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Abstract

The toggle switch motif consists of two genes that mutually repress their expression and
exhibits two stable states where one gene is upregulated and the other is repressed. The toggle
switch motif frequently occurs in regulatory networks of differentiating cells and is thought
to act as a cellular memory unit that chooses and maintains cell fate decisions. Recently, the
dynamics of the toggle switch have been studied using deterministic models, which are justified
for systems with large molecular abundances. However, due to low copy numbers of DNA and
mRNA, stochastic effects can alter the system’s dynamics, for example introducing random
transitions between the two stable states of the toggle switch. To account for this intrinsic
noise, we introduce different probabilistic models of the toggle switch. In the one-stage model
of the toggle switch gene expression is condensed into a single synthesis reaction. In the
two-stage model mRNA is introduced and finally, we include autoactivation into our model.
For each model, we define three dynamical regimes of the toggle switch, where either of the
two genes dominates or the switch is in an undecided state. From simulations we determine
the prevalence of the regimes and determine the parameter dependence of systemic features.
We find that increasing the mean protein level of the system also increases the switching
time between the regimes. Inclusion of mRNA and autoactivation increases the switching
time even more. Furthermore, we investigate the robustness of the toggle switch against
parameter asymmetries with respect to the switching bias. Parameter asymmetries occur
due to different protein properties, changing chromatin states or asymmetric cell division.
Intriguingly, a maximally robust system is achieved by mRNA levels on the order of tens and
protein levels on the order of ten thousands, granting unbiased lineage decision over a wide
range of asymmetries. Autoactivation further increases the robustness of the system. In this
work, we show that the study of a probabilistic toggle switch model allows the reconciliation

of principles of motif dynamics with measured molecular abundances.
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Zusammenfassung

Der Toggle Switch, ein regulatorisches Motif bestehend aus zwei sich gegenseitig inhibierenden
Genen, ist ein haufiger Bestandteil regulatorischer Netze in sich differenzierenden Zellen.
Dieses regulatorische Motif fungiert als Informationsspeicher in der Zelle. Man geht davon
aus, dass die Differenzierungsentscheidung einer Zelle durch den Toggle Switch gefallt und
gespeichert wird. In den letzten Jahren wurde die Dynamik des Toggle Switch anhand ver-
schiedener deterministischer Modelle beschrieben, die allerdings nur im Falle grofler Molekiil-
zahlen anwendbar sind. Augrund der geringen Anzahl von mRNA- und DNA-Molekiilen in
der Zelle treten stochastische Effekte auf, die die Dynamik des System grundlegend &ndern.
In dieser Arbeit werden verschiedene probabilistische Modelle des Toggle Switch vorgestellt
und der Einfluss der stochastischen Effekte analysiert. Im sogenannten one-stage Modell
werden Transkription und Translation zu einer einzigen Synthesereaktion zusammengefasst,
im two-stage Modell werden beide Prozess getrennt modelliert. Zuletzt werden die Model-
le durch zuséatzliche Autoaktivierung erweitert. Fiir jedes Modell werden drei dynamische
Regime definiert: Entweder ist jeweils eines der beiden Gene hochreguliert, wihrend das
andere inhibiert ist, oder das System befindet sich in einem noch nicht entschiedenen Zu-
stand. Anhand simulierter Zeitverlaufe wird tiberpriift, ob die Aufenthaltswahrscheinlichkeit
des Systems fiir die Regime ausgeglichen ist. Weiterhin wird anaylsiert, wie weitere System-
eigenschaften von den gewéhlten Parametern abhdngen. Hohere Proteinzahlen verlangern
die Zeit, die das System benétigt um das Regime zu wechseln. Durch die Hinzunahme von
mRNA und Autoaktivierung wird diese Zeit zusétzlich erh6ht. Die simulierten Zeiten werden
mit einer analytischen Naherung verglichen. Des weiteren wird die Robustheit des Toggle
Switch beziiglich des Switching Bias bei asymmetrisch gewahlten Parametern untersucht.
Asymmetrische Parameter werden zum Beispiel durch unterschiedliche Proteineigenschaften,
sich dndernden Chromatinzustand oder asymmetrische Zellteilung verursacht. Ein maximale
Robustheit wird durch mRNAs in der Groflenordnung von zehn sowie durch Proteine in der
Groflenordnung von mehreren zehntausend Molekiilen erzielt. Die Robustheit des System
wird durch Autoregulation zuséatzlich erhéht. Diese Arbeit zeigt, dass ein probabilistisches
Modell des Toggle Switch es ermoglicht, generelle Prinzipen dieses regulatorischen Motif mit

experimentell gemessenen Proteinzahlen in Verbindung zu bringen.
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Chapter 1

Introduction

Cellular phenotypes are the result of the well-orchestrated interplay of thousands of genes and
their products. One level of regulation is mediated by proteins known as transcription factors
controlling the expression of genes. Other levels of regulation, for example microRNAs or
post-translational modifications act on top of this layer of transcriptional regulation. As the
transcription factors themselves are gene products, they are regulated as well, leading to a
complex network of regulatory interactions. Advances in high throughput experiments have
unraveled large parts of these networks.

1.1 Regulatory networks in development

The developmental program of an organism is encoded in its regulatory network. Studies of
large transcription factor networks mostly analyze the topology of the network. Interesting
properties like scale freeness [4], modularity [42] or the small world property [63] emerged
and seem to constitute basic principles in biological networks. However, the networks are
only available for some organisms, e.g. Escherichia coli and Saccharomyces cerevisiae and
due to the complexity of these large networks, the dynamics — giving insight to what actually
happens in the cell — remain unclear. Therefore, subsets of the complete regulatory network
are investigated.

Meso-scale models contain only genes involved in a certain process of interest, for example
the formation of the mid-hindbrain boundary [64] or hematopoesis [29]. These networks are
often modeled using boolean dynamics [18]: Genes have only two states (they are either ON
or OFF), interactions between genes are modeled as boolean functions. Simulating the system
with boolean dynamics leads to attractors that can be interpreted as stable configurations
of gene expression. A common idea is that these attractors correspond to cellular pheno-
types, e.g. different cell types [24]. An intuitive picture to illustrate the attractor concept
was published by Waddington [60] (see Fig. 1.1), describing the differentiation process of a
cell as a marble rolling down a hilly landscape (termed the epigenetic landscape). During
differentiation the cell (marble) arrives at junctions and has to choose a direction. Ultimately
it will come to rest at a stable state, corresponding to a cell type. The shape of the landscape
is determined by the network topology and the parameters of regulatory interactions.

Small-scale models describe small regulatory motifs occurring much more frequently in
the whole network then expected [36]. They typically consisting of two to four genes. Alon
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Figure 1.1: Tllustration of Waddington’s epigenetic landscape adopted from Mitchell [37]. The cell
moves in a hilly landscape ultimately coming to rest at a stable state corresponding to a certain
phenotype.

[3] suggested that these network motifs carry out specific functions, which can be studied in
isolation from the complete network.

A network motif known as the toggle switch is of special interest in this work. It consists
of two genes A and B that mutually repress their expression (see Fig. 1.2 A). Intuitively,
this motif can be in three states: Kither A is active, repressing the expression of B, or
vice versa. In the third state both genes are repressed and the system is in a deadlock
state. This is often referred to as priming. Gardner et al. [12] constructed a synthetic toggle
switch in the bacterium E. coli and showed that this motif can act as a cellular memory
unit in vivo. In eucaryotes this motif frequently occurs in developmental networks that
control cell fate decisions. One of the best studied stem cell systems is hematopoesis, the
formation of blood cells. Here, mature blood cells are derived in a hierarchical manner from
the hematopoetic stem cells. Multiple occurrences of the toggle switch motif have been found
[44], which are thought to control the cell fate, promoting either one or the other fate, but
making them mutually exclusive (Fig. 1.2 B). One well studied example is the toggle switch
of the transcription factors PU.1 and GATA-1 presumably controlling the cell fate decision
of common myeloid progenitors. The two possible states of the toggle switch resemble the
respective lineage choice: PU.1 is highly expressed in granulocyte/macrophage progenitors
(GMPs), while GATA-1 is repressed. In megakaryocyte/erythroid progenitors (MEPs) GATA-
1 is expressed, but not PU.1. In the common myeloid progenitor itself, PU.1 and GATA-1 are
only expressed at a basal level, corresponding to the primed state. Another example can be
found in megakaryocyte/erythroid progenitors, where the toggle switch between EKLF and
Fli controls differentiation into either red blood cells or megakaryocytes. Again, the toggle
switch motif occurs in cell fate decision of granulocyte/macrophage progenitors. Therefore,
to understand the process of hematopoesis on a quantitative dynamical level a comprehensive
analysis of the toggle switch motif is necessary.

Recently, many different models of the PU.1/GATA-1 toggle switch in myloid differen-
tiation have be proposed. They all use ordinary differential equations to deterministically
describe the dynamics of involved molecular species. Roeder and Glauche [49] introduced a
model of the toggle switch including self- and crossactivation of PU.1 and GATA-1 and a
PU.1/GATA-1 heterodimer that acts as an inhibitor. The system is capable of two stable
states, corresponding to the two possible lineage decisions. However, to achive bistability,
assumptions on molecular details are made which could not be confirmed experimentally.
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A B

Figure 1.2: A: Scheme of the toggle switch motif. B: Repeated occurrence of the toggle switch in
myeloid differentiation. Cell types are shown in red, regulatory proteins are shown in green. CMP: com-
mon myeloid progenitor, MEP: megakaryocyte/erythroid progenitor, GMP: granulocyte/macrophage
progenitor, RBC: red blood cell, MK: megakaryocyte, MPh: macrophage, GC: granulocyte.

Huang et al. [21] modeled the mutual inhibition and autoactivation of the PU.1/GATA-1
toggle switch as Hill functions. The model exhibits two or three steady states respectively,
depending on the parameters and thus can serve as a conceptual framework to understand
commitment of differentiation cells. However, this model requires a binding cooperativity
of at least two — a feature that was not experimentally validated — to achive multistability.
Chickarmane et al. [8] proposed a PU.1/GATA-1 model involving an additional unknown
player to exhibit bistability without binding cooperativity. Krumsiek [29] introduced an ad-
ditional cosuppressor (pRB) in the PU.1/GATA-1 toggle switch, resulting in an asymmetric
system. It was suggested that pRB plays an important role in the lineage decision mechanism
and could actually control the switching.

All these models rely on deterministic dynamics. Speaking in terms of the epigenetic
landscape: If one places the cell at the same location in the epigenetic landscape multiple
times, it will always end up in the same attractor state. During the last years, the fact that
cellular systems are inherently noisy became popular, for a review, see e.g. [23]. In a seminal
work Elowitz et al. [10] showed that gene expression is an inherently noisy process due to the
low numbers and discreteness of involved players. The cell moves in the epigenetic landscape,
but is subject to random fluctuations, which e.g. can push the cell over mountain ridges in
the landscape.

Probabilistic models of the toggle switch have been studied in theory by Loinger et al.
[33], who examined different realizations of the toggle switch with respect to their steady
state solution. Loinger et al. determined the range of parameters where bistability is possible
using numerical integration and stochastic simulation and studied the effect of cooperative
binding, protein-protein interaction and degradation of bound repressors on the dynamics
of the switch. Schultz et al. [54] provided an analytical solution of the probabilistic toggle
switch using linear noise and fast transition approximations based on the work of Kepler and
Elston [26], and investigated the influence of parameters on the shape of the steady state
distribution. to describe the Sasai and Wolynes [53] mapped the toggle switch to a quantum
many body problem and solved the system using the Hartree approximation, also showing the
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influence of the parameters on the steady state distribution. A detailed discussion of existing
literature will be given in section 5.1.2.
We extend these studies on the probabilistic toggle switch by

1. expanding the toggle switch model by introducing mRNA. All previously mentioned
studies have considered a simple model of gene expression where transcription and
translation are condensed into a single synthesis reaction of proteins.

2. analyzing the effect of different protein copy numbers on the systems dynamics.

3. investigating the robustness of the system against asymmetric parameters.

1.2 Robustness of cellular systems

Robustness is thought to be a major underlying principle of all biological systems [27]. Robust
systems can maintain specific function in the presence of internal or external perturbations.
Internal perturbation are e.g. fluctuations due to inherent noise, for example in gene expres-
sion, which drives the cell out of equilibrium. External perturbations are often related to
environmental changes, such as changes in energy sources or stress. A classical example of a
robust system is the fate decision in A-phage. The fate decision mechanism is not the result
of a set of fine-tuned systems parameters (like binding affinities between repressors and pro-
moter sequences), but results from the structure of the regulatory circuits. Little et al. [32]
showed that the system is robust against promoter point mutations in the sense that it still
can maintain its function as a fate decision unit.

Following the ideas of Kitano [27], robustness in a dynamical system can be realized in
two ways:

1. The system, driven out of its current state through a perturbation, falls back into the
original state (attractor) and restores its function.

2. The system does not return to the current state, but instead moves to another attractor,
which has a different configuration (e.g. in terms of molecular expression profile), but
the same function.

According to Kitano [27], three concepts contribute to a robust system: First, system control
in terms of positive and negative feedback loops allows for a robust response to perturbations.
Second, redundancy and diversity allow the system to maintain its function. Even if one
component fails, a second one can rescue the system. Third, modularity minimizes the spread
of local perturbation across the whole system.

During this work we will investigate the robustness of the toggle switch motif against
asymmetries in system parameters. We require that the system is able to maintain its function
as a cellular memory unit and provides equal probability for both possible decisions. Instead
of using the general definition of robustness by Kitano [27], we use an approach more similar to
classical sensitivity analysis [59], quantifying the influence of the perturbation on the system’s
output. However, one can redefine these internal into external parameter perturbations.
For example all parameters of our genetic system are related to the DNA sequence — most
obviously DNA binding affinities or promoter strength, but even protein 3D structure —, and
this DNA sequence is subject to external perturbations, such as UV-light, induced mutations
etc.
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1.3 Overview

In this work, we investigate the dynamics of different toggle switch models and examine the
robustness of the toggle switch against parameter asymmetries.

In chapter 2 we introduce the general formalisms and methods used to describe and work
with our models. We represent the models deterministically with ordinary differential equa-
tions (ODEs), semi-deterministically using stochastic differential equations (SDEs) and in
a probabilistic manner using the chemical master equation (CME). Furthermore we intro-
duce methods to approximate the CME either numerically or through kinetic Monte Carlo
simulation. At the end of this chapter, we present the general modeling assumptions used
throughout this work.

In chapter 3 we study the simplest model of the toggle switch, where gene expression
is a one-stage process, neglecting the intermediate mRNA stage. We give a quantitative
description of its dynamics and define the three major dynamical regimes of the toggle switch.
We derive an analytical expression for the switching time of the system and find a strong
dependence of the switching time on the overall protein level in the system. Finally, we
focus on how the dynamics change when asymmetric parameters are introduced and find that
increased protein levels enhance the robustness of the system.

In chapter 4 we extend the one-stage toggle switch by introducing an mRNA stage and
elaborate how this additional complexity influences the system’s behavior. We analyze the
dynamics of this two-stage switch in terms of transition times. We extend the analytical
expression of the switching time for the two-stage switch and find a similar dependence of
the switching time on the protein level of the system. Furthermore, we assess the robustness
of the system against asymmetric parameters and find an increased robustness for switches
with higher protein levels.

In chapter 5 we compare both toggle switch models and find that the two-stage switches
have longer switching times and are more robust than the one-stage systems. We extend
the two-stage switch by autoregulation and show its influence on the dynamics. Autoreg-
ulation increases switching times and robustness even more. Finally, we give a biological
interpretation of the results and line out possible extensions of the present work.
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Chapter 2

Modeling framework

In this chapter we introduce the formalisms used to describe the dynamical systems, show the
derivation of the stochastic simulation algorithm and discuss general modeling assumptions.

2.1 Formalisms

We start by first describing a general model in terms of biochemical reactions. We then
show how one can assess the dynamics of this model using deterministic and probabilistic
approaches.

2.1.1 Reactions

A general chemical reaction model consists of a set of NV molecular species X1,... Xy and
a set of M biochemical reactions with reaction rates ki ...k,,, specifying the speed of the
reactions. Each reaction p can be written in stoichiometric form:

k
6#1X1 —l—e#QXg... %up‘ule +p#2X2... . (21)

Thereby, e, (pui) € No is the number of X; molecules consumed (produced) by reaction p
(possibly 0 if the species does not take part in the reaction). We can represent the whole

system by an educt matrix
E = ey, E € NMeN),

a product matrix
P = p,;, P ¢ NMeN),

and a vector of reaction rate constants k = (k,) € RM. The stoichiometric matrix is defined
as V = —FE + P. The row vector V,,,u = 1,..., M of V corresponds to the change in molecule
numbers if reaction p occurs.

2.1.2 Deterministic description: Reaction rate equations

We can treat the model deterministically by converting the biochemical reactions in equa-
tion (2.1) into a set of ordinary differential equations (ODEs) by applying the law of mass
action. The ODEs describe the change of molecule species over time. We get one ODE for
each molecule species in the system, which describes the time-rate change of the molecular
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abundance of this species in terms of the abundances of other species. Reaction constants are
treated as reaction rates. This results in the following N-dimensional ODE system, which
consists of reaction rate equations

dX;(?)
dt

= fi(Xa(t) ... Xn(1)) , (2.2)

where X;(t) denotes the abundance of species X; at time ¢ and the functions f; are determined
by E, P and the reaction constants k:

JiX) = puiku [T X5 =D enikn [T X7
@ j " ;

Solving the system of equations (2.2) gives the evolution of the continuous molecular abun-
dances over time. Note that the solutions of ODEs derived from biochemical reaction networks
are always non-negative, if initial conditions are non-negative [38].

