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TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

Since the development of new, high resolution microscopes enables capturing of single
cells, this method provides an important approach to investigate biological properties of
cells. Certain regions and molecules of a cell can be captured, using fluorophores, which
are attached to the cells surface or interior molecules by antibodies. Genetic modification
of certain regions of the DNA of cells of interest enables real-time image capturing in
certain time intervals, that reflects expression of certain genes in those cells. Therefore,
either the target protein can be fused with the fluorescence protein or the fluorescence
protein gets co-expressed without linkage. The certain images of a time-lapse experiment
can be concluded to a movie and provide time resolved data for further analysis. Fluores-
cence intensities of the certain cells can be quantified and further be regarded as relative
protein amounts. Using the measured intensities, derived amounts of different proteins,
and their correlations, regulatory networks may be inferred. This is applied for example
in investigation of embryonic stem cells (ESCs). ESCs are pluripotent, self-renewal, can
be cultured in-vitro over a long period of time, and can artificially be stimulated to un-
dergo differentiation. By understanding the biological backgrounds of ESC pluripotency
and differentiation, these cells promise to be used even better for drug development and
investigation of widespread diseases like diabetes and cancer.

In scope of this work, we developed a tool for automatic single cell quantification in mi-
croscopy images (SCQMI ), which can also be applied on time-lapse movies of fluorescence
images. To be usable by everyone, it provides an intuitive graphical user interface. A lot
of use cases can be covered by SCQMI, as the generic workflow, which is processed prior
to the quantification, can be easily defined by users themselves. Furthermore, SCQMI is
capable to handle very big datasets up to whole imaging experiment’s data, spanning over
multiple dimensions, like fields of view, timepoints, wavelength and focal planes. A wor-
flow, once generated, can be automatically performed on a lot of selected images of the
experiment. After development, SCQMI was successfully applied on two experiments,
revealing new insights in the mechanisms of ESC pluripotency. Transcription factors,
thought to be hubs of the pluripotency associated regulatory network were simultane-
ously imaged during these experiments. A workflow, including background correction,
segmentation, and quantification, was created and performed on the images. The re-
sulting large-scale datasets were analysed and compared against findings in literature.
Last but not least, we present some findings, not yet described in literature, and propose
certain further investigations.
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Zusammenfassung

Seit die Entwicklung neuer, hoch auflösender Mikroskope die Aufnahme von einzelnen
Zellen ermöglicht, bietet diese Methode eine wichtige Herangehensweise zur Untersuchung
der biologischen Eigenschaften von Zellen. Durch fluoreszierende Farbstoffe, die mittels
Antikörpern auf die Zelloberflächen oder sogar in die Zellen gebracht werden, können
bestimmte Bereiche und Moleküle der Zellen gezielt erfasst werden. Die gentechnische
Veränderung bestimmter exprimierender Bereiche der DNS von zu untersuchenden Zellen,
ermöglicht eine durchgehende Bildgebung in Intervallen, die die Expression bestimmter
Gene in einzelnen Zellen widerspiegelt. Dies kann sowohl durch Fusionierung des Zielpro-
teins mit dem Fluoreszenzprotein, oder aber durch eine Koexpression des Fluoreszenz-
markers zusammen mit dem Zielprotein erfolgen. Die einzelnen Bilder des Experiments
können zu Zeitraffer-Filmen zusammengefasst werden und bieten somit zeitaufgelöste Ex-
pressionsdaten zur weiteren Analyse. Die Intensitäten der Fluoreszenz einzelner Zellen
können quantifiziert und im Weiteren als relative Proteinmengen betrachtet werden. Mit-
tels der gemessenen Intensitäten verschiedener Proteine und deren Korrelationen können
regulatorische Netzwerke abgeleitet werden. Dies findet unter anderem Anwendung bei
der Untersuchung von Embryonalen Stammzellen (ESZs). ESZs sind pluripotent, selb-
sterneuernd, können über einen sehr langen Zeitraum in-vitro kultiviert werden und jed-
erzeit künstlich zur Differenzierung angeregt werden. Durch das Verständnis der Funk-
tionsweise von ESZs erhofft man sich, diese Zellen noch besser für die Entwicklung von
Medikamenten und die Erforschung von Krankheiten wie Diabetes und Krebs verwenden
zu können.

Im Rahmen dieser Arbeit haben wir SCQMI (single cell quantification in microscopy im-
ages), eine Software für die automatische Quantifizierung von einzelnen Zellen in Mikroskopie-
Bildern, entwickelt. Das Programm bietet eine intuitive graphische Benutzeroberfläche
und kann mit sehr umfangreichen Datenmengen umgehen, bis zu Bilddaten von ganzen
Experimenten, die sich über viele Dimensionen, wie Sichtfelder, Zeitpunkte, Wellenlängen
und Fokusebenen, erstrecken. Viele Anwendungsfälle werden von dem Programm abgedeckt,
da der generische Workflow, der vor der Quantifizierung ausgeführt wird, leicht selbst
durch den Nutzer erstellt werden kann. Ein einmal erstellter Workflow kann anschliessend
automatisch auf vielen ausgewählten Bildern eines Experimentes angewendet werden.

Im Anschluss an die Entwicklung wurde dieses Programm erfolgreich auf zwei Exper-
imenten angwendet und eröffnete neue Einblicke in die Mechanismen der Pluripotenz
von ESZs. Dabei wurden die Proteinmengen der Transkriptionsfaktoren, die als wichtige
Knoten des regulatorischen Netzwerkes angesehen werden, gleichzeitig gemessen. Dazu
wurde ein Workflow, bestehend aus Hintergrundkorrektur, Segmentierung und Quan-
tifizierung erstellt und auf den Bildern angewendet. Der daraus resultierende Datensatz,
bestehend aus Messwerten der einzelnen Zellen, wurde analysiert und mit Erkenntnis-
sen aus der Literatur verglichen. Letztlich präsentieren wir einige neue Erkenntnisse und
schlagen Experimente vor, um diese Ergebnisse weiter zu untersuchen.
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1 Introduction

1.1 Motivation

Embryonic stem cells (ESCs) are pluripotent and self renewal [4] and can be kept in this
state even in-vitro over a longer time [33]. Therefore they are in focus of science, since
they can be cultured. As these cells can undergo multi-lineage differentiation [26] there
is great interest in controlling the differentiation of these ESCs, to create specifically dif-
ferentiated cells for drug development and cell replacement based therapies. During the
certain investigations of ESCs, unusual proliferation properties were detected. Although
ESCs remain ESCs and do not undergo differentiation, they show strong gene expression
heterogeneities [2, 32, 17, 6, 13]. These gene expression heterogeneities can not be inves-
tigated with population wise methods, but only with approaches, that regard single cells
or specific colonies. Several approaches were developed, to investigate the gene expression
behaviour of ESCs, as well as the regulation by transcription factors.

Protein regulations are often derived from gene regulatory networks, as every gene codes
for a certain protein and can be regulated by other proteins [30]. The methods to reveal
gene regulations and therefore possible protein regulations, like ChIP-chip approaches [62]
or synthetic genetic array analyses [24] are expensive and do not provide absolutely reliable
data, as the protein-gene interactions for example of the gene regulatory network has to
be interpreted, eventually considering other data sources, like physical protein-protein
interaction data. As the derivations are therefore not completely reliable, the fluorescence
imaging approach provides a good alternative. The fluorescent imaging approach, indeed,
cannot be taken into account as a high throughput method, if cells have to be imaged time
lapsed. For time lapse imaging, the proteins of interest, or their coding DNA, have to be
linked with a fluorescent marker. Then the cells can be cultivated, put on a medium, and
the time lapse movie made, by taking an image iteratively after some period of time. The
resulting data shows, in contrary to gene regulation data, real correlations between the
proteins, meaning if two proteins, which are correctly marked, correlate, they are either
both up- or down-regulated. This up- or down-regulation can directly be quantified, by
measuring the cell’s intensities in the taken pictures. Another advantage of fluorescence
imaging is, that it uses single cell informations instead of population means. Therefore,
correlations between certain proteins can be quantified for every cell, offering an additional
information content, that can be used for further analysis and interpretation. Also, the
previously named expression heterogeneities can only be observed between single cells or
colonies, not between whole populations, which is why the imaging approach has to be
favoured.

The non-high-throughput character of time lapse fluorescence imaging means, that the
scientists have to try to detect hints for correlations between proteins in literature or by
other (high-throughput) experiments first. Also, after the first analysis of fluorescence
imaging experiments, it is required to decide what experiment to perform next, taking
the results of the previous into account. With the tool, arising from this work, or its
future versions, we provide the scientists a possibility to efficiently perform a lot of image
processing steps, which will produce numeric data ready for analysis and help to decide
what experiments to perform next. This will facilitate and speed up the so called system
biology loop. Additionally, many more image data can be quantified, using SCQMI, than
manually, due to the tool’s automatic mode, which also produces highly reliable data (as
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described in Section 3).

With the data and insights gained from single cell fluorescence imaging and other methods,
one attempts to understand and explain the connection between the observed proteins
and therefore the respective biological system. Investigations of pluripotency factors in
embryonic stem cells, for example, hopefully reveal the underlying concepts of pluripo-
tency and differentiation. As cancer cells are pluripotent, those findings may be used
to develop new medical treatments, which specifically tackle pathological cells. Addi-
tionally the findings might help to differentiate the cells more targeted, providing a lot
of specific cells for further experiments, like drug development. Regarding diabetes and
cardiovascular diseases, also exemplary for widespread diseases, there is strong interest in
the quantification of specific exogenous factors, that influence the course of disease, like
stress, drugs or nutrition.

Of course, the developed tool has to perform all tasks, as correcting fluorescence imaging
errors, detecting cells, and quantifying the selected objects, correct, to provide reliable
results. In the following, all considerations and steps to achieve this, in scope of this
work, are shown. In particular, we first collect already existing tools in this field and
consider all required specifications in Section 1.3 and Section 1.4. Next, we present our
development efforts for the post-acquisition tool in Section 2. The data-structure and the
functionality for generating a workflow are explained in especial detail. The validation
and evaluation of parts of the resulting tool (see Section 3) proves, that they perform as
expected and supply useful data. The developed tool was then used on real experiments’
fluorescence time lapse movies of embryonic stem cells (see Section 4), trying to reveal new
insights in the correlations and functions of proteins, suspected to regulate self-renewal
and differentiation. At last, we give a brief conclusion and outlook of the field in Section 5,
regarding the use of fluorescence imaging, its associated computational methods and tools,
and the investigation of embryonic stem cell proliferation.

1.2 Bio-Imaging

Since the first microscopy images were captured in 1891 [54], a lot of improvements were
achieved in this field. Nowadays, time lapse microscopy movies can be automatically
taken in different wavelengths and different fields of view of a sample. But still there
remain some major limitations (see Figure 1, [12]).

Depending on the technique of the microscope, light emits from under or above the sam-
ple, which is fixed on a light permeable medium, passes through the sample, getting more
absorbed the thicker a specific region is, and reaches a detector, like a camera chip af-
ter it got magnified by several lenses. If normal spectral light is used, this technique is
called bright-field imaging. Another method is to shine light onto the sample and capture
the reflections or fluorescence of the sample. Light of specific wavelengths and special
fluorescence markers are often used to visualise the sample, hence this method is called
fluorescence microscopy. In the case of single cell microscopic imaging, adequate mag-
nification is always needed, as the cells only measure about 10 µm. As cameras with a
resolution high enough to capture the whole medium with one image do not exist, the
whole area has to be divided into multiple fields of view, called positions, and captured
one after the other. This is normally done automatically by a robot, which moves the
medium below the optics. To also take account of the cell’s behaviour during time, so
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Figure 1: For image acquisition of fluorescence or bright-field images, microscopes, like visu-
alised here, are used. Light emits from a light-source, like a normal halogen or LED lamp, or a
special fluorescence lamp. To get illumination right, a shutter regulates the time, the sample is
exposed to the light. The medium, the sample is applied on, is fixed on the so called stage. For
multiple fields of view, the stage can automatically be shifted between light emitter and optics in
three axis. The optics part of the microscope contains some lenses, which magnify the field of
view and provide certain filter capabilities. Last but not least the light gets captured by a camera
(image adapted from Coutu and Schroeder [12]). All these parts have limitations, that can partly
be countered. One major improvement of the last time was, for example, the use of LED back-
lights for microscopy. As LEDs do not produce as much heat as other light sources, the sample
is not that influenced as much during the imaging. Another advantage is, that light emitted by
LEDs is brighter and more even, what directly improves object detection in the post-acquisition
step.
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called time lapse movies are taken from the samples, by capturing an image continuously
after a certain period, which is called time point.

