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Abstract

In this diploma thesis the emerging theory of dilation-reflection wavelet sets is stud-

ied, by which a multiresolution analysis is contructed via a Hilbert space basis of

fractal functions on foldable figures. Our work centers on the notion of triple wavelet

sets, a type of sets that tesselate Euclidean space under three distinct transformation

groups. We give existence proofs for such wavelet sets in all dimensions and provide

examples. We found a link to the third Hilbert problem and apply its solution to our

tesselation problems. Finally, we include a comparative study of our approach with

some recent similar work by the research group of Prof. Guido Weiss in a designated

section.
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Chapter 1

A Brief Introduction to

Wavelets

Wavelet theory is a fairly new answer to a fairly old problem – the problem of finding

convenient linear representations of functions belonging to a Hilbert space. It has

been motivated in particular by the need to model signals that are transient, i.e.

functions that decay fast or have compact support. Wavelets are a way of mending

various shortcomings that classical Fourier analysis encounters in this field.

Approximation theory, of which wavelet theory is a subfield, is concerned with

finding (generalised) bases for function spaces like L2(R). It is intuitively obvious

that the elements of such a basis should resemble the functions we are trying to

represent. Given a compactly supported signal, we will achieve better convergence

when using compactly supported basis functions than if stationary functions were

used.

A typical example of the drawbacks when using the latter method is the problem

of the Gibbs effect, which produces “overshooting” oscillations in the approximation

of functions with jump discontinuities (e.g. a square wave) even when using series up

to high orders. In image compression, an instance of approximating two-dimensional

signals, this effect is responsible for flaws in the rendering of images that contain edges

of sharp contrast. Since signals with discontinuities are common in applications, the

advantage of knowing basis functions localised in time (or space) is clear.

In this chapter we will first give a brief exposition of general wavelet theory, es-

tablishing common terminology and giving examples. In a second subsection, we will

9
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discuss wavelet sets, with some emphasis on the situation in higher dimensions. For

general introductory reading, we refer to the book by Hernandez and Weiss [HW96]

and Mallat’s book [SM99].

1.1 General Principles

A wavelet in its widest sense is an element ϕ(t) of a Hilbert space of functionsH which

generates a basis under a system of unitary operators that shift ϕ in both time and

frequency. Possible variations in the definition depend on the underlying function

space (e.g. L2(Rn), with functions on manifolds as a possible generalisation), the

unitary system acting on it (usually dilations and translations, but possibly also

reflections, rotations or shears), the kind of basis generated (a complete orthonomal

basis, a Riesz basis or a frame), and occasionally the measure on H. As in Fourier

analysis, there are discrete and continuous versions, but we will focus on the discrete

case here. For the sake of exposition we give the most common and straightforward

definition, and generalise gradually.

1.1 Definition. A dyadic orthonormal wavelet in one dimension (also called a

mother wavelet) is a unit vector ϕ ∈ L2(R), such that the systemn
ϕj,k(t) := 2

j
2ϕ(2jt− k) : j, k ∈ Z

o
is a complete orthonormal basis of L2(R).

1.2 Example. An instance for which the above conditions are immediately verified

is the well-known Haar wavelet, given by

ϕ(t) = χ[0, 1
2

)(t)− χ[ 1
2
,1)(t).

This is an example of a discontinuous wavelet; however there also exist wavelets of

arbitrary degree of smoothness.

Returning to our definition, we can see that the above system can be rewritten as¦
DjT kϕ : j, k ∈ Z

©
, where D, T are unitary operators acting on L2(R) via

(Dϕ)(t) =
√

2ϕ(2t) , (Tϕ)(t) = ϕ(t− 1).

In other words, these dilation and translation operators constitute a unitary system

U = {DjT k : j, k ∈ Z} (denoted UD,T or 〈D,T 〉 in [DL98]) which realises the shifts
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in frequency and time. This is where we will see some far-reaching generalisations

in this treatise.

Proceeding with generalities, as an important basic result we mention at this point

a widely used criterion for all dyadic orthonormal 1-dimensional wavelets.

1.3 Proposition. A unit vector ϕ ∈ L2(R) is a wavelet precisely if the following

two conditions are satisfied:X
j∈Z
|ϕ̂(2jξ)|2 = 1 for a.e. ξ ∈ R,

and for every odd integer m, we have

∞X
j=0

ϕ̂(2jξ)ϕ̂(2j(ξ + 2mπ)) = 0 for a.e. ξ ∈ R.

For a proof, we refer to chapter 7 of Weiss’s book [HW96].

Fourier transform. Throughout this work, we will use the normalised Fourier-

Plancherel transform, given by

(Ff)(s) =
1√
2π

Z
R
s−istf(t)dt = bf(s)

for all f ∈ L2(R). This way, the Fourier transform becomes a unitary operator and

hence an isometric automorphism of L2(R).

We will also need the concept of a Multiresolution Analysis, defined as follows.

1.4 Definition. A Multiresolution Analysis (MRA) on the space L2(R) is a sequence

(Vj)j∈Z of closed subspaces of L2(R), satisfying the following properties:

1. Vj ⊂ Vj+1 for all k ∈ Z;

2.
[
j∈Z

Vj = L2(R);

3. f ∈ Vj ⇔ f(2·) ∈ Vj+1;

4. there exists a function ϕ ∈ V0 such that {ϕ(· − k) : k ∈ Z} is an orthonormal

basis for V0.
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Multiresolution Analyses were introduced by Meyer and Mallat in 1989 as a

framework for constructing discrete wavelet transforms. To interpret the above defi-

nition in the context of wavelets, note that by the above, an MRA consists mainly of

a sequence of nested subspaces of L2(R), each Vj being a “refinement in frequency”

of the previous space Vj−1. By defining the wavelet spaces Wj as the orthogonal

complement of Vj in Vj+1, i.e. Wj = Vj+1 	 Vj , the space L2(R) decomposes into a

direct sum of orthogonal subspaces
L
j∈ZWj . The functions ϕj giving rise to a basis

for each Vj under Z-translation are known as the scaling functions or father wavelets.

Moreover, the above definition implies that for each j, there exists a function ψj , i.e.

the actual wavelet function or mother wavelet, whose Z-translates form a basis of

Wj . In short, these ψj are wavelet functions precisely in the sense of Definition 1.1.

A proof and thorough discussion of these important facts can be found in [HW96],

chapter 2.

Besides being ubiquitous in wavelet theory, we mention this concept here because

in chapter 2 we will see, under a slight alteration of Definition 1.4, how this concept

may be extended to a theory of dilation-reflection wavelets in an interesting way.

1.2 MSF Wavelets and Wavelet Sets

This section introduces a class of wavelets that will dominate the rest of this work.

1.5 Definition (Wavelet set). A measurable set E ⊆ R is called a wavelet set if

the scaled characteristic function 1√
λ(E)

χE is the Fourier transform of a wavelet.

A wavelet that arises in this way is called a minimally supported frequency (MSF)

wavelet (sometimes also called an s-elementary wavelet).

1.6 Remark. The motivation for the name “MSF” is that orthonormal wavelets

have the property that λ(supp bϕ) ≥ 1 (where λ denotes Lebesgue measure), with

equality if and only if | bϕ| = 1√
λ(E)

χE holds a.e. for some measurable E in R.

Main Example. Let S = [−2π,−π] ∪ [π, 2π]. Then the function ϕS , defined byÓϕS = 1√
2π
χS , is the so-called Shannon wavelet, also known as the Littlewood-Paley

wavelet, displayed in the following graph. The set S is known as the Shannon set.
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Figure 1.2.

1.7 Proposition. The Shannon wavelet is indeed a wavelet.

Proof. This could be shown by applying Proposition 1.3, but in fact it will also

follow from Theorem 1.14, in which the Shannon set gives a point of departure for

describing all other 1-dimensional wavelet sets. 2

The next two sections will be devoted to a complete characterisation of wavelet

sets, first in one dimension and then generalised to sets in Rn. For this, let us first

establish some terminology relating to group actions on Rn.

1.8 Definition (G-tile). Let G be a group acting on Rn which maps measurable

sets to measurable sets. A measurable set X ⊆ Rn is called a G-tile (or G-tiling set,

or G-fundamental domain, or a G-generator of a partition of Rn) if Rn is a disjoint

union of the G-copies of X:

Rn =
·[

g∈G
g(X).

For pairs of groups (G1,G2) (or analogously triples, as seen later), a (G1,G2)-tile is a

set which is both a G1-tile and a G2-tile.

1.9 Remark. The term “fundamental domain” is usually only applied when the tile

in question is a compact connected set (by contrary, this will not be assumed of a

G-tile in general).

1.10 Remark. The usual neglection of Lebesgue-null sets will be tacitly applied

throughout (in particular, unless otherwise specified, we will use the term “disjoint”
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to mean “possibly containing Lebesgue-null sets in the intersection”, and for a “mea-

surable partition” of a set X =
S
iXi (with X,Xi measurable), the set X \

S
iXi

may be a Lebesgue-null set). Further, any subsets of Rn mentioned throughout this

text will generally be assumed to be Lebesgue measurable.

