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Abstract

In stem cell research current developments go towards single cell data acquisition
and analysis. Two frequently used acquiring approaches are fluorescence activated
cell sorting (FACS) and continuous time-lapse movies. Both produce complex, large
and therefore not easy to analyse and interpret datasets. Here we develop new data
mining approaches allowing for an adequate analysis and visualization of these types
of data.

Correlations of markers in FACS data can reveal new biological insights. To de-
tect theses redundancies we designed a feature selection algorithm based on an exist-
ing non-deterministic algorithm for hierarchical clustering of FACS data (SPADE).
It is able to find the smallest subset of markers which is able to preserve the (cluster)
structure of the data. A distance measure is defined to quantify the similarity be-
tween different marker combinations. We tested the algorithm on a hematopoietic
as well as a mesenchymal stem cell dataset.

Current visualization techniques for FACS data have several drawbacks like not
using all dimensions or not preserving distances. To overcome this we combined and
optimized SPADE with the visualization method tree preserving embeddings (TPE).
Our visualization guarantees the hierarchical structure of the data to be preserved in
the visualization. We showed the suitability of our approach through an evaluation
with expert knowledge. In addition we present an extended approach which allows
the intuitive visualization of different timepoints, which we demonstrate on a dataset
with four timepoints of mesenchymal stem cells.

Manual inspection of stem cell trees - which are the result of processed time-
lapse movies - results easily in the oversight of simple frequent pattern. We present
a new mining algorithm to find the most interesting patterns which are differentialy
expressed in two treesets. For this we define possible patterns and their matching
to trees. On two biological datasets we were able to show the applicability to real
data.
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Abstract

Experimente auf FEinzelzell-Ebene sind in der aktuellen Stammzellforschung un-
abdingbar. Die zwei am haufigsten verwendeten Techniken sind ”fluorescence ac-
tivated cell sorting” (FACS) und Zeitrafferaufnahme von Stammzellen. Die resul-
tierenden Daten sind hoch-dimensional, komplex und deshalb schwierig mit Stan-
dard Techniken zu analysieren. In dieser Arbeit stellen wir daher neue Data Mining
Ansétze vor, die bei der Analyse und Visualisierung dieser Daten helfen sollen.

Korrelation zwischen verschiedenen FACS Markern erlauben interessante Riick-
schliisse auf das untersuchte biologische System. Um diese Korrelationen zu finden
haben wir, basierend auf einer existierenden hierarchischen Clustering Methode
(SPADE), einen neuen Marker-Selektions-Algorithms entworfen. Dieser sucht eine
Teilmenge von Markern, die ausreichend ist um die intrinsische Clusterstruktur der
Daten zu erkldren. Dazu definieren wir ein neues Distanzmafl um die Unterschiede
zwischen zwei hierarchischen Clusterings zu quantifizieren. Zur Evaluation werden
zwei Datenséitze mit hematopoetischen bzw. mesenchymalen Stammzellen verwen-
det.

Aktuelle Visualisierungsverfahren fiir FACS Daten stellen teilweise nicht alle
verfiigharen Dimensionen gleichzeitig dar und haben Probleme mit dem Erhalt von
Strukturen in der Visualisierung. Deshalb verbinden wir das hierarchische Clus-
teringverfahren von SPADE mit der Visualisierung ”tree preserving embedding”
(TPE) um diese Probleme zu umgehen. Diese Kombination garantiert - im Gegen-
satz zu anderen Verfahren - den Erhalt der Struktur durch die Bewahrung aller
Absténde eines Dendrograms. Wir demonstrieren die Funktion und Niitzlichkeit
unseres Ansatzes mit Hilfe eines Datensatzes mit Expertenwissen. Zusétzlich ist
das Verfahren in der Lage Zellpopulationen aus verschiedenen Zeitpunkten an einer
einheitlichen Struktur darzustellen was mit einem Datensatz aus mesenchymalen
Stammzellen gezeigt wird.

Die manuelle Suche nach haufigen Mustern in Stammzellbdumen (den Ergeb-
nissen der Zeitrafferaufnahme) ist schwierig, zeitaufwéndig und fehleranféllig. Wir
prasentieren einen effizienten Muster-Erkennungs-Algorithmus der Muster findet,
die differenziell in zwei Datenséitzen vorkommen. Dazu Definieren wir Muster, ihre
Kanonisierung und Spezialisierung, sowie ihre Beschreibung der Stammzellbaume.
An zwei Stammzelldatenséatzen zeigen wir die Funktionalitat sowie Niitzlichkeit des
Algorithmus zur biologischen Analyse.
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Chapter 1

Introduction

Stem cells are characterised by two main properties: first, they are able to maintain
themselves and second, they are able to differentiate into multiple possible cell types
(multipotency) [1]. They are of major interest for regenerative medicine which utilises
this multipotency for repairing damaged tissue [2]. This requires a good understanding of
the underlying processes and one major goal of stem cell research is to reveal the intrin-
sic control mechanisms of the differentiation process. Through the integration of fusion
proteins with fluorescence proteins into the genome and the availability of antibodies for
surface antigens in the cell membrane, techniques are available to observe intra-cellular
processes from the outside.

Population average analyses allow to make statements about the whole observed cell
populations but cannot reveal differences between single cells in the same population. In
order to resolve such heterogeneities observations on the single cell level are required [3].
The obtained data has a complex structure and requires special approaches to be analyzed,
but allows for the modelling and prediction of cell behaviours [4][5]. Data Mining is the
process of discovering patterns in large datasets and allows for deeper insights into a
system [6]. So data mining methods are perfectly suitable to analyse the single cell data.

The first type of single cell data we use in this thesis is fluorescence activated cell
sorting (FACS) data, which consists of fluorescence marker intensities measured for each
single cell in a probe [7]. The resulting large (up to millions of cells) dataset is hard to
analyze because each of the up to 18 ([8]) measured markers represents a new dimension.
The standard way to look at these high-dimensional datasets is a series of scatter plots.
The drawback is that only two markers can be displayed at the same time and even when
looking at several scatter plots simultaneously it is difficult to determine the underlying
high dimensional structure (see figure 1.1). We present a new method of visualizing FACS
data in 2D which is able to preserve the internal structure in the visualization and allows
intuitive interpretation of the data.

A different way of reducing complexity is to omit some markers of the dataset. We
present a method to find marker subsets which are sufficient to explain the whole dataset,
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Figure 1.1: It is hard to determine the underlying high dimensional structure only from
scatter plots. (a) For an artificial dataset with three markers all scatter plots are shown.
(b) The real three dimensional structure with 7 - not as expected with 8 - populations is
shown.

so the remaining markers can be ignored. This gives interesting biological insight into the
analyzed system and also frees wavelengths in FACS experiments which can then be used
with new interesting markers.

One general problem with standard FACS analysis is that only one timepoint is avail-
able and even with several measurements at different timepoints there is no easy con-
nection between the cells in each timepoint. To determine the dynamics of stem cell
differentiation several timepoints are required together with the identification of the same
cell at these timepoints. Continuous time-lapse movies of stem cells can fulfill these re-
quirements and are increasingly used in stem cell research. After post-processing, the
movies result in stem cell trees which represent the life of a stem cell and its progeny from
the experiment start to fully differentiated cells.

To analyze these trees simple approaches such as calculating average cell lifetime or
number of generations per tree can be used [9], but are limited and not able to include
the tree structure into the analysis. However, the tree structure is the most valuable
information and should be used in such analyses. More sophisticated analysis methods
are required to find complex reoccurring patterns in the trees. Such a pattern can be for
example a stem cell divides into two daughters, one daughter differentiates into a specific
cell type while the other dies. These patterns are hard to identify manually (see figure
1.2), so we developed an algorithm which is able to find frequent patterns on stem cell
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Figure 1.2: It is difficult to find common patterns in stem cells trees manually. Four
artificial annotated stem cell trees (left) together with one patten (right) occurring in

all four trees are shown. The colours correspond to different cell fates; a cross indicates
apoptosis.

trees efficiently.

Structure of this Thesis

This thesis consists of six chapters. In chapter 2 we introduce hematopoiesis as the best
understood stem cell system and two experimental techniques to obtain single cell data
which are analyzed in later chapters. The question which markers are sufficient to define
cell populations is addressed in chapter 3. Chapter 4 discusses a new approach to visualize
FACS data which allows an easier interpretation of high dimensional data. For stem cell
trees we present a pattern discovery algorithm in chapter 5 which is able to detect frequent
and interesting patterns. The last chapter summarises this thesis and gives an outlook
on extensions and future research of the presented methods.






Chapter 2

Introduction to Hematopoiesis

Blood is one of the major organs of higher organisms and responsible for the transport of
many important molecules like oxygen and carbon dioxide. It consists of multiple different
cell types like red blood cells or T-cells which have to be kept on appropriate numbers.
This process of life-long production of blood cells from stem cells is called hematopoiesis
[10].

Hematopoiesis is the best understood adult stem cell system [3] and preserved through
the vertebrate evolution [11]. Hence there is large research in mouse hematopoiesis, which
is considered to be transferable to the human system. Although this is fundamental
research, the future goal is to support the regenerative medicine to treat blood diseases
like leukemia [3].

Hematopoietic stem cells are characterised by two major properties: their multipo-
tency and their ability for a long-time self-renewal. They can differentiate into all different
blood cell types and are able to reproduce and maintain themselves.

2.1 The Hematopoietic Hierarchy

Different hematopoietic cell types and their progenitors are organized as hierarchy. The
current state of scientific knowledge of this hierarchy is shown in figure 2.1. The hier-
archy is not a real tree because there are multiple paths from stem cells at the top to
a specific committed cell at the bottom. An example are granulocyte-macrophage pro-
genitors (GMPs) which can develop either from common myeloid progenitors (CMPs) or
granulocyte-macrophage-lymphocyte progenitors (GMLPs). This yields to the hypothesis
that there are no distinct cell types but a continuum defined by the bias of cells towards
a specific cell type [12].

At the top of the hierarchy there are hematopoietic stem cells (HSCs) while at the
bottom there are fully differentiated cell types like erythrocytes or megakaryocytes. HSCs
give rise to multipotent progenitor cells (MPPs) which are still multipotent and differenti-

b}
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Figure 2.1: The hematopoetic hierarchy. Based on [10] figure 1.

ate into oligopotent progenitors. These can only develop into one cell type, but they can
still proliferate to generate numerous cells of one lineage.

MPPs split in myeloid and lymphoid cells which are called common myeloid progen-
itors (CMPs) and common lymphoid progenitors (CLPs). The CMPs can differentiate
into megakaryocyte-erythrocyte progenitors (MEPs) and granulocyte-macrophage progen-
itors (GMPs). On the other hand CLPs give rise to natural killer cells and B- and T-
lymphocytes. On the bottom of the hierarchy erythrocytes (red blood cells) and platelets
can be found, which are the progeny of MEPs. In contrast the GMPs develop into myeloid
cells and dendritic cells.

The whole system is highly regulated to maintain the appropriate mixture of cell types
in blood. The main work is done by the lineage restricted progenitors which are able to
divide fast and produce much progeny.
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2.1.1 Markers for Cell Populations

Stem cells are defined functionally through their multipotency and self-renewal which can
be shown by transplantation experiments [13]. With these it was possible to identify
surface markers which allow for prospective identification of HSCs in a heterogeneous cell
mixture. These markers lead to a proper reliable and reproducible extraction of stem cells
from bone marrow. However the purity is only at 50% [14].

There are many surface markers which can be used to distinguish between different
cell types. They are collected as clusters of differentiation, numbered and abbreviated
as e.g. CD150. Lineage markers are markers on cells which are already differentiated.
Therefore HSCs are negative for these markers. Another marker is called c-kit which is
in fact CD117 and is mainly expressed in HSCs. The third important marker to mention
here is Scal (stem cell antigen-1) which exists in immature progenitor cells. Also many
other CD markers like CD34, CD48, CD105 and CD150 can be used to identify cell types
in the hematopoietic hierarchy [15].

2.2 Fluorescence Activated Cell Sorting

To detect cell markers in a high-throughput way fluorescence activated cell sorting (FACS)
is often applied. Machines using this technique are able to measure up to 18 markers for
each cell very fast. Cell numbers of up to millions are not uncommon. In principle it is a
flow cytometry with the ability to sort afterwards [16].

Cells have to be marked with some fluorescence markers, e.g. antibodies for cell surface
antigens or fusion proteins inside the cell. The fluorochromes are then activated by lasers
at a specific excitation wavelength. The activated molecules emit light at their specific
emission wavelength which is captured by photo detectors and the measured intensity is
sent to a computer. Each detector is also called channel. In addition the forward scatter
and side scatter are measured and recorded. Forward scatter correlates to size and side
scatter to granularity. In the end a dataset which contains an entry with the measured
channel intensities is obtained for each cell [8]. A schematic design of a FACS machine
can be found in figure 2.2.