The reaction rate equation approach is only valid if the molecule numbers in the system
are large, so that continuous molecular abundances are an adequate description of the system
and random fluctuations of species numbers can be neglected. In section 2.2 we will derive
the exact conditions under which the reaction rate equation approach is justified.

2.1.3 Probabilistic description given large molecular numbers: Stochastic
differential equations

Ordinary differential equations provide an easy way to assess cellular dynamics, but assume a
noise free processes, which is unrealistic in a cellular environment, which is inherently noisy.
An intuitive way to incorporate noise into the deterministic reaction rate equations is the
addition of a white noise term £(t) to the right hand side of the ODE:

dXi(t)
dt

= fi(X (1)) + gi(X (1)) - &(t) , (2.3)

X;(t) is now a stochastic process and g; are functions that determine how the noise term &;(t)
acts upon the species. These functions are not defined for stochastic differential equations in
general, but we will see in section 2.2.2 that one can derive them from molecular physics in
case of biochemical reaction systems. Note that % = {(t), where W is called the Wiener
process, which fulfills

W(0) =0
E[W(#)] =0
W(t) — W(s) ~ N0t —s), (2.4)

where N (u,0?) denotes a normal distribution with mean p and variance o2. The Wiener
process is e.g. used to describe Brownian motion. We can rewrite equation (2.3) in terms of
the Wiener process to obtain the stochastic differential equation:

AXi(t) = Fi(X ()t + g:(X (8)) - AW (D) (2.5)
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Given an stochastic differential equation of the form (2.5), the Euler-Maruyama method
approximates the solution over the interval [0, T] by dividing the interval in b subintervals of
width 6 = T'/b and iterative calculation of

X(t+08) = X (1) + F(X(1) + g(X(£)[W (£ + ) — W(1)
D X (1) + F(X(1) + g(X(£)N(0,6)
= X(8) + [(X (1)) + g(X (1) VIN(0,1) ,

with X (0) = xzp and 0 < ¢t < T. This scheme allows an easy way to integrate stochastic dif-
ferential equations, but has some disadvantages: Mass conservation is not guaranteed ad hoc
due to the noise term unless one includes correlated noise for players which are interconnected
via mass conservation.

It is not entirely clear how to select the number of integration steps b, which is the most
crucial point for ODE-solvers. Large b lead to decreased performance, small b will lead to
inaccurate solutions. More sophisticated algorithms that use dynamical step sizes exist, e.g.
the Milstein method [28], but are not subject of this work.

Stochastic differential equations do account for fluctuations, however the inclusion of a
noise term is artificial and lacks solid physical foundation. For example it is unclear how to
define the function g(X(¢)) in equation (2.5). However, in section 2.2 will will show how this
term can be derived from molecular physics and we will provide the conditions under which
the stochastic differential equation approach is justified.

Furthermore, when we transfer a chemical reaction model to a set of stochastic differential
equations it is not guaranteed that its solution will always be non-negative (opposed to the
ordinary differential equations). This is most likely when low molecule numbers are present
in the system. Here, the noise term can drive the species abundance into negative amounts.
Since we study a system with inherently small molecular numbers (e.g. one DNA molecule)
later on, we do not apply the stochastic differential equation approach.

2.1.4 Probabilistic description: Chemical Master Equation

Often processes in genetic systems involve molecular species that are present in only very small
amounts, introducing fluctuations. In these cases deterministic approaches are expected to
give misleading results (examples are given in [52]).

The chemical master equation (CME) provides a fully probabilistic description of the
model and is derived from underlying molecular processes. Later we show its connection to
the stochastic differential equations.

We define the state of the system at time t as a vector x(t) € S,5 C NY (S is only a
subspace of Név if mass conservation is included in the system), where S is called the model’s
state space and N is the number of molecule species. x;(t),i = 1,...N is the number of
molecules of species 7 at time ¢. Note that we neglect spatial position and velocities of the
particles here, because we assume the system to be well stirred. As biological systems are
typically not well stirred and even more, gradients in the cytoplasm are important for e.g.
cell division, this assumption is questionable, but has to be applied for the sake of simplicity.
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The reaction constants are interpreted as reaction probabilities per unit time. Therefore,
we define the propensity a,(x) of a reaction x as

a,(x)0t :=Probability that, given the system is in state = at time ¢,

reaction p will occur in the infinitesimal interval [t, ¢ + 0t]

The propensity of reaction u is calculated as

where k,, is the reaction constant of reaction p and (Z) is the binomial coefficient. This
expressions is based on molecular physics, taking into account the frequency of educt collision
and the chance for a reaction once educts collided.

Given some initial state the system will jump from one state to the next by executing
one of the possible reactions. Which reaction is executed only depends on the propensities
of the system. As argued by Gillespie [14] the process z(t) is described by a time-continuous
Markov chain which has state dependent state-transition rates. Often x(¢) is also referred to
as a Markov jump process. We can describe how the probability P(x,t) of being in a certain
state x at time ¢ changes over time by using the chemical master equation (CME):

8P (2,1) Z V)P — Vi t) — ap (2, ) P(x, )] (2.6)
pn=1

V' is the stoichiometric matrix of the system. The first term on the right hand side describes
how the system can reach state x from other states which are exactly one reaction p away
from x. Thereby the probability of state x increases. The second term takes into account
that the system can leave the current state via reaction p, which reduces the probability for
state x.

We can also write the CME in matrix form if we assume an arbitrary enumeration X of
the state space:

AP(X, 1)

S = Q- P(X.1) (2.7)

where the matrix () is defined as

- Z/J, au(x) r=1y
Qazy = | au() y=x+V,
0 otherwise .

x and y are elements of the state space, thus the dimension of @) is equal to the size of the
possibly infinite state space. () has the following properties: It is independent of t. All its
off-diagonal elements are non-negative, all of its diagonal elements are non-positive and all its
columns sum to exactly zero. Note that equation (2.7) defines a system of linear differential
equations.

The CME is a system of coupled linear differential equations where the number of equa-
tions is equal to the size of the state space. The solution of the CME fully describes the
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distribution of system states over time and hence the dynamics of the system. Often the
state space is huge or infinite even for simple systems (exponential in the number of species)
and analytical solutions to the CME are possible only in some cases (in particular if all propen-
sities are linear, e.g. if the system involves only unimolecular reactions). Numerical methods
do exist, but are often computationally expensive for larger systems. Therefore stochastic
differential equations are often used in case of large systems. However, stochastic differential
equations fail if the system exhibits large numbers of one species (which are well described
by stochastic differential equations) and small numbers of another species (which are only
poorly approximated using stochastic differential equations).

2.1.5 Solutions to the CME

In a few cases approximate analytical solutions to the CME can be obtained using the gener-
ating function formalism [22, 55] or methods from quantum physics [53]. The success of these
method depends on the properties of the system and adequate approximations and cannot be
applied to any system in general. Thus in this section we focus on a numerical approximations
of the CME, called the finite state projection [40].

As shown in equation (2.7) we can express the CME in matrix form. This system of linear
differential equations has the general solution

P(X,t) =€ P(X,0), (2.8)

where €% is the matrix exponential of @ and P(X,0) is a vector of initial probabilities.

For systems that can only reach a finite number of states due to mass conservation,
equation (2.8) provides an exact solution to the CME. However for systems with large state
space the matrix exponential is hard to compute. Even tough the matrix exponential is still
defined for infinite matrices (corresponding to an infinite state space) — it is a mapping between
infinite Banach spaces — it is obviously not possible to calculate it on a computer. For infinite
state spaces it is not defined at all. To overcome this problem, one can truncate the state
space in a useful manner, thereby reducing the complexity of the problem enormously. If the
truncation is chosen wisely, the solution to the finite subsystem will be a good approximation
to the true solution.

Subject of all finite state projection algorithms is to find a suitable truncation of the
state space. We will not describe advanced algorithms (the interested reader is referred to
[39, 40, 41]), but use a very basic version of finite state projection, choosing a static projection
according to prior knowledge on the systems’ dynamics. Suppose we find a valid truncation
St C S of the state space S. For this truncation we can calculate the matrix @, which
describes how the probabilities change inside St over time. Note that this system will loose
probability mass: Consider a state that is a the edge of the state space. Transitions out of St
are still possible, but transitions into the truncated space are not, resulting in an overall loss
of probability in the projected system. We can capture the probability flow out of the system
by introducing an artificial absorbing state () and redirecting reactions that lead out of the
projected space into this absorbing state. An example is shown in Fig. 2.1. By including () in
the matrix Q1 we get a new matrix Q7+ where lost probability will accumulate in the absorbing
state (). We can find the solution of the projected system by Pp(X,t) = e?mt. Pp/(X,0),
where Pr/((),t) is the probability that the system has left the finite state space. The error
e = Pr/(0,t) is introduced through the projection and provides an easy way to control the
accuracy of the finite state projection. If the states that are removed by projection cannot
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)

Figure 2.1: Scheme of the finite state projection. Each node corresponds to a state x of the complete
state space S, arrows indicate possible state transitions. The subspace St is highlighted in blue.
Left: state space before projection. Right: state space after projection, transitions leading out of the
subspace are redirected into the absorbing state ().

be reached at all from the chosen initial conditions the error € will be 0. In a similar way,
removing states that are very unlikely to be reached will contribute only little to the overall
error, whereas removing a state that has high probability to be reached will introduce large
error. Therefore the general strategy of finite state projection is the identification and removal
of states that have low or 0 probability to be reached from initial conditions.

Note however that this approach reaches its limits for systems that have an underlying
distribution that has no distinct peaks, but where probability mass is spread equally across the
state space. Here, reduction of the state space is not possible without introducing significant
error.

Barzel’s method for estimation of transition times

Often one is not interested in the complete probability distribution of the system over time,
but only in the time it takes the system being in a certain subspace S C S to reach another
subspace Sy C S. Barzel and Biham [5] proposed a general method to calculate transition
times from any subset S; of the state space to another subset Sy of the state space for
stochastic systems.

This method is based on a linear equation system which defines for each state x of the
system the time T'(z) to get to a predefined set Sz of the state space:

T(z) =M -T(x), (2.9)

where

1
() = | Tmam TES2
0 T € SQ

and M =1 — N with

am () _
N,, = S (@) x ¢ SoNy=1x+0vy .
’ 0 r €8y
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7(z) is the average time the system stays in state x, also called waiting time. We can solve
for T'(z) using standard linear algebra techniques. Note that the dimension of the equation
system is equal to the size of the state space and the same problems occur as for the solution
of the CME itself. However, we can work on a useful projection of the state space in a similar
way to the finite state projection algorithm. Beyond this boundary are only states that are
very unlikely to be reached at all and are therefore excluded.

T(x) gives the average time it takes to reach any state within Sy from state z. To obtain
the average time it takes to get from the subspace S7 to Se we have to calculate the weighted
average of T'(x),x € S1. The weights are the probabilities of the states within S itself, which
are for example be obtained from the solution of the CME or set to user specified values.

2.2 Kinetic Monte-Carlo simulation methods

In this section we derive Gillespie’s stochastic simulation algorithm [17] and show its connec-
tion to stochastic differential equations and ordinary differential equations.

2.2.1 Gillespie’s algorithm

Although methods like the finite state projection can approximate the CME solution in theory
(despite the difficulty to find suitable truncations of the state space), often the truncated state
space is still too big to be handled, e.g. if the entries of the matrix ) exceed computer memory,
which can happen when dealing with a large number of molecules in the system.

Gillespie [17] proposed the stochastic simulation algorithm (SSA) to generate timecourses
that satisfy the CME, which corresponds to drawing samples from the process z(t). If we can
draw a sufficient number of samples we can approximate the underlying distribution which is
the solution to the CME.

The algorithm to simulated trajectories in a stochastic system evolves around the prob-
ability p(u, 7|z, t)dr of only the reaction u occurring at the time interval [t + 7,t + 7 + d7]
given the system is in state x at time t.

The system is at time ¢, during 7 nothing happens and during the infinitesimal small
interval dr reaction u happens.

To derive the joint probability p(u, 7|z, t)dr of reaction y happening in [t + 7,t + 7 + d7],
we partition the time interval [t, ¢+ 7+ d7] (from the current time of the system until the next
reaction happens) into k+ 1 subintervals. The first k intervals have length 7, the last interval
has length d7. The probability of exactly one reaction u happening in [t, ¢+ 7+ dr], but not in
[t,t+7] is equal to the probability of no reaction happening in the first k& subintervals (Py(z,t))
multiplied by the probability of reaction p happening in the last subinterval (P, (z,t)):

k
[1—aoxt }

Pu(x t) = au(x,t) -dr,

where ag(z,t) = 3_ , au(z,t).
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Algorithm 1: The stochastic simulation algorithm.

Input: Initial conditions xg, maximal simulation time ¢,,,,, propensity functions a;
and stoichiometric matrix V'
Output: Timecourse (x,t) of species abundances
J=0
to = 0;
while t < t,,4, do
a0 = X, a(a);
r1 = Random(0,1), 7o = Random(0,1);
_ _log(r).
T= e
sum = 0;
p=0;
while sum < reag do
p=p+1
sum = sum + a,(x;);
end
tjiv1=1t;+T1;
Tjy1 =5 + V,u?
j=7+1
end

We can derive the joint probability

p(p, 7|z, t)dr = klim Py(z,t) - Py(x,t)
— 00

k
= lim [1 - ao(q:,t)%} cau(x,t) - dr

k—o0
. Tk
p(p, T|x,t) = klggo [1 - ao(:z:,t)%} ~au(x,t)
= e 0@ g (z,t) .

Samples (i, 7) from this joint distribution can be drawn by

(2

1
- = Joslr) (2.10)
a()(.T, t)
and p being the smallest integer to satisfy
o
a;(x,t) > raap(x,t), (2.11)

1

where 71,72 are samples from a uniform distribution on the interval [0, 1]. This is known as
the inversion method for generating exponential and uniform random numbers.

Based on this, the stochastic simulation algorithm runs by iteratively drawing 7 and j
according to equations (2.10) and (2.11), and updating the system’s state and time (see
Algorithm 1).

This results in trajectories of the system state x over time that are guaranteed to satisfy

the CME. Simulating infinitely many trajectories would correspond to the solution of the
CME.
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2.2.2 r7-leaping

Many improvements have been made to speed up the algorithm (see e.g. [13, 17, 34]). They all
are as exact as the original algorithm, but involve some twists on storing and precalculating
the propensities. Often the SSA and its refinements are too slow for practical applications,
because every single reaction happening in the system is simulated. If molecule numbers
are large, the propensities and the sum of propensities ag get large. Increasing ag leads to
smaller time steps 7 in equation (2.10). To simulate an arbitrary time interval 7" in a system
with high molecule numbers now takes many more iterations and hence computation time
compared to a system with small molecule numbers, because the time steps taken are much
smaller. To overcome this limitation of the SSA an approximation can be made that allows
to simulate several reactions in one iteration, not only a single one. This method is known as
7-leaping [16]. Assume the system is in state x at time ¢. Further assume there exists a time
T so that the propensity functions do not change much during [t, ¢ + 7]:

a(z) ~ a(z') , (2.12)

where 2’ is the system state at ¢t + 7.
Under these conditions the number 7, of occurrences of a reaction p during [t,¢ + 7] can
be approximated by a Poisson distribution:

n,, ~ Poisson(a,(z)7) .

The Poisson distribution expresses the probability of a number of events occurring in a fixed
period of time if these events occur with a known average rate and independently of the time
since the last event.

So instead of simulating every reaction of p on its own during [¢,t + 7] several reactions
are simulated at once by drawing a sample n, from a Poisson distribution for each reaction
species p and firing that reaction n, times. The state of the system now changes according
to:

x(t+71)==x(t)+ Z Poisson(a,(z)7)V, (2.13)
I

Finding a 7 that satisfies the leaping condition (2.12) is not obvious, but several methods
[7, 16] are available that guarantee to find such 7. All these approaches rely on finding the
maximal 7 by bounding the expected change in propensities during 7. Also one has to take
care that the system is not driven into negative population numbers (which is possible because
of the unboundedness of the Poisson distribution and lack of coordination between reactions
during 7).

Moreover, T-leaping is only advantageous if the mean number of reactions that are simu-
lated together (the mean of the Poisson distribution, a,(x)7) is large, otherwise the perfor-
mance is similar to the SSA.

Chemical Langevin Equation

To see the connection to the stochastic differential equations and reaction rate equations from
sections 2.1.3 and 2.1.2, in the following we show how 7-leaping can be related to stochastic
differential equations and ultimately to the deterministic reaction rate equations.
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Figure 2.2: Approximation of a Poisson distribution with parameter A through a Normal distribution
with 4 = 02 = A. A: Probability density functions for A = 2. Both distributions differ significantly.
B: Probability density functions for A = 30. Both distribution are similar.

For 7-leaping to be useful,

ay(z)T > 1. (2.14)

In this case the Poisson distribution is well approximated by a normal distribution (see Fig.
2.2):

Poisson(a,(z)7) = N(ay(z)1, a,(x)7) = ay(z)T + /a,(x)TN(0,1) ,

because N(u,02) = p+ o - N(0,1). Plugging this into the 7-leaping formula (2.13) gives the
Langevin leaping formula consisting of a drift and a diffusion term:

z(t+71)=2+ Z Vyay,(z)T + Z Vir/au(z)N(0,1)v/T
M o

W g
Drift Diffusion

Note that by substituting the discrete Poisson distribution by the continuous Normal dis-
tribution, the discreteness of the system is lost. This can also be written as a stochastic
differential equation known as the Chemical Langevin Equation [15]:

dilsft) - ZH: Vaa(z(t)) + %: ViyJ au(@())Tu(t) | (2.15)

where I'j(t) are independent white noise processes. The Chemical Langevin Equation is a
stochastic differential equation and can be seen as the link between stochastic and determin-
istic descriptions of the same model: In the thermodynamic limit (species abundances z; and
system volume 2 approach infinity, with x;/Q being constant) the rightmost term of equation
(2.15) becomes neglectable and the Chemical Langevin Equation reduces to the deterministic
reaction rate equation (2.2).