1.11 Definition (G-congruence). Let G be a group of measurable transformations

acting on Rn, and E,F ⊆ Rn be measurable sets. Then E,F are said to be G-

congruent or congruent modulo G (in symbols, E ∼G F ) if there exist measurable

partitions {Eg : g ∈ G}, {Fg : g ∈ G} of E and F such that Fg = g(Eg) for all g ∈ G.

1.12 Proposition. G-congruence is an equivalence relation.

1.13 Proposition. If E is a G-tile, then F is also a G-tile iff E ∼G F .

The proofs are elementary.

1.2.1 Characterisation of 1-dimensional MSF wavelets

Wavelet sets in 1 dimension, and hence the associated MSF wavelets, are charac-

terised in a very simple way by means of the group of dilations by powers of 2 and

the group of translations by 2kπ acting on R.

1.14 Theorem. A measurable set E ⊆ R is a wavelet set iff it is both dilation-2

congruent and translation-2π congruent to the Shannon wavelet set S = [−2π,−π)∪
[π, 2π).

Before the proof, let us briefly determine how the actions of D and T , i.e. dilation

by 2 and translation by 1, behave under the Fourier transform. It is easily seen that

(FTϕ)(s) =
Z

R
e−istϕ(t− 1)dt = e−is(Fϕ)(s),

whence, replacing ϕ by F−1ϕ, we have (FTF−1)ϕ = e−isϕ. Using Mh to denote

the multiplication operator f 7→ hf , and denoting by ÒT the “conjugation” FTF−1

of T by the Fourier transform, we obtain that ÒT = Me−is .

A similar computation for the dilation operator D verifies that ÒD = D−1. For

(positive or negative) powers of these operators, we have

ÓTn = FTnF−1 = (FTF−1)n = Me−ins ,
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and similarly, dDn = D−n.

After these observations we return to showing our result.

Proof. We start with the backwards implication. Let E be dilation-2 and translation-

2π congruent to S = [−2π,−π) ∪ [π, 2π). It is well-known that that the set of

normalised exponentials { 1√
2π
eiks : n ∈ Z} is an orthonormal basis for the space

L2([0, 2π]). Since these exponentials are 2π-periodic, they will also constitute an

ONB when defined on any set that is 2π-translation congruent to [0, 2π] – this holds,

in particular, for the Shannon set. Therefore, if E is 2π-translation congruent to S,

we have found an orthonormal basis for L2(E).

Next, given our evaluation of the operator T in the Fourier domain, we can see

that a complex exponential 1√
2π
eiks, defined on E, may be rewritten as Meiks

1√
2π

=ÓT k 1√
2π

= ÓT k 1√
2π
χE . Introducing ϕ as the potential wavelet that arises from the set

E, this in turn evaluates to ÓT k bϕ = ÔT kϕ. This way, the system {ÔT kϕ : k ∈ Z} is an

ONB for the space L2(E).

Having required E to be also congruent to S modulo dilation by powers of 2,

and given that S tiles R under this group, we see that E is also a dilation-2 tile for

R (this is a simple application of Proposition 1.13). Thus we see that the system

{L2(2jE) : j ∈ Z} yields a direct-sum decomposition of L2(R).

Now, our proof is almost complete: With the functions ÔT kϕ, k ∈ Z being ab ONB

for L2(E), the system DjÔT kϕ is an ONB for L2(2jE) for each j ∈ Z. Summing over

these subspaces, the system {DjÔT kϕ : j, k ∈ Z} = {ÙD−jT kϕ : j, k ∈ Z} is a basis

for L2(R). Taking the Fourier transform of the whole system preserves its property

of being an orthonormal basis, which leads directly into the definition of ϕ being a

wavelet, as required.

The proof of the converse uses similar methods but is lengthier, drawing in ad-

dition on spectral set theory. See [LM06], p.6-8 for a complete argument. 2

1.15 Remark. In a recent preprint [ABM07], it was proved that although, in a sense,

the translation and dilation groups are “competing”, there are actually uncountably

many wavelet sets in 1 dimension. For a complete discussion of 1-dimensional wavelet

sets see chapter 7.2. of [HW96].
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1.2.2 MSF wavelets in n dimensions

Most of the literature on wavelets revolves around the one-dimensional case. Outside

of this, of course 2-dimensional wavelets have received the most attention because

of applications in image analysis, spawning such fields as curvelets, shearlets, con-

tourlets and other derivatives that take into account the features of common two-

dimensional signals (cf. [CD02,CDDY06]). In contrast, we shall specifically address

the general n-dimensional case.

We make a few modifications to Definitions 1.1 and 1.5 concerning the unitary

system U acting on L2(Rn) under which a function generates a basis. First, the

system of dilations by powers of 2 is replaced by a system of matrix dilations.

1.16 Definition. A matrix A ∈ GL(n,R) is called expansive if all its eigenvalues

are greater than 1 in modulus.

1.17 Remark. Several other definitions equivalent to the above are also in use (cf.

[LM06], p.3). For example, when verifying that the conditions of Theorem 1.23 apply

to our situation, the following definition is useful: A matrix A is called expansive if

for every neighbourhood N of 0 and every r > 0, there exists an l ∈ N such that

B(0, r) ⊆ AlN .

We can now replace the dilation operator D, given by (Dϕ)(t) =
√

2ϕ(2t), by the

unitary operator

DA : L2(Rn)→ L2(Rn); (DAϕ)(t) = |detA|
1
2ϕ(At).

The translation operator T , given by (Tϕ)(t) = ϕ(t − 1), will be replaced by n

translation operators Tl in the coordinate directions, given by

Tl : L2(Rn)→ L2(Rn); (Tlϕ)(t) = ϕ(t− el), 1 ≤ l ≤ n,

where el is the lth unit basis vector. Now we are ready to define n-dimensional

wavelets.

1.18 Definition. A dilation-A, regular-translation orthonormal wavelet is a unit

vector ϕ ∈ L2(Rn), such that the system¦
Dj
AT

k1
1 . . . T kn

n ϕ : j, ki ∈ Z
©

is a complete orthonormal basis of L2(Rn).
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1.19 Remark. Considering lattices other than Zn in this definition does not extend

the theory: As shown in [ILP98], for a general lattice, there exists a matrix B ∈
GL(n,R) such that conjugation withB takes the entire wavelet system to the regular-

translation system above.

1.20 Definition. A measurable set E ⊆ R is called a dilation-A wavelet set if

the scaled characteristic function 1√
λ(E)

χE is the Fourier transform of a dilation-A

wavelet.

The characterisation of wavelet sets and associated MSF wavelets in several di-

mensions, as described by the following theorem, shows little qualitative difference

to the preceding characterisation of 1-dimensional wavelet sets. However, showing

their actual existence and constructing examples is more involved. Both problems

are dealt with here.

1.21 Theorem. Let A ∈ GL(n,R) be an expansive matrix. A measurable set E ⊆
Rn is a dilation-A wavelet set if it tiles Rn both under the dilation group D = {Aj :

j ∈ Z} and under the translation lattice 2π · Zn.

Proof. The argument follows the last proof very closely: We consider the set of

exponential functions {(2π)−
n
2 eik·s : k ∈ Zn}, this time restricted to the n-cubeQn

j=1[0, 2π), on which they form an orthonormal basis. Then these functions are

also a basis on our set E, being congruent to this cube via the lattice 2π · Zn.

For a translation operator Tl, the counterpart ÒTl in the Fourier domain is given by

the modulation Meiel·s . This way, we can again rewrite {(2π)−
n
2 eik·s : k ∈ Zn} as

{ÔT k11 . . .
Ô
T kn
n bϕ(s) : k = (k1, . . . , kn) ∈ Zn}, thereby defining the function ϕ.

Since E also tiles Rn under dilations by A-powers, the entire space L2(Rn) decom-

poses into a direct sum of subspaces of functions restricted to AjE. As seen before,

this leads to the system {ÔD−jA ÔT k11 . . .
Ô
T kn
n bϕ} being a basis of L2(Rn) (after checking

that dDj
A = D−jA ), and by taking the inverse Fourier transform, we obtain a wavelet

system generated by ϕ. 2

Note that this theorem only gives sufficient conditions for a set to be a dilation-A

wavelet set, whereas nothing is said to imply that such a set exists. The non-trivial

existence of sets which generate tesselations under matrix dilations and lattice trans-

lations is guaranteed by the following theorem by Dai, Larson and Speegle [DLS97].

We consider it worthwhile to quote it in full, after some prefatory definitions.
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1.22 Definition. Let X be a metric space, and let m be a σ-finite nonatomic Borel

measure on X for which the measure of every open set is positive and for which

bounded sets have finite measure. Let T and D be countable groups of homeomor-

phisms of X mapping bounded sets to bounded sets, and mapping m-null sets to

m-null sets.

