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Abstract

In 2011 breast cancer, which can occur in different aggressive forms, was the ninth most
common cause of dead in Germany. Breast cells with stem cell potential are an important
discovery of cancer research in the past few years. These cells are able to differentiate
into various cell lineages and self-renew, meaning that at least one of the two daughter
cells, which arise from cell division, has stem cell properties. The more tumour cells
have stem cell properties, the more aggressive is the tumour. A quantification of the
tumourigenicity by determination of the proportion of cells with stem cell properties is
preferable. Moreover, the identification and study of stem cells is difficult to realise in
vitro since destroying a mice’s immune system and implanting a cancer cell is expensive.
Therefore, an in vitro assay was developed that shows that cells with stem cell properties,
which are cultured in a specific medium, form cell colonies (mammospheres) after five to
seven days. The sphere forming rate suggests the aggressiveness of the cancer type. So far,
the sphere forming rate is either determined by division of the number of mammospheres
at the experiment end by the number of breast cells at the experiment start or by a so
called Limiting Dilution Analysis. Both approaches comprise drawbacks mostly based on
the experimental difficulty to fill an exact number of cells into a particular experimental
volume.

Here, we developed an alternative method to determine the sphere forming rate. It is based
on the division of the number of mammospheres at the experiment end by the number of
cells at the experiment start like the first approach. Microscopic images of the cells are
taken at several time points in constant time intervals. In contrast to the aforementioned
methods, we determine the number of mammospheres and cells automatically with the
help of several image processing methods. This approach allows the precise determination
of the cell density and sphere forming rate. To enable an application of the method by
our biological partner, we implemented an image processing pipeline on the basis of the
program CellProfiler and validated it manually. The pipeline was applied to an experiment
of Dr. Scheel’s group at the ISF, Helmholtz Centre Munich, comprising two different breast
cancer cell lines and compared to the results of the classical Limiting Dilution Analysis.
The results of the automatic analysis confirmed different levels of aggressiveness between
the different cell lines by trend.

The automatic method developed in this work is a first step towards a robust, automatic
determination of the sphere forming rate. It is possible to use the method in a high-
throughput manner, e.g. to study the impact of small molecules on the sphere forming
rate. Moreover, analysing all images of a movie enables further findings both in the
context of determining the sphere forming rate and the dynamics of sphere forming.
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Zusammenfassung

Im Jahr 2011 war Brustkrebs, der in unterschiedlich aggressiven Formen auftritt, die
neunthäufigste Todesursache in Deutschland. Eine wichtige Entdeckung der Krebsfor-
schung der letzten Jahre sind Brustzellen mit Stammzelleigenschaften. Diese Zellen sind
in der Lage, in verschiedene Zelltypen zu differenzieren und sich selbst zu erneuern, was be-
deutet, dass mindestens eine der beiden Tochterzellen, die bei der Teilung entstehen, eben-
falls Stammzelleigenschaften hat. Je mehr Zellen eines Tumors Stammzelleigenschaften
haben, desto aggressiver ist dieser. Wünschenswert ist eine Quantifizierung der Tumori-
genität durch die Bestimmung des Anteils der Zellen, die Stammzelleigenschaften haben.
Die Identifizierung und Untersuchung der Stammzellen in vivo ist schwierig, da es sehr
aufwendig ist, zunächst das Immunsystem der Mäuse zu zerstören und die Krebszelle
dann einzupflanzen. Daher wurden verschiedene in vitro Verfahren entwickelt, bei de-
nen beobachtet werden kann, wie Zellen mit Stammzelleigenschaften, die lose in einem
bestimmten Medium kultiviert werden, nach fünf bis sieben Tagen Zellkolonien (Mam-
mosphären) bilden. Die Rate, mit der Brustkrebszellen Sphären bilden, lässt darauf
schließen, wie aggressiv die Krebsart ist. Bislang wird die Rate der Sphärenbildung ent-
weder durch Division der Anzahl der Mammosphären am Ende des Experiments durch
die Anzahl der Brustzellen zu Beginn bestimmt oder durch die sogenannte Limiting Di-
lution Analyse. Bei beiden Ansätzen kommt es jedoch zu Problemen, die hauptsächlich
darauf basieren, dass es experimentell schwierig ist, eine genaue Anzahl an Zellen in ein
bestimmtes Versuchsvolumen zu füllen.

Im Rahmen dieser Arbeit haben wir eine alternative Methode entwickelt, um die Rate
der Sphärenbildung zu bestimmen. Sie basiert wie der erste Ansatz darauf, die Anzahl
der Mammosphären am Ende des Experiments durch die Anzahl der Zellen zu Beginn
des Experiments zu teilen. Die Zellen werden an unterschiedlichen Zeitpunkten in gleich
großen Zeitintervallen mikroskopisch fotografiert. Im Gegensatz zu den oben beschriebe-
nen Methoden bestimmen wir die Anzahl der Mammosphären und Zellen automatisch
mit einer Reihe von Bildverarbeitungsmethoden. Dieser Ansatz erlaubt uns eine genaue
Bestimmung der Zelldichte und der Rate der Sphärenbildung. Um die Anwendung der
Methode für unseren biologischen Partner zu ermöglichen, haben wir eine auf dem Pro-
gramm Cellprofiler basierende Bildverarbeitungspipeline implementiert und diese manuell
validiert. Die Pipeline wurde auf ein Experiment aus der Arbeitsgruppe von Dr. Scheel,
ISF, Helmholtz Zentrum München, mit zwei verschiedenen Brustkrebszelllinien angewen-
det und mit den Resultaten klassischer Limiting Dilution Analysen verglichen. Das Ergeb-
nis der automatischen Analyse bestätigte tendenziell eine höhere Aggressivität der einen
Zelllinie gegenüber der anderen.

Die in dieser Arbeit entwickelte, automatische Methode ist ein erster Schritt auf dem Weg
zur robusten, automatischen Bestimmung der Rate der Sphärenbildung. Die Methode
kann als Hochdurchsatzmethode verwendet werden, um z.B. den Einfluss verschiedener
Moleküle auf die Rate der Sphärenbildung zu untersuchen. Außerdem ermöglicht die
Analyse aller Bilder eines Films weitere Erkenntnisse, sowohl im Hinblick auf die Be-
stimmung der Rate als auch auf die Dynamik der Sphärenbildung.

iii





Contents

1 Introduction 1
1.1 Human Mammary and Cancer . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 From Stem Cells to Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Detecting Breast Cells with Stem Cell Properties in Vitro . . . . . . . . . . 3
1.4 Approaches to Determine the Sphere Forming Rate . . . . . . . . . . . . . 4

1.4.1 Counting Mammospheres . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Limiting Dilution Analysis . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.3 Live Cell Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Image Processing Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Aim of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methodological Background 9
2.1 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Mathematical Morphology . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Maximally Stable Extremal Regions (MSER) . . . . . . . . . . . . 11
2.1.3 Form-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 F-Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Median Absolute Deviation (MAD) . . . . . . . . . . . . . . . . . . 14
2.2.6 Limiting Dilution Analysis (LDA) . . . . . . . . . . . . . . . . . . . 14

2.3 Conduction of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Limiting Dilution Analysis . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Live Cell Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Mammosphere Quantification Pipeline and Calculation of the Sphere
Forming Rate 17
3.1 Pipeline Development, Implementation, Application and Validation . . . . 17

3.1.1 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 CellProfiler Implementation . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 Manual Validation of the Pipeline Performance . . . . . . . . . . . 26

3.2 Sphere Forming Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Determining Sphere Forming Rate . . . . . . . . . . . . . . . . . . . 29
3.2.2 Comparison to Other Approaches . . . . . . . . . . . . . . . . . . . 30
3.2.3 Correlation Between the Cell Density and Sphere Forming Rate . . 32

3.3 CellProfiler Usage Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Summary and Outlook 35

v





List of Figures

1 Mammary structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Differentiation hierarchy of mammary epithelium . . . . . . . . . . . . . . 2
3 From a breast cell to a mammosphere . . . . . . . . . . . . . . . . . . . . . 3
4 Well plate with descending densities and an example Limiting Dilution

Analysis plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Erosion and dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Threshold stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Comparison of different segmentation algorithms . . . . . . . . . . . . . . . 18
8 Form-factor and example image . . . . . . . . . . . . . . . . . . . . . . . . 19
9 Entire workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 Screenshot Mser module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Growing air inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12 Precision and recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 Results of the manual Limiting Dilution Analyses . . . . . . . . . . . . . . 32
14 Sphere forming rate plotted against the cell density . . . . . . . . . . . . . 33

List of Tables

1 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Parameter settings of the pipelines . . . . . . . . . . . . . . . . . . . . . . 25
3 Pipeline performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Sphere forming rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii





1 Introduction

1.1 Human Mammary and Cancer

In 2011 breast cancer ranked ninth in the causes of dead statistics in Germany and is
the most frequent carcinosis of womankind [13, 33]. Different types of breast cancer
with different properties exist. The tumours can grow into ambient tissue, which is
called invasive [36]. Non-invasive cancer types stay in one type of tissue. Some cancers
metastasize, meaning the spreading into other parts of the body. Cancer can also occur
recurrently after therapy, called relapse [10]. These different traits render the treatment
of cancer very complex. Hence, the interest in breast cancer research expanded in the
past few years.

