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ABSTRACT
Motivation: High-throughput single-cell qPCR is a promising
technique allowing for new insights in complex cellular processes.
However, the PCR reaction can only be detected up to a certain
detection limit, while failed reactions could be due to low or absent
expression and the true expression level is unknown. As this
censoring can occur for high proportions of the data, it is one of the
main challenges when dealing with single-cell qPCR data. PCA is an
important tool for visualising the structure of high-dimensional data
as well as for identifying sub-populations of cells. However, to date it
is not clear how to perform a PCA of censored data. We present a
probabilistic approach which accounts for the censoring and evaluate
it for two typical data-sets containing single-cell qPCR data.
Results: We use the Gaussian Process Latent Variable Model
(GPLVM) framework to account for censoring by introducing an
appropriate noise model and allowing a different kernel for each
dimension. We evaluate this new approach for two typical qPCR data-
sets (of mouse embryonic stem cells and blood stem/progenitor cells
respectively) by performing linear and non-linear probabilistic PCA.
Taking the censoring into account results in a 2D representation of
the data which better reflects its known structure: in both data-sets
our new approach results in a better separation of known cell types
and is able to reveal subpopulations in one data-set which could not
be resolved using standard PCA.
Availability: The implementation was based on the existing
GPLVM toolbox1; extensions for noise models and kernels
accounting for censoring are available from http://icb.helmholtz-
muenchen.de/censgplvm.
Contact: fbuettner.phys@gmail.com

1 INTRODUCTION
1.1 High-throughput single-cell qPCR
In order to gain fundamental insights into complex cellular
processes, it is necessary to observe individual cells. One such
process is the transcriptional control of cell fate decisions, where it

∗to whom correspondence should be addressed
1 https://github.com/SheffieldML/GPmat

is crucial to quantify the gene expression of individual cells as cell
fate decisions are made on a single-cell level. In contrast to single-
cell measurements, conventional experimental techniques measure
gene expression from pools of cells masking heterogeneities
within cell populations which may be important for understanding
underlying biological processes (Guo et al., 2010; Dalerba et al.,
2011; Pina et al., 2012; Moignard et al., 2013; Dominguez
et al., 2013). Recent technical advances facilitate the simultaneous
measurement of tens to thousands of genes in hundreds of individual
cells (Taniguchi et al., 2009). As experimental techniques advance
and new types of data are generated, it is important to develop
sound computational methods that are able to adequately deal with
uncertainties inherent in the experimental technique and allow for
a comprehensive analysis of these new types of data. Currently,
the mRNA content of single cells can be analysed using high-
throughput qPCR platforms, such as the Fluidigm BioMark HD or
using deep sequencing (RNA-Seq).
In single-cell quantitative real time polymerase chain reaction
(qPCR), RNA is extracted from single cells and cDNA is
synthesised. This is followed by a pre-amplification step and qPCR
detection. In practice, this procedure results in a limit of detection
below which gene activity cannot be quantified. Gene expression
is typically measured in cycles (Ct) and depending on the analysed
cell types and genes, the limit of detection (LOD) Ct value can be
defined as a 99% detection probability of the qPCR reaction and
typically corresponds to approximately 2-10 mRNA molecules per
reaction chamber (Fluidigm Corporation, 2012). This corresponds
to a censoring in the sense that for Ct values greater than LOD Ct
the true Ct number cannot be established. This censoring typically
occurs for a large number of cells (see figure 1 for values of 2
typical data-sets) and is one of the main challenges when dealing
with data from single-cell qPCR experiments. For cases in which
non-detection corresponds to a lack of transcription, the true Ct
value would be infinity (McDavid et al., 2013) whereas for cases
in which non-detection corresponds to a non-negligible amount of
transcription the true underlying Ct value would be closer to LOD
Ct; as the distribution of Ct values extends continuously until the
LOD (figure 1 C and D) this suggests that both scenarios can be
encountered in practice.
As high-throughput single-cell qPCR is a relatively new technique
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Fig. 1. Fraction of censored data for two typical data sets: A, fraction of non-detects in mESC data data, resovled by genes and B, feactions of non-detects
in and blood stem cell data. Genes sorted in descending order of fraction of censored values. C, distribution of Ct values for mESC data and D, blood
stem/progenitor cell data. The long tail of high Ct values continues until the LOD.

this issue of censoring has not been addressed systematically and
simple work-arounds such as substituting all censored data-points
with the LOD Ct value are commonly used (Guo et al., 2010;
Dalerba et al., 2011; Pina et al., 2012).
Recently, McDavid et al. (2013) have systematically addressed this
issues by proposing a customised approach for univariate testing
of differential gene expression of single-cell qPCR data which
explicitly takes the component of non-detected qPCR reaction into
account. While the authors did not address implications of the limit
of detection for multivariate analyses such as PCA, this highlights
the need for new algorithms addressing statistical and analytical
challenges of single-cell qPCR data.
Other sources of uncertainty on a cell-wise level such as effects due
to variations in cell size, can be corrected for by measuring a set
of housekeeping genes and subtracting the mean expression from
the measured Ct number. Similarly, uncertainties can be corrected
which occur due to the batch-wise processing of cells on arrays and
variations in PCR efficiency between batches.

