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Abstract

Quorum sensing is a mechanism used by a broad variety of bacteria for intercellular
communication. Its benefit ranges from cooperative bioluminescence to the produc-
tion of virulence factors. Recently another use of quorum sensing has been pos-
tulated, namely the detachment of bacteria from a growing colony. In this thesis,
we develop a model describing the colonisation, detachment and recolonisation of
Pseudomonas putida - regulated by quorum sensing - in a flow chamber. In a first
step, we neglect the spatial structure of the biological set-up. The obtained model
is analysed for positivity. Afterwards, simulations are carried out to have a time
course of the system and to search for bifurcations. The second part includes the
before-neglected spatial structure. This model - with flow and diffusion terms taken
into account - is analysed for positivity as well. Next, simplification of the model
leads to the question of a possible pattern formation. In the end, the advantages
of a quorum sensing regulated detachment in comparison to a constant detachment
rate are considered using simulations.
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1 Introduction

Bacterial quorum sensing (QS) has been studied, both experimentally and theo-
retically by various research groups in the last decades. It is one of many cell to cell
communication mechanisms, which are found in bacteria. Quorum sensing enables
the unicellular bacteria to coordinate their behaviour under certain environmental
circumstances and to act as a community. It works via a signalling molecule, the
so-called autoinducer (AI), which is synthesized within the cell. It is able to diffuse
through the membrane of the bacterium. As long as the density of the bacteria
is low, the production of autoinducers is at a low level, but when the density of
the bacteria reaches a certain threshold-density, i.e., the “quorum”, the positive
feedback loop of the Al-production is triggered and there is a sharp increase of
the production of autoinducer. Autoinducers regulate a wide variety of processes,
such as bioluminescence in Vibrio fischeri, production of virulence factors in Pseu-
domonas aeruginosa and presumably the detachment of bacteria from the biofilm
in Pseudomonas putida. By the switch-like change in the Al-concentration and the
possibility of detecting the autoinducers, the bacteria are able to measure their own
local density. This helps them to adapt their behaviour depending on the present
density of bacteria. Obviously, this is an evolutionary advantage to them as some
processes are only reasonable at high densities, such as the above mentioned biolu-
minescence and production of virulence factors.

It has been shown that quorum sensing not only depends on the local density of
the bacteria, but also on the diffusible space, in which the autoinducer can accu-
mulate, as well as other environmental factors. Therefore, quorum sensing has also
been called diffusion sensing ([Red02]). In [HKMT™07] the two concepts of diffu-
sion sensing and quorum sensing are brought together. Even more approaches have
been published to explain the switch-like change of behaviour of bacteria at certain
threshold-density ([PE10]). In this thesis, we focus on the concept of quorum sensing
regulated by the local bacterial density.

In gram-negative bacteria, such as V. fischeri and Pseudomonas putida, the auto-
inducer is an acylated homoserine lactone (AHL). For a better understanding of
quorum sensing and its positive feedback, a short desription of the quorum sensing
system in V. fischeri is exemplarily given here. A sketch of the system is shown in
figure It has been described mathematically in [KHOS].

The proteins LuxI, LuxR, AHL and complexes of AHL and LuxR are the key sub-
stances in the [uz system of V. fischeri. As already mentioned above, AHL plays the
role of the autoinducer and is therefore able to diffuse through the membrane of the
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Figure 1.1: Sketch of the quorum sensing system (luz system) in V. fischeri

bacterial cells. AHL and LuxR can form monomers, which then bond to polymers.
The polymers have the means for binding to the luz box, which in turn regulates
the transcription of the lux genes. In this process, the components needed for the
formation of luciferase, which is responsible for the bioluminescence of V. fischeri,
are produced. Additionally, the enzyme LuxI is built during the expression of the
lux operon. Through the direct influence of LuxI on the synthesis of AHL, cells with
high concentrations of luciferase exhibit a high concentration of AHL as well.

This thesis was motivated by the results of a flow chamber experiment, as seen in
[IMMK™12|, in which the induction of Pseudomonas putida under flow and non-
flow conditions, using a microfluidic set-up, was investigated. Interestingly, some
bacteria detached from the colonies and went into the flow. This was surprising,
as leaving the colony is a disadvantage for the individual bacterium. It might be
killed in the flow by antibacterial substances or might not be able to find enough
nutrients. There also seemed to be a relationship between induced colonies, i.e., high
concentrations of autoinducers within the bacteria of the colony, and detachment
of bacteria from this colony. In this thesis, the question why the detachment of
the bacteria from the colony is regulated by quorum sensing and not simply by a
constant detachment rate, which would be less energy consuming, is considered. We
are also interested under which conditions this regulation mechanism is beneficial
for the population as a whole.

To answer those questions, we start with a spatially homogeneous model. After
calculating bounds for the non-trivial stationary state, some simulations are carried
out. This helps us to determine reasonable values for the unknown parameters. In



the second part, the distribution of the occuring substances (the term ’substance’ will
refer to proteins as well as bacteria throughout this thesis, as long as its meaning
is obvious from the context) is not longer assumed spatially homogeneous. All
substances are now able to diffuse and some are also influenced by the flow of the
liquid in the flow chamber, in which the experiment is set up. This model is then
analysed for positivity to make sure that the results are reasonable from a biological
point of view and that the model used is appropriate to explain the experiment. In
a next step a possible spatio-temporal pattern formation is investigated. Last, but
not least, simulations are run on the earlier derived spatially inhomogeneous model,
which finally enables us to answer the questions raised above.