We have hereby derived the conditions under which the stochastic differential equations in
section 2.1.3 and reaction rate equations in section 2.1.2 are justified. Stochastic differential
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equation describe the dynamics with sufficient accuracy if assumptions (2.14) and (2.12) are
fulfilled. Reaction rate equations can be used if the system is close to or at the thermodynamic
limit.

Note that the noise term g;(X (t)) - £(¢) of the stochastic differential equation (2.15) could
be derived using findings from molecular physics and is not an artificial extension of ODEs
to account for fluctuations.

2.2.3 Hybrid algorithms

Both 7-leaping and the exact SSA will become inefficient when applied to stiff systems.
Stiffness has no unique mathematical definition, but the main idea is that the system can be
separated into slow and fast dynamical modes, which are stable. In the context of stochastic
biochemical reaction systems this means that at a certain time some of the reactions will
be very fast whereas the remaining reactions are slow. This separation of scales leads to
inefficient simulations: The fast modes will equilibrate rather quickly, followed by a long
phase where dynamics are dominated by the slow modes. Although dynamics are determined
by the slow modes, the SSA has to simulate every reaction happening in the system, thus
spending most of the time on the now uninteresting fast modes. The 7-leaping algorithm is
also constrained to select 7 according to the fast modes.

Hybrid simulation algorithms can overcome this issues. They are called hybrid, because
not the whole system is treated in a stochastic manner but some parts are approximated
deterministically.

One of the first hybrid algorithms for stochastic systems was introduced by Haseltine
and Rawlings [19]. The mathematical derivation of this approach will not be given here and
the interested reader is referred to [19, 20]. Here we only show the general idea behind the
algorithm as it also describes the basic ideas for the more complex hybrid algorithms (e.g.
[6]). The key idea of this hybrid algorithm is to divide the reactions into fast and slow subsets.
The speed of the reaction is expressed in the size of its propensity. The algorithm applies
a different simulation method to each partition: The slow reactions y are simulated by the
exact SSA, whereas the fast reactions z are simulated either completely deterministically via
ODEs or via stochastic differential equations. As the system of interest might not be in a
state were one can distinguish between slow and fast reactions, the SSA simulation is used
until slow and fast subsets emerge. Here, one switches to the hybrid simulation approach.

Depending on both the propensities of the slow and fast subset, 7 is selected, which is
the time step taken. The fast reactions are now simulated by integrating the corresponding
ordinary or stochastic differential equations over 7. This gives some intermediate state of the
system, where the fast reactions have already occurred but no slow reaction. Based on this
intermediate state the propensities of the slow subset (which have changed due to the change
in the fast reaction) are recalculated and one slow reaction to be executed is chosen according
to the standard SSA procedure from equation (2.11).

Using this scheme the algorithm does not need to simulate every reaction in the fast subset
on its own and will run much more efficiently. However, the main issue of all hybrid algorithms
is the partition of reactions into a fast and a slow subset. Often previous knowledge on the
system’s dynamics must be available to determine fast and slow reactions. Moreover, the
algorithm of Haseltine and Rawlings [19] relies on a static assignment of these sets. However,
in systems like the toggle switch such a static assignment is not possible since the speed of
the reactions heavily depends on the systems current state.
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2.3 Modeling assumptions

In the following we give an overview of the assumptions and parameter choices used to model
the toggle switch in the next chapters.

2.3.1 Level of detail

Throughout this work we use a simple model of gene expression. Basic transcription and
translation reactions create mRNA or proteins. The decay of mRNA and protein are also
modeled as a single reactions. Furthermore proteins can interact with DNA through binding
and dissociation reactions.

Of course, reducing these complex processes to single reactions is questionable. Each
individual process involves several distinct steps. For example, let us consider transcription
in eucaryotes: Assuming the chromatin structure is in a state were the gene of interest is
accessible, the polymerase has to bind the gene’s promoter. This is only possible if several
supporting proteins, so called general transcription factors have to assemble at the gene’s
promoter: TFIID (transcription factor for polymerase II D) binds the promoter’s TATA-box,
causing structural chances in the DNA that are recognized by several other general tran-
scription factors such as TFITA and TFIIB. The polymerase now can bind this assembly,
completing the so called transcription initiation complex. With help of the general transcrip-
tion factors the DNA is partially unwound in the promoter region so that the polymerase
can start synthesizing the a few basepairs. Afterwards, the polymerase undergoes a confor-
mational change, being released from the initiation complex, recruiting new cofactors and
starting the mRNA elongation phase of transcription. Even at this state the polymerase does
not proceed along the DNA smoothly but often stops and reaccelerates. Additionally the
polymerase has to cope with superhelical tension in the DNA introduced by the unwinding.
The polymerase stops when it reaches a stop codon, releases the mRNA and dissociates. How-
ever even at this stage the mRNA is not completed. mRNA postprocessing occurs, involving
capping and splicing. As a last step, the mRNA has to be exported from the nucleus into the
cytoplasm.

We see that this process is highly complex and condensing it into a single transcription
reaction will certainly not account for that. For the translation process and mRNA /protein
degradation the situation is similar. As we want to find general principles of the toggle switch
mechanism, we do not aim for a model that reflects molecular biology in such detail in this
work, but reduce it to the essential mechanism of gene expression. However we would like
to note that there are several publications that aim to find a balance between total model
reductionism and details that indeed are important for general behavior of the model: For
work on the gene expression process, see e.g. the work of Roussel and Zhu [50, 51] and Swain
et al. [57].

2.3.2 Parameters

First we derive upper boundaries on the transcription and translation rates. Transcription of
DNA into mRNA is accomplished by the RNA-polymerase. One polymerase can process about
10-20 nucleotides per second in eucaryotes [1, 9, 56]. However, Alon [2] finds 80 nucleotids per
seconds in E. coli and a mean transcription time of one minute per mRNA in procaryotes and
30 minutes per mRNA in mammals. As described by Alberts et al. [1] the newly elongated
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Reaction Symbol Parameter value

Synthesis (one-stage model) « 0.5 s71

Transcription «a 0.055~1

Translation I3 0.05 s 'mRNA~!

mRNA degradation ¥ 0.005 s TmRNA~!

Protein degradation 1) 5-1073 to 5-107% s~ 'Protein!,

adjusted to the desired protein level

repressor-DNA binding Tt 1 s~ 'Protein—!
activator-DNA binding 7T 1 s~ !'Protein~!
repressor-DNA dissociation 7~ 0.1 s71
activator-DNA dissociation 7~ 0.1 571

Table 2.1: Parameter of the toggle switch used throughout this work. Protein degradation is chosen
according to the desired protein level p. If not mentioned otherwise, all simulations and plots are
based on this set of parameters.

RNA fragment is immediately released from the DNA, which enables other polymerases to
follow up even before the first RNA has been completed. The distance between polymerases
is estimated to be around 100 nucleotides [25]. The rate of transcription is independent of the
sequence length n, since the longer the gene, the more polymerases can process it in parallel.
Altogether we find a maximal transcription rate of

Speed

o= - # of transcribing polymerases
Sequence length

_ 10nt st n
T on 100nt
=0.1s"!

in case that enough polymerases and nucleotides are present.

The maximal translation rate can be inferred in a similar way: Ribosomes, large com-
plexes of proteins and rRNAs that translate mRNA into polypeptides, proceed with a speed
of 2 codons (=6 nucleotides =2 amino acids) per second in eucaryotes [1]. One mRNA can be
processed by many ribosomes (polyribosomes) at the same time [1]. The average space be-
tween two ribosomes is 80 nucleotides or 27 amino acids [1]. Therefore the overall translation
rate for one mRNA of length n is

Speed
P # of transcribing polymerases

B Sequence length .

B 24A 51 n
- n 27TAA
=0.074s7 1,

again independent of the length n of the mRNA in terms of codons. This corresponds to
the maximally possible translation rate. The actual rate will be smaller when not enough
ribosomes or other involved molecules (tRNA, amino acids) are present. This result is in good
agreement with literature, where the time needed for one translation is said to be between 20

seconds and several minutes [1] (we estimate the minimal translation time as 0.07# = 13.5s).
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However we have to stress here that these numbers found in literature show large variation.
Often measurements of these rates are only available in procaryotes, which seem to have
different (faster) kinetics than eucaryotes [2], and therefore cannot be transfered to eucaryotes.
Overall these estimates of transcription and translation rates should be used to get a general
idea of the timescale of these processes.

We use a transcription and translation rate of @ = 8 = 0.05 s~!, corresponding to an
average time of 20 seconds per product, which seems to be reasonable in the context of the
above considerations. The fact that both rates are equal is not expected to have influences
on the results.

Interactions between proteins and DNA are mediated by specific regions of the proteins,
called DNA-binding domains, which on the one hand can recognize specific DNA sequences
and on the other hand maintain the interaction between DNA and protein. Zinc Fingers,
Leucine Zippers or Helix-Turn-Helix motifs are prominent examples of DNA binding domains
[1]. The binding between DNA and protein is maintained by hydrogen bonds, ionic bonds,
and hydrophobic interactions. Single interactions are weak, but as many bonds are formed
the binding between DNA and protein becomes stronger. The binding rates are very fast
compared to transcription and translation processes and according to Alon [2] in the range of
1s7!in E. coli. The unbinding rate depends on the strength of the interaction and is assumed
to be 10 times smaller (0.1s~!) in our model, leading to strong binding of the protein to the
DNA. All reaction rates of the models used in this work are summarized in table 2.1.

As we showed above, the transcription and translation rate have upper bounds. The only
way for a cellular system to further increase the abundance of proteins is to modulate the
degradation rates of mRNA or proteins, giving longer lifetime to mRNA and proteins. Thus,
during this work we manipulate the degradations rates to adjust the system’s protein level to
a desired steady state.

Throughout chapter 4, we assume that in the system a mean number of 10 mRNAs is
present. This surprisingly low copy number is motivated by findings from Warren et al. [62],
who showed that the mRNA number of PU.1 is in the range of 10-20. The transcription
factor PU.1 together with GATA-1 forms a toggle switch motif, that is thought to determine
cell fate decision in myeloid differentiation. Therefore we adopt the low mRNA copy number
in our model.

In sections 3.2 and 4.2 we assume that the main source of asymmetry in a biological toggle
switch originates from the individual protein DNA interaction strength of the two players.
Both promoter sequence and 3D-structure of the transcription factors can be very different
and may result in different interaction parameters. Also the transcription and translation
rates can be non-symmetric. Although the actual transcription rate is independent of the
sequence, the rate limiting step is the binding of the polymerase to the DNA, which depends
on the promoter sequence. Core parts of promoter sequence have been conserved during
evolution (e.g. the TATA-box), but the remaining promoter sequence has large variability
from gene to gene. Similar arguments can be made for the translation, that mainly depends
on the rate of ribosomes binding the ribosomal binding site of the mRNA. However we choose
to focus on asymmetries originating in the protein-DNA interactions for the sake of simplicity.

In section 5.1.5 we do not allow simultaneous binding of inhibitor and activator, because
binding sites are assumed to be in close distance, leading to sterical hindrance. This as-
sumption is not valid in general, since binding sites for transcription factors can be several
kilobases upstream of the core promoter of the gene. This exclusive binding of either activator
or inhibitor has a big influence on the switching time, since the activator can protect its own



2.3. MODELING ASSUMPTIONS 21

promoter from inhibition in this model. Independent binding of activator and repressor will
remove this effect and will be investigate in later work, however the transcriptional potency
of this double bound gene is unclear.
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Chapter 3

One-stage toggle switch

In this chapter we investigate the dynamics of a one-stage toggle switch where transcription
and translation is condensed into a single process.

3.1 System description

At first we describe the model qualitatively and quantitatively using the frameworks provided
in the last chapter.

3.1.1 Gene expression and regulatory interactions

The central dogma in molecular biology claims that genetic information is transcribed from
genes into mRNA by RNA-polymerase in the nucleus. The mRNA gets exported into the
cytoplasm and is translated into proteins by ribosomes. The transcription and translation
itself are highly complex processes including binding of various proteins to the nucleic acids,
recruitment of cofactors and different stages of the actual synthesis process.

In this chapter we condense all processes involved in transcription and translation into a
single first order biochemical reaction, that produces proteins from DNA with a rate a:

DNA 2 DNA + Protein

As this reaction is a mixture of the original transcription and translation process we will call
it the synthesis reaction.
Protein degradation is also modeled as a single reaction:

Protein i> 0

As we effectively removed the mRNA stage of gene expression, we call this model a one-stage
model of gene expression, following the nomenclature of Shahrezaei and Swain [55].

To establish a toggle switch, we need to incorporate the mutual inhibitory interactions
between proteins and genes into the model. Transcriptional regulation is mediated through
proteins known as transcription factors that can bind the promoters of a gene, thereby influ-
encing its transcription. This binding is reversible and is maintained through highly conserved
parts of the protein known as DNA binding domains (e.g. the zinc finger domain or the GATA
domain) that recognize and bind to specific DNA sequences. An inhibitory transcription fac-
tor binds and occupies the promoter of its target gene, thereby blocking important parts

23
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of the transcriptional machinery from accessing essential DNA sequences. This shuts down
transcription completely because no transcription initiation complex can be formed.

As there is no elementary transcription process in our one-stage model, all regulatory
interactions will instead have influence on the synthesis reaction. One way of including
regulatory interactions is to express the synthesis reaction rate not as a constant but as
a function of protein numbers. The Hill function is a widely used example [64, 65], leading
to a gradual response.

The more accurate way of modeling this protein-DNA interaction is to introduce binding
and unbinding reactions and a new species representing protein-bound DNA:

Protein + DNA 7 DNAbound (3.1)
DNAPoud T protein + DNA .

This bound DNA has a synthesis rate of 0 if the transcription factor works as an inhibitor. To
model the mutual inhibition of two players, from now on called A and B we simply define a re-
action where Proteing binds DNApR, leading to arrest of synthesis, and vice versa (see Fig. 3.1
for a graphical representation of the model). This approach of additional binding/unbinding
reactions is advantageous because all reactions of our system are still based on the law of
mass action, whereas reactions with rates as functions of species are not. Note that we do
not allow degradation of DNA-bound proteins in our model. We assume that the protease —
a large protein complex that degrades proteins — cannot access proteins in close distance to
the DNA due to sterical hindrance. Using one-stage gene expression and mutual inhibition
through protein-DNA interaction we can express the model as the set of biochemical reactions
listed in table 3.1.

3.1.2 Mathematical representation
Deterministic model

Under the assumption of large species abundances, we can apply the deterministic framework
— introduced in section 2.1.2 — to the model, resulting in the following set of ODEs (for
simplicity we do not explicitly write the time dependence of the variables):

d _
$dA=TB (1—dA)—T§~dA-pB (3.2)

%dB :Tg(l—dB)—Tg—-dB‘pA

d _
apA:aA‘dA_(SA’pA‘f‘TA(l_dB)_TX‘dB'pA

d _
apB:aB'dB_éB‘pB‘f‘TB(l_dA)_Tg'dA'pBu

where ps and pg denote the abundances of Proteina and Proteing, respectively. The abun-
dance of DNA and DNAg is denoted by da and dp.

Here we do not include the bound DNA state explicitly but express it in terms of the
unbound state due to mass conservation: (da + dAbound = 1). This reduces the size of the
ODE system by two. We can solve for the steady state values of the players by setting

d d d d
%dA = adB = %pA = %pB =0. (3-3)
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Figure 3.1: Scheme of the one-stage toggle switch where the complex processes of transcription and
translation are condensed to a single synthesis reaction. Species associated with the player A are shown
in red, species associated with the player B are shown in blue. Reactions/Interactions are indicated as
arrows, jagged arrows indicate degradation reactions. Proteina is synthesized from DNA with rate
ap. It decays with rate 5. Moreover it binds (unbinds) the promoter of DNAg with with rate TZ
(74 ). Protein bound promoters lead to synthesis arrest.

DNAg “2,DNAg + Proteing DNAA “2DNA, + Proteina
Proteing LEN) Proteinp LN
Proteing + DNA 4 iDNAgound Proteina + DNAp i>DNA}§°und
DNARod T8 proteing + DNAA DNALod T2 protein, + DNAR

Table 3.1: List of reactions for the one-stage toggle switch. The model consists of protein synthesis,
protein degradation and protein-DNA binding/dissociation. Degraded proteins are absorbed by the
protein sink 0.
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There exist two non-trivial solutions to equations (3.2) and (3.3), resulting from the solution
to a second order polynomial. One solution involves negative protein numbers, thus being
biologically meaningless.

As the solution terms are quite complicated (see Appendix A.1), we focus on the solution
obtained by an numerical ODE-solver. Fig. 3.2 shows the timecourse of the ODE using two
different initial conditions and two sets of parameters. Fig. 3.3 shows the timecourses of many
different initial conditions projected onto the p/g phase plane. For symmetric parameters
pa and pp evolve exactly identically (see Fig. 3.2 A, B and 3.3 A), asymmetric parameters
lead to preference of one species (Fig. 3.2 C, D and 3.3 B).

Bistability is not possible for this system: Given non-negative initial conditions the solu-
tion of the ODE will also always be non-negative (see section 2.1.2). Since only one positive
steady state exists the solution can only converge towards this single steady state. This can
also be seen in the phase portraits in Fig. 3.3.

Probabilistic model

Using the probabilistic approach from section 2.1.4, we can fully describe the system through
the CME. Instead of writing down one large master equation we split the CME up into four
coupled equations, each corresponding to one DNA configuration. This is possible since the
numbers of DNA molecules are discrete in the probabilistic framework (DNAp,o € {0,1}).