1.2 PCA of censored data
A common part of multivarate analysis of single-cell qPCR data is
principal component analysis (PCA). This allows for a visualisation
of the variation in gene expression within and across different cell
populations as well as the identification sub-populations in a large
group of heterogeneous cells (Guo et al., 2010; Dalerba et al., 2011).
Recently we have shown that it is desirable to also apply non-linear
generalisations of PCA as this can allow for a better identification
of novel sub-populations (Buettner and Theis, 2012). For many
statistical methods such as regression, algorithms to deal with
censored data have been established. For example, censored values
can be substituted, Tobit regression can be performed or data can be
deleted, treated as missing or imputed according to some probability
distribution (Ballenberger et al., 2012). However, it is not clear
how to deal with censored data in the context of PCA, especially
when there is a high fraction of censored data points. In this case
deletion can result in the loss of an unacceptably high proportion
of the data. Similarly, treating the censored data as missing (Theis
et al., 2011) discards potentially valuable information. Substitution
can yield strongly biased results and multiple imputation results in
several data-sets which are difficult to combine in a single PCA
(Lubin et al., 2004; Uh et al., 2008). Furthermore, for very high
fractions of censored data (as in single-cell qPCR), it is not clear

how to derive adequate probability distributions (Ballenberger et al.,
2012; Lubin et al., 2004).
When performing PCA of censored data from single-cell qPCR,
the standard approach is to substitute the Ct values of all censored
data-points with the same Ct value (usually LOD Ct) and perform
standard PCA. In figure 2 a toy example is used to illustrate the
issues of this substitution approach. A different approach is to
treat the data as censored when performing the PCA; however,
to date no algorithm allowing for linear and non-linear PCA of
censored data has been presented. In the following we propose
an extension of generalised PCA (Gaussian process latent variable
models) allowing for censored data. When optimising the generative
mapping (including the positions of the data points in a low-
dimensional latent-space) we use statistically sound methods to
account for the censoring such that uncertainties in the high-
dimensional space are reflected in the low-dimensional visualisation
of the data.
We evaluate our new strategy on dealing with single-cell qPCR data
on two typical data-sets.

Thus, our contribution in this work is two-fold. First, we propose
a strategy for performing PCA, and in fact probabilistic kernel
PCA in general, of censored data. This allows the visualisation
of censored data within the commonly used framework of PCA
without introducing bias due to censoring and can be used for data
from a wide range of sources. Second, we present a framework on
how to account for uncertainties when performing PCA of single-
cell qPCR data. We quantify potential new biological insights which
can be gained by accounting for censoring: in the case of single-cell
qPCR data, our approach can result in PCA representations which
better reflect the underlying structure of the data and allow for a
better identification of biologically meaningful sub-populations.

2 METHODS
In order to derive an algorithm for PCA of censored data, we first review
probabilistic dual PCA before we show how we can use this as mathematical
framework to deal with censored data.

2.1 Dual PCA for censored data
Standard PCA with Gaussian noise
Let the gene expressions in the data space be denoted by Y = [y1, . . . , yN ]T ,
yi ∈ RD and latent variables in the low-dimensional latent space be denoted
by X = [x1, . . . , xN ]T , xi ∈ RQ, with D being the dimension of the data
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Fig. 2. 2D toy example (mixture of 4 Gaussians). In A the true values of Y are shown; Y1 is right-censored for values greater than 2 (shown in gray). In B a
PCA is performed with all censored values substituted with 2 resulting in a biased representation of the data. In C a PCA taking censoring into account using
an appropriate noise model is shown resulting in a more realistic representation of the data. The uncertainty inherent in the generative model is visualised
using grayscale as described in section 2.2. This uncertainty is greatest on the far right where censoring occurs.

space, Q the dimension of the latent space (usually 2 or 3) and N the number
of samples in the dataset. Then, probabilistic PCA can be written as

yn = Wxn + ηn (1)

with i.i.d. Gaussian observation noise ηn: p(ηn) = N(ηn|0, β−1I)

(Bishop, 2006). While for probabilistic PCA we would marginalise over
X and optimise the transformation matrix W , for dual PCA (and more
generally, GPLVM), we marginalise over W and optimise the latent
variables X . If we place a prior over W in the form of p(W ) =∏D

i=1 N(wi|0, α−1I) where wi is the ith row of W and integrate over
W we find (Lawrence, 2004):

p(Y |X,β) =
1

(2π)
DN
2 |K|D/2

exp

(
−
1

2
tr(K−1Y Y T )

)
(2)

with K = αXXT + β−1I . This marginalised likelihood is the product
of D Gaussian processes with linear covariance matrix K. It can be shown
by deriving the corresponding log-likelihood L with respect to the latent
variables X , the solution is equivalent to the one obtained by solving
the standard PCA problem (Lawrence, 2005). In this dual interpretation
of PCA, the cell-to-cell correlation is captured by the covariance matrix
K. If the linear kernel in K is substituted with a different, non-linear
kernel, a non-linear generalisation of probabilistic dual PCA (GPLVM)
is obtained. By constructing the covariance matrix using such non-linear
kernel, the relationship between cells can be arbitrarily complex. We chose
the commonly used rbf kernel which can be written as:

k(x1, x2) = α exp
(
−γ(x1 − x2)

2
)
+β−1 (3)

with hyperparameters α and γ.