A pair (T ,D) will be called an abstract dilation-translation pair if

1. For each bounded set E and each open set F there are elements δ ∈ D and

τ ∈ T such that τ(E) ⊆ δ(F ), and

2. there is a fixed point θ for D in X which has the property that if N is any

neighbourhood of θ and E is any bounded set, there is an element δ ∈ D such

that δ(E) ⊆ N .

1.23 Theorem. Let X,B,m,D, T be as above, with (D, T ) an abstract dilation-

translation pair, and with θ the D-fixed point as above. Let E and F be bounded

measurable sets in X such that E contains a neighbourhood of θ, and F has nonempty

interior and is bounded away from θ. Then there is a measurable set G ⊆ X,

contained in
S
δ∈D δ(F ), which is both D-congruent to F and T -congruent to E.

To use this abstract congruency theorem for our purposes, one can verify that

matrix dilation and translation along a lattice actually form an “abstract dilation-

translation pair” in terms of the previous definition. For the sets E,F in the theorem,

we substitute tiling sets for the group DA of dilations by A and the group of trans-

lations along Zn. Such sets are easily found: If B denotes the unit ball in Rn, then

the set FA := A(B) \ B is a DA-tile, and a regular n-cube is a tile for Zn. We may

check that these sets indeed fulfil the conditions imposed on E and F . This way, it

is an immediate corollary that there exist sets which are DA-congruent to FA and

simultaneously Zn-congruent to the n-cube, and hence constitute dilation-A wavelet

sets.

The proof of Theorem 1.23 is constructive, which has prompted several authors

to design and publish examples of such two-way tiles. We present two of them in

Figures 1.2 and 1.3:
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Figure 1.2.

Figure 1.3.

The above sets have been called the “four corners set” and the “wedding cake

set”. Both tile Rn under translations along 2π · Z2 and under the dilation group

{An : n ∈ Z} with A = 2I. They were presented by X. Dai and D. Larson in [DL98],

after some work by P.M. Soardi and D. Weiland had paved the way [SW98], marking

an important step forward in finding MSF wavelets in several dimensions.



Chapter 2

Dilation-Reflection Wavelet Sets

In this chapter we consider a different kind of wavelet sets from those treated to

far, i.e. dilation-reflection wavelets. As opposed to “traditional” wavelet sets, their

construction does not involve Fourier analysis, but the common ground lies in the use

of measurable tilings of the underlying space Rn under a dual dynamical system. This

way, the term “wavelet set” as introduced earlier will be assigned a quite different

meaning, namely the support of a mother wavelet, rather than the support of its

Fourier transform.

In the following sections we will explain, mostly without proofs, how a multi-

resolution analysis on Rn can be constructed using fractal functions defined on fold-

able figures. For details, we refer to [GHMa,GHMb,LM06,Mas95]. The first section

treats of the geometric concepts of reflection groups, and the second combines these

notions with fractal interpolation functions to yield an MRA structure.

2.1 Reflection Groups and Foldable Figures

We start with a series of definitions, most of them fairly self-explanatory:

2.1 Definition. Given a hyperplane H ⊂ Rn, determined by a vector r via H =

{x ∈ Rn : 〈x, r〉 = 0}, a (linear) reflection about H is a map given by

ρr(x) = x− 2〈x, r〉
〈r, r〉

r.

20
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2.2 Definition. Given an affine hyperplane H ⊂ Rn, determined by a vector r and

a scalar k via H = {x ∈ Rn : 〈x, r〉 = k}, an affine reflection about H is a map given

by

ρr,k(x) = x− 2〈x, r〉 − k
〈r, r〉

r.

Given any finite or infinite set of reflections {ρi : i ∈ I}, we may use them to generate

a finite or infinite reflection group 〈ρi : i ∈ I〉 (of course, a finite set of reflections may

generate an infinite group). Merely for completeness, we shall now define so-called

Coxeter groups which are an abstract characterisation of reflection groups, while our

main concern will be with Weyl groups, constituting a special case of the former.

2.3 Definition. A Coxeter group is an abstract group that admits a presentation

of the form

〈r1, . . . , rn|(rirj)mij = 1〉,

where mii = 1 for all i, mij ≥ 2 for i 6= j, and mij = ∞ denotes that no relation

exists between ρi and ρj .

One can see immediately that any reflection group is a Coxeter group. Proceeding

towards Weyl groups, the following is an important prerequisite, besides being –

despite its apparent special nature – of major importance in Lie theory.

2.4 Definition. A root system R is a finite set of nonzero vectors r1, . . . , rk ∈ Rn

satisfying

1. Rn = span{r1, . . . , rk} ,

2. r, αr ∈ R iff α = ±1 ,

3. ∀r ∈ R : ρr(R) = R, i.e., R is closed under the reflections defined by its

elements,

4. ∀r, s ∈ R : ρr(s)− s ∈ Z · r, i.e.,
2〈s, r〉
〈r, r〉

∈ Z.

We note that in some texts (e.g., [Hum90]), the last condition is omitted, and a

root system fulfilling it in addition is called a crystallographic root system – a term

which hints at the rich applications in tesselation problems in three dimensions. It

is helpful to immediately list a few examples in two dimensions, namely the systems

A1×A1, A2, B2, and G2, which we will meet again in chapter 3:
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figure 2.1. Root systems A1×A1, A2, B2, G2

We are now ready to define the object which will be ubiquitous in the remainder of

this treatise.

2.5 Definition. Given a root system R, the Weyl group associated to R is the

reflection group W given by

W = 〈ρr : r ∈ R〉.

From this finite setting, we may take a step of generalisation to include affine reflec-

tions:

2.6 Definition. Given a root system R, the affine Weyl group associated to R is

the reflection group fW given by

fW = 〈ρr,k : r ∈ R, k ∈ Z〉.

Clearly the relation between root systems and finite (i.e., non-affine) Weyl groups

is one-to-one. A complete classification of root systems has been accomplished,

and a common terminology established for them. For an excellent and accessible

introduction, see Humphreys’ book [Hum90]; another standard text is the volume

Lie Groups and Lie Algebras of Bourbaki’s series Elements of Mathematics [Bou02].
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Suppose we have two root systems, R1 ⊂ Rn and R2 ⊂ Rm. Then it is possible

to define an obvious “direct product” R1 × R2 of these, belonging to the product

space Rm+n, such that each root ri ∈ R1 is perpendicular to every root rj ∈ R2.

This way, R1 × R2 indeed satisfies the defining properties of a root system. The

system A1 ×A1 in Fig. 2.1 is an example of such a product. A root system (and its

associated Weyl group) which cannot be represented in this way as a direct product

of lower-dimensional systems will be called essential.

When classifying root systems, we may thus restrict ouselves to essential systems.

These have been grouped into a relatively small number of classes, denoted by capital

letters A to G, together with a number denoting the dimension. We have the classes

• An with n ≥ 1,

• Bn with n ≥ 2,

• Cn with n ≥ 3,

• Dn with n ≥ 4,

• E6, E7, E8;F4;G2.

There also exist representations of root systems by means of so-called Dynkin dia-

grams, which are directed multigraphs whose connected components represent the

“essential factors” of a root system, while in a similar way, the more general Coxeter

groups may be represented by means of so-called Coxeter graphs; however this is

only tangentially relevant to our aims here.

Lastly, we need to define a geometric object that will form the “basic cell of

self-similarity” of the fractal functions we will introduce in the next section.

2.7 Definition. A compact connected subset F of Rn is called a foldable figure

if there exists a finite set S of affine hyperplanes that cuts F into finitely many

congruent subfigures F1, . . . , Fm, each similar to F , so that reflection in any of the

cutting hyperplanes in S bounding Fk takes it into some Fl.

Foldable figures and Weyl groups are closely related, as shown by the following

theorem:

2.8 Theorem. There exists a bijection between the set of all essential affine Weyl

groups (in all dimensions) and the set of all foldable figures. Each foldable figure is

the fundamental domain of the Weyl group that corresponds to it via this bijection.
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2.2 Construction of Fractal Interpolation Functions

The use of fractal funtions in interpolation problems was first developed by Barns-

ley in 1986 [Bar86]. Subsequent publications on this topic include the paper by

Massopust [Mas90], the work by Geronimo/Hardin [GH93], and the recent paper by

Larson/Massopust [LM06]. We aim to construct fractal functions on simplices in Rn

which interpolate given values at their vertices. Like most fractal objects, the fractal

funtions we consider are obtained via a limiting process.

In [LM06], fractal functions are introduced via so-called iterated function systems.

Using this method, a fractal is defined as a limit of compact sets. Thus we need a

notion of convergence of sets, which is provided by the following metric:

2.9 Definition (Hausdorff distance). Let X and Y be non-empty compact subsets

of a metric space (M,d). Then the Hausdorff distance between X and Y , denoted

dH , is defined as

dH(X,Y ) = max
¨

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
«
.