Breast cancer originates in different cell types of the breast epithelium, which is divided
into the luminal and myoepithelial or basal cell lineages [54]. The former is subdivided
into ductal and alveolar cells. Ductal cells create a branched ductal system surrounded
by myoepithelial cells that form a continuous layer. Since alveolar cells are responsible for
milk production, they are developed during pregnancy. Alveolar cells are also surrounded
by myoepithelial cells forming a more open network [34]. Myoepithelial cells have myo-
fibers. Thus, they are able to contract the epithelium formed by the luminal cells, which
is why they are important for breastfeeding [54]. The described breast structure is shown
in Figure 1.

a b

Figure 1: Development of the human mammary structure. a) The female breast is composed
of a branched ductal system. During different stages of development this system
shows different characteristics. During puberty the ductal system grows, building
terminal end buds (TEBs), which are able to end in both luminal and myoepithelial
cells. After puberty, at maturity, the TEBs are replaced by end buds. A second
extension comes along with pregnancy. Alveolar cells are generated during pregnancy
to provide a secretory phenotype during lactation. After breastfeeding i.e. post-
involution the ductal system degenerates. b) The detailed view shows an end bud,
which exists at maturity. The luminal epithelial cells are surrounded by myoepithelial
cells and enclose the central lumen. The ducts or end buds are surrounded by a
basement membrane enclosed by mammary stroma. Image adapted from [46].
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Figure 2: Differentiation hierarchy of mammary epithelium. The multipotent stem cell differ-
entiates into the three cell lineages, ductal, alveolar, and myoepithelial (or basal)
cells. Alveolar progenitors may achieve bipotential capacity during pregnancy. Im-
age adapted from [54].

Different types of tumours show differing levels of aggressiveness. That means that the
tumours grow with different speed and metastasize to different extent. If myoepithelial
cells turn into tumour cells, they have mesenchymal properties. Since myoepithelial cells
are located at the edge of the epithelium (see Figure 1b), they can translocate into the
surrounding connective tissue, which serves as scaffolding [52]. This process is referred
to as epithelial to mesenchymal transition [5]. In the connective tissue it is easier for the
cells to leave their place of origin and pass over into the blood system, by which they
are transported into other tissues (metastazation) [27]. Therefore, these cells metastasize
frequently, which makes them very aggressive. Less aggressive tumour cells arise from
luminal cells. Since abnormal luminal cells retain epithelial properties they metastasize
more rarely.

It was shown that the three different cell lineages, namely ductal, alveolar, and myo-
epithelial cells, arise from a single stem cell, where a hierarchical differentiation model is
assumed (see Figure 2) [54]. These stem cells are important for both organ development
and maintenance of tissue homeostasis, which stands for the reproduction of breast cells
to ensure the balance between the cells that die and the ones which are newly produced.
The massive extension of the human mammary tissue during puberty and pregnancy can
also be explained by the existence of stem cells. Besides the differentiation into the three
cell lineages, the main property of stem cells is the ability of self-renewal. When a stem
cell divides, the process is referred to as self-renewal if at least one of the new cells has
stem cell characteristics.

1.2 From Stem Cells to Cancer

The relation between breast stem cells and cancer cells is mainly based on the self-renewal
capacity of stem cells [30]. In [48] the assumption was made that a mutation, affecting the
self-renewal process, leads to abnormal cells due to parallels in the self-renewal properties
of normal stem cells and tumour cells. These cancer cells with stem cell properties are
also called cancer stem cells (CSC) [5]. Given these attributes, breast stem cells serve
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Figure 3: Bright field image of a breast cell (left) and a mammosphere (right). After five to
seven days in suspension breast cells with stem cell properties form non-adherent
mammospheres. These cells are called sphere-initializing cells.

as a good model system to learn more about the processes involved in carcinogenesis
[30]. For that purpose, the different sub-populations of stem cells and their progenitors
must be identified. Usually the identification of specific cell types is done by using cell-
surface markers, which bind specifically on the basis of the cell’s surface receptors and
can be detected afterwards. Due to a lack of appropriate surface markers for different
populations of breast cells and progenitors, it is helpful to have an in vitro assay that
allows propagation in an undifferentiated state and enrichment of stem cells [30].

1.3 Detecting Breast Cells with Stem Cell Properties in Vitro

One approach to satisfy the aforementioned needs is the mammosphere assay [30]. By
putting single breast cells into a serum-free suspension containing growth factors, some
of the cells form colonies after about seven days (see Figure 3). These colonies are called
mammospheres. If the spheres originate from cancer cell lines, they are also called tu-
mourspheres [49]. Only one cell is needed to form a sphere without required aggregation
or cell-cell contact. This sphere-initializing cells seem to be multipotent stem cells so that
forming the mammosphere is caused by the capability of self-renewal [30].

In vivo breast cells are adherent, which means that they need to grow on top of a basement
membrane. Notably they would not be able to survive without this basement membrane,
which is why treated well plates are used for in vitro culturing. To avoid adherence,
untreated low attachment well plates are used so that the breast cells are forced to grow
in anchorage independence [30]. Only stem cells and tumourigenic cells are able to grow
adherent, which makes this assay very important in the breast cancer research.

Making a suspension of single cells conserved by passaging from mammospheres and
repeated incubation for about seven days entails second degree or secondary mammo-
spheres. They show a higher sphere forming rate as the first degree or primary spheres,
which means that passaging enables a purer cultivation of mammary cells with stem cell
properties [30].

Similarly to secondary spheres it was observed that a higher proportion of cells from
tumour cell lines form tumourspheres in comparison to those from normal breast tissue
[31]. This goes with the assumption of a defect in the self-renewal process caused by a
mutation and would be a good simulation for the uncontrolled division of tumour cells.
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1.4 Approaches to Determine the Sphere Forming Rate

1.4.1 Counting Mammospheres

The simplest method is directly based on the aforementioned mammosphere assay since
the total number of mammospheres at the end of the experiment is counted manually and
divided by the number of cells at the experiment start [49]. As the breast cells are very
small, it is not possible to determine the actual number of breast cells at the experiment
start. Therefore, the total number of breast cells is known approximately only. The result
achieved by this approximative method is a hint on the actual sphere forming rate only
and very imprecise.

1.4.2 Limiting Dilution Analysis

To determine the sphere forming rate of specific breast (cancer) cells the Limiting Dilution
Analysis (LDA) is used, first introduced by Rota et al. in the context of mammospheres
[49]. In general, Limiting Dilution Analysis is an approach to quantify the biological
activity of cells in a population [35]. Here, one wants to know the proportion of breast
cells that forms mammospheres, which leads to a frequency characteristic for the particular
cell line under certain conditions.

To conduct the Limiting Dilution Analysis experiment a suspension containing breast
cells is plated over a, e.g., 96 well plate, each column containing a different, descending
cell density D reached by dilution, which can be expressed as cells per well, cells per cm2,
or cells per ml (see Figure 4a) [38]. The first column comprises the highest density, so
that most wells contain mammospheres, while the last column with the lowest density
shows as good as no spheres after approximately seven days [49].

After sphere growing, the single wells have to be scored positive or negative for the
presence or absence of at least one mammosphere, respectively. Assuming a Poisson
distribution within the particular columns of the 96 well plate, the natural logarithm of
the fraction of negative wells is plotted against the cell density. The experiment supplies
the single dots exemplary shown in Figure 4b. On the basis of this dots a linear regression
line is computed. For a detailed description of the derivation of the linear relation see
Section 2.2.6. The absolute value of the slope of the linear regeression line represents
the sphere forming rate so that one divided by the slope represents the sphere forming
proportion.

The Limiting Dilution Analysis, as described previously, comprises several drawbacks.
Due to the manual dilution process, it is not guaranteed that each well of an equal dilution
contains the same number of cells. This evokes imprecisions since the calculations are
based on the assumption that all dilutions in the wells of the same column have exactly
the same cell density. The experimental set-up would not fit to the statistical model.
Especially at columns with lower densities it is very important that the cell density is
equal for each well. If the dilution contains only a few cells, it might be possible that by
chance most of the cells are put into one well while the other wells do not contain any
cells at all. If the sphere forming rate is high, most of the cells in that single well would
form spheres. At the same time the other wells show no spheres indicating a low sphere
forming rate since the presence or absence of spheres is assessed only.

4



cells / well

ln
 (

fr
a
ct

io
n

 o
f 

n
e
g

a
ti

v
e
 w

e
lls

) ←ln(1-P)=-0.0031D

←ln(1-P)=-0.0113D

0 200 400 600 800
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

a b

Figure 4: Simplified experimental set-up and synthetic result of two Limiting Dilution Analy-
ses. a) A 96 well plate containing dilutions of breast cells with descending densities
equal for each column. ”+” means that the well contains at least one sphere, while
”-” indicates the absence of mammospheres. Image taken from [49]. b) Limiting
Dilution Analysis-plot of synthetic data. The natural logarithm of the fraction of
negative wells is plotted against the cell density at the experiment start measured
in cells per well. The dots represent the values based on the manual counted in-
formation. Each line corresponds to the linear regression line estimated from the
dots of the same colour. Assuming these lines belong to two different cell lines, the
one corresponding to the red line would have a higher sphere forming rate (0.0113)
than the one corresponding to the red line (0.0031). This would mean for the data
represented in red that one of about 88 cells forms a sphere, while one of about 323
cells forms a sphere for the data represented in blue.