P;j(pa,pB,t) := P(Proteiny = pg, Proteing = pg, DNAROund =1, DNAbBOund =j,t)

is the probability of finding the system at time ¢ in a state with ps and pg copies of Proteina
and Proteing and the corresponding promoter state. For example if i = 0,5 = 0 both
promoters are unbound, allowing synthesis of both proteins. Correspondingly, if ¢ = 1,57 =0
DNA 4 is bound and synthesis of Proteiny is inhibited. Synthesis of Proteing is possible since
DNAg is unbound. Probability mass is exchanged between the four equations only due to
binding and unbinding reactions, that is, changes in the promoter state.

%POO(pAypB,t) =75 Po1(pa — 1,pB,t) + 75 Pro(pa, pB — 1, 1) (3.4)
+ [—Tng — TZ])A +aa(E,, —1)+ap(E,, —1)
+0A(E;, —1)-pa+08(E,, — 1) pg]
Poo(pa,pB,t)
%PH(ZOA,]?BJ) =75 (pa + 1)Pio(pa + 1,pB.t) + 74 (pB + 1) Po1 (pa, pB + 1,t)
+ [-7a — 75 +0a(E}, —1)-pa +0B(E}, —1)-ps]
P11(pa, pB,t)
%Pm(pA,pB,t) =74 Pii(pa — 1,pB,t) + 14 (pB + 1) Poo(pa, pB + 1,1)
+ [~ —Tipa +aB(E,, — 1)+ 6a(Ef, —1)-pa+6s(E}, — 1) - ps]
Pio(pa,pB,t)
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Figure 3.2: Numerical solution of the reaction rate equations in the one-stage model for different
parameters and initial conditions. Dashed lines indicate steady state values. A,B: Symmetric pa-
rameters for both A and B (see Tab. 2.1), leading to identical time evolution of the corresponding
species. Initial conditions were set to pp = pgp =0 and dy =dg =1 (A) and dp = dp =0 (B). C,D:
Asymmetrical binding constants 74 = 1,75 = 0.5, leading to A-dominance. Initial conditions are set
topa =pg =0, da =dg =1 (C) and py =0,pg = 100, dy =0, dg =1 (D).
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Figure 3.3: Phase portrait of the one-stage model. This plot shows the ODE-system’s trajectories in
the pa /pp-phaseplane starting from different initial conditions. The steady state solution is indicated
by a red dot. A: completely symmetric parameters for both players lead to a steady state lying on
the symmetry axis p = g. B: Asymmetric binding constants TX = 1,T§ = 0.5, leading to a steady
state shifted below the symmetry axis. Other parameters were set according to Tab. 2.1. Note that
trajectories do intersect in this plot, since it shows a projection of a four-dimensional solution onto a
two-dimensional phaseplane.
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d _
apm(pA,PB, t)=7i(pa + 1)Poo(pa + 1,pB,t) + 75 Pi1(pa,ps — 1, 1)

+ [—Tng — Ty taa(E,, —1)+ (5A(E;'A —1)-pa+ (5]3(E1;t3 -1) -pB]
POO(pAvaat)

The shift operators Ef and E increase or decrease the function argument z by one, i.e.

Eff(z,y) = f(z+1,y)

The first equation in (3.4) describes how the probability of the state with pa molecules of
Proteina and pg molecules of Proteing and both promoters unbound changes over time: The
first term describes how the system, that has a bound DNAp and an unbound DNA, (Py;)
and one less Proteina molecule previously, enters the current state, where both promoters are
unbound. This happens by Proteina dissociating from the promoter of DNAp (with rate 7, ),
changing the promoter state to 00 and increasing the number of Proteins molecules by 1 from
pa—1to pa. The second term is analogously the unbinding of a Proteing from a former bound
promoter of DNA . The first two terms in the bracket account for the loss of probability mass
in the current state due to transitions into the two other possible promoter configurations.
The third term in brackets accounts for Proteiny production: The system can enter the
current state Pyo(pa, pB,t) from the state with one less Proteing molecule (Pyo(pa — 1, pB, t))
— the shift operator expresses this missing Proteiny molecule —, or the system can leave the
current state (accounted for by the constant factor —1) by synthesizing an additional Proteina,
moving it to the state Pyo(pa + 1, pB,t). The synthesis of Proteing is similar. The next term
expresses the influence of the degradation of Proteina on the state probability. The system
can move into the current state Pyo(pa, pB,t) from the state that has one additional Proteina
( Poo(pa+1,pg,t)) by degradation of Proteina. Therefore, Pyo(pa, pB,t) increases. Note that
this propensity is now linear in the protein number present. The system also can leave the
current state by degrading one Proteina and therefore the current state loses probability. In
a similar way the three other equations can be derived.

3.1.3 Regimes

First we want to qualitatively describe the system’s dynamics obtained from simulated data
using Gillespie’s algorithm. The main feature of the mutual inhibition regulatory motif is its
bistability, meaning that the system can — given adequate parameters and initial conditions
— adopt two different regimes. As both proteins are fighting each other eventually one will
win and dominate the other by inhibiting its expression and backing up its own dominance.
Therefore the system will be either in a state where Proteiny dominates Proteing or vice
versa.

Looking at simulations, we find the following: For an initial state where proteins are
present (ppo = 0, pg = 0), after some time protein synthesis of, lets say Proteina, will occur.
Two different things can happen now:

1. The newly synthesized Proteins binds the antagonistic promoter quickly blocking the
synthesis of Proteing and keeping its expression level at 0. This will be followed by
further synthesis of Proteina, backing up its dominance. This will lead to the two
regimes mentioned above (as both proteins can dominate depending which one got
synthesized first).
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Figure 3.4: An exemplary timecourse of the one-stage toggle switch obtained by stochastic simulation.
The number of proteins is plotted against time. The bistability is clearly visible: Either Proteiny is
upregulated and Proteing is repressed or vive versa.

2. In the second scenario an antagonistic Proteing will be synthesized before Proteina can
bind and inhibit DNAg. This results in a state where both Proteiny and Proteing are
present. As both proteins eventually bind to the other promoter the system will end up
in a state were both promoters are occupied, shutting down the synthesis of the whole
system. We will refer to this regime as a deadlock.

However none of these scenarios is terminal. With a certain probability the system leaves the
current regime and will be driven to another one. In order to understand how the system can
leave the regime where one protein dominates, we have to take a closer look at the promoter
state. Consider the regime where player A dominates. Although Proteina is abundant and
the promoter will be in a bound state most of the time there is a constant probability > 0
that an unbinding reaction will occur. This unbinding reaction will result in a short time
window were Proteing can be synthesized. If this happens the system will be driven out of
the dominating regime into the deadlock regime as proteins of both species are present now
and both promoters get bound. To leave the deadlock regime, one protein species must be
fully degraded to enable synthesis of the other protein again.

In order to give a quantitative description of the systems behavior we need to define the
features mentioned above. We start by defining the three regimes (Proteiny dominating,
Proteing dominating, deadlock) as subsets of the complete state space S. As the whole
system is stochastic there are no sharp boundaries between regimes. However, we find that,
while the system is for example in the regime, where A dominates, the synthesis of Proteing
is shut down whereas the synthesis of Proteinya is similar to an unregulated gene. Therefore,
we can approximate the distribution within these two regimes by using results from Thattai
and van Oudenaarden [58], who showed that for unregulated genes the distribution of the
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protein numbers is Poissonian and the mean and variance of protein z’s copy number during
steady state obeys:

o =02 = =2 (3.5)

This corresponds to a simple birth/death process.

These statistics are not completely correct for our model. The mean is expected to be
smaller as one protein is bound to repress the antagonistic promoter, reducing the mean
number of free proteins by one. The variance is expected to be larger since random bind-
ing/unbinding event interrupt the synthesis frequently. This indicates that the underlying
distribution is not Poissonian after all, since mean and variance should be equal. Neverthe-
less, we can use these statistics to approximate the protein distribution of the system while
it is either in the Proteina-dominating or Proteing-dominating state and use them to define
the boundaries of the regimes:

Sa = {s € Slpar > ¢a ApB < ¢B} (3.6)
Sp = {s € S|lpa < ¢a ApB > ¢B}
So={s € S|pa < da ApB < ¢B} .

The regimes and boundaries are illustrated in Fig. 3.5. The regime Sy (Sp) is the subspaces
of S where Proteinp (Proteing) is dominating, regime Sy is the subspace where the system
is in a deadlock situation. The regime boundary ¢, — chosen here at the lower boundary of
protein z’s distribution assuring that (1 — o/)% percent of the distribution lie beyond the
lower bound — is defined as

¢z = F.' (o), (3.7)

with F~! being the inverse cumulative distribution function of the Poisson-distribution. For
example using o/ = 0.001 assures that the regime contains 99.9% of the probability distribu-
tion.

3.1.4 A numerical approximation of the CME

Using the results from above, we can apply the finite state projection method described in
section 2.1.5 to solve the CME of the one-stage system (3.4) in case of small protein numbers.

To obtain a suitable subspace of the six-dimensional state space S (the six dimensions
correspond to the six molecular species involved), the states which do not obey DNA mass
conservation are removed. Furthermore we have to truncate the state space using an upper
bound of the protein distribution (3.5).

T

+ _ -1
¢F = F1(0.999) .

All states with pay > gbj{ or pg > qbg are removed, making the subspace finite. As the
system will only enter states that lie beyond these bounds with probability 1 —0.999 = 1073
— we assured that using the far edges ¢, of the protein distributions —, removing those states
will introduce an error of € = 1073, which is a good approximation of the exact solution.

As an example we will use a one-stage system with a mean number of proteins s = ug =
25. Parameters are chosen symmetric for both genes : a = 0.5, § = 0.02, 77 =1, 7= = 0.1).
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Figure 3.5: Timecourse of the one-stage toggle switch passing through different regimes. S is high-
lighted in red, Sg in blue and Sy in green. Additionally, the distribution of proteins in Sa (Sg) is
shown on the right, illustrating the mean protein level p and the boundary ¢ between regimes. The
gray area under the distribution corresponds to 99.9% probability mass.

Using o/ = 0.001, we find an upper bound of the protein distribution at ¢™ = 42. Applying
these constraints on the state space results in a subspace containing 422 - 4 = 7056 states. In
order to solve the CME for this subspace one has to evaluate equation (2.8) for a 7056 x 7056
matrix @), which is sparse, but still contains &~ 7056 - 8 non-zero entries (8 corresponding to
the number of possible reactions in each state). Note that the state space could be further
restricted using the fact the toggle switch mechanism should prevent the system from going
into regions of the state space where both proteins are highly expressed.

Setting a desired initial condition pg, we can solve equation (2.8) for times ¢, resulting
in the evolution of probability distribution over the system’s state space. Some exemplary
snapshots of the evolving probability distribution using different initial conditions are shown
in Fig. 3.6. The approximate solution of the CME is accurate (¢ ~ 1073), suggesting that
the projection was suitable. Further increasing the state space would decrease the error even
more. We see that the time dependent solutions for all three initial conditions converge to a
similar steady state solution. The shape of this distribution clearly reveals the bistable nature
of the system, consisting of the three regime Sy, S and Sy. For example in Fig. 3.6 C we
see that systems where both protein levels are high run into a deadlock and both proteins
get degraded. The probability distribution approaches the origin, corresponding to Sp. From
here the distribution partitions into three distinct peaks, representing Sy, Sa and Sp.

3.1.5 Switching time

How long will the toggle switch stay in a specific regime? The regulatory motif of a toggle
switch is thought to be a mechanism of cells to make and maintain a decision [12], for example
during cell fate decision in hematopoesis [30]: Once the cell is driven into one lineage it should
be irreversibly committed to that lineage. Since our system is stochastic the probability
of moving out of one regime can be very small but will never equal zero (unless e.g. the
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Figure 3.6: Time evolution of the system’s probability distribution obtained by finite state projection.
As the complete distribution is 6-dimensional, only a projection onto the pa /pp plane is shown here.
Errors of the approximation are below 1073. Parameters are symmetrical for both genes: a = 0.5,
§ =0.02, 7t =1, 77 = 0.1, leading to a mean protein number u = 25. Each column corresponds
to the time evolution of the distribution given different initial conditions. A: Initial conditions set to
pa = pp = 0. B: Initial conditions set to truncated normal distributions. C: Initial conditions set to

pa = pB = 25.
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unbinding rate 7= = 0), meaning that it is certain that after a long time the system will
eventually change its regime. In the case of Sy and Sp we will call the time it takes to switch
the regime switching time. For a biological switch this time should be longer than all other
relevant processes of the cell — especially longer than cell lifetime or cell cycle time — in order
to maintain the decision. In the following an analytical derivation of the switching time is
shown and compared to the method introduced in section 2.1.5 and to estimates obtained
from stochastic simulation. We are interested in the time it takes to leave the chosen regime.
Without loss of generality, let us assume the system is in Sp. So we have the promoter of
DNAg bound by Proteiny and the promoter of DNA, unbound. This results in a mean
Proteina-level of uy = aa/da and pup = 0 (see equation (3.5)). We call this initial state xg.

In order to leave Sa it is crucial that one Proteing is synthesized, which then can bind
the promoter of DNA 4, thus shutting down synthesis of Proteiny and ultimately driving the
system into Sy. This trajectory involves the following events:

1. Unbinding of Proteins from DNAg
2. Synthesis of Proteing during the unbound phase
3. Binding of Proteing to the promoter of DNA s before Proteing is degraded

First we describe the unbinding of DNAg: Due to stochasticity even if the system is in Sy,
various times Proteiny dissociates, leaving the the promoter of DNAg unbound for a certain
time t,. The average time the promoter stays unbound is equal to the average time until a
binding reaction occurs, which is

1

by = ——— .
TR ma

(3.8)

The time time the promoter stays unbound is a random variable itself, but for simplicity we
approximate it be its mean value. Note that ¢, depends, somewhat counterintuitively, on 77
and not on 7. The above mentioned synthesis of Proteing has to take place during t,,. The
probability of k synthesis reactions to happen during ¢, is

AL
P(K =k) = @[Bk'u) -exp(—ap - ty) ,
as the number of synthesis reactions K during ¢, is Poisson-distributed with mean ag -, (see
section 2.2.2). Thus, the probability of one or more synthesis reactions happening during the
unbound phase is

q=1—P(K=0)=1—exp(—ap-t,) .

However not one but several unbound phases may occur, each of them giving the chance of
successful synthesis. The number N of unbound phases until a successful synthesis of Proteing
is geometrically distributed with parameter ¢:

N ~ Geom(q) (3.9)

with the probability density function of the geometric distribution as Pgeom(N = n) =
1-9)" " q
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Figure 3.7: Histogram of switching times from simulations (blue) compared to the analytically derived
geometric distribution (red).

We can convert this number N of unbound phases until successful synthesis into time:
The average number of unbound phases during a time interval At is 7, - At. Therefore we
can apply a linear transformation to the random variable N:

relating the number of intervals to actual time by a factor T% T gives not the numbers of

intervals, but the actual time until until successful synthesis of Proteing.
The mean of T, which we call switching time Tswiten and its variance o%witeh are then
given by:

_ Mean(N) 1

Tswiteh = Mean(T') = — = - (3.10)
TA q-Tx
B 1 1
N _ _ ap-0a T
1 —exp ( T:aA) A

1) 1\2 1- 1—
ngitch = Var(T) = () - Var(N) = (> . 9 _ 4q

A A ¢ (raea)

Note that the mean is almost equal to the standard deviation in case of small q.

We now ask if the synthesis of one protein is enough to drive the system into another
regime. Intuitively, only the synthesis of Proteing is not sufficient to move the system out of
Sa. Additionally this Proteing must bind to the antagonistic promoter before it is degraded.
Therefore we extend the results from equation (3.10) by taking into account the required bind-
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ing of Proteing to DNA 4. This has to take place before the protein is degraded. The average
time until degradation for one Proteing is (using the mean of the underlying distribution)

1
taeg = 5~ - (3.11)
B
Analogous to the previous approach we find that the probability of having one or more binding

reactions during tg.4 is

Qdeg = 1 — exp(—Tg “tdeg) - (3.12)

The switching time, where we require synthesis of Proteing followed by binding for a regime
change can be derived in a similar way as above. The only difference is that N is now
geometrically distributed with parameter A = q - qqeg instead of A = ¢, giving

Mean(N) 1

TSWitch = Mean(T) = — = — (313)
Ta q  Qdeg " Tp

O8witeh = Var(T') = | — | -Var(N)=|—| - 5 .
TA TA (q : Qdeg) (TA -q - qdeg)

Considering biologically relevant parameter choices, where Tér > op (for a discussion on

parameters, see section 2.3), gives gqeqg ~ 1. Therefore equations (3.13) reduce to (3.10).

One can use Barzel’s method introduced in section 2.1.5 to obtain estimates of the switch-
ing time by defining Sy = {z|z ¢ Sa} and solving equation (2.9) for T'(z). With xo being the
initial state in Sa as defined before, T'(z¢) should give us a similar switching time as obtained
by the analytical solution.

Additionally we estimate the switching time by running 10000 SSA simulations using the
Stochkit [31] software package. Initial conditions were set to x¢ and timecourses of 10° seconds
were simulated. We calculate the simulated mean switching time as

10000

i 1 S
Tslm — t )
Switch 10000 p— A ’

where t%’e) is defined as the length of the i-th time interval in timecourse e where regime

Sgr prevails (R € {4, B,0}). We simply look for the time until the simulated system leaves
Sa for the first time (i = 1) and take the mean over these times. Note that this estimate
is expected to be biased since the maximal switching time during simulation is bounded by
10%s, the time of simulation. For systems that exhibit even longer switching times or have a
broad distribution of switching time ranging beyond 10°%s this estimate will be to small.