This gives rise to the metric space of non-empty compact subsets of M , which will

be denoted by K(M).

Hausdorff metric has a number of useful properties, which we will need again in

chapter 3:

1. If the underlying metric space M is complete, then so is K(M). Similarly, if

M is totally bounded, then so is K(M).

2. Lebesgue measure is continuous with respect to limits in Hausdorff metric. In

precise terms, if (An)n∈N ⊆M is a Hausdorff-convergent sequence of compact

sets, then λ( lim
n→∞

An) = lim
n→∞

λ(An).

2.10 Definition. Let (X, d) be a complete metric space with metric d, and let

{Ti : i = 1, . . . , N} be a finite set of contractions on X. The pair ((X, d), {Ti}) is

called an iterated function system (IFS) on X.

Consider an IFS ((X, d), {Ti}) on a metric space X, and define the space K(X)

according to Definition 2.9. We may then define a contractive operator J : K(X)→
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K(X), called the Hutchinson operator, given by

J (E) =
N[
i=1

Ti(E).

One can show that the Hutchinson operator is contractive onK(X) with contractivity

constant max1≤i≤N si, where si is the contractivity constant of Ti. By the above

listed properties of Hausdorff metric, K(X) is a complete metric space, so we may

apply the Banach fixed point theorem to show that T has a unique fixed point,

called the fractal F associated with the IFS ((X, d), {Ti}). The proof of the Banach

fixed point theorem also shows that F can be obtained as the limit of the sequence

Fn = J n(F0), i.e. the n-fold application of J to any set F0 ∈ K(X).

Given this last point, it is not hard to define iterated functions systems on Rn and

produce demonstrative depictions of continuous fractal functions through explicit

computation of a finite term of the above sequence. A related but more generalised

method is to obtain fractal functions as fixed points of so-called Read-Bajraktarević

operators. We will need the following result about a particular kind of such operators:

2.11 Theorem. Let Ω ⊂ R be compact and 1 < N ∈ N. Assume that ui : Ω → Ω

are contractive homeomorphisms inducing a partition on Ω, λi : R→ R are bounded

functions and si real numbers, i = 1, . . . , N . Let

B(f) :=
NX
i=1

[λi + sif ] ◦ u−1
i χui(Ω) .

If max{|si|} < 1, then the operator B is contractive on L∞(Ω) and has a unique

fixed point F : Ω→ R.

Proof. Easily shown using the Banach fixed point theorem. 2

The fixed point obtained this way is an alternative way of defining a fractal function.

An advantage of using operators like the above is that when defined on function

spaces with additional regularity properties, under certain conditions the fixed points

will be elements of the same space. This way, fractal functions with prescribed

regularity may be obtained [Mas05].

We will now explain the construction of a fractal surface on a particular foldable

figure in two dimensions; it will be clear how this can be transferred to Weyl groups

and associated foldable figures of arbitrary dimension.
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Let fW be the affine Weyl group associated to the root system B2. The fundamental

domain of fW is an isosceles triangle with vertices (0, 0), (1, 0), (0, 1), which shall be

denoted by ∆. Being a foldable figure, it may be partitioned into four congruent

triangles ∆i, i = 1, . . . , 4, each similar to ∆. The similitudes may be expressed by

four affine-linear mappings ui : ∆→ ∆i of the form σOi+bi, the Oi being orthogonal

matrices, σ being the similarity ratio, and bi ∈ Rn.

We now define four affine-linear functions λi on ∆ (i.e., first degree polynomi-

als), such that the composition
P4
i=1 λi ◦ u

−1
i is a continuous, piecewise affine-linear

function on ∆. Note that this function is completely determined by its values on the

six vertices of the ∆i (i.e. the “outer” vertices (0, 0)T, (1, 0)T, (0, 1)T and the “inner”

vertices (1
2 , 0)T, (0, 1

2)T, (1
2 ,

1
2)T) – in other words, we are considering a piecewise-

linear interpolation function on six support points. Evidently the space of such

interpolation functions is then six-dimensional.

Now fix a real number s with |s| < 1, to serve as contractivity constant of a contrac-

tive mapping, and define the operator

Bf(x) =
4X
i=1

[λi + sf ] ◦ u−1
i (x)χ∆i(x).

By the previous theorem, B has a unique fixed point, the fractal F = B(F). Fig.

2.2 shows the graph of such a function on our chosen ∆ for a particular choice of

functions λi.

Figure 2.2.

Note that on the six outer and inner vertices, F takes the same values as the functionP4
i=1 λi◦u

−1
i , i.e. it is an interpolation function, too. Moreover, since F only depends
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on the functions {λi : i = 1, . . . , 4} (suppressing the dependency on the constant s

for the moment) which are in turn determined by the interpolation points, there

exists a linear isomorphism from the set of tuples (λ1, . . . , λ4) to the space of fractal

functions on ∆, and this space is also six-dimensional. Therefore, if v1, . . . , v6 denote

the six vertices, there exists a basis of fractal functions {ϕi} for this space satisfying

ϕi(vj) = δij .

As shown in [Mas95], this basis may also be orthonormalised using the Gram-Schmidt

procedure.

We note that so far, no loss of generality was entailed in our choice of ∆. From now

on we consider a general foldable figure ∆, partitioned into N subfigures.

We now make two extensions to this setting: Firstly, the “generating functions”

λi, i = 1, . . . , N may be taken to be polynomials of degree n rather than 1; in

notation, let us write λi ∈ Πd(∆). Remembering the restriction that the functions

λi have to satisfy a join-up condition to give rise to a continuous fractal, we denote the

space of such functions by Jd. This way, we may say that a general fractal function

defined on ∆ is determined by a vector of functions λ = (λ1, . . . , λN ) ∈ (Jd)N . With

this, Theorem 2.11 may still be applied and a wider class of fractals obtained.

More importantly, by the tesselation property of ∆, we can define fractal function

spaces with associated orthonormal bases on each copy r∆ of ∆ under fW, hence

obtaining a space of global fractal functions. Thus, while an element of the space of

fractal functions defined on ∆ was determined by a vector λ ∈ Jd, a global fractal

function is uniquely specified by one such vector for each fW-copy of ∆. We denote by

Λ such a collection of vectors of functions, and by J ÜW the space of such collections.

Thus we have an obvious bijection between J ÜW and the set of global fractal functions

generated by the action of J ÜW , associating to each Λ ∈ J ÜW a fractal FΛ.

2.3 Dilation-Reflection Multiresolution Analysis

We are now ready to modify Definition 1.4 for dilation and reflection groups. In the

following, let q > 1 be a positive integer, and Dq the dilation operator given by the

matrix q · I.
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2.12 Definition. A multiresolution analysis for a dilation-reflection pair Dq, fW is

a sequence of closed subspaces of L2(Rn) satisfying the following properties:

1. Vj ⊂ Vj+1 for all k ∈ Z;

2.
[
j∈Z

Vj = L2(R);

3. there exists a finite set of generators {ϕ|a ∈ A} such that

Bϕ := {ϕa ◦ r|a ∈ A, r ∈ fW}
is an orthonormal basis for V0;

4. f ∈ Vj ⇔ Dqf ∈ Vj+1.

As yet we haven’t indicated whether such an MRA may exist. In fact, it can be

shown that by letting

V0 = {FΛ : Λ ∈ J ÜW}, and

Vk = Dk
qV0,

the above conditions are verified. For details on why these properties hold, we refer

to [LM06,GHMb,Mas95].

To obtain a wavelet from the MRA now established, the approach will be similar to

the one followed for ordinary wavelets, as described on p. 12: An orthonormal basis

{ψl : 1 ≤ l ≤ s} may be found for the wavelet space W0 restricted to ∆ (as before,

W0 being the complement space V1	V0), so that the system Bψ := {ψl ◦ r : 1 ≤ l ≤
s, r ∈ fW} yields an ONB for the whole of W0. By the decomposition of L2(Rn) into

orthogonal subspaces Wj , the Dq-dilates of this basis then give a complete ONB of

L2(Rn), as desired.

2.4 Existence of Dilation-Reflection Wavelet Sets

The required orthogonality of the system {Dk
qBψ|k ∈ Z} implies that its elements

are supported on disjoint subsets of Rn. This brings back the topic of tesselations.

More precisely, it is necessary that the union of the supports of the generators {ψl◦r :

1 ≤ l ≤ s, r ∈ fW} be a two-way tile for the pair (D, fW). Such a two-way tile is
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what we mean by a dilation-reflection wavelet set. This is a conspicuous similarity

with the characterisation of n-dimensional wavelet sets in Theorem 1.21.

