficulties. First the
quality of the image depends on the right focus of the microscope to record
an exact measurement of the fluorescent proteins of the cell. As the cell
is a three dimensional element and an image will only present the two di-
mensional mapping there will always be some information loss. We assume
linearity of fluorescence which will countervail this effect on fluorescence im-
ages. We expect that a longish cell should glow approximately the same
as if the cell lies or stands in the taken picture. Thus the two dimensional
fluorescence signal appearing on the image corresponds to the concentration
of the whole cell.

Another problem on the experimental side is to create an even illumi-
nation in order to make measured fluorescence intensities comparable over
the whole field of view. A conventional lightsource will create an uneven
illumination unless a laser or LED technique is used. In our experiment a
strongly uneven illumination can be seen which has to be corrected for (Fig-
ure 2.3 and 2.4). Furthermore we have to verify that the light source will
continuously emit with the same intensity. It should not flicker or decrease
over time.

In the culture medium of growing cells there are many chemical sub-
stances which also emit light upon excitation and influence the resulting
image. As the medium is a fluid and its reagents diffuse quickly, we assume
that the medium (background signal) illuminates with a constant value on
every position at a given timepoint. If this background signal can be deter-
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Figure 2.4: A raw fluorescent image containing cells. The x- and y-axis
represent the image width and height whereas the fluorescence intensity can
be observed on the z-axis. Issues like uneven illumination, the background
signal and noise can be seen. The peaks in the image represent cellular
signal.

mined one can easily subtract the factor from the entire image in order to
normalize the real cell signal.

Working with experimental data will always include a certain amount of
noise. This noise can be further distinguished into biological and technical
noise. A certain amount of technical noise cannot be avoided and is caused
by the imaging and detection techniques which is described in detail in
Section 4.1. The biological noise cannot be avoided but this can also deliver
conclusions of biological mechanisms.

Another problem of fluorescence imaging over time is the effect of pho-
tobleaching. Irradiating fluorescence molecules will always bleach some of
them leading to less fluorescence in the next exposure step. The irradiation
irreversibly changes the conformation of the fluorescence protein which can
never be excited again. Imaging living cells with tagged proteins makes it
more complex to compare different cells over time since there will always
be a production of new molecules, so the signal will not bleach continu-
ously until a steady state of the bleaching rate and protein decay against
the production rate is achieved. The bleaching rate strongly depends on the
exposure time and the time interval between images. In order to recalcu-
late the real proportion of fluorescence proteins a model has been developed
described in Section 2.5.

In order to measure fluorescence appropriately, all these issues have to be
corrected for (compare Figure 2.4). In the later process automatic detection
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and tracking algorithms will be applied which obviously fail on unnormalized
data due to the mistaking of background for cells.

In the later analysis steps it becomes even more important to have clean
data, as a following example shows: When calculating an expression fold
change the result would completely differ if the background level was not
subtracted. An arbitrary expression data of two timepoints increasing from
3 to 6 represents a two-fold change. But if theres a background level of 2 in
the data the fold change is from 1 to 4 which is four-fold. In the following
Section we will present several methods to correct for these issues. These
include our own methods as well as already existing methods from other
working groups.

2.2.1 Uneven illumination

The illumination in our experimental setup is uneven due to the usage of
an mercury-vapor lamp. The illumination distribution of this lamp can be
shown in a simple experiment: Fluorescine is a commonly used fluorophore
which can be excited and will always emit with a known intensity [51].
After diluting it with water, the feature of a fluid and the resulting diffusion
of the molecules lead to a constant signal over a whole probe. A single
static fluorescine image demonstrates the illumination distribution of the
lamp (see Fig 2.3). Several test with different concentrations and different
exposure times were examined (experiments 4,5 and 6) in order to get the
right dilution of fluorescine which accurately estimates the illumination. In
experiment 4 three different concentrations (1:100, 1:1.000 and 1:10.000)
each with four different exposure times (1ms, 10ms, 100ms and 1000ms)
were imaged. It turns out that a similar exposure time as of the live cell
movies (1500ms) and a concentration of 1:10.000 accurately captures the
illumination.

In experiment 5 a different approach to estimate the illumination was
tested using fluorescent beads instead of fluorescine. These also have a con-
stant fluorescence but could be added into the medium and could directly
be imaged along with the cells. Therefore, the normalization factor of the
illumination of a cell can be estimated by looking at the nearest bead. How-
ever, the beads rapidly bleach and have to be detected additionally, so this
method is not very applicable for estimating the illumination.

The movie of experiment 6 imaged fluorescine which does not show fast
bleaching effects over a longer time period. The constant concentration and
constant exposure time leads to the relative illumination and furthermore
to another important result. The overall shape of the illumination of the
lamp over time stays the same and the difference of a late image against an
early image is about 2%. This was validated by comparing the ratios of a
small block of every corner against a block in the middle of the images.
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Figure 2.5: A projection onto the y-axis/intensity plane of an illumination
corrected cell image, where each dot represents the intensity belonging to a
row of the original image. The median of this image lies within the back-
ground whereas the cell signal peaks deviate from the band. The dots are
arbitrarily colored for a better visualization.

Based on these results another experiment is necessary in order to give
a proof of fluorescence linearity. This could be proven with a constant
concentration and more exposure times between 500ms and 1500ms or with
constant exposure time and different concentrations.

2.2.2 Determining the background signal

As mentioned before we assume an identical background signal over the
whole image due to the background medium fluid. The measured back-
ground signal only depends on the illumination factor. Assuming that we
corrected for that effect, we focus on estimating the background level. There
are several possibilities to determine this level. An intuitive solution would
be to search for background pixels in each image. If all cells were already
detected we could scan within a small grid for an area without cells. This
represents the background signal and one could subtract the mean or median
of this area to eliminate the background level. An experimental approach
is to create an entire movie under the same conditions as every other movie
but without cells. This will only record the characteristics of the back-
ground and the culture medium. However, since the experiments depend on
many variables (e.g. the age of the light source) this method would not be
practically applicable.

We correct for the background signal with a different approach. Given a
single illumination corrected image we assume that the median of this picture
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lies within the background. As long as there is less cellular signal than
background signal in the image the median represents the background. This
holds true in our experiment even up to the latest timepoints (later shown in
Figure 3.4). The fact that the median is robust for outliers justifies taking
the median in order to accurately estimate the background (Figure 2.5).
Once the value of the background level is obtained, the value is subtracted
from every pixel in the image, therefore all images are normalized to the
same ground level.

Another big advantage of this method is that other influences such as
flickering or fading of the lamp as well as bleaching of the background over
time are eliminated as well. The lamp flickering and also the decrease of lamp
intensity or bleaching of the background over time will cause the median
value of each image to flicker or bleach accordingly. The median is calculated
independently for each image so this method should always correct all images
to the same ground level.

2.3 Correction method

The resulting normalization procedure for every single picture of every po-
sition is now composed of following steps: First we correct for the uneven
illumination via an estimation with fluorescine. Afterwards the background
is estimated and subtracted of the images.

The raw image is denoted as Ixy (Figure 2.6 A) where the range of x
represents the image width and the range of y represents its height. Each
image consists of the cell signal sxy, a constant background signal b, both
depending on the illumination effect fxy, and some technical noise ε.:

Ixy = (sxy + b)fxy + ε (2.1)

The dependency on the illumination can be interpreted as a multiplica-
tive factor since we assume a linear relationship between the measured in-
tensities per pixel and the corresponding illumination. The noise is assumed
not to be dependent on the illumination effect for simplification. It is evenly
distributed over the whole position.

The fluorescine image Fxy with constant fluorescence signal s′ and the
same constant background b can be accordingly written as:

Fxy = (s′ + b) · fxy + ε = c · fxy + ε (2.2)

The sum of s′ and bis here represented by a constant factor c since the de-
composition is not possible. From Fxy we can infer the relative illumination
factor f ′xy by dividing the whole image by the median of the 30 highest val-
ues. This should be a robust estimator of the maximum against the technical
noise:

f ′xy :=
Fxy

max(F )
≈ c · fxy

max(c · f)
=

fxy
max(f)

(2.3)
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The relative illumination factor f ′xy (Figure 2.6 B) should now precisely
describe the pixel-specific illumination. The values theoretically range from
0 to 1, whereas in our case they range from ≈0.4 in the corners to 1 in the
middle. This indicates that the signal in the corners is approximately more
than two times darker than the signal in the middle of each position.

Now it is possible to normalize the illumination of the raw images by a
pixelwise division with the relative illumination factors:

I ′xy =
Ixy
f ′xy

(2.4)

I ′xy (Figure 2.6 C) represents the illumination-corrected image still contain-
ing the background signal. But all cell signals within one image are now on
a comparable level.

The next step is to eliminate the background signal b. We estimate its
value by taking the median of the I ′xy picture (Figure 2.6 D):

b ≈ median
(
Ixy
f ′xy

)
(2.5)

Combining the equations above the resulting cellular signal (Figure 2.6 E)
can be derived as:

sxy ≈ I ′xy − b =
Ixy
f ′xy
− b (2.6)

This calculation is done for every single fluorescence image of every position.
Since we are working with MATLAB, which provides fast matrix manipu-
lation methods, the normalization can be performed in ≈0.1 seconds per
image. Therefore the normalized images are not stored separately and the
calculation is processed on-the-fly.