Altogether, it is a field on its own, just to take images even of already prepared cells
[36], as there are some major drawbacks in this imaging approach. For example, exposure
of living cells to light of specific wavelengths damages the cells and influences further
measurements. Heat, produced by the light emitters and the robot, which moves the
sample table is another problem, as it also influences cell growth and, in worst case,
leads to cell death. Some cellular markers cannot be linked efficiently with a fluorescent
chemical or protein [20], as the linkage means either a bias of the marker’s biological
behaviour, what makes measurements of living cells unusable, or -worse- cell death. So
one has to visualise them by so called immuno-fluorescence staining. Therefore, the cells
have to be fixed on the medium and the markers of interest are stained by antibody-
fluorescence complexes. The step of fixating the cells on the medium during a time lapse
movie is impossible, as the fixation is irreversible and the cells no longer viable after the
procedure.

Although all these drawbacks have to be taken into account, single cell imaging is a widely
used method [31, 14], as it promises direct looks on living cell data and, using fluorescence
microscopy, into their molecular behaviour. As there are only few direct competitors to the
classic quantitative fluorescence imaging in the area of small molecule measuring of living
cells, new approaches, using fluorescence imaging, are developed permanently [22, 10, 25].
Some derivatives of the classic fluorescence imaging, like multi photon flow cytometry
[57] and quantum dots [55] also achieve good imaging and quantification results, but are
much more complex and expensive. As with the growing field of automatic fluorescence
imaging, also the claims for fitting post-acquisition methods are expanding, we want to
meet these needs with the methods and tools developed in scope of this work.

1.3 Overview of Existing Tools

As single cell imaging approaches produce huge amounts of biological data, there is an
increasing demand for computational tools, which are able to process that data. Exem-
plary, time lapse movies, containing several wavelengths and multiple positions, allocate
memory from about 50 GB up to 1 TB on hard drive. Although, one can find a myriad of
publicly available image processing tools, like Marvin [1], medipy [53], the Phyton Mor-
phology Toolbox [40], and many more, those are individually hardly useful, because they
are mostly written to match one or few specific use cases and file formats. As the use
cases, as well as the needed results and measurements, are highly variable, an integration
of all functions in one tool would make the software way to complex to be developed or
even used. Still, there are some approaches to collect useful functions and relevant pre-
and post-processing steps, like data conversion in tools and to provide those functions to
users by more or less simple graphical user interfaces. Some of the tools, which are widely
used, are collected and described in the following.

Cell-Profiler [5] Cell-Profiler has a nice graphical user interface, which enables the
user to simply assemble an image processing pipeline. All typical steps of image
processing are predefined in Cell-Profiler, as well as further special functions, which
are offered by a huge active community. Any image processing pipeline, once defined
in Cell-Profiler, can be used on a large-scale dataset. Therefore, Cell-Profiler pro-
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vides grid interfaces and associated monitoring capabilities. Functions, which are
not provided in Cell-Profiler can be added by developing them in Python. C and
Java code can also be integrated by usage of native libraries. Cell-Profiler and all
of its additions are distributed under GNU General Public License and so available
for free.

ImageJ/Fiji [45] Fiji is just ImageJ, which is expanded by some basic functions and
a bunch of community provided plugins, which are validated by supervisors. Im-
ageJ/Fiji itself is basically an open source image manipulation program like GIMP.
Users can load images with the graphical user interface and perform various ac-
tions on this data. Developers can extend ImageJ/Fiji by implementing a plugin
in Java, the software’s development language. To assemble functions to a complete
processing pipeline, one can use a build-in macro recorder. This recorder captures
every action a user performs on the active image and lists them in an editor. Im-
ageJ/Fiji also provides a headless mode, which can be used to process images with
a predefined macro.

MATLAB - Image Processing Toolbox [35] MathWorks’ MATLAB is a technical
programming language and provides an Image Processing Toolbox. All important
functionalities, like data handling, conversions, segmentations, and lot of others are
provided. Thanks to the expensive graphical user interface for development and
its capabilities, like syntax high-lighting and code completion, even rather inexpe-
rienced users can quickly create a pipeline which achieves all requirements. A pure
graphical user interface to somehow assemble a workflow with some mouse clicks is
not provided, but can be built by oneself with MATLAB ’s tools. Extensions can
also be developed easily, asMATLAB provides raw data access as well as lot of basic
functionalities, which can be assembled and packed to new tools. MATLAB can be
used on all platforms and the platform independent code can be interchanged be-
tween them easily. One big drawback is however, that the functions perform rather
slow. Although students can mostly use it for free, a normal user has to buy an
expensive license to use it.

OpenCV [3] The Open Source Computer Vision library was created to speed up a lot of
computer vision applications and machine learning software. As it is a library and
therefore supporting developers with implementations of a lot of basic functions, it
does not provide a graphical user interface on its own. The library can be used in
C, C++, Java and Phyton. Especially in system-near programming languages, like
C and C++, its functions are high performance. It is free for both academic and
commercial use, as it is released under a BSD license.

Every tool has its special purpose, it was developed for, and therefore its own advantages
and disadvantages. As no tool fits completely our expectations (see Section 1.4), we
decided to develop a new one on our own. Therefore, we wanted to use one of the
presented tools as framework, or to integrate the functions into. In the following we
present and explain the specifications, we collected first, to spend our development effort
in the right direction and to keep effort minimal.
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1.4 Tool-Specifications

Although there exist some tools providing important functionalities of data analysis of
microscopy images and especially single cell quantifications, like background correction,
segmentation, and tracking, still the single steps mostly had to be connected manually.
This time consuming procedure was simplified in one single tool (SCQMI - single cell
quantification in microscopy images). Therefore, firstly the specifications and use cases
were collected and discussed in collaboration with scientist, who create, measure and
process microscopy image data from biological experiments and will use SCQMI on daily
basis.

Graphical User Interface As the future users have somehow low affinity to command
line or complex programs, SCQMI had to provide an easy to use interface which
allows to efficiently perform all desired tasks. Additionally, all functions had to be
explained in tool tips in the graphical user interface, that pop up on mouse-over.

Framework Integration SCQMI had to be included in an existing framework, already
providing basic functions of the analysis workflow, to keep programming effort in
limit. Framework integration also had to guarantee the user the possibility to de-
velop his own workflow by integrating own functions into a fix frame of image analy-
sis, containing background calculation, correction, segmentation and quantification.
These additional functions had to be provided by the framework, as otherwise the
developing effort would have exceeded the scope of this work.

Platform Independency To ensure access as easy as possible to every potential user,
SCQMI was thought to be platform independent or at least usable on all major
platforms. Therefore it had to be developed in a platform independent language
and all included tools had to be usable on all platforms, too.

Workflow Creation and Application The functionalities, the framework provides, and
those we added, have to be assembled to a workflow, which can simply be performed
on one or more images. All type conversions, in- and output and other compatibility
issues have to be handled by SCQMI. The workflow has to run either automatically
over all selected images of a dataset, or semi-automatically, meaning, that the work-
flow requires input, for example parameters, or manual refinishing for some crucial
steps.

Scalability SCQMI needed to be highly scalable, as it had to be able to process mi-
croscopy image data from single images to whole experiment image stacks, con-
taining several positions, time points, focuses, and wavelengths. On the one hand
SCQMI had to be scalable in the mean of data storage, as the experiments, it had
to process are very big and therefore had to be managed appropriate. On the other
hand, the workflows have to be processed in an acceptable time, which means, that
SCQMI had to provide a workflow execution in parallel on different data.

Open Source To ensure preferably wide acceptance, the framework and all used parts
had to be licensed under the principles of open source and further distributed as
such themselves.

Regarding these specifications, OpenCV obviously lacks any user interface or even a
serious possibility to create one, as a developer has either to use the Qt framework or
create all components on his own. Another disadvantage of OpenCV is, that it was
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thought to be used as a C or C++ library, indeed provides interfaces for some other
programming languages, as Java, but needs a platform specific compilation to be used
properly.

MATLAB also does not provide a graphical user interface for users, but an very sophis-
ticated one for developers. Additionally it is not really fast, as it was developed as a
technical high level programming language. Another disadvantage is, that MATLAB in-
deed provides a lot of functionalities, but, due to the lacking frontend, no possibility to
simply generate a pipeline with them.

Cell-Profiler, indeed, meets nearly all specifications, but has one major drawback, sus-
pending itself from the list of possibilities: a workflow, once generated can not be changed
or adapted for single images. As the single cell imaging data is not only very large, but
also very diverse between different wavelengths, positions, or time points, we had to meet
this diversity by providing the user a semi-automatic mode for bulk execution. As Cell-
Profiler does not even offer a possibility to implement this feature, we decided to use
ImageJ/Fiji as framework.

As ImageJ/Fiji was developed in Java, it is platform independent and all parts of this
framework are licensed under the principles of open source. It also comes with a graphical
user interface, providing easy-to-use access to most of its functions. ImageJ/Fiji indeed
is scalable up to five dimensions and also capable to efficiently process these data, but
as five dimensions are not enough to cover all experiment’s data, we decided to design
an data-structure on our own(see Section 2.2). The image processing framework already
comes with a possibility to create workflows and run them on images, but as this feature
is not intuitive enough to all users, we had to redesign it too (see Section 2.4).

As a tool for single cell quantifications was already prototyped in MATLAB (called
sQTFy) by scientists of the work group for Quantitative Single Cell Dynamics (QSCD) at
the Institute for Computational Biology (ICB) of the Helmholtz Zentrum München, the
main functionalities of SCQMI, were indicated by sQTFy. Especially the rough rack of
processes, like background calculation, correction, segmentation and quantification, was
adopted (see Section 2 for details). Also, the idea of an automatic or semi-automatic
bulk execution on several images was adopted. Last but not least we were able to avoid
problems, which occurred during development and application of sQTFy. For example
avoiding specific bugs, memory leaks and complicated parts of the graphical user interface
helped making SCQMI more stable and user friendly.
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2 Development

To match all of the specifications, defined in Section 1.4, we decided to integrate SC-
QMI (single cell quantification in microscopy images) into the ImageJ/Fiji framework.
As shown in Section 2.1, ImageJ/Fiji provides a lot of basic functions as well as a basic
graphical user interface and additionally, some more sophisticated functions, as com-
munity based plugins. The standard graphical user interface is shown in Figure 2. As
ImageJ/Fiji is just capable to work on image data, spanning maximum five dimensions, in-
cluding X- and Y-axis, we developed a data-structure on our own (see Section 2.2). To as-
semble an image processing pipeline, a workflow recorder was developed (see Section 2.4).
As background calculation, correction, segmentation, and finally quantification are per-
formed most commonly in single cell quantification approaches, these steps were fix imple-
mented as a rack (see Figure 7), which can be extended by user defined processes during
runtime. As some of those steps were not yet included in ImageJ/Fiji, they had to be im-
plemented as ImageJ/Fiji plugins first. The single cell quantification tool was developed,
as postulated by the extreme programming methodology, which enables stepwise feedback
by potential users. Extreme programming defines an iterative development process with
alternating implementation and review processes. Thereby, errors can be corrected early
and specifications updated as needed. The major developed program parts, as well as the
underlying concepts are shown in the following sections.

2.1 ImageJ/Fiji

As ImageJ/Fiji provides a lot of useful functionalities in regard of image processing for
single cell quantification, we decided to use it as framework. A further advantage of Im-
ageJ/Fiji is, that it is widely used by scientific as well as non-scientific users. This means,
that ImageJ/Fiji has a broad community, which is able to provide plugins, updates, and
help in case of problems.

One of ImageJ/Fiji ’s basic functionalities is the data import and export as well as data
management during runtime. Besides single images, ImageJ/Fiji can handle so called
image stacks, which are for example time series, up to five dimensions including X-, Y- and
Z-axis. During import, SCQMI analyses what kind of pixel format to use (RGB-color,
8-bit, 16-bit or 32-bit) and converts easily between these types. Further, ImageJ/Fiji
provides picture wide inversions, basic maths, and simple drawings on the image. Also a
Gaussian filter, mean and median filter, and other user defined color filters are already
included. As the image data is always displayed after every change, all needed display
functionalities are implemented. An image can be magnified, displayed with overlays,
and brightness and contrast enhanced, by restricting the displayed intensities. Some
basic segmentations and associated functions are also predefined, for example a manual

Figure 2: The main graphical user interface of ImageJ/Fiji already provides some basic func-
tions, which can be applied on a currently active image.
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thresholding, automatic thresholding algorithms, watershedding, and Voronoi tessellation.
A very important tool is the selection manager and its associated particle analyser (see
Figure 11, (C) and (D)). The first collects selections in a list and features preview and
editing of these selections in the currently active image. The second allows to preset
a bunch of measurements, like size, position, intensity, and many more and to print the
measured selections as a list. Last but not least, ImageJ/Fiji comes with a lot of packaged
plugins, mostly providing more sophisticated approaches for the tasks named above.