Dual PCA with alternative noise models
So far the model assumes Gaussian noise ηn in every dimension which is a
good approach when there are neither missing nor censored data. However,
if we want to perform a (dual) PCA (or GPLVM) of censored or missing
data, it is necessary to use a different noise model. This can be done by
introducing an additional latent variable F = [f1, . . . , fN ] between X and
Y (Lawrence, 2005):

p(Y |X, θ) =

∫
p(Y |F )p(F |X, θ)dF =

∫ N∏
n=1

p(yn|fn)p(F |X, θ)dF (4)

The Gaussian observation noise model used for non-censored data can then
be interpreted as:

p(yn|fn) =
D∏
i=1

N(yni|fni, β
−1) (5)

Lawrence (2005) suggested that other noise models in the form of

p(yn|fn) =
D∏
i=1

p(yni|fni) (6)

can be used. However, in the case of non-Gaussian noise-models a Gaussian
approximations of p(yni|fni) needs to be found in order to yield a Gaussian
distribution of the posterior of F and thus maintaining the tractability of the
marginalised likelihood.

p(yni|fni) ≈ N(mni|fni, β
−1
ni ) (7)

Thus, in order to perform PCA/GPLVM with missing and censored data
we first need to define an appropriate noise model. Next, once the (non-
Gaussian) noise model is defined, we need to find a Gaussian approximation.
Using this framework to deal with missing data is straight-forward: As
Lawrence (2005) shows the precision βni corresponding to missing values
ni is set to 0: βni = 0.
When dealing with censored data we need to define a more complex noise
model. Here we propose to define a noise model based on the probit function
(cumulative distribution function of the normal distribution)

Φ(z) =
1

2π

∫ z

−∞
exp

(
−
t2

2

)
dt.

For data points n which are right-censored at the value b in dimension i, a
noise model reflecting this censoring can be defined as:

p(yni ≥ b|fni) = Φ(λ(fni − b)) (8)

where λ controls the slope of the curve. For data which are left-
censored at bl in dimension i, we can choose the noise model accordingly
(p(yni ≤ b|fni) = Φ(−λ(fni − bl))). Similarly, data which are interval-
censored between b1 and b2 can be accounted for with a noise model in form
of

p(b1 ≤ yni ≤ b2|fni) = Φ(λ(fni − b1))− Φ(λ(fni − b2)) (9)

In figure 3 the probit noise model for p(y ≥ b|f) and the Gaussian
noise model for p(y = b|f) are shown. In the probit noise model the
slope/steepness of the curve is controlled by the parameter λ; similarly, the
width of the Gaussian noise model is controlled by β−1.

Gaussian approximations as needed in equation (7) can be found by using
assumed density filtering (ADF) (Minka, 2001; Lawrence et al., 2005). Here,
approximations are updated sequentially by incorporating one datum at a
time. This yields an approximation q(F ) to the true posterior p(F |X,Y ) in
the form of:

q(F ) = N(f |f,Σ) (10)
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Fig. 3. Probit noise model for 3 different vales of λ (a) and Gaussian noise
model for 3 different values of β−1 (b).

with a block-diagonal covariance matrix Σ which is built of D blocks
Σ1, . . . ,ΣD . The parameters of the approximation can be calculated as

βni =
νni

1− νniςni
(11)

mni =
gni

νni
+ fni (12)

with ςni being the nth diagonal element of Σi, gni = ∂
∂fni

lnZni and

νni = g2ni − 2 ∂
∂ςni

lnZni. The partition function Zni is defined as

Zni =

∫
p(yni|fni)q(F )dF (13)

It can be shown (Lawrence et al., 2005) that for the case of the probit
noise model the partition function can be calculated as:

Zni = Φ(uni)

where

uni = cni(fni − b)

cni =
1

λ−2 + ςni
(14)

In practice, if the slope of the noise model is not fixed, we learn it together
with the kernel parameters: therefore we consider the slope of the noise
model to be very steep and add a white noise term to the kernel K in
form of λ−2Ic with Ic being a diagonal matrix such that only the entries
corresponding to censored data points are set to 1 and all other entries are set
to 0 — this will then result in an increase of ςni by λ and, as can be seen from
equation (14), in an equivalent description of the noise model. Note that care
has to be taken as censored inputs are independent for each dimension. This
means that we have to use a different kernel for each dimension as Ic will be
different for each dimension. However, as the marginal likelihood factorises
into d Gaussian processes this extension of standard GPLVMs is straight-
forward and the possibility was in fact described earlier (Grochow et al.,
2004). More specifically, we choose the white noise term for dimension
d such that kw,d = λ−2Ic,d + σ2Inc,d with Ic,d and Inc,d being the
diagonal matrices where only those entries are set to 1 where a data-point is
censored and not censored respectively. All other terms in the kernel (i.e. rbf
term or linear term) were shared across all dimensions.