2.2.1 Compensation

As the emission spectrum of fluorochromes is not a sharp peak at the given emission
wavelength but a spectrum around that peak there is an overlap between nearby chan-
nels. This effect is called spill-over. To remove that effect the acquired data has to be
compensated [8].

Therefore each fluorochrome is measured separately - without being influenced by
others - on all channels to determine the influence on that channel. With the assumption



8 2.2. FLUORESCENCE ACTIVATED CELL SORTING

Fluidics system
Filters Detectors
A
s L FC
A
Y PMT
x (FL-1)
A
L PMT
X (FL-2)
Filters A
Y PMT
X (FL-3)
A
— PMT
\% (FL-4)
“—7
SSC
Detector |

Figure 2.2: General scheme of a FACS machine. The fluorochromes are activated by dif-
ferent lasers, the emitted signal is then routed through several filters before it is measured
by detectors. (From [16] figure 3))

that the real intensities are linear combinations of measured intensities the reference
measurements can be combined into a compensation matriz. With this matrix the actual
compensation is a matrix multiplication with a datapoint.

This can result in negative values which seems counter-intuitive but can be explained
by the configuration of the FACS machine. For each experiment it is adjusted to record
0 intensity on an unlabeled sample. This is required because of auto-fluorescence of
the analyzed cells. So negative values correspond to less fluorescence than the auto-
fluorescence of the control.

Today it is common to store the raw data before compensation in data files. It is also
possible to save the compensation matrix itself in those files, but this is not always the
case. So when working with FACS data the first step after loading from files is to apply
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the compensation [17].

2.2.2 Visualization

The compensation step is followed by the visualization for which the data has to be
adjusted to allow for an optimal visualization. This process is also called transformation.
The standard way is to show scatter plots with two channels on the axes. There are two
challenges which have to be solved in order to view the data in an appropriate way. First,
the data range is very high and spans several orders of magnitude. Second, many values
can be close to 0 or even negative (due to the compensation).

A logarithmic scale in plots can solve the first problem of the large range (see figure
2.3(b)). The large range is compressed into a smaller one which is easier to interpret
for humans. However, this scale is not suitable for values near 0 and not applicable
for negative values, because the logarithm of 0 and negative values is not defined. To
overcome this problem one can try to use linear scales, which can handle negative values
and show values near zero well (see figure 2.3(a)) but the large range is not covered in
this approach.

To overcome both problems a new scaling method called logicle scaling was developed
[18]. It is based on the reverse hyperbolic sine function (arcsinh) with an additional
cofactor for adjustments. The arcsinh function combines the advantages of linear and
logarithmic scaling. It is symmetric, linear around zero and logarithmic for larger values
(see figure 2.3(c)). Therefore it can handle negative values as well as positives.

The actual transformation formula 7" for a value z is

T(z) = log (% + (%)2 + 1) (2.1)

with C' as the transformation cofactor. The cofactor controls the size of the linear range
around 0 (see figure 2.3(d)). A further generalization of the hyperbolic sine function with
five instead of one parameter yields in the so called biezponential transformation.

2.2.3 Gating Analysis

The main goal of FACS analysis is to identify different cell populations and sort them to
make experiments with clearly defined populations. The normal way is gating which is
a repeated selection of different parts of the data based on visual filters drawn to scatter
plots.

The user starts with all cells, looks at a scatter plot of the two most interesting markers
and selects visually a population to continue with. The visual selection is done most of
the time through a square drawn to the plot, but there are other possibilities like polygons
or hand drawn lines. This selection defines a first population which is then visualized in a
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Figure 2.3: Logicle scale is required for an appropriate display of FACS data. (a)-(c)
Scatter plots with two markers of a FACS measurement are displayed. (d) Logicle scaling

function with different cofactors.

new scatter plot with different markers on the axes than before. This procedure resulting
in a gating hierarchy is repeated until the desired populations are found.
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2.3 Time-Lapse Movies of Hematopoietic Cells

While FACS analysis is a useful experimental technique for identifying and sorting cell
populations, it has some major drawbacks when it comes to analysing dynamic processes
such as differentiation. Only single timepoints can be obtained through FACS analysis
and repeated analysis at different timepoints does not allow for the correct identification
of individual cells in both datasets. There is no link between the two measurements which
allows for a tracing of individual cells.

Population Westem
snapshot D [ ] blot etc.
Singlecell OO O ® O LA

snapshot OO O O o O ¢ ® 0 Z::S

X
Sogecat O————4_ % maging

A and
continuous
= reali cell
(=reality) tracking

etc...

Figure 2.4: Only continuous observation of single cells reveals the reality. Population
snapshots do not discover the heterogeneity. Single cell snapshots can not connect cells
from different timepoints. (From [3] figure 1)

To overcome this problem movies on the single cell level have to be acquired [19]. This
continuous observation of cells allows a considerable better analysis (see figure 2.4). One
starting cell, e.g. an HSC, can be tracked through all its daughters until the cells are
fully differentiated. In between fluorescence markers are measured which allows for better
insights into the decision-making process.
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Nevertheless it is a complex technology and requires a good interaction of several
different components like microscope, light sources and motorized stages. For a seamless
integration of all steps custom made software is needed since no commercial offers are
available [3].

The post-processing step following the recording of the movie requires efficiently de-
signed custom software. Cells on different frames of the movie have to be connected if
they represent the same cell (tracking). Although there are attempts to automate this
process it is currently too error-prone to be used without human interaction [3]. So the
main work has still to be done manually which is the major bottleneck in this approach.
The result of the tracking process is a cell tree which represents the relationships (mother,
daughter) between the different cells.

As the last step of the data acquisition the data has to be annotated manually. This
can be for example different cell types or the expression of different fluorescence markers.
Also quantification of these markers is possible and leads to time courses for each cell.
We call the final result annotated stem cell trees.

The usage of this movie approach increased over the past few years in hematopoiesis
research. Despite many challenges movies helped already answering decade old questions

in hematopoieses. For example it was found that cytokines can instruct lineage choice
[20].



Chapter 3

Identification of Redundant Markers
in FACS Data

As described in section 2.2, FACS analysis is today a standard tool for analysing cells.
Many different markers are used to find cells of interest and investigate their development.
The question which may arise is which markers are really required and which markers are
redundant. While the answer to this question is easy if the dependency is linear and
can therefore be seen in a simple scatter plot it is hard to determine an answer if the
redundant information is spread in a non-linear way over different other markers. An
artificial dataset with two obvious redundant markers is shown in figure 3.1. The goal
of this chapter is to construct and implement a procedure to find out which markers are
relevant.

The knowledge about redundant markers can be helpful in several ways. It saves
money, because the markers can be omitted in experiments and have not to be purchased.
Also the now unused colors or wavelengths can be used by different and maybe more
interesting markers in FACS measurements. Besides these practical advantages it can
give new biological insights into the investigated system. For example it is possible that
the markers are co-regulated and activated by other analysed markers.

Our general idea is to use a clustering algorithm which was specifically developed for
FACS data (SPADE) [21], run it with different marker combinations and determine which
of them is the best. Going through a clustering to make a statement about the markers
themselves can first seem not straight-forward but has the large advantage to find also
non-linear dependencies opposed to methods which use the data directly. The comparison
of these clusterings checks if the global hierarchical structure of the data is preserved and
therefore we can state that the used markers are enough to explain the data.

Thus our contribution in this chapter is two-fold. First we derive a distance measure
to quantify the similarity between the results of two hierarchical clusterings. This is
an extension to standard metrics such as the F-score [22] which quantifies similarities

13
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Figure 3.1: Artificial dataset with four cell populations and two redundant markers
“Marker 17 and “Marker 2”7 and a non-redundant marker “Marker 3”.

between results of two strict partitioning clusterings (e.g. k-means) where each datapoint
belongs to one cluster only. Second, we propose a marker selection algorithm based on
this measure to identify redundant markers in a FACS analysis.

3.1 The SPADE Algorithm

The goal of SPADE [21] is the identification and visualization of cell populations in FACS
data. In contrast to other cluster algorithms which are density based, it is also able to
discover small populations (with a low density) which will be easily overlooked in standard
analysis methods such as scatter plots and density maps.

3.1.1 Algorithm

SPADE treats the cells as points in a high dimensional space. It always uses the L1-norm
(also called manhattan distance) as distance measure dp; between cells. That means for
two datapoints p; = (11, 212,...) and py = (221, %22, ...) with values z for each marker
the distance dy; is defined as

dri(p1,p2) = Z |21, — 22, - (3.1)

The usage reflects the fact that FACS data have no geometrical representation and there-
fore the normal Euclidean distance is not suitable here.
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Before the algorithm starts all data is transformed to be in logicle scale (see section
2.2.2) to take the special properties of FACS data (exponential scale, negative values and
values near zero) into account. All following steps including the distance measure use
only the transformed data.

The main algorithm consists of five main steps visualized in figure 3.2. First a down-
sampling is done to get a similar density over the whole dataset. Then the dataset is
clustered into a user-defined number of clusters and a minimum spanning tree with the
clusters as nodes is constructed. As last steps the original dataset is integrated into that
tree and visualised in a 2D plane. So the result is more than just a clustering, it is a
clustering visualized for human inspection in a minimum spanning tree

Density-Dependent Down-Sampling

The first step equalizes the density over the whole dataset D = {p1,pa,...,p,} with n
datapoints. Dense regions which corresponds to frequent populations are highly down-
sampled and sparse regions are not touched at all. For this the user has to specify a target
density T'D to which the dataset will be down-sampled. A common value is to choose
the 5% percentile of the density distribution, which allows an automated adjustment to
the specific dataset. In addition an outlier density OD is defined to remove outliers. A
typical value here is the 1% percentile. All cells with a lower density are regarded as
outliers and removed before the next step.
The local density LD; for a cell i is defined as

LD; =Y I(du(pip;) < T) (3.2)
j=1
with I being the indicator function and T the size of the neighbourhood. The density
is then the number of cells in the neighbourhood. The range T is approximated at the
beginning so that on average each cell has at least five neighbour cells. After the density
calculation the density value is used for the actual down-sampling. Each cell with a lower
density than the outlier density is removed, each cell with a lower density than the target
density is not touched. Each other cell is kept in a way that the expected density is T'D.
So the keep probability kp; for a cell 7 is

0 0<LD;<OD
TD/LD; TD < LD;

Round-Based Agglomerative Clustering

The second step clusters the cells into a user defined number of clusters. The algorithm
is a modified version of agglomerative clustering with single linkage [6]. This means the
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Figure 3.2: Workflow of SPADE visualizing the main steps and their results. (Taken from
[23] figure 1)

distance D between two clusters ¢; and ¢y is

D(ci,¢2) = min  dui(p,p). (3.4)

pEci,p’Eca

The clustering algorithm has a new constraint which restricts the merging in each round to
only clusters which have not been merged in that round before. This results approximately
in same-sized clusters and prevent problems like the single-link effect which occurs often
when single linkage is used and creates only one large cluster which is extended by one
new cell each round.
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At the beginning each cell forms its own cluster. Then a cluster is randomly chosen
and merged with its nearest neighbour cluster (single linkage). The merge is only allowed
if the other cluster has not been merged before in the current round. This is repeated
until all clusters have been examined. After that the current round ends and a new round
starts. The procedure stops when a user defined number of clusters is reached. There is
an additional step to remove outlier cells which are not contained in any cluster after five
rounds. They will not be part of the clustering at all.

Minimum Spanning Tree Construction

Then the clusters are put into a minimum spanning tree (MST), which means the clusters
are connected such that a tree arises and there is no other way to connect them which
results in a smaller sum over all used distances. This is done by the Boruvka’s Algorithm
[24]. Each cluster represents a node in that tree and has the medium marker expression
levels of all contained cells. This step tries to recover the overall structure of the data
cloud and put it into the tree.

Up-Sampling

To visualise the clusters accurately all cells from the original (not down-sampled) dataset
are assigned to that cluster which is assigned to their nearest neighbour in the down-
sampled set. So for each cluster the number of cells and the median marker expression
levels can be calculated.

Visualization

In the last step the constructed minimum spanning tree is laid out in a 2D plane. For this
a modified Fruchterman-Reingold Algorithm [25] is used. It first determines the longest
path through the tree and displays it on a parable. Then all remaining branches are
put there in a way that the distances between the branches are maximised. In addition
nodes are sized corresponded to the number of cells belonging to that cluster and coloured
according to the median of a user selected marker.