2 Mathematical basics

2.1 Notations

At first, we introduce some notations which will be used throughout this work:

0
0, = B
0
8t = g
82

In section[7.1] some function spaces will be used to show the positivity of the solution
of our model. Those spaces will be briefly introduced here. For more information
on function spaces please refer to, e.g., [Werll]. When investigating for a pattern
formation, the space of polynomials with real coefficients is used, which is why we
include it here as well.

e d:={(an)nen|a, € R a, # 0 only for a finite number of n}
The space d is not a function space, but a sequence space. It is needed for the
definition of the space of polynomials with real coefficients.

o R[] = { 3 et

k=0

v €R, (ag)ren € d}

e C°(R) :={u:R — R | u is continuous}
Norm of CO(R) : |Jul| := sup |u(z)]
zeR

e C*(R) :={u:R — R | uis k-times continuously-differentiable}

Norm of C*(R) := Hu“ck(R) = O<X:<k Hu(")”OO, where u(™ ;= "¢

 dxm

o CHR" R") := {u:R" - R"| u is k-times continuously-differentiable}

A function f : R® — R" is called k-times continuously-differentiable, if its
partial derivatives are of C*~1(R" R").

o C°(R",R") :={u:R" — R"| w is smooth}

A function is called smooth, if derivatives of all orders exist and are continuous.
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o LP(R) :={u:R — R | uis Lebesgue measurable, [lull},x) < oo}, where

S

HUHLP(R) = (fR |u|pdx) , (1<p<oo)

is the norm of LP(R).

2.2 Some introductory mathematics

Here we want to introduce some mathematical basics, which will appear throughout
this thesis.

2.2.1 Bifurcations
In [Kuz04], the definition of a bifurcation reads as follows:

Definition 2.2.1. The appearance of a topologically nonequivalent phase portrait
under variation of parameters is called a bifurcation.

In other words, a small and smooth change of the parameter values causes a sudden
qualitative change in the behaviour of the system.

To explain some features of the bifurcations occuring in this thesis, the term of a
stationary state and its stability shall be introduced.
Consider the initial value problem, which is defined at least for ¢ € (—c, ¢) with some
constant (¢ € Ry):

= f(x); xeR" z(0) =z, (2.1)

where f € C*°(R",R™). The stationary state - called fixed point as well - Z of the
dynamical system (2.1]), has the property: f(z) = 0.

Therefore, there is no change of ¥ with respect to time and hence stays constant
over the course of time.

We want to define a local flow ¢; : R" — R"™ by ¢y(x¢) = z(t, z0), where x(t, z) is
a solution of problem ({2.1)).

The stability of the above defined fixed point describes the behaviour of the dyna-
mical system, when ¥ is perturbed. If the solution stays within a certain region of =
for positive times, the fixed point is called Lyapunov stable (later on, we will write
stable instead of Lyapunov stable). Mathematically this is formulated as follows:

Ve>036>0: |lxzg—Zo| <0=|z(t,xo) —Z(t)|| <eVt>0
The fixed point is called unstable if and only if it is not stable.

At a bifurcation, different events depending on the type of bifurcation can be ob-
served. One of them is the change of stability of fixed points (e.g., transcritical
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bifurcation) or the change of stability of periodic orbits. Another one is the ap-
pearance or disappearance of new stationary states (e.g., saddle-node bifurcation)
or the appearance of periodic orbits and a change of stability of the stationary state
(e.g., Hopf bifurcation). Even more events are possible, but we want to restrict our-
selves to a short description of the two bifurcations occuring in our model, namely,
saddle-node and Hopf bifurcation.

In section , the term of a codimension one bifurcation will appear (for further
readings on bifurcations in dynamical systems see for example [Kuz04] or [GHO02]).
The codimension of a bifurcation is the number of parameters, which have to be
changed such that the bifurcation occurs. Thus, in our case only one parameter has
to be changed. Later on, this will be the loss rate of the nutrients yy. In our spatially
homogeneous model we have a Hopf bifurcation. Additionally, in the section of
pattern formation (chapter a saddle-node bifurcation will be mentioned.

The description of the bifurcations follows [Kuz04].

First of all, the saddle-node bifurcation shall be introduced as it is responsible for
the Turing pattern formation.

Consider the following dynamical system depending on one parameter:
= f(z,a), veR" acR

We assume that at o = 0 this system has a nonhyperbolic equilibrium z, = 0
with the eigenvalue \; = 0 and A\, < 0 for all & € {2,...,n}. Suppose that
for a < 0 there are two equilibria and for @ > 0 those have vanished. This is
an example for a saddle-node bifurcation. The corresponding bifurcation diagram
for a one-dimensional system with f(z,a) = a + z? is shown in figure . In a
bifurcation diagram one can see the stationary states and its stability with respect
to the bifurcation parameter. In this thesis, red lines will stand for unstable and
black lines for stable stationary states.