1.4.3 Live Cell Microscopy

One approach to solve the raised issues is live cell imaging. With this method it is
possible to determine the exact number of cells and spheres at a particular time point.
This enables the computation of the sphere forming rate without the need of different
dilutions by dividing the number of mammospheres at the experiment end by the number
of breast cells at the experiment start similar as described in Section 1.4.1. While the
manual evaluation of the Limiting Dilution Analysis results in one rate for the whole 96
well plate, calculating the sphere forming rates based on live cell microscopy obtains one
rate per well and therefore in a high-throughput manner. If the wells contain the same
cell line, the median rate characteristic for this cell line can be computed to sustain a
more general value. It is also possible to use a single plate for different cell lines and/or
growing conditions. Thus, several experiments are conducted using only one well plate.
Also, it is unclear if different cell densities influence the sphere forming rate, by using the
same dilution for each condition and cell line the results would be much more comparable
without any influence of the cell density.

To realize live cell imaging, images of the well plate are taken. If they are taken for a
long period of time at constant time intervals, the result is called a long term time-lapse
movie. To compute the sphere forming rate, only images at the beginning and end are
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needed. Live cell imaging has already successfully been applied in the context of other cell
types like hematopoetic stem cells [50]. Typical applications of live cell microscopy often
apply fluorescent markers [32]. However, the general technique also allows for imaging of
unstained cells in bright field.

In addition, it might be informative to learn something about the spheres’ morphology
including cell or sphere size as well as shape or other quantitative features. This can be
analysed also by using live cell microscopy.

1.5 Image Processing Frameworks

The huge amount of data produced by live cell microscopy necessitates an automatic
analysis. In recent years, several tools for automatic high-throughput image analysis were
developed. Commercially available solutions like MetaXpress and Imaris offer powerful
options for image processing, but mostly they are very expensive [29, 9]. Often it is not
possible to customise commercial programs, which is another disadvantage as most pro-
grams have to be heavily adjusted to produce satisfying results on different experimental
setups. An open-source alternative is Fiji/ImageJ [4]. Despite its powerful and easy to
use macro language and wealth of available image processing algorithms, its disadvantage
is the missing modular pipeline system and the not very intuitive user interface. This
makes the usage difficult for biologists mostly inexperienced in programming.

Another open-source program is CellProfiler [14, 37]. In contrast to Fiji/ImageJ, CellPro-
filer provides a lot of modules separated by categories, which can be combined to variable
pipelines. To make it easy to use also for users that have no background in image process-
ing, CellProfiler provides elaborated module descriptions particularly for each parameter
that can be set within the modules. Furthermore, it is easy to extend CellProfiler by im-
plementing new modules or plugins. Hence, the CellProfiler community has grown quite
large, covering users from the biological as well as the computational field. This becomes
exceedingly apparent by a view on the number of their citations - 601 citations since 2006,
as at January 2013 and by having a look into CellProfiler’s active forum [16, 18].

Originally CellProfiler was developed to analyse fluorescent images [14]. Using bright
field images bears several advantages in comparison to fluorescent images. For bright
field images no fluorescent or other dye that could influence the cells’ behaviour and life
time is needed. Depending on the type of the fluorescent dye and the cell type it might
be not possible to stain the entire cell so that no information about the cell’s shape or
other features is obtained. Furthermore, it might happen that some cells are not able to
become stained by the used dyes, which would lead to unrecognised cells and therefore
biased data. In addition, the number of fluorescent dyes is limited. So it would not make
sense to waste one channel for cell identification limiting the number of channels used to
mark special proteins, RNA, or other cell contents suggesting something about the cell’s
state [12].

1.6 Aim of this Thesis

In this thesis, we develop a method based on live cell microscopy in combination with
image processing to automate the calculation of the sphere forming rate based on the
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mammosphere assay. To analyse the huge amount of data produced by live cell microscopy,
a fully automated pipeline is created using CellProfiler as a framework. Since we are
working on bright field images, a new CellProfiler module for segmentation is created. The
application of this pipeline results in the total number of breast cells and mammospheres,
which enables the calculation of sphere forming rates for two different cell types. Thus,
we exemplary prove the applicability of our approach for assessing the sphere forming
rate of single breast stem cells and evaluate the feasibility of CellProfiler as a framework.

Section 2 gives detailed information about general image processing and statistical meth-
ods as well as the conduction of the used experiments in this thesis.

The following main part gives details about the mammosphere quantification pipeline
i.e. its development, implementation, application, and validation (Section 3.1). The
full pipeline is applied to an experiment comprising 18 wells, equivalent to 216 images
both for the beginning and the ending taking around 24 minutes and around 36 minutes,
respectively. Two different cell lines forming primary spheres are analysed. The manual
validation of our method (see Section 3.1.4) yields a f-measure of 0.83 for applying the
pipeline to the images of the experiment start and 0.89 for applying the pipeline to
the images of the experiment end. Therefore, the number of cells and mammospheres
is counted manually, which enables the calculation of sphere forming rates as well. In
addition, the results of the application are depicted, compared to the standard methods,
and discussed (Section 3.2). We show that the principle idea for the way of automation
is correct by comparing the computed rates based on manually counted numbers for two
different tumour cell lines with the knowledge of the different aggressiveness of these cells.
The feasibility of CellProfiler as a framework is discussed in Section 3.3.

Ideas for further development steps to improve the calculation of the sphere forming rates
based on the fully automatic method are proposed in Section 4.
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2 Methodological Background

2.1 Image Processing

2.1.1 Mathematical Morphology

The top-hat filter is a well-known technique in the field of mathematical morphology, a
sub-category of image processing. An input image gets subtracted by the morphological
opening of itself [19]. Morphological opening is the combination of erosion and dilation,
which both are basic operators of mathematical morphology originally developed for bi-
nary images [44]. Though we are dealing with gray-scale images, we firstly explain the
general idea behind erosion and dilation by introducing the processes for binary images.

An erosion shrinks the objects in an image while a dilation shrinks the background and
thus the objects are dilated. Figure 5aii and bii are examples for objects represented by
the black pixels. Let X be the set of black pixels in an image representing the objects
and XC the set of white pixels representing the background.

The term mathematical morphology originates from using a shape like a circle or rectangle
as a mask for the image transformation [44]. The shape or structural element is illustrated
by black pixels for erosion and white pixels for dilation, the same colors as the pixels they
are applied to (see Figure 5). The set of pixels belonging to the structural element for
erosion are represented by B1 and the pixels belonging to the structural element for
dilation by B2.

For erosion the structural element is shifted to each pixel p belonging to the objects, here
represented in black. If all pixels of the image covered by the mask are black as well, the
pixel p in the centre stays black. At least one white pixel covered by the mask B1 leads
to turn the pixel white and therefore to an eroded object. The following equation defines
erosion in mathematical terms:

X 	B1 = {p|B1
p ⊂ X} (1)

The dilation process works analogously except for the pixel colours. Here the structural
element is shifted to each white pixel p, belonging to the background, and the pixel p
turns black if one or more pixels covered by the mask B2 are black.

X ⊕B2 = {p|B2
p ⊂ XC} (2)

In contrast to binary images, gray-scale images do not only have black and white pixels.
Therefore, the erosion and dilation are defined over minimum and maximum intensities,
respectively [53]. The easiest way is the use of a flat structural element B : D ⊂ Z2 −→ S
with S = {0, 1, ..., 255} assuming eight bit images. ”Flat” means that the structural
element itself has no different intensity levels and therefore it holds that ∀(s, t) ∈ D :
B(s, t) = 0. If this is not the case, the value of the particular pixel (s, t) ∈ D is subtracted
or added for computing the minimum or maximum, respectively (see Equation 3 and
Equation 4). The structural element B for an image I : C ⊂ Z2 −→ S is shifted over
each pixel (x, y) ∈ C since it is not possible only to decide between black and white due
to the 256 different intensities as common for gray-scale images. Now the intensities of
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Figure 5: The two parts of morphological opening: a) Erosion: The structural element shown
in i is used for erosion. It consists of black pixels solely since it should be applied
to the black pixels of the image shown in ii. The central pixel of the structural
element is moved on each black pixel p in the image. If all pixels comprehended by
the structural element are also black, pixel p will stay black in the eroded image.
If at least one pixel in the mask defined by the structural element is white, pixel p
turns white. The pixels turned white are illustrated gray in the eroded image shown
in iii. They do not belong to the eroded object. b) Dilation: In comparison to
the structural element for erosion the structural element for dilation is comprised of
white pixels (i) because it should be applied to the white pixels of the image shown
in ii. Here the structural element is moved over each white pixel. The pixel becomes
black if at least one of the pixels covered by the structural element is black. The
pixels turned black are illustrated gray in the dilated image (iii) and belong to the
dilated object. Image adapted from [44].

all pixels of the image I covered by the mask B are compared to each other. For erosion
the pixel (x, y) ∈ C covered by the centre of the structural element B gets the intensity
equal to the minimum intensity of all pixels covered by the mask B. In contrast within
dilation the pixel (x, y) ∈ C covered by the centre gets the maximum intensity of the
pixels covered by the mask B.

In the context of gray-scale images the mathematical definitions of erosion and dilation
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Figure 6: The different threshold levels t used during the MSER algorithm and the resulting
binary images. All pixels with an intensity higher or equal to the threshold t are
coloured white, while those pixels with a lower intensity are black. Assuming ∆ = 5
and t = 159 the images for a threshold between 154 and 164 are considered. Each
speckle of black pixels forms an extremal region if it is consistent over all of the
eleven images for thresholds 154 ≤ t ≤ 164.

of an image I are as follows:

∀(x, y) ∈ C : (I 	B)(x, y) = min
∀(s,t)∈D

{I(x+ s, y + t)−B(s, t)} (3)

∀(x, y) ∈ C : (I ⊕B)(x, y) = max
∀(s,t)∈D

{I(x+ s, y + t) +B(s, t)} (4)

Finally, an opening is an erosion followed by a dilation. When the result is subtracted
from the input image, the entire process is called top-hat filter [44]. The applied structural
element is a circle. Hence, the method is called ”top-hat”. White and black top-hat filters
exist, enhancing white or black speckles, respectively.

