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Abstract

Cell proliferation is an important biological process and is involved in cancer progression
and immune response. The study of proliferation on cell population level can be pur-
sued by the analysis of proliferation assays of cells labeled with the �uorescent marker
carboxy�uorescein succinimidyl ester (CFSE). To obtain further insight into proliferation
dynamics based on experimental data, mathematical models and parameter estimation
are used. Among the existing mathematical models a common approach is to structure
the cell population according to certain features that can in�uence the cells behavior
or are otherwise important in the experimental process. For example, there are models
that take division number-, age- and label-structured populations into account as well
as models that regard division number-, cell type- and label-structured populations. So
far, no model considers population structures that incorporate all of the previously men-
tioned features. Hence, in this thesis we want to extend the existing models to obtain
age-, label-, division number- and cell type-structured population models. We will present
two models that di�er in the approach to model cell age in that the �rst incorporates a
continuous and the second a discrete age structure. Both models are a system of partial
di�erential equations. We will assess the solution of these systems by decomposing them
into a system governing the label dynamics and a system describing division number and
age dynamics and the �uxes between cell types. The decomposition is used to develop
numerical schemes for simulation and parameter estimation. Thereafter, these numerical
schemes are deployed to analyze in vivo proliferation dynamics of leukemic cells.
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Chapter 1

Introduction

1.1 Cell proliferation

In biological processes cell proliferation plays an essential role. Proliferation and subse-
quent increase of cellular material constitute the growth of bacterial cultures as well as
the growth of multicellular organisms and the renewal of dying cells. Understanding cell
proliferation is especially important in cancer research, immunology or stem cell induced
tissue remodeling [2, 5]. The study of proliferation can be pursued on the scale of single
cells or populations.

On the single cell level, the �eld of attention are the complex intrinsic and extrinsic
regulatory systems that are in place to control the processes of cell division, cell growth
and apoptosis and to ensure synchronised behavior of neighboring cells. If these regulatory
systems fail, a possible consequence is uncontrolled tissue or population growth leading
to cancer. Various cells can di�er in their respective response to extrinsic stimuli thus
creating heterogeneous cell populations [2, 5].

On the cell population level, which will be the focus of this thesis, the research interest lies
in the growth dynamics, which are governed by cell proliferation and cell death. Hence,
statistics of division and death rates are of particular interest. Both can depend on the
number of divisions a cell underwent (also referred to as generation of a cell), cell age
and � in a population that consist of a mixture of cell types, e.g. stem cells and more
di�erentiated cells or a cell type that exhibits various phenotypes regarding proliferation
behavior � on the cell type [2, 5, 8].

1.2 CFSE-based proliferation experiments

To track the proliferation dynamics of cell populations, proliferation assays can be used.
Therefor the cells of the population are stained with a �uorescent marker, e.g. carboxy�uo-
rescein succinimidyl ester (CFSE) or Bromodeoxy uridine (BrdU). Since commonly mostly
CFSE is used, we will focus on this particular marker. To label cells with CFSE, they
are kept in a medium rich of an CFSE precursor molecule (CFDA-SE) that di�uses into
the cells. In the cell, the precursor is converted into the �uorescent CFSE which attaches
to proteins in the cell and becomes unable to pass through the cell membrane. After the
cells incorporated CFSE, the medium is changed to one not including the CFSE precursor.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic illustration of the labeling process. The CFSE precursor molecule
CFDA-SE di�uses into the cell and binds to proteins in the cell forming CFSE. CFSE
is unable to di�use out of the cell. In the last step the medium is changed to one not
containing CFDA-SE. The �gure has been adopted from [3].

The labeling process is depicted in Figure 1.1. At sequential time points the population
is analyzed via �ow cytometry. For this, the �uorescence activated cell sorter (FACS)
measures the �uorescence intensity of individual cells. This data can then be used to
study the proliferation dynamics [1, 2, 4, 5].

Two quantities contribute to the total �uorescence intensity, the CFSE-induced �uores-
cence which is proportional to the amount of label and auto�uorescence (also called back-
ground �uorescence) due to natural �uorescence of the cell. There are two processes
that account for decline of CFSE-induced �uorescence in the individual cell. The CFSE-
induced �uorescence can decreases due to protein degradation and due to cell division. If
the protein CFSE is attached to is degraded, CFSE is degraded, as well. If a cell divides,
the label is roughly equally distributed to the daughter cells (see Figure 1.2). If a cell dies,
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Figure 1.2: Schematic representation of label dynamics with respect to cell division show-
ing the proliferation assays at di�erent times. The label intensity is characterized by the
transparency of color. The more transparent the color is, the more the label of the cell got
diluted. Two time points are depicted by vertical lines. The grey areas indicate the cells
that would be measured at these time points. In the bottom of the �gure the observed
�uorescence distributions for the two exemplary time points are shown. In the left one
the cells did not yet divide yielding one peak. The right one shows a mixture of di�erent
generations. This illustration has been adopted from [2].

the label is degraded and the dead cell no longer contributes to the �uorescence. After
a certain number of divisions the CFSE-induced �uorescence is undistinguishable from
the background �uorescence. The small amount of CFSE used is not harmful for the cell
and does not alter its behavior [1, 2, 4, 5]. For each considered time point the measured
�uorescence data is binned and converted to histograms showing the number of cells in
a certain bin of �uorescence intensity. The peaks in the histogram represent cells that
underwent a certain number of divisions [2, 5].

If biological data for cell population growth is obtained by the experimental method
described above, not all factors can be observed. Here mathematical models are tools to
explain data, estimate missing parameters and gain further insight into the underlying
biological processes.



4 CHAPTER 1. INTRODUCTION

1.3 Overview of existing proliferation models

There are several approaches to model proliferation dynamics of cell populations each
focusing on di�erent aspects [5]. Since cell populations contain a large number of cells,
stochastic di�erences between individual cells tend to have less e�ect on the dynamics
of the total population and can be neglected. Hence, deterministic ordinary di�erential
equation (ODE) and partial di�erential equation (PDE) models are used to describe pop-
ulation dynamics. The simplest approach models the growth of the whole population
using an ODE model with one ODE. Models using ODEs are for example exponential
growth (EG) or logistic growth (LG) models. To account for di�erences between genera-
tions, division-structured population (DSP) models are employed. Here, a set of ODEs is
applied, each ODE modeling the behavior of one generation. Age-structured population
(ASP) models focus on the age dynamics of cells resulting in a single PDE in age and time.
They describe the change of the age distribution in the whole population with respect
to time and allow for age-dependent division and death rates. The previous models only
focus on population dynamics and have therefore no relation to the proliferation assay
data collected using �ow cytometry. Label-structured population (LSP) models on the
other hand focus solely on the distribution of label in the population. This is modeled by
a single PDE in time and label concentration, yielding the change of label distribution in
the population over time and enabling comparison with �ow cytometry data [5].

To include more aspects and to make a more precise analysis of the data possible, the
LSP and DSP model have been combined to the division- and label-structured population
(DLSP) model. The DLSP model is hence capable of describing the label dynamics of
subpopulations that di�er in their biological properties [5].

Starting from the DLSP model, additional models were developed. The division number-,
age- and label-structured population (DALSP) model developed in [5] is able to describe
an age structure within the generations. Hence, it allows for age-dependent biological
rates additional to division number-dependent ones. The division number-, cell type- and
label-structured population (DCLSP) model introduced in [8] considers populations that
consist of a mixture of di�erent cell types. Biological rates can vary from cell type to cell
type. The DCLSP model is capable of describing this variability while also accounting
for di�erences in the behavior of generations. However, this model does not account for
age structure and age-dependent rates, which can help to describe proliferation dynamics
more detailed, as shown in [5]. The explicit evolution equations for the DALSP model
and the DCLSP model are presented in Section 2.3.

1.4 Contribution of this thesis

None of the existing models listed in the previous section can treat both cell types and
age structure. However, there are a lot of biological examples of populations with mixed
cell types and age-dependent rates. Additionally, the previously mentioned models were
commonly used for the analysis of data that observed only few generations. In this thesis
we want to introduce novel model classes using cell type structured population models
that account for age structure of the population as well, where the age structure is modeled
with di�erent approaches.
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In the Chapter 2 we introduce the age-, label-, division number- and cell type-structured
population (ALDC) model. This new model is a combination of the DALSP and the
DCLSP model discussed in Section 1.3. It consists of a system of coupled PDEs, where
each PDE describes the dynamics of label and age with respect to time for a particular
generation. We extend the concepts used to analyze the DALSP model in [5] to decompose
this system of PDEs into a less complex system and a set of PDEs. The �rst subsystem
governs the label dynamics, the second subsystem describes the generation and age struc-
ture resulting from the biological processes. For these systems of PDEs the solutions are
presented. We show in Section 2.3 that it is possible to relate the ALDC model to the
DCLSP and DALSP model by marginalization over the respective quantities. Further-
more, a numerical scheme is outlined and compared to a gold standard that is derived
from the DCLSP model.
A simulation study using the ALDC model reveals that, at least with the current im-
plementation of the model, a consideration of in vivo processes with a large number of
generations is not possible. Therefore, a new model class is introduced in Chapter 3
that considers a discrete age structure rather than a continuous one as in the ALDC.
We thereto introduce discrete cell states motivating the name cell state-, label-, division
number- and cell type-structured population (SLDC) model. It consists of a coupled sys-
tem of PDEs describing the population dynamics with respect to label and time for every
combination of generation, cell type and cell state. The PDE system can be decomposed
into a PDE describing the label dynamics and an ODE system governing population dy-
namics. We further relate the SLDC model to the DCLSP and DALSP model analogously
to the ALDC model. The ODE system can be solved numerically building the basis of a
much more e�cient numerical scheme when compared to the one developed in Chapter 2.
In Chapter 4 the SLDC model is used to estimate parameters of real life proliferation data.
The data displays the population dynamics of acute lymphatic leukemia (ALL) cells in
vivo. ALL is a bone marrow and blood cancer. As treatment is started immediately after
dectetion, there is little knowledge about the cancer progression in vivo. However, this
knowledge could help to improve the prospects of patients greatly. The data is produced
by extracting cancer cells from patients, labeling the cancer cells with CFSE and injecting
them into mice. At certain days the cells are extracted, the mouse cells are sorted out and
a �uorescence spectrogram is created. A novel preprocessing developed by the biological
researchers minimizes sorting errors and achieves a new quality in the data. This sort of
in vivo data has not yet been analyzed with the mathematical tools introduced in this
thesis.



Chapter 2

Age-, label-, division number- and cell

type-structured population model for

CFSE-data

In this chapter the age-, label-, division number- and cell type-structured population
(ALDC) model is discussed. In Section 2.1 we introduce the ALDC model, which takes
into account the number of divisions a cell has undergone, i, the time that past since
staining t, the label concentration x, and cell age a as in the DALSP model from [5] as
well as cell types j as the DCLSP model [8]. In Section 2.2 we describe the decomposition
of the ALDC model into two parts and present the solution of these. The relation of the
ALDC model to existing models is studied in Section 2.3. In Section 2.4 the numerical
scheme for the simulation of the model is presented and applied to a small example before
we summarize the chapter in Section 2.5.

2.1 Formulation of the ALDC model

In this section the ALDC model will be established. We are going to take into account
the label concentration in a certain cell x ∈ R+, the age of a cell a ∈ R+ and the time
that passed since the begining of the experiment t ∈ R+. Furthermore we want to cosider
the division number of a cell, i ∈ N0. The division number denotes how many times a
cell divided. After each cell division the division number of a cell is increased by one
and the age of the cell a is set to zero. Lastly, we take into consideration the cell type
of a cell j. We distinguish the cell types by numbering them consecutively from one to
the total number of cell types J , hence, j ∈ {1, . . . , J}. To account for all factors the
joint number density for generation i, ni(a, x, j|t), is introduced. Number densities are
closely related to probabilty densities in that they only attain values in R+. Di�erent from
probabilty densities the number density describes the concentration of particles instead of
probabilities. Therefore, the integral of a number density over a certain interval yields the
number of cells in this interval. Hence, the number of cells of cell type j and in generation
i at a time t that exhibit an age a ∈ [a1, a2] and a label concentration x ∈ [x1, x2] is
calculated by integrating over a and x,

∫ a2
a1

∫ x2
x1
ni(a, x, j|t)dxda.

The model we are going to introduce accounts for

6
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• the change of the number density due to aging of cells, ∂ni(a,x,j|t)
∂a

,

• the change of the number density with respect to time, ∂ni(a,x,j|t)
∂t

,

• the change of the number density due to label degradation with dilution rate ν(t, x),
∂(ν(t,x)ni(a,x,j|t))

∂x
,

• the change of the number of cells in the subpopulation with type j and division
number i due to cell death with rate βji (t, a) and cell division with rate αji (t, a),
−(αji (t, a) + βji (t, a))ni (a, x, j|t),

• the change of the number of cells in the subpopulation with division number i and
cell type j due to the division of cells with division number i − 1 and cell type j̃

with division rate αj̃i−1(t, a) with simultaneous change of cell type from type j̃ to j

with probability ωjj̃i−1(t, a),

2γ
∫
R+

αj̃i−1(t, a)ωjj̃i−1(t, a)ni−1

(
a, γx, j̃|t

)
da, and

• the change of the number of cells in the subpopulation with division number i and
cell type j due to spontaneous change of cell type from type j̃ to j with transition

rate δjj̃i (t, a),

δjj̃i (t, a)ni
(
a, x, j̃|t

)
.

The model includes the following rates for the description of population dynamics like cell
division, cell death or change of cell type

• The division rate of cells with division number i cell type j is denoted by
αji (t, a) : R+ × R+ → R+.

• The rate at which cells in generation i with type j die is denoted by
βji (t, a) : R+ × R+ → R+.

• For a cell with division number i and cell type the transition rate from type j̃ to

type j for spontaneous change of cell type j̃ is denoted by δjj̃i (t, a) : R+×R+ → R+.