In a next step, we take a look at the so-called Hopf bifurcation. Again consider a

system
= f(z,a), veR" acR

For simplicity assume that at o = 0 the system has the equilibrium xy = 0 with
eigenvalues \; o = %iwp, wo > 0 and Ay < 0 for all k € {3,...,n}. If \; and Ay cross
the imaginary axis as « changes from negative to positive values while the other
eigenvalues stay negative, a Hopf bifurcation occurs. With the above assumptions,
one can observe that while the system looses its stable stationary state on the
transition of o through zero, an unstable stationary state and a stable limit cycle
appear instead. For a two dimensional system this is schematically shown in figure
2.2l
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35

Figure 2.1: Example of a saddle-node bifurcation. The red line corresponds to un-
stable, the black line to stable stationary states.
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Figure 2.2: Development of a stable limit cycle due to a Hopf bifurcation (this figure

is taken from [Kut09]).
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2.2.2 Pattern formation

In chapter [7.2] the possibility of pattern formation is examined. Here a short idea
shall be given of what such a pattern can look like.

The patterns arising from Turing and wave instabilities are both spatio-temporal
patterns. While one observes a temporal homogeneous pattern, when a Turing
instability is present (figure [2.3)), the pattern due to a wave instability exhibits both
spatial as well as temporal changes, such as travelling or standing waves (figure .
The difference between those two pattern forming mechanisms is due to two different
types of bifurcations, which arise, when spatial effects are introduced into a spatially
homogeneous model. While in a Turing pattern the above explained saddle-node
bifurcation can be observed, a pattern due to a wave instability features a Hopf bi-
furcation. The bifurcation parameters in those cases are the eigenvalues of Laplace’s
equation.

At first, we want to show a possible figure for a Turing pattern. Therefore, in
figure the distribution over space of the variable u of the non-dimensionalised
Schnakenberg system in one space dimension (model (2.2)) is shown on the top;
on the bottom variable v can be seen. The Schnakenberg system has the following
form:

O = y(a — u + u*v) + Oppu

t 0,100 0,100 2.2
atv:'y(b—u2v)+d8mv (ZL‘, )E[ ) ]X[ ’ ] ( )

where v = 10, a = 0.01, b = 1 and d = 10 were chosen for the simulation. The
domain was divided into 999 equidistant cells and the figure is shown - after five
million time steps - at t.,q = 100, i.e., the system is already close to its stationary
state. The discretisation is done in the same way as the discretisation of our PDE-
model in chapter [8.1]

The example of the pattern formation due to a wave instability (figure[2.4) was taken
from [DZREQ0Q]. There, a chemical reaction described by [ZDE95|] was simulated to
create a figure, which is shown in figure 2.4 As we only want to give an idea of
what such a pattern looks like, the model equations are left out here. For more
information on the model refer to [ZDE95].

2.3 Important theorems

The last part of this section is comprised of important theorems, which will help us
in the course of this work.

To formulate the first theorem, some terms have to be introduced first(|[GH02]):
Let us assume that z is a fixed point as described above. To study the behaviour of
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Figure 2.3: Example of a Turing pattern. The distribution over space of the variable
uw is shown on the top. On the bottom one can see the distribution
of variable v. Both result from the non-dimensionalised Schnakenberg
system at time ¢t = 100.
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Figure 2.4: Example of different patterns due to a wave instability (figure taken
from [DZREQQ]) in a reaction scheme described by Zhabotinsky [ZDE95]
in one space dimension. Zero flux boundary conditions and a system
length of L = 20 were assumed. The values of one of the participating
substances is shown here: white corresponds to the maximum value,
black to the minimum value. (a) Standing waves; (b) Standing-traveling
waves; (c) aperiodic standing-traveling waves
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solutions near Z, the system (2.1 is linearised at z:

{=Df(z)§ (eRn, (2.3)

where Df = [0f;/0z;] is the Jacobian matrix of the function

f: (fl(xla---7$n>7f2(x17"'7xn)7"'7fn(xla---7$n)>T and x :-T+£7 |€’ < L
Hence, the linear flow map D¢;(Z){ can be written as:

Dy (2)§ = P10,

Now the theorem of Hartman-Grobman can be formulated. It states that the linear-
isation coincides with the original system in a certain neighbourhood U.

Theorem 2.3.1 (Hartman-Grobman). If Df(z) has no zero or purely imaginary
eigenvalues then there is a homeomorphism h defined on some neighbourhood U of
z in R™ locally taking orbits of the nonlinear flow ¢; of , to those of the linear
flow etPT@ of . The homeomorphism preserves the sense of orbits and can also
be chosen to preserve parametrisation by time.

The next theorem is taken from [Eval0]:

Theorem 2.3.2 (Gronwall’s Lemma). (i) Letn(:) be a nonnegative, absolutely
continuous function on [0,T], which satisfies for almost every (a.e.) t the
differential inequality

() < o()n(t) + ¥ (1),

where ¢(t) and ¥ (t) are nonnegative, summable functions on [0,T]. Then

o) < B (50 + [ o)

forall0 <t <T.

(ii) In particular, if
n' < ¢n on [0,T] and n(0) = 0,
then
n=0 on|0,T].

The Routh-Hurwitz stability criterion - as formulated below - is written down, e.g.,
in [Pie77]. It will be used later on to show the stability of a stationary state. To
express this criterion, some terms have to be introduced first: Let A € R™". Now
consider the characteristic equation, i.e., det(A — AI) = 0, where [ is the identity
matrix of R™*"™. This equation can be written as a polynomial equation:

AN e N A" 24 e, =0.