2.1.2 Maximally Stable Extremal Regions (MSER)

In contrast to common thresholding algorithms like Otsu’s method [45] the algorithm to
detect MSERs does not choose one single threshold and uses this for the whole image or
a part of it, but takes every possible threshold between zero and 256 in case of eight-bit
images and checks for extremal regions. Extremal regions are defined as a subset of pixels
out of the image where the pixels are adjacency within the region and all pixels belonging
to the region are either darker or brighter than the pixels around that region. The pixels
around a region, referred to as region boundary, are not part of the region themselves but
have at least one adjacent pixel belonging to the region.

Starting with a white image and a threshold being zero, the threshold is increased, so
that all pixels with an intensity lower than the threshold are visible as black spots on the
white background. These black spots are maximum intensity regions. In the end, when
the highest threshold of 256 is achieved, the image is completely black since there are
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no pixels with a higher or equal intensity as 256. Inverting the intensities and doing the
same leads to minimum intensity regions. Figure 6 shows simplified all these 256 images
stacked on each other. Each stage represents the extremal regions for one threshold. Now
we are searching for the maximally stable extremal regions, which can be determined by
examining a set of images following each other in the stack. The size of this set depends on
the parameter ∆, which therefore is a measure for the stability of the resulting extremal
regions. If we choose the image at threshold t = 159 and ∆ = 5 the set contains the
images between the thresholds t = 154 and t = 164 (see Figure 6). Now every region that
exists in each of the images included in the set defined by ∆ is called maximally stable
extremal region (MSER).

To describe a region, an extremal region, and the region boundary in a more mathemati-
cally way, the following definitions are necessary [40]:

• An image I is defined as I : C ⊂ Z2 −→ S with S = {0, 1, ..., 255} representing the
pixel intensities of eight-bit images.

• An adjacency neighbourhood relation A ∈ C×C is defined. The pixels p, q ∈ C are
adjacent neighbours (pAq) if

d∑
i=1

|pi − qi| ≤ 1 (5)

where d is the number of dimensions. Here, d = 2 because C ∈ Z2.

• A region R is a continuous subset of C.

• The region boundary B is defined as

B = {q ∈ C \R : ∃p ∈ R : qAp} (6)

• With this definitions an extremal region is R ∈ C so that

∀p ∈ R, q ∈ B : I(p) > I(q) (7)

• Figure 6 shows that the regions overlap in the images for the different thresholds.
This is called nested extremal regions. Let R1, ...Ri−1, Ri, ... be a sequence of nested
extremal regions with Ri−1 ∈ Ri and ∆ ∈ S. If q(i) has a local minimum at i, the
extremal region Ri is maximally stable (MSER) with

q(i) =
|Ri+∆ \Ri−∆|

|Ri|
(8)

2.1.3 Form-Factor

The form-factor f is defined as

f =
4πa

p2
(9)

where a is the area and p the perimeter of the object [24]. The object’s area a is defined
as the number of pixels belonging to the object and the perimeter p is the total number
of pixels around the object’s boundary. Therefore, completely round objects have a form-
factor of one.
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2.2 Statistics

2.2.1 Confusion Matrix

A confusion matrix consists of information of actual and predicted classifications. In the
case of two classes it is ”positive” or ”negative”. The actual and the predicted values are
compared. Therefore, each cell of the matrix (see Table 1) is classified as follows:

• True positive (TP): The actual value of the class is positive and it is correctly
predicted as positive.

• False positive (FP): The actual value of the class is positive and it is falsely predicted
as negative.

• True Negative (TN): The actual value of the class is negative and it is correctly
predicted as negative.

• False Negative (FN): The actual value of the class is negative and it is falsely
predicted as positive.

predicted

positive negative

ac
tu

al positive TP FN

negative FP TN

Table 1: Confusion matrix comparing the actual and predicted values. This results in the
numbers of true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN).

2.2.2 Precision

The ratio between the number of correctly predicted positives and the number of positive
predicted is given by the precision defined as

precision =
TP

TP + FP
(10)

The rate falls in a range of [0,1] with the best score being one.

2.2.3 Recall

The proportion of correctly predicted positives in the total number of positives is given
by the recall. Its definition is as follows:

recall =
TP

TP + FN
(11)

The values of the recall are within the interval [0,1]. Again one is the best score.
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2.2.4 F-Measure

A combination of precision and recall is the f-measure. It is similar to the average of the
two statistical values. Therefore, the f-measure is defined as

f-measure = 2 · precision · recall
precision+ recall

(12)

=
2 · TP

(TP + FP ) + (TP + FN)
(13)

The range of the values is again given by [0,1] with the best score being one.

2.2.5 Median Absolute Deviation (MAD)

The median absolute deviation (MAD) describes the median of the deviation of the actual
values from the median computed for these values [42]. The MDA for a sample with a
median Xm is defined by

MAD = median(|Xi −Xm|) (14)

This measurement is comparable with the standard deviation that refers to the mean
value.

2.2.6 Limiting Dilution Analysis (LDA)

As described in Section 1.4 the Limiting Dilution Analysis is performed to determine the
sphere forming rate of breast (cancer) cell lines. Dilutions of breast cells are e.g. plated
over a 96 well plate with descending densities equal for each column.

After five to seven days each well is scored as positive or negative for the presence or
absence of mammopsheres. Therefore, each well complies with a Bernoulli experiment.
The Limiting Dilution Analysis assumes that the variation within the wells, for which the
same density D is assumed, follows a Poisson distribution if a single cell forms a sphere
independently [54]. Let r be the rate of sphere forming, so that rD gives the total number
of spheres in a well. This leads to the general density function of the Poisson distribution:

P (X = k) =
(rD)k

k!
e−rD (15)

where X is the random variable and complies with the actual number of mammosphere
forming cells and k ∈ N0.

The possibility that there is no sphere forming cell complies with P (X = 0) and therefore

P (X = 0) = e−rD (16)

We are interested in the probability that there is at least one sphere per well according
to

P (X > 0) = 1− P (X = 0) = 1− e−rD (17)
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By logarithmic calculus this equation can be linearised as

ln(1− P ) = −rD (18)

with P = P (X > 0). The negative slope of the linear equation is the sphere forming rate
r [35].

After determining positive and negative wells, the natural logarithm of the fraction of
negative wells i.e. 1−P for each density can be computed. The emerging dots are charted
in a plot showing the natural logarithm of the fraction for wells negative against the cell
density (see Figure 4b). The absolute value of the slope of the linear regression line that
is calculated for the dots and passes the origin represents the sphere forming rate r and
1/r represents the sphere forming proportion.

2.3 Conduction of Experiments

All biological data described in this section is produced in collaboration with Dr. Scheel’s
group at the Institute of Stem Cell Research of Helmholtz Centre Munich.

Both the Limiting Dilution Analyses and the live cell microscopy experiment were con-
ducted for two different cancer cell lines, MDA-MB-231 and MCF7-Ras. MDA-MB-231 is
a mesenchymal cancer cell line and therefore more aggressive as epithelial cancer cell lines
like MCF7-Ras (see Section 1.1). MDA-MB-231 is originally taken from a Caucasian 51
year old woman [8]. MCF7-Ras originates from the MCF7 cancer cell line from a Cau-
casian 69 year old woman [7]. After inducing v-Ha-ras, a gene coding a protein involved
in the regulation of cell division, the cell line is referred to as MCF7-Ras [47, 39].

2.3.1 Limiting Dilution Analysis

Five Limiting Dilution Analyses to determine the sphere forming rates are conducted.
This involves three experiments for MCF7-Ras and two for MDA-MB-231. For every
experiment six different dilutions are plated on a 96 well plate. Ten wells are used for
each dilution with the highest cell density being thirty cells per well. The concentration
is halved for the next adjacent column of wells until the smallest concentration of 0.8 cells
per well is achieved. After five days each well is scored for the presence or absence of at
least one mammosphere.

The plots of the natural logarithm of the fraction of negative wells against the cell density
are created as described in Section 2.2.6. The plots for the five Limiting Dilution Analyses
and the particular sphere forming rates are shown in Figure 13. Additionally, the mean
and standard deviation of the computed sphere forming rates by the manual Limiting
Dilution Analyses distinguished between the cell lines are shown in Table 4.

2.3.2 Live Cell Microscopy

To create the live cell microscopy images in order to compute the sphere forming rate, the
cells have to be released from the plate where they are growing adherently. This is done
by trypsinization. The non-adherent cells are placed into the mammosphere-medium in
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a concentration of 1000 cells per ml. The suspension is filled into an uncoated 96 well
plate from ibidi with 100 µl per well. After 24 hours the cells are stabilised in one layer.
A total of 18 wells is imaged in time intervals of 30 minutes for five days using a cell
observer microscope (Zeiss). Due to the limited camera resolution, every well is divided
into overlapping tiles (i.e. fields of view) (see Figure 9a). Images are taken in a space of
time of four days and 22 hours i.e. for 237 time points, which makes a total number of
51.192 images, producing a total storage of about 50 GB.
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3 Mammosphere Quantification Pipeline and Calcu-

lation of the Sphere Forming Rate

3.1 Pipeline Development, Implementation, Application and Va-
lidation

3.1.1 Development

To analyse the huge amount of images produced during live cell microscopy automatically,
several image processing steps are needed that perform robustly on the full dataset without
user interaction. Hence, the following subsections describe challenges and the necessary
used operations to identify breast cells and mammospheres in bright field images. For
details about the used algorithms please refer to Section 2.