It comes as a pleasant surprise that this similarity also extends to the solution of

this tesselation problem: Probably unforeseen by its authors, Theorem 1.23 also

shows the existence of dilation-reflection wavelet sets. As a reminder, this theorem

essentially shows that two-way tiles exist for certain “abstract dilation-translation

pairs”. As it happens, any dilation-reflection pair (D, fW) fulfils the conditions for

being such a pair. We put this as a proposition:

2.13 Proposition. Let D be a group of matrix dilations, and fW an affine Weyl

group. Let C be the fundamental domain of fW (i.e. a foldable figure), and choose

FA := A(B(0, 1)) \B(0, 1) as a fundamental domain for D (as before). Then (D, fW)

is an abstract dilation-translation pair, as defined prior to Theorem 1.23. In addition,

C and FA fulfil the conditions of the sets E,F as put forth in the statement of this

theorem.

Corollary. There exist (D, fW)-tiles (i.e., dilation-reflection wavelet sets) for every

pair (D, fW).

These results pave the way for the construction of dilation-reflection wavelet sets

similar to the way “traditional” dilation-translation wavelet sets have been obtained.

In fact there is yet another accomplishment in the field of traditional wavelet sets

that can be recycled: It was noticed that the “four-corners set”, depicted in Fig. 1.2,

which had been constructed as a tile for the dilation-translation pair (2I,Zn), is also

a tile for the dilation-reflection pair (2I, A1 × A1). Hence, this set constitutes both

a regular n-dimensional wavelet set and a dilation-reflection wavelet set.

All these facts taken together suggest that it might be rewarding to further

investigate the links between these two wavelet theories. Our results in the next

chapter also belong to this intersection.



Chapter 3

Triple wavelet sets

In this chapter we will motivate, define and give examples of triple wavelet (or

three-way tiling) sets in Rn. Section 3.2 states and proves the main result, i.e. the

existence of triple wavelet sets for a wide class of triples (fW, A, eΓ) of affine Weyl

groups, expanding matrices, and full-rank lattices. In particular, triple wavelet sets

exist for any affine Weyl group. Section 3.3 lists a few examples of three-way tiling

sets in two dimensions. In the explicit construction of such sets, we noticed a link

to the third of Hilbert’s famous set of 23 problems; this relation is explored in

section 3.4.

3.1 Motivation

At the end of the first chapter, we have given an example of a dilation-translation

wavelet set in two dimensions. In chapter 2, we saw that the same set is also a

dilation-reflection wavelet set. Thus, this set is the first example of what we call

a triple wavelet set for the triple (fW, A, eΓ). It is natural to ask whether there are

other examples of such sets.

3.2 Main Result: Existence of triple wavelet sets in any

dimension

In this section we prove the following theorem, giving a complete positive answer to

subproblem 2b als formulated in [LMÓ07], p. 17.

30
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3.1 Theorem. Let fW, eΓ be an affine Weyl group and a translation group with equal

measure of fundamental domains, such that the intersection fW ∩ eΓ contains a full-

rank lattice. Further, let A be an expanding matrix. Then there exists a (fW, A, eΓ)-

triple wavelet set, i.e. a measurable set WÜW,A,eΓ which tiles Rn under the operation

of all three groups.

Following our method, the proof is inevitably lengthy and technical. The author

believes that for clarity, it is beneficial to retreat to a slightly weaker result, and to

defer the modifications for a full generalisation of the proof to a concluding remark.

Thus we shall prove the following:

3.1’ Theorem. Let fW, A, eΓ be as above, requiring in addition that eΓ = DΓ, where

Γ is the coroot lattice of fW and D is a diagonal matrix with rational entries. That

is, the vectors spanning eΓ are rational multiples of those spanning Γ. Then there

exists a (fW, A, eΓ)-triple wavelet set.

It is clear that the latter result is a special case of the former. The choice of eΓ may

be special, but this case is still by far sufficient to show the existence of triple wavelet

sets in any dimension, and for any Weyl group.

The proof proceeds as follows. We begin with some terminology to simplify the

argument. We then reduce the problem to that of finding two-way tiles for pairs

(fW, eΓ) (section 3.2.2). Next, we construct such two-way tiles for certain special

pairs that do not share a full-rank lattice (section 3.2.3). Then, by means of two

limiting operations over such pairs, we obtain two-way tiles for systems (fW, eΓ) that

do have this “commensurability property” (section 3.2.4). Due to the limits taken

in the process, the proof does not lend itself to explicit constructions.

3.2.1 Preliminaries

Commensurability. This gives a short-hand name to the property of two trans-

formation groups sharing a full-rank sublattice:

3.2 Definition. Let Γ1,Γ2 ⊆ Rn be two full-rank lattices. If Γ1∩Γ2 contains another

full-rank lattice, we will say that Γ1,Γ2 are commensurable; otherwise the lattices are

called incommensurable. If the intersection is empty, the lattices are called totally

incommensurable. We will also say that the pair (fW, eΓ) is commensurable if eΓ is

commensurable with Γ, the coroot lattice of fW.
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3.3 Remark. We will use the term “lattice” ambiguously to describe either a trans-

lation group, or a point set in Rn – usually, no confusion should be possible.

Reduction modulo a group of transformations. Given a group of measur-

able transformations, we define a function that maps any measurable set onto a

corresponding subset of the fundamental domain of the group.

3.4 Definition. Let G be a group of measurable transformations of Rn, and let K be

a G-tile. Then we can define a function rG : B(Rd)→ B(K), called reduction modulo

G, which maps every Borel set X uniquely (up to Lebesgue null sets) to a subset

rG(X) of K that has a partition rG(X) =
S
g∈GXg such that X =

S
g∈G g(Xg). That

is, every point in X is mapped into K by some suitable element of G.

G-compatibility and partial tiles. We need a name for measurable sets which

are smaller in measure than the fundamental domain of a transformation group, but

which can possibly be extended to a tile for the group (or, as below, may be used as

elements of a sequence of sets of increasing measure that converge to a tile).

3.5 Definition. As above, let G be a group of transformations and K a G-tile. A

measurable set S will be called G-compatible, or a G-partial tile, if λ(S) = λ(rG(S)).

More graphically, if S is G-compatible, no “overlaps” of positive measure occur

when reducing S modulo G. In yet other words, the family of sets {gS : g ∈ G} is

disjoint modulo null sets.

3.2.2 Reduction of problem to two groups of transformations

As a first step, we present a result by which our task is reduced to finding reflection-

translation sets. This is an adaptation of the result 8.1 at the end of [LM06], which

in turn draws on Theorem 1.23 (Theorem 1 of [DLS97]).

3.6 Lemma. Consider a triple (fW, A, eΓ) such that the pair (fW, eΓ) is commensu-

rable. Suppose there exists a measurable two-way tile WÜW,eΓ for the pair (fW, eΓ)

which contains 0 in its interior. Then there exists a three-way tile WÜW,A,eΓ for the

triple (fW, A, eΓ).

Proof. Let Π denote the “intersection lattice” contained in fW∩ eΓ. Let B denote the

unit ball in Rn, and let F = A(B)\B. Then the sets WÜW,eΓ, F fulfil the conditions on
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the sets E,F in Theorem 1.23, and the groups D = {An : n ∈ Z}, T = Π constitute

an abstract dilation-translation pair as in this theorem. Thus the theorem concludes

that there exists a measurable set WÜW,A,eΓ which is (i) D-congruent to F , and (ii)

Π-congruent to WÜW,eΓ.

Now (i) implies that WÜW,A,eΓ is a dilation A-tile (since F is such a tile, too).

Concerning (ii), since Π is a subgroup of both fW and eΓ, the set WÜW,A,eΓ is, in

particular, both fW- and eΓ-congruent to WÜW,eΓ. This means that WÜW,A,eΓ tiles Rn

under both fW and eΓ. These three tiling properties make WÜW,A,eΓ a triple wavelet

set for (fW, A, eΓ). 2

Now, it suffices to find two-way tiles for commensurable pairs (fW, eΓ) of reflection

and translation groups. We point out that the condition that such a two-way tile

should contain 0 in its interior may be omitted, which we will do in the following

for the sake of clarity, although in fact the remainder of the proof could easily be

modified to fulfil it. The reasons that it may be omitted are technical and contribute

little to this disussion; for details we refer to [LMÓ07], pp.7-10.

3.2.3 Two-way tiles for (ÝW , eΓ), incommensurable case

Surprisingly, it has proved to be easier to find two-way tiles for the case where the

pair (fW, eΓ) (or rather (Γ, eΓ), where Γ is the coroot lattice) is incommensurable. We

have the following result:

3.7 Proposition. Let fW =WnΓ be an affine Weyl group acting on Rd. Then there

exists a full-rank lattice eΓ that is totally incommensurable with Γ, and a measurable

set S which tiles Rd under both fW and eΓ.

Before the proof, we will describe intuitively the advantage of incommensurabil-

ity. First, consider a simple one-dimensional situation: Let r be an irrational real

number between 0 and 1. Now, consider the result of multiplying r by the set of

integers Z, and taking fractional parts of the resulting set of irrational numbers.