We now define the so-called Hurwitz matrices.

11
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Definition 2.3.1 (Hurwitz matrix). The jth Hurwitz matriz, namely H;, is de-
fined as

c1 1 0 0 0
C3 Co C1 1 0
Hj = Cs Cyq C3 Co 0 s
Coj—1 C25—2 C25—3 C25—4 -+ Cj
co=1 if2p—q=0
where cgp_qg = ¢ 0 if2p—q<0or2p—q>n,

Cop—q  Else
where p indicates the column and q the row.

With those preliminary considerations, the criterion can be stated now:

Theorem 2.3.3 (Routh-Hurwitz stability criterion). All eigenvalues of A have
negative real parts if and only if det(H;) >0 for all j =1,...,n.

For n = 3, which will be needed in section [7.2] the Hurwitz matrices are:

c 1 C1 1 0
Hy=c¢, Hy= ( c;l), ¢ ), Hs = C3 Cy C1
0 0 C3

Thus, the conditions for stability are

(i) det(Hy) = ¢1 > 0
(17) det(Hs) = c1e0 — ¢35 > 0
(lll) det(H:;) = 63(0102 — 63) > 0.

The next theorem can be found in [Fis03] and is used in section [7.2.4}

Theorem 2.3.4 (Complex Conjugate Root Theorem). If the polynomial f €
R[t] has a root A € C\R, then the complex conjugate number A\ € C is a root of f
as well.

The next idea concerning polynomials is taken from [HNAT3].
A polynomial of third order with real coefficients, which will be used later, can be
written in the following form:

N4+ aN +bA+cA=0 (2.4)

Hence, with theorem a polynomial - as shown in equation (2.4)) - can either
have three real roots or one real root and two complex conjugated roots. In the
second case those roots can be written as:

)\1,2 = 77Z) * iwa A3 = ¢7

12
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where ¥, € R and w € R,
Thus, the coefficients can be represented by

a=—(20+¢), b=1*+w+2¢p and c=—(¢*+w?)o.
Combining these equations yields
c—ab=2¢ ((¥+ ¢)* +w?).

When examining the model for a wave instability, we will check for a Hopf bifurca-

tion. Thus, at the bifurcation point ¢ has to be zero and therefore ¢ — ab 20. In
section [7.2.4] the transition from a stable stationary state to a stable limit cycle is
investigated, i.e., the sign of ¥ has to change from negative to positive.

13






3 Derivation of a spatially homogeneous
model

In this section, we want to derive a mathematical model for a biological setting,
which we already mentioned in chapter [I] and which is outlined in figure 3.1} The
variables and parameters used to describe our model, are shown in tables and

0.2l

As it is common for mathematical modelling, some assumptions have to be made to
translate the biological set-up into mathematical equations.

In the beginning, we focus on a setting where the space is assumed to be homoge-
neous, i.e., no consideration of spatial coordinates. Therefore, diffusion and advec-
tion processes can be neglected. In the experiment this usually happens if either the
flow, diffusion or both are rather fast and the nutrients are distributed everywhere
equally or the flow chamber is assumed to be rather short and thus all the substances
flow through the chamber in a short period of time.

With this first assumption and the idea of a deterministic approach, i.e., assuming a
high concentration of all occuring substances and bacteria and neglecting stochastic
influences, we will get a five dimensional system of first order ordinary differential
equations (first order ODEs) as our governing equations. Those ODEs will be non-
linear and coupled with each other. The variables will be given in concentrations
or densities. The resulting concentrations and densities of our deterministic setting
can be viewed as an average of the stochastic approach.

Another idea that simplifies reality, but makes the problem easier to access via
mathematical tools, is to separate between bacteria which are in the biofilm and

—t
1l o Wy
—_ »
—_—
Outflow
—t
lCoI ohization T Detachment
Bi ofilm

Figure 3.1: Sketch of biological set-up

15
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bacteria which are in the flow of the flow chamber explicitely. The same will be
applied to the nutrients. The biofilm is supposed to be rather thin, which leads to the
assumption of a homogeneous distribution from bottom to top for all concentrations
in the biofilm. Therefore, one does not have to consider the height of the flow
chamber, as the exchange only happens at the boundary between the biofilm and the
flow. The nutrients in the flow have to be taken into account as well. Omitting those
would lead to a distribution with less nutrients downstream than upstream. As one
goal of this work is to investigate the possible connection between bacteria leaving
the colony and those finding a new place to settle where nutrients are abundant, a
distribution of the nutrients as it is described above - not considering the nutrients
in the flow - would not allow us to test our hypothesis.