3.1.2 Discussion of Important SPADE Properties

In the following a number of important properties of the SPADE algorithm will be dis-
cussed.

Clustering and Spanning Tree Construction are Closely Related

There is a non-trivial large similarity between the two main steps of SPADE, the hier-
archical clustering and the minimum spanning tree construction. Both use the L1-norm
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together with single linkage as similarity measure between clusters. We show that both
algorithms use the same edges to construct their result trees and therefore are equal.

For a minimum spanning tree the so called cut property [26] holds. If we look at all
edges connecting two disjunct subgraphs (which together result in the complete graph)
the edge with the lowest weight has to be in the minimum spanning tree. The reason is
that if the edge is not in the MST, it can be replaced with the minimal edge connecting
both subgraphs. This results in a tree with a lower total weight which is a contradiction
to the fact that the tree was previously a MST.

In the clustering step a cluster can only be merged with its nearest neighbour. That
means a cluster C' is only merged with its neighbour if the edge connecting both is the
shortest edge starting at cluster C. As we have seen above that edge is part of the min-
imum spanning tree. So both algorithms are using exactly the same edges and therefore
construct the same result tree although in a different order. Of course if there are two
nearest neighbours at the exact same distance the results can vary.

Nevertheless there are two slight differences in both algorithms. The dendrogram,
which is the result tree in the clustering step, has a root and therefore a direction while
the minimum spanning tree does not have this information. The second point is that
“singletons” are removed by the clustering algorithm in round five. This is not considered
in the argumentation above and therefore both algorithms are not exactly the same.

Taken together SPADE can be viewed as an agglomerative clustering which replaces
clusters at a user-defined point with their current median values and visualizes only the
dendrogram above this threshold.

Results are Non-Deterministic

The down-sampling and the clustering step use randomness, so if SPADE is run twice
with the same data and the same parameter set the result will be different (see figure
3.3). This is especially true for the minimum spanning tree as a main SPADE result. It
is not really clear how stable it is and whether small changes in the input can change the
shape of the spanning tree considerably.

The supplementary material of [23] section S3 shows a stability analysis performed
through the addition of noise to the data. It is stated that there are only little changes
in the results but are in general still good. But it can still confuse the user and lead to
irritation how to analyse and how to interpret the result tree.

Visualisation is Arbitrary

In a simplified view the used visualisation maximises just the distance between nodes.
That means the position and orientation of clusters on the plane have no real information.
The only information given are the edges, which are part of the minimum spanning tree,
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Figure 3.3: SPADE results vary. Two SPADE result trees resulting from two independent
SPADE runs on exactly the same data and parameters are shown. The nodes are coloured
by the same marker.

and the colour and size of nodes. There is no representation or visualization of distances
other then these edges.

3.2 Comparison of Cluster Trees

To be able to test which markers are redundant we need to compare two hierarchical
clusterings against each other and test if they are similar. We use the minimum spanning
tree of clusters created by SPADE for comparison. It is equivalent to the upper part of a
dendrogram cut at a specific height but without a defined root. For the actual comparison
we define a distance measure.

3.2.1 Distance Measure

The measure should include both, the clusters itself and also the tree structure to compare
the results. In addition SPADE does not always produce the same number of clusters.
The cluster parameter is rather a hint when to stop than a hard limit. This has to be
taken into account when constructing the measure. In classical approaches one compares
either trees or clusters, but not both at the same time. So classical performance measures
like purity [22] or F-measure [22] can not be directly applied here.

A tree of clusters is at tree T' = (C, E) of clusters C' = {cy,..., ¢y, }. The n cells are
distributed over all clusters ¢; C [1;n]. To be a clustering each cell has to be in exactly

one cluster:
nr

Uc,-:[l;n] and Vi#j:cNe =0 (3.5)

i=1
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Mapping of Trees

The idea is to map the clusters from one tree 7" to the other tree T and calculate how
far away the cells are in those mapped clusters from their real position in 7.

The first tree T' = (C, F) is used as “reference tree” while the other tree 7" = (C', E')
is compared against that reference. Each cluster ¢ in 7" is mapped to some clusters in
the reference tree T'. Let M be the matrix containing the number of cells which are both
in ¢; and c;-

M = (my;) with my = |e;Nd|. (3.6)

The mapping has not to be one to one. One cluster can be mapped to different clusters
in the reference. In the following we define two mappings, the first mapping M; maps a
cluster ¢ to exactly that single cluster ¢; which contains the most of its cells:

T
T 1 if k = arg max M;;
M (j) = : with = 0 i (3.7)
: else
Ty

The second mapping M maps one cluster ¢; to all clusters ¢; which contain cells of ¢;. The
mapping is proportional to the number of cells which are shared between both clusters.

mlj

. 1 mM2;
MQ(]) ‘c ’ (3~8)

Myprj

After the mapping the shortest path between the mapped location and the original lo-
cation of each cell is calculated. We define the shortest path vector Sr(c;) = (s;5) for
a cluster ¢; with s;; to be the length of the path to cluster ¢; in T' (there is only one
path because T is a tree). We use the average of all shortest paths between the original
and mapped clusters as distance measure for cluster trees. So we define the distance d;
between T" and T" as

(T, T") —aZb > Mi(j) - Sr(er(h))- (3.9)

=1 ]Ecz

with a and b; as weight factors, - the dot product and cr(j) the cluster of datapoint j
in T. In the same way ds is defined with M, instead of M;. The first sum goes over all
clusters in 7', the second one over the cells in the current cluster of T

The weight factor a and b; control if the averaging is done per cluster or only once
for the complete set. For now we leave the weight factors at @ = n=! and b; = 1. This
transforms d; into the average shortest path of cells to their mapped partners.
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The measure can also be interpreted as the number of “moves” of a cell from cluster
to cluster which has to be done to turn 7" into T'. Although it is not clear that it is the
smallest possible number for that.

Both definitions d; and dy are not symmetric, so d(A, B) is not the same as d(B, A),
which means they are not a metric. This can lead to some problems if used in a different
context but here it does not make any problems because we will use it actually in a way
that there is a reference. Another thing to mention here is that the structure of the second
tree is not included in this measure. So it can happen that the structure of the second
tree is very different from the reference tree while the clusters themselves are not. In that
case the measure will report a small distance instead of a large one.

Symmetric Measure

To overcome both problems we extend the measure to make it symmetric and also to
take the structure of the second tree into account. In contrast to the measures described
above, this version calculates the mapping not only from 7" to T but also in the opposite
direction. Then both mappings are used as edges in a combined graph of both trees T’
and T which connect the mapped nodes in both trees. Note that this only makes sense
for mapping M; where each node has exactly one partner which can be translated into
an edge.

So we look at the graph G = (CUC’, EU E'U E,;,) which consists of the two original
trees T" and T" and their connecting edges

E, = {(c,-,c;) € C x C": (i =argmax My;) V (j = arg max Mzk)} : (3.10)
k k

Again the shortest path length between nodes in 7" and 7" is computed and for each
cluster the shortest paths for its cells are calculated. So we get

dy(T, T") :aZbiZSG(i,cT/(j)) (3.11)

with Sq(i, j) being the shortest path between ¢; and ¢} in the combined graph G. For now
this definition is symmetric because b; is always 1 and therefore the two sums run exactly
over all cells. This will change later if we choose different b; values. To be prepared for
that and always work on the same formula we define d3 here as

&4(T,T') + dy(T", T)
2 |

d3(T,T') = (3.12)

While all measures are non-negative (d(z,y) > 0) and fulfill the identity of indis-
cernibles (d(z,y) = 0 < x = y) the first and second measure are not symmetric
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(d(z,y) = d(y,x))) and are therefore not a metric. Also the d3 measure is not a metric be-
cause it was found empirical not to satisfy the triangle equation (d(z,y) < d(x, z)+d(z,y)).
This restricts the usage of our measure in other areas but is no problem here because we
do not require a metric at all.

Adjustments

SPADE results do not always have the same number of clusters. As described earlier,
the correspondent parameter is rather a hint than a strict setting. But the length of a
shortest path correlates with the size of a graph. In general the height of a random tree is
proportional to the harmonic numbers and therefore proportional to v/27nr [27]. So we
adjust all measures to a reference tree with n,.; nodes by multiplying a with \/n,.¢/nr.

To prevent different cluster sizes from having an effect on the measures we adjusted
for that, too. This can be done simply through setting a = n;' and b = |c,~|71.

Further analysis of the shortest paths in the combined graph used in ds revealed that
some paths “jump” several times between both subgraphs. This is not really intended and
therefore we restricted the paths to only “jump” once between both trees. To implement
this the weight of an edge connecting both parts is set to a very high value. A shortest
path has to use one of these edges exactly once, because the start and end point are on the
different parts of the graph. Afterwards the resulting length is readjusted by subtracting
the very high value.

3.2.2 Reference Distribution

Due to the fact that SPADE is non-deterministic, it produces different results although it
was run with the same parameter set and same data. However the reference is very crucial
for the selection process as each new tree is compared against that reference tree. So it is
better to use a distribution of trees instead of a single one. This allows us to distinguish
between the inherent variations of SPADE and real variation caused by different markers.

The distribution is created by running SPADE r times with the same parameters
on the same data. Each created result tree is compared against all others, so we get a
total of r(r — 1) distance values. This is the empirical approximation of the real measure
distribution which represents here the null-distribution Fj.

To compare a new tree 7" against that distribution, 7" is compared against all r
reference trees and the resulting distance values are used as sample distribution Fs. Now
we are able to test if the sample distribution and the null-distribution are drawn from
the same distribution (null hypothesis). This is done by the Two-Sample Kolmogorov-
Smirnoff-Test [28]. It is a frequently used non-parametric test to check if two samples are
drawn from the same distribution. We test if the distributions are equal so a high p-value
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is considered as a positive result. The test statistic is

D = sup | Fo(x) — Fs(z)] (3.13)

with Fy and Fg as the empirical distribution functions. The null hypothesis is rejected if
rD > K, (3.14)

with K, being the critical value from a table.

Besides the advantage of catching the SPADE inherent variation this approach allows
for the calculation of p-values. These values are much easier to interpret than the raw
distance values. They allows for a standardised comparison of results. Also the threshold
used in the selection process can be set much more reliably. We use the widely used
threshold of 5%.

An example of different marker combinations compared to a reference distribution
based on an artificial dataset is shown in figure 3.4.

3.3 Identifying Informative Marker Subsets

We are now able to compare cluster trees against each other. With this we can address
the problem of finding redundant markers. The idea is to run the hierarchical clustering
several times with different marker sets and compare the results to find the smallest still
sufficient marker subset. The first run is with the full set of possible markers to create a
reference distribution. All subsequent runs have then a reduced number of markers. In
each step the decision if a marker is removed or not is based on the distance measure
between the reference and the one created by the current run.

This approach assumes two things about SPADE and the distance measure. The first
is that all markers together produce, in terms of biological meaning, the best possible
result. But that is not really clear, e.g. if a marker only contains noise then a result
constructed with all but that marker is probable better. So we consider that all markers
which are used here for feature selection make sense and have a biological meaning. In
addition the SPADE authors write that the algorithm is robust against some meaningless
markers. Also the more markers are there the more information is available and the
algorithm has a chance to create a good result.

The second assumption is that the removal of one marker always increases the distance
to the reference (monotonic assumption). That means marker combinations of less mark-
ers are worse than combinations with more markers. The assumption can be justified with
the information which is available. The more markers are there the more information is
available for the algorithm. But there is a problem here: as seen above SPADE results are
not deterministic and vary so it can happen just by chance that a smaller set of markers
is closer to the reference than the larger set. With this assumptions we can be sure that
one of our proposed methods finds the best marker set.
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Figure 3.4: Usage of the distance measure to determine the quality of marker combina-
tions. (a)-(c) Clustering results with different marker sets on artificial dataset (fig. 3.1)
coloured by marker 3. (d) Histogram of distance distributions.)

3.3.1 Lattice of Marker Combinations

To be able to explain different methods for the feature selection on the same structure we
define here the lattice of marker combinations. It is a directed graph which contains all
marker combinations and their relations. Let X = (z1,x9,...,2,) be the set of available
markers. Then all marker combinations P(X) (power set of X) are the nodes of the
lattice. A combination has an outgoing edge to another node if it is a direct superset of
that node. That means an ingoing edge comes in if the node is a subset of the starting
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node of the edge. The whole lattice L is defined as:
L=(P(X),E) with E={(a,b)eP(X)*:(bCa)A(la]=1[b]+1)} (3.15)

So the graph constructed here has exactly one node with only outgoing connections. It is
the node with all markers X. On the other side of the graph there is the only node with
no outgoing connections which is the node representing the empty set.