The three estimation methods of switching times are applied to the one-stage model of
the toggle switch, using different values for the protein degradation rate to archive different
protein levels. Due to the computational expense the Barzel method could only be applied
to one-stage system with mean protein level < 1000. Results are shown in Fig. 3.8:

First we find that the switching time increases when the protein degradation rate ¢ de-
creases and the protein level thereby increases (see Fig. 3.8 A). Smaller degradation rates lead
to prolonged protein life time, thus once a protein has been synthesized, it is more probable
to bind the antagonistic promoter if its lifetime is longer (see equation (3.12)). However this
has only minor influence on the switching time since even for larger degradation rates the
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Figure 3.8: Switching times for the one-stage models. Estimates for the switching time over various
degradation rates § resulting in different mean protein levels. Estimates for three different bind-
ing/synthesis parameters(blue, red, green) are shown for different estimation methods. Remaining
parameters are set according to Table 2.1. Solid lines: SSA estimates. Dashed lines: Analytical esti-
mates. Fine dashed lines: Barzel estimates. A: Estimates of the mean switching time. B: Estimates
of the standard deviation of switching time (Barzel estimates are missing, because this method only
gives the mean value). All estimates are in good agreement, revealing the the switching time increases
as the mean protein level increases.

probability for a protein binding to the promoter is close to 1. Instead, decreasing the protein
degradation rate leads to higher amounts of proteins of the dominating species. The more
dominating proteins are present, the shorter are the intervals during which the antagonistic
promoter is unbound. The number of these interval remains unchanged (depending only on
the dissociation rate), but the length of the intervals decreases. Thus the synthesis reac-
tion driving the system out of the current regime is much less probable if many dominating
proteins are present.

By comparing the different estimation methods, we find very similar values for all systems
considered. For systems with very small protein levels, simulated estimates for the mean are
smaller than analytical estimates and Barzel estimates (Fig. 3.8 A). This is due to the config-
uration of the SSA algorithm, that only returns the systems state in intervals of 1000 seconds.
For systems that have switching time < 1000 seconds, the phase during which the system will
stay in the committed regime will not be visible in the simulated trajectory. Therefore, the
simulated estimates underestimate the real switching time. For medium protein levels, the
switching times predicted by all methods agree well. For system where the switching time gets
closer to the overall simulated time of 10® seconds, simulated estimates are dampened and
switching time is underestimated. Small deviations between analytical and simulated data
exist, because the time it takes to degrade the former dominating protein was not included
into formula (3.10). It only estimates the time until a regime change is certain. One could
extend the formula by adding this degradation term, but as seen, the difference is neglectable.

Additionally, we compare the standard deviations of the switching times obtained by the
analytical method and the simulation (Fig. 3.8 B). Interestingly, the analytical estimates of
the standard deviation are very close to the values obtained by simulation (despite the bias
introduced by the simulation as mentioned above), even though we made some mean field
approximations during the derivation of the analytical expression (in equations (3.8) (3.11)),
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Figure 3.9: Priming times for the one-stage models. Comparison of the simulated mean priming time
(solid lines) to estimates obtained by Barzel’s approach (dashed lines). Priming times of systems with
different mean protein levels p are plotted for three parameter sets, showing the dependence of the
primining time on the protein level. Remaining parameters are set according to Tab. 2.1.

which are expected reduce the variation. This suggests that our mean field assumptions are
valid and the main variability comes from the geometric distribution of the number of trials
until successfully switching.

We draw the following conclusions from this analysis: The switching time is mainly influ-
enced by the time a promoter is unbound (¢,). This quantity mainly depends on the average
protein number p during Sa or Sg. Further, the switching time depends on the rate of protein
synthesis and on the rate of protein dissociation, controlling the number of unbinding phases.

3.1.6 Priming time

In the previous section we were interested in the time until the systems leaves Sy or Sp. In
this section we do the same analysis for the time it takes to leave Sy, which will be called
priming time.

Deriving an analytical approximation of the priming time is a more challenging task than
the derivation of the switching (since it cannot be tracked down to a single event such as
protein dissociation) time and will not be given here. Instead we assess the priming time of
the model using only simulated and Barzel’s estimates.

Analogous to the switching times, we use stochastic simulation and Barzel’s approach to
estimate the time it takes a one-stage system to leave Sp. We set the initial conditions to both
promoters bound by repressors and no free proteins in the system and estimate the time until
the system enters either Ss or Sg. Protein degradations rates are different in each system,
resulting in different mean protein levels p.

Results are depicted in Fig. 3.9, showing that also the priming time of the systems depends
on the protein level (or degradation rate) of the system. Contrary to the switching time, where
this dependence is due to high protein numbers effectively shutting down the antagonistic
promoter, for the priming time the degradation rate itself is the major source of dependence.
Smaller degradation rates make the degradation of unbound proteins much more improbable,
so that they can bind again, keeping the system in Sp.
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Comparing simulation data to results of the Barzel approach shows that the general trend
of increasing priming times at decreasing degradation rates is also captured by the Barzel
estimates. However, for all three sets of parameters there are differences between the estimates
especially at very slow protein levels. Simulated data show deviations from the otherwise
linear (on loglog scale) relationship between priming time and degradation rate . The source
of this difference is unclear and could be within the cutoff ¢ to separate the regimes. For
small protein levels of separation of Sa, Sg and Sy is harder, as ¢ will approach 0.

3.2 Switching bias and robustness analysis

We are interested in how the stochastic model of the toggle switch behaves in case of asym-
metries between the two genes. As shown before in section 3.1.2 one major drawback of
deterministic system is that they are unable to capture bistability and will always converge
to the same regime if parameters are slightly non-symmetric. Therefore, we evaluate how
the switching decision is influenced by the introduction of asymmetric parameters for the two
genes.

3.2.1 Promoter binding

We assume that the main source of asymmetry comes from differences in protein-DNA interac-
tion. For a detailed discussion on this assumption, see section 2.3. Despite this asymmetries,
the toggle switch should still be able to reach both committed regimes in vivo and should
even more do this with about equal probability for each regime. A differentiating cell should
be able to create both lineages and both with equal probability.

As a consequence, we focus our analysis on asymmetries in the Protein-DNA binding
reaction and on their influence on the switching decision for different levels of proteins in the
system.

We use the stochastic simulation to obtain estimates of the overall probability that the

system is in a certain regime R:
L N CRD
Pp= 7 Z te
2,e

where L is the overall simulated time. The switching bias Biass of the system is defined as

Py

BiaSA = m .

The bias quantifies if the system has a preference for one of the two regimes. In case of a
completely symmetric system the bias is 0.5, meaning that the probability of the system being
in Sy is equal to that of being in Sg. In case of a fully tilted switch, the bias would be 0 or 1.
Note that this quantity does not include the probability for being in Sy. Calculating the bias
analytically is not feasible at this point as we need to know the distribution of the underlying
Markov process completely, which corresponds to the solution of the CME. Numerical solu-
tions to the CME could give insights about the bias, but are currently impossible to obtain
for systems with large state space.

We obtain systems with different amounts of proteins in Sy and Sp by changing the
protein degradation rate. Additionally, we vary the binding parameters in the range 0.5 <
Tg_ / TX < 2, thus giving one gene up to a two-fold increased binding strength over the other.



3.2. SWITCHING BIAS AND ROBUSTNESS ANALYSIS 39

A B C

-1 -0.5 0+ . 0.5 1 -1 -0.5 o, . 0.5 1
log. 2(tE/t A) Iogz(rB/r A)

Protein level

100
—— 1000
— 2000
—— 10000
— 50000
100000

Bias
Entropy

o, 0.5 1 -1 -0.5 0, . 0.5 1
Iog2(ra/1A) |092(TB/‘\7A)

-1 -0.5

Figure 3.10: Robustness of the one-stage model with respect to binding constants. Estimates of Py,
Pg, Py, the bias and the entropy are plotted against the binding asymmetry for six different protein
mean values p. Remaining parameters are set according to Table 2.1. Symmetric parameters give a
bias Bx = 0.5, whereas asymmetric parameters result in By # 0.5 tilting the switch in to either Sa
or Sg.

For each system, 1000 simulations were computed. Using 1000 trajectories estimates the
regime probabilities with good accuracy (see Appendix B). Initial conditions were set to
both promoters unbound and no proteins present. For each set of parameters we evaluate
the 1000 simulated timecourses with respect to the switching bias. Results are shown in Fig.
3.10. Note that the plots are non-symmetric since for logz(Tg /Ti) < 0 we have decreased one
parameter two-fold compared to the other, whereas for logy (14 /74 ) > 0 we have increased
one parameter two-fold compared to the other resulting in different absolute parameter values.
For all protein levels ;1 between 102 and 10° we observe as expected that giving advantage
to one gene through higher binding rates of its protein tilts the switch into this direction
leading to Ba # 0.5 (Fig 3.10 A,B and D). For the symmetric case 75 /74 = 1 both Sa and
Sp are equally probable as expected, leading to a bias of 0.5. For systems with higher protein
levels/small degradation rates the bias is less influenced by the parameter asymmetry.
However this effect is time dependent. Using longer simulation time, we find that also
systems with small degradation rate become more biased in case of asymmetric parameters.
(data not shown). This can be explained if we look at process of decision making. If there
is almost no protein in the system yet, the regime choice will only depend on which kind of
protein is synthesized first, driving the system into this direction. As synthesis parameters
are assumed to be equal for both players, this event is always unbiased (each player has 50%
probability of first synthesis). If the system instead runs into a deadlock, (few) proteins of
both species are present. This increases the influence of the parameter asymmetry as one of
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the two protein species has higher DNA affinity, meaning that the other one is more likely
to be degraded. The decision will be biased again. In other words, there are two different
types of switching decisions. If no proteins are present, the system will decide unbiased, if
proteins are present the decision will be biased. This also explains the smaller bias of systems
with high protein level . Systems with high p will first enter either Sy or Sy with equal
probability, and due to long switching time (see section 3.1.5), they will keep this unbiased
decision over a long time. Following regime changes, which are biased, become less relevant.

Systems with high protein levels also have increased probability of being in Sy, which is
in agreement with the findings that these systems have long priming times. Interestingly,
introducing asymmetry in binding parameters decreases the probability Fy: If non of both
players has an advantage over the other the system is longer locked in Sy as neither Proteina
or Proteinpg can significantly overwhelm the other (see Fig. 3.10 C).

To get not only a qualitative impression on the systems robustness with respect to pa-
rameters but a quantitative measure we utilize the Shannon entropy:

E = —Py -logy(Pas) — P - logy(Pp)

The Shannon entropy is a measure commonly used in information theory and describes the
uncertainty of a random variable. For example consider the random variable describing the
result of a coin flip. If the coin is fair, the the uncertainty of the coin toss is maximal and
the entropy is maximal with E = 1. If the coin is unfair, preferring e.g. tail, the uncertainty
is less, resulting in F < 1. For our model, the entropy is expected to be maximal where the
probability of both regimes is equal but also decision time (time in Sp) is not too long.

Calculating the entropy reveals, that even though systems with high protein numbers are
less biased in their switching, they spend most of their time in Sy. Therefore, the whole
system looses its biological relevance, since it is very improbable that it will establishes a
decision at all.

Systems with low protein numbers have higher probability to be in Sp and Sg, but have
the major drawback that they are strongly biased at asymmetric parameters. Additionally
we know from section 3.1.5 that these systems can only maintain a decision for a short time,
questioning their relevance in biological systems as well.

3.2.2 Initial conditions

Now we analyze the influence of asymmetric initial conditions on the switching bias. A
common opinion of how a toggle switch is activated is the shift of the cell from a coexpression
state to a switching state [21, 49]. During the coexpression state, the mutual inhibition in the
toggle switch motif is thought to be very weak or non-existent, leading to similar expression
of both players. This could for example be achieved by the chromatin structure of the DNA,
making the inhibitory operator sites unaccessible. In our model this is realized by setting
7+ < 77 leading to only very short periods where promoters are inhibited, thus shutting
down mutual inhibition. By an external signal the cell is now moved into the switching state,
where 77 > 77 leading to strong mutual inhibition. Such change could be the result of a
change in the DNA structure, making the repressor elements of the genes accessible. As this
change involves only the one or two molecules of DNA in the cell, we assume this event is
discrete and not a continuous gradual change, meaning that the transition between those two
states is rapid.
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Therefore, after that transition occurred, the amount of Proteina and Proteing correspond
to the distribution during the coexpressed state. As there is hardly any interaction between
both species in the coexpression state, we assume that their protein distributions are equal
to the protein distribution of two single genes. Their means and variances obey equation
(3.5). It is obvious that, at the time of the transition from coexpression to switching, the
numbers of Proteiny and Proteing will not necessarily be the same but fluctuate around the
mean values pua and pug. So even if the binding parameters for both species are symmetric,
due to the spontaneous transition from coexpression to strong mutual inhibition, the initial
conditions in this switching state will be asymmetrical by chance.

Analogous to the derivation of the regime boundaries in equation (3.7), we now use the
Poisson distribution of single genes to get an impression of the possible asymmetries regarding
initial protein levels.

We define the minimal/maximal effective number of protein = by

¢, = F,1(0.001) (3.14)

T

+_ -1
= F,.1(0.999) .

x

Setting the initial protein number of one protein to the minimal number and the other one to
the maximal number gives the maximal expected asymmetry in initial protein amounts. Note
however that the fold change in protein amount is not constant but decreases as the protein
steady state increases. Using the boundaries of the probability distribution overcomes this
problem.

By varying the ratio of both initial protein amounts from the minimal/maximal bounds
towards the mean steady state value u, we evaluate the influence of this asymmetry on the
switching behavior. Contrary to the analysis in section 3.2.2, we are now only interested in
how the asymmetry influences the system’s first decision. The initial conditions are expected
to have only influence on the first decision, leading either into S or Sp. Subsequent flipping
of the toggle switch is independent of the initial conditions. Therefore, systems that change
their regimes frequently during the simulation time will always look unbiased, since they could
compensate the possible bias in the first decision by the overwhelming amount of unbiased
decision afterwards. Instead of estimating the overall probabilities to be in one or the other
regime (Pa and Pp), we estimate the probability that the system will enter Sy or Sp at the
first possible choice using N timecourses simulated with the SSA. Switching events after the
first one are neglected. These probabilities the relative frequencies of systems first entering
Sa or Sg:

(1) _ # of timecourses entering Sp first
P, = N
p _ # of timecourses entering Sp first
B N

Pél) accounts for the systems that do not decide at all during simulation. Fig. 3.11 shows the
results obtained, using N = 1000 simulated timecourses.

Asymmetry in the initial conditions seems to have no influence on the systems and each
system has about the same probability for first entering Sa or Sp. Systems with small
degradation rate spend most time in Sp. To understand this one has to take a closer look on
the actual timecourses.
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Figure 3.11: Robustness with respect to switching bias and initial conditions. Parameters are chosen
from Table 2.1. The initial conditions of the systems were chosen within the bounds ¢ and ¢~ of
the protein level distribution (see equation (3.14)). On the x-axis the distance of the initial number of
Proteina and Proteing from the distribution mean is given in standard deviations. For systems with
distance 0, initial conditions for both proteins were chosen from the center of the distribution, resulting
in equal amounts. System with large distance have initial conditions chosen from the opposing edges
of the distribution. All systems are robust to asymmetric initial conditions, the switching bias is close
to 0.5 even for strong asymmetries. Strong fluctuations of the bias of the 10000-protein system occur,
because this system spends most of the time in Sy, leading to very small probabilities of Sp and Sg.

Starting with initial conditions where both proteins are highly expressed, almost imme-
diately both promoters are bound, resulting in a deadlock situation. This is followed by
an almost deterministic phase of degradation, where both proteins decay. This phase will be
longer if the degradation rate is smaller. The deadlock will be resolved if one of the two species
is fully degraded. As both proteins are almost fully degraded, the initial dominance of one
species is lost, leading to an unbiased decision afterwards, as observed for 100-10000 protein
level system. Since the length of the degradation phase grows with decreasing degradation
rate, beyond some degradation rate there will be no decision made during the simulated time
(most time the system is in Sp). Systems with a mean of 10000 proteins are close to this
boundary: Sometimes all proteins of one species are degraded, so that the system can escape
the deadlock, but most of the time this degradation takes longer than the simulated time of
10%s. This is the reason for the strong fluctuations observed for the switching bias of this
systems. Overall, these results show that the one-stage system is robust to asymmetries in
the initial conditions.



Chapter 4

Two-stage toggle switch

In the previous chapter, we used a one-stage model of gene expression, where for simplicity
transcription and translation were collapsed into a single synthesis reaction. In this chapter
we include the mRNA level of gene expression into our model and analyze this model in a
similar fashion to the previous chapter. A comparison of both models will be given in chapter
5.

4.1 System description

As in the previous chapter we first define our model as a set of biochemical reactions and
then study the system’s dynamics using the deterministic and probabilistic framework.

4.1.1 Gene expression and regulatory interactions

Based on the one-stage model, we add a second stage in gene expression by introducing mRNA
as additional species and replacing the former synthesis reaction by separate transcription and
translation reactions:

DNA % DNA + mRNA
mRNA i mRNA + Protein

Separate degradation reactions are introduced for mRNA and proteins:
mRNA 5 ()
%0

Protein

We refer to this as a two-stage model of gene expression.

For the two-stage toggle switch,we include an additional species representing protein-
bound DNA, and the corresponding binding/dissociation reactions as before in equation (3.1).
This bound DNA cannot be transcribed into mRNA, leading to transcriptional inhibition
through protein binding. However, the translation process is independent of the DNA state:

43
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Even if the promoter of the gene is inhibited, as long as mRNA from a previous transcription
event is present, translation can occur.

Altogether the two-stage toggle switch can be expressed by the set of reactions listed in
Table 4.1. Fig. 4.1 shows a schematic of the system.