That is, we examine the set (Z · r) mod 1. It is elementary analysis that this set is

dense in the interval [0, 1].

Now, we can generalise this idea to several dimensions. What we have done

above is to consider two incommensurable lattices, Γ1 = Z and Γ2 = Z · r. The

fact that (Z · r) mod 1 is dense in [0, 1] is just another way of saying that rΓ1(Γ2)
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is dense in the fundamental domain of Γ1. Instead we can now take any full-rank

lattice Γ1 = M1Zn, where M1 ∈ GLn(R), and another lattice Γ2 = M2Zn such that

M2 = DM1, where D is a diagonal matrix with irrational entries. So each “basis

vector” of Γ2 is an irrational multiple of a corresponding basis vector of Γ1. Then, in

complete analogy to the one-dimensional case, rΓ1(Γ2) is dense in the fundamental

domain of Γ1. The significance of this in constructing two-way tiles is that by taking

suitable elements of Γ2, we can get arbitrarily close to any point in the fundamental

domain of Γ1.

The main part of the proof follows.

Proof of Proposition 3.7. Deviant from the notation employed in [LMÓ07],

let R denote the fundamental cell of fW, T the fundamental cell of eΓ, whereas (in

accordance with [LMÓ07]), K shall stand for the fundamental cell of Γ.

As described above, let us choose the lattice eΓ as the Z-span of irrational multiples

of the coroots spanning Γ – or, in oversimplified notation, eΓ = DΓ, where D is a

diagonal matrix with irrational entries. There remains one more restriction on eΓ –

we have to ensure that λ(T ) = λ(R). Given that λ(R) = λ(K)/|fW|, it suffices to

choose D such that detD = |fW|−1.

We will construct a sequence (Sn)∞n=1 of closed sets whose union S =
S
n≥1 Sn is a

two-way tiling set for (fW, eΓ). That is, S must be fW-congruent to R and eΓ-congruent

to T . We set S1 = ∅, and proceed by adding in each step a closed ball such that the

next Sn thus obtained remains (fW, eΓ)-compatible – that is, no overlap occurs within

the family of sets fWSn, nor within the family eΓSn. Let us write Rn for rÜW(Sn), and

Tn for reΓ(Sn).

At this point, note that T can be written as a union of closed balls centered

at points in T with rational eΓ-coordinates. These points are countable, so we can

enumerate them as a sequence (an)∞n=1. Having constructed Sn, if an already lies

in Tn, we set Sn+1 = Sn. Otherwise, we add to Sn some closed ball centered at an
or one of its eΓ-translates which does not intersect fWRn. Proceeding this way to

construct the family (Sn)∞n=1 (and hence the families (Rn)∞n=1, (Tn)∞n=1), the family

(Tn) will exhaust T , and since λ(T ) = λ(R) and λ(Tn) = λ(Rn), the Rn will also

exhaust R. It just remains to show that in each step, a suitable ball (i.e. a suitable

translate with suitable radius) can always be found to be added to Sn.

Suppose the contrary, i.e. that in the nth step, all the translated balls B(an, r)+
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eΓ, for any radius r, intersect fWRn. This means that the points of the affine lattice

an + eΓ are accumulation points of fWRn. But in the neighbourhood of any such

lattice point, we need only to consider a finite number of copies of Rn, whose union

is closed (as Rn is closed, a property fulfilled for R1 and preserved in each step of

the construction). As accumulation points of closed sets, the elements of an + eΓ are

in fact contained in them, so we have

an + eΓ ⊆ fWRn =WRn + Γ ,

and hence

rΓ(an + eΓ) ⊆ WRn ⊆ K .

But since eΓ has been defined so that Γ and eΓ are totally incommensurable, rΓ(eΓ) is

dense in K, and so must be rΓ(an + eΓ). This is the crucial point in the argument.

Thus WRn is dense in K, i.e. Rn is dense in R. This contradicts the fact that

∀n, the “remainder yet uncovered by our set”, R \Rn, always contains an open ball

(this holds for R1 = ∅ and is preserved in passing from Rn to Rn+1). The proof is

complete. 2

3.8 Remark. Note that the boundary of any open or closed subset of Rn has n-

dimensional Lebesgue measure zero. Thus, taking the closure or interior of a “partial

tile” neither changes its measure, nor its (fW, eΓ)-compatibility. Thus, at any point in

our construction, we can assume w.l.o.g. that our (partial) tiling sets Sn are either

closed or open. This fact will also be useful in the following section.

3.2.4 Two-way tiles for (ÝW , eΓ), commensurable case

We are now ready to proceed to show the existence of (fW, eΓ)-tiles in the commen-

surable case. With Lemma 3.6, the desired existence of three-way tiling sets is then

immediate. As a formal statement, we have

3.9 Proposition. Let fW = W n Γ be an affine Weyl group, and eΓ a lattice com-

mensurable with Γ. Then there exists a two-way tile for (fW, eΓ).

The initial idea behind the proof is the following: Given fW, we construct a

sequence of Γ-incommensurable lattices (eΓn)∞n=1 which in some sense converge to a

Γ-commensurable lattice eΓ. By Proposition 3.7, we can find a two-way tile for each

pair (fW, eΓn). But these tiles are potentially unbounded, and it is hard to imagine
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a sequence of unbounded sets converging to a two-way tile for (fW, eΓ), which, if it

exists, can always be assumed to lie within the compact fundamental domain of the

lattice shared by Γ and eΓ. Therefore, more effort is necessary: We carry out two

consecutive limiting processes, explained in the following.

First limiting process

Let (βn)∞n=1 be a sequence of irrational numbers converging to 1 from below, and

let eΓn = βneΓ. By Theorem 3.7, we can find a tile for each pair (fW, eΓn), which we

shall denote by Un. Note however that, since the fundamental domains of the eΓn
have smaller measure than the reflection tiling set, R, the Un that we can construct

are only “partial tiling sets”: They are both eΓn- and fW-compatible, but rÜW(Un) is

a subset of R that does not have full measure.

As yet, there is no way that the Un can converge in any sense, or merely possess

a convergent subsequence. To make use of the Hausdorff metric, the Un would have

to be contained in a compact subset of Rn, which cannot be assumed. Therefore, we

restrict our family of partial tiles to a large closed ball K(r) of radius r: Let

U rn = Un ∩K(r).

Note that, by Remark 1 of section 3.2.3, the Un may be assumed to be closed.

Therefore, the U rn are closed too, and hence compact.

LetK(r) denote the space of compact subsets ofK(r). SinceK(r) is complete and

totally bounded, so is K(r) (as explained after Definition 2.9, property (1)). Thus,

K(r) is also sequentially compact, which is essential: Now the sequence (U rn)∞n=1 has

a convergent subsequence, with limit U r, say.

Now the aim would be to find a limit of the sets U r for r → ∞. But so far,

we cannot control the measure of each U r: We cannot guarantee yet that λ(U r)

increases to λ(R), the measure of the fundamental cell of the Weyl group. So we

make a modification to the construction in the proof of Theorem 3.7, making sure

that the mass of the two-way tiles is concentrated near the origin.

As a reminder, this construction involved a nested sequence of “partial sets”

Sn, where Sn+1 was obtained from Sn by adding a small closed ball. The union

S =
S
n≥1 Sn then constitutes the two-way tile. Now, let r∗ be the radius of a ball

large enough to contain the fundamental cell of Γ, the coroot lattice. For any d > r∗,
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we will try to make sure that no more than a certain proportion of the mass of S will

end up outside a ball of this radius - say, no more than λ(S)/d. Thus, as we pass

from Sn to Sn+1, if a ball to be added to the partial tile is centered at a point of a

distance d > r∗ from the origin, we assess how much mass of the set Sn is already

located further out, say λ≥d(Sn). Then we choose the radius of the ball to be added

such that its measure mb satisfies

mb <
λ(S)/d− λ≥d(Sn)

2
.

This way, for all n and d > r∗, the “outer mass” λ≥d(Sn) will never exceed λ(S)/d,

and the mass distribution of S will decay with increasing distance from the origin in

a prescribed way.

Returning to our compact partial two-way tiles U rn with this modification made, we

can be sure that these sets possess a certain minimal measure; that is,

λ(U rn) ≥ (1− r−1) λ(R) for r > r∗, ∀n.

Since Lebesgue measure is continuous with respect to Hausdorff limits (as noted

after Definition 2.9), we can also be sure that the limit set U r satisfies λ(U r) ≥
(1 − r−1) λ(R). There just remains an easy step to show that U r is also (fW, eΓ)-

compatible.

Indeed, assuming that U r is not eΓ-compatible quickly leads to a contradiction.