• The transition probability for a cell in generation i from type j̃ to type j during cell

division is denoted by ωjj̃i (t, a) : R+ × R+ → [0, 1].

All these rates can depend on the time t ∈ R+ and the age of the cell a ∈ R+. A label
dependence for these rates is not considered as the amount of CFSE used is not harmful
for the cell and its functions. Regarding the rate for spontaneous change of cell type, the
transition rate for j̃ = j is set to δjji = 0 for all cell types j. For the cell type change
during cell division it holds that

J∑
j̃=1

ωjj̃i (t, a) = 1 (2.1.1)

as ωjj̃i (t, a) is a probability.
Additionally, the model includes a rate that describes the dilution of label due to degra-
dation processes in the cell.
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• The rate ν(t, x) : R+ ×R+ → R models the label dilution due to cellular processes.

These cellular processes are assumed to depend only on time t and amount of label x. To
ensure existence and uniqueness of ni(a, x, j|t) it is assumed that all rates are at least C0.
The combination of the aforementioned the processes yields a set of PDEs

∂ni(a, x, j|t)
∂t

+
∂ni(a, x, j|t)

∂a
+
∂(ν(t, x)ni(a, x, j|t))

∂x
=

− (αji (t, a) + βji (t, a))ni(a, x, j|t)−
J∑
j̃=1

δj̃ji (t, a)ni(a, x, j|t) +
J∑
j̃=1

δjj̃i (t, a)ni
(
a, x, j̃|t

)
(2.1.2)

with initial conditions

i = 0 : n0(a, x, j|0) = n0(a, j)p0(x)

i ≥ 1 : ni(a, x, j|0) ≡ 0
(2.1.3)

and boundary conditions

i = 0 : n0(0, x, j|t) ≡ 0

i ≥ 1 : ni(0, x, j|t) = 2γ
J∑
j̃=1

∫
R+

αj̃i−1(t, a)ωjj̃i−1(t, a)ni−1

(
a, γx, j̃|t

)
da.

(2.1.4)

The initial age distribution of cells with cell type j that did not undergo any cell division
is denoted by n0(a, j). Since cell division can only be observed after staining, the number
of cells with division numbers i ≥ 1 is assumed to be zero. The function p0(x) describes
the initial label distribution by giving the probability of a cell to have label concentration
x after staining. The product form n0(a, x, j|0) = n0(a, j)p0(x) is assumed due to the
independence of label distribution and cell number density in the beginning. This is
required for the decomposition of the model presented in Section 2.2.
The �uorescence distribution of the whole population at time t, which in the end is the
quantity measured, can be calculated from ni(a, x, j|t) by summing over the division
numbers i and the cell types j and integrating out the cell age a.
To ensure notational simplicity, we will in the following exploit that ni(a, x, j|t) can be
interpreted as the j-th entry of an vector-function

ni(a, x|t) = (ni (a, x, 1|t) , ni (a, x, 2|t) , . . . , ni (a, x, J |t))T .

With this formulation summation becomes a matrix-vector-multiplication. The dynamics
are reformulated to

∂ni(a, x|t)
∂t

+
∂ni(a, x|t)

∂a
= − (αi(t, a) + βi(t, a)− δi(t, a))ni(a, x|t) (2.1.5)

where αi(t, a) and βi(t, a) are diagonal matrices with entries αji (t, a) and βji (t, a) on the
diagonal,

αi(t, a) =


α1
i (t, a) 0 . . . 0

0 α2
i (t, a) . . . 0

...
...

. . .
...

0 0 . . . αJi (t, a)

 (2.1.6)
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βi(t, a) =


β1
i (t, a) 0 . . . 0

0 β2
i (t, a) . . . 0

...
...

. . .
...

0 0 . . . βJi (t, a)

 (2.1.7)

and δi(t, a) is the matrix consisting of δjj̃i (t, a),

δi(t, a) =



−
J∑̃
j=1

δj̃1i (t, a) δ12
i (t, a) . . . δ1J

i (t, a)

δ21
i (t, a) −

J∑̃
j=1

δj̃2i (t, a) . . . δ2J
i (t, a)

...
...

. . .
...

δJ1
i (t, a) δJ2

i (t, a) . . . −
J∑̃
j=1

δj̃Ji (t, a)


(2.1.8)

In the following 0 and 1 denote the vector or matrix consisting of zeros and ones respec-
tively in the appropriate dimension.
The initial conditions are reformulated to

i = 0 : n0(a, x|0) = n0(a)p0(x)

i ≥ 1 : ni(a, x|0) ≡ 0.
(2.1.9)

As the boundary conditions consist of integrals, a notation for a component-wise matrix-
/vector-integral is needed. Hence, in the following an integral applied on a matrix/vector
denotes component-wise integration:

∫ t2

t1

F
(
t̃
)
dt̃ =


∫ t2
t1
f11

(
t̃
)
dt̃

∫ t2
t1
f12

(
t̃
)
dt̃ . . .

∫ t2
t1
f1n

(
t̃
)
dt̃∫ t2

t1
f21

(
t̃
)
dt̃

∫ t2
t1
f22

(
t̃
)
dt̃ . . .

∫ t2
t1
f2n

(
t̃
)
dt̃

...
...

. . .
...∫ t2

t1
fm1

(
t̃
)
dt̃

∫ t2
t1
fm2

(
t̃
)
dt̃ . . .

∫ t2
t1
fmn

(
t̃
)
dt̃

 (2.1.10)

where F : R→ Rm×n maps t to a (m× n)-matrix.
Accordingly, the boundary conditions are reformulated to

i = 0 : n0(0, x|t) ≡ 0

i ≥ 1 : ni(0, x|t) = 2γ

∫
R+

ωi−1(t, a)αi−1(t, a)ni−1(a, γx|t)da, (2.1.11)

with ωi being the matrix of the rates ωjj̃ which can be written as

ωi(t, a) =



1−
J∑̃
j=1

ωj̃1i (t, a) ω12
i (t, a) . . . ω1J

i (t, a)

ω21
i (t, a) 1−

J∑̃
j=1

ωj̃2i (t, a) . . . ω2J
i (t, a)

...
...

. . .
...

ωJ1
i (t, a) ωJ2

i (t, a) . . . 1−
J∑̃
j=1

ωj̃1i (t, a)


(2.1.12)
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by plugging in Property (2.1.1). The reformulation of the ALDC model will allow for
simple reformulation and the analysis of solution.

2.2 Analysis of ALDC model

The ALDC model is a coupled system of PDEs with initial and boundary conditions.
To simplify the analysis of the ALDC model, we will decompose the PDE system in two
parts, one part describing the size of the subpopulations and their age structure, and one
describing the label distribution. These easier systems can then be solved, e.g. by the
method of characteristics.

2.2.1 Decomposition

In this section the ALDC model will be decomposed into two simpler PDE system. Those
new systems correspond to the dynamics of the distribution of the label on the one hand
and the dynamics of the number densities of cells with a certain age, cell type and division
number on the other. This decomposition is only possible, if certain assumptions on the
dilution rate of CFSE in the cell due to cellular processes are ful�lled. As mentionend
in Section 1.2 the dilution of CFSE is caused by the degradation of the CFSE-protein
complex.

Theorem 2.2.1. If the dilution rate has the form ν(t, x) = −k(t)x and the initial label
distribution p0(x) is independent of the cell type j, the number density ni(a, x, j|t) can be
decomposed into two independent parts: The number density of cells with a certain age a,
division number i and cell type j at time t, ni(a, j|t), and the distribution of the label x
for cells with division number i at time t, p(x|i, t).

ni(a, x, j|t) = ni(a, j|t)p(x|i, t) (2.2.1)

where ni(a, j|t) solves

∂ni(a, j|t)
∂t

+
∂ni(a, j|t)

∂a
=

− (αji (t, a) + βji (t, a))ni(a, j|t)−
J∑
j̃=1

δj̃ji (t, a)ni(a, j|t) +
J∑
j̃=1

δjj̃i (t, a)ni
(
a, j̃|t

) (2.2.2)

with initial conditions
i = 0 : n0(a, j|0) = n0(a, j)

i ≥ 1 : ni(a, j|0) ≡ 0
(2.2.3)

and boundary conditions

i = 0 : n0(0, j|t) ≡ 0

i ≥ 1 : ni(0, j|t) = 2
J∑
j̃=1

∫
R+

αj̃i−1(t, a)ωjj̃i−1(t, a)ni−1

(
a, j̃|t

)
da.

(2.2.4)
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p(x|i, t) has to ful�ll
∂p(x|i, t)

∂t
+
∂ (ν(x, t)p(x|i, t))

∂x
= 0 (2.2.5)

with initial conditions

p(x|i, 0) = γip0(γix). (2.2.6)

For the corresponding matrix-vector-notation for ni(a, j|t) we consider the vector ni(a|t),

ni(a|t) = (ni(a, 1|t), . . . , ni(a, J |t))T . (2.2.7)

The decompotition then amounts to

ni(a, x|t) = ni(a|t)p(x|i, t) (2.2.8)

with p(x|i, t) a scalar function following the dynamics (2.2.5) and with initial condition
(2.2.6) as above.
The number of cells ni(a|t) follows the dynamics

∂ni(a|t)
∂t

+
∂ni(a|t)
∂a

= −(αi(t, a) + βi(t, a)− δi(t, a))ni(a|t) (2.2.9)

with αi, βi and δi de�ned as in (2.1.6), (2.1.7) and (2.1.8) respectively. The initial
conditions are

i = 0 : n0(a|0) = n0(a)

i ≥ 1 : ni(a|0) ≡ 0
(2.2.10)

and the boundary conditions become

i = 0 : n0(0|t) ≡ 0

i ≥ 1 : ni(0|t) = 2

∫
R+

ωi−1(t, a)αi−1(t, a)ni−1(a|t)da =: 2ψi−1(t)
(2.2.11)

with ωi−1 as before.

Proof: To prove Theorem 2.2.1 it is shown, that plugging in the ansatz (2.2.8) on both
sides of (2.1.5) yields the same dynamics as the original equation and that the initial and
boundary conditions are consistent, similarly to the proof done in [5]. Inserting the ansatz
(2.2.8) on the left hand side of (2.1.5) we obtain

∂ni(a, x|t)
∂t

+
∂ni(a, x|t)

∂a
+
∂(ν(t, x)ni(a, x|t))

∂x

=
∂(ni(a|t)p(x|i, t))

∂t
+
∂(ni(a|t)p(x|i, t))

∂a
+
∂(ν(t, x)(ni(a|t)p(x|i, t)))

∂x

=
∂ni(a|t)
∂t

p(x|i, t) +
∂p(x|i, t)

∂t
ni(a|t) +

∂ni(a|t)
∂a

p(x|i, t) +
∂(ν(t, x)p(x|i, t))

∂x
ni(a|t)

=

(
∂ni(a|t)
∂t

+
∂ni(a|t)
∂a

)
p(x|i, t) +

(
∂p(x|i, t)

∂t
+
∂(ν(t, x)p(x|i, t))

∂x

)
ni(a|t)

= − (αi(t, a) + βi(t, a)− δi(t, a)ni(a|t)) p(x|i, t).
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From line two to three we used the product rule for di�erentiation applied to multiplication
of a vector with a scalar. In the next step p(x|i, t) and its partial derivatives can be
factorized since they are scalar functions. In the last step we inserted the dynamics of
the decomposed model (2.2.9) and (2.2.5). Inserting the ansatz (2.2.8) on the right hand
side of (2.1.5) yields

− (αi(t, a) + βi(t, a)− δi(t, a))ni(a, x|t)
= − (αi(t, a) + βi(t, a)− δi(t, a))ni(a|t)p(x|i, t).

Hence, inserting the ansatz on the left hand side yields the same equation as inserting it
on the right hand side. The ansatz thus ful�lls the PDE.
To check the initial conditions for consistency we distinguish the cases i = 0 and i ≥ 1.
For i ≥ 1 inserting the ansatz and the original equation both yield

ni(a, x|0) ≡ 0

ni(a|0)p(x|i, 0) = 0γip0(γix) ≡ 0.

For i = 0 inserting the ansatz on the left hand side of (2.1.9) yields

n0(a, x|0) = n0(a|0)p0(x|0, 0) = n0(a)p0(x)

which is the same as the right hand side of (2.1.9).
Inserting the ansatz in the boundary condition (2.1.11) for i = 0 yields zero on both sides.
For i ≥ 1 inserting the ansatz on the right hand side of the equation (2.1.11) yields

ni(0, x|t) = 2γ

∫
R+

ωi−1(t, a)αi−1(t, a)ni−1(a, γx|t)da

= 2γ

∫
R+

ωi(t, a)αi−1(t, a)ni−1(a|t)p(γx|i− 1.t)da.

Inserting it on the left hand side of (2.1.11) we obtain

ni(0|t)p(x|i, t) =

(
2

∫
R+

ωi−1(t, a)αi−1(t, a)ni−1(a|t)da
)
p(x|i, t).

Both sides are equal i�
p(x|i, t) = γp(γx|i− 1, t).

For ν(x, t) = k(t)x the solution of (2.2.5) with (2.2.6) ful�lls this. This can be proven by
looking at the solution derived in (2.2.2). See also [5]. Hence, the boundary conitions are
consistent. This concludes the proof.

As the initial label distribution p0(x) is assumed to be independent of the cell type j,
p(x|i, t) is also independent of the cell type j. This is biologically reasonable. To generalize
this assumption one could later use the superposition principle to construct solutions for
cell type-dependent initial label distributions p0(x, j).
With the decomposition, the initial problem of solving the coupled PDE system (2.1.5)
has been transformed into two easier problems, namely solving the PDE (2.2.5) and PDE
system (2.2.9). This can be done by the method of characteristics.
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2.2.2 Solution of the ALDC model

After decomposing the PDE system (2.1.5) the solution for the decomposed systems is
presented. We then proceed to show that the solutions indeed ful�ll the PDE system.