Challenges

Most algorithms implemented in CellProfiler are parametrized to perform well on fluo-
rescent images. It would be preferable to be able to use existing algorithms, which have
the only constraint that objects are brighter as the background as common in fluorescent
images.

A major difficulty in image processing is the uneven illumination of images due to un-
balanced lightning or not completely translucent medium. This refers to single images
as well as the entire well. Especially the centre of the well is ablazed with light so that
there are large discrepancies at different positions in the same well (see Figure 9a). The
center of the well is brighter while the outer area is darker. Therefore, a background
correction is necessary to achieve acceptable results in the identification of breast cells
and mammospheres. Another problem, particularly in the context of bright field images,
is the heterogeneous intensity of the objects. This is observable in Figure 3 as the single
cell on the left side shows a dark frame and a bright interior. Furthermore, an uneven
intensity distribution is depicted in the right picture of Figure 3 for the mammosphere.
In this case the objects are both darker and brighter as the background, which renders
the distinction between the objects and the background difficultly.

In addition, debris and air inclusions hamper the correct identification of cells and mam-
mospheres. Debris might be identified as objects by mistake while large air inclusions
create huge, black speckles whereby cells and mammospheres in the same area are not
visible. Air inclusions are also reliable for falsely identified objects since they are hetero-
geneously illuminated as well as the objects themselves.

To identify objects, a binary image deciding between fore- and background and therefore
serving as a mask is necessary. To create this binary image, which is called segmentation,
different methods with different complexity exist. One of the most widely used approaches
is thresholding based segmentation. An intensity threshold that decides whether a pixel
with an intensity above the threshold is turned white and a pixel with an intensity lower or
equal to the threshold is turned black is determined. Common thresholding algorithms,
e.g. the algorithm developed by Otsu, determine an intensity threshold for the whole
image (global) or parts of it (adaptive) [45]. Since Otsu’s method assumes a bimodal
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Figure 7: Comparison of different segmentation algorithms. a) Background correction of an
inverted bright field image using a white top-hat filter. b) Histogram of pixel in-
tensities. The red vertical line marks the threshold selected by Otsu’s algorithm
(threshold: 2). Since there are only a few pixels with a high intensity (summed
up at an intensity of 20), it is not possible to decide between back- and foreground
by one simple threshold (d). c) Segmentation by the MSER algorithm, which per-
forms more robust because each possible threshold level is considered. The displayed
images are only excerpts while the pixel intensity histogram is based on the entire
background corrected image. The segmentations are also calculated on the entire
images.

intensity distribution to determine the threshold, the approach collapses for some images
especially bright field images e.g. if they comprise a lot of dark pixels and only a few
bright pixels (see Figure 7).

Single Steps

To use existing CellProfiler modules specialized on fluorescent images, the raw bright field
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Figure 8: Filtering based on morphological quantification. a) Identified objects in an image
of the below right corner of the well after background correction and segmentation.
The three objects marked by a rectangle are falsely identified caused by a erroneously
enhanced white line at the well’s border. This three objects have a form-factor less
than 0.1 as depicted in the histogram of the number of objects and their form-factor
(b). The other objects have higher form-factors, which enables deciding between
falsely identified objects and true objects by their form-factor.

images are inverted so that the objects appear brighter as the the background.

To correct for uneven illumination, in a first step the image is smoothed by an opening
resulting in an estimation of the background. Afterwards the background is subtracted
from the original image resulting in a flattened image where all objects should be evenly
illuminated (see Figure 9iii). The whole process is referred to as top-hat filtering [19].

After inversion and background correction a segmentation is conducted (see Figure 9iv).
A method especially suitable for bright-field images is the MSER (Maximally Stable
Extremal Regions) algorithm (see Figure 7c), which was originally developed to detect
correspondences in two images taken from different viewpoints but was already success-
fully applied for cell detection [40, 6]. Its superior performance on comparable time-lapse
experiments in comparison to Otsu’s method has recently been shown by Buggenthin et
al. [12]. Its advantage is the usage of all threshold levels instead of restriction to one
single threshold for the whole image or at least parts of it. For further information on the
MSER algorithm’s strategy see Section 2.1.2.

The final aim in the pipeline is the identification of the breast cells and mammospheres,
referred to as objects, in the images. The pixels of the input image are assigned to several
objects depending on the corresponding binary image achieved by segmentation.

In spite of the background correction and the following segmentation, some of the ob-
jects are erroneously identified (see Figure 9iv and Figure 8a). With the previous object
identification it is possible to measure morphological information like the size or mean
pixel intensity of the particular objects. If morphological traits characteristic for falsely
identified objects exist, it is possible to eliminate the falsely identified objects by filtering
by these traits. An example i.e. filtering by the form-factor (defined in Section 2.1.3) is
depicted in Figure 8.
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Figure 9 (following page): Workflow of the developed method. A 96 well plate is filled with
a breast (cancer) cell suspension. a) Due to limited resolution
of the microscopic camera each well is subdivided into twelve
positions using a grid. For each of the twelve positions per well
images are taken in constant time intervals. b) For each image (i)
the following steps are processed: After loading the image into
CellProfiler it gets inverted (ii). The background correction by a
white top-hat filter follows (iii). Further, the corrected image is
segmented using the MSER algorithm (iv). Using the segmented
image as a mask the objects, i.e. breast cells and mammospheres
are identified (v). Some images have bright white lines at the bor-
der of the frame surrounding the well. These lines are recognized
by the MSER algorithm causing false positive identified objects
(see red lines in v). Hence some features, e.g. area and form-
factor, are measured for each object (vi) to filter false positive
objects (vii). c) Knowing the number of objects for each posi-
tion and therefore for the entire well it is possible to compute the
sphere forming rate.
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3.1.2 CellProfiler Implementation

As a framework for our pipeline we use CellProfiler providing a module based pipeline
system. We incorporate the existing modules as far as possible and create a new module
for the bright field segmentation.

CellProfiler is written in object-oriented Python 2.7 depending on several packages and
frameworks [37, 3, 17]. In this work we used the following versions:

• Matplotlib 1.3.x for Python 2.7

• WxPython 2.8.12.1

• Java Development Kid (JDK) 1.6.x

• Cython 0.19.1

• MySQLdb 1.2.3

• NumPy 1.7.0 for Python 2.7

• SciPy 0.11.0 for Python 2.7

• Python Imaging Library (PIL) 1.1.7 for Python 2.7

• H5Py 2.0.1 for Python 2.7

• Setuptools 0.6c11 fpr Python 2.7

Installing those dependencies and frameworks is required to achieve a working developer
version of CellProfiler. The source code was obtained from [2].

Although CellProfiler is written in Python, it is possible to include C and C++ code
using the wrapper framework Cython for a better performance in speed [1]. This is
recommended for computationally complex algorithms and therefore used in this work.

CellProfiler’s class structure makes developing new modules comfortable since a good
explanation of the basic classes and requirements for new modules is provided [26]. Its
data structure is divided into two parts, (i) pipeline data and (ii) workspace data. While
pipeline data comprises information about the modules and their settings contained in
the current pipeline and does not change between the runs, workspace data stores e.g.
images or measurements used during processing the pipeline. Each module inherits from
the python class cellprofiler.cpmodule.CPModule, which provides methods for the module
settings displayed in the user interface and methods that are processed while a pipeline is
running. The modules used by the current pipeline are managed by cellprofiler.pipeline.

As mentioned before, CellProfiler was originally developed to analyse fluorescent images.
Therefore, the image is inverted firstly using Cellprofiler’s ImageMath module with the
”Invert” operation after loading the image by the LoadImages module [22, 23]. The image
is solely inverted without changing the relative intensities (see Figure 9ii).

The background correction is done for the inverted image using the module EnhanceOr-
SuppressFeatures already existing in CellProfiler [19]. Since the cells should be enhanced
in comparison to the background, the operation ”Enhanced” is selected. The module pro-
vides different methodologies for background correction. The used one is dependent on
the parameter ”Feature type”. Here we choose ”Speckles” so that a white top-hat filter, a
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Figure 10: Screenshot of the Mser module. The red rectangle marks the Mser -specific part of
the user interface including its parameter setting. In the left column the modules
of the current pipeline are listed and below the red rectangle default paths can be
inserted and the output-file for the measurements can be specified.

well-known technique in image processing, is used (for details see Section 2.1.1). ”White”
top-hat filter means that the white speckles are enhanced. Since the original image is
inverted before the background correction, the cells and mammospheres are brighter as
the background so that the method works well for our purposes.

The size of the top-hat filter depends on the parameter ”Feature size”. Therefore, the
value of this parameter is smaller for applying the pipeline to the images of the experiment
start than for applying it to the images of the experiment end (see Table 2). The larger
the structural element, the higher the run time since the intensities of more pixels have
to be compared. This explains the longer run time of the pipeline for the images of the
experiment end mentioned before.

A large part of this work is the integration of the thresholding algorithm based on deter-
mining the MSERs in CellProfiler. Therefore, we create a new CellProfiler module.

A linear time implementation of the MSER algorithm was made by Oliver Hilsenbeck
using C++. Since CellProfiler is written in Python, it is necessary to wrap the C++ code
for usage in Python [3]. Therefore, Cython is used, which is a compiler for Python and
the extended Cython programming language [1]. The Cython programming language is
a superset of Python and additionally it is possible to use C/C++ types and functions.
The Cython compiler generates a C/C++-extension module, which can be imported by
Python.