4.1.2 Mathematical representation

Deterministic model

The dynamics of the system can be expressed deterministically by the reaction rate equations,
where dj (dp) is the abundance of DNA, (DNAg), ma (mp) is the abundance of mRNA
(mRNAR) and pa (pB) is the abundance of Proteiny (Proteing):

d _

adA:TB -(l—dA)—Tg-dA-pB (4.1)
d _

%dBZTA -(1—dB)—TX~dB-pA

d

dt A AGA — A A

d = d
—mp = Qg - — -m
dt B B 4B — 7B B

d _
&PA:BA’WA_éA‘pA‘FTA‘(1_dB)_TX'dB‘pA

d _
%pB:BB‘mB_éB'pB‘FTB (1 —da)— 713 -da-pB

Bound DNA is expressed in terms of unbound DNA due to mass conservation (DNA -+
DNAbound — 1)

We obtain the steady state solution by setting all time derivatives to 0 and find two
non-trivial solutions, one biologically irrelevant due to its negative species abundances (see
Appendix A.2). Numerical solutions with different parameters and different initial conditions
are shown in Fig. 4.2 and a portrait of the pa /pp phase-space is depicted in Fig. 4.3. Introduc-
ing the mRNA stage can lead to dampened oscillations, due to the fact that regulation is not
carried out by mRNA but involves the translation process creating a delay in the regulatory
response.

Still this system is not capable of bistability: Given non-negative initial conditions, the
solution of the reaction rate equations will always be non-negative (see section 2.1.2) and will
therefore converge to the single positive steady state.

Probabilistic model

The stochastic model of the two-stage toggle switch is completely defined by the CME. As
before
Pij(ma,mp, pa,pB,t) =P(mRNAA = ma, mRNAg = mg,
Proteinp = pa, Proteing = pg,
DNAR™™ = i, DNAZ™™ = j, )

is the probability to have ma copies of mRNA o, mp copies of mRNAg, pa copies of Proteinga,
pp copies of Proteing, and the corresponding promoter configuration ¢j. This results in
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DNAg “%DNAg + mRNAp DNAj 22 DNAL + mRNA
mRNAp 20 mRNA, 250
mRNAg 5—B>mRNAB + Proteing mRNA » ﬂ—AnnRNA A + Proteinp
Proteing LN Proteina L)
Proteing + DNA 5 iDNA}zO“nd Proteing + DNAp iDNAgound
DNABo "B proteing + DNA A DNAB "2, proteiny + DNAp

Table 4.1: List of reactions for the two-stage toggle switch, consisting of transcription, mRNA degra-
dation, translation, protein degradation and binding/dissociation of the repressor. ) denotes a sink
state that absorbs degraded mRNAs and proteins.

Figure 4.1: Scheme of the two-stage toggle switch. Species associated with player A are shown in red,
species associated with B are shown in blue. Reactions/Interactions are indicated as arrows, jagged
arrows indicate degradation reactions. mRNA is transcribed from DNA with rate ap. mRNA,
decays with rate 4 and is translated into Proteina with rate S4. The protein decays with rate da
and can bind (unbind) DNAg with rate 7§ (7). Protein-bound DNA lead to transcriptional arrest.
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Figure 4.2: Numerical solution of the reaction rate equations in the two-stage toggle switch for dif-
ferent parameters and initial conditions. Dashed lines indicate steady state values. A,B: Symmetrical
parameters for both A and B (see Tab. 2.1), leading to identical time evolution of the correspond-
ing species. Initial conditions are my = mp = pa = pp = 0,da = dg = 1 (A) and mp = pa =
0,mp = 10,pp = 100,ds = dg = 1 (B). C,D: Asymmetrical binding constants 74 = 1,74 = 0.5
leading to A-dominance. Initial conditions are ma = mp = pa = pg = 0,da = dg = 1 (C) and
ma =pa =0,mp =10,pg = 100,dA =dg=1 (D)
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Figure 4.3: Phase portrait of the two-stage toggle switch. This plot shows the ODE-system’s trajec-
tories in the pa /pp -phaseplane starting from different initial conditions. The steady state solution is
indicated by a red dot. A: completely symmetric parameters for both players lead to a steady state
lying on the symmetry axis ppo = pg. B: TX > Tg , leading to a steady state shifted below the symme-
try axis. Other parameters were set according to Tab. 2.1. Note that trajectories do intersect in this
plot, since it shows a projection of a six-dimensional solution onto a two-dimensional phaseplane.



4.1. SYSTEM DESCRIPTION 47

the following CME, that is split up into four coupled equations, corresponding to the four
promoter states:

£Poo(mA,mB,pA,pB,t) = 7 Por(ma, ms,pa — 1,pB,t) + 75 Pro(ma, ms, pa, p — 1,1)

+[~pB — TAPA +aa(E,, — 1) +ap(E,, —1)
+ ’YA(E;ZA —1)-ma+ 'yB(E;{LB —1)-mp
+ 6A(EP_A — 1) “MA +BB(Ep_B — 1) -MmB
+0a(E), —1)-pa+08(E;, — 1) - ps]
Poo(ma, mB,pa,pB,t)
d
%Pll(mAa ms, PA,DPB, t) = TX(pA + 1)P10(7TLA, mp,pA + ]-avat)
+ 75 (pB + 1) Por(ma, ms, pa, pB + 1,1)
+[-1a — 75 + (B, — 1) -ma +78(E), —1)-mp
—{—ﬁA(Ep_A —1)-mp +/8B(EP_B —1)-mp
+0A(Ef, —1)-pa+08(E;}, —1) - pg]
Pii(ma,mB,pa,pB,t)
d _
%PIO(mA; mp, A, PB,t) = T4 Pi1(ma, mp,pa — 1,pg,t) + 74 (pB + 1) Poo(ma, ms, pa, pB + 1,1)
+ -5 — TXpA +ap(Ey,, — 1)+ ’yA(E;A —1)-mp +’yB(E;,LLB —1)-mp
+ﬂA(E;A —1)-mp —i-/BB(E;B —1)-mp
+O0A(E,, —1) - pa+08(E,;, —1) - ps]
PIO(mAamBapA7pBat)
d _
%P01(mAa mB7pA7pB7t) = TX(pA + 1)P00(mAa mB, pA + 1apB7t) + B Pll(mAva7pA7pB - 17t)
+ [—Tng -7y Taa(E,, —1) —i—'yA(E;LA —1)-ma —|—'yB(E;2B —1)-mp
+ Ba(E,, — 1) -ma + Bp(E,, — 1) -mp
+0a(E), —1)-pa+0(E;, — 1) - pg]

POl(mAa mBapAapBat) .

The shift operators E;" and E, were used to simplify the expression analogous to section
3.1.2. To our knowledge no results have yet been published on the solution of stochastic
two-stage toggle switches.

Approaches to solve this CME applying the naive finite state projection method used for
the one-stage systems in section 3.1.4 are condemned to failure, since the additional mRNA
players increase the state space drastically. Consider a case analogous to the one-stage system,
where we chose to cut the state space for pa > 42, pg > 42. Additionally we have to restrict
the state space in the mRNA dimensions, e.g. at ma > 20, mp > 20 (valid for systems
with avg. of 10 mRNAs). Due to mass conservation we only need to consider four different
combinations of DNA states (DN A, + DN AX°"d = 1). Overall this will result in a truncated
state space St of size

|Sp| = 42% - 20% -4 =7.05 - 10°
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Figure 4.4: Exemplary timecourse of a two-stage toggle switch showing similar dynamical regimes as
the one stage switches.

The system’s matrix Q (see equation (2.7)) will contain |St|-12 = 8.47-10% non-zero entries.
Solving equation (2.8) for such huge matrices is not efficient and not possible for the desired
accuracy. For small protein and mRNA levels a more elaborate iterative projection algorithm
might be able to solve this CME. However, as the finite state projection is not the main focus
of this work, we instead use the stochastic simulation algorithm to analyze the two stage
system.

4.1.3 Regimes

The principal dynamics of the two-stage system are similar to the one-stage toggle switch (see
Fig. 4.4), resulting in three regimes: In the deadlock regime both promoters are occupied by
inhibitors, shutting down the transcription completely. In the A-regime, Proteiny is abundant
and suppresses synthesis of Proteing through binding and inhibition of the promoter of DNAg.
The promoter of DNA A is unbound. In the B-regime, Proteiny is dominated by large numbers
of Proteing, inhibiting the promoter of DNA,. DNAg is unbound.

Differences in the dynamics are expected due to the intermediary mRNA state. The
regulation of the promoter does not directly depend the promoter’s products (mRNA), but
involves an additional step of translation, creating a certain delay of promoter response. More
importantly the protein distribution itself will be different, as noise from the mRNA level is
further amplified through translation.

As before we aim for a mathematical definition of the three regimes of the system. We
can again approximate the protein number distribution in the A/B regimes by results from
Thattai and van Oudenaarden [58], who showed that for a simple two-state expression model,
the mean and variance of protein numbers obey

ax/Ba:

o= 22 (42)
2

o2 Bt (4.3)

v %%51 + 5925%5 '
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The corresponding distribution (shown to be negative binomial by Shahrezaei and Swain [55]
in case of v/d > 1) is much broader than for the one-stage model, because transcriptional
noise is further amplified. The mRNA distributions are Poissonian with mean and variance
of %, in analogy to the protein distributions in the one-stage model. We define the regimes
in the same way as for the one-stage toggle switch (see equations (3.6))

The regime Sp (Sp) is the subspaces of the state space S, where Proteina (Proteing) is
dominating, regime Sy is the subspace where the system is in a deadlock situation. Note
that we do not include the mRNA numbers into our regime definitions, since they are only
an intermediate and not the effectors of the systems. In a similar way to section 3.1.3, we
define the boundary ¢, of regime x using a normal approximation of the dominating protein’s
distribution as

by = o — Lot - O - (4.4)

Z is the o/% quantil of the standard normal distribution. For example using o/ = 0.001
assures that 99.9% percent probability mass of the distribution lie beyond the lower boundary.
Therefore we are certain to capture all relevant protein numbers belonging to Sx and Sp.

4.1.4 Switching time

Using the results obtained for the one-stage switch in section 3.1.5, the extension of the
switching time for two-stage switches is straight forward: Without loss of generality we assume
that the system is in Sa. Instead of requiring only synthesis of one Proteing followed by a
binding reaction, now there needs to be a transcription reaction creating mRNAg when DNAp
is unbound, followed by translation during mRNA lifetime — note that during this time the
promoter can be bound by the repressor again — and a binding reaction during the protein
lifetime of Proteing. So we only have to change the parameter of the geometric distribution
to account for these events: The probability of a transcription during the unbound phase is
(analogously to the synthesis in the one-stage model)

gs =1 — exp (— 2B ) . (4.5)

Ta " HA

The probability of translation during average mRNA lifetime is

_ ( 513)
Gg=1l—exp|——] .
B

q: will be close to one for biological relevant parameters as Sg > 7p (see section 2.3), meaning
that once mRNA has been synthesized it is quite certain that it will be translated at least
once. Finally the probability of a binding reaction during protein lifetime is

As for the one-stage system this is expected to be close to 1 for biologically relevant parameters
since 74 > dp (see section 2.3).
Altogether we get

N ~ Geom(qs - gt - qv) (4.6)
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Figure 4.5: Switching times for the two-stage models. Estimates for the switching time over various
protein degradation rates 6 and three different binding/transcription parameters(blue, red, green)
obtained by different methods are shown. Remaining parameters are set according to Table 2.1. Solid
lines: SSA estimates. Dashed lines: Analytical estimates. A: Estimates of the mean switching time.
B: Estimates of the standard deviation of switching time. The analytical estimates resembles the
simulated results. The simulated estimates deviate from analytical estimates for higher protein levels
due to the maximal simulation time of 10® seconds.

Using the linear transformation T' = Tﬂ, we end up with the mean and the variance of the
A
switching time as

1

Ta - QsGt Qb

I 1 g
2 S

o7 = Var(T) = .

T @) ()2 (gsqa)?

Now we compare the the analytical results to estimates obtained by stochastic simulation
for models with different protein degradation rates, leading to different protein levels in Sa
and Sp. Barzel’s method could not be applied here since the state space is too large even for
systems with low species numbers (as shown in section 4.1.2). We simulate 10000 timecourses
of these two-stage systems and estimate the mean switching time analogous to the one-stage
model in section 3.1.5. Results are shown in Fig. 4.5.

Similar to the one stage model, we find that mean switching time strongly depends on the
protein degradation rate (Fig. 4.5 A), which leads to different amounts of proteins during Sa
and Sp. The higher the amount of dominating proteins, the shorter are the phases, where
the antagonistic promoter is unbound, thereby reducing the chance of switching.

Analytic means are in good agreement with simulated estimates (Fig. 4.5 A), as long as
the switching time of the system is not to close to the maximum simulated time of 10% seconds
(where simulation results get biased). Small deviations might result from the fact, that in the
simulation we estimate the time until the protein levels drop below the threshold ¢ whereas the
analytical estimate does not account for this protein degradation phase. Simulated estimates
are therefore expected to be slightly higher than analytical estimates. This scenario is very
likely since the slope of the analytical curve matches the simulated data quite well, only the
y-intercept deviates slightly.

TSwitch = Mean(T') =
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Figure 4.6: Priming times for the two-stage switch. Estimates for the switching time for 3 different
parameter sets and various protein degradation rates § obtained by stochastic simulation. The plot
shows the general dependence of the priming time on the protein level p of the system. Increased
transcription rate « also influences the priming time (red line), whereas modified dissociating rates
show less influence (green and blue line).

Standard deviations show almost the same characteristics (Fig. 4.5 B), since mean and
standard deviation of a geometric distribution become very similar in case of a large distribu-
tion parameter. Simulated standard deviations are also dampened for systems with switching
times close to 10% seconds, ultimately decreasing as most estimates are equal to 10° seconds.

4.1.5 Priming time

The priming time is defined as the average time it takes the system to leave Sy and to reach
either Sp or Sp. In case of the two-stage model this involves the degradation of all present
proteins and mRNAs of one species. Even if all proteins including the single DNA bound
protein are degraded, a remaining mRNA still has the potential to create a burst of proteins
again, which will keep the system in .Sy.

An analytical solution will not be given here, since we expect it to be even more complex
than for the one-stage model. Barzel’s approach becomes computationally infeasible, because
the state space of two-stage systems is too large as described in section 4.1.2. Simulation
results of systems with different protein degradation § are shown in figure 4.6.

We find that these results are similar to the one-stage model: Increasing protein lev-
els/decreasing protein degradation rates lead to increasing priming time, as it takes much
longer to degrade the repressor proteins if their degradation rate is small. We observe that
also the mRNA synthesis rate « has a major influence on the priming time. Systems with
higher o move out of Sy quicker, since the chance of transcription during the unbound phase
is increased, driving the system towards Sa or Sp. Increasing the unbound phase t, using
larger 7~ does not show much influence, because the t, term is dominated by the average
protein number .
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Figure 4.7: Robustness of the two-stage switch with respect to binding constants. Estimates of Py,
Pg, Py, the bias and the entropy are plotted against the binding asymmetry for six different protein
mean values pu. Symmetric parameters give a bias Biasy = 0.5, whereas asymmetric parameters result
in Biass # 0.5, tilting the switch either into Sp or Sp. Remaining parameters are chosen from Table
2.1.

4.2 Switching bias and robustness analysis

In the following sections we analyze the influence of different sources of asymmetry in the
system on the switching bias.

4.2.1 Promoter binding

Here we examine the influence of asymmetric binding parameters 7+ on the switching bias,
as defined in equation (3.2.1). The ratio of binding constants is varied in the range 0.5 <
Té_ / TX < 2. Additionally the protein degradation rates are changed, which leads to different
average protein copy numbers pu, in Sa and Sp. Transcription and mRNA degradation are
kept constant, resulting in an overall mean of 10 mRNAs in Sp and Sp. Results of the
simulation are shown in Fig. 4.7.

We see similar results to the one-stage switch: Asymmetry tilts the switching decision into
one direction, Sy gets more probable than Sp or vice versa (Fig. 4.7 A,B). This bias becomes
stronger as the parameter asymmetry increases. Systems with higher protein numbers are less
influenced and show less bias (Fig. 4.7 D). Evaluating the entropy of the systems shows that it
is maximal for systems with symmetric parameters as before. However if the systems become
asymmetric, we see a rapid drop of the entropy for systems with small protein numbers,
whereas systems with increasing protein number tend towards constant entropy independent
of the asymmetry (Fig. 4.7 E). The entropy describes the trade-off between switching bias and
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the system’s ability to decide at all. Low protein number systems have the advantage that
they decide very rapidly, but their decision is strongly biased. High protein number systems
take longer to decide, but their decision is almost unbiased.

Fig. 4.8 A reveal that, given an asymmetry of Tg_ / TX = 2, a protein number between 10%
and 10° result in a maximally robust switch according to the entropy: Decisions do not take
too long and the decisions are reasonable unbiased. Fig. 4.8 B shows that this maximum is
conserved across different asymmetries in binding parameters.

How does the number of mRNAs influence the switch performance? As an extension
we now not only vary the protein level p by changing the protein degradation rates, but
also manipulate the mRNA level by changing the mRNA degradation rates «v. The binding
asymmetry was fixed at TE{ / Tj{ = 2. The results are plotted in Fig. 4.9 and show that different
mRNA levels have only moderate influence on the bias, the entropy curves are very similar
showing maximal values at protein levels between 10* and 10°.

4.2.2 mRNA synthesis and degradation

To further investigate the role of mRNAs in the system’s dynamics, we apply an analogous
approach by varying the mRNA degradation rate « of both genes, which could for example
be induced through microRNA, targeting the mRNA of one species, leading to increased
degradation of the mRNA.

Different mRNA degradation rates will lead to different protein distributions of both
species. Therefore, we investigate not only the influence of asymmetric mRNA degradation
rates but also the influence of different protein mean levels. As in section 4.2.1, the protein
degradation rates § are changed symmetrically for both genes to obtain systems with different
mean protein numbers .