Theorem 2.2.2 ( [2, 5]). The solution for (2.2.5) and (2.2.6) is

p(x|i, t) = γiexp

(∫ t

0

k(t̃)dt̃

)
p0

(
γi exp

(∫ t

0

k(t̃)dt̃

)
x

)
(2.2.12)

Theorem 2.2.3. In the case of δi(t, a) = 0 for all i ∈ N0, a, t ∈ R+ the solution of
(2.2.9), (2.2.10) and (2.2.11) is

n0(a|t) =

{
n0(a− t) exp

(
−
∫ t

0
α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃
)

, t ≤ a

0 , t > a

ni(a|t) =

{
2ψi−1(t− a) exp

(
−
∫ a

0
αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
, t > a

0 , t ≤ a

(2.2.13)
with ψi(t− a) =

∫
R+
ωi (t− a, ã)αi (t− a, ã)ni(ã|t− a)dã.

The scalar form of (2.2.13) is

n0(a, j|t) =

{
n0(a− t, j) exp

(
−
∫ t

0
αj0
(
t̃, t̃+ a− t

)
+ βj0

(
t̃, t̃+ a− t

)
dt̃
)

, t ≤ a

0 , t > a

ni(a, j|t) =


2
∑J

j̃=1

∫
R+
αj̃i−1 (t− a, ã)ωjj̃i−1 (t− a, ã)n(ã, i− 1, j̃|t− a)dã

exp
(
−
∫ a

0
αji (ã+ t− a, ã) + βji (ã+ t− a, ã) dã

)
, t > a

0 , t ≤ a

.

(2.2.14)
Since αi and βi are diagonal matrices their exponential is again diagonal. This holds also
for the exponential of the component-wise integral

exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
and

exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
.

In other words the exponential function acts component-wise on diagonal matrices. Fur-
thermore, partial derivatives in direction of a scalar t of vector- and matrix-functions
∂F (t)
∂t

can also be considered as acting component-wise. Hence, in this case with diagonal
matrices as above all operations in consideration (i.e. integration, di�erentiation and the
exponential function) can be considered to work only on the matrix components. There-
fore, the matrices can in this case be treated like scalars and all computational rules for
real scalar analysis can be applied.
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Proof: We show in the following that ni(a|t) as de�ned in (2.2.13) solves the PDE system
(2.2.9). We �rst consider the partial derivation in time direction for i = 0. We obtain

∂n0(a|t)
∂t

=
∂

∂t
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
+ n0(a− t) ∂

∂t
exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
︸ ︷︷ ︸

(∗)

(2.2.15)

by applying the product rule. To make the calculation more structured the derivation
of the second factor (∗) is considered on its own. To di�erentiate the chain-rule and the
Leibnitz-rule for di�erentiation of integrals with parameter-dependent limits are applied

(∗) = exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
(
− (α0 (t, a) + β0 (t, a))−

∫ t

0

∂

∂t
α0

(
t̃, t̃+ a− t

)
+
∂

∂t
β0

(
t̃, t̃+ a− t

)
dt̃

)
.

Next we plug (∗) back into (2.2.15) and use (2.2.13) to replace

n0(a−t) exp
(
−
∫ t

0
α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃
)
with n0(a|t) in the second sum-

mand. Hence, the time derivative is

∂n0(a|t)
∂t

=
∂

∂t
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
− n0(a|t)(

α0 (t, a) + β0 (t, a) +

∫ t

0

∂

∂t
α0

(
t̃, t̃+ a− t

)
+
∂

∂t
β0

(
t̃, t̃+ a− t

)
dt̃

)
.

(2.2.16)
The derivation in age direction is again calculated by applying product- and chain-rule

∂n0(a|t)
∂a

=
∂

∂a
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
+ n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
(
− ∂

∂a

∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
.

Assuming that α0(t, a) and β0(t, a) are continuously di�erentiable with respect to a,
Theorem 10 in [9, p. 352] can be used to interchange the integral and the di�erentiation.
Again (2.2.13) can be plugged in yielding

∂n0(a|t)
∂a

=
∂

∂a
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
− n0(a|t)

∫ t

0

∂

∂a
α0

(
t̃, t̃+ a− t

)
+

∂

∂a
β0

(
t̃, t̃+ a− t

)
dt̃.

(2.2.17)
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Taking a closer look at the remaining derivatives in (2.2.16) and (2.2.17), one �nds that∫ t

0

∂

∂t
α0

(
t̃, t̃+ a− t

)
+
∂

∂t
β0

(
t̃, t̃+ a− t

)
dt̃

= −
∫ t

0

∂

∂a
α0

(
t̃, t̃+ a− t

)
+

∂

∂a
β0

(
t̃, t̃+ a− t

)
dt̃

as well as

∂

∂a
n0(a− t) = − ∂

∂t
n0(a− t)

because of the inverted sign of a and t in these expressions. Therefore, it follows that

∂

∂t
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
+

∂

∂a
n0(a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
+ β0

(
t̃, t̃+ a− t

)
dt̃

)
= 0.

Also

n0(a|t)
∫ t

0

∂

∂t
α0

(
t̃, t̃+ a− t

)
+
∂

∂t
β0

(
t̃, t̃+ a− t

)
dt̃

+ n0(a|t)
∫ t

0

∂

∂a
α0

(
t̃, t̃+ a− t

)
+

∂

∂a
β0

(
t̃, t̃+ a− t

)
dt̃

cancels out. Hence, the sum of (2.2.16) and (2.2.17) becomes

∂n0(a|t)
∂t

+
∂n0(a|t)
∂a

= −n0(a|t) (α0(t, a) + β0(t, a))

= − (α0(t, a) + β0(t, a))n0(a|t)

and n0(a|t) ful�lls (2.1.5). The order of the factors can be changed because diagonal
matrices are commutative. The initial condition (2.1.9) holds as well

n0(a|0) = e0n0(a) = n0(a).

In the case a = 0 and t > 0 it holds that t > a, hence, n0(0|t) is equal to zero and thus
ful�lls the boundary condition for i = 0.
The calculations for the case i ≥ 1 proceed analogously with the roles of t and a inter-
changed. Again the derivation in age and time is considered separately and as before the
matrices are treated like scalars. The derivation with respect to time is calculated by
using the product- and chain-rule

∂ni(a|t)
∂t

=2
∂

∂t
ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
+ 2ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
(
− ∂

∂t

∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
.
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Again, Theorem 10 in [9, p. 352] is utilized to interchange the integral and the di�eren-
tiation with the assumption that αi(t, a) and βi(t, a) are continuously di�erentiable with
respect to t. Furthermore, (2.2.13) is plugged in for ni(a|t)

∂ni(a|t)
∂t

=2
∂

∂t
ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
− ni(a|t)

∫ a

0

∂

∂t
αi (ã+ t− a, ã) +

∂

∂t
βi (ã+ t− a, ã) dã.

Derivation of ni(a|t) with respect to age follows the same rules as derivation of n0(a|t)
with respect to time. The result is the same with interchanged roles of t and a

∂ni(a|t)
∂a

=2
∂

∂a
ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
− 2ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
(
αi (t, a) + βi (t, a) +

∫ a

0

∂

∂a
αi (ã+ t− a, ã) +

∂

∂a
βi (ã+ t− a, ã) dã

)
=2

∂

∂a
ψi−1(t− a) exp

(
−
∫ a

0

αi (ã+ t− a, ã) + βi (ã+ t− a, ã) dã

)
− ni(a|t)(

αi (t, a) + βi (t, a) +

∫ a

0

∂

∂a
αi (ã+ t− a, ã) +

∂

∂a
βi (ã+ t− a, ã) dã

)
.

Again the inverted sign of t and a in the expressions is used to conclude that∫
∂

∂t
αi (ã+ t− a, ã) +

∂

∂t
βi (ã+ t− a, ã) dã

= −
∫

∂

∂a
αi (ã+ t− a, ã) +

∂

∂a
βi (ã+ t− a, ã) dã

and
∂

∂t
ψi−1(t− a) = − ∂

∂a
ψi−1(t− a).

As before these terms cancel out when the derivations in time- and age direction are
added. Hence, we obtain

∂ni(a|t)
∂t

+
∂ni(a|t)
∂a

= −ni(a|t) (αi (t, a) + βi (t, a))

= − (αi (t, a) + βi (t, a))ni(a|t).

This proves that the solution (2.2.13) for ni(a|t) ful�lls (2.1.5). Since the ni(a|t) is equal
to zero if t ≤ a, which is the case for t = 0, the initial condition (2.1.9) for ni(a|0) is
ful�lled, as well. The boundary conditions are also ful�lled

ni(0|t) = e0 · 2
∫
R+

ωi−1 (t, ã)αi−1 (t, ã)ni−1(ã|t)dã.

This concludes the proof.
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The analytical solution presented in (2.2.13) and (2.2.12) can be used to implement a
numerical scheme to simulate the model. An example for these simulations is given in
Section 2.4. However, the solution can only be computed iteratively for each i since ni

depends on ni−1. Furthermore, the solution for all cell types in one generation has to be
known to compute the solution for the following generation.

For δi(t, a) 6= 0 there exists, in general, no closed form for solving (2.2.9). Spontaneous
change of cell type however is biologically rather rare. For the case that spontaneous
change of cell type has to be considered, numerical approximations to the solution of
(2.2.9) can be employed.

2.3 Relation of the ALDC model to existing models

As the ALDC model consideres age-, label-, division number- and cell type-structured
populations a obvious question is, how it relates to the existing models which consider a
subset of the cellular properties. We will focus on the relation to the division number-,
label- and age-structured population (DLASP) model [5] and the division number-, cell
type- and label- strucutured population ( DCLSP) model [8] discussed in Section 1.3, as
the division number- and label-structured population (DLSP) model, the label-structured
population model (LSP), the division number-structured population (DSP) model and the
age-structured population (ASP) model mentioned in Section 1.3 are each special cases
of the DCLSP model or DALSP model.

2.3.1 DALSP model

The division number-, age- and label-structured population (DALSP) model is governed
by the following evolution equations, see [5]. The notation is adapted to �t the one used
in this thesis

∂ni(a, x|t)
∂t

+
∂ni(a, x|t)

∂a
+
∂(ν(t, x)ni(a, x|t))

∂x
= −(αi(t, a) + βi(t, a))ni(a, x|t) (2.3.1)

with initial conditions
i = 0 : n0(a, x|0) = n0(a)p0(x)

i ≥ 1 : ni(a, x|0) ≡ 0
(2.3.2)

and boundary conditions

i = 0 : n0(0, x, |t) ≡ 0

i ≥ 1 : ni(0, x|t) = 2γ

∫
R+

αi−1(t, a)ni−1(a, γx|t)da. (2.3.3)

To establish the link between the DALSP model and ALDC model, we can consider the
case of a population with one cell type, J = 1. In this case, both models are exactly
identical. Alternatively, we can marginalize over the cell type j. This corresponds to
summing the individual equations for the cell types j and thus only considering the age
distribution of the total population in each generation i.
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Theorem 2.3.1. If the rates αji (t, a) = αi(t, a) and βji (t, a) = βi(t, a) are independent of
the cell type j, marginalization of the equations (2.1.2) or rather (2.1.5) and the accom-
panying conditions over j, i.e. summing over the cell types j, gives the DALSP model.

Proof: It has to be shown that marginalizing the equation (2.1.5) over j yields the
evolution equations governing the DALSP. In matrix-vector-form summing over j means
forming the (RJ)-scalar product with the J-dimensional vector consisting of ones: 1 =
(1, . . . , 1)T . The scalar product of ni(a, x|t) with this vector yields the number density
considered in the DALSP model and shall be denoted by

J∑
j=1

ni(a, x, j|t) = 〈ni(a, x|t),1〉 =: ni(a, x|t). (2.3.4)

Because the rates αi and βi are independent of j they can be viewed as scalar functions
times the J-dimensional unit matrix I: αi = αi(t, a)I and βi = βi(t, a)I, respectively. The
variables a, x and t will be omitted in the calculations and ni will denote the number
density considered in the DALSP.
For the governing PDEs summing over j results in〈

∂ni

∂t
+
∂ni

∂a
+
∂(νni)

∂x
,1

〉
=
∂〈ni,1〉
∂t

+
∂〈ni,1〉
∂a

+
∂(ν〈ni,1〉)

∂x

=
∂ni
∂t

+
∂ni
∂a

+
∂(νni)

∂x

by using the bilinearity of the scalar product and the linearity of partial di�erentiation in
the �rst and the de�nition of 〈ni,1〉 in the second step. The marginalization of the right
hand side can again be transformed using bilinearity of the scalar product and (2.3.4)

〈−(αiI + βiI− δi)ni,1〉 = 〈−αiIni,1〉 − 〈βiIni,1〉+ 〈δini,1〉
= −αi 〈ni,1〉 − βi 〈ni,1〉+ 〈δini,1〉
= −αini − βini + 〈δini,1〉 .

With a basic result from linear algebra it holds that

〈δini,1〉 =
〈
ni, δi

T1
〉
. (2.3.5)

Considering the structure of δi

δi =



−
J∑̃
j=1

δj̃1i δ12
i . . . δ1J

i

δ21
i −

J∑̃
j=1

δj̃2i . . . δ2J
i

...
...

. . .
...

δJ1
i δJ2

i . . . −
J∑̃
j=1

δj̃Ji


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one can see, that summing the element of each column of δi yields zero. This is reasonable,
as these columns contain the �uxes in and out of this cell type under mass conservation.
Therefore, it holds that δi

T1 = 0. Hence, summing (2.1.5) over j yields

∂ni
∂t

+
∂ni
∂a

+
∂(νni)

∂x
= −(αi + βi)ni.