The first attention is given to the derivation of the governing equation for the nutri-
ents in the flow. A constant inflow into the flow chamber is assumed. This is realized
with the constant ny (assuming an inhomogeneous space will lead to a different re-
alization of the inflow). Depending on the existent concentration of nutrients, a
degradation rate vy is added to the equation as well. A possible biological explana-
tion for this is the abiotic degradation or the adherence of the nutrients to the walls
of the flow chamber. It is also needed for the mathematical analysis (see chapter |4))
later on, as it prevents an unbounded accumulation of nutrients in case there are no
bacteria present. Last, but not least, a term to describe the exchange of nutrients
between the flow and the biofilm is included. This term has to be multiplied by 171,
because the different volumina of the biofilm and the rest of the flow chamber have
to be taken into account as the variables correspond to concentrations. Thus, the
parameter 1 corresponds to the ratio of the two volumina. We assume that bacteria
in the flow do not reproduce and that AHL and nutrients have no measurable effect
on B,,;. Therefore, the ODE for the nutrients in the flow reads as follows:

: c
Next =Ny — FN (Next - Nznt) - ’YNNea:t

As well as N.,; the nutrients within the biofilm obviously need the same term of
exchange, even though the sign has to be different. They also have the loss term

Name Variable

Bt Density of bacteria in the flow

Bin: Density of bacteria in the biofilm

A AHL-concentration in biofilm

Negt Concentration of nutrients in the flow
Nipt Concentration of nutrients in the biofilm

Table 3.1: Variables for model ({3.4)

16



Name Parameter

A Threshold for AHL-induced detachment of bacteria from the colony
Ao Induction threshold of AHL

c1 Rate of food consumption by bacteria in the biofilm
ca Rate of detachment of bacteria from the biofilm
CN Exchange rate of nutrients between biofilm and flow

d, Rate of wash out of AHL by the flow

Nipr Threshold for growth of bacteria in biofilm due to nutrients
no Inflow of nutrients

az Basal production of AHL

Ba Stimulated AHL production

Bint Growth rate of bacteria in colony due to nutrients

Ya Degradation rate of AHL

Vf Death rate of bacteria in flow

YN Loss rate of nutrients

n Fraction between thickness of biofilm and height of flow chamber

Table 3.2: Parameters for model ([3.4))

vn, which depends on the nutrient concentration in the biofilm. The bacteria need
nutrients to reproduce. In the process of reproduction, the bacteria in the biofilm
consume those nutrients. The mathematical description of this process is done by
using a so-called Michaelis-Menten approach (for more details please refer to [EK05]
and [Mur02]). This means that if the concentration of the nutrients in the biofilm is
Nip», we have the half-maximal reproduction rate of the bacteria. This parameter
is associated with the highest increase of the reproduction rate (see equation ((3.2))).
In consequence, we also get the half-maximal consumption rate of the nutrients by
the bacteria at the concentration level Ny,.. Hence, we arrive at equation as
the governing equation for Nj,;.
N, New — N, B N N, 3.1

int = CN (Newt — Nint) — €1 mtm — YN LVint (3.1)
The bacteria in the biofilm use the above mentioned reproduction term (it is just
differently scaled) as well as a term which describes the detachment of the bacteria
from the biofilm. It is triggered by the occurence of AHL. This term is also realized
with the Michaelis-Menten approach. If the AHL-concentration is the same as Ayp,,1,
one can observe the half-maximal rate of detachment of bacteria from the biofilm.
We omit the possibility of death in the biofilm. Bacteria only die in the flow. If
there are no nutrients available, there is no reproduction. Therefore, we find the
equation for B;,; to be:
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3 Derivation of a spatially homogeneous model

. A Nint
Bint = —caBint———— + Bint Bint o 3.2
! A 7514thr1 + 5 ! tNthr + Nint ( )

In contrast to the nutrients, AHL is considered only in the biofilm. It is assumed
that by a process similar to diffusion, AHL is lost from the biofilm to the flow.
Another assumption is that AHL has no effect on the bacteria in the flow (B.,) as
the flow transports everything quickly downstream such that AHL has no time to
act on B,,;;. Therefore AHL in the flow can be ignored. The process, in which AHL
leaves the biofilm, is approximated by a constant rate d,. There is also a degradation
of AHL implemented, even though it has little effect on the dynamics of AHL as
the degradation rate v, is small compared to d,. More details on the choice of
parameters are shown in chapter [5.1. For the production term of AHL, we assume
that AHL can diffuse freely through the membrane of the cells. Mathematically we
assume a compartment-barrier model (see [MMK™12] for more explanation), where
the biofilm is chosen to be the compartment. The production term has a basal rate
ap and a second term, which is characteristic to positive feedback loops in a quorum
sensing system on a single cell level (for more information refer to [DKO0I]) as it
was exemplarily already explained in chapter [T If the threshold A, is reached,
the production of AHL increases up to tenfold. Thus, the ODE for AHL has the
following form:

2
A%hrZ + A?

The only still missing governing equation describes the bacteria in the flow. The
bacteria that left the biofilm are added to the bacteria in the flow. Therefore, the
term for the detachment of bacteria from the biofilm through AHL is encountered
here as well. It has to be multiplied by 77! as in the equation for N,,;. In the flow
the bacteria are threatened to die more often than in the biofilm because they can be
eaten by other bacteria, killed by antibacterials or might not find enough nutrients.
This term is important to test our hypothesis that even though it is dangerous to
leave the colony (death term), it might be beneficial for the whole population to
find new places to settle. Hence, the equation can be written as:

A= B (OéA + Ba ) —(ya+dy)A

CA

Bewt = —B
n

mt— . 1 Bex 33
A+ AT 33

As one can see from equation , there is no settling of bacteria from the flow into
the biofilm. As our idea is that bacteria which leave the colony settle somewhere
downstream at a place, where hopefully more nutrients are available, it would not
be a valid choice to include such a term in the spatially homogeneous set-up. Later
on, when space is considered as well, there will be a colonisation term.
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So finally our model has the following form:

. ca
Bez = _an > . a1 Bex
' n tAthrl + A ny !
: A Nint
Bint = —caBim——— + Bint Biw w————
! 4 tAth'rl"'_A ﬁ ! tNthr+Nint
. A2
A=B, A ) atdA 3.4
t(CYA+5AA?hT2+A2) (ya + dy) (3.4)
. CN
Ne:rt =Ny — 7 (Neazt - Nmt) - ’YNNext
Nint

Nmt =CN (Next - Nmt) —cB — YN Nint,

NP— L —
" Nthr + Nint
with suitable initial conditions

Beazt(o) = Beazth ant(o) = Bint(b A(O) = A07 Nemt(o) = NextO and Nznt(o) = NintO-
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4 Mathematical analysis of the ODE-model

The previously model derived will be analysed mathematically in this chapter. In a
first step, the positivity of the solutions is examined. Afterwards the trivial statio-
nary states of the system will be calculated and some bounds for the non-trivial
stationary states will be formulated.

For the following calculations the parameters will be assumed non-negative. This
is a reasonable assumption often used in the mathematical modelling of biological
phenomena.

4.1 Positivity of the ODE-model

As our model is supposed to explain a biological set-up, we want to make sure that
starting with non-negative initial conditions leads to non-negative results.

This is done by setting one variable to zero and the others are supposed to be
non-negative. If the resulting derivative with respect to time of the zero-variable
is non-negative, this variable will never be negative, if the other variables are non-
negative.

We will check the ODE for B,,; exemplarily:

If Bewt =0, By > 0and A > 0 is applied to equation , then the resulting ODE

reads as

cap A oy
n A1 + A
Thus, the density of bacteria in the flow will never change from a non-negative
amount to a negative density. This is obviously important, if the model should
provide biological reasonable results.
The calculations for the other ODEs are done analogously, but not shown here.

Beazt =

Therefore, we arrive at the desired result that our solution never returns negative
values as long as the starting points are all non-negative.

4.2 Stationary states of the ODE-model

We try to find the stationary states of our spatially homogeneous model. As already
explained in chapter [2| (Mathematical basics), we set all equations from model ([3.4))
equal to zero. For the following calculations units were omitted for better readability.
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4 Mathematical analysis of the ODE-model

4.2.1 Trivial stationary state

Our system is in a stationary state if there are no bacteria and no AHL present and
the nutrient concentration is at a saturated level, i.e., B..:, B and A are zero and
Nz and N;, assume the beneath calculated values.

With the assumption of the above, one arrives at:

NGIE
Nipg =~
cN + YN
N, — nno CN + YN

W en +nen + 1N

As still no experimental data for the nutrients were available at the time this work
was written, we decided to set the trivial stationary state of N, equal to one, i.e.,
we normalize N.,;. Thus ng has to be:

v (en +nen + nyw)
n(exy +n)

The numerator here will be seen more often in the following analysis. To have a
more compact form, we define a new constant

M := yn(en +nen +nvn).

Taking all the above mentioned into account, leads to the following trivial stationary
state of our ODE-model:

Beyt = Bing = A=0
Nea:t =1
Nint = el

cN + YN

4.2.2 Non-trivial stationary states

To calculate non-trivial stationary states explicitly (with no explicit values for the
parameters) is not possible. With the positive feedback loop within the equation of
AHL, one has to solve a polynomial of third order to get an analytical solution for
the stationary state of AHL. Even the usage of a mathematical tool like MAPLE
will not give reasonable results.

But one can formulate some conditions for the stationary states. By solving the
governing equation of N, we get:

o + ey Ning

N, — S0 ON it 4.2
' CN + NN (4.2)
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4.3 Summary of the achieved results

Inserting this result into the governing equation of N, leads after some calculations
to a rather complicated solution for the stationary state of Nj:

—f(Bint) £/ (f(Bint))? + 4AMnnocn Ny

Nipg =
wnt 2M

where f(Bin) is:
f(Bmt) - MNthr + ClBint<CN + TWN) — NNoCN
If f(Byn) is assumed to be bigger than zero, i.e.,

no7 N — cNNiwr — YN Niwr
@] CN + NN
whereat the definition for ng from equation (4.1)) was used, some conditions can be

formulated.
Using a?+b* < (a+b)? for a, b > 0, leads to the following condition for the stationary

state of Nj:
cNNepyr
Ny < _—NEVehr
CN + N

The so obtained condition for Ny, inserted into equation (4.2)) results in the following
inequality:

Bini > (4.3)

M + CN\/CNNthr(CN -+ ’YN)
(en +n)(en +n7w)

Now we get an upper bound for the stationary state of B.,; as well:

Next S

> Bint M CN — \/CNNthr<CN +N)

- MmMra (ex +nyw)(en + )

So we formulated bounds for the stationary states. In case B;,; satisfies the above
mentioned condition , the stationary states for N,,; and N;,; have to be smaller
and B.;; has to be greater than the calculated values.

As already indicated earlier, it is hard to calculate any reasonable solution for AHL.
Therefore, we were not able to limit A to a range of values as it was possible with
the other variables.