As the main C++ class uses a deque (i.e. a double ended queue) with a self defined space
allocator as class variable, it is not possible to wrap this class directly via Cython. Hence,
a C++ wrapper-class is implemented defining a function that calls all necessary methods
to conduct the MSER algorithm for one image. This wrapper-class is again wrapped by
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Cython to create the C++ extension. So it is possible to instantiate an object of the
C++ wrapper-class within CellProfiler’s Python code and call its function.

A screenshot of the Mser module is shown in Figure 10. The following parameters can
be set:

• Select the input image: To each image used in the pipeline before a name was
assigned. This name can be chosen here.

• Name the output image: A name can be chosen to address the resulting image
in following modules.

• Are the objects darker as the background? Yes / No

• Delta: Defines the size of the threshold interval. The higher, the more stable the
regions. (see Figure 6)

• Minimal size: Minimal size of the MSERs in pixel.

• Maximal size: Maximal size of the MSERs in pixel.

• Maximal variation: If two regions are nested and their relative variation is below
this threshold, only the most stable region is selected [11]. Usually the value is 1.0.

• Fill holes in segments?: If the white MSERs have a black hole in their middle,
the hole is filled white if selected.

To ensure that the included Mser module works correctly, we compare it with the Matlab
implementation. Therefore, we apply the MSER algorithm both with the CellProfiler
and the Matlab implementation with different parameter settings for a small test set
containing ten images. As expected, pixel by pixel comparison shows that the output
images are 100 % identical, which proofs the correctness of our integration.

As we want to declare the foreground pixels of the segmentation to objects, the module
IdentifyPrimaryObjects is used with the inverted image as input and the binary image,
resulting from the MSER segmentation, as a mask (see Figure 9v) [21]. During develop-
ment a bug in the module IdentifyPrimaryObjects was detected and reported [28]. As a
workaround we correct the error in our local development environment and in the mean-
time the correction was submitted to the upcoming release by CellProfiler’s development
team.

CellProfiler’s module MeasureObjectSizeShape is used to compute several features per
object, especially the form-factor [24]. The form-factor enables filtering falsely identified
objects with an elongate shape if compared to breast cells or mammospheres, which are
more rounded. To determine the threshold where the objects with a lower form-factor
are discarded, we made histograms of the form-factor for several images. It is obvious
that almost all false objects caused by the well’s border have a form-factor less than 0.1
and the other objects have a form-factor higher than 0.1. An exemplary image with its
resulting histogram is depicted in Figure 8.

Therefore, the objects with a form-factor less than 0.1 are discarded using the FilterObjects
module [20]. To illustrate the identified objects and compare the object areas as the result
of the pipeline with the original image, we extend the SaveImages module so that it is
possible to save objects as binary image, where the objects are white and the background
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Parameter experiment start experiment end

LoadImages
File type to be loaded individual images
Load the input as images or objects? Images
Name this loaded image Image
Rescale intensities? No
Extract metadata from where? None
ImageMath
Operation Invert
Name the output image Inverted
Select the first image Image
Multiply the first image by 1.0
Raise the power of the result by 1.0
Multiply the result by 1.0
Add to the result 0.0
Set the values less than 0 equal to 0? No
Set the values greater than 1 equal to 1? No
Ignore the image masks? No
EnhanceOrSuppressFeatures
Select the input image Inverted
Name the output image Enhanced
Select the operation Enhance
Feature type Speckles
Feature size 15 30
Mser
Select the input image Enhanced
Name the output image Segmented
Are the objects darker as the background? No
Delta 23 20
Minimal size 50 250
Maximal size 200 14000
Maximal variation 1
Fill holes in segments? Yes
IdentifyPrimaryObjects
Select the input image Inverted
Name the primary objects to be identified Spheres
Typical diameter of objects, in pixel units (Min, Max) (5, 50) (10, 200)
Discard objects outside the diameter range? No
Try to merge too small objects with nearby lager objects? Yes
Discard objects touching the border of the image? No
Select the thresholding method Binary image
Select the binary image Segmented
Method to distinguish clumped objects None
Retain outlines of the identified objects? No
Fill holes in identified objects? No
Handling of objects if excessive number of objects identi-
fied

Continue

MeasureObjectSizeShape
Select objects to measure Spheres
Calculate the Zernike features? No
FilterObjects
Name the output objects Filtered
Select the object to filter Spheres
Filter using classifier rules or measurements? Measurements
Select the filtering method Limits

Select the measurement to filter by
Category AreaShape
Measurement FormFactor

Filter using a minimum measurement value Yes
Minimum value 0.1
Filter using a maximum value No
SaveImages
Select the type of image to save Objects
Select the objects to save Filtered
Save as grayscale or color image? Binary

Table 2: Complete parameter setting of the pipelines separated, if relevant, by experiment start
and end. This information suffices for reconstruction in CellProfiler. All parameters
not listed here are dependent on the particular working system.
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is black [25]. In addition, CellProfiler stores all measurements and information about the
pipeline in a MAT-file [43].

3.1.3 Application

The pipeline is applied to one live cell microscopy experiment comprising 18 wells, equally
split for the cancer cell line MDA-MB-231 and the cancer cell line MCF7-Ras (see Sec-
tion 2.3.2). Since analysing dynamics of sphere growth is out of scope of the thesis, only
the images of the first and last time points i.e. 432 images are considered

Each of the methods used in the pipeline has plenty of parameters. Determining the best
parameter setting is a great challenge since the different parameters influence each other.
As a lot of parameters are dependent on the objects’ sizes, different parameter settings for
determining the number of cells at the experiment start and the number of mammospheres
at the end are chosen. Table 2 describes the parameter set for each module used for the
pipelines necessary for reconstructing the results and independent from the particular
working system.

Applying the pipeline to the experiment with the different parameters yields a run time
of about eight seconds per image measured on a 1.8 GHz Intel Core i5 processor with 8
GB RAM running OS X Mountain Lion (10.8.4) storing the images on an external HDD
connected via USB 3.0. Full analysis of 2304 images for a whole 96 well plate would take
about five hours and twenty minutes.

To compute the sphere forming rate, the total number of cells and mammospheres has
to be determined. Therefore, we use the measurement ”Count Filtered” contained in the
output MAT-file (”Filtered” is the name of the identified objects after filtering). The
number of cells and mammospheres is calculated for each well using Matlab [43]. To
compute the sphere forming rate the number of mammospheres at the experiment end is
divided by the number of cells at the experiment start. This is done separately for the
single wells. For the wells containing the same cell lines and therefore the same conditions
the median rate and the appropriate median absolute deviation is computed. We choose
the median instead of the mean since it is more robust due to the lower influence by
outliers.

Positions including an air inclusion in an area that covers more than about 90 % of the
whole image are left out since it is not possible to observe objects (see Figure 11). As the
air inclusions grow in the course of time, we factor these positions into the computations
determining the number of breast cells at the experiment start and exclude them from
the calculation of the number of identified mammospheres at the experiment end.

3.1.4 Manual Validation of the Pipeline Performance

The aim of the pipeline is the correct identification of single cells and mammospheres and
the computation of a correct sphere forming rate characteristic for specific cell lines under
certain conditions. Therefore, it is important how many objects are identified correctly,
how many objects are missed, and how much debris is detected by mistake.
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a b

Figure 11: Growing air inclusion. a) Cutout of an entire well consisting of images for four
positions covering the right upper corner of the well. The image was taken at
the start of the experiment. The upper right, blue-rimmed position comprises a
small air inclusion that does not cover the entire image so that it is still possible to
observe breast cells. The same cutout is shown in b for the end of the experiment.
It is obvious that the air inclusion covers the entire position, it even shades off into
the adjacent position. Detecting mammospheres is not possible so that it does not
make sense to use the output of the pipeline estimated for this position.

To evaluate the performance of the automatic object identification, we define nine different
categories:

• Correct - Objects that are at least covered by one segment i.e. identified MSER
depicted as white spot in the segmentation image (see Figure 9iv). Each segment is
counted once maximally.

• Missed - Objects that are not covered by a segment at all.

• Oversegmented - Segments that cover objects, which are already covered by an-
other segment counted as ”Correct”.

• Undersegmented - Segments that cover more than one object.

• Debris - Segments that cover anything else as objects e.g. dirt or air bubbles.

• True positives - Objects that are at least covered by one segment. Oversegmented
and undersegmented objects are counted once. (the same as ”Correct”)

• False positives - Everything that is covered by a segment without being an object
and all segments that cover an object that is already covered by another segment
counted as true positive.

• True negatives - This value is always zero since it is not possible to count the
region that should not be identified e.g. background.

• False negatives - Objects that are not covered by any segment and all objects that
are undersegmented except the one that is counted as true positive.

The detailed definitions of true positives, false positives, true negatives and false negatives
are given in Section 2.2.1.
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Figure 12: Boxplot of precision and recall divided into the experiment start and end. The
values are based on the manual counts as described in Section 3.1.4 for eight wells,
four of each cell line. The central mark on the boxes is the median and the lower
and upper bound represent the 25 and the 75 percentiles, respectively. The vertical
lines under and over the boxes are the whiskers extending to the most extreme data
points. Additionally, outliers are marked by a red cross [41].

By superimposing the original image and the binary image resulting from our pipeline,
it is possible to manually determine the particular numbers of the single categories. This
is done for a total of eight wells, four for each cell line, both for experiment start and
end. These values enable the computation of statistical measurements quantifying the
accurateness of the method.