This is the PDE (2.3.1) governing the DALSP. The initial conditions of the corresponding
DALSP model can be derived from the new model. For i = 0 the left hand side is by
De�nition (2.3.4)

〈n0(a, x|0),1〉 = n0(a, x|0).

With de�ning 〈n0(a, j),1〉 =: n0(a) and using bilinearity of the scalar product the right
hand side becomes

〈n0(a, j)p0(x),1〉 = n0(a)p0(x).

In the case i ≥ 1 the outcome is trivial

ni(a, x|0) = 〈ni(a, x|0),1〉 ≡ 〈0,1〉 ≡ 0.

Regarding the boundary conditions the structure of ωi is exploited. As the columns of
ωi contain the probability to end up in cell type 1, . . . , J starting from a certain type j
they have to add up to one. For i = 0 the scalar product with 1 is equal to

〈n0(0, x|t),1〉 ≡ 0.

The situation for i ≥ 1 is a little more complicated. With the de�nition of ni(0, x|t)
(2.3.4) the left hand side is

〈ni(0, x|t),1〉 = ni(0, x|t).
Summation of the right hand side yields〈

2γ

∫
R+

ωi(t, a)αi−1(t, a)ni−1(a, γx|t)da,1
〉

(2.3.6)

= 2γ

∫
R+

〈ωi(t, a)αi−1(t, a)Ini−1(a, γx|t),1〉 da. (2.3.7)

Here the scalar product and integration have been interchanged by using the linearity of
the integral, since forming the scalar product with 1 results in adding up the component-
wise integrals. Again the property of the scalar product used in (2.3.5) is exploited to
further simplify (2.3.7)

2γ

∫
R+

〈ωi(t, a)αi−1(t, a)Ini−1(a, γx|t),1〉 da = 2γ

∫
R+

〈
αi−1(t, a)ni−1(a, γx|t),ωi

T1
〉
da

= 2γ

∫
R+

αi−1(t, a) 〈ni−1(a, γx|t),1〉 da

= 2γ

∫
R+

αi−1(t, a)ni−1(a, γx|t)da.

For the last two steps we used that ωi
T1 = 1 and the de�nition of 〈ni−1(a, γx|t),1〉

(2.3.4).
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This shows that the ALDC model is a generalization of the DALSP model. All information
obtained by the latter can also be gained by analyzing the ALDC model. As the DALSP
model is itself a generalization of the DLSP, LSP, ASP and DSP model, these models are
also special cases of the ALDC model.

2.3.2 DCLSP-model

The division number-, cell type- and label-structured population (DCLSP) model is gov-
erned by the following evolution equations, see [8]. Again the notation has been changed
to �t the one used in this thesis

∂ni(x, j|t)
∂t

+
∂(ν(t, x)ni(x, j|t))

∂x

=− (αji (t) + βji (t))ni(x, j|t)−
J∑
j̃=1

δj̃ji (t)ni(x, j|t) +
J∑
j̃=1

δjj̃i (t)ni(x, j̃|t)

+

{
0 , i = 0

2γ
∑J

j̃=1 α
j̃
i−1(t)ωjj̃i−1(t)ni−1(γx, j̃|t) , i ≥ 1

(2.3.8)

with initial conditions
i = 0 : n0(x, j|0) = n0(j)p0(x)

i ≥ 1 : ni(x, j|0) = 0.
(2.3.9)

Analogously to the previous section, the DCLSP model can be derived from the ALDC
model by marginalizing over the cell age a. By integrating over the cell age a, the age
structure of the population is neglected and only the number of cells with a certain cell
type j in a certain generation i is considered.

Theorem 2.3.2. For rates αi(t, a) = αi(t), βi(t, a) = βi(t), δi(t, a) = δi(t) and
ωi(t, a) = ωi(t) that are independent of a, the marginalization of the evolution equations
of the ALDC model over a, i.e. integrating over a, yields the DCLSP model from [8]. The
marginalization of ni(a, x|t) over a is denoted by∫ ∞

0

ni(a, x|t)da =: ni(x|t). (2.3.10)

The vector-function ni(x|t) consist of the functions (ni(x, 1|t), . . . , ni (x, J |t)) where ni(x, j|t)
is the function that is considered in the DCLSP model formulation.

Proof: It has to be shown that marginalizing over a yields the DCLSP model. In the
following it will often be used that∫ a2

a1

M(t)v(t, ã)dã = M(t)

∫ a2

a1

v(t, ã)dã (2.3.11)

whereM(a) ∈ Rm×n is a matrix for all a ∈ R and v(t, a) : R×R→ Rn is a vector-function.
This is true because the multiplication with M(t) results in a weighted summation of the
component functions of v(t, a). Hence, multiplication with rates that are independent of
the integration variable and integration can be interchanged.
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Marginalizing of the left hand side of (2.1.5) over a yields∫ ∞
0

∂ni(a, x|t)
∂t

da+

∫ ∞
0

∂ni(a, x|t)
∂a

da+

∫ ∞
0

∂(ν(t, x)ni(a, x|t))
∂x

da.

With the assumption of uniform convergence of

∂ni(a, x|t)
∂t

and
∂(ν(t, x)ni(a, x|t))

∂x

the integral and the partial derivative can be interchanged by applying Theorem 14 [9, p.

358]. With the fundamental theorem of calculus applied to
∫∞

0
∂ni(a,x|t)

∂a
da and using the

fact that ν(t, x) is independent of a we get∫ ∞
0

∂ni(a, x|t)
∂t

da+

∫ ∞
0

∂ni(a, x|t)
∂a

da+

∫ ∞
0

∂(ν(t, x)ni(a, x|t))
∂x

da

=
∂
∫∞

0
ni(a, x|t)da
∂t

+ lim
a→∞

ni(a, x|t)− ni(0, x|t) +
∂(ν(t, x)

∫∞
0

ni(a, x|t)da)

∂x

=
∂ni(x|t)
∂t

+ 0− ni(0, x|t) +
∂(ν(t, x)ni(x|t))

∂x
.

The equality holds since all component functions of ni have �nite support regarding the
age, hence, the limit at in�nity is lima→∞ ni(a, x|t) = 0. Also the De�nition (2.3.10) was
used. When inserting the boundary condition for ni(0, x|t) the cases i = 0 and i ≥ 1 have
to be distinguished. The case i = 0 is quite simple as n0(0, x|t) ≡ 0. Plugging this in the
marginalization of the left hand side of (2.1.5) over a is

∂ni(x|t)
∂t

− 0 +
∂(ν(t, x)ni(x|t))

∂x
.

In the case i ≥ 1 the boundary condition can be plugged in for ni(0, x|t), as well. The
marginalization of the left hand side of (2.1.5) over a then becomes

∂ni(x|t)
∂t

− 2γ

∫
R+

ωi−1(t)αi−1(t)ni−1(a, γx|t)da+
∂(ν(t, x)ni(x|t))

∂x

=
∂ni(x|t)
∂t

− 2γωi−1(t)αi−1(t)ni−1(γx|t) +
∂(ν(t, x)ni(x|t))

∂x
.

Here it was used that the rates ωi−1 and αi−1 are independent of a and we plugged in the
de�ntion (2.3.10). In both cases i = 0 and i ≥ 1 it holds for the right hand side that∫ ∞

0

−(αi(t) + βi(t)− δi(t))ni(a, x|t)da = −(αi(t) + βi(t)− δi(t))
∫ ∞

0

ni(a, x|t)da

= −(αi(t) + βi(t)− δi(t))ni(x|t).

because of the independence of αi and βi of a and the de�nition (2.3.10). Hence, in the
case i = 0 marginalizing returns the following equation

∂ni(x|t)
∂t

+
∂(ν(t, x)ni(x|t))

∂x
= −(αi(t) + βi(t)− δi(t))ni(x|t).
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In the case i ≥ 1 marginalizing equations (2.1.5) yields

∂ni(x|t)
∂t

− 2γ

∫
R+

ωi−1(t)αi−1(t)ni−1(a, γx|t)da+
∂(ν(t, x)ni(x|t))

∂x

= −(αi(t) + βi(t)− δi(t))ni(x|t)

or

∂ni(x|t)
∂t

+
∂(ν(t, x)ni(x|t))

∂x

= −(αi(t) + βi(t) + δi(t))ni(x|t) + 2γ

∫
R+

ωi−1(t)αi−1(t)ni−1(a, γx|t)da.

This reformulated to scalar form is exactly the governing PDE system of the DCLSP
(2.3.8).
It remains to show the statement for the initial conditions. For i = 0 the marginalitsation
of the left hand side of the initial condition (2.1.9) is with (2.3.10)∫ ∞

0

n0(a, x|0)da = n0(x|0).

The marginalization of the left hand side of (2.1.9) is∫ ∞
0

n0(a)p0(x)da = n0p0(x).

This results in
n0(x|0) = n0p0(x)

or in scalar form
n0(x, j|0) = n0(j)p0(x).

For i ≥ 1 the the initial conditions agree as well

ni(x|0) =

∫ ∞
0

ni(a, x|0)da =

∫ ∞
0

0da = 0.

Hence, the DCLSP model is a special case of the ALDC model and all the information
inherent to the DCLSP model is contained in the ALDC model. This can for example be
used to test the numerical implementation of the ALDC model.

2.4 Numerical example

Equations (2.2.13) and (2.2.12) are used to extend the existing MATLAB-algorithm for the
DALSP model. The algorithm computes the solution starting from i = 0 and iteratively
calculates the solution for i = 1, . . . , S until a maximal division number S. The solution
is calculated on a �xed grid of points in age- and time-direction. To compute the solution
for a certain division number i, the solution for all j = 1, . . . , J with division number
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Table 2.1: Table of rates and parameters used to produce the numerical example. The
initial number of cells is denoted by n0(j).

parameter log(α1
i ) α1

6 log(α2
i ) α2

6 log(β1
i ) log(β2

i )
i = 0, . . . , 5 i = 0, . . . , 5 i = 0, . . . , 6 i = 0, . . . , 6

value 1 + 0.9i 0 0 + 0.5i 0 −1− 0.3i -2-0.125i

parameter ω12 ω21 log(n0(1)) log(n0(2)) log(k) log(c)
value 0.6 0.7 8.1 8.0 -1.8 -3.8

parameter µx log(σx) µn log(σn)
value 6.3 -1.8 2.2 -1.0

i − 1 have to be known. Integrals that occur during calculation are approximated by
trapezoidal rule to make the scheme more time e�cient. The runtime depends largely on
the number of grid points and on the maximal number of divisions considered S. However,
to achieve accurate results the number of necessary grid points might be large.

As shown in Section 2.3.2 integrating over a yields the DCLSP-model from [8]. Hence, for
rates αji (t, a) = αji (t) and β

j
i (t, a) = βji (t) independent of age integrating the solution of

the ALDC model over age should yield the solution of the corresponding DCLSP model.
The latter can be considered as a good approximation of the real solution. Comparing the
evolution of cell number of cells with a certain cell type and in a certain generation in time
for both models can give some indication of the accuracy of the numerical implementation
of the ALDC model.

In the following three di�erent grid sizes will be compared regarding runtime and accuracy.
The number of divisions considered are six so i = 0, . . . , 6 and the number of cell types
is set to two, J = 2. There is no change of cell type without cell division, so δji (t, a) = 0
for all i ∈ {0, . . . , 6}, j ∈ {1, 2} and t, a ∈ R+. The rates α

j
i (t, a) = αji and β

j
i (t, a) = βji

depend on cell type j and division number i, but not on time t or age a. The probability

to change cell type during cell division ωjj̃i (t, a) = ωjj̃ is independent of division number
i, time t and age a. We consider cells of age a ∈ [0, 4], where we start with n0(j) cells
with age zero a = 0, and a time period t ∈ [0, 3]. The age- and time-scale have the
same units, say for example days. The initial label distribution is assumed to be a log-
normal distribution with parameters µx and σx and the dilution function is modeled by
a Gompertz decay process with parameters k and c, ν(x, t) = −k exp(−ct)x [5] and we
set γ = 2. We model the background �uorescence by a log-normally distribution with
parameters µn and σn. The rates and parameters are listed in Table 2.1.

In the �rst case (shown in Figure 2.1) the di�erence between two neighboring points, the
step size, is set to be ∆ = 0.01 in both age and time direction which yields approximately
120 000 grid points. The Figure 2.1 shows the numbers of cells with a certain division
number with respect to time. The straight line represents the simulation produced by
the DCLSP model solved by the standard MATLAB solver ode45 as a line and the one
obtained by using the numerical scheme to simulate the ALDC model as dots. For each
cell type three exemplary division numbers are shown: i = 0, i = 2 and i = 5. The curves
agree quite well for cells with few divisions i = 0 and i = 2. However the simulations for
generation �ve i = 5 di�er greatly. The runtime is approximately 0.6 seconds.
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Figure 2.1: Comparison of the numerical solution of the ALDC model (PDE) represented
as dots with the solution for the DCLSP (ODE) represented by a straight line for step size
∆ = 0.01. The �gure depicts the time-dependent cell number for di�erent generations.
There is a noticeable di�erence between both simulations for generation i = 5.
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Figure 2.2: Comparison of the numerical solution of the ALDC model (PDE) represented
as dots with the solution for the DCLSP (ODE) represented by a straight line for step size
∆ = 0.005. The �gure depicts the time-dependent cell number for di�erent generations.
There is still a slight discrepancy between both curves for the �fth generation.
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Figure 2.3: Comparison of numerical solution of the ALDC model (PDE) represented as
dots with the solution for the DCLSP (ODE) represented by a straight line for step size
∆ = 0.001. The �gure depicts the time-dependent cell number for di�erent generations.
The two curves are indistinguishable.