Suppose that a positive measure subset of U r can be mapped into U r by a nonzero

element t of eΓ. Pick an open ball B = B(a, %) inside this set – so both B and B + t

belong to U r. Now, fix an index n satisfying two conditions: Firstly, dH(U rn, U
r) < %

4 ,

and further, (1−βn)‖t‖ < %
4 . The first condition ensures that the annulus B\B(a, %4)

and its translate both belong to U rn. The second one guarantees that a ball B′ of

radius < %
4 can be found inside B \B(a, %4) such that B′+βnt ⊂

�
B \B(a, %4)

�
+ t ⊂

U rn. So both B′ and B′+βnt belong to U rn and have positive measure, which is a

contradiction, since U rn is eΓn-compatible. This geometric argument is illustrated in

the following figure – the region B \ B(a, %4) and its t-translate are lightly shaded,

the darker circles are B′ and B′ + βnt.
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ρ ρ

t
βnt

a a+t

Figure 3.1.

Thus it is proved that the limit set U r is eΓ-compatible – very similar geometric con-

siderations show fW-compatibility. With this, the goal of this subsection is reached.

Second limiting process

So far, we have been able to engineer a family {U r : r ∈ R, r > r∗} of sets with the

following properties:

1. They are compact sets, as subsets of the Hausdorff-metric space K(r).

2. They are “partial” (i.e., not full measure) tiles for the pair (fW, eΓ).

3. As r increases, their measure approaches λ(R) = λ(T ) (the measure of the

fundamental domains of fW, eΓ, respectively): limr→∞ λ(U r) = λ(R).

Now, let Π be the full-rank lattice that is, by assumption, contained in Γ ∩ eΓ, and

let Ω denote its compact fundamental domain. Note that, since Π is a sublattice of

both translation lattices, we may reduce the sets U r modulo Π while maintaining

all three of the properties mentioned above. This is the most important step in this

second limiting process. So we obtain a new family of sets,

V r = rΠ(U r).

Now the family V r is completely contained within the Hausdorff-metric space K(Ω)

which, like K(r) earlier, is complete and totally bounded, hence sequentially compact.

Thus, if (rn)∞n=1 is a sequence of positive reals tending to infinity, then it is immediate

that the sequence (V rn)∞n=1 of sets in K(Ω) has a convergent subsequence. Let WÜW,eΓ
be its limit. We claim that WÜW,eΓ is a two-way tiling set for (fW, eΓ), as desired.
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First, WÜW,eΓ is (fW, eΓ)-compatible. This can be shown by a contradiction argument

even easier than the similar one at the end of the first limiting process – this time,

all the elements of the convergent sequence are already (fW, eΓ)-compatible.

Finally, since λ(V rn)→ λ(R) as n→∞ and Lebesgue measure is continuous with

respect to Hausdorff limits (cf. Def. 2.9, property (2)), we have λ(WÜW,eΓ) = λ(R),

i.e. WÜW,eΓ is of full measure. This completes the proof of Proposition 3.9, and hence

the proof of Theorem 3.1’. 2

3.10 Remark. So far we have only proved the weaker Theorem 3.1’, we will now

explain how this can be generalised to yield Theorem 3.1. The modification affects

only sections 3.2.3 and 3.2.4.

Our proof relied on making a certain restriction on the lattice eΓ. In section 3.2.3,

we have seen that if eΓ = DΓ, where D is a diagonal matrix with irrational entries,

the reduction rΓ(eΓ) is dense in the fundamental domain of Γ. This density result

holds for more general matrices M linking Γ and eΓ; in particular, it still holds true

if M is a matrix with precisely one irrational entry in every row and every column,

and rational entries everywhere else (obviously, the case of M being diagonal is an

instance of this).

Now, in the first limiting operation in section 3.2.4, we defined a sequence of

lattices eΓn = βneΓ which, in a sense, “converges to eΓ from below” (in terms of

measure of fundamental domains), each such matrix being diagonal with irrational

entries. This can also be generalised, albeit by use of brute force: We may instead

define a sequence eΓn such that the column vectors of eΓn uniformly converge to those

of eΓ, each matrix eΓn having an irrational entry in every row and every column,

and finally, such that | det eΓn| converges to |fW|−1 from below. When reviewing the

“compatibility proof” illustrated in Figure 3.1 with these modifications made, the

result carries through. The second limiting process remains unaffected.

This way, our main result is proved.

As a concluding remark, we note the similarity between results 1.23 and 3.9, both be-

ing congruency theorems for a dual dynamical system which are proved by iterative

methods. Theorem 3.9 is related to Ergodic Theory, i.e. the study of measure pre-

serving transformations of probability spaces (cf. [Fur99], and chapter 2 of [Gab07]).
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3.3 Examples of triple wavelet sets in two dimensions

In the following table we list a few examples of reflection-translation tiling sets

Ωi ⊂ R2, i = 1, . . . , 6, each of which tiles R2 under a corresponding pair (fWi, eΓi)
with ÝWi = Wi n Γi. With an application of Lemma 3.6, these sets give rise to

three-way tiling sets under any dilation group. Note that, unlike the existence proof

in section 3.2, the proof of Lemma 3.6 is constructive, so that the sets given below

may be used to calculate triple wavelet sets explicitly.

The sets Ω4 and Ω6 were found by the author, the other sets are taken from

[LMÓ07].

√
2/2

√
2

√
6/6

Ω1

W1 = A2

Γ1 =

� √
2 −

√
2

2

0
√

6
2

�
Z2

eΓ1 =

� √
2

2 0

0
√

6
6

�
Z2

√
2/2

√
2

√
6/6

Ω2

W2 = A2

Γ2 =

� √
2 −

√
2

2

0
√

6
2

�
Z2

eΓ2 =

� √
2

2 0
√

6
6

√
6

6

�
Z2
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1

1

Ω3

W3 = B2

Γ3 =

�
2 0

0 2

�
Z2

eΓ3 =

�
1
2

1
2

0 1
2

�
Z2

1

1

Ω4

W4 = B2

Γ4 =

�
2 0

0 2

�
Z2

eΓ4 =

�
1 1

4

0 1
4

�
Z2

√
2

√
6

3

Ω5

W5 = G2

Γ5 =

� √
2 −

√
2

2

0
√

6
6

�
Z2

eΓ5 =

� √
2

12 0
√

6
12

√
6

6

�
Z2
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Ω6

W6 = G2

Γ6 =

� √
2 −

√
2

2

0
√

6
6

�
Z2

eΓ6 =

� √
2

6 0
√

6
6

√
6

12

�
Z2

Table 3.1.

By Lemma 3.6, proving that these sets indeed give rise to three-way tiling sets (with

any matrix dilation group) has been reduced to showing that each set Ωi is a two-

way tile for the associated pair (fWi, eΓi), and that these pairs are commensurable.

The latter property holds true since, for each i, in fact we have Γi ⊆ eΓi, whence

immediately Γi ∩ eΓi ⊇ Γi.

To show that Ωi is a two-way tile for (fWi, eΓi), we need to show that it is bothfWi-congruent to a fWi-fundamental domain and eΓi-congruent to a eΓi-fundamental

domain. We will just do this for Ω4, the other sets are very similar in this respect.

Firstly, to obtain a fW-tile, we take the triangle with vertices (1
4 ,−

1
4)T, (1

2 ,−
1
2)T,

(3
4 ,−

1
4)T, and reflect it along the x-axis, which is obviously an operation in fW. Hence

we obtain the triangle (0, 0)T, (1, 0)T, (1
2 ,

1
2)T, which is a fW-tile.

Secondly, for a eΓ-tile, we start with the same triangle and shift it by the vector

(1
2 ,

1
2)T ∈ eΓ to obtain the parallelepiped (1, 0)T ∧ (1

4 ,
1
4)T, as desired.

Fig. 3.3 visualises these transformations.
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Figure 3.3.

3.4 Relation to third Hilbert Problem

As mentioned earlier (following the statement of Theorem 3.1’), our construction of

three-way tiling sets in arbitrary dimensions is inadequate for producing concrete

examples by explicit computation due to the infinitesimal processes involved; it is

not possible to even vaguely guess their appearance. The examples of triple wavelet

sets in two dimensions that we have seen are straightforward and easily understood

by looking at their depictions, whereas it is conceivable that, by contrast, triple

wavelet sets in higher dimensions will inevitably be fractal-like.

More precisely, the sets seen in the last section were simple as they were obtained

by cutting the translation (or reflection) fundamental domains along straight lines

into finitely many subsets, and mapping each such piece to a different position by

means of the group actions. Whether this can also be done in higher dimensions will

be investigated in this section.

3.4.1 Scissors Congruences

The problem whether a polyhedron can be cut along hyperplanes and reassembled

to a different polyhedron of the same volume has been studied under the name of

“scissors congruences”, where two polyhedra in Rn are said to be scissors congruent

if they can be transformed into each other in this way. It received particular attention

in 1900 when Hilbert included it among his famous list of 23 problems as the third

one (although, of course, no order of priority was implied). The precise way it was

formulated is as follows:
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Hilbert’s 3rd problem. Given two tetrahedra of the same base area and the

same height, is it always possible to cut the first into finitely many polyhedral pieces

which can be reassembled to yield the second?