3.3.2 Methods for Feature Selection

We present three different methods for marker selection. All are using the lattice and
start with X as start node. They differ in the way they decide which node to check next
and which nodes will never be checked. This general approach is also known as backward
feature selection [6].

Obviously the best method would be to check all combinations and simply choose the
smallest set which is still similar enough to the reference, but the computational effort is
too high. There are exponential many combinations and one SPADE run lasts at least
10 minutes, but can get up to several hours depending on the dataset and computation
power available.

Greedy Backward Elimination

This simple method removes each marker once and measures the remaining similarity.
The marker which has the largest distance to the reference is considered the most useless
marker and is therefore removed. This procedure is repeated with the remaining markers
until the set becomes too different compared to the reference. The best marker set which
is still good enough is the result of this method. The method is called “greedy” because
it never looks back and tests if a once remove marker is maybe better combined with
another set.

This is also the main criticism for this method. It assumes that the information of
each marker is independent of all others. E.g. a marker is favoured for removal over two
others with the same information content although it is better to remove the two ones.

Exhaustive Search

The second method is more “intelligent” and able to use markers which were previously
removed from the set. It checks a marker combination for its distance to the reference
if and only if all predecessors in the lattice have been already positively (small distance)
tested. If just one superset is considered not similar enough the whole combination is not
tested. This method is guaranteed to find the best marker combination if the monotonic
assumption is true.
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Many more combinations are tested here compared to the first method, because several
paths in the lattice are tried and not the first “good looking” path is taken without
considering others.

A variant of this is the third method which has a softened requirement for checking
a new node. It is enough if only one predecessor is good to check the new node. This
can be viewed as a breath-first search for good nodes in the lattice. The algorithm starts
at X and checks all successors; if they are good it checks their successors and so on. Of
course there are several paths to the same node and the algorithm has to prevent that
one combination is tested several times.

If the assumption that the removal of a marker only increases the distance was true,
which is not correct, then this variant would not be required and the normal exhaustive
search method would able to find exactly the same marker subsets. If at least one superset
is too distant the new set cannot be similar again because the distance has to increase.

3.4 Implementation

We have implemented the presented methods and measures in MATLAB. There are sev-
eral SPADE versions available and we decided to take SPADE2, which is a newer version
than introduced in [23] and has more features, better performance (some critical parts
are now written directly in C) and a nicer user interface. The main part is still MATLAB
code so all extensions and modifications are made in MATLAB, too. There is also a large
library of ready to use functions e.g. for statistical tests and shortest path calculation.

3.4.1 Problems with the SPADE Batch Script

The batch script supplied with SPADE2 has some bugs which are significant when working
with different marker sets. In the first step SPADE estimates the median distance between
two cells and then calculates the size of the neighbourhood for each cell. In both steps the
complete dataset with all markers is used and not only the data for selected markers. Both
mistakes are corrected and only the corrected version is used in the following sections.

3.4.2 Extensions

We extend SPADE such that already computed data is automatically cached. The cache
handles different marker sets and some of the parameters like number of clusters. For
each marker combination the cache saves the density, the down-sampled data and the
result into different files with canonical filenames. The first run of SPADE creates these
files and each subsequent call loads the already computed results.

Obviously the cache speeds up the calculations considerably, because SPADE is only
run if necessary. The cached results are independent of the distance measure and the
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feature selection method, so for different combinations of these methods the same cached
data can be used.

Another extension we made is the ability to process not only .fcs files but also .csv
files. The user interface was extended to load the different trees resulting from different
marker combinations.

3.5 Results and Discussion

3.5.1 Dataset Description

We use three different datasets for analysis and evaluation of our described methods.
The first is an artificial set of randomly generated data. The other two sets are FACS
measurements of actual biological experiments.

Evaluation Dataset

The evaluation dataset consists of 10 markers and 50.000 cells. For each cell-marker
combination an intensity value is chosen uniformly distributed between 0 and 1. With
this clearly defined dataset it is possible to check if the expectations we have about our
methods are true. E.g. a test if the adjustment for cluster counts works can be done.

Hematopoietic Stem Cell Dataset!

This dataset was obtained by a FACS analysis of isolated mouse bone marrow. Nine
markers, forward and side scatter were measured for each cell. Two of the nine markers
are fusion proteins (PU.1eYFP and GATAImCHERRY') which consists of a target protein
and an attached fluorescence protein which allows the detection. The other seven markers
are antibodies against different cell surface antigens.

After compensation a preliminary gating was done on the dataset to gate out mature
hematopoietic cells and to obtain the so called progenitor gate which only contains non
differentiated cells and contains here 190.000 cells. It is defined as lineage marker negative,
c-kit positive and Scal negative. In addition the progenitor gate is further subdivided into
six subpopulations corresponding to different intermediate cell types in the hematopoietic
hierarchy. For this gating CD150, CD41, CD105 and FcgR markers were used. These six
gates represents the expert knowledge which we can use to test our algorithms.

IProvided by Philipp Hoppe, Research Unit Stem Cell Dynamics of Timm Schroeder at Helmholtz
Center Munich
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Mesenchymal Stem Cell Dataset?

In contrast to the blood stem cells in the previous dataset, this third dataset consists
of mesenchymal stem cells (MSCs) which are responsible for the creation of bone. Here
CD105, CD140a, Scal and the fibroblast growth factor receptor 1 and 2 are measured in
addition to forward and side scatter. As the dataset before, this set is not raw data but
pre-gated to exclude cells unrelated to MSCs and contains about 50.000 cells.

There is still no functional definition for MSCs meaning it is not really clear what they
are. The existing studies are hard to compare because of different definitions of MSCs
and different protocols used for isolation [29] [30].

The dataset does not only contain one single timepoint but several. For each timepoint
the same experiment was repeated and the actual measurements were taken after different
time periods. In the beginning of each experiment some cells are marked with GFP and
can therefore be refound at all timepoints.

3.5.2 Cluster Count Adjustment

The first thing we will check is if our adjustment for different cluster counts is working
as expected. Due to the fact that the reference distribution consists of distances between
trees which have different numbers of clusters it is important to check this adjustment
first.

The evaluation dataset is used here to create three reference distributions each with a
different desired cluster number of 50, 100 and 200, and based on 20 reference trees. The
created trees and the distance measure d; are used to create 6 reference distributions by
comparing all against all per set once with and once without cluster count adjustment to
50 clusters.

The resulting cumulative distribution functions are shown in figure 3.5. The first three
lines correspond to the adjusted distributions while the lines on the right are unadjusted.
The unadjusted distributions are clearly different and can be simply distinguished by a
threshold. On the other hand the adjusted distributions cannot be separated easily and
the adjustment works as expected.

The differences in the adjusted and not adjusted curve for 50 clusters can be explained
by SPADE. It uses the cluster count parameter as hint and stops always above this
number. Therefore there are more than 50 clusters and the paths between nodes are
longer than in a graph with exactly 50 clusters.

A statistical test (Two-Sample Kolmogorov-Smirnoff-Test) on the three adjusted dis-
tributions to check if they are drawn from the same distribution yields in a negative result
and states all distributions as pairwise different. You see even by eye that especially the

2Provided by Dr. Daniel Coutu, Research Unit Stem Cell Dynamics of Timm Schroeder at Helmholtz
Center Munich
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Figure 3.5: Adjustment for cluster count works. The cumulative distributions of three
reference distributions (for 50, 100 and 200 clusters) once with and once without cluster
count adjustment based on an evaluation dataset and distance measure d; are plotted.

adjusted results for 100 and 200 clusters are shifted by approximately 0.33. These re-
maining differences after the adjustment can be explained by the adjustment itself. We
use the average height of trees to adjust the values but we are working with path lengths
on trees for the distance measure. Both are similar and related but not equal.

For our usage it is enough that the adjusted distributions are in the same range,
because there are other random effects which make the remaining differences unimportant
compared to them.

You also see the variation between different SPADE runs. Each distance in the distri-
bution is between two result trees which are created by the SPADE runs on the same data
with the same parameters. So the usage of a reference distribution and the comparison
with the sample distribution is justified and required.

3.5.3 Distance Measure Analysis

With the same evaluation dataset as before we compare the three different distance mea-
sures. For each measure we create three different distributions with cluster count adjust-
ment. The first with all markers which is equivalent to the reference distribution. For the
second SPADE run ten times each time with one marker left out. The pairwise distances



30 3.5. RESULTS AND DISCUSSION

of the resulting trees are then used to create the distribution. The third one is created in
the same way as the second one but with two markers removed instead of just one.

The expectation in this evaluation dataset is that SPADE finds a random structure
if used with all markers. Due to the uniform creation of the set we assume that the
information of the random structure is equally distributed between the ten markers. With
this we expect the distance of the second distribution to the first (reference) distribution
to be the same as between the second and third one.
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Figure 3.6: Distance measure d; is best. For a random dataset the cumulative distri-
butions of distances between SPADE results from runs with 10, 9 and 8 markers are
plotted.

The cumulative distribution functions of the distances in the three sets are plotted in
figure 3.6. With d; as distance measure the three distributions can be distinguished well.
Only for large values the green (second set) line is very near to the red one.
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The plot with dy looks similar but the first two lines have steps. Further analysis
revealed that each step belongs to one tree which is used as reference. Because dy does
not make use of the tree structure in the second tree and the clusters in both trees are
very similar the resulting distance only depends on the structure of the reference tree.
This distance is represented just by the shortest paths in that reference structure. This
problem also occurs with d; but there is more variation due to the other mapping method
and is therefore not as problematic as with d».

With dj3 the distances are not distinguishable. In the lower distances the all marker
set is equivalent with the set with two markers less but in the end it is higher than the
set with one marker less. One reason for this behaviour can be that a random fluctuation
in the clusters leads to a (random) new mapping which introduces a new edge in the
combined graph used by ds and results in a shorter shortest path.

Overall we decided to take d; as our default distance measure and all following analysis
are performed with it.

3.5.4 Marker Selection Method

To test which selection method is the best one and what are the advantages and disad-
vantages of each method we tested each method with the d; distance measure on all three
datasets and compared the number of required SPADE runs and the size of the best found
marker combination. The more runs are required the more time is needed and the less
useful it is for usage on a daily basis. The number of markers in the best set represents
how good the method is, because all methods search on the same search space and we
defined the best set as the one with the least markers which is still good.

We expect that the greedy backward elimination requires the fewest runs, followed by
the exhaustive search. The exhaustive search with softened requirements should require
the most SPADE runs because it has the lowest barrier to test new combinations. How-
ever, the high number of tested marker combinations should result in the best subset of
markers being found.

On the evaluation dataset all methods are able to find a set of only one marker which
seems to be enough to explain the random structure if the data. A closer look at the
mean and standard deviation of the reference distribution reveals that yet in the reference
distribution there is a large dissimilarity which is caused by the down-sampling step. It
randomly chooses points out of all uniform distributed points. These small variations
results in different cluster structures of the remaining points. Compared with the two
biological datasets with a mean of 1.0 and 1.3, the mean of 3.9 is three fold higher and
the reason for finding one marker. Therefore the completely random dataset is not suitable
to reveal differences in the selection methods.

The greedy method requires only 55 runs of SPADE which confirms the expectation
that this method needs the fewest runs befor finishing. The two other methods require
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] H greedy \ exhaustive \ exhaustive softened ‘

FEvaluation Dataset
(Mean: 3.9, Stddev.: 0.5)
# of SPADE runs 75 1043 1043
# of markers in best set 1 1 1
Hematopoietic Stem Cells
(Mean: 1.3, Stddev.: 0.3)
# of SPADE runs 50 38 184
# of markers in best set 9 9 7
Mesenchymal Stem Cells
(Mean: 1.0, Stddev.: 0.2)
# of SPADE runs 27 27 27
# of markers in best set 7 7 7

Table 3.1: Exhaustive softened method finds the best marker set. The three marker
selection methods are tested on two biological datasets. The number of required SPADE
runs and size of the best marker set are reported here. For each dataset also the mean
and standard deviation (stddev) for the reference distribution are given.

all 1043 runs which are 20 runs for the reference distribution and 1023 for all possible
combinations. With this dataset there is no difference in both methods.

In the hematopoietic stem cell dataset the greedy method is only able to find a set
with 9 out of 11 markers which is still sufficiently similar. This also shows that the order
of marker removals in the greedy method is important. It is not able to find the best
set with seven markers, because one important marker (Scal) is already removed in the
second round. The exhaustive method finds the same set as the greedy method but needs
less SPADE runs for that. The reason is the very strict criterion for a combination to be
tested. The exhaustive method with softened requirements checks the most combinations
compared to the two others. The reason is that each path which can lead to a solution is
tested and followed. The same reason is responsible for the good result of a marker set
only consisting of 7 markers.