Be:ct

4.3 Summary of the achieved results

In this chapter, we were able to show the positivity of our solutions in the spatially
homogeneous model. As it was already mentioned, this is a necessary condition for
a model describing our biological experiment as negative concentrations would not
be reasonable.
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4 Mathematical analysis of the ODE-model

We also calculated the trivial stationary state, in which no bacteria and no AHL
are present and the nutrient concentration is at a saturated level. While it was not
possible to calculate the non-trivial stationary state analytically, we were able to
specify limits, within which the values for the stationary state have to lie.
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5 Simulations on the ODE-model

In this chapter, the previously derived and analytically examined ODE-model is
simulated. In a first step, we assign values to the occuring parameters such that
the simulations can be executed. Then we simulate the model to see if it exhibits
bifurcations.

The following simulations were done with Matlab ([Matl10]) as well as XPPAUT
([Erm03]).

5.1 Choice of parameters

To simulate our model, values for the parameters are needed. While some of them
were obtained from literature, others were chosen through the careful use of simu-
lations to show the expected typical behaviour.

The values for Ao, aa, Ba, Bine and v4 were taken from [MMK™12].

Parameter Value Parameter Value

At 2.1 nmel Athra 0.07 nzol

¢ 510710 pmol. ca 0.693

e 351 d, 554.5+

Ny 0.5 mmel ng 1.03+

o 2.3 10710 pmol. Ba 2.3+ 1079 gl
Bint 0.41 Va 0.005545 +

or 1000 N 11

n 30

Table 5.1: Values of parameters for simulations

The detachment threshold A1 is chosen such that the bacteria can reach a rea-
sonable density within the biofilm. The exact value originates from the simulations.
The fraction between the thickness of the biofilm and the height of the flow chamber
7 is assumed to be 30. In our case this is deduced from the assumption that a biofilm
is about 13 um high.

The strength of detachment c4 is defined such that 50 percent of the bacteria in the
biofilm have already detached themselves after one hour.
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5 Simulations on the ODE-model

AHL is washed out due to the flow with the rate d,. In order to observe biological
reasonable densities of the bacteria in the biofilm, the rate of wash out has to be big
compared to 74 or otherwise the bacteria detach already at low AHL-concentrations.
So far little is known about the interplay of nutrients and quorum sensing. Therefore,
for most parameters concerning the nutrients values are unknown. We chose them
such that the simulations showed a biological relevant behaviour. As no experimental
data is available, the nutrients are assumed to be dimensionless. The threshold
concentration of nutrients in the biofilm Ny, at which the reproduction rate is the
highest, was chosen to be half of the capacity of nutrients in the flow.

Nutrients are exchanged between the biofilm and the flow with the exchange rate
cy. It is chosen in such a fashion that the nutrients are in an equilibrium after about
twelve minutes. This is a rather fast process, but it is needed such that the bacteria
have enough food provided to grow up to reasonable big colonies.

The amount of nutrients a bacterium needs to reproduce is assumed high; hence,
the effect of starvation in a fully colonised biofilm can be observed. An idea -
examined in a later chapter - is the advantage for the whole population of bacteria’s
detachment from the biofilm, when the nutrients are limited, and recolonising new
sites.

The parameters vy and ny were changed in the process of creating the bifurcation
diagram. If not mentioned otherwise, they assume the values shown in table [5.1]
The value of ny depends on the values of vy, 7 and ¢y (refer to equation (4.1) in
chapter [4.2.1]). The degradation rates of the nutrients in the flow as well as in the
biofilm are assumed to be small such that not too many nutrients are lost due to
degradation.

5.2 Results of the simulations

As initial conditions for the simulations of our ODE-model we assume that there
are no bacteria in the flow and no AHL in the biofilm. The whole flow chamber is
supposed to be saturated with nutrients, i.e., N = Ny = 1, and one bacterium
is located in the biofilm-layer, i.e. B;,; = 1.2 - 10'° Bact/ml at the beginning of the
simulation. The bacterial density in the biofilm is calculated by

Number of bacteria
Bint -

Volume of biofilm

The volume of biofilm is calculated by the height (h = 13um) and the area occupied
by one bacterium. This area is about 6um as it is assumed that only around 16%
of the biofilm are occupied by bacteria. The remaining volume is comprised of
extracellular polymeric substances ([CLCT95]).

Figure [5.1] shows the time course of our homogeneous system with the above men-
tioned initial conditions and the parameter values from table While in the top
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5.2 Results of the simulations
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Figure 5.1: Time course of the ODE-model

left corner of this figure one can see, how the density of the bacteria in the flow
behave over time, the time course of the bacterial density in the biofilm is shown in
the middle of the upper row. Next to it the AHL-concentration is displayed. In the
lower row, the time course of the nutrient concentration in the flow is presented on
the left and the time course of the nutrient concentration in the biofilm on the right.
One can observe that already after about four hours the so-called “quorum” of the
bacteria in the biofilm is reached and a strong increase of the AHL-production can
be noticed. This results in a fast accumulation of AHL. This happens, when there
are between two and three bacteria in the biofilm, which is a surprisingly small num-
ber. At this time, one can also see a sharp increase of the bacterial density in the
flow due to the detachment of bacteria from the biofilm, which is regulated by the
AHL-concentration. About 25 hours after the start of the simulation a stationary
state is approximately reached, in which all the traced quantities stay constant. The
bacteria in the biofilm are switched on and move to the flow with a constant rate.
There are still nutrients in the flow chamber available, so the bacteria in the biofilm
are able to reproduce. The colony consists of around eight bacteria in the stationary
phase.