2.3.1 Comparison to other correction methods

Sigal et al, 2006

In the work of Sigal et al [49], endogenous proteins in the nuclei of lung cell
carcinoma cells are randomly tagged and cell-cycle dependencies of nuclear
protein levels are investigated. Also time-lapse microscopy is used and the
same issues have to be corrected for. They estimated the illumination also
by different experiments using fluorescent fluids, here a dilution of 1:1000
GFP. For each pixel they performed a linear regression of the gray levels
from different exposure times (ranging from 0 to 600 milliseconds). They
calculated the offset and the gray level per millisecond of exposure time
called the gain, which is the estimate for the illumination pattern. The nor-
malized gain pattern was derived by dividing the gain pattern by its average
over all pixels. Each image was flat-field corrected by subtracting the offset
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Figure 2.6: An illustration of the normalization workflow: A) The raw image
containing illumination affected cellular and background signal and technical
noise. B) Relative illumination derived from the fluorescine experiment. C)
The illumination corrected image derived by a pixelwise division of the raw
image by the fluorescine image. D) The developing median over the whole
experiment 3. The bleaching of background, the fading of the lamp as well
as the flickering can be seen. E) The resulting normalized image containing
only cell signal and technical noise.
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Figure 2.7: Background and illumination estimation via moving average
over a raw image containing background as well as cell signal performed
by Michel et al [31]. The disadvantage of this method can be seen as the
development of small hills due to high cellular signal. Correcting with this
image will lead to errors in the resulting cell intensities. A moving average
with a higher two dimensional window size is less susceptible to this type of
error but also estimates the illumination and background level less accurate.

of each pixel and by dividing by the normalized gain. They also assumed the
linearity of fluorescence and that only the illumination has some effect on
the measured intensity with different exposure times. Since our experiments
are always performed with a constant exposure time, one estimation is suffi-
cient to normalize every timepoint since the shape of illumination does not
change. The method Sigal et al use could not yet be tested on our data
since the necessary experiment with different exposure times has not been
performed yet, but is planed.

After the normalization the background is estimated by segmenting the
flat image into small blocks and by taking the histogram of appearing values.
The gray level of the 10th percentile is extracted and only these values remain
in the block. They interpolated between them to refill the block which is
then subtracted from the flat image. Our method of taking the median of
the whole image seems to be slightly more robust as long as there is more
background than cell signal. It could happen that the block is unfortunately
chosen so that there are so many cells or contaminations that the estimated
background is wrong. Spot testing on some images lead to no significant
difference in resulting measurements. In the case of Figure 3.4 B the median
overlaps with the 10th percentile.

Michel et al, 2007

A completely different approach to identify the uneven illumination was
proposed by Michel et al [31]. It is possible to estimate the illumination
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along with the background signal by applying an two dimensional moving
average with a given window size (Figure 2.7). This is only applicable if
there are very few cells and accordingly very few corresponding intensity
peaks in the image. Depending on the amount of cells in the images, a
different window size for the algorithm has to be chosen. After subtracting
the calculated illumination shape the background signal within the image
should also be eliminated.

Again this method would not be applicable in the later movie phase
where the cell signal amount increases (see Figure 3.4). In the beginning of
the movie the results again do not differ from our method (data not shown).
Furthermore the computing the moving average takes much more time than
our method.

2.4 Experimental setup changes

At the very beginning of this project we did not expect how severely the
illumination and the technical noise affect the movie data. The close collab-
oration between our group and the ISF led to important setup changes and
technical methods to countervail these effects. The first improvement was
the illumination correction method via diverse experiments with fluorescine
(Table 2.1 experiment 4, 5 and 6 described in 2.2.1).

Another improvement was the adding of small plastic beads on which the
microscope focuses in order to get the same image quality at every position
and experiment (this is performed since experiment 3).

The ISF tested another light source for a few weeks called the colibri
which is based on LED technique. With this system a more even illumination
and a better signal to background ratio should be achieved. After some
testing the illumination could not be improved significantly. Only in future
projects when a higher time resolution of fluorescent images is necessary, this
equipment could be required since LED technique is less damaging to the
cells. Another experimental change was inferred from the median intensity
over time depending on the auto fluorescence of the medium. (Figure 2.6 D).
The sharp drop of intensity at the very beginning has to belong to the phenol
red in the medium which acts as an pH indicator and bleaches rapidly. To
countervail this effect, the medium is preirradiated leading to an almost flat
line in the newest movie (Figure 2.8).

2.5 Bleaching model

Before the aforementioned method of normalization was derived and the
background could not be corrected for, simply because we did not consider
the effect of auto-fluorescence in the background. Therefore one could see
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Figure 2.8: Mean intensity over all positions in experiment 3 (blue) and
experiment 9 (black). The drop of intensity is almost gone in experiment
9 due to preirradiating the culture medium. Furthermore the flickering of
the lamp is eliminated. The small peak at time 80 cannot be explained and
needs further investigations.

the bleaching of the background in the foreground as well and we mislead-
ingly inferred that there is bleaching in the cellular signal. It is known from
the literature that bleaching has visible effects in living cells leading to in-
comparable measured intensities [3]. We developed a simple model which
simulates the bleaching of the fluorescent proteins in a living cell in order
to estimate the parameters for protein production, decay and the bleaching
rate in order to normalize the single-cell time courses to their real protein
amount. This effect was only visible in the first tracked cells since the steady-
state of bleaching against new protein production should be reached in a few
hours.

The model consists of three equations with active protein A, bleached
protein B, a bleaching rate β, a decay rate γ and a protein production α :

A
β−→ B

A
γ−→ ∅

∅ α−→ A

We assume that bleached proteins cannot switch back to active proteins and
furthermore that bleached proteins do not emit any light. Furthermore it
is not possible to distinguish between protein decay and bleaching rate and
only the sum b of them can be observed:

b := γ + β
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From these equations one can infer an ordinary differential equation (ODE)
which describes the change of A over time:

dA

dt
= α− (β + γ) ·A = α− b ·A

The indeterminacy of the two parameters of bleaching and protein decay can
be solved by two different experiments with different exposure times where
the two variables α and γ are constant as the same cells are used. But
different experiments with a known factor x between the exposure times
lead to:

β2 = x · β1 (2.7)

The parameter α and β can be determined from the data using a least-
square fitting procedure. This results in the same α and two different b.
Substituting equation 2.7 we get:

b1 = γ + β1

⇒ β1 = b1 − γ (2.8)
b2 = γ + β2

b2
(2.7)
= γ + x · β1

b2
(2.8)
= γ + x(b1 − γ)

b2 = xb1 − xγ + γ

b2 − xb1 = (1− x)γ

γ =
b2 − xb1

1− x
(2.9)

Therefore the biological protein decay which is constant for both experi-
ments can be determined by the two fitted parameter b1 and b2 and a known
multiplicative factor of exposure times x as the bleaching rate linearly grows
with the exposure time. The protein production can be estimated from both
experiments independently and as described in later chapter 4.5.1 where the
real protein amount can be calculated. With this method the real biological
protein production rates could be estimated.

Our method solves indeterminacies of two parameters by a second ex-
periment which does not care about the cell health. Images with higher
exposure time or smaller time interval between excitations lead to the real
protein production and decay rates. However, this model is not applica-
ble to our data since we do not observe a bleaching effect in the cells after
subtracting the background. In future experiments where fluorescence im-
ages are taken at a higher time resolution, this model might become more
relevant.
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Chapter 3

Cell detection and tracking

There are three main approaches of expression analysis in the literature.
First, there is a large-scale approach which measures the expression of many
cells over time and the characteristics of a whole population are studied.
Looking at the expression of a population of cells at a specific timepoint one
only measures the mean instead of each individual cell expression. This is
done in many common methods like microarray analysis or western blotting.
Just monitoring the mean of many individuals can have a certain disadvan-
tage. Imagine cells that are forming two different populations, one with a
less intense expression, the other one with a higher expression, but with the
same mean as a homogeneous population (Figure 3.1). In such cases one
misses important events with this large-scale approach.

Therefore, other methods like FACS sorting measure many individual
events separately. It is possible to observe the population wide characteris-
tics as well as the single-cell expression level. The only feature these methods
are missing is a time variable since only a snapshot of a certain timepoint
can be investigated. It is possible to repeat this experiment at different
timepoints and one will again obtain a snapshot of the current population
on a single-cell resolution. But in the case of FACS sorting experiments over
more timepoints would be very time-consuming and expensive and there is
no way keep track of individual cells between these snapshots e.g. in order
to estimate rates of cell death or differentiation.

The third main approach of expression analysis can be compared to the
results of a FACS sorting but with an essential additional feature. Live cell
imaging gives the possibility to follow many single cells along with their
expressions over time. This techniques allows two different approaches since
the movie can be regarded as a large-scale experiment over many timepoints
and, with additional effort of tracking cell, as a small-scale approach for the
analysis of single-cell characteristics. After managing this challenge one can
determine cell events such as cell-fate decisions, cell-cycle behavior or cell-
cell contact and can create according time dependent expression profiles.

23
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Figure 3.1: Histogram of measured PU.1 intensities of one specific timepoint
from our dataset. The red line indicates the mean value measured by com-
mon profiling methods like micro-array analysis which would not dissect the
two different cell populations.

In this thesis we are performing both, an imaging large-scale approach
and a single-cell analysis with a strong focus on the later approach. The
manually created tracking of cells annotated by the ISF makes it possible
to analyze many individual cells simultaneously and therefore to raise hy-
potheses of single-cell behavior with biological relevance.

3.1 Detecting cells in fluorescence images

In order to handle the huge amount of data of live cell imaging, it is es-
sential to automatize the cell detection and measurement processes. The
accurate and reliable segmentation of living cells is essential for our analysis
and therefore it is necessary to look into this subject more carefully. The
fundamental process of cell detection in fluorescence images can be reduced
to the following problem: A gray-scale image of fluorescent cells (Figure
2.4) consists, as mentioned before, of the background, the cell signal and
a certain amount of noise. Ideally the background is close to zero after
normalization (Figure 2.6 E). The first step is to find a threshold which sep-
arates the background from the real cell signal (Figure 3.2). Values above
this threshold are defined as signal whereas every other value is considered
to be background.