For the MSC dataset all methods perform the same. Each requires 20 runs to create the
reference distribution and then seven runs to test the removal of each marker separately.
The result is that all markers are required to maintain the SPADE tree.
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3.5.5 Biological Interpretation
Hematopoietic Stem Cells

The exhaustive method with softened requirements finds a set of seven markers to be
enough to explain the SPADE result tree. On the other hand the definition of the six
subpopulations by an expert only requires four markers. This suggests that there is more
information and structure in the data than captured through gating.

The exhaustive softened method finds three minimal sets or markers each with seven
markers. Each of the three sets contains PU.1leYFP, CD41, CD150, FcgR and GATA1-
mCHERRY. The remaining two markers are either side scatter and CD105, forward scat-
ter and Scal or CD105 and Scal.

Mesenchymal Stem Cells

The marker selection process does not find any redundant marker in the mesenchymal
stem cell dataset. This means all markers are required to maintain the cluster structure
found by the hierarchical clustering. So each marker itself has information which is not
contained in other markers. As there is no definition of MSCs by marker expression all
used markers can be potentially used in such a definition.

3.6 Conclusion

The marker selection algorithm uses the SPADE algorithm as basis to find marker subsets
which are able to explain the whole dataset. We defined three different distance measures
to compare cluster trees and determine their similarity. Through the non-deterministic
property of SPADE the use of a reference distribution instead of a simple reference tree
was required. Therefore the actual comparison is a comparison of distributions done by
a statistical test. Using this test three search methods were proposed to find the best
marker subset out of all possible marker combinations.

The evaluation reveals one distance measure and the exhaustive search method with
softened constraint to be better than other combinations. It was tested on two biological
datasets and not able to find a marker set as small as expected on the first set. A reason
might be that there is more structure in the data than expected. On the mesenchymal stem
cell (MSC) dataset we judged all markers as required to explain the internal structure,
which is important because there is still no definition (in terms of marker expressions) for
MSCs.






Chapter 4

Structure Preserving Visualization of
FACS Data

As seen in the previous chapter SPADE has some problems with its visualization while
the hierarchical clustering itself is working well. The layout of the clusters is arbitrary
and only the direct connections between clusters have an actual meaning of being nearest
neighbours. In figure 4.1 it we shot that SPADE is not able to maintain the original
distances in the data. Also it is not able to detect the seven contained clusters visually and
requires the user to set the cluster count parameter manually. Therefore we implemented
a new visualization for the hierarchical clustering results.

Also the default visualization of FACS data with scatter and density plots has some
disadvantages. It is only possible to visualize two dimensions at the same time while the
structure which has to be analysed can have many more dimensions. These dimensions
cannot be displayed all together on the same plot, because there is no plot type which
can visualize more than four (e.g. position in space and colour) dimensions and is easy
to interpret at the same time.

So a technique which is able to project the high dimensional data into a lower e.g. two
dimensional space while preserving the inherent structure of the data would increase the
interpretability of the plot much. Here we choose to project the data into two dimensions,
because it is a very natural choice and yet a three dimensional plot can be hard to analyse.

We use the same approach as SPADE for down-sampling and clustering of the data.
The result is a dendrogram, which reflects the internal structure of the whole data cloud.
Afterwards we apply an algorithm called tree preserving embeddings (TPE) [31], which is
in contrast to e.g. PCA able to project data points into a 2D plane while preserving the
dendrogram structure and guarantees that a clustering on the 2D plane produces exactly
the same dendrogram as on the original high dimensional dataset. So we are able to
obtain a 2D projection of the data which represents the internal structure of the dataset.

In this application we use the cluster algorithm without the cluster count parameter,
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Figure 4.1: SPADE has issues with visualization. Colors corresponds to distances between
the cluster and a reference point located at the center of one cluster. SPADE was run on
the artificial dataset (see section 4.4.1) with seven clusters. (a) with 10 desired clusters,
(b) with 50 clusters, (c) with 200 clusters. (d) Result of our new visualization method on
this dataset.))

because the clustering and minimum spanning tree construction are essentially the same.
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We simply combine both steps and just run the algorithm until one large cluster with all
cells is created.

In this chapter we show how TPE optimizes the visualization and how it guarantees
the dendrogram to be preserved. Then we present how we optimized an existing TPE
package to allow a faster analysis and evaluate the improved runtimes. We determine the
quality of the visualization with a dataset including expert knowledge. Finally, a new
approach able to visualize dynamics between different timepoints is presented.

4.1 'Tree Preserving Embeddings

The input of TPE [31] is a hierarchical clustering of n objects, a distance matrix D = (D;;)
with distances between the objects and a dendrogram C which represents the clustering.
C C P([1;n])? (P means powerset) contains pairs of clusters (c;, ¢;) which are merged at
some point in the clustering algorithm and therefore are children of the same parent in
the dendrogram.

The goal of TPE is to find a p-dimensional Euclidean embedding X = {z1,...,z,} C
R? of the n objects which minimizes the penalty function stress

o(X)= > (di(X)— Dy)’ (4.1)

i,z €X

with d;;(X) as the Euclidean distance between two objects in the embedding X and D;;
as the same distance but in the original high dimensional space. Without any further
constraints just minimizing o(X) leads to the so called crowding problem [32] meaning
there is not enough space in the embedding to preserve the intrinsic dimensionality. It is
the main reason why it is hard to preserve clusters in a dimension reduction method. So
TPE uses an additional constraint

min dkl<X) = min Dy V(CZ‘,C]‘) eC (42)

kGCi,ZECj kGCi,ZGC]'

to prevent that problem. The (single linkage) distances between two clusters ¢; and ¢;
in the real data have to be the same as in the embedding. This guarantees that a re-
clustering on the embedding results in exactly the same dendrogram as before, because
the distances between all cluster pairs required for the dendrogram are the same as in the
original data.

4.1.1 Greedy Optimization

To simplify the optimization TPE does not optimize the global problem with all cluster
pairs at once, but uses the dendrogram to do this in a hierarchical fashion. So starting
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at the ground with the singleton clusters, each cluster pair (¢;,c¢;), with the previous
embeddings X; and X}, is embedded by solving the optimization problem

T =argmin »  (du(T(X;),X;) — D)’
TeE®P) kecilec; (43)
s.t. min dkl(X) = min Dy V(Ci, Cj) eC

k‘ECi,lECj kECi,lECj

where dj(X;, X;) is the distance of cell k£ and [ in the embedding of X; together with
X;, T(X) applies the transformation 7" to the embedding X and E(P) is the set of all
p—dimensional rigid transformations. The optimization looks for transformations for ¢;
which minimize the stress between ¢; and ¢; while preserving the minimal distance between
both clusters. The use of rigid transformations (rotations, translations and reflections)
guarantees that the already embedded internal structure of the clusters is maintained by
the new embedding. The resulting embedding for the root node of the dendrogram is the
final result of TPE and plotted on a 2D plane. Because it is not guaranteed to find the
same optimum as when looking at all cluster pairs at the same time, the authors of TPE
call this approach “greedy optimization”.

This approach allows TPE to preserve clusters at all resolutions and not only at an
(arbitrarily) chosen one. TPE is more than just a new visualization technique for den-
drograms. Through the use of the penalty function o(X) not only the minimal distances
between clusters, but also the internal structure of the clusters is considered for the em-
bedding.

Please note that we use SPADE for clustering and therefore the distances D in high
dimensional space are the L1-norm while in the embedding the L2-norm is used. This
seems maybe arbitrary but is justified here. SPADE is optimized for usage with FACS
data and uses the L1-norm, so we can judge it is a valid choice there. On the other hand
the visualization is made for humans and humans naturally think with the Euclidean
norm as distance.

4.2 Visualization Method

The whole process of visualization FACS data is as follows. The FACS data is com-
pensated and transformed as described in section 2.2.1 and 2.2.2. Then the SPADE
down-sampling (section 3.1.1) is performed to reduce the number of objects to handle.
The remaining cells are clustered with SPADE and a dendrogram is constructed of all
cells. There is no stop if the “number of clusters” parameter is reached. With that den-
drogram and the Ll-distance matrix TPE is called to create a 2D embedding. The cells
of the whole dataset are assigned to their nearest neighbour in the down-sampled set, so
that information of the complete set can be visualized in the plot.
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The visualization itself is done in the following way. The embedding is plotted into a
2D plane, each point corresponds to a cell in the down-sampled set and its size corresponds
to the logarithm of number of cells for which it is the nearest neighbour. This allows the
user to distinguish between high and low density regions in the plot. The colour of a
point corresponds either to the median value of a marker or some other external data,
e.g. gating information. An example visualization is shown in figure 4.2.

-41 5 270 12844

Figure 4.2: Example visualization of the hematopoietic stem cell dataset of section 3.5.1.
10000 clusters are visualized coloured by the CD41 marker. Size of the points corresponds
to the number of cells in their neighbourhood.
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4.2.1 Visualization of FACS Timepoints

We can modify our approach to allow different timepoints of similar data to be visualized
on the same structure. The first step is to construct a visualization of all timepoints
together, which can be seen as “cell space” of possible locations of cells. Afterwards each
datapoint can than be visualized on this space independently.

Due to different sample sizes at different timepoints we down-sample each set sep-
arately and put it afterwards together to one set. This set is then visualized with the
normal approach described above. The important thing of the result are the downsampled
points and their location in the visualization.

After that each timepoint is visualized separately on this structure. Each cell in the
timepoint is assigned to its nearest neighbour in the previously created structure. These
points in the visualization are then visualized using the number of assigned cells and their
average marker expression.

The markers used for the construction of “cell space” are considered to be constant for
cell populations between different timepoints. Only with this assumption the mapping to
the structure makes sense.

4.3 Implementation

We used R for the implementation in this chapter, because an R package for TPE was
already available online. Indeed there is an R implementation of SPADE, too, but it is
very user-oriented and therefore hard to change internals, which is required here (e.g the
minimum spanning tree construction is not required). So we implemented the SPADE
workflow without visualization again in R.

4.3.1 SPADE Implementation in R

Nevertheless we use the SPADE R package for the density calculation, because it is
available as a simple method call. It is multi-threaded and uses many cores simultaneously
to speed up the calculation. The cluster algorithm itself was implemented completely by
ourselves. To assign the cells from the complete dataset to their nearest neighbour in the
down-sampled set (up-sampling step cf. 3.1.1) we use a modified (L1 instead of L.2-norm)
version of the RANN ' R package which implements the nearest neighbour search using a
kd-tree [33] in C. However a use of this kd-tree for the density calculation in the first step
is slower than the SPADE package. The reason is probably that the neighbourhood is
too large and the overhead of traversing the tree is higher than the brute-force overhead
in the naive version. That is why we use the SPADE package for this task.

IThe original version is available through the The Comprehensive R Archive Network under
http://cran.r-project.org/
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4.3.2 TPE Package Optimization

In the beginning the original TPE package has long runtimes which makes the visualization
with more than 1000 datapoints unfeasible. So we applied the following optimizations to
the package:

e Implemented the stress and constraint function in C

Removed wrapper methods for C code

Prepare parameters for the C code outside of the methods

Removed root calculation when looking only for minimal distances

Removed some internal optimizations of the original TPE package which turned out
to be slower than using the new C code without these optimizations.

4.4 Results and Discussion

4.4.1 Evaluation on Artificial Dataset

We test our visualization on a small artificial dataset to show its advantages (cf. figure
1.1). The dataset consists of 1100 datapoints with three dimensions. There are four large
clusters of datapoints (each 200 points) and three clusters with only 100 points. The
clusters represent different cell populations in FACS data. The points for each cluster are
drawn from a normal distribution with standard deviation of 0.15 and are positioned in
the corners of a cube. There are only seven clusters for the eight corners of the cube, so
one corner is left empty.

In figure 1.1(a) all scatter plots for this dataset are shown. Without further investi-
gation (e.g. gating) eight clusters are expected because the empty corner is hidden in all
dimensions by another cluster.

We run our visualization method on that dataset. The downsampled set contains
approximately 600 datapoints and its visualization is shown in figure 4.3. With the
coloured versions (a)-(c) it is easy to distinguish the different clusters.

To check if the distances between the different datapoints are preserved, we calculated
the L1 distances from an arbitrarily chosen datapoint to all others. The result coloured
by these distances is shown in figure 4.3(d). As you can see short distances in the plot
corresponds to short distances in the real data and far away points correspond to long
distances in the data. So the visualization is in fact able to preserve real distances while
showing the whole data structure in one two dimensional plot.
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Figure 4.3: With our new visualization technique all seven clusters are separately displayed
while the distances are preserved. Our method was run on the artificial dataset. (a)-(c)
The results coloured by the different markers are shown here (red=high, blue=low). (d)
The result is coloured by the (manhattan) distance to an arbitrarily chosen datapoint.