To extend ImageJ/Fiji, one has to use its plugin structure. Therefore an interface, named
PlugIn, and the extending classes PlugInFrame, PlugInTool, and PlugInFilter are
provided. Every class contains some special characteristics, which are handed down to
further extending classes. PlugInFrame also extends AWT’s Window and EventListener

classes, providing ImageJ/Fiji window behaviour, controlled by ImageJ/Fiji itself. By
implementing a PlugInTool, a new graphically applicable tool can be defined, like a
selection tool or a pencil, whereas PlugInFilter changes image data of the whole image
or the active selection, and is for example used for the calculation of a mean value in
a specific region. For the development of SCQMI, we decided to implement the PlugIn

interface directly, as we needed a more sophisticated controller class, that did not directly
change an active image. This top level class named S QtFy, can be called directly, as
a standalone program, or indirectly from an already open ImageJ/Fiji instance via the
Plugin → Process menu. S QtFy handles the major parts of the software, which are data
import, data display and selection, and workflow generation.

To provide an useful graphical user interface, MigLayout [18] was used as layout man-
ager, to handle the swing components. MigLayout uses properties of the GridbagLayout
manager, extending this by elements, like row and column sizes and growth factors. The
open source layout manager is very easy to use and helps building complex graphical user
interfaces.

2.2 Data-Structure

As the existing possibilities to handle data in ImageJ/Fiji were not enough to handle the
huge amounts of data produced in microscopy imaging for single cell quantification, we
had to develop a data-structure and the associated functions ourselves. The specifications
of SCQMI and its data-structure were explained in Section 1.4. To meet these specifi-
cations, we developed a multi dimensional cube or hypercube, which can be dynamically
initiated in respect to the number of dimensions and their size. Therefore, a tree struc-
ture, based on recursive elements, as well as a top level operator node were developed. As
loading all images of a standard experiment to the random access memory would cause
every normal workstation to crash, the data-structure only holds the images virtually, as
their references to the location on the hard drive. To speed up image access, the data-
structure additionally implements a dynamic cache, always truncating the least recently
used images. The is dynamically sized in respect to the random access memory, currently
available at runtime. To instantiate this data-structure efficiently, with respect to its dy-
namic properties, we also developed a factory class, respecting the factory method design
pattern. This factory class provides easy and efficient creation of the data-structure in
various scenarios, for example single file import, folder- and subfolder import and TTT
experiment import (see Section 2.3). Timm’s Tracking Tool [41, 15, 37] is a single cell
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Figure 3: (i) The bulk image import dialogue provides the ability to select a folder (the so
called root path) and to preview all files and files in subfolders (A), which match one of a few
selected specific file extensions (B). After previewing and curating the files, they can be imported
into the data-structure, using the level of subfolders as dimensions.

tracking tool, widely used by scientists, for example of the Research Unit Stem Cell Re-
search of the Helmholtz Center Munich (SCD) and the Department of Biosystems Science
and Engineering of the ETH Zurich in Basel (D-BSSE).

2.3 Interface

During instantiation of S QtFy, directly after calling it, a value object, which implements
the singleton design pattern, called PassParameters gets constructed. The singleton
design pattern instructs, that the implementing class creates and holds a static instance
of itself, once it gets instantiated the first time. During all following calls, the class first
checks, whether it already had been instantiated and returns the existing instance. This
value object holds all important parameters, that have to be passed through all other
classes, for example the data-structure, user defined options and values, window sizes and
further frontend related values.

After initialisation of S QtFy, a data import dialogue, simply called Import, opens up,
requesting the user to select all images that have to be processed. Therefore the user has
3 possibilities: unsorted bulk import from folders (i), import of TTT experiments (ii),
and import of single images (iii).

Choosing the latter, one can select single files from hard drive, order them manually in any
way, and import them (Figure 5, (F)). The Import class will additionally calculate the
hierarchical lowest folder, which every selected path has in common. This path, further
called root path, is needed to configure references to further data locations, as well as
results later.

If a user selects a root path directly after choosing the folder bulk import (Figure 3,
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Figure 4: (ii) The import of TTT experiments allows definition of a root path (C), containing
the raw images, ordered as defined by TTT’s specifications. It provides a data preview window
(C), allowing to quickly scan the files, that will be imported. An exemplary path has to be defined
(D), containing some formatting expressions, which can be parsed by Java’s java.lang.String
class. The formatting expressions will be substituted by members of the numerical ranges, defined
below the path (E). On clicking ”Preview Selection”, the preview window (C) reloads, showing
all files which are captured by the given path and ranges. After curation, the files can be imported.

iii

F

Figure 5: (iii) Using the single image import dialogue, one can namely import a list of single
images, which are selected from hard drive, into one dimension of the data-structure. Before
importing the images, they can be curated and reordered in the preview window (F).
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(A)), he also has to select some file formats (Figure 3, (B)) and Import will screen all
subfolders for files of these formats, order them in a hierarchical depth first manner, and
import them.

The last import option is the import of TTT experiments (ii). TTT defines a specific
folder and file name structure, which can be parsed by Import. TTT ’s hierarchical
data-structure was used, as the specifications of SCQMI were elaborated together with
scientists from the ICB and D-BSSE. To parse this special folder and file name structure,
one has to select a root path for raw images and to define an exemplary path to one
image (Figure 4, (C) and (D)). To differ between several dimensions, representing for
example focuses, positions, time points and wavelengths, the path has to be manipulated
in a specific manner: the dimension identifiers have to be inserted into the path, using
java.lang.String’s formatting instructions, instead of the respective numbers of the
previously selected sample file. Numeric ranges, which define the number of imported
files, matching the replacement instructions above, have to be defined, too (Figure 4,
(E)). On demand, Import calculates all, to-be imported, files and displays their references
in the preview window (Figure 4, (C)). During the import transaction, all references are
checked for their validity and stored in an adequate data-structure (see Section 2.2).

Additionally, a standard dimension is added to the data-structure during the import
transaction of all import methods. This standard dimension represents and holds the
data of the five main steps of a single cell quantification pipeline: raw images, background
calculations, corrected images, segmentations, and the quantification results.

After importing all images, one wants to work with, S QtFy switches to a data visual-
isation window, called VirtualData, as depicted in Figure 6. Firstly, one can change
the standard locations (Figure 6, (A)) of background calculation, correction, segmen-
tation, and quantification results. These are predefined by TTT ’s standard file location
properties. As one might want to use previous results (for example corrections or segmen-
tations), which are associated with the raw data, these data have to be referenced first.
Therefore, immediately after instantiation of VirtualData, some threads (FillWorker)
are started via a thread controller (FillMonitor) in the process’ background, crawling
for already existing data at the predefined locations and inserting them into the data-
structure. FillMonitor and FillWorker were created, meeting the master-worker or
master-slave design pattern. This design pattern describes the interfaces and events be-
tween the master and worker classes. On change of one or more locations in VirtualData

(see Figure 6, (A)), the FillMonitor organises all further steps, resulting in a new cycle
of the crawling process, which leads to very fast data completion due to multi-threading.

Next, one can edit the dimension’s names of the data in the data-structure (Figure 6,
(B)), to increase the comprehensibility in further dialogues. As one might want to select
some images, which are not in the same dimension, one can reorder the dimensions and
hence overlook and select data much easier. All changes are displayed in the data preview
window (Figure 6, (C)).

Further, one can choose the next step in VirtualData, which normally is the generation
of a workflow. This can be performed by loading an existing one from hard drive or
generating a new one after selection of an initial image (Figure 6, (D)). The possibility of
editing a previously loaded or created workflow is also integrated. Workflow is explained
in Section 2.4 in further detail.
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Figure 6: The Virtual Data dialogue enables the user to define the locations of images (A),
relative to the already imported raw images, like background, corrected and segmentation images.
Also the location of the quantification results have to be set here. TTT defines specific locations of
background images, correction images and segmentations, which are set as default. To overview
and select the data, or parts of it, as easy as possible, the dimensions can be renamed (by double
clicking) and reordered as needed (B). All changes are displayed in the data window (C). The
images, which can be used in addition to the raw images (A), are referenced in background by
several threads and added to the data-structure and therefore the data window automatically.
Further steps, as workflow generation and image processing with a given workflow (D) can only
be performed, after one or more images were selected in the data window.
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After a workflow was created, one can select some images from the image preview window
and run the workflow on them. As the execution of a workflow might be computationally
expensive, one was thought to be enabled to set whether the task has to run in automatic
or semi-automatic mode, whether it will run sequentially or parallel, and whether the
local machine or a grid will be used. In the first version of SCQMI, the buttons (Figure 6,
(D)) are disabled and a workflow can only be processed locally, in automatic mode, and
sequential. The runner class, named MacroProgress, is further explained in Section 2.5.
Both actions (workflow generation and workflow processing) require one or more selected
images in the data window (Figure 6, (C)).

2.4 Worflow Assembly

The workflow assembly window and the underlying operating structure is the biggest
part of SCQMI, as its task is the most sophisticated. We assumed a standard pipeline
(see Figure 7, (A)) for all single cell quantification tasks, consisting of four actions: (i)
background calculation, (ii) background correction, (iii) segmentation and (iv) quan-
tification. These steps and their incoming and outgoing references were predefined during
development. The images, that have to be used for a particular action, can be manu-
ally redefined during workflow generation. References to other pictures (B, iii) are also
possible. On startup of Workflow the selected image from VirtualData is taken as raw
image (see Figure 7, (A, raw)) and displayed in a separate window, the so called preview
window.

Workflow displays a controlling window, containing one tab for every crucial part of the
single cell quantification: background calculation (Figure 8), correction (Figure 9), seg-
mentation (Figure 10) and quantification (Figure 11). Every tab includes two drop down
selections (see Figure 8, (B) and (C)), which provide the predefined standard operations
for the particular main part on the one and the save operation of (intermediate) results
on the other hand. The most important standard operations of all four workflow steps
are explained in the following section in detail. Associated to the drop down boxes are
two panels, which are dynamically rendered, after the selection of the standard operation
changed (see Figure 9, (D) for save parameters and Figure 10, (A) for action parameters
respectively). These panels provide input elements, as some standard operations require
input parameters. The standard operation is displayed as a bar in another panel, the so
called pipeline list (Figure 10, (B)).

By default, we set specific actions with specific parameters as standard operations, that
performed very well on fluorescence imaging data, we presented in Section 4. The back-
ground is calculated by Rolling Ball and used for correction by the Divide Minus One
method. The corrected image is segmented by MSER and quantified afterwards with the
resulting segmentation mask by default. All intermediate results are saved, as long as the
workflow save operations are not changed by the user.

The workflow generator also records all changes of the current active image in the pre-
view window and displays these changes in the pipeline list of the associated tab. As
ImageJ/Fiji does not provide this feature to developers by an interface normally, we had
to get this information by catching some events fired by ImageJ/Fiji ’s frontend system.
Since not all mistakenly recorded events can be filtered, the recorder has to be used with
attention. Nevertheless, all important actions can be recorded, just very special processes
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Figure 7: A standard pipeline was assumed for single cell quantifications (A). After calcu-
lating a background from the raw image (i), the raw image is corrected, using this background
image (ii). The resulting corrected image is used for segmentation (iii) and quantification (iv),
additionally requiring a previously calculated segmentation. Though, the references for incoming
and outgoing images are predefined, they can be changed during workflow generation. Also ref-
erences to other pipelines (B, iv) are possible, covering some common use cases, for example
quantifications of certain images with a segmentation from another image. Workflows, similar to
this, can easily be created, using the developed graphical user interface, as shown in Section 2.4
and Figure 8, Figure 9, Figure 10, and Figure 11.
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Figure 8: The background calculation is the first step of correction and can be performed in
many different ways (see Section 2.4.1). (A) shows the current selected picture. One can also
add further pictures to the pipeline, to interchange intermediate results between the different
picture’s pipelines (see Figure 7). These can be selected in (B). As after all actions, one can
save the intermediate result (C).
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Figure 9: (A) shows the current selected picture and the provided possibility to add another
picture to the pipeline. Figure 7 (B, iii) shows one use case. The raw picture can be corrected
using a background image, which can be selected in (B). The correction mathematically uses
the background image to enhance the raw image. The kind of mathematically operation can be
selected in (C) and is described in detail in Section 2.4.2. The result of the correction can be
saved or just used as intermediate result (D). The panel below the selection box, shows the save
location, in case the save operation was selected.
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Figure 10: Segmentation is one crucial step of the pipeline, as it is hard to achieve a valuable
segmentation, depending on the quality of the corrected image. Most plugins, that are used,
require parameters. Therefore a panel renders below the action selection box (A), providing
input elements for all parameters. Additional actions can be performed on the image currently
previewed in the preview window. All actions are recorded and presented in a so called pipeline
list (B), providing reordering and deletion.
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Figure 11: Quantification and correction are actions, that require two input images (see
Figure 7). For the quantification, one can set both input files (A). The various measurements
(B) of the quantification can be selected or deselected individually or all at once. The objects,
resulting from the segmentation, chosen in (A), are displayed in a ROI Manager (C). The ROI

Manager provides preview in the preview window, deletion and editing. All measured values are
previewed in a Result window (D)

.
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may cause an error. One can scroll up and down in the pipeline list of workflow steps,
always getting the particular preview displayed in the preview window. The single steps
can be rearranged and deleted, too, by simply selecting a step and clicking the specific
button (Figure 10, (B)). As it is required, that the save operation is always the last
step of a particular workflow part, to ensure correctness, no actions are recorded, while
displaying the result of the standard operation of a pipeline part. On every change, the
downstream part of the pipeline is recalculated, to ensure the preview in real-time. This
recalculation is firstly done directly on instantiation of Workflow. This is, why one has
to wait some seconds, until the first interactions with the graphical user interface are en-
abled. The quantification step always opens some additional windows, called Selection

Manager and Results (see Figure 11, (C) and (D)), which are also displayed directly
after startup.