In the second case, shown in Figure 2.2, the step size is halved, ∆ = 0.005, corresponding
to a grid size of around 480 000 points. Again the numbers of cells with division number
i = 0 and i = 2 show little to no discrepancy. The di�erence in the case i = 5 is reduced
in comparison to Figure 2.1, but it is still noticeable. The run time for this step size is
roughly four seconds that is seven times the time needed in the �rst case.
For the third case the original step size is a tenth of the �rst one, i.e. ∆ = 0.001. The
number of grid points considered now is hence 12 000 000. In this case the implementation
for all division numbers seems to �t nicely to the curves produced by the ODE-solver as
can be seen in Figure 2.3. However, the computational time is now around 230 seconds
which is more than 350 times the time used for the simulation for ∆ = 0.01. Since
parameter estimation needs to evaluate this model at every step of optimization, 230
seconds is much to long to be used, especially, since the number of divisions considered
can exceed the number used for these simulations making the calculation even more time
consuming.
To illustrate the properties of the ALDC model, we will now use the stepsize ∆ = 0.001
and simulate the model with the parameters given in Table 2.1 for the time interval
t ∈ [0, 1]. In Figure 2.4 the composition of the total population regarding generation
is illustrated. Over time the cells accumulate in generation six, because αj6 = 0 for
all cell types j. Considering a larger time frame will not yield more insight as this
trend will continue. The left sub�gure of Figure 2.5 depicts the probabiltiy distributions
for the measured �uorescence of a cell, i.e. the sum of CFSE-induced and background
�uorescence, to lie in a certain bin of the histograms for di�erent time points. The
timepoints are distinguished by di�erent colors. In this case six peaks can be identi�ed
in the histograms which correspond to the individual generations i. For real life data,
however, this is e�ect appears rarely. Again the cells seem to accumualte in generation
six. In the right sub�gure the total number of cells is shown. The population growth is
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Figure 2.4: This �gure depicts the percentage cells in generation i contribute to the total
amount of cells at a time t. The di�erent generations are represented by di�erent colors.
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Figure 2.5: The left sub�gure shows the �uorescence histograms obtained by simulating
the ALDC model with the parameters listed in Table 2.1. The di�erent colors code for
the di�erent time points. The right sub�gure depicts the development of the total number
of cells in the population.
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slowing down, since there is no cell division in generation six only cell death and since
towards t = 1 the majority of cells is already in the last considered generation.
In this example a small enough step size renders the numerical implementation of the
ALDC model accurate enough for parameter estimation. However, the computation time
is very high and the appropriate step size is not clearly evident from the initial setup of
the problem.

2.5 Summary

In this chapter a new model has been developed to describe the proliferation of cells that
can occur in di�erent cell types and change those types in the progress of proliferation
while possibly having age-, division number-, cell type- and time-dependent rates. There-
for a system of coupled PDEs was used. The solution has been derived by decomposition
and the method of characteristics. Furthermore, the relation to existing models has been
discussed. We extended the existing implementation for the DALSP model and found that
it is not robust enough, slow and costly. This leads to the conclusion that the present
implementation is too expensive. To avoid solving the PDE (2.2.9) the age structure can
be discretized yielding a less complex ODE system.



Chapter 3

Cell state-, label-, division number- and

cell type-structured population model

for CFSE-data

In Chapter 2 we found that the numerical simulation of the ALDC model can require very
small step sizes to attain a good approximation of the true solution. A key problem for
the accuracy of the numerical scheme was the approximation of integrals in the solution
of the PDEs modeling the population with continuous age structure. To circumvent this
problem, we will establish in this chapter a new model class that, inspired by the cell
cycle, accounts for discrete cell age states rather than continuous cell age. The model is
named cell state-, label-, division number- and cell type-structured population (SLDC)
model. Similarly to Section 2.2 the SLDC model will be decomposed. We then relate the
SLDC model to existing models by comparing the division rates and the inter-division
time.

3.1 Formulation of SLDC model

In this section we formulate the SLDC model. Therefor we consider a discrete age struc-
ture and introduce the discrete cell states c ∈ {1, . . . , C}. C denotes the cell state in which
cell division takes place. A cell with division number i �rst has to go through all the states
1 to C to divide and arrive at division number i + 1. Theoretically, a cell can change
its cell type in each stadium of the cycle without cell division or change of state. This

corresponds to the transitions with rate δjj̃i in the age-dependent model. Analogously to
the age-dependent model the cell type can also change during cell division. For simplicity,
rates in the SLDC model that describe the same processes as in the ALDC model will be
denoted with the same symbol as their age-dependent counter parts. Again we introduce
the joint number density for generation i, ni(c, x, j|t). The number of cells of cell type j
in cell state c that at time t have undergone i divisions and have a label concentration
in a certain interval x ∈ [x1, x2] can be computed by integrating the number density over
the label x,

∫ x2
x1
ni(c, x, j|t)dx.

The model accounts for the following processes,

• the change of the number density with respect to time, ∂ni(c,x,j|t)
∂t

,

28
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• the change of the number density due to label degradation with dilution rate ν(t, x),
∂(ν(t,x)ni(c,x,j|t))

∂x
,

• the change of the number of cells in the subpopulation with cell type j, division
number i and state c due to cell death with rate βji (t, c) and change of cell state
with rate ρji (t, c), −(ρji (t, c) + βji (t, c))ni(c, x, j|t),

• the change of number of cells in the subpopulation with division number i and
cell type j and state c ∈ {2, . . . , C} through advancement of cell state of cells in
generation i with cell type j and cell state c − 1 with rate ρji (t, c − 1), ρji (t, c −
1)ni(c− 1, x, j|t),

• the change of the number of cells in the subpopulation with division number i, cell
type j and state c = 0 through cell division of cells with division number i− 1, cell

type j̃ and state c = C with division rate ρj̃i−1(t, C) with simultaneous change of

cell type from type j̃ to j with probability ωjj̃i−1(t, C),

2γρj̃i−1(t, C)ωjj̃i−1(t, C)ni−1

(
C, γx, j̃|t

)
, and

• the change of the number of cells in the subpopulation with division number i, cell
state c and cell type j due to spontaneous change of cell type from cell type j̃ to j

cells with transition rate δjj̃i (t, c),

δjj̃i (t, c)ni
(
c, x, j̃|t

)
.

The dilution rate ν(t, x) is the same as in Chapter 2. The rates that describe cell aging,
death, division and cell type change do now depend on the cell state. Their domain is
{1, . . . , C} × R+. The rates related to population dynamics are

• the death rate at time t for cells in generation i, cell state c and with cell type j,
βji (t, c),

• the rate at time t at which cells in in generation i, cell state c and with cell type j
change their cell state, ρji (t, c),

• the probability at time t that a cell in generation i, cell state C and with cell type

j̃ changes the cell type from j̃ to j during cell division, ωjj̃i (t),

• the rate at time t at which cells with division number i and cell state c and cell type

j̃ spontaneously change their cell type from j̃ to j, δjj̃i (t, c).

For c = C the rate ρji (t, C) additionally describes the rate at which cells in state C divide.

The rate ωjj̃i (t) is factually independent of the cell state since cell division only occurs in

state C. It holds that
∑J

j̃=1 ω
jj̃
i (t) = 1. The spontaneous change of cell type described by

rate δjj̃i (t, c) can occur in every cell state and does not change it.
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The combination of the described processes yields the evolution equations

∂ni(c, x, j|t)
∂t

+
∂(ν(t, x)ni(c, x, j|t))

∂x
= −(ρji (t, c) + βji (t, c))ni(c, x, j|t)

−
J∑
j̃=1

δj̃ji (t, c)ni(c, x, j|t) +
J∑
j̃=1

δjj̃i (t, c)ni
(
c, x, j̃|t

)

+


0 i = 0, c = 1

ρji (t, c− 1)ni(c− 1, x, j|t) i ≥ 0, c > 1

2γ
∑J

j̃=1 ρ
j̃
i−1(t, C)ωjj̃i−1(t, C)ni−1

(
C, γx, j̃|t

)
i > 0, c = 1

. (3.1.1)

The initial conditions are

i = 0 : n0(c, x, j|0) = n0(c, j)p0(x)

i ≥ 1 : ni(c, x, j|0) ≡ 0.

Analogously to the ALDC model, we denote the initial cell state distribution of cells of
type j that did not undergo any cell division by n0(c, j). The number of cells with division
numbers i ≥ 1 is assumed to be zero at the time of staining, since cell division can only
be observed after staining. The initial label distribution is denoted by the probability
density p0(x) which describes the probability of a cell to have label concentration x after
staining. We assume a product form of the initial conditions n0(c, x, j|0) = n0(c, j)p0(x),
as the initial label distribution is independent of the initial cell state distribution.
Again, formulation in matrix-vector-form can improve the legibility by reducing summa-
tion to matrix-vector-multiplication. Therefor a vector ni(c, x|t) is considered which, as
before, is structured by cell type,

ni(c, x|t) =


ni(c, x, 1|t)
ni(c, x, 2|t)

...
ni(c, x, J |t)

 . (3.1.2)

With the De�nition 3.1.2 the model becomes

∂ni(c, x|t)
∂t

+
∂(ν(t, x)ni(c, x|t))

∂x
= −(ρi(t, c) + βi(t, c)− δi(t, c))ni(c, x|t)

+


0 i = 0, c = 1

ρi(t, c− 1)ni(c− 1, x|t) i ≥ 0, c > 1

2γωi−1(t)ρi−1(t, C)ni−1(C, γx, t) i > 0, c = 1

(3.1.3)

with ρi(t, c) and βi(t, c) being diagonal matrices with entries ρji (t, c) and β
j
i (t, c) respec-

tively

ρi(t, c) =


ρ1
i (t, c) 0 . . . 0

0 ρ2
i (t, c) . . . 0

...
...

. . .
...

0 0 . . . ρJi (t, c)

 (3.1.4)
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βi(t, c) =


β1
i (t, c) 0 . . . 0

0 β2
i (t, c) . . . 0

...
...

. . .
...

0 0 . . . βJi (t, c)

 . (3.1.5)

The matrix δi(t, c) is de�ned analogously to (2.1.8)

δi(t, c) =



−
J∑̃
j=1

δj̃1i (t, c) δ12
i (t, c) . . . δ1J

i (t, c)

δ21
i (t, c) −

J∑̃
j=1

δj̃2i (t, c) . . . δ2J
i (t, c)

...
...

. . .
...

δJ1
i (t, c) δJ2

i (t, c) . . . −
J∑̃
j=1

δj̃Ji (t, c)


(3.1.6)

and the matrix ωi(t) is similar to (2.1.12) de�ned as

ωi(t) =



1−
J∑̃
j=1

ωj̃1i (t) ω12
i (t) . . . ω1J

i (t)

ω21
i (t) 1−

J∑̃
j=1

ωj̃2i (t) . . . ω2J
i (t)

...
...

. . .
...

ωJ1
i (t) ωJ2

i (t) . . . 1−
J∑̃
j=1

ωj̃1i (t)


.

The initial conditions are transformed to

i = 0 : n0(x, c|0) = n0(c)p0(x)

i ≥ 1 : ni(x, c|0) ≡ 0.
(3.1.7)

Having formulated the SLDC model, we can now analyze it, analogously to the ALDC
model.

3.2 Analysis of SLDC model

The SLDC model still consists of coupled systems of PDEs and is fairly complex. In the
following, we will show that it can be simpli�ed by decomposition, similarly to the ALDC
model.

Theorem 3.2.1. For dilution rates ν(x, t) = −k(t)x the number density ni(c, x, j|t) can
be decomposed into two independent parts

ni(c, x, j|t) = ni(c, j|t)p(x|i, t). (3.2.1)

The function p(x|i, t) describes the label distribution for a certain generation i, at a certain
time t. It ful�lls the same evolution equation (2.2.5) as in the last chapter

∂p(x|i, t)
∂t

+
∂(ν(x, t)p(x|i, t))

∂x
= 0 (3.2.2)
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with initial conditions

p(x|i, 0) = γip0(γix). (3.2.3)

The number ni(c, j|t) of cells in generation i, cell state c and with cell type j has to satisfy

∂n(c, i, j|t)
∂t

=− (ρji (t, c) + βji (t, c))n(c, i, j|t)

−
J∑
j̃=1

δj̃ji (t, c)n(c, i, j|t) +
J∑
j̃=1

δjj̃i (t, c)n
(
c, i, j̃|t

)

+


0 i = 0, c = 1

ρji (t, c− 1)n(c− 1, i, j|t) i ≥ 0, c > 1

2
∑J

j̃=1 ρ
j̃
i−1(t, C)ωjj̃i−1(t, C)n

(
C, i− 1, j̃|t

)
i > 0, c = 1

(3.2.4)

with initial conditions

i = 0 : n(c, 0, j|0) = n0(c, j)

i ≥ 1 : n(c, i, j|0) ≡ 0.

In matrix-vector-form (3.2.1) becomes

ni(c, x|t) = ni(c|t)p(x|i, t) (3.2.5)

with ni(c|t) being the vector-function

ni(c|t) =


ni(c, 1|t)
ni(c, 2|t)

...
ni(c, J |t)

 . (3.2.6)

The matrix-vector-formulation of (3.2.4) is

∂ni(c|t)
∂t

=− (ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)

+


0 i = 0, c = 1

ρi(c− 1, t)ni(c− 1|t) i ≥ 0, c > 1

2ωi−1(t, C)ρi−1(t, C)ni−1(C|t) i > 0, c = 1

(3.2.7)

with initial conditions
i = 0 : n0(c|0) = n0(c)

i ≥ 1 : ni(c|0) ≡ 0.
(3.2.8)

Proof: We prove Theorem 3.2.1 by showing that plugging the ansatz (3.2.5) in both
sides of (3.1.3) yields the evolution equation of (3.1.3) and that the initial conditions
are consistent, analogously to the proof of Theorem 2.2.1 and [5]. The term obtained by
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inserting the ansatz (3.2.5) on the left hand side can be di�erentiated in the next step
using the product rule,

∂ni(c, x|t)
∂t

+
∂(ν(t, x)ni(c, x|t))

∂x

=
∂(ni(c|t)p(x|i, t))

∂t
+
∂(ν(t, x)(ni(c|t)p(x|i, t)))

∂x

=
∂ni(c|t)
∂t

p(x|i, t) +
∂p(x|i, t)

∂t
ni(c|t) +

∂(ν(t, x)p(x|i, t))
∂x

ni(c|t)

=
∂ni(c|t)
∂t

p(x|i, t) +

(
∂p(x|i, t)

∂t
+
∂(ν(t, x)p(x|i, t))

∂x

)
ni(c|t).