In summary, the generation of the PCA mapping taking censoring into
account involves two major steps. First, a Gaussian approximation (eq. (7))
to the probit noise-model (eq. (8)) has to be found via ADF (eq. (11) and
(12)). This yields an approximation to the log-likelihood of the model (eq.

(4)). In a second step, this approximation is maximised with respect to
the latent positions X and the kernel parameters (including λ). For this
optimisation step non-linear optimisers such as scaled conjugate gradient
(Nabney., 2001) can be used.

2.2 Visualising uncertainties in latent space
Performing dual PCA with the probit noise model as outlined above, yields
an explicit mapping from latent space to the original high-dimensional space
(eq. 4). When generating this mapping, not only the positions of the points
in the latent space, but also the parameters of the (noise) model are chosen
such that censoring is accounted for. That is, the uncertainty of the data is
reflected in the mapping.
Consequently, we can use this model to calculate for any point x∗ in the
latent space a posterior mean Mi(x

∗) and a posterior variance Vi(x
∗) for

each dimension i (Suppl. note 1) (Rasmussen and Williams, 2006). For
standard GPLVMs with one kernel shared across all dimensions Vi(x

∗) will
be the same for all dimensions. In this case it is straight-forward to visualise
the uncertainty of the mapping in the latent space by varying the intensity of
the background pixels (background of the 2D map) (Lawrence, 2006). In our
case the posterior variance will vary across dimensions. In order to visualise
the uncertainty across all dimensions, we use the fact that eq. (4) is a product
of D Gaussian processes. Consequently, we can quantify the uncertainty of
the mapping by calculating the product of the the posterior variance across
all dimensions. For visualising this uncertainty we then vary the intensity of
the background pixels with

Intensity(x∗) ∝
D∑
i=1

log(Vi(x
∗)) (15)

The higher the uncertainty, the darker the pixels. Black pixels correspond to
the highest uncertainty.

2.3 PCA of censored single-cell qPCR data
Censoring in single-cell qPCR techniques occurs due to a detection limit of
the qPCR reaction. This limit of detection both depends on the manufacturer
of the machine and is experiment-specific where it can vary between
different genes. Most researchers do not establish this gene-dependent LOD
but use a global LOD reflecting the overall sensitivity of the qPCR machine
(Guo et al., 2010; Pina et al., 2012). However, more objective methods to
establish an LOD such that a qPCR reaction will be found with a probability
of at least 99% if the Ct value is below the LOD, can be used, too. For
example, necessary experiments to do so are outlined in the manual of the
popular Biomarks system (Fluidigm Corporation, 2012).
In the following we will evaluate our new strategy on how to deal with the
limit of detection (once it is established) when performing PCA. Therefore,
we first use the standard approach where all values greater than the limit of
detection are substituted with a particular value Ctsub. The choice of Ctsub
depends largely on the biological interpretation of non-detects (Suppl. Note
2). If most non-detects correspond to a genuine lack of transcription, a large
value should be chosen for Ctsub as the true underlying Ct value would be
∞ (for practical reasons Ctsub = 40 could be chosen, as maximum of
40 cycles can typically be measured); otherwise a value of Ctsub closer to
LOD (or LOD) should be chosen. We followed the latter approach (setting
Ctsub =LOD ) which is commonly adopted in the literature (Pina et al.,
2012; Guo et al., 2010). Furthermore we also explored higher values of Ctsub,
corresponding to the interpretation of non-detects as lack of transcription
(Supp. Fig. 1-2). As in the substitution approach systematic uncertainties
in the data in form of censoring are ignored, in this case standard PCA
can be performed. In addition to standard PCA, results for ICA and t-SNE
(van der Maaten and Hinton, 2008; Amir et al., 2013) using the substitution
approach are shown in Suppl. Fig. 1-2. We then compare this substitution
approach to our new algorithm where PCA with the probit noise model is
performed. In contrast to the substitution approach there is no need to choose
Ctsub as the probit noise model accounts for uncertainties in the underlying
true Ct value for non-detects. As the non-detects are modelled separately
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Fig. 4. A to C: Distribution of residuals between posterior means and the normalised LODs for differnt approaches. D to F:PCA with censored data from
mESC data-set. Standard PCA with substitution approach (D), taking censoring into account with probit noise model and fixed λ (E) and probit noise model
with λ learnt from data (F). G to J: GPLVM with rbf kernel for mESC data. Standard GPLVM with substitution approach (G), taking censoring into account
with probit noise model and fixed λ (H) and probit noise model with λ learnt from data (I). In (I) the dashed lines indicate two distinct subpopulations at the
16-cell stage and ICM.

by introducing a discrete part in the GPLVM, this can either be interpreted
as a noise model for censored data or as a discrete model for genes which
are “off”. For the probit noise model we compare censored PCA with fixed
steepness parameter λ to censored PCA where λ is optimised in form of a
parameter of a white noise kernel as described above.
We tested the two approaches with both a linear kernel (resulting in standard
PCA) and an rbf kernel in order to capture non-linearities in the data.
As theoretically a maximum of 40 cycles can be measured, we used this
as upper limit in the noise model for interval censoring (equation (9)). This
prevents the optimiser from being stuck in a local minimum where some
censored data-points are mapped to very high Ct numbers2. In each run
we followed Guo et al. (2010) and Moignard et al. (2013) and performed
a cell-wise normalisation by subtracting the average Ct number of the
housekeeping genes from the Ct value of the gene of interest. Consequently,
when data-points where censored at a value b before normalisation, this