As some parts of SCQMI use very specific image data formats, which diverge from the
standard 8-bit representation, for example 32-bit values normalised between zero and one,
we decided to develop an additional plugin called ScaleConvert. This plugin extends
ImageJ/Fiji’s Convert tool. The standard conversion simply changes the value’s type
without scaling them. Values, which are too big or small, are simply truncated and set
to the new scale’s minimum or maximum respectively. ScaleConvert performs scaling
to the new type, including the possibility, to convert not only to 32-bit with 32-bit scale,
but also scale to a range between zero and one. We also decided to use this type, 32-bit
normalised between zero and one, as standard type for the complete workflow, as it also
enables negative values. These negative values are required, for example in background
corrections, which would not work properly, if negative values would be truncated. All
images, which are loaded from hard drive or calculated from other images, are converted
using ScaleConvert. In the other direction, all images which are saved to hard drive,
have to be converted to 8-bit grayscale images with a range from zero to 255. ImageJ/Fiji
just saves the values from zero to one in a 8-bit scale, meaning a completely black image.
To display the images properly, the range has to be considered here, too. Therefore, the
contrast is automatically enhanced by Process → Enhance Contrast ..., every time the
preview window gets actualised.

The correction and quantification steps need two input images instead of one and are
handled appropriate. The background image for the correction step and the segmenta-
tion image for the quantification step respectively can be selected specifically. On top of
the window one can add further pictures to the pipeline, which steps can also be selected
as input for another pictures correction or quantification. One use case is, as exemplary
depicted in Figure 7, the segmentation of an image, visualising a fluorescent signal from a
nuclear marker (A). One might want to quantify other pictures (B) with this segmenta-
tion, too, as the segmentation, which is calculated on the second image (B, iii), is much
less reliable.

All images and references of a workflow are always hold as relative references to the
initially selected picture in VirtualData. This enables fast and valid reconstruction on
reload or bulk execution. The whole pipeline can be saved, or another one loaded by
clicking the specific buttons at the bottom of the window. One can also proceed to bulk
execution in the same manner.
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2.4.1 Background Calculation

As depicted in Figure 12, the background of microscope imaging is never equally bright (in
case of bright field imaging) or dark (in case of fluorescent imaging), due to non complete
permeable medium, light diffusion and other disturbing factors. One major drawback
of an background biased image is, that measured intensities of objects are higher then
the real intensities. As the background differs from image to image, it gets much more
complicated, or even impossible, to correctly compare the results of different images.
Another drawback is, that the background of one image is not equal at every position in
the image. This is influenced by several factors. The light source is normally centered
under the optics, so the regions at the border are differently exposed than regions in the
center. This results in an image, that is brighter at the center, than towards the edges.
This effect is called vignetting. The background can be mathematically estimated and
corrected, to get images, which can be further processed and analysed easier. Figure 12,
for example, shows an uneven illuminated raw image, with a too bright background.
After correction, the foreground objects are much easier to detect, as well as by eye,
as by computational methods. The intensities of the corrected image are much better
distributed and foreground objects can be separated from background with a threshold,
as the segmentation shows. On the contrary, the raw image’s intensities are not as properly
distributed as in the corrected case and a lot of cells are missing or can not be completely
segmented without including too much background pixels. Some of the existing methods
for background estimation were included in the single cell quantification tool as standard
operations and are explained in the following:

Mean To calculate a mean background, one has to set a radius in pixel as input pa-
rameter. SCQMI, then, iterates over the image pixel by pixel, always calculating
the mean over all pixels within the radius previously given, and sets the calculated
value as new center pixel value. As dark or bright foreground objects can not be
excluded, this method only results in valid backgrounds, if the majority of pixels
in the image are background pixels. If foreground objects cover too much area or
are clumped (see Figure 18, (A)), they influence the background pixels too much
leading to too high background values, again in turn, leading to biased foreground
object intensities.

Median The median background is calculated the same way as the mean background,
just using the median over all pixels in the given radius as center pixel value. The
properties remain nearly the same. The median is said to be more robust, than the
mean.

Rolling Ball [52] The background is calculated by virtually rolling a ball over the sur-
face of a landscape represented by the image pixel intensities (see Figure 13). As
this ball cannot slide into small but high peaks, these peaks do not influence the
background as strong as they would in the mean background calculation. The radius
of the ball is the main input parameter and is required to be as big as the diameter
of the biggest object in the image. Flat background areas are captured very well by
the rolling ball algorithm. By checking the sliding paraboloid option, one can choose
to slide a paraboloid of rotation over the bottom side of the images surface. This
paraboloid has the same curvature properties at its apex, as the rolling ball. The
result is just approximated by sliding in four directions as a compromise between
accuracy and speed. Normally, the result is smoothed by calculating the mean over a
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intensity distribution
otsu threshold (73)

manual threshold (68)

intensity distribution
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manual threshold (53)

Figure 12: (A) shows a typical raw fluorescence image. its background is not completely dark,
it is uneven illuminated and shows vignetting (darker pixels at the edges) in the upper left corner.
In (D), the same image is corrected by subtracting a previously calculated background. The cells
show a much higher contrast against the background, than in (A). The intensity distribution
of the corrected image (E) shows two clearly distinctive peaks at zero and 255 and a smooth
distribution in between, whereas the raw image intensity distribution (B) obviously shows a much
brighter image over all and an somehow unbalanced ratio between fore- and background pixels.
The vertical lines show possible segmentation thresholds, that try to differ between pixels that
belong to fore- or background. The solid line marks the threshold calculated by Otsu’s method (see
Section 2.4.3) and the dashed line a manually selected threshold. The segmentations, resulting
from Otsu’s threshold (C)(F) obviously show the improvement, a background correction has
for the segmentation. Whereas (F) shows nearly all cells, (C) misses or shows a lot of them
only partially segmented. All in all background calculation and correction really improves further
processing and analysis, for example even rather simple methods, as a threshold for segmentation.
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Figure 13: A raw image (visualised as one-dimensional pixel vector in (A)) can be estimated,
by visually using a ball rolling over and under the surface of the pixels intensities. By firstly
rolling the ball over the surface (B), the peaks of the intensities are captured very well, the more
or less noisy background is smoothed at the pixel’s maxima. After calculation of this surface
(C), the real intensities are truncated, and the ball is rolled under the surface (D). Now one
estimates the background, as the ball simply does not fit into thin peaks. After calculation of the
background (E), it can be subtracted from the previously calculated surface (C), resulting in a
corrected image (F). The background is even and normalised to zero. The foreground objects
clearly stand out and can further be used for segmentation and quantification more easily. (image
adapted from Usamentiaga et al. [58])

.

3x3 window for every pixel after the estimation. By checking the disable smoothing
option, one can decide not to smooth the result.

Fluorescence Image Normalisation [47] This background calculation is one of the
first step of a fluorescence image normalisation. Here we use a method previously
described [47, 46]. So, it is especially suitable to images, showing a lot of background
area and some blobs which are clearly separable. The algorithm (see Figure 14)
firstly divides the image in tiles. These tile intensity distributions are measured
separately and then clustered based on distribution features into two groups: one
presenting all tiles containing a foreground object and the other containing all tiles,
which seem to show only background. The background tiles are used to first in-
terpolate a background by filling the holes, which originate from foreground tile
exclusion. To ensure, that the background is spanning over the complete image,
it is extrapolated to the borders and then ready to use for background correction.
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Figure 14: An example image is visualised in (A) in 3D-representation with the pixels intensi-
ties plotted on the Z-axis. After breaking the image into overlapping tiles (B), one can calculate
statistical features for every tile (C). Clustering selects tiles, which show only background (D).
Using these tiles, one can inter- and extrapolate a complete background image (E). This can
be performed for all pictures, for example of a time series (F). These backgrounds can be used
to correct the raw images directly or to calculate a so called gain image (see Figure 15) which
additionally improves correction quality. (image adapted from Schwarzfischer et al. [47])

Additionally to the background images, a so called time-independent gain image
is calculated (Figure 15), to also be able to correct errors which are present in all
images of a time line, due to experimental biases, like wrong illumination or dif-
ferent light permeability of the medium. Therefore a linear regression is performed
on points virtually plotted as specific pixels of the background intensity versus the
mean background intensity. The slope of the fitted line represents the pixels’ gain
value, like presented in Figure 15.

2.4.2 Correction

The correction of the raw image strongly depends on the calculated background. We
therefore provided several possibilities, explained in the following:

Add Addition of the background to the raw image can be used in some special cases. The
background has to show higher values as the foreground objects, for this method to
make sense.

Subtract The background image is simply subtracted from the raw image. This method
can be used when background pixels have low and foreground objects high values,
which is the case most commonly.

Multiply Multiplication of the raw image with the background image can be useful in
some special cases. The background has to be prepared in a special way, as the
pixel values will otherwise be very high and hardly useful for further steps.

Divide One has to consider, that most resulting values from a division of the raw image
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Figure 15: To calculate the time-independent gain, the previously calculated background images
of a time series (see Figure 14 (F)) are used (A). (B) shows intensities of three specific pixels,
plotted over time, whereas the blue point represents the center of the image, green the center point
of the left border, red the point the upper left corner and black the mean intensity. (C) depicts
the intensities, also plotted in (B), over the mean intensities, as well as their linear regressions.
The linear regression’s slopes (of (C)) are then used as gain pixel values. By calculating this
slope for every pixel, the gain image (D) can be constructed. The backgrounds as well as the
gain images can be used to normalise the raw images as postulated in the Subtract and Gain
correction method (see Figure 16). (image adapted from Schwarzfischer et al. [47])

A B C D

Figure 16: Visualisation of the Subtract And Gain correction method with images calculated
by the Fluorescence Image Normalisation (see Figure 14 and Figure 15). The background image
(B) is subtracted from the raw image (A) and the result of this operation then divided through
the gain image (C). The normalised image (D) shows a flat background, which intensities are
distributed around zero, and cellular signals, which set themselves clearly apart as high peaks.
(image adapted from Schwarzfischer et al. [47])

by the background image are distributed around one, not zero, as the background
is commonly somehow estimated to fit the majority of the raw image’s pixels.

Divide Minus One By subtracting one from the division of the raw image through the
background image, the result is normalised to zero.

Subtract And Gain [47] This correction is specialised for time resolved background
images, resulting from the fluorescence image normalisation, mentioned above. As
there is a gain normalisation image calculated over time, one can subtract the back-
ground image from the raw image and divide the result by the gain image, as shown
in Figure 16. For the single cell quantification tool, the gain image has to be located
in the file system, as specified in the TTT experiment folder structure.

2.4.3 Segmentation

As the computer can not simply distinguish objects from background, one has to perform
some steps to detect these objects. ImageJ/Fiji provides some of these, another more
sophisticated, called Maximally Stable Extremal Regions [34, 21], was developed and
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Figure 17: An exemplary bright field image (A) shows some dark cells on a bright background.
The histogram over its pixels is shown in (C), as well as a manual threshold between 126 and
255 in red, meaning, that pixels lying in this range, are marked in (B). After calculating the
binary mask, based on this threshold, the resulting image (D) only shows bright (background)
and dark (foreground) pixels.

included on our own. The most important methods are presented below. The output
of the segmentation methods is always a binary image, the so called segmentation mask.
For the mask, ImageJ/Fiji uses white as background, and black as foreground color. For
further steps, the objects have to be separated individually from the mask first. This task
is performed by ImageJ/Fiji automatically on demand.

Manual Threshold As image intensities are distributed over a certain range (0-255 in
8-Bit grayscale), one can assume, that for example in fluorescence images all pixels,
showing high intensities, belong to an object, against what pixels with low intensity
belong to the background. This distribution of the pixels can be visualised as a
bimodal histogram (see Figure 17), in the best case. By defining a threshold between
the two groups, one can make the software to differentiate between foreground and
background pixels. The more distinctive the two modes are in the histogram, the
more clear is the result of the right thresholding. As shown in Figure 12, even for
images, with no clear bimodal intensity distribution, a thresholding method can
achieve good results. Clearly, thresholding is much more promising, if the uneven
background was normalised before.