One question is, how many of the segments cover objects. The total number of segments
and therefore the number that is used to compute the sphere forming rates complies with
the sum of true positives and false positives. The rate of how many of these are really
cells or mammospheres is given by the precision.

Another question refers to the number of cells that is identified correctly. How many of
the actual total number of cells or mammospheres are identified? The actual number of
cells is equal to the sum of true positives and false negatives. The rate, which measures
this, is the recall.

The average of precision and recall is given by the f-measure. Hence, it is a general
measurement for the quality of the entire method (see Section 2.2). The results of the
manual counting and the statistical values described before are given in Table 3 and
additionally precision and recall are shown in Figure 12.

Given the manual validation, it is obvious that the pipeline performs slightly better on the
images of the experiment end than on the images of the experiment start (see Figure 12).
Especially the recall determined for the pipeline for experiment end is very high except
one outlier (0.791). The decreased performance for the pipeline at experiment start can
be explained by the relative huge number of debris (264) and missed cells (301). Since the
breast cells do not differ in size if compared to debris, filtering over the objects’ sizes is
difficult. Furthermore, the images are often badly illuminated close to the well’s border,
which leads to non-recognized objects.

As proved by this manual validation, our automatic pipeline promises good results in
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Experiment time start end
Number of manually counted
cells/mammospheres

1757 673

Number of automatically
counted cells/mammospheres

1728 724

Correct 1456 (82.9 %) 621 (92.3 %)
Missed 301 (17.1 %) 52 (7.7 %)

Oversegmented 8 1
Undersegmented 0 0
Debris 264 102

True positives 1456 621
False positives 272 103
False negatives 301 52

Precision 0.84± 0.07 0.86± 0.07
Recall 0.83± 0.07 0.92± 0.06
F-Measure 0.83± 0.05 0.89± 0.05

Table 3: The performance of our pipelines was manually measured for eight wells, four for each
cell line, both for experiment start and experiment end. The number of correct, over-
and undersegmented segments was counted as well as the number of segments covering
debris and the number of missed objects as defined in Section 3.1.4. Percentages refer
to the number of manually counted breast cells and mammospheres. In addition the
number of true positives, false positives and false negatives was counted to compute
the precision and recall for our methodology. Hereby the f-measure was calculated.
Shown are the mean values and the corresponding standard deviations.

determining the number of cells and mammospheres in bright field images. Therefore, it
is a auspicious alternative to calculate the sphere forming rate of breast cells.

3.2 Sphere Forming Rate

3.2.1 Determining Sphere Forming Rate

The computation of the sphere forming rate for the two cell lines MDA-MB-231 and
MCF7-Ras is done by two different methods: (i) the computation using the manual
counts of the live cell microscopy images, and (ii) the computation using the automatically
determined numbers by analysing the live cell microscopy images with our pipeline.

Since MDA-MB-231 and MCF7-Ras are mesenchymal and epithelial cancer cell lines,
respectively, it is expected that MDA-MB-231 is more aggressive as MCF7-Ras. Therefore,
the sphere forming rate of MDA-MB-231 is expected to be higher than the sphere forming
rate of MCF7-Ras.

The results based on our automatic and manual method and additionally by Limiting
Dilution Analyses conducted by Dr. Scheel’s lab are depicted in Table 4 as an overview.
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Sphere forming rate Required Time

Method MDA-MB-231 MCF7-Ras Experiment Analysis

Limiting Dilu-
tion Analysis

0.14± 0.08 0.21± 0.15 ∼2h ∼25 min
(counting)

li
ve

ce
ll

m
ic

ro
sc

op
y manually

counted rates
0.40± 0.04 0.36± 0.02 ≥2h ∼20 min

(counting)

automatically
counted rates

0.40± 0.05 0.38± 0.04 ≥2h ∼3 min
(run time)

Table 4: Mean and standard deviation of the sphere forming rates determined by Limiting
Dilution Analysis. The rates determined on the basis of live cell microscopy are
depicted as median and the corresponding median absolute deviation. In addition,
the required time to obtain one rate for one cell line is depicted separated into the
time to conduct the experiment and the time to analyse the number of the cells and
mammospheres.

Moreover, the experiment and analysis time required to obtain one rate for one cell line
is represented in this table.

The number of cells and mammospheres determined within the manual validation on the
basis of eight wells enables computation of a sphere forming rate. The rates and their
corresponding standard deviations are 0.40±0.04 and 0.36±0.02 applied to MDA-MB-231
and MCF7-Ras, respectively (see Table 4). This results in a difference of 0.04 between
the two cell lines.

The sphere forming rates achieved by the division of the automatically determined number
of mammospheres at the end of the experiment by the number of cells at the beginning
of the experiment are similar. The median rates applied to MCF7-Ras (0.38) are iden-
tical except the higher median absolute deviation (0.04) if determining the rate by the
automatic approach. In contrast, the median rate applied to MDA-MB-231 (0.40) is
slightly higher (0.02) if determined automatically and the corresponding median absolute
deviation (0.05) is higher as well. Due to the higher sphere forming rate computed for
MDA-MB-231, the difference between the rates applied to the two cell lines is higher
(0.02).

Since MDA-MB-231 is a more aggressive cancer type as MCF7-Ras, the results comply
with our expectations insofar as the sphere forming rate established for MDA-MB-231
is by trend higher as the one established for MCF7-Ras. This holds for the manual as
well as for the automatic method. Therefore, this result confirms the general approach of
dividing the total number of mammospheres at the experiment end by the total number
of breast cells at the experiment start. Moreover, the automatically determined values
are good enough to compute reasonable sphere forming rates.

3.2.2 Comparison to Other Approaches

Since our method is an alternative to the standard sphere forming assay i.e. its part
of computing the sphere forming rate and the Limiting Dilution Analysis, five Limiting
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Dilution Analyses are conducted by Dr. Scheel’s group to compare the resulting rates
with those of the methods based on live cell microscopy (see Section 2.3.1). This involves
three experiments for MCF7-Ras and two for MDA-MB-231.

The sphere forming rates determined by the classic Limiting Dilution Analyses are very
different within the particular cell lines leading to high standard deviations (0.08 for
MDA-MB-231 and 0.15 for MCF7-Ras). So the rates determined for MDA-MB-231 fall
in a range of [0.084, 0.203] and those for MCF7-Ras fall in a range of [0.074, 0.374].

We make the assumption that the sphere forming rate is characteristic for certain breast
cell lines. Due to the wide ranges of the established rates the results do not comply with
this assumption.

There are two possible explanations for the different values within the same cell lines. (i)
The breast cancer cell populations used for the Limiting Dilution Analyses are hetero-
geneous in matters of sphere forming rate. For the experiments only cells of different
parts of the populations were taken by accident. (ii) Due to the overall small numbers of
cells used for the Limiting Dilution Analysis, small differences of the cell density in the
wells that are assumed to contain the same dilution have a big influence on the statistical
values.

As described in Section 2.3.2, 100 µl of a dilution with 1000 cells per ml is filled in each
well for the live cell microscopy experiment. This would be consistent with 100 cells per
well. Counting the breast cells in the images of the experiment start shows that the actual
number of cells per well varies between 187 and 261 for the eight manually analysed wells
(see Figure 14a, b). This is about twice as much as expected. Even if the total expected
number for the particular wells in the Limiting Dilution Analysis is smaller, it is likely
that the actual cell numbers differ from the expected numbers as well. The advantage of
our approach is the independence on the exact cell density in a well.

Using higher cell densities to compensate the impact of different dilutions of wells which
should comprise the same dilution does not make sense since this would cause mammo-
spheres in each well. Even small dilutions like 30 or 15 cells per well lead to a fraction
of negative wells of zero as each well contains at least one mammosphere. If the fraction
of negative wells is zero, the natural logarithm of the fraction of negative wells is minus
infinite, which is not possible to plot in the Limiting Dilution Analysis diagram. This
leads to a smaller number of dots used as basis for the calculation of the linear regression
line and therefore a less representative rate.

It was expected that MDA-MB-231 is more aggressive as MCF7-Ras. This difference
is not detectable in the results of the Limiting Dilution Analyses since the highest rate
determined for MCF7-Ras (0.374) is much higher as the highest rate determined for
MDA-MB-231 (0.203). Moreover, the smallest rate determined for MCF7-Ras is 0.074
while the smallest rate determined for MDA-MB-231 is 0.084, which means that the range
determined for MDA-MB-231 is located within the range estimated for MCF7-Ras. Even
the mean values disagree with this expectation as the mean rate applied to MCF7-Ras
(0.21) is higher as the mean rate applied to MDA-MB-231 (0.14).

Counting the cells and mammospheres manually using a microscope as tried in the classical
sphere forming assay is not an alternative since it is not possible to have the entire well
in the field of view through the microscope at the same time. Therefore, it would be
necessary to move the well plate, which provokes movement of the cells and therefore
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Figure 13: Results of the manually conducted Limiting Dilution Analyses for MDA-MB-231
(a) and for MCF7-Ras (b). The numbers pointing to the linear regression lines
represent the particular sphere forming rates.

avoids determining the correct number of objects in a well manually. Live cell microscopy
imaging is a good solution as the content of the wells is recorded for both the experiment
start and end, which is not given by the classical sphere forming assay where only the
number of mammospheres is counted. An additional feature is that the information is
available for further investigation.

All in all, it is difficult to compare the results achieved on the basis of live cell microscopy
with the results of the classic Limiting Dilution Analysis since the latter do not match the
expectations of a higher sphere forming rate applied to MDA-MB-231 and characteristic
rates for particular cell lines. All the more pleasant are the good results of the methods
based on live cell microscopy as both expectations are matched.