4.4.2 Runtime Analysis of Optimized Code

We re-implemented and optimized large parts of the existing code so it is important

to keep track of the required runtimes used by the different steps.

Here we compare
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(1) the density calculation with the R SPADE package versus the original code, (2) the
reimplemented SPADE cluster algorithm in R versus the original in MATLAB, (3) the
modified RANN package versus the original upsampling code and (4) the optimized TPE
package versus the original TPE package.

To be comparable all tests were run on the same notebook with four processor cores
and 4 GB of ram. As dataset we choose a randomly generated set with 10 markers and
100000 cells.
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Figure 4.4: New code is substantially faster in most steps. New runtimes of the different
steps in the visualization are compared against the original algorithms and implementa-
tions.

The first two bars in figure 4.4 show the times required for the density calculation.
The multi-threaded version is four times faster than the original version, because it can
use all four available processor cores at the same time.

The runtimes for the clustering step are surprising. The new implemented version in
R is approximately three times slower than the original MATLAB code. A closer look
into the SPADE source code reveals at least one reason for that. The clustering algorithm
does not use single linkage for the clustering but just uses distances between the median
centers of two clusters. So there is no need to consider and calculate the pairwise distances
between datapoints in two clusters, which requires much more runtime.
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The usage of a kd-tree in the upsampling step is a substantial improvement. The new
code only takes 15 seconds while the original code takes 2.5 minutes. This is a speed up
of factor of ten compared to the original method using a brute force approach.

The new optimized TPE package needs about eight minutes to finish, while we were
not able to complete the run with the original TPE because of long runtimes. Instead
we used a smaller dataset of only 500 instead of 100.000 data points to compare both
versions against each other. In that comparison the new version is factor 35 faster than
the old one. Here the optimizations discussed in section 4.3.2 perform well.

Taken together we were able to speed up the TPE package by a factor of 30 which
allows the processing of thousands of datapoints in minutes instead of hours. For our
application this was enough, so we did not investigate further optimizations like a relaxed
stress function.

4.4.3 Biological Analysis with Expert Knowledge

We tested our visualization technique with the dataset from section 3.5.1, because there is
expert knowledge about the different populations available and therefore a visual analysis
of the quality can be done. In addition we tested how different selected marker sets from
the previous chapter change the visualization.

The results are shown in figure 4.5. Each point is assigned to the majority gate in its
neighbourhood and is coloured according to that gate. A light grey point indicates that
most cells in the neighbourhood are not contained in any gate.

The frequency differences of different gates between the three visualizations are due
to different shapes in high dimensional space which change if new dimensions (markers)
are added or removed. So a cell population which uses much space in figure 4.5(a) with
11 markers can be compressed to a very small part of the total space in the third plot
with only four markers. The down-sampling step then selects many cells in the first and
only a few in the second case.

The visualization with all available markers shows a good separation of all six supplied
gates. Only the preGMs are in parts scattered around in the lower part of the plot
and mixed up with the GMPs. This is not surprising, because the preGMs give rise to
the GMPs, so it can be expected that both cell types are similar and are not easy to
distinguish. Also the lineage tree (see figure 4.5(d)) is mostly maintained. The pre megE
population splits into the CFU-E to the left and to the right into the MkPs. Furthermore
the CFU-E develop into the erythrocytic progenitors again to the left.

The result gets worse if the seven markers of the previous chapter are used to visualize
the data. The megakaryocytic progenitors are split up into two subpopulations, the same
is true for the pre MegE population. GMPs show up in a well defined population in the
middle of the plot, still partly mixed up with the preGMs. The marker selection only take
a truncated dendrogram into account for comparisons while here we use the complete one.



4.4. RESULTS AND DISCUSSION 45

(a) All eleven markers. (b) Seven selected markers.

None

Megakaryocytic progenitors (MkP)
Granulocyte/macrophage
progenitors (GMP)
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Figure 4.5: Visualization with all available markers leads to the best visualization. On a
dataset with six subpopulations our method run three times with different marker sets.
The resulting datapoints are coloured according to the majority subpopulation in their
neighbourhood. (d) Shows the colour legend for the six cell populations together with
lineage tree for the six cell populations based on [34] and [35].

Therefore we assume that the shown differences are caused by the structure of the lower
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dendrogram levels.

The expert uses only four markers for the gating. So the expectation is that the
visualization with only those four markers should be as good or even better (if some noisy
markers are removed) than with all markers. But the opposite is the case. The result
with less markers is worse than with all markers. In figure 4.5(c) most gates are locally
well preserved but globally spread over the whole plot. E.g. the erythrocytic progenitors
are split up into four populations. That means that the remaining seven markers contain
information which is not used by the manual gating scheme.

4.4.4 Comparison with other Dimension Reduction Methods

We compare our visualization to other dimension reduction methods to evaluate the per-
formance. We selected the standard method principal component analysis (PCA) [22], a
recent and more sophisticated method ¢-SNE [32] which is based on stochastic neighbor
embedding [36] and SPADE (see section 3.1) for comparison.

Principle component analysis looks for that linear combinations of the input markers
which allow the explanation of the most variance in the data. For t-SNE we use the
landmark approach for large datasets, which selects randomly landmark points and uses
random walks between these points in a neighbourhood graph of the whole dataset to
determine the probability to reach another landmark point through this random walk.
Then the 2D visualization is optimized so that the distance in 2D is equal to the calculated
probability.

The same dataset and expert knowledge as in the previous section is used for this
analysis. All available eleven markers are used as input for the different methods. The
resulting 2D visualisations are shown in figure 4.6.

PCA finds a view of the data which separates pre GMs (blue) well from GMPs (yellow)
(figure 4.6(b)). PCA is a linear transformation and therefore the linear gates (which are
used to define pre GMs and GMPs) are also transformed and lead to the good separation.
The megakaryocytic progenitors are spread across the upper left part of the projection
and also the CFU-E and erythroytic progenitors are piled and not separable. For all
population PCA is not able to separate cells in the background from the foreground cells.

SPADE is able to find the different populations and group them together. Only the
megakaryocytic progenitors are separated by two clusters representing no gate. As already
seen in our visualization the GMPs and pre GMs are mixed, which can be explained by
their direct relation. Despite this good separation and visualization the distances in the
plot have no meaning and cannot be used for further interpretation.

T-SNE is able to distinguish very well between different populations. As with SPADE
and TPE GMPs and pre GMs are close together. Also the very small population of
preCFU is found and visualised very near together. The megakaryocytic progenitors are
split up into two populations which was already seen with SPADE. T-SNE does not use a
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Figure 4.6: Our visualization method separates the subpopulation. Comparison with
three different methods. For PCA the first and second principle component is shown.
SPADE was run with the default parameters. T-SNE was run in landmark mode. Colors

and legend are the same as in figure 4.5.

downsampling step therefore frequent populations are also frequent in the visualization.
This can be seen in figure 4.6(d) with a lot of yellow datapoints, while in our approach



48 4.5. CONCLUSION

the down-sampling allows also small population to be visualized well.

The simple PCA method is not suitable to separate different cell populations. T-SNE
does a very good separation but do not preserve the original hierarchy of data at all
resolutions which may be interesting for biological interpretation. SPADE also makes a
good separation, but has the same problem. Our visualization is based on SPADE so we
are able to detect different cell populations and also to preserve original distances in the
visualization at appropriate levels.

4.4.5 Visualization of Different Timepoints

We use the mesenchymal stem cell dataset from section 3.5.1 with four different timepoints
(day 2, 14, 28 and 42). Some cells are marked with the green fluorescent protein (GFP)
so they can be “traced” where they move to and how they differentiate.

The modified visualization approach of section 4.2.1 is used here. We do not use
GFP for the construction of the structure because it changes over time and cannot be
considered to be constant in subpopulations between different timepoints.

The visualization shown in figure 4.7(a) is coloured by the origin of each datapoint.
In most parts there is a mixture of at least three colours, which means the cells of the
different datasets are located at similar points and belong to the same subpopulations.
Only for day 14 there are a lot of cells which are at the border and only show up in that
dataset. The reason for this is maybe the usage of a different FACS machine. Therefore
we excluded day 14 from further analysis.

The results are shown in figure 4.7. Between day 2 and day 28 there is not much
change except for a cluster of cells on the right bottom which changes its intensity from
very low (dark blue) to high (red). Between day 28 and day 42 there is more change.
Cells are moving from top to bottom as indicated by the circle sizes. Also in the lower
left part of the plot new populations with high GFP levels show up.

4.5 Conclusion

To improve the visualization of FACS data we used a modified basis of SPADE to create
a hierarchical single-linkage clustering on the whole dataset together with an optimized
version of TPE for visualization. SPADE was modified to create a complete dendrogram
instead of stopping at a defined level. The resulting dendrogram is then visualized using
TPE which is able to preserve distances between clusters at each level of the dendrogram
and guarantees a clustering on the visualization to find the same dendrogram as before
again. For the visualization the dot size shows the density of cells in that region and the
colour indicates the average marker expression of these cells. In addition we developed a
variant of this technique to visualize different timepoints on an “average structure” which
allows to trace cells through different timepoints.
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(a) Average structure. Coloured by the origin of (b) GFP expression on day 2.
the datapoints.

36 407

(c¢) GFP expression on day 28. (d) GFP expression on day 42.

Figure 4.7: A different application of our visualization is tracing of cell populations
through different timepoints. Similar cells are measured at different timepoints. (a)
all timepoints together are used to construct the “average structure”. (b)-(d) timepoints
visualized on the “average structure” coloured by the GFP level.

The algorithm was tested with an artificial dataset to proof its proposed properties
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and also with different marker sets on a dataset with expert knowledge. The result was
better the more markers are available for visualization. With all markers we were able
to separate the expert-given subpopulations in the visualization. In comparison with
three other visualization methods (PCA, t-SNE and SPADE) we found our method to
be suitable due to the ability to separate expert subpopulations while preserving real
distances in the visualization which allows a better interpretation of the dataset. With
the timepoint approach we were able to trace mesenchymal stem cell through different
populations but the data has to few timepoints and was to noisy to reveal new biological
insights.



Chapter 5

Pattern Discovery in Stem Cell Trees

In contrast to the two preceding chapters we work in this chapter with annotated stem
cell trees as introduced in section 2.3. The goal of this part of the thesis is to find
frequent substructures in these trees. More specifically we are looking for patterns which
appear differentially in two datasets. That means a pattern occurs often in one dataset,
but is very infrequent in the another one. This is especially useful if there is a known
qualitative difference between the datasets, e.g. two different culture conditions one with
and one without a specific substance. Then the interesting patterns can give insights into
biological mechanisms and role of that substance.

For trivial patterns, like one cell with one marker on, this can be done manually but
for more complicated patterns this is not possible (cf. figure 1.2). Additionally it is
not feasible to detect complicated patterns just by looking by hand at the trees. So a
systematic approach with an appropriate search algorithm is required.

This task is related to differential network analysis which tries to identify differences in
biological interaction maps [37]. In both cases two graphs are compared but we have sets
of graphs while in differential network analysis you look at two large networks. A related
approach was discussed in [38] which aims to the construction of a sub group tree. The
tree represents all possible subgroups which are defined through different combination of
attribute filters. Each subgroup is then coloured according to a p-value.

In this chapter we will first discuss how the datasets look like. Secondly, we will define
patterns, their canonical representation and how they match to the trees. Finally we
describe our algorithm to efficiently identify the top k patterns.

5.1 Data Definition

For our algorithm we require two datasets. The first dataset is the so called control or
background dataset Dp, meaning there is nothing special done during the experiment. In
the second or main dataset D something is changed compared to the background dataset,

o1
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e.g. the addition or removal of some substances in the growth medium.

Both datasets D and Dpg consist of annotated stem cell trees as described in section
2.3. On a more general and abstract level these trees are unordered rooted binary trees.
Each tree t has a defined root, no order between and exactly two children per node. There
is no need that the trees are balanced or complete. The nodes correspond to cells and
each edge corresponds to a mother-daughter-relation. The concepts presented here can be
applied to any tree set which satisfies these properties.

This definition alone represents only the structure and no additional “annotations”.
In practice each node can have additional attributes, e.g. cell lifetime, intensity of some
markers or manually annotated cell fates. Attributes other than scalar or boolean can
be used in principal, the only required property is a pattern definition and a matching
method which returns true or false.

5.2 Patterns and Matching

5.2.1 Pattern Definition

Patterns consist of two parts, a structural and an attribute part. The structural part is
responsible that the structure of the trees is taken into account while the attribute part
only uses the additional attributes to determine a match.