Automatic Threshold There are several methods to determine the best threshold auto-
matically. Some of them are already included in ImageJ/Fiji, like the most familiar
one, called Otsu’s thresholding [39]. First Otsu’s method defines two classes of pix-
els: one containing pixels below the threshold (1), the other (2) containing pixels
over the threshold. Next, the method iterates over all possible thresholds (defined
as t), maximising the difference between the two classes, the so called inter-class
variance and minimising the intra-class variance. Therefore the class probability of
the two classes is calculated for every threshold. p(i) is the probability of a certain
pixel, indexed as i, x(i) its intensity value. The class probabilities are the sum of
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all probabilities in the specific class:

ω1(t) =

t
∑

i=0

p(i) (2.4.1)

ω2(t) =
255
∑

i=t

p(i) (2.4.2)

The class means can easily be calculated by dividing the weighted class probabilities
by the unweighted class probabilities. The class probabilities are therefore weighted
with the pixel’s intensities:

µ1(t) = [

t
∑

i=0

p(i)x(i)]/ω1 (2.4.3)

µ2(t) = [
255
∑

i=t

p(i)x(i)]/ω2 (2.4.4)

Then the inter-class variance can be derived:

δ2b (t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]
2 (2.4.5)

And finally, Otsu’s threshold value can be found, by calculating:

argmaxt(δ
2

b (t)) (2.4.6)

Maximally Stable Extremal Regions (MSER) The MSER segmentation is a more
sophisticated threshold method. It iterates over all possible thresholds, trying to find
different local thresholds, that fit some given parameters and reveal objects, which
are clearly distinctive from the background. Therefore, the algorithm iterates over
all thresholds, while storing all regions, that can be found at the certain thresholds.
A region is a coherent set of pixels, meaning, that in the first iteration step, the
whole image is detected and stored as a region. The further the iteration runs, the
more regions are found, and the smaller they are. All new regions are associated
with the regions of the previous iteration step. So, the algorithm builds a tree
from bottom to top. After the tree was generated, the methods starts to look
for regions of minimal size from top to bottom, which do not exist in the list of
regions of the previous threshold. These minimal regions, so called seeds, then
grow, during further iteration from top to bottom. Whenever a region remains the
same during a certain period of iterations, it is called stable region and marked as
such. The specific period of iterations is one of MSER’s parameters, called delta.
After reaching the bottom of the tree, all found regions are filtered for another
parameters, defining the minimal and maximal size of regions, to be found. Then,
overlapping regions are identified, and those with the maximal delta selected, further
being handled as maximally stable regions. These maximally stable regions and the
regions, that do not have an overlap (and are therefore trivial maximal) are finally
returned as foreground objects. The difference and great advance against the Otsu’s
thresholding is, that regions can be detected properly with different thresholds,
which increases the quality of segmentation.
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Figure 18: Process of Watershed from left to right: raw binary image for example after
segmentation, calculated euclidean distance map and marked ultimate eroded points and extrema
of euclidean distance map, and result after complete watershedding (image adapted from Health
[19]). Watershedding allows separation of clumped cells in binary images.

Watershed [19] Watershedding (see Figure 18) is not a segmentation method, the way
it is used in ImageJ/Fiji. Nevertheless, it can help improving the quality of segmen-
tation significantly and, therefore, is mentioned here. By watershedding, clumped
objects of binary images can be separated. Therefore, SCQMI calculates first an eu-
clidean distance map and finds ultimate eroded points. The euclidean distance map
is an image, which foreground pixels are coloured in a gray intensity, corresponding
to the distance to the nearest background pixel. The ultimate eroded points are
the centers of the objects that would be segmented by thresholding. Then, these
ultimate eroded points or extrema of the euclidean distance map are dilated, until
they touch a dilation border of another extrema or the border of the object. Wa-
tershedding can be used effectively on nearly every binary image, representing a
segmentation.

2.4.4 Quantification

For quantification, one has to select the measurements, to be performed on the images’
selections. Besides some structural measurements, like size, diameter, position and cen-
troid, the intensity is measured in several ways. Therefore the sum, mean, median and
deviation are calculated amongst others. One can simply choose a subset of all available
measurements as parameters in the graphical user interface. Additionally, the file format
of the results can be defined.

2.5 Bulk Execution

As Workflow stores the pipeline in its own object based structure, the workflow has to
be exported as macro for ImageJ/Fiji, before it can be used further. Additionally the
single steps of the workflow, especially of one with multiple images, have to be ordered,
considering possible dependencies between the images. Therefore, we developed a special
Petri-net (see Figure 19), which orders the workflow steps and exports them as textual
macro.

Before being executed, the Workflow object, which was generated in background during
workflow generation, is automatically converted into a Petri-net. A Petri-net consists of
exactly two different node types: states and transitions. All connections between the
nodes are directed, and only nodes of different kind can be connected. The transitions
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represent the pipeline actions, can be scored, and are initialised with a score of zero. The
states represent the images, which are input and output of the pipeline steps. The Petri-
net is defined as unsolved, as long as two transitions have the same score. To solve the
net, first all sinks and sources are identified. Then the transitions are scored recursively,
starting with those transitions, that lead to sinks, and a score of 1. The more steps the
scoring recursion has already taken, the higher the next transition’s score is increased.
At the end, the transition with the highest score is the first, which has to be performed
in the macro. All following actions can simply be identified by ordering them, according
to their score. The Petri-net, representing the Workflow object, is solved automatically
in background, converted into a simple textual representation of the correctly ordered
macro, and then passed to the bulk executor, which performs it on all images, which were
previously selected.

As a workflow can contain more than one picture’s pipeline, the ordering of the pipelines
themselves has to be solved, first, by transforming the pipelines into states and all actions
between them into transitions (Figure 19, (B, iv)). Afterwards, the single pipelines can
be converted into Petri-nets (III), solved one after the other (IV), and finally assembled
to an complete list of workflow steps, using the information of the Petri-net, described by
the single image pipelines.

A Petri-net can be unsolvable, for example, if it contains cyclic dependencies between
intermediate images or parts of the workflow. As these Petri-nets would lead to infinite
loops, Petri-net solution is automatically observed, stopped in case of infinite calculations
and an error reported. The error can be corrected, using the workflow creation dialogue
and executed again.

As described in Section 2.3, SCQMI was thought to be capable of executing the workflow
in parallel locally as well as on a grid. The BulkExecution class provides the interface
to handle these options and the VirtualData window already shows the disabled combo
boxes, which will enable the user to select these execution modes. As the implementation
of those modes was well out of the scope of this work, the macro can only be executed
sequentially on the local machine in automatic mode.
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Figure 19: A typical workflow ((I), also see Figure 7), consisting of two picture’s (A)(B)
pipelines, with actions between them, has to be performed in the right order. Otherwise, some
intermediate image dependencies could be missing. To prevent this case, all image pipelines (if
there are multiple ones) are translated into states of a Petri-net (II), being linked, by transi-
tions, which represent the actions between them, first. Here, states are visualised as rectangles,
transitions as circles. Another Petri-net is being build for every image pipeline itself, whereas
intermediate images are represented by states and the four standard actions (background calcu-
lation (bg), background correction (cor), segmentation (seg), quantifications (qt)) as transi-
tions (exemplary shown in Frame (III) for image pipeline (A)). All those nets are then solved
(II)(IV), by recursively increasing the score of the transitions (depicted as certain levels). The
net, showed in (II), was already solved trivial after creation, as there are too less transitions.
Frame (IV) shows the solution of the net in frame (III) . Obviously, the right order of the
image’s pipelines, can be directly read from the solved Petri-nets and assembled to the whole
workflow, regarding the results of the superior Petri-net.
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3 Validation and Evaluation

To ensure, that the developed tool (SCQMI ) performs as expected, we validated the
single steps and evaluated differences, if needed. As a tool for single cell quantification was
already prototyped inMATLAB (called sQTFy in the following), we took the intermediate
outputs of this tool as reference for some validations.

3.1 Background Calculation

As the Fluorescence Image Normalisation method, described in Section 2.4.1, was not yet
implemented as a plugin for ImageJ/Fiji and this task was well out of scope of this work,
we further calculated the backgrounds with this method’s implementation in MATLAB.
Therefore, there was no need to validate a background calculation. The method itself
was properly validated against others, by imaging beads and a fluorescein solution and
validating the images after background calculation, correction and segmentation [47].

3.2 Correction

Although, the correction steps seem to be rather easy, we had to check whether the type
conversions influence the correction results. Also, we had to check whether ImageJ/Fiji
allows negative pixel values, as otherwise the results of the developed tool (SCQMI ) would
show a difference to sQTFy. This difference had to be evaluated properly. Therefore, we
used an image from a real experiment and a pre-calculated background image. The
raw image was divided by the background image and one subtracted from the result in
MATLAB as well as in ImageJ/Fiji. This procedure is exemplary shown in Figure 20. The
results were compared, as shown in Figure 21. Although the results are not equal, they still
do not show noteworthy differences. Obviously, all variance is very low (correlation ≅ 1),
pointing to rounding errors.

CBA

Figure 20: For validation and quantification of possible differences of image correction, a raw
image (A) was divided by a background image (B). The resulting image (C) was compared
between ImageJ/Fiji and MATLAB (see Figure 21). Obviously, the quality of the result image
improved much against the raw image, regarding the equality of background pixels and the contrast
between fore- and background. As shown in Figure 12, depending on the quality of the background
image, this image correction enables much better results of further image processing and analysis.
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Figure 21: The values of pixels of the corrected image strongly correlate, as they have hardly
any notable differences, and show a straight line in scatterplot. The boxplot shows, that the ma-
jority of pixels is distributed around zero, enabling negative values, in both cases. This improves
detection of foreground objects, for example by setting an intensity threshold.

3.3 Segmentation

Segmentation is always a crucial part of image processing, wherefore we evaluated two
examples. As the MSER algorithm was used in both MATLAB, for prototyping, and Im-
ageJ/Fiji, we shortly checked, whether the outputs of the basic algorithm are equal, using
the same parameters. After acknowledgement of equality, we further checked the corre-
lation of the results of the methods wrapping MSER. These wrappers create the binary
image from the so called seeds and associated thresholds, calculated in the algorithm, as
explained in Section 2.4.3. Additionally, holes are filled. As reference we segmented both
images manually, by using ImageJ/Fiji ’s selection tool and selection manager. These
references were then compared to various segmentations and their post-processes. We
used (i) the wrapped MSER algorithm of ImageJ/Fiji, (ii) the previous with an addi-
tional watershedding, (iii) the MSER algorithm of sQTFy, and (iv) the semi-automatic
method, also used in sQTFy. The semi-automatic method of sQTFy uses the MSER
algorithm to identify the center of objects, and then lets the user segment the object, by
performing an Otsu thresholding on a small aperture, centered on the MSER’s seed.

We used the Normalised Sum of Distances (NSD) [9, 8] to score the single objects, detected
by the various methods. As the NSD is a spatially aware scoring method of two sets, it is
a weighted measure, that takes the distance into account, non-overlapping pixels have to
the reference. Points, that have a high distance, degrade the score more, than more points
with less distance. To calculate the NSD, all identified objects of two images have to be
associated pairwise. This was performed by a symmetric nearest neighbour calculation:
for every object in the first image (R), an object of the second image (S) was searched by
minimising the distance between their centers. To consider missing or additional objects,
the same was done for all objects of the second image. Only if the same pair was proposed
from both, the two objects were associated as the same one in two different images. Next,
the NSD between al these objects was calculated in both directions, as this score is not
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Figure 22: Validation of an image with few, clearly distinct cells (left), showed the quality
of various segmentation methods:(i) ImageJ/Fiji’s MSER (red, n = 38), (ii) MSER and Wa-
tershed in ImageJ/Fiji (green, n = 45), (iii) MATLAB’s MSER (cyan, n = 36), and (iv) the
semi-automatic methods of sQTFy (blue, n = 37). For comparison of the methods, the identi-
fied objects were compared, using the NSD, and plotted. Both results of the asymmetric NSD
were plotted on the axis of the scatterplot and additionally visualised in the boxplots above and
right of the scatterplot. Except the semi-automatic method from sQTFy, all methods show the
same good quality of segmentations, as the majority of NSDs is located between 0.0 and 0.2.
Some exceptional points, located between 0.2 and 0.8, point to over- and under-segmented cells.
Values equal one of the semi-automatic method (iv) can be explained by the method itself: the
MSER might find some seeds in the image, but in the aperture, centered over these seeds, Otsu’s
thresholding can not reveal the right cells, but for example artefacts or neighbouring cells.

symmetric.