From line three to four the terms were factorized using that p(x|i, t) and its derivatives
are scalar functions. We can now insert the evolution equations of the decomposed model
(3.2.2) and get

∂ni(c|t)
∂t

p(x|i, t) +

(
∂p(x|i, t)

∂t
+
∂(ν(t, x)p(x|i, t))

∂x

)
ni(c|t) =

∂ni(c|t)
∂t

p(x|i, t). (3.2.9)

When inserting (3.2.7) three cases have to be distinguished,

i = 0, c = 1 :
∂ni(c|t)
∂t

p(x|i, t) =− (ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)p(x|i, t)

i ≥ 0, c > 1 :
∂ni(c|t)
∂t

p(x|i, t) = (−(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)

+ρi(c− 1, t)ni(c− 1|t)) p(x|i, t)

i > 0, c = 1 :
∂ni(c|t)
∂t

p(x|i, t) = (−(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)

+2ωi−1(t, C)ρi−1(t, C)ni−1(C|t)) p(x|i, t).

The same three cases have to be distinguished, if we inserte the ansatz (3.2.5) on the right
hand side of (3.1.3). For i = 0 and c = 1 we obtain

−(ρi(t, c) + βi(t, c)− δi(t, c))ni(c, x|t) = −(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)p(x|i, t),

for i ≥ 0 and c > 1 the right hand side of (3.1.3) becomes

− (ρi(t, c) + βi(t, c)− δi(t, c))ni(c, x|t) + ρi(c− 1, t)ni(c− 1x|t)
= −(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)p(x|i, t) + ρi(c− 1, t)ni(c− 1|t)p(x|i, t)
= (−(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t) + ρi(c− 1, t)ni(c− 1|t)) p(x|i, t)

by inserting (3.2.5) and factorizing and in the case i ≥ 1 and c = 1 the right hand side of
(3.1.3) is equal to

− (ρi(t, c) + βi(t, c)− δi(t, c))ni(c, x|t) + 2γωi−1(t)ρi−1(t, C)ni−1(C, γx|t)
= −(ρi(t, c) + βi(t, c)− δi(t, c))ni(c|t)p(x|i, t)

+ 2γωi−1(t)ρi−1(t, C)ni−1(C|t)p(γx|i− 1, t).
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For the �rst two cases inserting (3.2.5) gives the same result on both sides. In the third
case we can use that γp(γx|i− 1, t) = p(x|i, t) for ν(x, t) = −k(t)x as we already showed
in Section 2.2 to conclude that inserting (3.2.1) on the right and left hand side of (3.1.3)
yields the same equations. Hence, the ansatz ful�lls (3.1.3). For i = 0 the initial conditions
are consistent as it holds that

ni(x|0) = n0(0)p(x|0, 0) = n0p0(x).

For i ≥ 1 inserting the ansatz in both sides of (3.1.7) yields

ni(x|0) ≡ 0

ni(0)p(x|i, 0) = 0γip0(γix) ≡ 0.

This concludes the proof.

With this decomposition the label dynamics stay the same as in Chapter 2 and age,
generation and cell type dynamics are simpli�ed to an ODE system. This ODE system can
be solved numerically by time e�cient and accurate algorithms. In contrast to Chapter 2,
we do not need an analytical solution for the subpopulation dynamics.

3.3 Relation of the SLDC model to existing models

Since the concept of discrete age structure is new in the context of the analysis of prolifer-
ation data, the question arises how the SLDC model relates to the existing model classes.
Can it produce the same results as existing models? Is it more or less general than the
existing models considered in this thesis? Especially interesting is the relation of discrete
to continuous age structure.
The relation to the DCLSP model is clearly evident. The DCLSP model can be obtained
by setting the number of cell states C in the SLDC model equal to one. As the DCLSP
model is a generalization of the DLSP model, the DSP model and the LSP model, these
are, as well, special cases of the SLDC model.
For the comparison of the SLDC model and the ALDC model we want to focus on the
di�erences that arise due to the di�erent age structure. The models can not be directly
related as they are fundamentally di�erent in their structure. We can, however, compare
them in terms of inter-division time, i.e. the time a cell stays in a certain generation
between to divisions.

Theorem 3.3.1. If there is no �ux between cell types and the rates ρi(t, c) are continuously
di�erentiable in time for all c and i, the rate αi(t, a) of the ALDC model can be chosen
for all i to yield an identical distribution of the inter-division time as the SLDC model
with rates ρi(t, c).

Proof: We will prove Theorem 3.3.1 by constructing αi(t, a) for a given function ρi(t, c).
When comparing the ALDC and the SLDC model in the decomposed form we �nd that
the label dynamics are the same. To compare the in�uence of age structure for the SLDC
model and the ALDC model, we therefore merely have to study the population dynamics
of ni

ALDC(a|t) and ni
SLDC(c|t), respectively. The distribution of inter-division time of
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cells corresponds to the �ux of one generation into the next generation, if all cells have
the same age a = 0 at time t = 0, there is no in�ux at a = 0, no cell death and there is
no transition between cell types. This corresponds to the situation of the ALDC model
and SLDC model at i = 0 with βi = 0, δi = 0 and ωi = I being the J-dimensional
unit matrix. As we do not consider transitions between cell types, we can without loss of
generality assume that there is just one cell type J = 1. In this case the ALDC model
is identical to the DALSP model as pointed out in Section 2.3. If J = 1 the function
ni
SLDC(c|t) = nSLDCi (c|t) in the SLDC, ni

ALDC(a|t) = nALDCi (a|t) in the ALDC and the
rates become scalar functions. Furthermore, the initial age distribution lies completely at
a = 0 in the ALDC model and c = 0 in the SLDC model, respectively, because all cells
start with age zero. Thus, the initial age distribution of the ALDC model has to ful�ll
nALDC0 (a|0) = 0 for a > 0 and

∫
R+
nALDC0 (a|0)da = 1. This can be modeled using the

delta distribution δ0(a). The initial cell distribution is then nALDC0 (a) = δ0(a). For the
SLDC model we model the initial distribution by setting nSLDC0 (c|t) = (1, 0, . . . , 0)T . The
�ux into the next generation is a function of t and since we start with a total number
of one cell at t = 0, the �ux into the next generation corresponds to the distribution of
inter-division times.
To prove Theorem 3.3.1 by considering the �ux into a certain generation, we can con�ne us
to prove the statement for the inter-division time between generation i = 0 and generation
i = 1. All other cases can be proved analogously by setting ρ0(t, c) = ρi(t, c) and α0(t, a) =
αi(t, a) because the inter-division time only depends on the rate ρi(t, c) and αi(t, a),
respectively.
In the situation de�ned above the �ux into i = 1 for the SLDC model is f(t) :=
2ρ0(t, C)nSLDC0 (C|t), where nSLDC0 (C|t) is the solution of the ODE

ṅSLDC0 (1|t) = −ρ0(t, 1)nSLDC0 (1|t)
ṅSLDC0 (2|t) = −ρ0(t, 2)nSLDC0 (2|t) + ρ0(t, 1)nSLDC0 (1|t)

...

ṅSLDC0 (C|t) = −ρ0(t, C)nSLDC0 (C|t) + ρ0(t, C − 1)nSLDC0 (C − 1|t).

(3.3.1)

The ODE is of the form ṅ = F (t, n), where F (t, n) is locally Lipschitz continuous in n
and continuous in t as ρi(t, c) is continuous on R+. With the theorem of Picard-Lindelöf
there exists a unique continuously di�erentiable local solution. Because ρi(t, c) is itself
continuously di�erntiable, the distribution of inter-division times, f(t), is a compositum
of C1 functions and thus a continuously di�erentiable function. For the ALDC model the
�ux into i = 1 is 2ψ0(t) = 2

∫
R+
α0 (t, a)n0

ALDC(a|t)da and can be calculated using the

solution for n0
ALDC(a|t) from (2.2.13)

2

∫
R+

α0 (t, a)nALDC0 (a|t) da = 2

∫
R+

α0 (t, a) δ0 (a− t) exp

(
−
∫ t

0

α0

(
t̃, t̃+ a− t

)
dt̃

)
da

= 2α0 (t, t) exp

(
−
∫ t

0

α0

(
t̃, t̃
)
dt̃

)
.

Hence, the �ux into generation i = 1 depends only on t and not on a. We can therefore
consider α0(t) = α0(t, t). To choose α0(t) so that these functions are the same for given
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ρ0(t, c) we have to solve the problem

2f(t) = 2α0 (t) exp

(
−
∫ t

0

α0

(
t̃
)
dt̃

)
⇔ f(t) = α0 (t) exp

(
−
∫ t

0

α0

(
t̃
)
dt̃

)
Hence, we can deduct that if f(t) > 0 it follows that α0(t) > 0 and for f(t) = 0 it follows
that α0(t) = 0. Therefor, if f(t) 6= 0, it holds that α0(t) 6= 0 as well and we can divide by
α0(t)

f (t)

α0 (t)
= exp

(
−
∫ t

0

α0

(
t̃
)
dt̃

)
⇔ log (f (t))− log (α0 (t)) = −

∫ t

0

α0

(
t̃
)
dt̃.

The natural logarithm can be applied to f(t) and α0(t) since both functions are nonneg-
ative and we excluded the case f(t) = 0 and α0(t) = 0. Derivation in time direction
yields

ḟ (t)

f (t)
− α̇0 (t)

α0 (t)
= −α0 (t) .

Hence, α(t) is either equal to zero or has to ful�ll the following ODE

α̇ (t) =
ḟ (t)

f (t)
α0 (t) + α2

0 (t) . (3.3.2)

The initial conditions can be derived from equation α0(0) = f(0). With the existence

theorem of Peano the ODE (3.3.2) has a solution, if ḟ(t)
f(t)

α0 + α2
0 is continuous in t and

α. As f(t) 6= 0 and continuously di�erentiable this is the case. Hence, we can construct
a piecewise continuous α0(t, t) that generates the same inter-division time between i = 0
and i = 1 in the ALDC model as the rates ρi(t, c) in the SLDC model.

With this �nding the question arises, if there is an analogous result for the death rate
βi(t, c). This question is much harder to answer because the observation of cell death in
di�erent cell states requires a �ux between cell states. Therefor the analysis with respect
to βi(t, c) cannot be done independently of ρi(t, c) which complicates the calculations.
Furthermore, it is not clear which quantity to use for the comparison of the impact of the
death rates. Still, it would be desirable to show that, given the death rates of the SLDC
model, the death rates of the ALDC model can be determined to yield the same result as
the SLDC model.
For general rate ρi(t) the calculation of f(t) is complex and mostly not analytically pos-
sible. In the case ρi(t, c) = ρ = const and n0(1|t) = 1 for c = 1 and n0(c|t) = 0 for
c ∈ {2, . . . , J} a calculation is possible. The solution is the Erlang distribution with
parameters ρ and C,

f(t) = ρC
tC−1

(C − 1)!
exp(−ρt)
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Figure 3.1: The �gures in the top row depict the numerical computation of rate α0(t) that
has to be used in the ALDC model to create the same inter-division time as the SLDC
model for rate ρ = 2 for t ∈ [0, 10] distinguishing between three di�erent cases regarding
the number of cell states C. The left picture shows the computation for C = 1, the one
in the middle the computation for C = 2 and the left �gure shows the computation for
C = 3. The �gures in the bottom row depict the distribution of inter-division time derived
by using the rate pictured in the �gure above.

and

C = 1 : ḟ(t) = −ρ2 exp(−ρt)

C > 2 : ḟ(t) =
ρC

(C − 1)!

(
−ρtC−1 exp (−ρt) + (C − 1) tC−2 exp (−ρt)

)
=

ρC

(C − 1)!
exp (−ρt) tC−2 (−ρt+ C − 1) .

If we plug this in the ODE for α0 we obtain

t = 0 : α0(0) = f(0) = 0

t > 0 : α̇0 =

(
C − 1

t
− ρ
)
α0 + α2

0.

A numerical solution for this is can be calculated. In Figure 3.1 the computed α0(t)
is shown exemplary for ρ = 2 and three di�erent C in the �gures in the top row with
the resulting inter-division time in the �gures at the bottom. For C = 1 the numerically
calculated rate is not constant, although the obvious solution would be to set α0(t) = 2
for all t ∈ [0, 10]. This is due to the numerical implementation and the special numerical
properties of this problem. Furthermore, for large t it gets nearly impossible to determine

α0(t) numerically as exp
(
−
∫ t

0
α0

(
t̃, t̃
)
dt̃
)
becomes much smaller than one. This is a
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possible reason for the behavior of the rate α0(t) in the case C = 3. The rate is still
increasing at t = 10 even though the inter-division time distribution is going to zero.
In this section we found that a lot models mentioned in the introduction can be seen as
special cases of the SLDC. However, the ALDC model and the DALSP model are more
general with respect to the inter-division time distribution. Which leads to the question
if the SLDC still can produce a large variety of populations. This will be answered in the
next section.

3.4 Numerical example

We now want to illustrate the properties of the SLDC with a small numerical example.
Firstly, we discuss how to choose the number of cell states and with this result we will
perform an exemplary simulation.