3.2.3 Correlation Between the Cell Density and Sphere Forming Rate

Since the Limiting Dilution Analysis is based on different dilutions, it is interesting to see
if the cell density has any impact on the sphere forming rate. This would disagree with
the assumption that the breast cells do not influence each other in forming spheres (see
Section 2.2.6).

As the wells used for the live cell microscopy images contain different cell densities unlike
expected (see Figure 14a, b and Section 3.2.2), the sphere forming rates of each well
are plotted against the corresponding cell density at the experiment start to search for
correlations (see Figure 14c, d). Beside the huge densities (almost twice as much as
expected) the difference between the two cell lines is remarkable. The densities of MDA-
MB-231 are higher as the densities of MCF7-Ras, which is apparent in Figure 14a, b.

At a first glance the linear regression lines in Figure 14c, d suggest a negative correla-
tion between the sphere forming rate and the cell density since the sphere forming rates
decrease if the cell density increases except for the automatically determined values of
MDA-MB-231 (dark blue). However, we find no significant correlation (all p-values >
0.05). This is maybe caused by the few data points used as basis for their calculation.
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Figure 14: Sphere forming rate determined for the particular wells plotted against the cor-
responding cell density (c, d) and histogram of the cell densities (a, b) divided
into the two cancer cell lines MDA-MB-231 and MCF7-Ras. The points in c and
d are divided in the automatically and manually determined values. In addition,
the linear regression lines and their corresponding R2 values are depicted. A trend
that the sphere forming rate decreases while the cell densities increase is observable
especially for MCF7-Ras (d).

The R2 values are relative small (0.38, 0.58, 0.44) except for the manually determined
values for MCF7-Ras (0.76) indicating that most of the data points are far away from the
linear regression curve. The high R2 value for the automatically determined values for
MCF7-Ras is not important since the regression line is not significant.

To prove or disprove a correlation between the sphere forming rate and the cell density
further experiments have to be conducted and analysed.

3.3 CellProfiler Usage Evaluation

As this is the first approach of expanding CellProfiler in our group, a concluding evaluation
of the usage of CellProfiler and its extension is reasonable. The following items are ranked
by importance.

⊕ Since helpful explanations of CellProfiler’s class structure and general workflow are
provided, developing new modules is comfortable.

⊕ Once a developer environment is set up, CellProfiler’s class structure is easy to
understand and the provided abstract classes and inheritance hierarchy is helpful
so that easy modules can be implemented fast. Since Python is a very readable
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language, the code is comprehensible even for someone who is not familiar with it.

� For C++-extensions experience in this language is very helpful, even if the C++
code exists already. Implementing the Cython code is not difficult, but compiling
hides some difficulties in combination with OS X Mountain Lion. If all difficulties
are solved once, it is comfortable to reproduce it for other extensions using the
existing code as template.

⊕ Apart from the developer view, CellProfiler provides a lot of well implemented, useful
modules, which have to be detected in the bulk. Handling the created pipelines is
very simple since the pipelines can be stored and loaded again, which also enables
sharing pipelines with colleagues.

	 The way to get a working development installation is not that easy due to the
high number of dependencies and frameworks that are needed (see Section 3.1.2).
Especially on OS X Mountain Lion, on which this study was conducted, several
problems arise during installation and workarounds are difficult to find in the help
pages or community forums.

	 One disadvantage is that CellProfiler does not work robustly all the time, e.g. some-
times it was not possible to initialise the pipeline after changing parameters after
the pipeline was processed before. This might be caused by our developer version
in combination with OS X Mountain Lion.

⊕ The CellProfiler developers offer support for both problems with the application
and implementation within the forum [18].

	 It is not possible to see the effect of parameter changes during pipeline creating,
instead the pipeline has to be processed until those effects can be discovered.

All in all, CellProfiler is definitely worth a try, also represented by its frequent usage
[16]. It is not as robust as e.g. Fiji/ImageJ but has other advantages not offered by
similar programs like the module based pipeline system coming up with an intuitive user
interface. Besides it is very practical that CellProfiler stores all measurements in a single
file that can be analysed simply. Getting started with the development of new modules
takes time, but once set up it is quite easy.
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4 Summary and Outlook

Within this thesis we created a CellProfiler pipeline for the automatic analysis of live cell
microscopy images showing breast cells at the beginning of the experiment and mam-
mospheres at the endpoint in order to determine the cell’s sphere forming rate. A new
CellProfiler module called Mser was created for the bright field segmentation.

The pipeline was applied to a live cell microscopy experiment from the Scheel lab compris-
ing 18 wells and therefore 216 images for both experiment start and end. One half of the
wells contained the more aggressive, mesenchymal cancer cell line MDA-MB-231 and the
other half the epithelial cancer cell line MCF7-Ras. The performance of the pipeline was
validated by manually counting of the cells and mammospheres of eight wells resulting
in f-measures of 0.83 and 0.89 for the application to the images of the experiment start
and the experiment end, respectively. While determining the sphere forming rates for
these two cell lines by the traditional Limiting Dilution Analysis was not able to point
out a difference in the sphere forming rates of the two cell lines, both the manual and the
automatic approach based on live cell microscopy obtained a higher sphere forming rate
for MDA-MB-231 than for MCF7-Ras as expected.

Despite the good f-measures, the new method also comprised some drawbacks since a
lot of debris was found and objects were missed especially for the application of the
pipeline to the images of the experiment start. As this was the first try analysing live
cell microscopy images of breast cells in the mammosphere assay, room for improvement
remains and the analyses show that the general approach points into the right direction.
During development, several ideas for improvements came up covering different contexts,
which are described in the following.

• Since our method enables the computation of one rate per well, the whole well plate
can be used achieving several rates with a higher guarantee of the same conditions
as if using different well plates for each rate. It is also possible to use a single well
plate to calculate the sphere forming rates for several cell lines or cell lines cultured
under different conditions as we did for MDA-MB-231 and MCF7-Ras. This makes
the results much more comparable than using several well plates for each rate.

• The pipelines’ parameter settings are determined by trial and error. Certainly better
parameter settings exist, but they are hard to find. Hence, a machine learning based
method to determine the parameters automatically would be preferable. This could
be achieved by incorporating an active learning approach, which proposes different
segmentation results to the user, who decides interactive, which result is the best,
so that the parameters are learned by this choice.

• Since the cells are not adherent and therefore able to move, it is not guaranteed that
the mammospheres originate from single breast cells and not through aggregation.
Cell colonies caused by aggregation are not of interest and would lead to higher
sphere forming rates by mistake. Therefore, operating on time-lapse movies, i.e.
the images of each time point of the experiment, in combination with automatic
tracking, i.e. following cells over time, promises more accurate results in determining
the cells’ fate i.e. death, aggregation, or forming mammospheres.

• At the moment, different parameter settings are used, but a uniform setting would be
preferable. Otherwise, the parameter setting has to be adjusted if using time-lapse
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movies since the object sizes grow over time and several parameters are dependent
on the objects’ sizes. If an aforementioned active learning of the parameters would
be available determining a uniform parameter setting would be easier. In addition
tracking is connected to the problem of changing object sizes so that the active
parameter learning would improve the realisation of tracking as well.

• Using all images of the time-lapse movies would lead to very long processing times.
Therefore, batch processing allowing parallel computing would be a good solution.
CellProfiler provides a module that supports batch processing and the pipeline file
can be processed over the command line headless [15]. The issue arising in this
context is that CellProfiler has to be installed on a computer. Having a user interface
for processing the entire batch mode would be valuable especially for researchers
without computational background.

• At the moment the post-processing including the elimination of images containing
large air inclusions and the computation of the sphere forming rates is done sep-
arately from CellProfiler using Matlab. It would be helpful to have a CellProfiler
module that calculates the rates after the objects are identified. This module would
have to provide an interactive user interface that enables the selection and dese-
lection of images including large air inclusions so that they are not considered in
computing the sphere forming rate. Furthermore, it would be necessary to decide
between images belonging to particular cell lines and experimental conditions.

• Another possibility than excluding images containing large air inclusions is the cal-
culation of the well’s border to subtract this area from the raw image. Not only the
well’s border but also the air inclusion would be detected.

• A better background correction and therefore a better object identification espe-
cially at the wells’ border might be achieved by the background correction method
developed by Schwarzfischer et al. [51]. An implementation in C++ is available
and could be included as an additional module into CellProfiler using Cython.

• An approach that goes in another direction is the use of out-of-focus images since
segmentation sometimes works better as observed in the images of the wells’ center,
which mostly are out-of-focus [12]. Since debris is on another layer as the objects,
it may is not visible in out-of-focus images.

• On the experimental side it could be tried to minimize the amount of debris in
the wells as well as the air inclusions. This would lead to a smaller number of
falsely identified objects and therefore to a better precision. A better recall could
be achieved by a better illumination so that the part of the well near the well’s
border would be brighter and object identification would work more robust.

Taken together, the expandability on the computational side as well as the improvement
opportunities on the biological side show that the analysis of breast cells with the help of
live cell microscopy has wealth of feasibilities and therefore a promising future. Since this
was the first time of conducting live cell microscopy and analysing the resulting images in
the context of breast cells in our labs, it is necessary to analyse further live cell microscopy
experiments using more wells in order to prove the method and its underlying pipeline.
Nevertheless, this first application of our method provides good results pointing out a
great potential. This thesis is a first step on the way to a fully automatic method for
determining the sphere forming rate of breast cells in a high-throughput manner.
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