NSDR,S =

∑

i ‖Ri 6= Si‖Di
∑

i
Di

(3.3.1)

The NSD between two objects, which are defined as sets of pixels, R and S, is calculated by
defining R′s border first. Then, one iterates over all pixels of the union R∪S, calculating
the current pixel’s i distance Di to the border and sums the distance, if the pixel is only
member of one set R or S. To get the NSD, this sum is divided by the sum over all
distances. Obviously, the two objects absolutely match, if the NSD equals zero and do
not overlap, if the score equals one.

The first of the validated cases (see Figure 22) is an endpoint staining picture with only
few, clearly separated cells. We chose delta = 1, min size = 50 and max size = 2000 and
as parameters for this case. For the second case (see Figure 23), we chose a much more
crowded picture with a lot of clumped cells and therefore set the parameters delta = 1,
min size = 30 and max size = 450.

Figure 22 shows, that the majority of calculated NSD ’s, between the method’s results and
the manual segmentation, is lower than 0.2, indicating very good matches. Some values
between 0.2 and 1.0 indicate over- or under-segmentations. Values equal 1.0, like present
in the blue case, indicate wrong association. As the method, presented by blue points,
identifies objects by MSER and segments them by a manual threshold, the errors most
likely occur during thresholding. The center, which is later used for association with ob-
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Figure 23: Validation of a more realistic image (left), as in Figure 22, revealed a sample
quality of different segmentation methods, like (iii) MSER implemented in MATLAB (cyan,
n = 948) and (i) ImageJ/Fiji (red, n = 927), the (iv) semi-manual method used in sQTFy
(blue, n = 877), and (ii) MSER followed by a watershedding in ImageJ/Fiji (green, n = 1370),
under realistic conditions. The image contains much more cells, which are partly clumped,
very differently illuminated, and of different size. The plot on the right shows the NSDs of the
segmentation results as a scatterplot and as boxplots. As the NSD is an asymmetric score, both
results were plotted on different axis and additionally visualised in different boxplots respectively.
The majority of NSD values remains in a range between 0.0 and 0.2 for the method, which
combines MSER and watershedding. The other methods produce values, that are distributed
over a much bigger range, pointing to worse results. Especially the large group of blue dots
((iv), semi-automatic method of sQTFy), located around one, shows, that the problem with
seed-region associations remains in real-experiment images.

jects of other images, is already fixed after performing MSER. Using Otsu’s thresholding,
one might select the wrong object near the real center, as the real object is not as easy
to detect as the wrong one. The other three methods show the same quality.

As the image, used in the first validation, is hardly one, that occurs very often, we selected
another one with much more cells, which are partially clumped, and not that constantly
illuminated. Figure 23 shows values, that are obviously higher than in Figure 22. Espe-
cially the results of MSER in ImageJ/Fiji (red, n = 927) and MATLAB (cyan, n = 948)
are worse. OnlyMSER in ImageJ/Fiji and watershedding (green, n = 1370) lead to nearly
the same good results. Also the values of the semi-automatic method of MATLAB show
the same distribution like in Figure 22. Especially the wrong seed-region associations in-
fluence this result, as there are a lot of points equal one. The advantage of ImageJ/Fiji ’s
MSER followed by watershedding is, that clumped cells can be distinguished even after
the segmentation. This leads to a clearly better result, than without watershedding.

3.4 Runtime Issues

The user should not have to spend too much time in creating the workflow. Therefore,
we minded to implement a graphical user interface, which is as intuitive and user-friendly
as possible. After some time of familiarisation with SCQMI, most users are able to create
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and process a standard workflow, as depicted in Figure 7, in less then five minutes. Also
the runtime of this workflow on images keeps itself in limit. On a standard laptop (Intel
Core i5, 1.8 GHz) it took about 10 minutes to calculate the workflow on 60 images.
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4 Application

We developed a tool (called SCQMI ), capable of processing time lapse movies in very
specific manners, defined in workflows (Section 2). These workflows can be created on
single exemplary images and performed on a stack of other images. A standard pipeline
consists of four steps: background calculation, correction, segmentation and quantifica-
tion. We used SCQMI on a real dataset. In the following we motivate this investigation of
embryonic stem cells, describe the experiment conditions, as well as the post-acquisition
processes, and present and discuss the results.

4.1 Motivation

As briefly exposed in Section 1.1, embryonic stem cells (ESC) are of great interest, investi-
gating pluripotency and differentiation in general, and, for example, cancer in special [44].
ESCs are the pluripotent inner mass cells, extracted from a blastocyst (see Figure 24).
The blastocyst emerges from the totipotent morula, which is aggregated during the first
rapid divisions of the zygote. The ESCs in this early embryonic stage have potential to
build most other somatic cells, for example of the circulatory, nervous or immune system.

Figure 24: A zygote divides rapidly multiple times after fertilisation. The aggregation of these
divided cells is called morula. its single cells are totipotent, meaning, that they can differentiate
to every somatic cell. From the totipotent morula emerges the blastocyst, containing pluripotent
mass cells in the interior. These cells can be extracted and used as embryonic stem cells (ESC)
for biological investigations of stem cells and the early development of organisms, as they are
capable of emerging to nearly all somatic cell types, forming for example the circulatory, nervous
or immune system. (image adapted from Jones [23])
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So, embryonic stem cells have characteristics, making them perfect suitable for in-vitro
investigations [33]. On the one hand, they remain pluripotent under certain conditions.
On the other hand, as long as they are not differentiated, they self renew, what facilitates
biological investigation very much. ESCs are cultured under different conditions to achieve
different behaviour [63]. On a medium, containing serum and LIF (leukemia inhibitory
factor), the ESCs self-renew over many weeks, but also partially differentiate. To reduce
the differentiation rate and keep the cells in a more stable pluripotent state, the ESCs can
be cultured on a 3i or 2i medium, which contains three (or respectively two) inhibitors of
various proteins in addition to serum, and drives the cell towards a so called ground state.
By plating ESCs on a medium, only containing serum in absence of LIF, they begin
to differentiate. Although the underlying processes are studied until more then three
decades, they are still not completely understood. A lot of transcription factors were
identified, being included in the process of regulating pluripotency and differentiation, in
which Nanog, Oct4 (octamer-binding transcription factor 4) and Sox2 ((sex determining
region Y)-box 2) are thought to be master regulators. Also Rex1 (Zinkfinger protein 42)
and Klf4 (kruppel-like factor 4) are known to play a key role in the process of pluripotency.

Traditionally, the pluripotent state and differentiation of ESCs was defined by high abso-
lute levels of some transcription factors. The levels of Nanog [6], Oct4 [61] andKlf4 [64],
for example, are thought to define the current state of pluripotency or differentiation. As
correlations between these levels had been observed, the transcription factors were sus-
pected to auto-regulate themselves. Due to this assumption, the correlations between the
pluripotency associated transcription factors were further investigated [27, 32]. Actually,
the results (see Figure 25) evidenced, that the inquired transcription factors build a closed
meshed regulatory network, in which they are regulating each other.

During detailed investigation of the pluripotency associated transcription factors Oct4
and Nanog [13], it was proposed, that not the absolute levels, but the ratio between
the transcription factors drives ESCs towards specific states. Three states were therefore
defined: pluripotent, lineage-primed and differentiating. Additionally grouping the cells
into the lineage-primed group, was also able to explain a heterogeneity in gene expression
of pluripotency transcription factors [2], meaning, that ESCs, which are and remain def-
initely pluripotent, show strongly divergent absolute gene expression levels. But as the
ratio between the observed factors remained equal or at least alike, this behaviour, was
explainable.

In scope of this work, we investigated the correlations between Nanog, Oct4, Sox2, Rex1,
and Klf4. As we had access to images, with six instead of two wavelengths, we were able
to correlate multiple factors on single cell level with high accuracy and to analyse partial
correlations of multiple factors instead of binary ones. The experimental background and
performed steps towards analysis are described in Section 2.1. Analysis and results are
presented in Section 4.3.

4.2 Single Cell Imaging and Data Processing

Imaging was performed on mouse embryonic stem cells (mESC). Therefore, the ESCs were
cultured in basal medium, charged with serum, LIF and other supplemental chemicals
[17]. As ESCs have to express a fluorescence reporter, to be visible during time lapse
fluorescence imaging, VENUS was knocked into the Nanog gene of the ESCs. VENUS
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Figure 25: The transcriptional regulatory network shows multiple factors within the pro-
tein interaction network associated with pluripotency. Regulations were identified, using in vivo
biotinylation mediated chromatin immuno precipitation (bioChIP) and global target mapping
(bioChIP-chip) [27]. Nodes represent targets of transcriptional regulation. Yellow circles repre-
sent the factors examined in scope of this work. The degree of factor co-occupancy of chromatin
regions is visualised by circle size. Arrows indicate the direction of transcriptional regulation.
(image adapted from Kim et al. [27] and modified)

[38] is an alternative to green fluorescence protein (GFP), which is more stable in cell
conditions and responds more quickly to stimulation. By knock-in fusion, the VENUS
gene was directly linked to the Nanog gene, meaning, that they were expressed as one
protein. The advantage of this linkage is, that different half life of reporter and target
proteins are tackled, and quantifications of the reporter can directly be associated to
quantifications of the target protein.

Using these knock-in fusion ESCs, time lapse imaging was performed at bright-field and
VENUS wavelength. After transferring the cultures into 96 well slides, the channels were
imaged every 30 minutes, using illumination times of 2 milliseconds for bright-field, 1000
milliseconds for the VENUS channel and 100 milliseconds for the immuno-fluorescence
channels. After nearly 3 days the Zeiss Axio Observer Z1 microscope (Zeiss, Munich,
Germany) had taken 134 time point images with a resolution of 1388x1040 pixels per
position and wavelength. At the last time point (135) various proteins of interest were
immuno-fluorescence imaged. For immuno-fluorescence imaging the cells were fixed on
the medium and treated with immuno-fluorescence labelled dyes, specific to the target
proteins of interest. Time lapse movies can not be continued after immuno-fluorescence
staining, as the cells are not viable after fixation on the medium. Two different time lapse
movies were thereby generated, differing only in the set of stained proteins in the last time
point, whereas in both Nanog, Oct4, Klf4 and DAPI (4,6-diamidino-2-phenylindole) were
used. DAPI binds persistently to DNA, especially A-T rich regions and can, therefore, be
used as nuclear marker, which always shows nearly even fluorescence, as against the other
fluorescence markers. As the amount of DNA increases during cell cycle, DAPI can also
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be used as cell cycle marker. In first movie (I), spanning over 60 positions, additionally
Rex1 was stained, in the second (31 positions, (II)) Sox2.

The described imaging produced about 20 GB of data, spanning over 91 positions, 135
timepoints, and up to 6 wavelengths. The data was stored in TTT file hierarchy [37] (see
Section 2.3).

To quantify the generated images, we, of course, used the previously developed SCQMI.
Using the TTT import option (see Figure 4), we loaded the whole experiment into the
underlying data-structure. Background images were already computed by an external
tool, previously described in [47, 46], which performs the algorithm Fluorescence Image
Normalisation, described in Section 2.4.1. These backgrounds were automatically asso-
ciated with the imported raw images, as they also were saved in TTT file hierarchy,
and added to the data-structure. The multiple dimensions were renamed quickly, to be
recognised easier during subsequent workflow generation. As we did not want to analyse
time resolved results, we build a workflow, which enabled us to quantify only the stained
wavelengths in time point 135 and Nanog in time point 134 with a segmentation of DAPI
images.

As the immuno-fluorescence dyes interfere with Nanog, the prior time point image was
used for Nanog quantification. After immuno-staining, the cells are slightly shifted, due to
the staining process. We therefore registrated the Nanog images on time points 134 and
135, by calculating and applying a rigid transformation matrix. This task was mastered
by elastix [28]. The transformed Nanog image was further used as Nanog ”endpoint”
image.

Therefore, we selected an raw image of time point 135, showing DAPI, from the data
preview window and started workflow generation. In the workflow, the background image
had to be loaded from data-structure. The raw image was corrected by using the Divide
Minus One method (see Section 2.4.2). The corrected image was on the one hand used
for segmentation with the MSER method (Section 2.4.3) and on the other hand for quan-
tification, using all parameters. The parameters of MSER were visually optimised during
runtime, using the preview window. Delta = 10, min size = 50 and max size = 2000
showed the best results and were used for all segmentations. The quantification results of
all possible measurements were, as well as all correction and segmentation images, saved
in the TTT folder hierarchy. In addition to the DAPI image, the images of all other
wavelengths of the same position were imported into the workflow. These were also back-
ground corrected with already precalculated backgrounds, but not segmented by MSER.
For quantification, we used the corrected images and the DAPI segmentation, previously
calculated. The results and intermediate images of those wavelengths were saved in the
TTT hierarchy, too.