A variety of algorithms is known to handle the thresholding problem.
For example, the well known algorithm of Otsu et al [38], which is based
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Figure 3.2: A projection of normalized picture onto the y-axis/intensity
plane of a normalized image where each dot represents the intensity be-
longing to a row of the image. The line represents a hypothetic threshold
separating background from cell signal. The dots are arbitrarily colored for
a better visualization.

on statistical mechanics, investigates the distribution of all occurring gray-
scale values. The procedure attempts to maximize the variance between the
two classes (back-/foreground) and to minimize the variance within both of
them, leading to a fixed threshold for the whole image. Connected areas
of foreground signal which exceed a size threshold are now defined as cells.
Obviously, this method is only applicable to corrected images. A color
gradient due to uneven illumination would severely disrupt the thresholding
methods since a static threshold, as used in our approach, radically forces
every higher value to be a cell. This again points out how important the
steps of image preprocessing and normalization are.

Even on corrected images automatic algorithms might fail as they can-
not distinguish between two touching objects due to the static threshold. A
second step has to be performed: the correct separation of these so called
clumped objects can be done by applying a watershedding algorithm after-
wards (described later).

The whole detection procedure can be divided into five parts. First,
the raw image (Figure 3.3 A) is used to calculate the threshold separating
background from foreground. Generally the thresholding performs better
on blurred images, so a Gaussian filter is applied on the image in order to
smooth the values (Figure 3.3 B). Taking all connected values above the
threshold delivers the cell signal and creates a binary image where signal
gets the value 1 and the background is represented by 0 (Figure 3.3 C).
In the case of the example of Figure 3.3 C, the thresholding performs well
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by means of differentiating background and real cell signal, but it fails to
separate the detection into two distinct cells.

Now the watershedding algorithm takes the binary image (Figure 3.3
C) and calculates a distance matrix which is computed by the euclidean
distance of every white pixel to the nearest black pixel. The result is shown
in Figure 3.3 D displaying two different maximums of the distance matrix
in the center of each cell. Based on these two maxima a dilation procedure
begins leading to growing areas which are restricted by a simple rule. A
pixel is not added to an area if it is already assigned to a different one. The
tricky part of this algorithm is that the dilation is based on the calculated
distance matrix using a two dimensional neighborhood approach, so a bigger
cell will grow faster than a smaller one leading to the correct intersecting
line (Figure 3.3 E).

This separating line is now combined with the binary image of the thresh-
olding algorithm which leads to two separated cells (Figure 3.3 F). Overlay-
ing the detected cell boundaries over the raw image will lead to the final cell
detection (Figure 3.3 G). The gray-scale values in between this boundaries
are integrated to assign the specific expression intensity to the cell.

In order to obtain a more accurate detection (Figure 3.3 F) for each
individual cell a manual inspection and adjustment of the threshold and
watershedding parameters is necessary which is discussed in detail in Section
3.3.

3.2 Large-scale approach

In the large-scale approach of this thesis we attempt to detect all cells over
a whole movie and to create statistics over the whole cell population. The
complexity of this approach lies in the tuning of parameters for a best pos-
sible cell segmentation delivering the same quality of cell detection ranging
from the beginning to the end of the movie. The image conditions vary
over time just by the fact that the cells are proliferating and thus more
and more cell signal arises. After four days there are so many cells that it
is difficult to distinguish clumps of overlapping cells even by eye (see Fig-
ure 3.4). One set of parameters could perform well at the beginning of the
movie, where just a few cells have to be separated from the background, but
the algorithm will mistake cells for background or vice versa in the end of
the movie. For detecting all cells over the whole movie, we are using the
freely available CellProfiler toolbox for MATLAB [5]. It allows to create
a fully automated processing pipeline which can be applied to every single
image. This pipeline provides several computational steps and allows for
the integration of our own normalization method. The pipeline we used in
the analysis is composed of the following tasks:

1. load a single fluorescence image
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A B

C D

E F

G H

Figure 3.3: General workflow of cell detection algorithms on gray scale flu-
orescence images. The raw image (A) is smoothed by a Gaussian filter for
better performance (B). An automatically calculated threshold is applied
and every signal above this threshold is referred to cell signal and will get
value 1, whereas every other pixel gets 0, leading to a binary image (C).
Based on this image a distance matrix is calculated assigning every fore-
ground pixel the distance to the nearest black pixel (D). The matrix is used
by watersheddding algorithm to dilate the two maximums based on their two
dimensional-neighborhood (E). Overlaying the binary image with the two
calculated separate areas (white and gray) results in two separate cell nuclei
(F). Projecting the detected cell boundaries onto the raw image shows the
detected cell (G). Integrating over the values in between gives the assigned
cell intensity. After adjusting the threshold a more accurate cell detection
can be obtained (H).
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A B

Figure 3.4: Fluorescence image of an early (A, day 1) and late timepoint (B,
day 4). The median of picture (B) is still within the background assuring
that the normalization described in 2.3 still holds.

2. apply illumination and background correction method

3. detect nuclei by thresholding and watershedding, afterwards filter by
size

4. measure intensity

5. save raw image with detected outlines

6. save measurement

The CellProfiler also allows to overlay the detected cell boundaries over
the original images and save the results in separate image files. These images
are used afterwards to create movies with a higher contrast in order to gain
a better insight of what the program detects and whether it makes mistakes
(Figure 3.5). As we want to detect as many false positives as possible, a set
of parameters is now chosen by evaluating the outline-movies via manual
inspection.

The analysis of a whole movie by CellProfiler takes around one day on
a quadcore machine creating a file with all detected nuclei (about 700MB)
and about 3.5GB of outlined images. After converting the detection file into
a MATLAB readable format every line represents a detection consisting of
the experiment position, the timepoint, the position specific coordinates X
and Y and two quantifications: the measured intensity and the measured
size.

By manually inspecting the outline-movies at every position, we detected
some artifacts and some spurious detections on the edges of the experimental
plate (Figure 3.5). Therefore we implemented a simple position-specific
filtering which allows us to exclude such artifacts.
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A B

Figure 3.5: Two outline images of the automatic CellProfiler detection. (A)
A high threshold did not detect all cells. (B) A low threshold detects arti-
facts. The detection of CellProfiler can be manually inspected by contrasted
movies, which can help to adjust the parameters or to filter the results af-
terwards.

For every single image of the experiment there exists an XML file which
records the exact position of the robot as well as the exact time. The final
step of the large-scale data preprocessing is a mapping algorithm which
assigns the exact real time to every single image based on the timepoint and
the position.

3.3 Aided Manual Tracking

The tracking trees of ISF deliver position-specific coordinates but they will
not deliver detections or measurements of the intensity of the nuclei. We
use these coordinates and attempt to identify the correct cell boundaries
and measure the intensity of each cell. Since the automatic detection regu-
larly fails one has to look manually into the detected data. The recorded cell
movie still relies on a live biological experiment where some artifacts like con-
tamination always appear. We developed a MATLAB toolbox called Aided
Manual Tracking (AMT) which implements several thresholding methods
which have been evaluated on manually set thresholds for several trees (re-
sults not shown). The purpose of this tool is to refine the automatic de-
tection of manual created trackings for several artifacts or misdetections in
order to get accurate expression data. The continuous development of that
toolbox and the implementation of more and more methods was a major
task of this thesis.

3.3.1 Single-cell data preprocessing

The program is basically based on two layers. First an automatic detection
algorithm is applied which measures the intensity and size of each cell over
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A B

Figure 3.6: Brightfield (A) and contrasted fluorescence image (B) of in-
tensely glowing artifact. Small dots represent the focusing beads. The
intensity of the contaminants is so high that the cell signal virtually disap-
pears.

time. It takes as input an ISF tracking tree and uses the manually set
coordinates to extract a small window of the normalized cell image around
theses coordinates. Then it automatically detects cells in the given window
and takes the nearest cell to the center as the cell to be measures. It is
obvious that this cannot be performed manually as there are usually more
than 300 different detections for each tree. For the AMT it is as important,
as for the CellProfiler, that the thresholding parameters are set correctly. It
is possible to test just only a few of the trees with a parameter set before
computing the whole set in order to tune the parameters to perform for the
current movie conditions. It is also possible to recalculate cell boundaries
for a whole cell life or tree with modified parameters.

After adjusting the parameters, the automatic detection can be applied
to the whole set of trees. The resulting data now serves as the base for the
second part of the program which from now on provides a graphical user
interface.

3.3.2 Identifying and correcting detection errors

As already said there are many cases where automatic detections fail. An
example is given in Figure 3.6 where some undefinable artifacts disturb the
detection. Some of these problems are uncovered very late in the processing
pipeline because at the manual tracking step on the brightfield images the
contamination does not look that fatal (Figure 3.6 A).

It frequently happens that in the tracking data the tracking position is
not accurately over the cell. It is considerably difficult to precisely keep
track of a whole tree and every individual cell. Our tool is designed to take
the nearest cell center as the cell to measure. However, in the late movie it
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A B

Figure 3.7: (A) Two cells in close proximity at a specific trackpoint. The
movie of brightfield images can help to select the right one to measure. (B)
A cell during devision process.

happens that taking the nearest cell is not the appropriate method and the
algorithm chooses the wrong cell.

A problem due to the low time resolution of the fluorescence images is
that an image is taken as the cell is still dividing (Figure 3.7 B). There are
already two cell nuclei but the cell has not finished the mitosis. One has
to decide whether this is allocated to the mothercell or whether both nuclei
are assigned to the daughters.