The results shown in Fig. 4.10 look very similar to the results on the binding asymmetries
from section 4.2.1. Asymmetries lead to biased switching (4.10 D), but the switching bias of
systems with higher average protein levels p, is less influenced by the asymmetry.

Finally, the transcription rates « are varied, accounting for e.g. different promoter strengths.
Fig. 4.11 shows a qualitatively similar picture as Fig. 4.10. Asymmetries give advantage to
one of the genes, tilting the switch towards one regime. However, compared to the binding
and mRNA degradation asymmetries, the influence of transcriptional asymmetries on the
switching bias seems to be stronger. Consider for example the 10000-protein systems in Fig.
4.11 and Fig. 4.10. Whereas the entropy of the system is close to one for strong degradation
asymmetries, the entropy is only 0.7 for strong transcriptional asymmetries. The system is
therefore less robust to transcriptional asymmetries.

Nevertheless, we find a general trend that, although transcription, mRNA degradation and
protein-DNA binding constants are assumed to act very differently on the systems dynamics,
toggle switches with high protein amounts are less prone to asymmetries and can maintain
their function more robustly.

4.2.3 Initial conditions

In a similar fashion we assess the asymmetry in initial conditions introduced through to
transition from a coexpressed to a switching state as described in section 3.2.2.
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Figure 4.9: The entropy of the system is plotted against various protein levels ; and mRNA levels at

a two-fold binding asymmetry ( Tér / TZ = 2). Remaining parameters are set according to Table 2.1.
The entropy maximum is conserved across mRNA levels.
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Figure 4.10: Robustness of the two-stage model with respect to mRNA degradation constants v («, 3,
77 and 7~ were chosen from Table 2.1). This leads to mRNA levels in the range of 5 to 20. Estimates
of Pa, Pg, Py, the bias and the entropy are plotted against the mRNA degradation asymmetry for six
different protein mean values p. Systems with y4 < 5 (logs(ya/v8) < 0) lead to preference of Sy,
since lower mRNA degradation v leads to an overall increased protein level of player A compared
to player B: pa > pp , giving strong advantage to A. This advantage is less pronounced for systems
with higher mean protein level pu.

Maximal asymmetries are estimated using the upper and lower bounds of the two-stage
gene expression distribution (4.3) using a normal approximation:

Qsj;_ = o+ 0z Ly
(b; =g — Oz Lo
Zq denotes the o/-quantil of the standard normal distribution. For example using o/ = 0.9995

assures that ¢} and ¢, enclose 99.9% of the distribution’s probability mass. Protein initial
conditions pairs were chosen within these bounds:

PAg = pA + i (oA Zy) (4.7)
pBg =MB — i (0B Zy) ,

i € [0,1], where ¢ = 0 gives perfectly symmetric initial conditions, ¢ = 1 leads to maximal
asymmetric initial conditions. mRNA initial conditions were adjusted accordingly:

oA
maog = pAoﬁfA

OB
mpo = pBOBTg .
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Figure 4.11: Robustness of the two-stage model with respect to mRNA synthesis constants «. Esti-
mates of Pa, Pg, Py, the bias and the entropy are plotted against the transcription asymmetry for six
different protein mean values u. Systems with ap > ap (logs(ya/v8) > 0) lead to preference of Sy,
since higher mRNA synthesis as leads to an overall increased protein level of player A compared to
player B: pua > up , giving strong advantage to P. This advantage is less pronounced for systems with
higher mean protein level p. Estimates for logs(va/v8) < —0.5 are missing, since these parameters
decrease the mean protein level p to ranges where Sa and Sy cannot be discriminated any more.

We perform a analysis of the bias with respect to the first decision in the system (Fig.
4.12) analogous to the one-stage system (see section 3.2.2). The bias regarding the first regime
choice is almost independent of the asymmetry in initial conditions for the same reasons as
in the one-stage model: The system comes into a deadlock phase immediately, where mRNA
and proteins are degraded almost completely and the former advantage of one player is lost.
We only see slight deviations from an unbiased decision at strong asymmetries. Strong initial
asymmetry might cause that one player is already completely degraded, while the other is still
present in significant amounts, driving the system into the regime of this player. However
these influences are quite small compared to the asymmetries of binding parameters and
mRNA degradation.

Systems with high protein number u are less influenced than systems with small protein
numbers. This stems from the fact that in systems with lower protein levels p the fold
difference ﬁ—t between opposing edges of the distribution is larger than in systems with high
protein level. This fold difference is plotted in Fig. 4.13, revealing that for the 100-protein
system, choosing initial conditions from the edges of the distribution results in a 3.5-fold
difference, whereas for a 10000-protein system it is &~ 1.2. Therefore the asymmetric conditions
are effectively stronger in low copy number systems, leading to a stronger bias.
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Additionally, the protein distribution of the two-stage switch is much broader than the
distribution of the one-stage model (due to the noise from the mRNA expression). Therefore
the fold difference of initial conditions is much larger in the two-stage system, leading to
noticeable bias.



o8

CHAPTER 4. TWO-STAGE TOGGLE SWITCH

0.75
0.7
065
06

& 055
05
045
0.4

0.35

A B C
1 1 1
0.8 0.8
0.6, 0.6
P °
e —— |
] e ———— 0.4
0.2 2.2b————rrrr—
0 0 0
0 1 1.5 2.5 0 0.5 1 1.5 2 2.5 0 o 1 15 25
(Ppo /0 (Ppy 1)/ @ (Ppo W)/
E
1.1
Protein level
105 —100
——1000
2 —— 2000
g
g1 —_— ] ——10000
—— 50000
100000
0.95)
1 1.5 2.5 0.5 1 15 2 2.5
(Ppo—W) /0 (Ppo—H) /0

Figure 4.12: Robustness of the two-stage model with respect to switching bias and initial conditions.
The initial conditions of the systems were chosen according to equations (4.7). On the x-axis the
distance of the initial number Proteina /Proteing from the distribution mean is given in standard
deviations. For systems with distance 0, initial conditions for both proteins were chosen from the
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chosen from the opposing edges of the distribution.

1

10* 10° 10°

Protein level

Figure 4.13: Fold difference ¢ /¢~ between opposing quantils of the protein-distribution plotted
against the mean protein level p of the system, showing that the fold difference decreases rapidly for
larger protein levels p.



Chapter 5

Discussion

In the previous chapters we have analyzed the dynamics of the probabilistic one- and two-stage
toggle switch. In this chapter we discuss the results.

5.1 Comparison of models

We start by a general comparison of deterministic and probabilistic models to emphasize the
importance of stochastic modeling of regulatory motifs.

5.1.1 Deterministic and probabilistic models

In this work, we presented a probabilistic description of the toggle switch, based on the fact
that the system involves low molecule numbers, introducing an inherent stochastic component
into the system. To evaluate features like the switching time or the bias, we simulated many
timecourses of probabilistic model, extract the feature of interest and in the end take the
average value of the feature. One could argue that this averaging in fact reduces to simply
considering the deterministic case.

Despite the fact that the ODE solution cannot capture the bistability of the system (Fig.
3.3 and 5.1 B), we want to emphasize that the solution of the ODE does not necessarily — that
is, only in case of linear propensities — resemble the mean trajectories of species abundances
obtained by many stochastic simulation runs. Fig. 5.1 shows this for the one-stage toggle
switch. Two discrepancies occur: Due to the uncertainty of the first regime choice in the
probabilistic model, the mean peaks early at &~ 20. This peak is not captured by the ODE
solution (Fig. 5.1 A).

Even more, the steady state of the ODE solution differs from the mean of the stochastic
simulations: In the stochastic simulation the regimes are changed frequently after the initial
peak. The intermediate Sy also gains probability. The mean drops and stabilizes at a value of
~ 14, representing a balance between Sa, Sp and Sy. The ODE solution shows much simpler
dynamics (Fig. 5.1 A), starting from the origin and leading rapidly into a steady state at
around 3, which corresponds to Sy (the deadlock regime).

However, if we use the median instead of the mean as a summary statistic on the stochastic
simulations, we see that the ODE solutions resembles the median of the stochastic simulation
trajectories.

99
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For small molecular abundances stochastic differential equations also fail (data not shown),
since species numbers are quickly driven below 0. Also, mass conservation is not guaranteed
ad hoc and needs to be incorporated into the SDE, e.g. by correlated noise for players that
are interconnected via mass conservation.

5.1.2 Existing models

Loinger et al. [33] studied the one-stage toggle switch and several modifications of the motif
comparing the deterministic with the probabilistic approach. The modifications include the
exclusive switch (both players share one promoter so either A or B can be repressed but not
both at once), a switch with bound repressor degradation (inhibitors can be degraded even if
bound to DNA), a switch where both proteins form an inactive heterodimer and a switch with
cooperative binding of the repressors. The main focus of this work was on the bistability of
the systems. In the deterministic case bistability was defined as the existence of two positive
steady states. Loinger et al. found that both the normal toggle switch as well as the exclusive
toggle switch do not exhibit bistability if modeled deterministically. The switches including
bound repressor degradation, heterodimers or cooperative binding are bistable in a certain
parameter range (characterized by strong repression). In the probabilistic case the regimes
Sa, Sp and Sy of the switch were defined by a static boundary ¢ = 2 (see section 3.1.3 for our
definition of the regime boundaries). The system was defined as bistable if Py < 0.01. The
probability distribution of systems that fulfill this criterion exhibits two distinct peaks where
either A or B dominates but does not have a peak at the deadlock regime. Loinger et al. used
numerical integration and Monte Carlo methods to approximate the solution of the CME and
found that the normal toggle switch does not fulfill the bistability criterion due to a large
probability of the deadlock regime — high Py is also observed in our analysis (see e.g. Fig. 3.10
C). The exclusive switch as well as switches with bound repressor degradation, heterodimer
formation or cooperative binding are bistable in a limited range of parameters. Note that here
the idea of a functioning switch is quite different from ours. We allow for Py > 0.01 and assess
the functionality of the system as switch by requiring long switching and moderate priming
times. Loinger et al. also gave an analytical expression of the switching time for the exclusive
switch. As we did not consider this modification of the switch a direct comparison cannot be
made. However, we found that the switching time is actually geometrically distributed. It is
likely that the switching time of the exclusive switch also obeys a geometric distribution, as
the switching process is based on the same principles (unbinding of the repressor).

Schultz et al. [54] solved the CME of a one-stage toggle switch (with and without dimerisa-
tion) analytically using linear noise and fast transition approximations. They introduced three
characteristic parameters, namely repression strength, number of free proteins and an adia-
baticity parameter, relating the timescale of gene expression to the timescale of protein-DNA
interaction. They investigated how the protein distribution depends on these parameters.
Different parameters lead to a different number of peaks in the distribution. For example in
the range of parameters used in our work (large adiabaticity, moderately strong repression)
the distribution exhibits three peaks, which is in agreement with our findings. Similar to
Loinger et al. [33] the criterion for functioning switches was defined as Sy + Sg ~ 1 and it
was shown that strong repression is necessary to obtain functioning switches. However strong
repression leads to high probability for the deadlock regime. Schultz et al. suggested that
introducing cooperative binding significantly decreases the deadlock probability and further
enhances the switching property.
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Figure 5.1: Comparison of the ODE solution and simulated trajectories for Proteina in the one-
stage toggle switch. A: The mean (red) and median (blue) trajectory of Proteina obtained by 10000
stochastic simulation and the trajectory of the corresponding ODE (green) are shown. 25% and 75%
quantils of the simulations are indicated by shaded area. A clear discrepancy between the ODE
solution and the average of the stochastic simulations in terms of transient dynamics and steady state
is visible. However the median of the trajectories is very close to the ODE solution. B: Distribution
of the amount of Proteiny at ¢ = 3000 sec. The mean (red dashed line) and median (blue dashed line)
of the distribution are also indicated.
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Figure 5.2: Comparison of mean switching time between model classes. Parameters are chosen from
Table 2.1. One-stage switch: solid lines, two-stage switch: dashed lines. A: Simulated estimates. B:
Analytical estimates. Two-stage models have an overall higher switching time than one-stage models.
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Sasai and Wolynes [53] formulated the toggle switch as a quantum many-body problem,
solved the CME of the toggle switch (with dimerizing repressors) using the Hartree approxi-
mation and determined the parameter range (in terms of repression strength, number of free
proteins and an adiabaticity parameter) where the system exhibits two stable states. Sasai
and Wolynes found that the system exhibits two stable states if the adiabaticity parameter
and the number of free proteins is large, which reflects our finding that large protein numbers
reduce switching between Sa and Sg.

However, to our knowledge no publications exist that investigate the role of mRNA and
the influence of asymmetric parameters.

5.1.3 Transition times

In chapters 3 and 4 we defined the transition times as the average times the system needs
to change its regime. The switching time (time for a transition from S and Sp to Sp)
quantifies how long the toggle switch can memorize its decision. The priming time (time
for a transition from Sy to Sa or Sp) quantifies how long the toggle switch needs to make
a decision. Before, we have shown the results on the switching times of one- and two-stage
switches independently. Here, we compare the transition times between equivalent one- and
two-stage switches. We call a one-stage switch with mean protein number p(") (= ,ug) = ,ug ))
equivalent to a two-stage switch with mean protein number p? if 4 = 42 and both models
share the same binding/dissociation constants.

We first compare the mean switching times Tgyitch Of the different models. We find that
for different sets of parameters the one-stage switch has smaller switching times than two-
stage switches (Fig. 5.2). This means that one-stage switches loose the information on the
previous decision earlier and change their regime sooner. The reason lies within the condensed
transcription/translation reaction of the one-stage switch. It has a much higher rate compared
to the transcription reaction of the two-stage switch to fulfill the equivalence condition p!) =
1@, For example a two-stage system with o = 8 = 0.05, v = & = 0.005 results in a mean
of 10 mRNAs and 100 proteins. An equivalent one-stage system has o = 0.5, = 0.005. The
synthesis rate o must be 10 fold higher compared to the two-stage system as it must account
for the 10 mRNA molecules present in the two-stage system, which increase the effective rate
of translation. This leads to higher probability of synthesis during the unbound phase in
the one-stage model, ultimately resulting in shorter switching times. Contrary, in the two
stage model the probability of mRNA synthesis is smaller, but once an mRNA has been
synthesized the binding probability is much higher as not only one but several proteins are
translated from this mRNA leading to increased binding propensity. However, the binding
probability is already very close to 1 (see equation (4.1.4)), resulting in only light influence
of the increased binding propensity on the binding probability.

Additionally we see that, even if the synthesis rates a are equal (solid blue and dashed red
line in Fig. 5.2), the two-stage switches have longer switching times. Due to the additionally
needed translation process in the two-stage systems, it can happen that even though an mRNA
was synthesized, it is degraded before translation and no switching occurs. Comparing the
priming times in Fig. 5.3 reveals the opposite trend. Two-stage systems spend less time in
the primed state (Sp) and are driven faster into Sy or Sp than their corresponding one-stage
systems. This is explained by the fact that two-stage systems enter the deadlock situation
less often. Being in a state where both promoters are unbound, for the two-stage system it is
very unlikely to run into a deadlock: Both genes must almost simultaneously produce mRNA
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Figure 5.3: Comparison of mean priming time between model classes. Parameters are selected from
Table 2.1. Two-stage switches (dashed lines) show decreased priming time compared to one-stage
switches (solid line). One-stage models have high probability of entering the deadlock regime, since
only the synthesis reaction for both genes has to occur simultaneously. Two-stage models have low
probability of entering the deadlock regime due to the two required steps of gene expression.
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Figure 5.4: Comparison of the switching bias between model classes. One-stage switch: solid lines, two-
stage switch: dashed lines. A: Bias for asymmetric binding constants 7+. B: Entropy for asymmetric
binding constants 7. C: Bias for asymmetric initial conditions. D: Entropy for asymmetrical initial
conditions. Overall, two-stage switches are more robust to asymmetries in binding parameters, but
are less robust to asymmetries in initial conditions.
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before their promoters are inhibited and both mRNAs must be translated into proteins. In
one-stage switches only the simultaneous protein synthesis is required, being more likely.

5.1.4 Bias/Robustness

In chapters 3 and 4 we estimated the switching bias for the one- and two-stage systems intro-
ducing different kinds of asymmetries into the system. It turned out that systems with higher
average protein levels are less biased regarding the switching behavior. Now we compare the
equivalent one- and two-stage switches with respect to the switching bias. Fig. 5.4 A shows
that one-stage systems are more biased than the corresponding two-stage systems for asym-
metries in binding parameters. The two-stage systems are more sensitive for asymmetries in
initial conditions than one-stage systems (Fig. 5.4 C). Considering the entropy, we clearly see
a higher entropy of the two-stage systems over the whole range of asymmetries in binding
parameters (Fig. 5.4 B), whereas little difference is observed in the entropies regarding initial
condition asymmetries (Fig. 5.4 D).

5.1.5 Autoactivation

In the previous chapters we built up and examined models of a regulatory motif consisting
of two genes mutually repressing each other. A modification of this motif, where addition-
ally both genes can activate their own expression, occurs frequently in regulatory networks of
differentiating cells (for example in the PU.1/GATA-1 mutual inhibition in myloid differentia-
tion [43]). In this regulatory motif, both players can bind to their own promoters, stimulating
their own expression and bind to the antagonistic promoters, repressing the other gene.

In this section we evaluate how the additional self-activation acts on the system’s dynam-
ics. We assume that a gene can either be bound by the activator or the repressor, but not
both at the same time. This corresponds to a close distance between both binding sites on
the DNA, leading to steric hindrance. Allowing for simultaneous binding of repressor and
inhibitor is possible in general, but transcriptional potency of this double bound promoter
is unclear. Including auto-activation into our model is straight forward: We introduce two
additional species, representing activator-bound promoter (one for each player), which result
from an reaction between activator protein and an unbound promoter. The activator can
dissociate, restoring the unbound promoter. If neither repressor nor activator is bound to the
promoter, the gene will be transcribed with basal rate k. Repressors bound to a promoter
block transcription completely. Promoters with bound activator lead to full transcription of
the gene with rate @ > k. A scheme of the two-stage model extended by self-activation is
shown in Fig. 5.5 and the biochemical reactions describing this system are listed in Table 5.1.