After generation of the workflow, all images were processed, by selecting the specific
DAPI images as raw images and monitoring the failure free progress in the workflow
process monitor. Afterwards the data had been saved into the TTT file hierarchy and
was ready to be analysed.
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Table 1: In addition to the by-eye comparison of the similarity between the various distributions
(see Figure 26), also the statistical comparability was checked. P-values for selected statistical
equality tests of the distributions of measured transcription factor intensities of Nanog, Oct4,
Rex1 or Sox2, Klf4, DAPI and the cells area were calculated. The Wilcoxon rank-sum test
[60, 49] tests whether the medians of samples from two independent, not necessarily normal
distributed variables are equal. The Kolmogorv-Smirnov test [51, 50], uses the supremum of the
distances between the two cumulative distribution functions as statistic. H0, the null hypothesis
was in every case, that the two experiment’s distributions of a specific feature are equal. As all p-
values are far lower than the 0.05 significance level, the null hypothesis had to be rejected always,
meaning that the distributions are not equal under the consideration of a 0.05 significance level.

Wilcoxon Kolmogorov-Smirnov
area 4.74e− 09 < 2.2e− 16

Nanog 1.08e− 40 < 2.2e− 16
Oct4 3.67e− 86 < 2.2e− 16

Rex1/Sox2 < 2.2e− 16 < 2.2e− 16
Klf4 < 2.2e− 16 < 2.2e− 16

DAPI 1.72e− 142 < 2.2e− 16

4.3 Analysis and Results

As we quantified two different movies, one showing Rex1 (further referred to as movie
(I)), the other Sox2 (movie (II)) in addition to Nanog, Oct4, Klf4 and DAPI, we also
analysed their results separately and compared them to each other subsequently. Thanks
to the automatic quantification, we could achieve big datasets, what makes signals, being
found in the data, highly significant. In detail we were able to measure 22180 cells in
movie (I) and 15678 cells in movie (II).

We first checked the comparability of the two independent experiments. Therefore, we
firstly controlled the distributions of cell area and absolute intensities of the measured
transcription factors Nanog, Oct4, Rex1, Sox2, Klf4 and DAPI by eye. As depicted in
Figure 26, all pairwise plotted distributions show high similarity, except the measure-
ments of Rex1 and Sox2 (D). Some minor differences between the distributions, may be
explained by the experiments, which conditions and results can never be exactly equal.
The assumption of the two experiment’s data being very comparable, was affirmed by cal-
culation of Pearson correlations between the measured features of the specific experiments
(see Table 2 and Table 3). For example, the correlations between area and DAPI (both
r = 0.70), area and Nanog (r = 0.47 (I), r = 0.46 (II)), and Nanog and Oct4 (r = 0.50
(I), r = 0.48 (II)) show strong analogy. Nevertheless, non-parametric statistical test-
ing, whether the distributions are equal, revealed, that they are not, using the Wilcoxon
rank-sum test [60, 49] and the Kolmogorov-Smirnov test [51, 50]. These non-parametric
statistical tests are used to decide, whether two samples are drawn from the same dis-
tribution. In advance to other tests, they do not assume normally distributed data sets,
what fits the demand of the distributions, presented in Figure 26. The rejection of the
null hypothesis may be explained by the fact, that the results of different experiments,
although they were performed under the same conditions, are never exactly equal. The
precise reason for the difference between the two datasets, although far enough cells were
observed, remains unknown and has to be revised in further analyses.

An overview over the absolute cell intensities and areas in movie (I) (see Figure 27),
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movie I

movie II

Figure 26: Comparability of two quantified experiments ((I) for experiment incorporating
Rex1 and (II) for experiment incorporation Sox2) was checked, regarding the distributions of
cell area (A), absolute intensity of Nanog (B), Oct4 (C), Rex1 or Sox2 (D), Klf4 (E) and
DAPI (F). The number of cells strongly differed between the two measurements (). Thus, the
relative frequencies were used for comparison, instead of absolute frequencies. To remove out-
liers from the plot and increase readability, only datapoints in the 0.95 quantile were plotted.
As the two experiments were performed independently, but under the same conditions, all dis-
tributions except Rex1/Sox2 were expected to be very similar. Except some minor deviances, the
distributions seem very comparable. This implication was affirmed by the calculated correlations
between the factors in both experiments (see Table 2 and Table 3), which were very similar, too.
Additionally, the similarity of the distributions was checked statistically, as described in Table 1.
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Figure 27: Cell area, Nanog, Oct4, Rex1, Klf4 and DAPI absolute intensities of the first
movie (I) were scatterplotted pairwise in the lower left panels. Red lines present the linear
regression of the data displayed in the panel, whereas gray line shows the diagonal line between
the two axis. Diagonal panels show the parameter’s name, the respective row and column is
associated with, as well as a histogram of the datapoints, which are used for plots in the respective
column. Panels in the upper right show the Pearson correlations, with the textwidth scaled in
respect to the certain values. As expected, area and DAPI correlate very well, whereas the high
correlation between Oct4 and DAPI was not explainable, regarding the low correlation between
area and Oct4 particularly. Most factors show high pairwise correlations, agreeing with previous
findings, which proposed an underlying auto regulatory network, incorporating the pluripotency
transcription factors as hubs. [56, 32, 27]
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revealed high Pearson correlations between most factors in general and between the cell
area and DAPI (r = 0.70), as well as between Oct4 and DAPI (r = 0.75) in special. As
DAPI strongly binds to A-T rich regions of DNA, its absolute intensity grows with the
amount of DNA in cells. As, in turn, the amount of DNA grows with advancing cell cycle
as well as the area of the cell, DAPI is expected to show high correlation with a cell’s
area. Very high correlation of Oct4 with DAPI also indicates cell cycle dependency of
Oct4, whereas the correlation r = 0.4 between Oct4 and cell area, negates this effect. The
high correlations between all of the pluripotency factors emphasise the assumption of a
close meshed auto-regulatory network between these transcription factors, as previously
described [56, 32, 27].

The overview of movie (II) (see Figure 28), revealed similar properties, regarding the
area and absolute intensities of pluripotency associated transcription factors. Area and
DAPI are highly correlated (r = 0.79) too, as expected. The correlation between Oct4
and DAPI was even higher (r = 0.79) than in the first movie, but still the correlation
between Oct4 and area remains low (r = 0.43) and puts a possible explanation by cell
cycle dependency of Oct4 in question. Also Oct4-Klf4 correlation (r = 0.79) is higher
than in movie (I) (r = 0.62), as well as Klf4-DAPI ((I): r = 0.54, (II): r = 0.68). These
differences might have been arisen from slightly different experimental conditions or even
the use of the different dyes for Rex1 and Sox2, as the wavelengths of these dyes might
slightly overlap with those of dyes for other transcription factors. Rex1 and Sox2 show
differences, too: Rex1 correlates better with Nanog (r = 0.51) and Klf4 (r = 0.64) than
Sox2 (Nanog: r = 0.33, Klf4: r = 0.51), since Rex1 is more associated with Nanog. Shi
et al. [48] published, that the Rex1 promoter is located directly downstream of Nanog,
and thereby influenced very much.

The presented correlations were similar, in comparison to previous findings. For example
a correlation of r = 0.51 between Nanog and Oct4 was published by Descalzo et al. [13],
and r = 0.59 by Thomson et al. [56]. Also the close upstream regulation of Nanog by Klf4,
found by Chan et al. [7] and Zhang et al. [64], can be confirmed by our measurements
(Nanog-Klf4 (I): r = 0.46 and (II): r = 0.48).

As the correlations could have influenced each other, due to transitive regulations be-
tween three or more factors, we decided to further investigate the partial correlations of
the pluripotency transcription factors. Additionally slight overlaps in fluorescence wave-
lengths and other experimental conditions could have led to depending correlations. By
calculating partial correlations, linear dependencies are known to be eliminated between
different sets of the data [29]. The partial correlation between two independent sets of
data (X and Y ), influenced by a third one (Z), which is also called the first order partial
correlation, can be calculated by

prXY,Z =
rXY − rXZrY Z

√

(1− r2XZ)(1− r2Y Z)
(4.3.1)

, where rXY is the correlation between the sets X and Y . Pictorially, linear regressions
are calculated between X and Z as well as Y and Z. The respective residuals of X
and Y are correlated against each other in turn, which leads to the partial correlation
between X and Y . The final partial correlation between two sets regarding all other sets
can recursively becalculated by the second and higher correlations subsequently, until all
other variables are regarded by the calculation. The formula for the higher order partial
correlations is basically the same as the formula for the first order partial correlations.
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Figure 28: The lower left panels show pairwise scatterplots of cell area, Nanog, Oct4, Rex1,
Klf4 and DAPI of the second movie (II). The red lines visualise the linear regressions of the
scattered points, whereas the grey line marks the diagonal between the two axis. Calculated
Pearson correlations are displayed in the upper right panels, scaled to their value. In between,
the diagonal panels display the name of the data sets used in the respective rows and columns,
as well as histograms of the data, used for scatterplots in the respective column. DAPI and
area correlate very well (r = 0.70), as DAPI is a cell cycle marker, showing increasing absolute
intensities with ongoing cell cycle and size. Oppositely, the even higher correlation r = 0.79

of DAPI with Oct4 lacks this possibility of explanation, as Oct4 does not correlate with cell
area that high (r = 0.40). Over all, most of the factors correlate high enough to support the
assumption of an auto-regulatory network of pluripotency transcription factors, incorporating
the previously named as hubs. As expected, area and DAPI correlate very well, whereas the high
correlation between Oct4 and DAPI was not explainable, regarding the low correlation between
area and Oct4 particularly. Most factors show high pairwise correlations, agreeing with previous
findings, which proposed an underlying auto regulatory network, incorporating the pluripotency
transcription factors as hubs. [56, 32, 27]
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Table 2: Pairwise Pearson correlations between the absolute intensities of cell area, Nanog,
Oct4, Rex1, Klf4 and DAPI, which were quantified in movie (I), are shown in the upper right.
The derived partial correlations are printed in the lower left. Linear dependencies, that influence
correlations between the groups are eliminated by calculating partial correlations [29]. The two
correlation types are also depicted in Figure 29.

area Nanog Oct4 Rex1 Klf4 DAPI
area 0.47 0.40 0.18 0.31 0.70

Nanog 0.29 0.50 0.51 0.46 0.51
Oct4 -0.23 0.11 0.58 0.62 0.75
Rex1 -0.20 0.30 0.18 0.64 0.45
Klf4 0.04 0.05 0.23 0.40 0.54

DAPI 0.63 -0.01 0.59 0.06 0.06

Exemplary, the second order partial correlation between the two sets X and Y , which are
controlled by Z and W is

prXY,ZW =
rXY,W − rXZ,W rY Z,W

√

(1− r2XZ,W )(1− r2Y Z,W )
(4.3.2)

The calculated partial correlations between the measured single cell intensities are pre-
sented in detail in Table 2 (I) and Table 3 (II) and visualised in Figure 29 (I) and
Figure 30 (II) respectively. Calculation of partial correlations also enables estimation
of the p-value, which is associated to a specific correlation. Thereby we filtered for sig-
nificant correlations, using a Bonferroni corrected significance level of 0.05. Insignificant
correlations were disregarded and therefore removed from the graphs. Notably, the cor-
relation and partial correlation graphs of experiment (II) are similar to those, presented
by Filipczyk et al. [17], who used the same images, but performed manual correction and
segmentation.

Table 2 shows as well pairwise Pearson correlations (r) as derived partial correlations
(pr) between the transcription factors measured in movie (I). Obviously the values of
the partial correlations emphasise some correlations whereas others get low, negative or
even insignificant. Of course DAPI-area remains nearly as high as before (r = 0.70, pr =
0.63), but also Oct4-DAPI, though it decreased, remains high and significant(r = 0.75,
pr = 0.59). Further investigations of cell cycle dependencies of Oct4 should reveal the
background of this correlation. Also Rex1-Nanog and Rex1-Klf4 remain notably high.
Figure 29 depicts these values, and exhibits outstanding correlations more clearly. The
correlations between Oct4, Nanog and Klf4 decreased very much. Especially Nanog-Klf4
shows great differences (r = 0.46, pr = 0.05). In return Rex1 seems to compensate
this correlation, as correlation with Nanog (pr = 0.30) and Klf4 (pr = 0.40) shows much
lower decrease. In this point, our results are not fully consistent with previous findings, for
example of Chan et al. [7] or Zhang et al. [64], which proposed a direct correlation between
Klf4 and Nanog. We, in contrary would assume a regulatory system between Nanog, Klf4
and Rex1, whereas Rex1 transmits regulatory influences between the other two factors.
This suggestion has to be confirmed by further investigations of those correlations, to be
validated.