To represent the structural part we use the same structure as the trees themselves,
unordered rooted binary trees. Each node in the structural pattern can have additional
constraints using the cell attributes, so called attribute patterns, which represent the
attribute part. They consist of a range of allowed values, either inclusive or exclusive
the borders. Each node can only have zero or one constraint per attribute, so multiple
patterns for the same attribute are not allowed. This simplifies the pattern generation
and maintenance because the frequency of a pattern remains monotonic (see equation 5.2
below).

5.2.2 Matching to Trees

We define four ways of matching a pattern p against a tree ¢t. In general a pattern matches
a tree if and only if there exists a mapping of all nodes in p to t. Three constraints have
to hold for the mapping in order to be a valid match with two possibilities for 1 and 2:

1 a. The roots of p and ¢ have to be mapped onto each other (root matching).

b. The root of p can be mapped on any node in ¢t (non-root-matching).

2 a. The mother-daughter relation of p has to be preserved in ¢ (strict matching).
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b. The mother-daughter relation (n,n’') in p can skip generations in ¢, meaning the
mapped n' does not need to be a direct child of n but has to be in its progeny
(non-strict matching).

3 All attribute patterns of nodes in p have to match their mapped nodes in ¢.

So in total there are four possible matching methods (see figure 5.1). Constraint 1 restricts
the matching of the roots, both roots have to be mapped onto each other. Constraint
2 determines the meaning of the child relation (n,n') in p. Either n’ has to be a direct
child of n or n’ has to be in the progeny of n. The third point ensures that the attribute
patterns are not violated.

(a) ? (b)

a
3

Figure 5.1: Different matching methods for patterns. The same pattern (right) is matched
with the four different methods to similar trees. Only one possible matching is shown if
several are possible. (a) Root and strict matching. (b) Non-root and strict matching. (c)
Root and non-strict matching. (d) Non-root and non-strict matching.

We will score a pattern p according to its frequency in dataset D which is defined as

frea(.D) = 7 301 (M(p.1) (5.1)

with M (p,t) denoting a match and I being the indicator function. The frequency is
simply the percentage of trees in D which the pattern matches.
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5.2.3 Canonicalization of Patterns

Although trees representing patterns are unordered the visualization of a tree has in fact
an order on the children of a node. There are several isomorphisms which all represent
exactly the same tree. To avoid duplicates and simplify the generation and maintenance
of patterns we will define one of these isomorphic trees as our canonical form. The order
of children is not part of the matching process so this canonicalization does not change
the trees which a pattern matches. It also prevents the search algorithm from evaluating
the same patterns several times and also simplifies the generation of new patterns.

We utilize an extended form of level sequences [39] to achieve this task. The depth of
a node in the pattern (the length of the path to the root plus one) is called level of that
node. To obtain the extended level sequence we consider a depth-first traversal of the now
ordered pattern tree. At each node we write down the level of the node and the name of
each attribute pattern in alphabetic order. For simplicity we assume the attribute pattern
names are just A, B, C, .... For example 1B233A2AB is an extended level sequence. The
canonical form of a pattern is defined as that representation which has the greatest level
sequence in a lexicographical sense. We define that characters are always greater than
numbers. This implies that the sequence above is not canonical because 1B2AB23A3 is
larger and represents only a structural isomorphism. A visualization of the two sequences
can be found in figure 5.2.

If we look at the tree structure of the pattern this canonicalization means that the tree
is left-heavy. For each node the sequence of the left child is greater than the right one.
This can be either because the attribute patterns are larger or there are more children.

There is no need to include more information about the pattern in the sequence,
because we restricted the number of attribute patterns per node per attribute to one.
There is simply one or none.

Note that for simplicity reasons we used level numbers and attribute names with only
one digit or character, so the lexicographical comparison is easy. In reality a level number
of 10 is of course larger than a 9 and if there are more than 26 attributes you have to do
the comparison more carefully.

5.3 Pattern Tree

In order to be able to describe the search algorithm in an easy fashion we define the
pattern tree. This tree contains all possible canonical patterns and their relation in terms
of “is specialization of”. Therefore we define how the specialization works and how it can
be used by the algorithm to be efficient.
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AB AB

A A

(a) Isomorphism with level sequence 1B23342AB. (b) Isomorphism with level sequence
Not in canonical form. 1B2AB23A3. In canonical form.

Figure 5.2: Isomorphisms of patterns are a problem. The same pattern drawn in different
isomorphisms.

5.3.1 Specialization of Patterns

We define specialization as the creation of several new patterns which are more specialized
than the original pattern. In general you expect the new patterns to not match as many
trees as the original pattern.

The extended level sequence facilitates an easy definition of specialisation. We can
specialize a pattern p by extending its sequence by one position. The sequence of pattern
p is extended by one new position, if the newly obtained sequence is canonical the new
pattern ¢ is a specialization of p, which is denoted by p < g. The extension can be made
with either a new number, which corresponds to a new child on the right most branch, or
a new character, which corresponds to a new attribute pattern. If we look in the structure
the specialization means that on the right-most node (the last in depth-first traversal)
we add either a new attribute pattern or a new child node. Because canonical means
left-heavy and here we add “weight” to the right it is clear why the new pattern has not
to be canonical anymore although the initial pattern is. Therefore the canonicality has
to be tested afterwards.

This specialization is monotonic, which means a specialization of a pattern can not
have more matched trees than the original pattern. So for a dataset D and two patterns
p and ¢ it holds that

p < q= freq(p,D) > freq(q, D). (5.2)
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The very first pattern, which cannot be constructed through specialization is the empty
pattern py with the empty level sequence. It does not contain any nodes or attribute
patterns and matches every tree regardless of its structure or attributes.

This method of specialization presented here requires more than constant time for each
pattern to be constructed, because for each candidate it has to be tested if the pattern is
canonical. There are more sophisticated algorithms which are able to enumerate all the
trees in constant time per pattern [40]. Because speed was not an issue here we have not
implemented such an algorithm but this may be required in the future.

5.3.2 Definition and Completeness

Now we define the pattern tree PT" with 3 being the set of all canonical patterns as

PT =(B,E) with E={(p,q) ePB*|p=<q}. (5.3)

The patterns which are specializations of a different pattern are children of that pattern
in the tree.

Given a canonical pattern ¢ with extended level sequence s = (cy,...,¢,) we invert
the specialization step and remove the last item ¢, of the sequence. This results in a
sequence which belongs to the parent p of pattern ¢ in the tree. This way each pattern
can have only one parent and after n iterations of removal we reach the root node py with
the empty level sequence.

We now show that each intermediate sequence s; in this process is canonical which
implies that the corresponding patterns p; is part of 8 and therefore part of the tree.
The removal of the last item c¢,, in the sequence of p always works on the right most node
of p. Either an attribute pattern is removed (if ¢, is a character) or the whole node is
removed (if ¢, is a number). A pattern is canonical if for each node the children are
ordered descending by their extended level sequences. Because we work on the right most
node we only change the sequence of the rightest node, which is also the lightest one.
Through the removal of an item the sequence only gets lighter and therefore the order of
sequences is not changed. So proof through induction: the parent pattern is guaranteed
to be canonical if p was canonical.

Each canonical pattern is part of PT and can be reached through a path starting at
the root and using the specialization to go deeper into the tree.

5.3.3 Validation

To verify the correctness of our implementation of the pattern tree, we generate all pat-
terns with a specific number of nodes and compare the number to theoretically computed
numbers.



5.4. MINING ALGORITHM 57

We consider patterns with n nodes and a possible attributes. (The number of different
attribute patterns per attribute is not considered here. We assume there is one possible
attribute pattern per attribute.)

Calculating the number of possible unordered rooted binary trees with n nodes can
be split up into the smaller problems of finding the numbers of possible left and right
subtrees with together n — 1 nodes. So let N(n) be the function calculating the number
of trees with n nodes. With the assumption that n is even and an odd number of nodes
have to be distributed to left and right we can recursively define it as

Ln/2]

N(n)= Y (N(i—1)N(n—1i)). (5.4)

i=1

We can stop at n/2, because then the same trees are counted only with left and right
subtree exchanged and we consider here only unordered trees. If n is odd the new case
of having (n — 1)/2 nodes on the left and right side occur. For this you have to choose 2
out of N ((n — 1)/2) possibilities with replacement which are (N((”fé)/ 2)H) possibilities.

Each node can have each possible combination of attribute patterns and there are 2¢
combinations for the a patterns. So in each step these pattern can be assigned to the
root, which leads to the final function N,(n). The number of possible unordered rooted
binary trees with n nodes and 2* possible labels for each node is

(/2] N((n—1)/2)+1 is odd
Na(n) =2° Y (N(i = )N(n — i) + 2° () s o (5.5)
P 0 else
with the recursion start at
N,(0) =1 and N,(1)=2" (5.6)

The values of this function for different parameters for n and a are shown in table 5.1.
The results of our implementation of the pattern tree are compared against these numbers
to ensure a correct and error-free implementation.

5.4 Mining Algorithm

5.4.1 Interesting Measure for Patterns

We need a way to quantify how “interesting” a pattern is. We defined interesting as
occurring frequently in dataset D while occurring infrequently in Dg therefore we use the
difference of frequencies as interesting measure and the score or interestingness I(p) of
pattern p is

I(p) = freq(p, D) — freq(p, Dp). (5.7)
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a
n 0 1 2 3 4
0 1 1 1 1 1
1 1 2 8 16
2 1 4 16 64 256
3 2 14 104 800 6272
4 3 44 672 10496 165888
) 6 164 4896 151808 4786176
6 11 616 36992 2295808 144736256
7 23 | 2450 291152 36019328 4535272448
8 46 | 9908 2349376 279986432 145868210176
9 98 | 41116 | 19364672 | 9532859392 | 4.788215x 10"
10 || 207 | 173144 | 162231552 | 159264088064 | 1.597583x 10"

Table 5.1: Values of the function N,(n) with different parameters for n (in rows) and a
(in columns).

This is a very simple measure. The fact that the frequency is a percentage and therefore is
adjusted to the dataset size makes this measure independent of different dataset sizes and
is comparable also between different datasets. Other measures which are used frequently
in similar cases and are eventually suitable here often require knowledge of the combined
distribution of both datasets (i.e. P(A A B)), which is not available here.

One advantage of this differential approach is that we are not required in any way
to quantify the complexity of a pattern. If you consider the task of finding interesting
patterns in one dataset, the most frequent ones are the simplest ones at the same time. So
the pattern with one cell has certainly a frequency of 100%. In general to find interesting
patterns a good balance between complexity and frequency has to be found. In our case
this is done automatically through the usage of the background set. Everything that is
not in there is interesting and the simplest interesting patterns are found, because they
are more frequent than complex ones.

Upper Bound for Interestingness Measure

This measure allows for an upper bound on the measure for specialized patterns. Due to
the observation in equation 5.2 we can derive the upper bound B(p) for patterns p and
all its specializations ¢

I(q) < freq(q, D) < freq(p, D) = B(p) (5.8)

for the measure I. Through the transitivity of the specialization < this bound holds for
complete branches in the pattern tree. Given a pattern we can determine for the whole
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branch starting at that pattern an upper bound for the interesting measure. This will
allow us an efficient way of pruning the tree and building a fast mining algorithm.

5.4.2 Algorithm

The goal of the algorithm is to find the top k£ patterns according to the measure I. It
is basically a version of the A* algorithm [41] which is able to use external information
(such as the upper bound) to perform an efficient search through all possible patterns. It
starts at the root of the pattern tree with the empty pattern and traverses the tree while
maintaining a list of the current top k£ patterns and another list with candidates which
can lead to better patterns in the future.

The first of the two main data structures with patterns is a sorted result list R of
maximum size k with the current top k£ patterns sorted by their interesting measure. The
value of the last pattern (lowest I(p)) is called I,,. The second is a priority queue @
which contains patterns with an upper bound B(p) higher than I,,;,. So it is possible
for specializations of patterns in () to become a top k pattern in the future. This queue
contains initially only the empty pattern pg.

With this data structures the algorithm runs as follows:

e Take the first pattern p in () and do for each specialization q of p

— If B(q) < I ignore ¢ and go on with the next pattern.

— If I(q) > Imin add ¢ to R. Prune R if it is now larger than k and update I,
accordingly.

— If B(q) > Inin add ¢ to Q.
e Repeat until @) is empty.

In the end R contains the top k patterns found. The use of the pattern tree ensures
that the upper bound holds and also that no pattern is checked twice or is omitted, which
is in general not easy to achieve.