All problems listed before can easily be detected and corrected via the
AMT tool (Figure 3.8). The AMT shows the single-cell time courses to the
user (Figure 3.8 lower left) and serious problems attract immediate attrac-
tion (Figure 3.10 left). The program allows to select a specific timepoint
and cell. A dialog will appear displaying the extracted window of the cell
image and all detected nuclei in this picture. One can adjust the parameters
of the thresholding and watershedding algorithm or choose the correct cell
(Figure 3.8 two boxes on the right). Instead of just selecting one specific
cell and timepoint it is also easily possible to look through the detections of
a cell over its whole lifetime.

The program also allows to investigate the raw movie zoomed in and cen-
tered around the cell of interest. The movie can be played in both direction
and examined image by image. The playback function of the movie allows
a deeper insight into the cell movement and makes it easy e.g. to choose the
correct cell if two or more cells are in close proximity (Figure 3.7). All three
channels can be chosen: the brightfield movie with a higher time-resolution,
the detection or the measurement channel of the fluorescence signal images.

In the case of PU.1 movie detection and measurement rely on the same
channel. The tool is also applicable to other projects and other data types
than PU.1 movies. In another collaboration with the ISF, dealing with
fluorescence movies of differentiating embryonic stem (ES) cells, we also use
the AMT to clean up the expression data. In this project two different
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Figure 3.8: The Aided Manual Tracking (AMT) tool interface. The user
can choose a tree to be analyzed in the tree selection window (upper left).
The corresponding time courses are shown below, where the user can inter-
actively choose a specific cell and timepoint to be inspected in more detail.
The dialog on the lower right shows the detected cell with its surrounding
area. All possible parameters at the upper right can be adjusted for a bet-
ter detection (compare Figure 3.9). The detection with new parameters is
updated on-the-fly and the result can be seen in the cell detection dialog.
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Figure 3.9: All parameters which can be tuned to correct for errors. The first
line shows the information of the detected cell depending on the parameters.
The cell number of the cell tree, the timepoint, the position of the experiment
as well as the position-specific coordinates x and y, the calculated intensity,
the nucleus size and eccentricity. The following parameters can be adjusted:

1. Position: Move center of the image in order to select the correct cell

2. Threshold correction: A correction factor to manipulate the calcu-
lated threshold

3. Smoothing filter: The size of the Gaussian filter for blurring

4. Maxima suppression: Suppresses maxima of objects and affects
whether objects close to each other are considered a single object or
multiple objects. Should be smaller if two clumped object are still
connected

5. Use nearest: Take the nearest cell if no cell is in the center of the
subimage

6. Window size: Change size of the window around a cell

7. Distinguish clumped: Choose different methods to distinguish two
clumped objects either by their intensity if a dim dividing line be-
tween both is visible or by shape where a distance matrix is calculated
for the watershedding algorithm

8. Dividing lines: Draw the dividing line between two clumped object
either based on their intensity or on their distance matrix

9. Invert image: Detecting e.g. on phase contrast images sometimes
works better on inverted images
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A B

Figure 3.10: The time courses showing measured PU.1 intensity over time
after automatic detection (A) and after manual correction of detection (B).
Sharp peaks indicate problems of the automatic detection.

proteins are tagged with fluorescent markers. The ES cells tend to build up
colonies which makes it impossible to track the cells by eye on brightfield
images (Figure 3.11). Therefore the nuclear membrane protein nucmem is
labeled which is always expressed in the nuclear membrane and which is
used to detect the cell nucleus. In a different channel the actually relevant
transcription factor nanog is quantified depending on the detected nucleus
of the nucmem.

All correction steps implemented in the AMT are essential to clean up
the data as much as possible and the program allows all this in a very simple
and intuitive way. Once the tool prepared the data, it also provides basic
functions to run analysis methods directly on the chosen data (which will
be described in detail in the next Chapter). In the future the program will
be extended for the work with all movie types at the ISF and, in addition,
will be transferred to the computer system at the institute.

3.4 Combining experiments

For the next chapter it is of a great interest to combine the tracking data of
different movies. Since the biological conditions throughout the experiments
should be constant there are only few variables left we have to assure. The
varying background signal, different flickering and unequal bleaching effects
are eliminated due to our normalization method. Although the exposure
time is not changed over all cell movies, one important variable left is the
light source intensity which might change with an increasing life time of
the light source. This variable leads to a multiplicative factor which affects
all measured intensities. The boxplot of all measured intensities of the two
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Figure 3.11: Two fluorescent images of the same timepoint but different
wavelengths. The nanog signal is used to quantify the intensity but since
the detection or even the cell tracking is not possible on this channel due to
the colonies (A). Another fluorescently tagged membrane protein nucmem
is used to detect the cell nucleus which is then projected on the nanog signal
(B) to get the intensity.

experiments 3 and 8 show a multiplicative shift which causes the newer
movie to appear darker (Figure 3.12 A).

The first attempt is to estimate the difference of intensities via examin-
ing the fluorescine line which is measured for every experiment. Almost all
attributes of the experiments are equal, but the newer movie was preirradi-
ated in order to eliminate the autofluorescence of the background (caused
by the phenol red in the medium). This leads to extreme differences in the
first images of the experiments and prevents an appropriate comparison of
the fluorescent images.

Therefore any raw image will have incomparable mean intensities and
only the following method seems convenient. Looking at the measured in-
tensities of all cells of each experiment will identify the multiplicative factor.
The boxplot Figure 3.12 A shows a shift of 1.56 of their medians. After mul-
tiplying the newer movie with the factor an almost overlapping histogram
of the relative intensity distribution confirms this procedure and makes the
measured data comparable (Figure 3.12 B). Experiment 8 (green) has more
zero outliers than experiment 3 (blue) since the newer data has not yet been
sufficiently corrected by manual inspection and only the important trees
described in the next chapter were revised.
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Figure 3.12: (A): Boxplots of all measured PU.1 intensities of experiment
3 and 8. There are still some outliers in the data since only several inter-
esting trees have been inspected manually. The shift of the median of both
distributions is 1.56. (B): Multiplying experiment 8 with this shift leads to
almost the same distribution of intensity values allowing to combine these
two experiments. Experiment 8 (green) has a greater amount of zero outliers
than experiment 3 (blue) due to less manual inspection.



Chapter 4

PU.1 expression analysis

The data preprocessing and data consolidation outlined in the previous chap-
ters leads to cleaned fluorescence intensity levels for the YFP tagged PU.1
in MPPs. This allows for the large-scale analysis of intensity distributions
and enables us to study molecular properties and estimate noise of single
cells over a whole genealogy. We present different expression normaliza-
tions, correlations of cell lifetimes as well as cell-cycle expression profiles.
Furthermore, due to single-cell tracking, the experimental data includes an-
notations of the state of the FCγ surface marker indicating a GMP lineage
commitment, if active. This allows us to investigate specific PU.1 expres-
sion profiles of GMP committing cells and their progenitor cells. At last we
perform some further tree analyses and an estimation of PU.1 protein.

4.1 Estimation of detection quality and noise
strength

A quantification of the imaging and detection quality can be given by com-
paring the measured results against the quantification result from well-
established methods. This is possible with experiment 11 (compare Ta-
ble 2.1) where hematopoietic cells were sorted by FACS and imaged after
sorting. Three different population-specific images of separate populations
containing either MPPs, MEPs or GMPs were obtained. The intensities
were measured during the FACS sorting process and then compared to our
detection and measurement methods. The histograms of Figure 4.1 A and B
show the distributions of population-specific intensities from FACS and from
our imaging and detection technique. The sharp cuts of the histograms in
Figure 4.1 A are due to assigning upper and lower boundaries for the PU.1
intensity during the sorting process. Nevertheless, both methods can be
compared on relative scales. The difference is 3-fold from MEP to MPP
and 4-fold from MPP to GMP on linear scale. The barplot in Figure 4.2
A shows the mean intensity of each population with its standard deviations

37
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Figure 4.1: (A) FACS intensities of all three cell populations. (B) Intensities
of all three cell populations measured by our normalization and detection
method. Both show an fold-change of 3 from MEP to MPP and a fold-change
of 4 from MPP to GMP in linear scale.

with two different scalings on the y-axis. The measured FACS intensities be-
long to the left y-axis whereas the imaging values belong to the right y-axis.
This indicates highly comparable results between FACS and the normalized
imaging method which is a confirmation of the cell detection and quantifica-
tion. Furthermore a comparison of the measurements without the correction
method described in Section 2.3 against the FACS intensities highlights the
importance of normalizing and gives a proof that our correction method is
correct (Figure 4.2).

The noise introduced by the thresholding and segmentation process de-
scribed in Section 3.1 can be estimated by the following approach: Ordinar-
ily a cell is manually corrected and the threshold is adjusted for an optimal
detection within ±20%. We now vary the threshold from 80 to 120% of its
supposedly correct value. With the altered thresholds the detection algo-
rithm is reapplied on the cell. The resulting errorbars in Figure 4.3 show that
the introduced noise is relatively small (≈ 3.1%) derived by the coefficient
of variation. This is calculated by dividing the mean standard deviation
by the mean. The remaining fluctuations of single-cell time courses can
be attributed to biological noise probably emerging from transcription and
translation. It is a general understanding that these biological events go
through bursts and do not produce protein with a constant rate [42]. An
experiment where fluorescent images are taken with a higher time resolution
could confirm this hypothesis and is already planned.