3.4.1 Choice of the number of cell states

The choice of the number of cell states C that shall be considered in the SLDC model
can be discussed by reference to the case with ρi(t) = ρ = const. As mentioned before,
in this case, the inter-division time distribution is an Erlang distribution. The choice of
time- or generation-dependent ρi(t) will increase the variability of the population. The
objective is, hence, to �nd the number of cell states that can generate populations with
homogeneous distributions of inter-division time. This enables us to model homogeneous
as well as, with respect to inter-division time, more heterogeneous cell populations. In
Figure 3.2 the in�uence of the number of cell states on the distribution of inter-division
times is illustrated. The left sub�gure shows Erlang distributions for di�erent sets of
parameters ρ and C where ρ is chosen in such a way that the mean of the distribution
is one. The variance of the distribution of inter-division time decreases as the number of
cell states increases. The right sub�gure depicts the coe�cient of variation depending on
the number of cell states C. As the situation with constant ρ is the most homogeneous,
the value of C determines the lower bound of the coe�cient of variation. With the choice
of C = 20 the coe�cient of variation is already at around 0.22 and decreases further to
approximately 0.16 for the choice of forty cell states C = 40. Heuristically, the choice of
around twenty to forty cell states should enable the modeling of homogeneous enough cell
populations as well as more variable ones.

3.4.2 Setup of the numerical example

For the numerical example we set the number of cell states to C = 30 as discussed above.
We will consider a population consisting of J = 2 cell types, where one cell type (j = 1)
divides faster than the other (j = 2) and there is change of cell type during cell division
but no spontaneous change of cell type, i.e. δi(t, c) = 0 for all i, t, c. We will observe the
behavior of this population for a time t ∈ [0, 10] at the time points t = {0, 2, 4, 6, 8, 10}
and for i ∈ {0, . . . , 14}. The rates βji (t, c) = βj, ρji (t, c) = ρj and ωjj̃i = ωjj̃ only
depend on the cell type j and if applicable j̃. The dilution rate ν(x, t) is modeled by a
Gompretz decay process with parameters k0 and c, i.e. ν(x, t) = −k0 exp(−ct)x [5] and
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Figure 3.2: On the left the Erlang distribution for di�erent values of ρ and C are shown.
The rate ρ is chosen equal to the number of cell states C. Hence, the mean of the
distribution of inter-division time is one. The variance of the distribution becomes less
for increasing numbers of cell states C. The right �gure shows the coe�cient of variation
for di�erent numbers of cell states C. The coe�cient of variation decreases with increasing
numbers of cell states C.

Table 3.1: Parameters used for the numerical example
parameter log10(ρ1) log10(ρ2) log10(β1) log10(β2) log10(k) log10(c)

value 1.5 0.8 −5 −8 −3.5 −6.5

parameter log10(n0(1)) log10(n0(2)) µx log10(σx) ω21 ω12

value 2 3 10 −0.2 0.1 0.4

parameter γ µn σn
value 2 35 25

we set γ = 2. To model the background �uorescence we use a normal distribution with
mean µn and standard deviation σn, N (µn, σ

2
n). The initial age distribution in generation

i = 0 is uniform, i.e. there are equally many cells in each cell state c. Hence, as initial
distribution for cells with cell type j we get for all c ∈ {1, . . . C}, j ∈ {1, 2} and i = 0 that
n0(c, j) = n0(j). We use a log-normal distribution with parameters µx and σx to model
the initial label distribution, p0(x) = logN (µx, σ

2
x). The used parameters are given in

Table 3.1.

3.4.3 Simulation

The left sub�gure of Figure 3.3 depicts the probability distribution of the binned �uores-
cence of the population with added normal distributed background �uorescence simulated
by the SLDC model. Since one cell type divides faster than the other, the �uorescence
histogram of day four exhibits two modes and the histograms of day six to ten are skewed
to the right. The growth of the total population is depicted in the right sub�gure. From
day zero to day two the population grows slower than from day two to the next days,
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Figure 3.3: The left sub�gure shows the �uorescence histograms obtained by simulating
the SLDC model with the parameters listed in Table 3.1. The di�erent colors code for the
di�erent time points. The right sub�gure depicts the development of the total number of
cells in the population.
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Figure 3.4: This �gure depicts the percentage cells in generation i contribute to the total
amount of cells at a time t. The di�erent generations are represented by di�erent colors.

as the second, more slowly dividing cell type starts with ten times more cells. After day
two the majority of the growth originates from the faster growing �rst cell type. Figure
3.4.3 illustrates the composition of the total population in terms of generations which are
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Figure 3.5: The �gures show the percentage cells with cell type j and in generation i
contribute to the total amount of cells with cell type j at time t.

Table 3.2: Generation- and cell type-dependent parameters used for the comparison run-
time between ALDC model and SLDC model

parameter log10(ρ1
i ) log10(ρ2

i ) log10(β1
i ) log10(β2

i )
value 0.8 + 0.5i 0.8 + 0.2i −1.5− i −5− i

represent by the di�erent colors. It can be seen, that for the considered time span and pa-
rameters the cells divide at most twelve times. The slowly dividing cell type has a strong
in�uence on the �rst generations and cells that divided only once are present until day
eight. In the later generations the in�uence of the slowly dividing cell type decreases, as
the fast dividing cell type outnumbers the former. In Figure 3.5 the generation structure
for each cell type is shown. The sub�gures depict the fraction each generation comprises
of the total number of cells with the same cell type at time t. Here the in�uence of �ux
between cell types due to change of cell type during cell division can be observed. The
faster dividing cell type is skewed to the right indicating an in�ux of cells that divide
more slowly. The e�ect the change of cell type has on the subpopulation of the slow
dividing cell type can best be seen in generation i = 2. There are obviously two peaks,
the �rst one originating from cells of cell type j = 1 that changed their cell type during
division, the second originating from regular cell division. An second aspect observable
in these �gures is that age structure with respect to cell division is inherent even without
explicitly incorporating cell state-dependent rates ρ. There is an distinct delay between
the emersion of one generation and the next.
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3.4.4 Comparison of run time of the SLDC model and the ALDC

model

We can modify this example to compare the run time of the SLDC model and the
ALDC model. In the example in Section 2.4 we considered seven generations S = 6
and generation- and cell type-dependent rates during the time interval t ∈ [0, 3]. The ac-
curate simulation of just the subpopulation sizes ni(a|t) using the ALDC model with step
size ∆ = 0.001 took approximately 175 seconds. To allow for comparability we consider
the same number of generations and the same time interval for our numerical implemen-
tation of the SLDC model. As in the example in Section 2.4, the rates ρji (t, c) = ρji and
βji (t, c) = βji depend generation and cell type. They are depicted in Table 3.2. The re-
maining parameters were left unchanged and can be found in Table 3.1. The simulation of
the subpopulation sizes, ni(c|t), takes roughly 0.5 seconds. Hence, the calculation of the
population and subpopulation sizes with the SLDC model is more than 300 times faster
than the calculation with our implementation of the ALDC model.

3.4.5 Results

Even though the ALDC model is in some sense more general than the SLDC model, a
large enough choice of C renders the SLDC model capable to model a broad variety of cell
populations. We could nevertheless produce an example of a complex population struc-
ture, even without exploting the entire possibilities generated by the potential structure of
the rates ρji (t, c) and β

j
i (t, c). And furthermore, the reduced complexity of the system and

especially the ODE form for ni(c, t) and a therefore much shorter run time compensate
for the loss of generality.

3.5 Summary

In this chapter we introduced the SLDC model. The concept of cell states constitutes a
novel and functional approach to the modeling of age structure in the context of parameter
estimation for CFSE-data without losing signi�cant capability compared to the modeling
with continuous age structure. The SLDC model is capable of modeling age,- label-,
division number- and cell type-structured populations using systems of PDEs. After
decomposition, the system describing the population dynamics is simpli�ed to an ODE
system. This enables an e�cient numerical implementation that is much faster and more
robust than our numerical scheme developed for the ALDC model. Therefore, the SLDC
model is a very suitable option for the simulation of proliferation data especially with
regard to parameter estimation.



Chapter 4

Application of the SLDC model to

CFSE-data for the proliferation of

acute lymphatic leukemia

In this chapter we will present a preliminary analysis and parameter estimation of in vivo
proliferation data of acute lymphatic leukemia using the SLDC model. We will start by
presenting the data and then discuss the model-variants and the algorithm used for the
parameter estimation. We will conclude the chapter by discussing the challenges. As
parameter estimation is a complex problem, the main focus of this thesis was developing
appropriate models and numerical algorithms. Aditionally, �nding �tting parameters is a
time consuming task and the used methods have to be adapted to the problem repeatedly.
Therefore, the time frame of this thesis just allowed a preliminary analysis of the data.

4.1 Data and experimental setup

Acute lymphatic leukemia (ALL) is a cancer of bone marrow and blood, where white
blood cells start growing uncontrolled. When the cancer is diagnosed it is immediately
treated. At detection the cancer is normally already in an advanced state. Due to these
circumstances there is little knowledge of the cancer proliferation in vivo and the early
development of ALL. Yet, this knowledge could reveal potential drug targets and possibly
enable an earlier detection and thus improve the prospects of patients.

To study the proliferation dynamics of ALL, the research team of Professor Jeremias
(AGV Research Unit Gene Vectors, Helmholtz Zentrum München) extracted acute lym-
phatic leukemia cells from three patients. The cells were then preprocessed to express
certain surface markers and red �uorescence to simplify the sorting of cancer and mouse
tissue. At day zero the ALL cells got stained with CFSE and injected into immune sup-
pressed mice. At di�erent days the bone marrow got extracted. After the extraction
the bone marrow cells were separated from the mouse cells using magnetic activated cell
sorting (MACS) and �uorescence activated cell sorting (FACS) utilizing the transgenic
properties of the human cancer cells. After these two puri�cation steps most mouse cells
are sorted out. The cancer cells are then used to create a CFSE �uorescence spectrogram.
The Figure 4.1 (middle) shows the probability distribution of the binned �uorescence that

43
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Figure 4.1: This �gure depicts the data gathered by the team of Professor Jeremias. In the
right �gure the probability distribution of a cell to have a certain background �uorescence
is depicted. The middle sub�gure shows the binned �uorescence distribution of the cell
population at di�erent days where each day is represented by a di�erent color. The right
sub�gure illustrates the total number of cancer cells measured at these days.

was measured in the cell population where the di�erent days of extraction are represented
by di�erent colors. The right sub�gure shows the total number of cancer cells measured.
The measurement at day 0 is not depicted as it represents the �uorescence and total cell
number at injection. Since just a fraction of the injected cells actually home, i.e. grow
on onto the mouse tissue, the values at day zero do not represent the initial number and
label distribution of the cells that actually proliferate. To account for the background �u-
orescence a �uorescence spectrogram of unlabeled cells, a negative control, was produced.
It is shown in Figure 4.1 (left).

4.2 Model alternatives

As we do not know the actual processes that determine the behavior of the population,
we will test various model variants and choose the one that �t the data best. These
model variants di�er in the assumed structure of parameters and population. We start by
testing four model alternatives. The �rst three models consider a population consisting
only of one cell type. Here the �rst variant, M1, assumes that the rates ρi(t, c) = ρ
and βi(t, c) = β are constant. This is the simplest case. The second model variant,M2,
models a division and state advancement rate ρ that depends linear on the generation
number i, ρi(t, c) = ρ0 + ikρ. The rate βi(t, c) = β is constant. In the third variant,M3,
we consider the �ipped case where ρi(t, c) = ρ is constant and βi(t, c) = β0 + ikβ depends
linear on the generation i. The last model variant we want to study, M4, considers a
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population consisting of two cell types that are independent of each other, i.e. there are
no �uxes between cell types. The rates ρji (t, c) = ρj and βji (t, c) = βj just depend on the
cell type and are otherwise constant. In summary, we have the model variants

• M1: J = 1, ρi(t, c) = ρ and βi(t, c) = β are constant,

• M2: J = 1, ρi(t, c) = ρ0 + ikρ is linearly dependent on the generation i and
βi(t, c) = β is constant,

• M3: J = 1, ρi(t, c) = ρ is constant and βi(t, c) = β0 + ikβ is linearly dependent on
the generation i,

• M4: J = 2, ρji (t, c) = ρj and βji (t, c) = βj just depend on the cell type j, δi(t, c) = 0
and ωi(t, c) = I.

In all four cases, the dilution rate ν(x, t) = −k0 exp(−ct)x is modeled by a Gompertz
decay process with parameters k0 and c [5]. Like in Section 3.4 we assume an uniform
initial age distribution n0(c, j) = n0(j) for all c ∈ {1, . . . C}, j ∈ {1, 2} and i = 0. This
results in a initial population size of Cn0 cells. The initial label distribution is assumed
to be a log-normal distribution with parameters µx and σx, p0(x) = logN (µx, σ

2
x), and

we set γ = 2. The background �uorescence will be modeled by a Johnson SU distribution
with parameters γJSU, λJSU > 0, σJSU > 0 and ξJSU that will be determined before the
parameter estimation from the control data. The parameters of a model that have to be
estimated can be presented as a parameter vector θ. In our case the parameter vector for
the four model variants is

θ = [θρ, θβ, k0, c, n0, µx, σx], (4.2.1)

where θρ and θβ are the set of parameters used for the parameterization of ρi(t, c) and
βi(t, c), respectively, depending on the model variant.