The selfactivation has a strong influence on the switching time. Switches with autoacti-
vation show strongly increased switching times compared to the non-autoregulatory switches
(Fig. 5.6). Therefore, switches with autoactivation can memorize their decision much longer.
On the one hand, even if the repressed promoter is unbound for a short time, due to the
low basal transcription rate, synthesis of an mRNA is very unlikely. On the other hand, the
dominating species will almost all the time occupy its own promoter, prohibiting a eventually
synthesized repressor from binding. Even if a repressor was able to bind the promoter it will
quickly be displaced by an activator again. Both facts lead to strongly increased switching
time as depicted in Fig. 5.6. Even for high degradation rates/low protein numbers the mean
switching time is close to the upper bound of the simulated time. It can be expected that the
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Figure 5.5: Scheme of the two-stage toggle switch with autoactivation. Species associated with player
A are shown in red, species associated with player B are shown in blue. Reactions/Interactions are
indicated as arrows, jagged arrows indicate degradation reactions. The two-stage model of Fig 4.1
is extended by the binding (unbinding) of the proteins to their own promoter with rate = (7).
Autoactivation and inhibition are mutually exclusive — the promoter is either bound by the activator
protein or by the repressor protein. Depending on the promoter state, the transcription rate is basal
(k), full () or completely inhibited.

DNAp “2DNAg + mRNAp DNA, “5DNA, + mRNA,
DNAX' “B,DNAYY + mRNAp DNAY® 24 DNAS + mRNA
mRNAp 220 mRNA, 2250
mRNAp Z%mRNAg + Proteing mRNA, Z5mRNAL + G
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DNAR" 24 Proteing + DNA» DNAZ" A,p 4 DNAg
ot o+
Proteing + DNAp —DNA¥" Proteiny + DNAy —5DNARY®
DNAX® "By Proteing + DNAp DNA% 22 Proteiny + DNAA

Table 5.1: List of reactions for the two-stage toggle switch including self-activation. The former
two-stage model is extended by three reactions for each species, representing the protein binding its
own promoter, the according dissociation and the full transcription of the activated promoter. The
self-bound promoter DNA®" has increased transcriptional rate «, the unbound promoter has basal
transcription rate k.
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one-stage system
two-stage system
two-stage system with autoactivation

Protein level

Figure 5.6: Simulated mean switching times of the autoregulatory two-stage system compared to
equivalent systems without autoactivation. Errorbars indicate standard deviations ogyitch Of the esti-
mates. Switches with autoactivation have strongly increased switching time. The dominating protein
protects its own promoter from inhibition by self-binding. Because of the low basal transcription rate,
successful synthesis of the repressed protein is very unlikely, also increasing the switching time. Due to
the maximal simulation time of 10% seconds, estimates close to this boundary are biased and assumed
to be even higher.

true mean switching time is much higher than the simulated estimates (due to the maximal
simulation time of 10 sec). Hence, self-activation can stabilize the system’s regime choice
by strongly increasing the time until the systems forgets a previously made choice. Moreover
autoactivation increases the system’s robustness against parameter asymmetries as shown in
Fig. 5.7. Whereas we observed strong bias in the non-autoregulatory systems by introducing
asymmetric binding parameters, here we see only a weak bias of the systems (Fig. 5.7 A).
Two-state systems with g = 10000 for example showed considerable bias in Fig. 4.7 C, whereas
here its bias is almost constantly around 0.5. Also the entropy is quite constant for systems
except for u = 100 (Fig. 5.7 B). These systems are still influenced by the asymmetries.

Considering asymmetric initial conditions shows the inverse trend: Here autoregulatory
systems exhibit a stronger bias than non-autoregulatory systems (Fig. 5.7 C,D). This stems
from the fact that, through autoactivation the system can escape the deadlock situation and
the complete degradation of both players. Through binding its own promoter one of the two
species can rescue themselves from degradation, moving the system into that player’s regime.
This active intervention depends on the amounts of proteins present, since the propensity of
the binding reactions is linear in the number of proteins. If e.g. there are more proteins of P
than proteins of G, the probability is higher that P will bind its own promoter and drive the
system into Sp. This explains the increased bias for autoregulatory systems.

5.2 Biological interpretation

In this work, we studied a stochastic model of the toggle switch and analyzed the system’s
features and dynamics. What do these results imply in the context of biology, especially when
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Figure 5.7: Robustness of the autoregulatory two-stage switch. A,B: Bias and entropy with respect
to binding constants 7. Autoregulatory switches are robust to asymmetries in binding constants,
resulting in a bias close to 0.5 and entropies close to 1. C,D: Bias and entropy with respect to initial
conditions. Autoregulatory systems are less robust to asymmetries in initial conditions. Higher protein
levels p increase the robustness. Strong fluctuations of the 10000-protein switch in C results from the
high probability of the system in Sy, similar to Fig. 3.11.

we consider cell lineage differentiation? In this section we give a biological interpretation of
the main results.

5.2.1 Transition times

We found that the switching time — the system’s waiting time in the regime dominated by
P (Sa) or G (Sp) — strongly depends on the average protein level p during theses regimes.
The more proteins are present, the longer the system will be locked in Sa or S, independent
of the chosen model. The toggle switch is thought to act as a memory unit in cells. If a
differentiating cell uses the toggle switch for lineage decision (Sa corresponds to one lineage,
Sp to the other), the toggle switch has to maintain its regime for a long time, until the
differentiating cell has completely changed into the new lineage. Therefore the protein levels
involved in the toggle switch have to be high: For example, if we require that the mean
switching time should be 5 days (4 -10° seconds, chosen arbitrarily), from Fig. 4.5 A we find,
depending on parameters, a mean protein level of 103 to 10

However, we showed in sections 3.1.5 and 4.1.4 that the switching time is geometrically
distributed. Recall that the probability density function of the geometric distribution is
monotonically decreasing. Therefore, short switching times are always more probable than
longer switching times, regardless of the mean switching time, which is not the most probable
value of the distribution. Considering the toggle switch in a differentiating cell, this aspect
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of the switching time is not favorable, since even if the mean switching time is high, a large
fraction of the differentiating cell population will quickly loose the previous lineage decision.

Instead, one should require that, e.g. 95% of the population must have a switching time
longer than five days. This corresponds to the claim that 1 — F\(5 days) > 0.95, where F} is
the cumulative distribution function of the geometric distribution with parameter A\, which
depends on the parameters of the system (see equation (3.9)). To fulfill this, the system
must have a much higher protein level, strongly decreasing A (see equation (4.5) and (4.6)).
Now the geometric distribution flattens, getting more similar to a uniform distribution. The
protein levels necessary to establish that 95% of the population have a switching time longer
than 5 days is thereby estimated to be between 10* to 10, which is one order of magnitude
larger than the value obtained by using the mean switching time. To reduce this number,
autoactivation can be used to further stabilize the regimes (shown in section 5.1.5), leading
to a protein number of 103 to 10%.

Considering the priming time — the system’s waiting time in Sy — we find also a strong
dependence on the protein level /degradation rates. Interpreting this quantity is more difficult
than for the switching time and depends on the idea of how cells are instructed to commitment.

1. If we assume no external signal that forces the cell to commit (the signal would only tell
the cell to start commitment, but not into which direction), the priming time could be
seen as the time during which the cell can proliferate. Due to stochastic fluctuations the
cell is driven out of this proliferation state and into Sa or Sp, committing itself. The
priming time of the system would control the ratio between cells that are proliferating
(not committing during one cell cycle) and cells that commit to one lineage.

2. Assuming an external signal that instructs the cell to commit (but not to what lineage;
see section 4.2.3), the priming time does not have a biological function. Here, the
priming time is simply the phase where the system is in the deadlock regime. Then,
the system eventually escapes the deadlock, committing towards either Sp or Sg. The
priming time becomes a limiting factor here, since it can become so large that cells
will not commit during lifetime (consider for example the 50000 protein system in Fig.
4.12, which has Py = 1). Here, a balance between switching time, which should be
as high as possible, and priming time, which should be as small as possible, must be
found. Changing the molecular interactions in our model, for example the inclusion
of heterodimer formation, could reduce the priming time [33], granting long switching
through high protein levels, but reducing the otherwise long priming time.

Comparing the switching and priming times between one- and two-stage models shows that
two-stage systems have longer switching times and shorter priming times than corresponding
one-stage models. This reveals an interesting effect of the mRNA stage in a cell. This
partitioning of gene expression into two separate slow processes (instead of one fast synthesis
process) helps to stabilize the switch, enabling a differentiation cell to maintain its lineage
choice longer and furthermore to commit faster towards one lineage.

5.2.2 Robustness

The second major result of this work is on the robustness of the system to parameter asym-
metries. We evaluated the influence of asymmetries on the system’s switching bias, that
quantifies if the system’s shows preference for one committed regime over the other. We
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found that toggle switches with high protein levels p are less influenced by the asymmetries
resulting in a smaller switching bias. These systems robustly maintain their function as an
unbiased decision maker. This results from the fact that the first decision in the switch is
always unbiased. Toggle switches with high protein levels have longer switching times and
therefore can preserve this unbiased decision.

Considering the toggle switch in differentiating cells, an unbiased switching is favorable.
Otherwise, the cell will not be able to commit to both lineages with equal probability. The
toggle switch will decide unbiased if the system is completely symmetric, which is intuitive.
However, parameters that are involved in DNA-protein interactions are likely to be asymmet-
ric, due to the variety of protein-DNA interaction mechanisms, consisting of many different
combinations of DN A-sequences and binding domains. Additionally we showed that the initial
conditions can be asymmetric due to a transition from coexpression to mutual inhibition (see
sections 3.2.2 and 4.2.3). In order to function robustly and to compensate for this inherent
asymmetries a differentiating cell can utilize high protein levels that will keep the decisions
unbiased. Considering Fig. 4.9 A, we find the number of proteins leading to an maximal
robust system between 10* < p < 10° for a mean mRNA level of 10.

Both the analysis of transitions times and the robustness show that protein levels in the
range of 10* to 10° (corresponding protein half lives: 3.8 hours to 38 hours) are advantageous
in a cellular context. This surprisingly high number is in good agreement with measure-
ments of PU.1 abundance in differentiating common myeloid progenitors (experiments done
by Timm Schroeder).

Last, we point out how the bias of the switch can be modulated by the cell. An unbiased
decision might not be favorable for an organism in extreme situations, e.g. physical strain.
Here, the organism requires special cell types whereas others are not needed. Considering
e.g. endurance sports, over a longer time the organism will increase the amount of red blood
cells to account for the increased need for oxygen supply. However, megakaryocyte/erythroid
progenitors give rise to both red blood cells and megakaryocytes [44]. This lineage decision
is thought to be maintained by a toggle switch including the genes EKLF and Fli. Given
an unbiased switch, increasing the amount of red blood cells will simultaneously increase the
amount of megakaryocytes. However, in our model of the toggle switch this will create an
excess of megakaryocyte, which are not needed to cope with the need for increased oxygen
supply. There are two theories on how the control the ratio between different progeny [11, 48]:

1. Permissive control: Cells differentiate unbiasedly and the ratio between different progeny
is adjusted by modulating the survival and proliferation rates of progeny. The organism
would increase the survival rate for red blood cells and induce apoptosis in megakary-
ocytes.

2. Instructive control: The bias the toggle switch in the progenitor itself is changed. Pro-
genitors will more likely give rise to red blood cells then to megakaryocytes.

However, this system is quite robust and will hardly be influenced if e.g. binding rates
are changed towards one lineage. To tilt the switch into one direction, our model
suggests that an asymmetry in the mRNA synthesis « will have the strongest influence
on the switching bias (see section 4.2.2). Such asymmetry can be reversibly introduced
by modulating e.g the rate of mRNA export from the nucleus. Thereby the overall time
until an mRNA is ready for translation is changed. This mRNA export from the nucleus
is highly specific and mediated by the nuclear pore complex [1], which recognizes signals
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(e.g bound proteins) on the mRNA and regulates the export to the cytoplasm through
the nuclear pores.

5.3 Outlook

During this work we considered a purely theoretical toggle switch model to get an impression
of the systems dynamics and features and to relate these results to reality. However, until
now we have not considered a major feature of living cells, namely cell growth and division.
As toggle switches are thought to control lineage commitment in differentiating cells where
everything evolves around growth and division, including both is necessary to get a better
understanding of the involved mechanisms. Cell growth is expected to influence the system’s
dynamics, because increasing cellular volume will increase dilution, reducing the effective
reaction constants. On the other side, during the cell cycle DNA will be replicated and at
some time two copies of both genes are available, potentially increasing the transcriptional
rates, as two templates are present. Cell division will also disturb the state of the cell by
redistributing all present mRNA and protein to two daughter cells, restarting the system
with altered initial conditions. Even the promoter configuration will be reset, since DNA-
bound proteins are removed during replication. Including cell growth and cell cycle creates
additional noise in the system — e.g. due to asymmetric cell division — and helps to get a
more realistic idea of the cellular dynamics in differentiation.

To ultimately compare the results found during this work with measured protein levels, one
could try to further modify the model to better resemble experimental findings. If we consider
the PU.1/GATA-1 toggle switch, molecular interactions are far more complex than in our
model, e.g. involving the formation of a heterodimer between antagonistic proteins. According
to Loinger et al. [33] an interaction between the antagonists leads to different dynamics in the
one-stage system, e.g. the deadlock regime (Sj) vanishes. Also the mutual inhibition between
PU.1 and GATA-1 is not realized by simple binding of the repressor proteins to the promoter,
but involves an additional cofactor pRB [47], introducing a regulatory asymmetry into the
system, as pRB is only needed to inhibit GATA-1. The effects of these molecular details have
been assessed by Krumsiek [29] using a deterministic model. In our model we do not allow for
degradation of protein that are bound to DNA, assuming sterical hindrance of the proteasome
— a large complex that actively degrades proteins — in close distance to DNA. As suggested
by Loinger et al. [33] degradation of DNA bound proteins can lead to different dynamics.
As the above assumption is neither supported nor disproved by experiments, an extension of
our model, that allows for bound-protein degradation might be insightful. Overall, including
more available molecular details might reveal further aspects of the system’s dynamics — at
the cost of increasing model complexity.

Finally, extensions of the applied methods are promising. The use of a more sophisticated
simulation algorithm allows for analysis of a greater space of parameters. Extensions of
the hybrid algorithm introduced by Haseltine and Rawlings [19], which incorporates the
dynamic assignment of fast and slow reactions, would allow its application to the toggle
switch model. The original algorithm could not be applied to the toggle switch, since there is
a ongoing change in the fast and slow reaction subsets (depending in which regime the system
is). A static partition into slow and fast subsets is not possible. A simulation algorithm
that is capable of cell growth and cell cycle is also available [35]. This is an extension of
the original stochastic simulation algorithm [17] which includes time dependent propensities
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that account for the exponentially growing cell volume. The cell cycle time is fixed and
cell division is modeled by equally dividing molecular species once cell cycle time has been
reached. Additionally Rathinam et al. [46] recently proposed a method for the computation of
parameter sensitivity in stochastic systems, which could be applied to further investigate the
influence of parameter asymmetries on the dynamics of the toggle switch. Recent advances
in numerical solutions of the CME [66] or advanced finite state projection algorithms [41,
45] could be applied to the toggle switch, allowing for analysis of the complete probability
distribution. Furthermore, an analytical solution of the CME using the methods of Sasai and
Wolynes [53] and Walczak et al. [61] would improve the feasibility of the system description.
Ultimately, model selection and inference of system parameters from experimentally observed
realizations of the system using single cell data will lead to a comprehensive understanding
of the cellular regulatory systems.
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Appendix A

ODE steady state solutions

A.1 Deterministic one-stage toggle switch
Using symmetric parameters o = ap = ap, 6 = dp = g, 77 = TX = Tg_ and 77 =T, = Tq
results in two following steady state solutions of equations (3.2):

o~ _ VTVt 1o

pa = ppt) = — QTJF\/S (A.1)
2
W_ogy®We =
dat = dp = | 4 YaarTior— (4.2)
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The first solutions is positive, the second is negative (given all parameters are positive).

A.2 Deterministic two-stage toggle switch

Using symmetric parameters o = apa = ag, 8 = 8o = 8B, ¥ = 7o = 7B, 0 = da = 0B,

Tt = TX = g and 77 = 7, = 7 results in two following steady state solutions of equations
(4.1):
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The first solutions is positive, the second is negative (given all parameters are positive).



Appendix B

Accuracy of Gillespie’s algorithm

In order to choose a reasonable number of simulation runs when estimating the regime prob-
abilities Pp, Pp and Fp in sections 3.2 and 4.2, we calculate these estimates for different
numbers of simulation runs. We perform this analysis only for the symmetric system and
assume that the results in terms of accuracy are also valid for asymmetric systems. Fig.
B.1 and Fig. B.2 show that the accuracy of the estimates increase with increasing number of
simulation runs, as expected. However, using more than 1000 simulations does not improve
accuracy much, the estimates of the probabilities do not change much beyond this value.
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Figure B.1: Estimates of Py (A), Pg (B) and Py (C) for different numbers n of simulation runs in
the one-stage model. For low n estimates fluctuate heavily, but stabilize as more simulations are
performed.
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Figure B.2: Estimates of Py (A), Pg (B) and Py (C) for different numbers n of simulation runs in the
two-stage model. Low n leads to strong fluctuations of the estimates, but the variation decreases as
more simulations are performed.
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