Generation of Attribute Pattern

We have not yet spent much time explaining how the attribute patterns are constructed
and handled during the mining process. All attribute patterns are constructed before
the actual mining starts. Because each node in a pattern can only have one pattern per
attribute, we have to build many patterns per attribute in the beginning.

To determine which patterns we will use the distribution of values over all trees (in D
and Dpg) for each attribute is considered. If there are less than five different values for an
attribute, e.g. because the attribute is an ordinal or boolean one, we build an attribute
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pattern for each distinct value itself. In all other cases we use quantiles to determine the
ranges for the patterns. We construct five base patterns which range from the Oth to 20th,
20th to 40th, ..., quantile of the attribute value distribution. The use of quantiles here
ensures that we take the internal structure of the data into account.

Because we want also patterns which range e.g. from the Oth to 40th quantile to be
constructed and used during the algorithm we combine several base patterns to a new
attribute pattern. We do this for all possible combinations, but only if all combined base
patterns are side-by-side. This ensures that there is no gap in the range covered by a
pattern.

5.4.3 Application with only One Dataset

Sometime it is interesting to look at only one dataset and not at the differences between
two sets. Our algorithm can handle this as special case with an empty background set.
That means the interesting measure can be simplified to

I(p) = freq(p, D) (5.9)

because Dp is empty and therefore freq(p, Dp) is 0. The problem which arises then is
that very much pattern are found, e.g. the pattern with only one cell is found in every
tree so it is the best found pattern. Through usage of additional pattern filters it is
nevertheless possible to check the found patterns.

5.4.4 Implementation

The whole subproject was implemented in Java. It has the major advantage over MAT-
LAB that there are references available. This is especially useful when working with trees,
so each node can have e.g. a reference to the root node of the tree. It is also quite fast
compared to MATLAB although this was not a major point here. Because MATLAB is
partly based on Java it is possible to use the code directly in MATLAB where e.g. loading
routines for trees were already available.

5.5 Results and Discussion

5.5.1 Dataset Description
TGF/$ Change'

For the following analysis we used a dataset of annotated stem cell trees which consists of
two parts. HSCs were imaged under two different conditions, once with the transforming

'Provided by Dirk LoefHler, Research Unit Stem Cell Dynamics of Timm Schroeder at Helmholtz
Center Munich
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growth factor beta (TGF () and once without. TGF/ is a cytokine and plays a role in cell
differentiation and is therefore interesting in the stem cell research [9]. In addition to the
structure of the trees three markers are quantified over time and available as additional
attributes. They are C'D48, Scal and VWF.

HSCs versus MPPs?

In this dataset hematopoietic stem cells (HSCs) are compared against multipotent progen-
itor cells (MPPs). Interestingly, the current methods to isolate HSCs with flow cytometry
(through different marker combinations) result in approximately 50% purity of this rare
population of cells [14]. The notion in the field is that the remaining cells could be cells
that are closer to MPPs. Our goal here is to identify patterns which are unique for HSCs
or MPPs. With that the purity problem can be addressed through matching the trees
afterwards against the two pattern and decide if the first cell in the tree was an HSC or
a MPP.

Apart from the structure information of the trees only the annotated end fates (divid-
ing, apoptosis or movie end) per cell are used for the pattern discovery.

5.5.2 Comparison of Different Matching Methods

The different matching methods have a biological background. Allowing the root of a
pattern to match any cell in the tree reflects the fact that e.g. a differentiation can start
later in the tree and only the event itself should be covered by the pattern and not the
previous history. Matching directly at the root means that the patterns focus on processes
occurring directly after the experiment start.

We tested the four available matching methods on both datasets and show the inter-
estingness measure and size of the best found pattern in table 5.2. For each dataset four
runs of the algorithm are performed, two with only one of the available set to detect fre-
quent patterns only in the single sets. And two comparing the two sets in both directions
so pattern frequent in set 1 and infrequent in set 2 are found as well as patterns frequent
in set 2 and infrequent in set 1.

In the TGFf dataset there is not much difference between the different matching
methods. The found patterns for each direction are nearly identical.

For the HSC vs. MPP dataset all resulting best patterns are just one cell with either
the attribute pattern of dividing or apoptotic. Therefore the results of the different
methods are very similar. Also the non-strict mapping of mother-daughter relations has
no effect here, because the patterns only consists of one cell and do not have such a
relation.

2Provided by Konstantinos Kokkaliaris, Research Unit Stem Cell Dynamics of Timm Schroeder at
Helmholtz Center Munich
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] H n.-root, n.-strict \ n.-root, strict \ root, n.-strict \ root, strict ‘

TGFf change
With vs. w/o 96%/33% 96%/33% 96%/33% 68%/25%
W/o vs. with 79% /5% 79%/5% 79%/5% 78% /5%
HSC’s vs. MPP’s
HSC’s vs MPP’s 75%/34% 75%/34% 75%/34% 75%/34%
MPP’s vs HCS’s 86%/76% 86%/76% 66%/19% 66%/19%

Table 5.2: Comparison of the different matching methods on two datasets. The frequency
in both sets of the best found pattern are shown in the table.

Comparing one direction to the back direction the results make sense. One direction
finds a pattern matching cells which divide. The other direction cells which die. In the
case of root-matching this behaviour can be seen in the result table: The frequencies sum
up to 100%, e.g. for MPP’s the values are 34% and 66%. In the HSC case there are (in
addition to division and apoptosis) also cells which cannot be tracked so the frequencies
of 75% and 19% do not sum up to 100%.

Overall the datasets are too small to find differences between the matching methods.
It depends also on the biological goal which one to use in the algorithm.

5.5.3 Biological Analysis

For this analysis we used the root matching with strict mother-daughter relation. Also
we do not focus only on the best pattern as before but on a larger set of patterns.

To be able to handle this large set we implemented a lot of pattern filters. The first
filter restricts the number of nodes and generations in a pattern. This allows us to control
how deep we go in the pattern tree. A normal setting was to only allow patterns to cover
three generations. The second very important filter allows only patterns with each node
containing an attribute pattern of either dividing, apoptotic or movie end.

The third filter passes cells up to generation 2 which are either apoptotic or are dividing
and have two daughters. This filter together with the second filter results in a set of
found pattern which is complete. This means each tree matches exactly one of the found
patterns.

With this third filter we can also run the algorithm with only one dataset. The filter
ensures that only complete pattern are found.

TGF S Change

The best patterns found for this dataset are shown in figure 5.3(a) and 5.3(b). The first
one consists only of three cells in a row of which the last one is apoptotic. This result
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(a) Best pattern for TGFS vs. no TGFp. (b) Best pattern for no TGFS vs. TGFp.
(Frequencies are 68% and 25%) (Frequencies are 78% and 5%)

I T
1 1]

(c¢) Best pattern after filtering for TGFS vs. no  (d) Best pattern after filtering for no TGFS vs.
TGFB. (Frequencies are 23% and 2%) TGFS. (Frequencies are 65% and 9%)

Figure 5.3: Best patterns for the TGFf change dataset. Cross indicate apoptosis and
horizontal lines indicate a cell division.

verifies that the algorithm is working well, because it was previously known that cells
with TGFf die earlier [9]. So the apoptotic pattern makes sense. Also the other way
around the pattern in figure 5.3(b) shows two cells in generation 3 which divide matches
this observation.

The results after filtering are shown in figure 5.3(c) and 5.3(d). They are complete
until generation 2 and allow a better view on the whole tree.

HSCs versus MPPs

With the three discussed filters we were able to identify three patterns which are statis-
tically more frequent in the HSC dataset. The treeset of MPPs has the problem of half
of the cells dying in the first generation due to the used culture conditions. This is a
problem because it leads to high frequency differences for more complex pattern. In this
analysis we used fisher’s exact test [28] to determine the significance of different patterns.

If we only consider the first two generations the best pattern has a frequency of 46%
in the HSC dataset but only 22% in MPPs. So if we assume the purity of HSCs to
be around 50% this can be an interesting starting point for further analyses. Later, we
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extended our analysis to trees with 3 available generations. We identified a pattern with
frequency of 13% on HSCs that was completely absent from the MPP trees. Despite the
fact that this preliminary analysis of HSC and MPP data needs higher tree numbers to
yield statistically significant results, the algorithm already enables biologists to analyse
complex tree data in a fast and automated manner.

5.5.4 Discussion

In general the quality of the analysed dataset is important. Without filters and only
looking at the best patterns the found patterns are very obvious patterns with only one
cell. This means either it is the biological interpretation that one cell type dies often while
the other divides often or there is a biased tracking. That means the user does not track
all cells equal likely but selects cells to track based on an expectation, e.g. because they
divide.

5.6 Conclusion

For the discovery of differential occurring patterns in stem cell trees we developed an
efficient algorithm. Given two tree datasets this algorithm is able to find the top k pat-
terns which maximize the difference between frequencies in the two sets. We defined our
patterns to consist of unordered rooted binary trees with additional attribute constrains
attached to the nodes of the tree. We also defined four ways of matching a pattern to a
given stem cell tree which corresponds to different biological assumptions. Due to several
isomorphisms representing the same actual pattern we defined a canonical form of pat-
terns based on extended level sequences. Using this sequences we defined also a way to
specialize patterns which results in the definition of the pattern tree. This tree contains
all possible patterns and specialization can be used to enumerate them. Additionally we
proofed the completeness of this tree. As last step we presented a mining algorithm which
is able to use an upper bound for the frequency difference to only test appropriate parts
of the pattern tree to find the top k£ patterns.

We validated our implementation with theoretical results on the number of possible
patterns which ensures a correct implementation. With two biological datasets we tested
the different pattern matching methods which reveals that there is little difference between
them. The reason is that the trees in the dataset are too small and too different to
uncover differences between the four methods. In general there are many frequent and
very similar patterns which led to the development of several pattern filters which restrict
the algorithm to find only important patterns. With two HSC datasets - one with and
one without TGFfS - we were able to recover the previously known fact that cells with
TGFp die earlier. In the second test we looked for patterns distinguishing between HSCs
and MPPs and were able identify patterns unique to either one of those data sets.



Chapter 6

Conclusion

6.1 Summary of this Thesis

In this thesis we presented three different methods to analyze and visualize single cell stem
cell data. First, we developed a new algorithm to detect redundant markers in FACS data
based the comparison of SPADE result trees. Second, we presented a new visualization
approach for FACS data which is able to preserve the internal cluster structure in the
visualization. Finally we introduce a fast algorithm to discover differentialy occurring
patterns in stem cell trees.

The marker selection algorithm is based on the hierarchical clustering of SPADE and
is able to distinguish between the intrinsic variation of SPADE and changes which occur
due to the removal of one marker. We evaluated our proposed three distance measures
together with the cluster count adjustment as well as the feature selection methods. The
algorithm was evaluated on two biological datasets.

To overcome several problems with current visualizations for FACS data we introduced
a new approach combining SPADE clustering together with tree preserving embeddings.
We compared our optimizations with the original code and measured a speed up of factor
30 for the TPE part. In the analysis with expert knowledge the visualization was able to
recover the underlying linage tree. The comparison to other methods showed the large
advantage of preserving hierarchical structure during the visualization. As last point we
demonstrated the timepoint visualization on biological data to trace MSCs.

With the pattern discovery algorithm we address the problem of finding differentialy
occurring patterns. We validated the algorithm with theoretical results to ensure a error
free implementation. On an HSC dataset with two conditions we were able to rediscover
the fact that HSCs with TGFf die earlier than without. Through the application of
pattern filters we were able to find some interesting patterns which may help in the
discrimination between HSCs and MPPs.
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6.2 Outlook

Here we present several ideas and new approaches which can be tested in the future to
improve the presented methods.

To be applicable by biologists there needs to be an easy to use graphical user interface
(GUI) to the presented algorithm. This is definitely one of the next steps to go, at least
for the visualization and pattern discovery algorithm. The broader application allows the
evaluation on a variety of different datasets and further improvement and adjustments.

Besides the GUI one further idea is to use the same analysis tools as for FACS scatter
plots on the new visualization. This means to draw gates on the visualization to select
different cell populations and maybe leads to a higher purity of selected populations.

The main problem with the pattern mining algorithm is the large number of found and
very similar patterns. We reduced this problems by implementing several filters which
selects which patterns can be found. Here further research is needed, e.g. one idea is to
remove patterns which have a successor in the pattern tree which has a better score. So
the pattern itself is of less value because there is a new pattern which is more specialized
and has a better score.

Probabilistic matching is also a point which is a possible topic for further research.
Until now matches are binary either there is a match or not. With probabilistic matching
a pattern can match a tree e.g. with 80% certainty. In nature there are a lot of processes
which are stochastic so the new matching would lead maybe to a better way of detecting
often occurring patterns in stem cell trees.
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