4.3 Estimation algorithm

In the following, we will use maximum likelihood (ML) methods for the estimation of
the model parameters. ML methods search for the set of parameters θ∗ that maximizes
the conditional probability, in other words the likelihood, that the measured data D was
generated by our model with this set, i.e. we use the parameter set that maximizes the
likelihood function L(θ) = P(D|θ) as estimator. The vector θ denotes the parameters of
the model and the set of parameters θ∗ is called the maximum likelihood estimator (MLE)
[2, 5]. The measured data D is given as �uorescence histograms {H̄ l

tk
}dll=1 and the total

number of cells N̄tk =
∑dl

l=1 H
l
tk
for each measured time point tk = 1, . . . , dk, where l =

1, . . . , dl denotes the �uorescence bin [yl, yl+1) and H̄ l
tk
is the number of cells that exhibit

a total �uorescence ȳ, i.e. CSFE-induced �uorescence plus background�uorescence, in
this intensity range [2,5]. We now want to deduct a likelihood function for this situation.
The derivation of the likelihood function is in large parts not model speci�c and has been
done in [2, 5]. We will present a short outline of the reasoning given in [2]. As stated
in [2] the probability that the data was created by the SLDC model with a certain set
of parameters θ is the product of the probabilities that the measurements at each time
point tk were generated by θ. The probability to observe a certain histogram {H̄ l

tk
}dll=1
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at time tk can be transformed into the conditional probability to observe the histogram
{H̄ l

tk
}dll=1 given the total number of cells N̄tk and parameter vector θ times the probability

to generate N̄tk cells with parameter vector θ [2]. Hence, the likelihood function for this
case is

L(θ) = P(D|θ) =

dj∏
tk=1

P({H̄ l
tk
}dll=1|N̄tk , θ)P(N̄tk |θ). (4.3.1)

The two factors can be considered separatedly. Measuring the �uorescence intensity of N̄tk

cells and sorting the cell into the respective bin is approximately a series of independent
Bernoulli experiments with dl possible outcomes. Hence, the probability to obtain a
certain histogram {H̄ l

tk
}dll=1 from N̄tk cells is multinomial distributed. The probability

pltk(ȳ|θ) of a cell to exhibit a �uorescence intensity ȳ ∈ [yl, yl+1) and thus being sorted
into bin l at time tk depends on the chosen parameter θ and is computed from the SLDC
model. The measured total �uorescence ȳ consists of the CFSE-induced �uorescence,
which is proportional to the label concentration in the cell with proportionality constant
r, rx, plus background �uorescence ya, y = rx+ya. We can neglect the di�erence between
label concentration and label-induced �uorescence, since the evolution equations stay the
same and we do not know the initial label distribution [2, 5]. The sum of background
�uorescence distribution and the calculated distribution of CFSE-induced �uorescence
p(x|i, t) is the convolution of both densities, denoted by p(y|i, t) [2, 5]. We can now
calculate the total �uorescence distribution of the cell population at time tk,

n(y|tk) =
S∑
i=0

J∑
j=1

C∑
c=1

ni(c, j|tk)p(y|i, tk).

This distribution is then binned according to the bins of the data to obtain simulated his-
tograms {H l

tk
}dll=1. To calculate the probability that a cell is in a particular bin, pltk(ȳ|θ),

we need to divide the number of cells in bin l by the total number of cells Ntk =
∑dl

l=1H
l
tk
.

As a correction for outliers we chose to add the constant value p0/dl to each histogram
bin and normalize the the resulting distribution to yield integral one [2]. Hence, the prob-
ability that a cell randomly chosen out of a population of N̄tk cells exhibits a �uorescence
intensity in the intensity range ȳ ∈ [yl, yl+1) is

pltk(ȳ|θ) =

(
H l
tk

Ntk

+
p0

dl

)
1

1 + p0

.

With this de�nition of pltk(ȳ|θ), the likelihood to measure the histograms {H̄ l
tk
}dll=1 given

a measured total number of cells N̄tk is

P({H̄ l
tk
}dll=1|N̄tk , θ) =

N̄tk !∏dl
l=1 H̄

l
tk

!

dl∏
l=1

pltk (ȳ|θ)H̄
l
tk .

For the second factor, the likelihood of measuring N̄tk cells, P(N̄tk |θ), we assume, that the
measurment error is log-normally distributed with parameters log (Ntk) and σ2

M

P(N̄tk |θ) =
1

N̄tk

√
2πσ2

M

exp

(
−
(
log (Ntk)− log

(
N̄tk

))2

2σ2
M

)
.
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Table 4.1: Lower and upper bounds for the optimization
parameter k0 c µx σx n0 n0(j) β, β0, kβ, β

j ρ, ρj ρ0, kρ
lower bound 10−4 10−8 6 10−1 102 101 10−6 10−3 10−2

upper bound 100 100 12 100 106 106 101 103 102

For numerical reasons we consider the log-likelihood,

logL(θ) =

dk∑
k=1

N̄tk∑
n=1

log(n)−
dl∑
l=1

H̄l
tk∑

n=1

log(n) +

dl∑
l=1

H̄ l
tk
pltk

− 1

2

(
log
(
2πσ2

MN̄tk

)
−
(

log(N̄tk)− log(Ntk)

σM

)2
)
.

To compute the MLE θ∗, we will perform multi-start local optimizations. The starting
points for the local optimizations are sampled using latin hypercube sampling. The lo-
cal optima found by the individual optimizations are compared and the parameter set
corresponding to the largest one is used as MLE.
For the optimizations we will use the lower and upper bounds for the parameters provided
in Table 4.1. These bounds are chosen on the basis of a previous analysis of the data
performed Jan Hasenauer, PhD. The bounds for the initial population size, Cn0, and
the parameter µx of the initial label distribution can also be deducted directly from the
data. By using the estimation algorithm outlined in this section and the optimizer for
constrained optimization provided by MATLAB we can now �nd the MLEs for the model
variants.

4.4 Preliminary results

In this section we will present some preliminary results and we will, furthermore, discuss
how to improve the estimation algorithms.
As stated in Section 4.2, we want to approximate the background �uorescence by a John-
son SU distribution with parameters γJSU, λJSU > 0, σJSU > 0 and ξJSU. The probability
density function of the Johnson SU distribution is given by

σJSU

λJSU
√

2π

√(
x−ξJSU
λJSU

)2

+ 1

exp

(
−0.5

(
γJSU + σJSUsinh−1

(
x− ξJSU
λJSU

))2
)
. (4.4.1)

By minimizing the square error of our simulation we �nd the set of parameters that pro-
duces the best approximation. The set of parameters is shown in Table 4.2 and Figure 4.2
depicts the best �t of the Johnson SU distribution in comparison to the data.
For the parameter estimation of the ALL data we performed multi-start local optimization
with 100 starts. The computation time for this amount of starts is very high hence limiting
the number of parameter estimations done in this thesis.
In the following, we want to present preliminary results for the parameter estimation by
plotting the best �t together with the data. The �gure for each model variant consist of
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Table 4.2: Parameters of the Johnson SU distribution used for the modeling of the back-
ground �uorescence

parameter γJSU σJSU λJSU ξJSU
value −0.9823 100.3988 101.9067 −12.1699
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Figure 4.2: Measured background �uorescence and the �t with the Johnson SU distribu-
tion.
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Figure 4.3: The left sub�gure depicts the measured label histograms for di�erent time
points which are represented by di�erent colors together with the corresponding prediction
created by using model variant M1 of the SLDC model. The right sub�gure illustrates
the measured population size as dots and the predicted population size as a straight line.
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Figure 4.4: The left sub�gure depicts the measured label histograms for di�erent time
points which are represented by di�erent colors together with the corresponding prediction
created by using model variant M2 of the SLDC model. The right sub�gure illustrates
the measured population size as dots and the predicted population size as a straight line.
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Figure 4.5: The left sub�gure depicts the measured label histograms for di�erent time
points which are represented by di�erent colors together with the corresponding prediction
created by using model variant M3 of the SLDC model. The right sub�gure illustrates
the measured population size as dots and the predicted population size as a straight line.
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Figure 4.6: The left sub�gure depicts the measured label histograms for di�erent time
points which are represented by di�erent colors together with the corresponding prediction
created by model using variant M4 of the SLDC model. The right sub�gure illustrates
the measured population size as dots and the predicted population size as a straight line.

two sub�gures. The left one depicts the �uorescence histograms at the di�erent extraction
days represented by the lighter color together with the histograms predict by the model
variant represented by the darker colors. The right sub�gure displays the evolution of the
total number of cells predicted by the model variant as a straight line and the measured
total numbers as circles. Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6 depict the best
�t for model variant M1, M2, M3 and M4, respectively. The predicted �uorescence
intensity for the �rst three time points is apparently di�erent from the measured one for
all four model variants. However, the agreement of the prediction and the measurements
seems to get better for later time points. The initial population size is overestimated by
all model variants and it seems that none of the models can explain the population growth
well. In conclusion, none of the �ts is convincing.
There are several possible reasons for the unconvincing �ts. An obvious problem is that
the optimization reached the upper bound for µx in all cases. This is surprising, as the
predicted label distribution for day 3 is already overestimating the measured distribution
for µx = 12. In addition, 100 starts of local optimizations seem to be insu�cient. The
best point is only found once and we think that there might be better estimates. Hence,
the signi�cance of these results is limited to begin with. Yet, the bad �t can have further
possible reasons. For example, the model variants are too simple and we need to consider
more complex dependencies. Further, the assumption of log-normal distributed initial la-
bel concentration and uniform initial age distribution could be too restricting. Extending
these approaches by taking into account a mixture of log-normal distributions to model
the initial label distribution as well as more �exible initial age distributions could improve
the �t for the �rst day. The optimization could be improved by more sophisticated and
reliable gradient computations using the sensitivity equation of the SLDC model. The
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fact that the �t of the predicted �uorescence intensity distribution is better for later time
points than the earlier ones might suggest that the amount of measured cells has an in-
�uence on the value of the likelihood function. A good �t of the �uorescence intensity
at time points at which more cells are measured seems to be favored in the optimization.
Hence, one could argue for using a modi�ed objective function that balances out these
e�ects. The in�uence of the suggested approaches remains to be investigated.

4.5 Summary

In this chapter we presented the proliferation data for acute lymphatic leukemia gathered
by the team of Professor Jeremias. We proceeded by outlining the estimation algorithm
to use for parameter estimation in the case of CFSE proliferation data. In the last section
we presented preliminary estimation results for four model-variants. These results were
not convincing. We examined possible reasons and discussed options for the improvement
of the estimation results. It is clear, that the parameters estimated so far do not explain
the ALL data. However, these were just preliminary results which already provided
signi�cant insights into the problems which have to be addressed. Furthermore, we note
that using classical age-structured models would have been computationally infeasible.
Further research with using the suggested improvements will hopefully yield more �tting
outcomes.



Chapter 5

Conclusion and outlook

5.1 Conclusion

In this thesis we introduced two models for the analysis of CFSE-data that extend the
existing models by considering division number-, age-, label- and cell type- structured
populations.
The �rst model, the ALDC model, incorporated a continuous age structure and can be
seen as a generalization of the existing models. In particular, it is a combination of the
DCLSP model introduced in [8] and the DALSP model presented in [5, 6]. We showed,
that the model can be decomposed into two subsystems governing label and population
dynamics respectively. By studying a numerical example we found, however, that our
numerical implementation of the ALDC model is not robust enough and, especially for
complex population structures, too time consuming to be used for parameter estimation.
To circumvent the problems of the ALDC model, we introduced the SLDC model that
uses cell states to create a discrete age structure and created a novel approach to modeling
age structure in the context of CFSE-data. The SLDC model can be decomposed into a
set of PDEs governing the label dynamics and a system of ODEs governing the popula-
tion dynamics. By using an ODE-solver the population dynamics can be simulated very
e�ciently. We further found that the SLDC model is a generalization of many existing
models, but less general than the ALDC model. However, the number of cell states can
be chosen in such a way, that the SLDC model can generate a broad enough variety of
cell populations. In some sense, the SLDC model can be interpreted as a discretization
of the ALDC model.
The estimation algorithms developed for the parameter estimation using existing models
could, in large parts, be adopted for the parameter estimation of the presented ALL
proliferation data using the SLDC model. We presented preliminary results that are
not yet convincing. We encountered some challenges regarding the parameter estimation
of the ALL data. As the population was studied up to 21 days we needed a model
capable of dealing with many generations. Moreover, the multi-start optimizations were
computationally very costly yielding a long run time. Furthermore, we were dealing with
in vivo data which makes outliers in the data or unobserved factors more probable. It was
further not possible to identify a subpopulation- or generation-structure directly from the
data. Hence, we had to start by testing some basic model variants. It also seems that the
varying sample sizes complicate the optimization. The value of the objective function is
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likely dominated by the likelihood at time points for which a large amount of cells was
measured.

5.2 Outlook

One can think of several ways to advance and re�ne the SLDC model for further applica-
tions. For example, the SLDC model could be adapted to model asymmetric cell division.
Another idea could be to include signaling pathways into the model creating a tool for the
analysis of data composed of CFSE histograms and measurements of a pathway compo-
nent. An exemplary application for this extended model could be the study of the e�ects
of therapeutic agents on the cell proliferation.
As seen in Chapter 4, the preliminary results do not yield a good approximation of the
data. Hence, further work on the parameter estimation is necessary. The next steps
should include the improvement of the estimation algorithm by including sensitivities to
improve the optimization as well as incorporating uncertainty analysis of the estimates
by using pro�le likelihoods to determine the signi�cance of the estimates. If the improved
algorithm for parameter estimation still does not yield good results for the proposed model
variants, more complex model variants have to be tested.
After improving and extending the estimation algorithm, the parameter estimation for
the remaining two patient samples gathered by the team of Professor Jeremias and later
a combined analysis of all three data sets should be done. By this it could be possible to
identify di�erences between the samples and to draw inferences about the di�erences in
the progression of ALL in di�erent patients.
A major future aim would be to do model selection using for example the Akaike infor-
mation criterion (AIC) and Bayes information criterion (BIC) to �nd the model variant
that most likely explains the biological situation, in particular, answering whether the cell
population consists of one or more cell types.
Furthermore, it would be interesting to test the SLDC model for other types of CFSE
proliferation data as the full potential of this new approach has still to be determined.
Clearly, there are many open questions, however, the SLDC model we introduced in
this thesis is the �rst model that allows for addressing these issues in a computationally
manageable manner.
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