The technical noise due to inaccuracies of the imaging technique can
be estimated by looking at experiment 10 where only the background is
imaged. We assume that the technical noise in a pixel of a measured cell
is the same as in the background pixels or in fluorescine images. The noise
can easily be measured in this experiment since the signal in these images
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Figure 4.2: (A) Comparison of FACS intensities against normalized imaging
intensities showing almost the same ratios. (B) The bars of the raw imaging
data indicate that our normalization method is necessary. The FACS values
belong to the left y-axis and the imaging values belong to the right y-axis.

Figure 4.3: Time course of a single-cell detected with different thresholds
ranging from 80% to 120% of the manually set parameter. The noise intro-
duced by threshold is estimated to be about 3.1% derived by the coefficient
of variation.
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Figure 4.4: Comparison of two different normalization methods. The blue
line refers to the method of Sigal et al [49] whereas the red line is calculated
using our method described in Section 2.3 resulting in almost identical single-
cell time course.

is constant. Again calculating the coefficient of variation by dividing the
mean background standard deviation by the mean cellular signal intensity
per pixel leads to a technical noise of 1% (result not shown).

A quantification of our normalization method can be given by comparing
it with the well-established method of Sigal et al [49], which was already
described in Section 2.3.1. Single-cell time courses calculated with both
methods show that both perform very similar (see Figure 4.4). They only
differ in ≈ 2% of total measured intensity and the general characteristics of
the line is retained.

4.2 Large-scale analysis

The cleaned up large-scale data contain the measured intensities and sizes
of all cells at every timepoint over a whole experiment, leading to about two
million individual cell detections in experiment 8 (compare 2.1). Histograms
showing the distributions of intensities for each day of the experiment are
given in Figure 4.5 A. At the beginning the experiment contains only MPP
population whose intensity distribution can be seen in the histogram of the
first day. Looking at the second day shows no change in the distribution
but a lot of more cells appear due to proliferating MPPs. Starting with
day three the distribution begins to shift its mean towards higher intensities
which can probably be accounted to a shift towards the GMP lineage. Due
to the experimental conditions we should observe a dominating population
of GMPs at later timepoints (knowledge from earlier experiments). The
further development of the populations shows a continuation of this trend
in the fourth day of the experiment. However, the distributions of the last
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two days differ from this expectation since the mean decreases again and a
large population of low intensity cells comes up and proliferates.

Interestingly, no intensities higher than 7 are observed. As already dis-
cussed in Section 4.1 our detection method detects GMPs with a mean
intensity of 11. To exclude any technical problems, we re-measured the cells
at different timepoints and positions by manual inspection which led to the
same results as shown in the histograms (data not shown). Looking at the
surface marker FCγ gives convincing evidence that GMP cells do appear in
our experiments. Therefore we can only assume that there is some bleaching
effect in the movie which cannot be seen in single-cells and is only visible at
larger time scales. Since the experiment discussed in Section 4.1 consists of
only one timepoint, further investigations are needed to clarify if a bleaching
effect exists in the cells.

Assuming that there is some bleaching, the shift of intensities from day
two to three can be explained by cells committing to GMP lineage. In day
four one could assume two different population, possibly representing MEP
and GMP, respectively. Attempts of fitting two separate Gaussian distri-
butions lead to no clear separation of the distributions (data not shown).
The second shift of intensities can be explained by the lineage commitment
and subsequent PU.1 repression in the further differentiation process. To
validate this assumption, again further investigations are needed.

In Figure 4.5 B, we show the time development of the mean and the
standard deviation of the fluorescence intensities and the detected number
of cells. Since the experiment examined here had some technical problems
in the first twelve hours, the mean as well as the standard deviation are
meaningless during this phase. After this timepoint the mean intensity
slightly increases for about 100 hours and only decreases in the middle of
day five. The standard deviation obviously decreases after 100 hours due to
the quickly proliferating cells leading to a large population of presumably
homogeneous cell types (this observation cannot be explained so far). The
number of cells constantly increases over four days until a strong onset at
∼95h, reaching a final level of about 50.000 cells at the end of the movie. The
detected cell number after 120 hours of movie time will not be representative
since the detection quality decreases due to the large amount of cells on the
movie (compare Figure 3.4).

4.3 Single-cell time course analysis

Instead of looking at populations we now investigate the measured fluores-
cence intensities of single cells. The additional knowledge of tracking leads
to expression data time courses which allow deeper insight into precise dif-
ferentiation mechanisms.
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Figure 4.5: Analysis of the large-scale expression data where about 2 million
individual cells of experiment 8 (compare Table 2.1) have been detected. (A)
Histograms of measured PU.1 intensities calculated for each day. In the first
two days a population of proliferating MPPs can be observed. Day three and
four highlight a increasing shift of the measured intensities, possibly due to
the differentiation into the GMP lineage. A second shift can be seen in day
five and six where the intensities decrease again possibly due to PU.1 not
playing a role in the further differentiation process. (B) The development
of the mean and standard deviation show some arbitrary behavior due to
technical problems in the experiment in the first twelve hours. The mean
and the standard deviation slightly increase over 100 hours and drop rapidly
afterwards due to the large increase of cell numbers. The cell numbers show
a constant increase over 90 hours. After that the cells rapidly proliferate
to a population of about 50.000 cells. Measurements after 120 hours are
inaccurate due to decreasing detection quality.
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4.3.1 Absolute intensities

The measured fluorescence intensity against time of single-cells is given in
Figure 4.6 A. Every line represents the fluorescence intensity of a single
cell over its lifetime. As expected, the intensity grows with lifetime, after
a cell division two new lines represent each daughter cell. Since MPPs
predominantly divide symmetrically with respect to PU.1 (as discussed later
in Section 4.5.1), every daughter starts with about one half of the mother’s
intensity.

4.3.2 Net production rate

The net production rate r is defined as the first derivative of the absolute
intensities. (Figure 4.6 B, [45]) We calculate it as:

r(ti) :=
f(ti+1)− f(ti)

ti+1 − ti

with f representing the absolute PU.1 intensities. This numerical deriva-
tive represents the change of protein over time and includes both protein
production and decay. In this view differences of intensity slopes can be
made more visible. Moreover, r is independent of the absolute fluorescence
intensity, allowing to compare cells of different trees or different absolute
levels. After cell division the production rate can change because there is
only half of the DNA left leading to less transcription and translation. An
increase should be seen after the DNA is replicated in S phase.

4.3.3 Normalization based on a doubling hypothesis

In order to make cell time courses of different generations or trees more
comparable, we introduce a normalization based on a doubling hypothesis:
A proliferating cell doubles up its volume and protein amount during each
cell-cycle. The intensity is recalculated in the following way: (1) we take the
median of the first five timepoints giving a robust estimate of the starting
intensity at cell birth. (2) A line over the whole cell lifetime from the initial
value to the doubled starting intensity is subtracted from the single-cell time
course. This should normalize ordinarily proliferating cells to a straight line
and highlights cells deviating from this line, possibly indicating a lineage
decision. Figure 4.6 C shows time courses normalized by this method. The
first cell does not satisfy the straight line but reaches zero again at the end
of its life time whereas cells 2 and 3 clearly differ from a horizontal line.
Time courses with a positive ending line indicate highly expressed PU.1
levels where commitment to the GMP lineage would be expected. Checking
the cell fate of cell 2 and 3 shows that both commit to GMP lineage. Cells
which commit to the MEP lineage should show negative values at the end of
their life time. The later cells do not fulfill the assumption as they are not
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Figure 4.6: Different representations of single-cell time courses of one com-
plete genealogy where each line describes the time course of a cell: (A)
The absolute measured intensity over time shows increasing intensities as
expected. After a division, two new lines appear both starting with approx-
imately one half of the amount of the last timepoint of their mothercell. (B)
The net production rate calculated by the first derivative of absolute values
where some cell cycle dependent pattern can be emphasized against plot
(A). At the end of each cell-cycle a positive derivative indicates cell growth
for the pending cell division. (C) The time courses modified by the doubling
hypothesis where a line from the first intensities to the doubled amount over
the lifetime of each cell time course is subtracted. A cell which produces
constantly protein over its lifetime will therefore represented by a straight
line. Every cell deviating from this hypothesis will possibly have made a lin-
eage decision. Due to the cell-cycle kinetics the cells do not build a straight
line but become zero at the end of their lifetime (compare first cell). (D) A
representation of the protein concentration derived by an approximation of
the cell volume described in Section 4.3.5.



4.3. SINGLE-CELL TIME COURSE ANALYSIS 45

Time (min) 1374 1404 1434
Intensity 3.23 3.35 3.52

Size (pixel) 58 77 67

Figure 4.7: Detected cell nuclei in a continuous time series with constantly
changing shape but increasing intensity. Fluorescent images are taken at a
time interval of 30 minutes.

tracked over their whole lifetime since the lineage decision is already made
by their mothercells.

4.3.4 Mean pixel intensity

The output of the detection algorithm also delivers the measured size. So a
mean pixel intensity could be computed by dividing every measured inten-
sity by the measured size in order to estimate the concentration in a cell.
However this method is not very meaningful as the cell and the nucleus are
three dimensional objects and the measured two dimensional area does not
represent the volume of the cell. Figure 4.7 shows three images of a contin-
uous time series in which one can clearly see the cell nucleus. The measured
intensity constantly increases over time but the measured size is strongly
varying. Therefore it is obvious that the measured cell area cannot be used
to create a concentration time course.

Another approach to outline the varying of cell sizes is given in Figure
4.8 A showing the correlation between cell size and cell intensity. The color
represents the cell lifetime spanning from black (cell birth) to red (a cell
about to divide). One can see that there is a correlation between cell-cycle
and size, as well as between cell-cycle and PU.1 intensity. The black dots
are mainly on the left bottom whereas the red ones are spread around the
figure. In this analysis we observe a pairwise correlation between size and
intensity of only 0.19, which might be due to looking at very different cells.