2 In practice this only occurred for the linear kernel with fixed λ in the blood
data-set.

threshold was normalised accordingly for each cell (Ballenberger et al.,
2012).
We evaluated the different approaches on two recently published data-sets.
The first data-set was published by Guo et al. (2010). Briefly, the authors
analysed the development of the mouse zygote to the bastocyst by measuring
gene expression on a single-cell level. Therefore, the authors quantified the
expression levels of 48 genes for a total of 442 cells at different stages of
the cellular development (one-cell stage to 64-cell stage). Cells at the 32-
cell stage had undergone differentiation to either trophoectoderm (TE) cells
or inner cell mass (ICM). Cells at the 64-cell stage were either TE cells,
primitive endoderm (PE) cells or epiblast (EPI) cells. Lables for cells at
32-cell stage and 64-cell stage were derived from figure 1 in (Guo et al.,
2010) by assigning each cell to the closest cluster (TE, PE, EPI, ICM). Cells
from the 1-cell stage were systematically different from all other cells due
to differences in experimental conditions (Guo et al., 2010). That is why we
excluded all 9 cells from the one-cell stage from our analysis. More details
on the data-set can be found in recent publications by Guo et al. (2010) and
Buettner and Theis (2012).

5

 at G
SF-Forschungszentrum

 fuer U
m

w
elt und G

esundheit G
m

bH
 - Z

entralbibliothek on M
arch 25, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


The second data set consists of 597 blood stem and progenitor cells, in
which the expression of 24 genes was measured, including 18 transcription
factors, five housekeeping genes and a cell surface marker Moignard et al.
(2013). Approximately 120 individual primary cells were isolated for each
population from mouse bone marrow by fluorescence activated cell sorting
(FACS). As for the ESC data, the sorted populations comprise a cellular
hierarchy which gives rise to all of the mature cell types of the blood
system. The haematopoietic stem cells sit atop the hierarchy and give rise
to the megakaryocyte-erythroid lineage through the PreMegE progenitor,
or to the lymphoid-primed multipotent progenitor (LMPP). The LMPP in
turn gives rise to the myeloid lineage and the lymphoid lineage through
the granulocyte-monocyte progenitor (GMP) and the common lymphoid
progenitor (CLP), respectively (Orkin and Zon, 2008). Each population
has been isolated on the basis of cell surface markers and characterized
functionally either in vivo or in vitro.
In the primary analysis of both data-sets a limit of detection of Ct=28 was
assumed.
For both datasets we evaluated our new approach to deal with censoring for
both a linear and an rbf kernel. First, we assess the effect of the probit noise
model compared to the Gaussian noise model. Therefore we make use of
the generative models and calculate the posterior mean of p(yc|xc) for all
censored data points c. Furthermore we quantified the performance of the
different approaches in terms of their ability to reflect the known structure
of the data by calculating the nearest neighbour error: for each cell we
established the label of its nearest neighbour in the respective 2D space; if the
label differed from the original cell, we increased the nearest neighbour error
count by one. We chose this metric as it is easily interpretable and commonly
used in the machine learning community to quantify the performance of
dimensionality reduction/visualisation methods; however, as its power is
limited (e.g. it does not account for newly discovered sub-populations),
visual inspection as additional performance measure is crucial.

3 RESULTS
In figure 1 the fraction of censored data-points in both data-sets is
illustrated for the different genes. It can be seen that in both data-sets
a considerable fraction of data is censored across some dimensions
(genes), while for other dimensions no censoring occurred (i.e.
expression of the respective gene could be detected with a Ct
number below the LOD for all cells.)

In the following we will first evaluate different approaches of
PCA with censored data for the mESC data. Next, we will repeat the
evaluation with a different dataset on blood stem/progenitor cells.

3.1 Evaluation of censored PCA for mESC data
The result of a standard PCA where all censored values are
substituted with LOD (as described in section 2.3) is shown in figure
4(D). This method was used in the original publication and yielded
a nearest neighbour error of 124. In the original high-dimensional
data-space the nearest neighbour error was 10. Note that this error
was calculated using the substitution approach.