This problem was the first of the list to be solved: Hilbert’s student Max Dehn gave

a negative answer only a year later by producing a counterexample [Deh01]. His

method relied on using what became known as the Dehn invariants of polyhedra,

which are preserved by scissors congruences. Since scissors congruence is an equiv-

alence relation, all polyhedra of an equivalence class have the same Dehn invariant,

so it sufficed to find two polyhedra (in Dehn’s case, tetrahedra) of different such

invariants.

Note that in dimension 2, it had long been known that two polygons are always

scissors congruent, this is known as the Bolyai-Gerwien Theorem. Subsequent work

showed, however, that in any dimension d > 2 there exist pairs of polyhedra that

are scissors incongruent.

Returning to reflection-translation tiles, it is clear that if the respective funda-

mental domains of a Weyl group and a lattice (being polyhedra) have different Dehn

invariants and are hence scissors incongruent, a two-way tile (and hence also a triple

wavelet set) cannot consist of a finite union of polyhedra, and may thus be more dif-

ficult to construct than if the fundamental domains were scissors congruent. In the

following we will try to determine for which pairs (fW, eΓ) we inevitably obtain such

complicated sets – note that a fractal-like set is also more unwieldy for computing

associated wavelet bases than sets consisting of finite unions of polyhedra.

3.4.2 Mürner’s Results

Let fW be an affine Weyl group, and eΓ a translation lattice. As in section 3.2, we

denote by R the fundamental domain of fW, and by T the fundamental domain ofeΓ. Let fW and eΓ be such that λ(R) = λ(T ). We denote scissors congruence by ∼s.

To anticipate a result: It is actually true that R ∼s T for all Weyl groups and

translation lattices. Note however that showing this is by far not enough to show that

there exist (fW, eΓ)-tiles consisting of a union of polyhedra: Scissors congruence, in

general, allows the constituent pieces of a polyhedron to be moved around arbitrarily

to yield another, i.e. any translations and rotations are allowed. However, a PhD

thesis by em. Prof. Peter Mürner [Mür77] has discussed congruence relations where
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the allowable transformations (“Bewegungsgruppen”) are restricted.

In fact, this work deals specifically with transformation groups very similar to affine

Weyl groups: The groups considered consist of a product of a finite rotation or

reflection group, and the group of all translations by vectors in Rn. Heightening the

relevance of this text even more, the congruence properties of tiling polyhedra are

specifically addressed.

To be more precise, let G = DnRn be the group described above (in the notation

of [Mür77] – i.e., D is not a dilation group as before, but a finite group of isometries of

Rn fixing the origin). Let ∼G denote the relation of scissors congruence via elements

of G. Following further the notation of this author, we denote by P dG all polyhedra

in Rd that are G-tiles, and by W d
G all polyhedra that are G-scissors congruent to a

d-cube. Mürner shows the following theorem:

3.11 Theorem (Theorem 2 of [Mür77]). The inclusion

P dG ⊂W d
G

holds for all G as above and d ∈ N.

This says, in other words, that any G-tile is G-congruent to a cube.

In the same text, an analogous theorem from an earlier work relating to transla-

tion tiles is also quoted. Replacing the group G by the group of ordinary translations,

let P dT be the set of all polyhedra tiling Rd under translations, and W d
T the set of all

polyhedra that are scissors congruent to a cube via translations. We have the result

3.12 Theorem. The inclusion

P dT ⊂W d
T

holds in all dimensions d.

To interpret these two results for a fW-tile R and a eΓ-tile T : The first result implies

that R is scissors congruent to a cube via transformations of the group G =WnRn,

and so is the set T by the second result (since the group of all translations is a

subgroup of G). This implies that T ∼G R.

The one weakness of these results is that only the continuous group of translations

is considered, which the author has not succeeded to resolve. If, in the above results,

G could actually be replaced by an affine Weyl group, then this would immediately
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show the existence of polyhedral (fW, eΓ)-tiles for many pairs (fW, eΓ). However, we

believe that the results presented already give a strong indication that this might be

possible for some pairs of reflection and translation groups.



Chapter 4

Oriented Oscillatory Waveforms

In this chapter we will briefly summarise some recent advances in the field of oriented

oscillatory waveforms that involve reflection groups.

There exists a tremendous amount of literature on wavelet or frame systems that

model the specific “directional shape” of a signal in time domain, well-known exam-

ples being curvelets [CD02, CDDY06], contourlets [DV05], shearlets [GLL+05], and

ridgelets [CD99]. What appears to be relatively uncommon is that such “x-lets” may

be associated with an MRA, of which we mention two examples.

The first piece of work is a pre-preprint [Bla07], kindly provided to the author by

Prof. Weiss, from one of his collaborators, Jeffrey Blanchard. A reason to include it

here is that it brings together the concepts of MRAs, MSF wavelets, and reflection

groups introduced in this thesis.

Another recent advancement is some work by J. Krommweh and G. Plonka who have

constructed directional Haar framelets on triangles, aimed at applications in image

analysis. These frames are also associated with an MRA. However, for lack of a

stronger connection to the remainder of this thesis, we will not pursue this further.

4.1 MSF Composite Dilation Wavelets

In his preprint, J. Blanchard introduces systems of composite dilation wavelets which

use three groups of transformations to generate a wavelet basis. In precise terms:

• Let a ∈ GL(n,R) be an invertible matrix, with the dilation operator Da given

by Daf(x) = | det(a)|−
1
2 f(a−1x)), and A = {aj : j ∈ Z} the associated group

47
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of dilations;

• let B ⊂ GL(n,R) be a finite subgroup of GL(n,R), with associated dilation

operator Dbf(x) = f(b−1x);

• let Γ = cZn be a full-rank lattice (with c ∈ GL(n,R)), and Tk the translation

operator given by Tkf(x) = f(x− k).

4.1 Definition. Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn) is an ABΓ composite dilation wavelet

if the system

{Dj
aDbTkψ

l : j ∈ Z, b ∈ B, k ∈ Γ, l = 1, . . . , L}

is an orthonormal basis for L2(Rn).

The use of the name “composite dilation wavelet” is clear from this definition: The

three transformation groups may be considered as a conventional translation group

together with a group which is the product of two, not necessarily commuting, groups

of matrix dilations. It is immediate that reflection and rotation groups are candidates

for the group B; indeed we will see that such a choice makes possible a strong result.

The generalisation of the definition of MSF wavelets to ABΓ composite dilation

wavelets is straightforward:

4.2 Definition. Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn) is an MSF ABΓ composite dilation

wavelet if there exist sets R1, . . . , RL ⊂ Rn such that bψl = |det(c)|
1
2χRl

for all l =

1, . . . , L, and if the system {Dj
aDbTkψ

l}, as given in Definition 4.1, is an orthonormal

basis for L2(Rn).

Further, multiresolution analyses may be generalised to the case of composite dila-

tion wavelets. To this end, condition 3 in Definition 1.4 is simply replaced by the

requirement that

f ∈ Vj ⇔ f(a·) ∈ Vj+1,

whereas condition 4 is replaced by the requirement that there exists a φ ∈ V0 such

that

{DbTkφ : b ∈ B, k ∈ Γ}

is an ONB for V0.

The investigations of such wavelet systems culminate in a strong yet perhaps sur-

prisingly simple result:
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4.3 Theorem (Theorem 10 of the preprint). If B is any group with fundamental

domain bounded by n hyperplanes through the origin and Γ = cZn is any full-rank

lattice, then there exists an MRA, MSF, composite dilation wavelet for L2(Rn).

It can be verified that this condition on B is satisfied, in particular, by any Weyl

group. The author feels that this theorem opens up an interesting new perspective

on the use of reflection groups in the construction of wavelet systems.

In addition, however, we note that if the group B is taken to be a Weyl group and the

associated coroot lattice is chosen for the translation group Γ, then the ABΓ-system

is precisely the system of unitary operators employed in the construction of fractal

wavelet bases in chapter 2. Moreover, with B,Γ defined this way, the definitions of

multi-resolution analyses agree fully. Hence the following result is obvious:

4.4 Proposition. Let Dq be an operator that dilates by an integer q > 1, let fW be

an affine Weyl group, and let ψ = (ψ1, . . . , ψs) be a set of fractal functions such that

the system {Dk
qBψ|k ∈ Z} is an MRA orthonormal wavelet system, as constructed

in section 2.3. Then {Dk
qBψ|k ∈ Z} is an MRA, ABΓ-composite dilation wavelet

system, with A = qI, B = fW, and Γ = Γ, the coroot lattice of fW.

In other words, MRA fractal surface wavelets are just a special case of MRA ABΓ

composite dilation wavelets. This link is fascinating; however, we consider it unlikely

that further investigations will produce fractal surface wavelets that are, additionally,

MSF composite dilation wavelets.
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