The relationship between size and intensity can be studied in more detail
by plotting a trajectory of a single cell over time (Figure 4.8 B). Starting
at the bottom left corner the cell moves around over time and ends up in
the right upper corner. The trend of this curve is as expected and the size
as well as the absolute intensity are growing with the cell lifetime. At first,
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Figure 4.8: (A) Measured size against measured intensity of cells, where
the color code represents the lifetime spanning from black (cellbirth) to red
(a cell about to divide). The small pairwise correlation between size and
intensity of 0.19 highlights the fluctuating measured cell size. (B) Single-
cell trajectory showing developing size against intensity over time starting in
the left bottom. The intensity rapidly increases in the first eight timepoints.
After the cell reaches a stable level of PU.1 (≈2.5) the strong size fluctuations
can be observed. At the end of the cell-cycle the cell size varies between 80
and 115 pixel.

the intensity rapidly increases and after eight timepoints it remains at the
constant level.

4.3.5 Protein concentration

When analyzing the regulation kinetics of a transcription factor, a substan-
tial question is whether to investigate the absolute or the relative concentra-
tion of the protein. As the amount of DNA (or transcription factor binding
sites) is supposedly constant during the cell cycle, we assume the relative
concentration to be the relevant quantity. We introduce a method to es-
timate the protein concentration C(t) of a cell defined as the fraction of
protein amount P (t) and its volume V (t):

C(t) =
P (t)
V (t)

(4.1)

where t describes the relative cell life time ranging from 0 to 1. Therefore,
we need an estimation of the volume. As already discussed the previous
methods will not satisfyingly estimate the real cell volume.

We make the assumption that the cell can be described by a sphere
and its two dimensional projection can be described by a circle. A first
indication of this feature can be seen in Figure 4.9 showing all measured cell
sizes (about 9000) centered and summed up resulting in a circle.
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Figure 4.9: All detected cell areas (about 9000) centered and summed up
resulting in a circle. This gives a first indication that the cell volume can be
estimated by a sphere.

Relations between volume and area of a sphere

The cell volume V with radius r can be calculated by V = 4
3πr

3. The
cell area A represented as a circle is derived by A = πr2 . A volume V0

represents the initial cell volume, A0 the corresponding initial area, both
depending on the same initial radius r0. Another volume Vx is the initial
volume multiplied by a factor x which has a corresponding radius rx and an
unknown area Ax. We derive the relation of the area to the volume scaling
factor x by:

Vx = x · V0 = x · 4
3
πr30 =

4
3
π · ( 3
√
x · r0︸ ︷︷ ︸
rx

)3 (4.2)

Ax = r2xπ
(4.2)
=
(

3
√
x · r0

)2
π = 3
√
x2 · r20π = 3

√
x2 ·A0 (4.3)

From this follows that multiplying a given volume with a factor x will lead
to an increase of 3

√
x2 of the area.

As the next step, we take all quality-filtered cells of all movies and nor-
malize their lifetime to the same length 1. We excluded the first and the
last cells in each tree since their effective lifetime is unknown. Averaging
over the measured size of every cell leads to an interesting result. The cell
area is growing linearly as Figure 4.10 A shows.

Furthermore, we take the assumption that a cell approximately doubles
its volume over its live time (x = 2). Normalizing the measured cell areas
shows that they exactly grow to a total of 3

√
22 ≈ 1.59 times their starting

size (Figure 4.10 B). Looking at some individual cell area time courses and
their linear fit shows that the residuals are small. This indicates that the fit
over the mean cell sizes is representative (data not shown). This is a further
strong indication that the cell can be approximated by a sphere.
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Figure 4.10: Average cell size over normalized cell lifetime. (A) The mean of
measured cell sizes of all cells with its standard deviation. (B) Normalized
size increases from 1 to 1.6 linearly. (C) The estimated normalized cell
volume ranging from 1 to 2. The large deviation at the end of each line is
due to an effect of the cell division (compare Figure 3.7 B)

Time development of volume

Including the observation of the linearly increasing area along with the re-
lation of volume and area of a sphere ((4.2) and (4.3)) allows us to calculate
the development of the volume in between t = 0 and t = 1:

V (t) =
√

(m · t+ n)3 (4.4)

For simplification, we set the initial cell volume to 1 (V (0) = 1) and we know
that the cell doubles its volume over the cell-cycle (V (1) = 2). Therefore we
can determine the two variables m and n:

V (t) =
√

(( 3
√

22 − 1) · t+ 1)3 (4.5)

Thus the hypothetical volume of a cell grows between linear and quadratic
depending on t resulting in a bent line from 1 to 2 which is shown in Figure
4.10 C. This method gives us the opportunity to normalize every single-
cell time course by equations (4.1) and (4.5). P (t) can be estimated by
the measured PU.1 intensity and the result can be regarded as the PU.1
concentration in the cell. It is also possible to calculate the estimated volume
depending on the real values of the measured area of the first timepoints. But
it is sufficient to assume that all cells in a tree have the same volume at their
first cell timepoints since MPPs and its offspring should have approximately
the same volume. However, calculating the real volume from the measured
area would only be a multiplicative factor. As already shown in Section
4.3.4 the measured size is inexact and would introduce unnecessary noise.

The advantage of this method against the aforementioned doubling hy-
pothesis is that we now have comparable concentrations throughout all cells
highlighting regulatory mechanisms. The resulting Figure 4.6 D shows the
concentration over time.
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4.3.6 Life times and birth time

Figure 4.11 A shows a histogram of cellular lifetimes with an average lifetime
of 11.6 hours. There are only few cells with a higher lifetime than 15 hours
or lower than 10 hours. To investigate if the lifetime changes during the
movie we analyze the lifetime of each cell against its birthtime. In Figure
4.11 B we find that the lifetime decreases with increasing birthtime in the
movie. This is in accordance with the general knowledge that progenitor
cells like MEPs or GMPs proliferate faster then stem cells [40].

Plotting the median net production rate of each cell against its birthtime
reveals developing subpopulations (Figure 4.11 C). Between t=0 and t= 35h
cells proliferate with positive production rate. After about 35 hours one
subpopulation with a positive production rate and one with a negative rate
appear, possibly representing GMP and MEP lineage, respectively.

Figure 4.11 D displays the median production rate against the cell life-
time. We find that cells with shorter lifetimes differ in their production
rate of PU.1 level strongly, representing differentiating cells. Cells with a
higher lifetime represent one cell type of an earlier state in the blood cell
differentiation.

The dominance of positive production rates in Figure 4.11 C and D is due
to the fact that cells tend to differentiate towards the GMP lineage in our
experiment. Red dots stand for cells with active FCγ surface marker indicat-
ing GMP commitment. All cells show positive production rates indicating
a correlation between high PU.1 concentrations and GMP commitment.

4.3.7 Cell Cycle

In order to compare cells with different lifetimes, we normalized every single-
cell time course to the same length. This method does not take into account
the diversity of cell phase timescales. It assumes that every cell phase has
the same length in every single cell. This makes it possible to create a mean
cell cycle time course of PU.1 expression (Figure 4.12 A). Calculating the
net production rate leads to the mean PU.1 production over the cell life time
where three different regions appear (Figure 4.12 B). This analysis was also
performed in the former thesis of Jan Krumsiek and the results are almost
equal [26]. The derivative of the absolute intensities can be compared and
both studies show the same development. The strongly varying expression
strengths between the supposed phases can also be observed in our plot.
The first section is described by a decreasing slope indicating a reduced
production of PU.1 which can be referred to the G1 phase. In the second
phase the PU.1 production is very low since a cell in the S phase concentrates
on DNA replication. After the DNA is doubled the PU.1 production again
increases indicating cell growth of the G2 phase for the pending cell division.
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Figure 4.11: Various properties of 162 cells of experiment 3. Red dots indi-
cate cells which activate FCγ. (A) Histogram of cell lifetimes with a mean
of 11.6 hours. (B) Cell lifetime against birthtime showing an decreasing
proliferation rate in the later movie phase. (C) The birthtime of all cells
against their median net production rate, showing two arising populations
with a high and a low net production rate after 35 hours. (D) The cell life-
times against their median net production rates, showing similar results as
the cells with longer lifetime. Presumably this indicates that MPPs have a
homogeneous production rate whereas cells with shorter lifetime again build
up two populations possibly standing for GMP and MEP lineages.
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Figure 4.12: (A): Cell cycle of 211 cells of experiment 3 and 8 (compare
Table 2.1) normalized to the same length. The blue line represents the
mean fluorescence intensity, red lines the standard deviation. (B): The first
derivative shows that the slope constantly decreases in the first cell phase
and increases again after half of the cell lifetime. Vertical gray lines indicate
the three supposed cell phases.

4.4 FCγ marker

FCγ is a surface marker indicating GMP lineage commitment. We try to link
the onset of FCγ with the PU.1 expression profiles to give insights into the
kinetics of blood cell differentiation. The challenge in this part consists of
comparing many cells with the same annotation (FCγ positive) but different
onsets and different mother cells, even from different experiments (see 3.4).

4.4.1 Correlation with PU.1 and onset

As known from the literature high PU.1 expressions lead to GMP commit-
ment and thus FCγ onset [23, 47]. This can also be observed in our data:
Figure 4.13 A shows all measured intensities of FCγ positive and FCγ neg-
ative cells. As expected, cells with an active GMP marker have a higher
expression of PU.1.