While TE cells can be clearly distinguished from all other cell
types, early cells from 2-cell stage to 8-cell stage are strongly
overlapping. Similarly, there is a strong overlap between ICM cells
and PE/EPI cells.
Next, we compare the substitution method with our new algorithm
for censored PCA. In figure 4(E) and (F) the results for a fixed
λ−2 = 10 are shown together with the representation where λ was
optimised together with the other kernel parameters.
For a quantitative analysis of the effects of the different noise
models, we used the generative mapping from the latent space

2 0 2 4 6 8

Hand1
Id2

Klf4

Tcfap2a
Tcf23

Gene expression

Fig. 5. Difference in gene expression between the 2 subclusters at the 16-
cell stage for different mappings. The error bars show the variation of
gene expression within the smaller sub-cluster (1 standard deviation in each
direction). For convenience, genes with the greatest differences are labelled
in the plots.

to the high-dimensional space to calculate the posterior means
given all censored data-points in the low-dimensional space. We
then calculated the residuals between the posterior means and the
respective normalised LOD. In figure 4 (A) to (C) it can be seen
that when using the substitution approach, the censored values are
mapped consistently to values lower than the normalised LOD.
In contrast, when our new approach is used, a large fraction
of censored data-points is mapped to values greater than the
normalised LOD, which is in better agreement with the ground truth.
When λ was learnt from the data by optimising it in form of a kernel
parameter, the maximum a posteriori estimate was 15.3 for λ−2.
Compared to a fixed value for λ−2 of 10, censored data-points were
mapped closer to the normalised LOD. It can be seen that taking
into account the censoring results in an improved mapping where
EPI cells can be separated better from ICM/PE cells than in the
standard method. This is reflected in lower nearest-neighbour errors
of 113 and 88 for fixed λ and learnt λ respectively.

We also evaluated our new approach for an rbf kernel, which
allows non-linearities to be taken into account. The resulting
mappings are shown in figure 4 (G) to (I).

It can be seen that in the non-linear case, the separation between
different time-points and cell-times is comparable between the
substitution approach and our new approach. This is also reflected
in the similar nearest neighbour errors of 11, 12 and 10 respectively.

However, it can be seen that the ICM cells as well as cells from the
16-cell stage are separated into two clusters when the censoring is
accounted for. This leaves room for interpretation. When comparing
mean gene expression for the two sub-clusters in the 16-cell stage
we found that expression in Id2 and Klf4 differed considerably
between the two subclusters (p-values after Wilcoxon rank sum test
10−6 and 10−11 respectively, figure 5). This is in good agreement
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Fig. 6. A to C: Distribution of residuals between posterior means and the normalised LODs for differnt approaches. D to F: PCA with censored data from
blood data-set. Standard PCA with substitution approach (D), taking censoring into account with probit noise model and fixed λ (E) and probit noise model
with λ learnt from data (F). G to J: GPLVM with rbf kernel for blood data. Standard GPLVM with substitution approach (G), taking censoring into account
with probit noise model and fixed λ (H) and probit noise model with λ learnt from data (I). The background intensity indicates the relative uncertainty of the
mapping with black pixels corresponding to the highest uncertainty of the mapping3.

with previously reported experimental results from Guo et al. (2010)
who show that Id2 is the earliest markers for outer cells. Similarly,
when comparing mean gene expressions in the 2 subclusters of ICM
cells we found that they differed significantly in expression of Fgf4
(p=0.01, Wilcoxon rank sum test). This is also in good agreement
with previously reported results showing differential expression of
Fgf4 in the early inner cell mass Guo et al. (2010). Thus, when
allowing for non-linearities and taking censoring into account, it
was possible to correctly represent the structure of the data for all
cell-types and resolve subpopulations which could not be revealed
when not accounting for censoring. In supplementary figure 3 the
nearest neighbour errors for all approaches to perform a PCA of
the mESC data-set are shown. In supplementary figure 1 we show
results for the substitution approach with other multivariate methods
for different choices of Ctsub. All approaches yielded higher nearest
neighbour errors than the GPLVM with probit noise model.

3.2 Evaluation of censored PCA for blood
stem/progenitor cell data

To evaluate the potential benefits of our new approach for PCA of
censored data with a second independent biological dataset, we next
applied our new analysis tools to a recently generated single cell
gene expression dataset for 5 FACS sorted populations of blood stem
and progenitor cells.
As for the mESC data set we first compared standard PCA with
the substitution approach to censored PCA with the probit noise
model. Results are shown in figure 6 (D) to (F). It can be seen
that by accounting for censoring in the data, a better separation
is achieved between most cell types; this occurs most clearly for
CLPs and GMPs. Consequently nearest neighbour errors decreased
from 254 errors with the standard substitution approach to 193 and
217 when censoring was accounted for by fixing λ and learning λ
respectively. As for the mESC data-set we found that the censored
PCA approach yielded better posterior mean values for censored
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data-points than the standard approach using substitution (figure 6
(A) to (C)).

We also used an rbf kernel to evaluate the non-linear PCA
with censored data. Results for the different approaches are shown
in figure 6 (G) to (I). When accounting for the censoring, the
nearest neighbour error was reduced and a better separation between
CLPs and LMPPs than for the substitution approach was possible.
Nearest neighbour error rates for all approaches are summarised in
supplementary figure 3. In supplementary figure 2 we show results
for the substitution approach with other multivariate methods for
different choices of Ctsub. All approaches yielded higher nearest
neighbour errors than the GPLVM with probit noise model.