Partial correlations of movie (II) (Figure 30) showed similar properties, as those of movie
(I). Table 3 contrasts Pearson correlations (upper right part) with the partial correlations

48



A B

Figure 29: Table 2, including as well Pearson correlations (A) as partial correlations (B)
is visualised. Solid lines represent positive, dashed lines negative correlations. The width of
the connections represents the strength of correlation, meaning, the thicker the connection is,
the higher is the absolute value of the correlation. In addition to the partial correlations, also
the associated p-values were estimated and insignificant correlations removed from the graph.
Therefore, a Bonferroni corrected significance level of 0.05 was used.

Table 3: Upper right part shows Pearson correlations of absolute intensities of Nanog, Oct4,
Sox2, Klf4 and DAPI, quantified in movie (II). Partial correlations, calculated from Pearson
correlations, are shown in the lower left part and also visualised in Figure 30.

area Nanog Oct4 Sox2 Klf4 DAPI
area 0.46 0.43 0.38 0.34 0.70

Nanog 0.29 0.48 0.33 0.48 0.48
Oct4 -0.18 0.11 0.57 0.79 0.79
Sox2 0.08 0.01 0.19 0.51 0.55
Klf4 -0.21 0.21 0.45 0.10 0.68

DAPI 0.63 -0.06 0.49 0.08 0.22
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Figure 30: The graph visualises the correlations, listed in Table 3. (A) shows the Pearson
correlations, (B) the derived partial correlations. Line width represents the absolute value of
the correlation. Solid lines were plotted for positive correlations, whereas, negative ones are
visualised by dashed lines. Missing lines were removed, due to insignificance, regarding the
estimated p-value from the partial correlations. Therefore, a Bonferroni corrected significance
level of 0.05 was used.

(lower left). All correlations were decreased, due to removal of linear dependencies between
the correlations. The differences between Pearson correlations (A) and partial correla-
tions (B) were pointed out in Figure 30. Obviously most correlations decreased clearly
or were filtered as insignificant. Area and DAPI remained highly correlated, as expected,
but so did Oct4-DAPI, what could not be explained in scope of this work. Interestingly
Sox2-Nanog correlation was removed, due to insignificance, contradicting the findings of
Rodda et al. [42], who proposed a direct regulation of Nanog by Sox2 and Oct4. Also
notably, Oct4 and Klf4 still are highly correlated, which indeed was reported previously
[56], but neither detected that clearly, nor investigated in detail to our knowledge.

Notably, correlation between Nanog and Klf4 (pr = 0.21) remains higher in partial cor-
relations in movie (II) than in the dataset using Rex1 (II) (pr = 0.05). We inferred
from the high correlations between Rex1 and Klf4 and Rex1 and Nanog in movie (I), that
there existed linear dependencies between these correlations and Klf4-Nanog, which could
have been excluded in movie (I), but not in movie (II), due to missing measurements of
Rex1 intensities.

Correlation between Oct4 and Klf4, also showed a notably high value in movie (II),
and lower but still outstanding value in movie (I). As -disregarding slight experimental
differences- Rex1 and Sox2 are the only difference between the two experiments and
their resulting movies, Sox2 was suspected to to be responsible for this drastic difference
between the two calculated partial correlations between Oct4 and Klf4 in movie (I) and
(II).
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5 Summary and Outlook

After developing a tool for single cell quantification in microscopy images (SCQMI ),
applying it on ESC fluorescence images to gather snapshot data of certain transcription
factors, which are associated with ESC pluripotency and differentiation, and interpreting
those data, we here sum up our efforts. In Section 5.1 we briefly sum up our development
efforts and the improvements of SCQMI in comparison to the prototyped sQTFy and
other tools and discuss the further development of SCQMI. In Section 5.2 we shortly
present the results of applying SCQMI on ESC fluorescence imaging data and propose
further experiments and investigations, based on our findings.

5.1 SCQMI - Single Cell Quantification in Microscopy Images

Regarding the application of SCQMI, which was developed in scope of this work, we
succeeded in complying with the requirements, described in Section 1.4. We created an
intuitive program capable of quantifying large-scale imaging experiments, like time lapse
fluorescence microscopy, and all precedent steps, like background calculation, correction
and segmentation. One main feature of the single cell quantification tool is the underlying
data-structure, which enables storage and processing of large-scale experiments containing
multiple dimensions and thousands of images. Another innovation is the possibility to
create quantification workflows, using a sophisticated graphical user interface and real-
time preview of all intermediate results, what makes workflow generation much easier.

As with sQTFy, a prototype, written in MATLAB, for a single cell quantification tool
was already provided, we took advantage of promising parts, like the core workflow, con-
sisting of the background calculation, correction, segmentation and quantification. Other
features, we kept in mind, were the usage of MSER as advanced segmentation algorithm,
the folder structure of TTT experiments for files on hard drive, and the automatic or
semi-automatic kind of processing the images. We further improved the graphical user
interface and avoided too much pop-ups, which were criticised by users. The workflow
concept was established, to cover more use cases and give users the possibility to adapt
the image processing to their needs.

Although the current version of SCQMI already provides a lot of features, there is still
much to improve. For example, more functions have to be implemented as ImageJ/Fiji
plugins. The still missing background calculation method Fluorescence Image Normali-
sation [46, 47] has to be wrapped as plugin, for example. Other algorithms, that might
improve the microscopy images and, therefore, subsequent processing steps like back-
ground calculation and segmentation have to be included, too. A contrast enhancement
algorithm, like contrast limited adaptive histogram equalisation (CLAHE ) [43, 65], is an
exemplary possible candidate for add-ons.

Furthermore, the Import part of the tool can indeed use the TTT [37] folder hierarchy to
import structured data, but currently, a user has to define the structuring elements of an
exemplary image path on his own, as well as the ranges that have to be imported. The
graphical user interface can be even more supportive, by detecting a TTT’s experiments
dimensions and sizes on its own. Also the calculations for real-time preview have to be
performed in parallel to the user input, to facilitate even smoother usage.
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Last but not least, parts of the software, that simply were out of scope of this work,
have to be implemented in the future. As currently, the workflow can only be processed
on images sequentially, locally, and in automatic mode, the missing execution modes
have to be completed. These are the semi-automatic execution, execution in parallel and
execution on a grid engine.

The extensions previously named, can be implemented and added to SCQMI easily, as
therefore, the extensions were kept in mind and interfaces already prepared during devel-
opment. Hence the current version of SCQMI as well as its future versions, incorporating
those extensions, can be used to quantify large-scale microscopy imaging data, as pre-
sented in Section 4. A complete list of necessary and realisable extensions to the current
version of SCQMI is presented in Appendix A. Nevertheless, we discourage any develop-
ment, that goes beyond those already prepared extensions, as ImageJ/Fiji revealed some
major drawbacks during development. For example, ImageJ/Fiji does not provide any
interface for its Macro Recorder. As the workflow creation, based on recording of user
actions, is one of the main features of SCQMI, we alternatively had to query user actions
from ImageJ/Fiji ’s frontend, using a Listener class on the macro recordings list of Im-
ageJ/Fiji. Another exemplary drawback is the handling of images with different scales,
as indeed the value ranges are extended or reduced, but the values simply cut, instead of
being rescaled properly. To handle this source of errors, we implemented an additional
plugin, that takes care of rescaling the values. As we had to handle those and other dif-
ficulties during development, the software grew partly unstructured, what makes further
extension challenging. Furthermore, ImageJ/Fiji and its underlying datastructure, called
imglib, are currently redesigned and will be released likely in summer 2014 [11] as ImageJ2
and imglib2. Therefore, we advise to extend the current version of SCQMI only as far
as needed and to use ImageJ2 to redesign SCQMI, when released. The current roadmap
of ImageJ2 promises a lot of improvements, that will help to implement SCQMI more
structured. Nevertheless, we propose to check other available tools and frameworks in the
meantime, as there exist many more with also promising features, like FARSight [16].

5.2 Correlations between ESC pluripotency associated transcrip-
tion factors

By applying SCQMI successfully to quantify two different movies of cultured ESCs, show-
ing some single cell intensities of transcription factors, associated with the regulation of
pluripotency and differentiation, we were able to gather large-scale quantification data.
Analysis of this data, in comparison to previous findings, revealed some already known
correlations between the factors, as well as some still undescribed correlations. Before
the specific transcription factors can be investigated in more detail, a few experiments,
similar to the one, described in this work, have to be performed. Thereby, the correctness
and consistency of our findings can be validated.

Although the similarity of the distributions, derived from the quantifications, was shown
in Section 4.3, the standard non-parametric statistical tests like the Kolmogorov-Smirnov
or Wilcoxon signed-rank test rejected the null hypothesis, stating the pairwise equality of
the distributions. The reason for the detected difference could not be explained in scope
of this work and has to be investigated in detail, as all interpretations of the comparisons
between the two experiments rely on their comparability.
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During data analysis, we found new correlations, which were not yet described in liter-
ature (high Oct4-DAPI correlation and reducing Klf4-Nanog correlation in the dataset,
including Rex1 (I)). These have to be investigated in detail, meaning further statistical
investigations of the existing datasets, as well as further experiments, hopefully unveiling
the underlying regulatory system of the correlations. Especially the significant reduction
of the Klf4-Nanog correlation, by including Rex1 into calculation of partial correlations
is interesting and points to indirect regulation between Nanog and Klf4, using Rex1 as
intermediate regulator.

In addition, experiments, simultaneously containing intensities of Sox2 and Rex1 have to
be performed, to capture effects between these two factors, too. In best case, these exper-
iments investigate all regarded transcription factors all in once, for example by Quantum
dots. Quantum dots promise much better fluorescence images, by providing greater res-
olution as well as tighter wavelength spectra, enabling more transcription factors being
investigated in one experiment with simultaneously clearer separable fluorescence signals
[59].

To enhance analysis and interpretation, the cells have to be evaluated individually or
colony-wise, but not united to populations. Also, the time resolution has to be taken into
account. Filipczyk et al. [17] for example, identified colonies, defined as descendants of
the same cell, that all show an intensity of Nanog of a certain level. This level can be
either colony-wise low, or low and high, named mosaic. Filipczyk et al. [17] described
a clear difference between the correlations of the measured pluripotency transcription
factors, in the two data subsets. As the time resolved data of Nanog intensities already
exists, we propose further analysis, based on a decision tree, to reveal the certain levels
and correlations, that lead to the differentiation of those different colonies. Therefore, the
lineage tree can be mapped on a decision tree of certain Nanog levels. By transcloning
a second marker into another pluripotency transcription factor gene (like Klf4), even the
correlations between these two transcription factors can be taken as a basis for the decision
tree.

Concluding, we developed and presented a tool for single cell quantification in microscopy
images, providing all needed features in an easy and intuitive graphical user interface.
As the backend components were developed under consideration of very large-scale ap-
plications, the tool is capable of loading and processing a whole experiment’s data. The
performed workflow is not predefined by the software, but can be easily defined by a user.
Thus SCQMI can be used on a broad range of different images, like fluorescence or even
bright-field images. We exemplary used SCQMI on two imaging experiments, resulting
in quantifications of cell-wise intensities of transcription factors, associated with pluripo-
tency. These quantifications were analysed, compared to already published findings, and
further investigations proposed, on base of findings, not yet described in literature. With
the development and applications of this work, we presented promising possibilities, which
will help understanding the principles behind ESC pluripotency and differentiation and
further biological questions, by supporting large-scale quantification of single cells in mi-
croscopy images.
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A Future Extensions of SCQMI

� Automatic detection of TTT experiments including number and type of dimensions
as well as their sizes (see Figure 4).

� Implementation of a quick preview possibility of selected images in the VirtualData
window.

� Implementation of the Fluorescence Image Normalization proposed by [47] as back-
ground calculation.

� Implementation of the Subtract and Gain method for correction. The standardised
location of the gain image has to be fixed in the code and associated with the right
images for division.

� Improvement of the segmentation method. As currently MSER is the de-facto
standard of SCQMI, it can be extended like proposed by Hilsenbeck O., who tried
to incorporate morphological features into MSER.

� Supply of some compiled versions of MSER for Widnows and Linux, as MSER uses
the Java Native Library, and has to be compiled on every system, before being used.

� Extension of the quantification step in the workflow generator by automatic statistic
analysis and display of certain measured features, for example by histograms.

� Implementation of serialisation and de-serialisation of the workflow object, to save
and load workflows.

� Development of a function to check, whether a certain workflow can be calculated
automatically, or it requires semi-automatic processing, due to obligatory user input,
before bulk execution.

� Implementation of bulk execution on a grid as well as the associated graphical user
interface to adequately monitor the proceedings.

� Implementation of multi-threaded bulk execution on a grid as well as locally. Pos-
sible errors have to be caught and handled appropriately.

� Implementation of user friendly error handling, as errors are still just reported to
the log window but handled not further.

� Development of an install script or makefile, as installation of certain parts of SC-
QMI, especially those that use the Java Native Library, might be challenging for
some users.

� Addition of further tooltips and creation of a useful documentation.
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