When does the FCγ switch on in our cells? In Figure 4.13 B the fre-
quency distribution over the generations in which an onset of FCγ is observed
showing that even early generations commit to the GMP lineage. Figure
4.13 C shows the onset with respect to the movie time, again showing that
even in the early time of the movie GMP commitment is noticeable. How-
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ever, there is no onset before 11 hours giving an indication of the timescale
needed from MPPs to complete GMP lineage commitment. The distribu-
tion over the whole movie shows no specific maximum. In later analyses,
only cells which activate FCγ at later timepoints should be examined since
the FACS MPP sorting might contain already committed cell populations.
Excluding the first GM committing cells assures that the we observe a whole
populations beginning with MPPs.

To check if the FCγ switches on in a specific cell phase we calculated
the relative onset by dividing a cell life time by the timepoint of the first
appearance of the marker. Figure 4.13 D shows that most cells tend to
activate FCγ in the later lifespan.

4.4.2 Protein memory

The next step is to include cell genealogies into this analysis in order to see
whether certain PU.1 levels are maintained over generations. Looking at the
first intensities after division over the whole tree can give a hint when the cell
fate decision was made. Cells which activate FCγ in a generation ≥ 3 are ex-
amined and the median of its first three intensities are compared to the first
three intensities of earlier generations. The difference of the FCγ activating
cell against its mother cell is referred as δ−1, to its grandmother δ−2 and
the difference against the grand-grandmother is δ−3, shown in Figure 4.14
A. The boxplot of δ−1 is close to zero, indicating that these two generations
have approximately the same PU.1 level at their first timepoints. The delta
of earlier generations increases slightly indicating that the former cells are
still MPPs and no lineage decision has been made. Looking at the median
net production rate instead of just the first intensities shows no significant
difference in the δ values (Figure 4.14 B).

Taking more than only single values for each generation into account and
plotting the whole single-cell lifetime of a FCγ activating cell along with
its mother cell leads to Figure 4.15 A. A selection of twenty time courses
is shown where the mother cell as well as the daughter cell is normalized
to the same lifetime of 1. Sigal et al [50] developed a method to check if a
certain protein shows a memory effect over more than one cell cycle meaning
that a high expression of the mother cell will lead to high expression in its
daughters and vice versa. The plots of Figure 4.15 A are used to create a
matrix containing ranks of absolute values of every single-cell time course
at each timepoint. The development of the ranks is given in Figure 4.15 B
where the colors indicate the initial rank of each time course ranging from
blue (lowest rank) to red (highest rank). One would expect that in the end
of the time courses the distribution of the colors is maintained if the cells
have a high memory effect. In our case the colors are mixed up even after
a short time interval and only few cells retain their ranks. To illustrate
this effect, the autocorrelation based on the ranking matrix is shown in
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Figure 4.13: (A) Comparison of measured PU.1 intensities of FCγ positive
and negative cells showing a higher PU.1 level for cells with active FCγ
marker. (B) The distribution of GMP lineage decision with respect to the
generation shows that even early cells commit to the lineage. (C) The dis-
tribution of FCγ activating cells with respect to the movie time can give an
indication for the timescales needed for a MPP committing towards GMP.
(D) The relative onset of all cells which commit to the GMP lineage, indi-
cating a rather late onset during the cell-cycle.
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Figure 4.14: (A) The δ is derived by taking the first measurements of cell
which activates FCγ and subtracting the first measurement of the mothercell
(-1). The difference to the grandmother is indicated by -2, the difference
to the grand-grandmother is indicated by -3. The difference increases over
generations indicating that an equal PU.1 level is only maintained over one
generation and that former cells have a lower PU.1 level. (B) Here, the δ is
derived by taking the median net production rate instead of only the first
measurements leading to the same results.

Figure 4.15 D. The sharp drop indicates that the initial ranks are rapidly
lost. Calculating the autocorrelation on the real intensity values shows an
appearing correlation for τ = 1 as the values reach approximately the same
amount after one cell cycle (Figure 4.15 C). The ranking of the full set of
102 cells does not show any difference (data not shown) which confirms that
cells exhibits a very short memory with respect to PU.1 expression.

4.4.3 Shifted time courses

Since we assume that a specific expression profile of PU.1 leads to GMP
commitment we investigate FCγ activating time courses in more detail. But
the different onsets of FCγ in the cell-cycle (Figure 4.13 D) make it difficult
to compare the expression time courses of GMP committing cells.

Therefore, we present an attempt where cell time courses which activate
FCγ are shifted in time in order to set the activation event at time zero.
Additionally, we take all mother cells in front of the FCγ positive cells (Fig-
ure 4.16 A). In this graph some mother cells are plotted twice but shifted
differently because both daughters switch the surface marker on but at dif-
ferent timepoints. Taking the first derivative and averaging over the cells
the mean along with its standard deviation can be plotted (Figure 4.17 A).

This plot shows that there is a higher PU.1 production about 10 hours
in front of the FCγ onset. Due to the differently shifted time courses this
should not be an effect of the cell-cycle. The first and the last timepoints
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Figure 4.15: (A) Several single-cell time courses over two generations are
taken and each cell is normalized to the same length of 1. They are colored
by their first intensity values ranging from blue (low) to red (high). (B)
The time courses are ranked at each timepoint and the colors by the initial
rank from blue to red as in (A). The color scheme should be obtained if
PU.1 has a protein memory over generations but mixes up in our case.
(C) The autocorrelation function of absolute intensities showing a peak at
τ = 1 since similar intensities are maintained after one cell cycle. (D) The
autocorrelation of the ranking matrix indicating no correlation of the ranks.
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Figure 4.16: Cells of different trees each with a different onset of the FCγ
marker which is shifted to zero. The time courses after the FCγ activation
are indicated by bold lines. For every cell its mother time course is shown
right before it. (A) The time courses are shown in absolute timescale. (B)
The cells are normalized to the same cell lifetime of length 1.

have no meaning since there are only few measurements. But creating the
same plot with an FCγ negative set and a randomly chosen shift shows a
similar development. There are only a few FCγ positive cells which could
be used in this method resulting in huge errorbars. More tracked cells are
needed to investigate if a significant expression profile can describe a GMP
lineage decision.

A different idea is that the visible PU.1 differentiation decision initiation
cannot be measured in absolute time but in cell cycles. We assume that
normalizing the cells to the same length, a peak would be visible if this is
the case. Figure 4.16 B shows the same cells of Figure 4.16 A but normalized
to the length 1. Again all cells are shifted such that the onset is on timepoint
zero. All mother cells are added in front of every cell again normalized to
the same length. Looking at the average of the first derivative neither shows
any significant expression pattern (data not shown).

Conclusion

Combining the results of this section, we can affirm that a higher PU.1 level
can be observed in GMP committed cells as well as right before the onset of
the FCγ marker. A significant lineage decision in the PU.1 expression profile
could not be observed so far and needs further investigations. An approx-
imate timescale can be estimated of taking about 10 hours from observing
a lineage decision in MPPs until finished cell commitment to GMPs. This
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Figure 4.17: (A) The values of Figure 4.16 A are taken and the average
net production rate with its standard deviation is shown. (B) A set of FCγ
negative cells is processed by the same method. The huge errorbars and
the same shape of the two plots indicate that there is no significant PU.1
expression pattern which would conclude a GMP commitment.

leads to the assumption that the decision has to be made in the mothercell
of a GMP.

4.5 Further tree analysis

4.5.1 Division statistics

Assuming that that every PU.1 protein in a cell has the same chance to
end up in either of the two daughter cells. Therefore this process can be
described by a binomial distribution but instead of having the real protein
amount we can only observe an arbitrary intensity value. The binomial
distribution can be estimated by a normal distribution for large n which is
applicable for our data since there should be more than n > 100 proteins in
a cell [27, 39].

The histogram Figure 4.18 A shows the distribution of the offspring
percentage according to the intensity of the respective mother cell. A test
against a normal distribution can be illustrated in a Q-Q-Plot (Figure 4.18
B). This method divides two distribution into quantiles and plots the values
per quantile of each distributed against each other leading to a bisecting
line for two equal distributions. Our plot shows some deviations at the
ends of the line due to few outliers at the edges of the histogram. But
overall, the bisecting line is reproducible. Another test to validate that our
data behaves like a normal distribution is derived by calculating the 95%
confidence intervals by a maximum likelihood estimator. This results in
significantly small intervals for the mean illustrated in Figure 4.18 A by red
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Figure 4.18: (A) Distribution of relative intensity of a daughter cell after
cell division. The red bar indicate an maximum likelihood estimation of
the mean. (B) A quantile-quantile plot of the percentage of a daughter cell
against a normal distribution. Both plots indicate that MPPs and their
offspring divide symmetrically.

lines. The maximum likelihood estimator also gives confidence intervals of
the standard deviation which is also very small

By combining these results we can infer that the distribution of the rela-
tive mothercell intensity is normal distributed with a mean of 0.5. Therefore
we conclude that MPPs and their progeny divide symmetrically.

4.5.2 Estimation of protein amount

In the work of Rosenfeld et al. [45], a method for the estimation of absolute
protein amounts from the distribution of cell divisions was proposed. As
shown above, cells divide symmetrically and thus every daughter cell has
approximately half of the intensity of its mother. Ideally, the difference of
both daughters will be close to zero. Assuming now that the proteins will
be distributed based on a stochastic process and every protein has the same
probability of p = 0.5 to end up in either of the daughter cells, then the
daughter cell proteins follow a binomial distribution.