4 DISCUSSION
Conventional approaches for PCA of censored data where values
beyond the detection limit are substituted with the detection limit
can yield strongly biased results. We have proposed a novel
approach for performing dual PCA of censored data. Our new
approach resulted in a mapping between low dimensional and
high-dimensional space such that more censored data-points were
mapped correctly to values greater than the detection limit. It was
previously shown that for single-cell qPCR data it is crucial to
explicitly model the population of non-detects when performing
a statistical test of univariate differential expression (McDavid
et al., 2013). To date no approaches for dealing with this issue
for multivariate analyses such as PCA have been proposed. We
evaluated our new approach for two different real-world data-sets
comprising measurements of single-cell qPCR data. For both data-
sets the PCA representations better reflected the known structure of
the data when the censoring was explicitly considered. We evaluated
using a linear as well as a non-linear kernel and for both data-sets
accounting for non-linearities resulted in better visualisations. In
contrast to using a linear kernel (i.e. PCA), this comes at the price
of losing interpretability - while in the linear case loadings can be
easily visualised in a bi-plot, in the non-linear case this is more
difficult as loadings change across the 2D plot. Whether trading
off interpretability for complexity is beneficial depends highly on
the data-set under consideration and any non-linearities present. In
the context of single-cell qPCR data our analyses suggest that a non-
linear kernel is necessary to capture the typical complex dependency
structure of such data.

For linear kernels (corresponding to standard PCA) as well
as for non-linear kernels (allowing for interactions), our new
approach yielded considerably lower nearest-neighbour error rates
with reductions of up to 29% in the linear case. Furthermore, in the
case of mESC data, the structure of sub-populations was reflected
better in the case when censoring was taken into account in the
non-linear case: in contrast to non-linear probabilistic PCA with the
substitution approach, two sub-populations corresponding to cells
from the 16-cell stage with high Id2 expression and cells in the
inner cell-mass with high Fgf4 expression could be identified. These
known subpopulations were previously identified in univariate
analysis of cells from the same cell stage. However, this standard
approach has several drawbacks as it can become unfeasible when
too many genes are measured simultaneously. Furthermore, only
univariate patterns can be identified, while important information

may lie in multivariate patterns which could be defined by the
differential expression of several genes. Finally, when analysing
univariate distributions or correlations between two genes for cells
from the same cell-stage, the identified subpopulations cannot be
put in context with other cells from other cell-stages. In contrast,
when performing a probabilistic (kernel) PCA of all cell stages,
it is possible to identify complex multivariate subpopulations and
by simultaneously displaying all cells, the PCA plot provides an
intuitive illustration of the relation between all cell-populations.
This was achieved by implementing a Gaussian-process latent
variable model with different kernels for each dimension. Censoring
was accounted for by a probit noise level. The steepness parameter
of the probit function was learnt together with other kernel
parameters, resulting in a parameter-free approach for PCA of
censored data.

While our approach was designed for accounting for uncertainties
in single-cell qPCR data, related issues can be found in single-
cell RNAseq data. In contrast to single-cell qPCR however, very
high levels of technical noise are present in all commonly used
protocols for single-cell RNAseq (Brennecke et al., 2013). This
technical noise is particularly strong for low levels of expression
and dominates all other uncertainties (like censoring). Although
these uncertainties are inherently different from the censoring found
in single-cell qPCR, the flexible framework of Gaussian Processes
allows to account for these uncertainties in a straight forward
manner by using and additional term in the (Gaussian) noise model
reflecting the technical noise which can be estimated using the
approach suggested by Brennecke et al. (2013). While single-
cell RNA-Seq data is generated in form of read counts, it is
crucial to perform normalisation steps accounting for different cell
sizes, different sequencing depth and, depending on the protocol,
different transcript lengths (Yan et al., 2013; Brennecke et al.,
2013). Such normalisation can be performed by calculating RPKM,
FPKM or using DEseq inspired normalisation procedures (Anders
and Huber, 2010; Brennecke et al., 2013). After normalisation,
gene expression is measured on a continuous scale such that -
after an appropriate variance-stabilising transformation (e.g. log-
transformation) - GPLVM can be applied without modification. As
efficient implementations allow fast processing of datasets with tens
of thousands of genes and hundreds of cells without overfitting, it is
a promising tool for analysing such datasets.

The main drawback of our proposed approach is that it scales
cubically with the number of cells with which may be prohibitive
when the number of analysed cells is very large ( >> 104).
While standard GPLVMs are time-consuming, too, significant
speed-ups can be achieved due to sharing the kernel across all
dimensions and using a spherical noise model. However, if
necessary, approximations resulting in sparse covariance matrices
commonly used in Gaussian process literature, could be applied for
our framework too. For the application to single-cell qPCR data, we
found that this was not necessary as computation times were in the
order of only few hours on a standard laptop. We acknowledge that
this is a considerable increase of time compared to standard PCA
which can be performed when using the substitution approach to
deal with censored data. In applications with only a small fraction
of censored data-points this rather large increase in runtime may
only result in minor changes of the PCA representation and simpler
approaches such as the substitution approach or treating the data as
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missing may be a valid alternative if runtime is an issue. However,
in the case of single-cell qPCR data we have shown that taking
censoring into account avoids a potential bias in low-dimensional
representations due to the censoring. This in turn can result in better
biological insights: first, our approach can yield a better separation
of different cell types and second, even reveal new biologically
meaningful sub-populations which may be obscured due to a bias
introduced by the censoring. When designing single-cell qPCR
experiments, the quantification of heterogeneities and the reliable
identification of new sub-populations are often key goals. That is
why we believe that our approach will be of interest for many
practitioners working with censored data, especially in the field of
high-throughput single-cell qPCR.