Since we assume linearity between the fluorescence signal S and the real
protein amount N ,

S = N · c (4.6)

with a constant factor c. The protein amount in the mothercell Ntot is given
by:

Ntot = N1 +N2
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where N1,2 represent the daughter cell protein numbers. The expectation
value and the variance of a daughter cell following from the binomial distri-
bution are [56]:

E(N1) = N̄1 = Ntot · p =
Ntot

2

σ2 = Ntot · p · q =
Ntot

4
(4.7)

Furthermore:

σ2 =
〈
(N̄1 −N1)2

〉
=

〈(
Ntot

2
−N1

)2
〉

=

〈(
N1 +N2

2
−N1

)2
〉

=

〈(
N2 −N1

2

)2
〉

(4.8)

Combining equations (4.7) and (4.8) leads to〈
(N2 −N1)2

〉
= Ntot

Adding equation (4.6) :

c2 ·
〈
(N2 −N1)2

〉
= c2 ·Ntot〈

(S2 − S1)2
〉

= c · Stot (4.9)

This gives us the opportunity to estimate the fluorescence intensity factor
c by fitting the total intensities of the mother cell against the difference of
the two daughter cells in order to conclude the protein amount.

The last timepoint of every mother and the first timepoints of both
daughters is taken resulting in Figure 4.19 A, showing the difference of both
daughters on the y-axis and their corresponding mother intensity on the x-
axis. A linear function through the origin is fitted into the data cloud. The
resulting gradient denotes the fluorescence factor c which is used to calculate
the protein amount of the intensity of the mother by equation 4.10. The
resulting distribution is shown in the histogram in Figure 4.19 B ending up
with an estimation of approximately 214 proteins.

Intuitively this number sounds rather small because the transcription
factor PU.1 is assumed to play a major role in the myeloid lineage decision
and one would suggest a greater number to fulfill all of its functions.

The absolute amount of protein is essential for a general interest and
certifies stochastic modeling which can be applied if the protein amount is
that low.
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Figure 4.19: (A) Fitting a line through the intensity of mother against
the squared difference of its daughter intensities leading to the fluorescence
factor c. (B) The resulting histogram shows the calculated protein amount
in each mother cell with a mean of about 214 proteins.

4.5.3 Tree visualization

Since the representations of single-cell time courses of a whole genealogy
introduced so far will rapidly become confusing with higher tree depth, we
introduce an innovative perspective of a cellular tree (compare Figure 2.2
and 4.20). On the y-axis, the real time in hours is plotted. It shows the
mothercell with all their children and grandchildren as already shown in
Figure 2.2. In this view the thickness of the life lines and the color of it
can be used to represent more information. In the example shown in Figure
4.20 A, the same information is plotted twice. The thickness as well as
the color represent the absolute measured intensity of the cell and illustrate
in an intuitive way that there are two distinct sections of the tree. The
left part shows less PU.1 intensity whereas the right part indicates high
PU.1 levels, and finally the whole progeny switches to FCγ positive cells
indicated by black bars. Interestingly, one cell on the left part also switches
to GMP lineage but only a small increase in PU.1 level can be observed. It is
also possible to allocate the two dimensions with other methods we already
introduced previously. Figure 4.20 B shows the absolute intensity in x-axis
whereas the color scheme is based on the first derivative highlighting a higher
PU.1 production in cell 8 which could explain the final GMP commitment.
It takes further investigation if the cell had some contact with other GMP
cells which could lead to this commitment. But cell-cell contact could not
be explored in this thesis. Furthermore cell 19 shows also a higher PU.1
production but further tracking would be necessary to confirm final GMP
commitment.
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A

B

Figure 4.20: Cell tree over time (y-axis) with two additional features. (A)
The information of absolute intensity is plotted twice. The thickness as well
as the color represents the measured PU.1 level. (B) The color scheme is
coded by the production rate and the absolute PU.1 values are on the x-axis
providing a better visualization. The black bars indicate an onset of the
FCγ surface marker.
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Chapter 5

Summary and outlook

Single-cell analysis of time-lapse microscopy is a increasing popular field
which provides novel insights of hematopoietic differentiation by delivering
accurate expression profiles on a single-cell level. One has to deal with many
issues when using fluorescent images, such as background signal or uneven
illumination. Wrong or incomplete correction methods can corrupt protein
measurements and expression analysis. We developed a fast and effective
method to correct for all theses issues and compared it to methods devel-
oped by other research groups leading to almost identical expression mea-
surements. However, our method has the advantage of being more robust
against outliers such as contaminations and is tailored to the experiment
settings. The accurate examination of the experiment data and our close
collaboration with the Institute of Stem Cell Research led to several impor-
tant improvements of the experimental setup and normalization methods.

After normalizing the fluorescence signal, two approaches have been ap-
plied. In a large-scale approach we detected all cells in a whole experiment
by a fully automatic detection pipeline providing the opportunity to investi-
gate population wide expression profiles on a single-cell level. The complex
process of detecting cells on fluorescence images has been implemented into
a custom software toolbox. This software allows to perform the second, a
small-scale approach by additionally including tracking data of single-cells.
With this information it is possible to analyze individual single-cell expres-
sion profiles of YFP tagged PU.1 proteins over time and over a whole progeny
of cells. A powerful detection algorithm is necessary in order to achieve ac-
curate cell intensity measurements. Our tool highlights potential errors of
the automatic cell detection process and provides easy and intuitive ways
to correct these failures by manual inspection. It is applicable to other data
and has been used in other projects. For example, imaging experiments of
nanog labeled embryonic stem cells can be measured, although they build
up colonies, by detecting them on a different fluorescently tagged membrane
protein.

63



64 CHAPTER 5. SUMMARY AND OUTLOOK

Computational
analysis

Percentage of mothercell

F
re
q
u
e
n
cy

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

Experimental
methods

1

2 3

4 5
6 7

MPP

MEP GMP

Figure 5.1: The close collaboration of the Institute of Stem Cell Research
with our group led to important experimental and methodical improvements
in order to obtain most accurate single-cell expression profiles. The results of
this work as well as the further collaboration provide promising new insights
into the myeloid differentiation process.

After correcting for extrinsic noise (like background signal, lamp flick-
ering, etc.) it is important to estimate the remaining noise in the data, es-
pecially when investigating biological mechanisms on a molecular level. We
showed that after our correction procedure and manual curation of single-cell
data only a small variance can be assigned to the measurement techniques.

We developed a new method to analyze single-cell time courses by nor-
malizing the measured intensity by an estimated cell volume which results
in the relative PU.1 concentration in each cell. In order to represent time
courses of a whole cell with its progeny we created a new tree visualiza-
tion. This illustration is used to display the information of cell annotations
along with expression signal and expression development in a single figure
providing intuitive understandings of processes during cell differentiation.

Additional annotations describing the status of cell-specific surface mark-
ers which indicate finished cell commitment allow to investigate lineage spe-
cific commitment decisions in PU.1 expression signals. It is known that high
levels of PU.1 indicate granulocyte/macrophage (GM) lineage commitment
[16]. A first confirmation could be given by basic analysis methods which
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showed that cells with active FCγ marker representing GM lineage have
high PU.1 levels. We discussed that multipotent progenitor cells (MPPs)
can commit to the GM lineage after about eleven hours and activate the
FCγ marker even in the first generations. The distribution of FCγ activa-
tion in the relative cell lifetime showed that MPPs tend to activate FCγ in
the late cell-cycle.

At last we showed that MPPs and their offspring divide symmetrically.
Taking the relative intensity of every daughter with respect to the intensity
of their mother a histogram with mean 0.5 was obtained. Based on this
result a statistical method could be applied and the number of proteins in
each cell could be estimated. An unexpectedly small number of only 100 -
500 proteins in each cell turned out which will be experimentally validated in
the near future. Small protein abundances suggest the usage of stochastic
modeling and could explain the fluctuations which are observable in the
single-cell time courses. Another experiment is planned where a higher time
resolution of fluorescence images could lead to new insights of the single-cell
variances.

The vast amount of data which is produced by every imaging experi-
ment cannot entirely be inspected by eye. Therefore it is of great interest
to automatize the data preparation. There are many automated tracking
approaches which would give the opportunity to enrich the data we get from
an experiment so far. Ideally this would lead to an accurate tracking of cells
on brightfield images which have a higher time resolution than fluorescent
images. First attempts showed that this goal is not trivial and needs further
investigation since the detection of cells on brightfield images essentially dif-
fers from fluorescence images. The analysis of PU.1 expression, especially
before an FCγ activation, would strongly benefit from more time courses
and could lead to more significant results. A fully tracked experiment would
allow to automatically investigate cell-cell contact which could clarify if such
interactions have an impact on the myeloid differentiation. Analyses could
show if lineage decisions can be transferred by cell-cell signaling and if this
signal forces both cells to commit to the same or to different lineages.

Several new experiments are planned based on the results we outlined in
this study which can give evidences for the assumptions we made. Having
a functional MEP marker and therefore having sure evidence for the both
major differentiation cell types of MPPs the single-cell analysis could be
extended showing more distinct PU.1 expression profiles. A new transgenic
mouse with a fluorescently tagged GATA-1 transcription factor, which is the
main competitor of PU.1 in common myeloid progenitors, is explored. If this
mouse is healthy and a crossbreeding together with the PU.1 mouse will be
successful new opportunities to investigate the myeloid cell differentiation
would arise. Single-cell time courses of the two major transcription proteins
expressed in the same cell could give new insights into the mechanisms of
lineage decision of myeloid progenitor cells. The readout of another tran-
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scription factor would also allow to test current mathematical models which
describe the PU.1-GATA-1 switch. Having real time courses also allows to
establish own models and to fit these to the data which hopefully describes
the myeloid lineage decision in a more accurate way.

The results of this work promise new insights into the fundamental pro-
cesses of blood cell differentiation and, ultimately, lead to new clinical ap-
plications in order to improve treatment of severe hematopoietic diseases.
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