5 CONCLUSION
We have presented a new approach for performing probabilistic
PCA for censored data within the framework of Gaussian process
latent variable models. Therefore we implemented an appropriate
noise model and allowed different kernels for each dimension.
We showed that for single-cell qPCR data with a high fraction
of censored data-points the resulting probabilistic (kernel) PCA
representations reflected the true structure of the data better than
conventional approaches. In two real world datasets known cell
types could be better separated when censoring was taken into
account and in one dataset several distinct subpopulations could be
revealed which could not be resolved with standard PCA.
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Biological Sciences Research Council (BBSRC). VM is funded by
a Medical Research Council studentship.

REFERENCES
Amir, E.-a. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall,

S. C., Shenfeld, D. K., Krishnaswamy, S., Nolan, G. P., and Pe’er, D. (2013). visne
enables visualization of high dimensional single-cell data and reveals phenotypic
heterogeneity of leukemia. Nat Biotechnol, 31(6), 545–552.

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count
data. Genome Biol, 11(10), R106.

Ballenberger, N., Lluis, A., von Mutius, E., Illi, S., and Schaub, B. (2012). Novel
statistical approaches for non-normal censored immunological data: analysis of
cytokine and gene expression data. PLoS One, 7(10), e46423.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer.

Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V.,
Baying, B., Benes, V., Teichmann, S. A., Marioni, J. C., et al. (2013). Accounting
for technical noise in single-cell rna-seq experiments. Nature methods.

Buettner, F. and Theis, F. J. (2012). A novel approach for resolving differences in single-
cell gene expression patterns from zygote to blastocyst. Bioinformatics, 28(18),
i626–i632.

Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P. S., Rothenberg, M. E., Leyrat, A. A.,
Sim, S., Okamoto, J., Johnston, D. M., Qian, D., Zabala, M., Bueno, J., Neff, N. F.,
Wang, J., Shelton, A. A., Visser, B., Hisamori, S., Shimono, Y., van de Wetering,
M., Clevers, H., Clarke, M. F., and Quake, S. R. (2011). Single-cell dissection
of transcriptional heterogeneity in human colon tumors. Nat Biotechnol, 29(12),
1120–1127.

Dominguez, M. H., Chattopadhyay, P. K., Ma, S., Lamoreaux, L., McDavid, A., Finak,
G., Gottardo, R., Koup, R. A., and Roederer, M. (2013). Highly multiplexed

quantitation of gene expression on single cells. J Immunol Methods, 391(1-2),
133–145.

Fluidigm Corporation (2012). Application guidance: Single-cell data analysis.
Grochow, K., Martin, S. L., Hertzmann, A., and Popovic., Z. (2004). Style-based

inverse kinematics. In ACM Transactions on Graphics (SIGGRAPH 2004).
Guo, G., Huss, M., Tong, G. Q., Wang, C., Li Sun, L., Clarke, N. D., and Robson,

P. (2010). Resolution of cell fate decisions revealed by single-cell gene expression
analysis from zygote to blastocyst. Dev Cell, 18(4), 675–685.

Lawrence, N. (2005). Probabilistic non-linear principal component analysis with
gaussian process latent variable models. J. Mach. Learn. Res., 6, 1783–1816.

Lawrence, N., Platt, J., and Jordan, M. (2005). Extensions of the informative vector
machine. In J. Winkler, M. Niranjan, and N. Lawrence, editors, Deterministic
and Statistical Methods in Machine Learning, volume 3635 of Lecture Notes in
Computer Science, pages 56–87. Springer Berlin Heidelberg.

Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation of
high dimensional data. In In NIPS, page 2004.

Lawrence, N. D. (2006). Local distance preservation in the gp-lvm through back
constraints. In In ICML, pages 513–520. ACM Press.

Lubin, J. H., Colt, J. S., Camann, D., Davis, S., Cerhan, J. R., Severson, R. K.,
Bernstein, L., and Hartge, P. (2004). Epidemiologic evaluation of measurement data
in the presence of detection limits. Environ Health Perspect, 112(17), 1691–1696.

McDavid, A., Finak, G., Chattopadyay, P. K., Dominguez, M., Lamoreaux, L., Ma,
S. S., Roederer, M., and Gottardo, R. (2013). Data exploration, quality control
and testing in single-cell qpcr-based gene expression experiments. Bioinformatics,
29(4), 461–467.

Minka, T. (2001). Expectation propagation for approximate bayesian inference. In
Proceedings of the Seventeenth Conference Annual Conference on Uncertainty
in Artificial Intelligence (UAI-01), pages 362–369, San Francisco, CA. Morgan
Kaufmann.

Moignard, V., Macaulay, I. C., Swiers, G., Buettner, F., Schütte, J., Calero-Nieto, F. J.,
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