The model, which was developed to describe our biological set-up, has the mathe-
matically interesting feature of a codimension 1 bifurcation, namely a Hopf bifur-
cation. In chapter 2| we already introduced the idea of this kind of bifurcation.
The corresponding bifurcation diagram is shown in figure [5.2] The loss rate of the
nutrients vy was used as a bifurcation parameter. But as already mentioned above,
the inflow of nutrients ng also depends on vy and hence is changed as well. Figure
5.2(b) gives details for figure [5.2|(a) as the Hopf bifurcation taking place for small
vy cannot be seen otherwise. From these two figures it is obvious that there are
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5 Simulations on the ODE-model

B;; [Bact./ml]
B, [Bact./ml]

0 ! ; . | H , : 1
0 1000 2000 3000 4000 0 0.01 0.02 0.03 0.04
N N

(a) (b)

Figure 5.2: (a) Bifurcation diagram of the homogeneous model for the loss parameter
n- (b) Details of figure (a) for small yy.

two Hopf bifurcations - one for small and one for high loss rates. While the black
lines correspond to stable stationary states, the red lines correspond to unstable
stationary states. As it is characteristic to Hopf bifurcations, stable limit cycles can
be observed for the range of vy, where unstable stationary states occur.

To get a better understanding of the time course of a stable periodic orbit in our
model, figure [5.3|is included. The initial conditions are the same as in figure [5.1}
Interestingly, the two limit cycles - as seen in figure - have the same appearance
for the bacterial and the AHL-concentration even though the loss rate - and therefore
the inflow - of the nutrients differs significantly. While for small vy a fast approach
to the limit cycle can be observed, the approach is considerably slower, when we
assume a high loss rate. This is mathematically interesting, but the change of
By lays within the density of one bacterium and is therefore biologically not re-
levant. However, it should be investigated more carefully, when a non-deterministic
approach is considered as a periodically changing biofilm thickness has been observed
already in vitro ([ZKR799]) and it is most likely to be encountered in this biological
set-up under certain environmental circumstances as well.
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5.2 Results of the simulations
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Figure 5.3: Time course of the ODE-model with the death rate of the bacteria in the
flow chosen such that oscillations can be observed. Blue line: vy = 0.015.

Green line: vy = 2400.
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6 Derivation of a spatially inhomogeneous
model

So far, we neglected the spatial structure of the biological set-up. In this section,
we want to expand model such that it is able to explain the behaviour of our
bacteria in space as well as in time. This will lead to a semi-linear parabolic system
of partial differential equations (PDEs). Some new parameters will be introduced
to allow an explanation of the newly introduced extensions of the model. They can
be seen in table 6.1l

As our model is supposed to describe an experimental set-up in a flow chamber,
spatial influences should be incorporated into the model, i.e., the occuring substances
and bacteria depend on a time variable as well as on a space variable. In order to
keep the model convenient to work with, we assume the behaviour of our system to
be homogeneous perpendicular to the flow direction, meaning that we can neglect
one space-dimension. In the following, the space-dimension in the direction of the
flow will be called z-direction. We still distinguish between substances in the biofilm
and in the flow as already seen in chapter [3]

The most obvious extension is to let the occuring substances and bacteria diffuse
at specified rates. To realise this idea, we add to each governing equation the
corresponding diffusion term (aa—;).

In a next step, a term to describe the process of colonisation of the biofilm by the
bacteria of the flow is included in the governing equations of B.,; and B;,;. The
bacteria from the flow are only supposed to colonise the biofilm if no bacteria in the
biofilm are present in the distance d, upstream. So the PDE for the bacteria in the
biofilm changes to be

OBint 32Bmt — [F | cBint(t,5)ds A Ning
= Dp, me) GtV E R —ep Bing——————+Bint Bing —————
ot Bine gz ¢ v CaBon g e tNtth( Nigt
6.1

r—0, ifz—0>0

0 else

where hy(z) := {
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6 Derivation of a spatially inhomogeneous model

Name Parameter

c Strength of the avoidance of recolonisation due to other bacteria
in the biofilm

Cp Colonisation rate of the biofilm by the bacteria in the flow

Op Region upstream, which the bacteria examine in order to colonise

the biofilm if it is empty
Dp.,,  Diffusion coefficient of bacteria in the flow
Diffusion coefficient of bacteria in the biofilm
Dy Diffusion coefficient of AHL
Dy,,, Diffusion coefficient of nutrients in the flow
Diffusion coefficient of nutrients in the biofilm
Ninfiow Concentration of nutrients in the flow at the left boundary
vf Velocity of flow

Table 6.1: Definition of the newly introduced parameters (parameters of the ODE-
model are shown in table

The form of this colonisation term is justified by the assumption that, if there are
any bacteria close - in the upstream direction - there should be no colonisation. This
idea is realised by the sharp drop of the exponential function.

Additionally, the influence of the flow has to be taken into account in the spatially
inhomogeneous model. Our idea to introduce this effect is to neglect any flow in
the biofilm and hence only consider flow in the PDEs of B.,; and N... Thus, the
resulting governing equation for B,.,; reads as follows

aBext _ B a2Beoct —vy 8Be:ct —%67 f:l(z) cBint(t,S)dsBezt+c_ABint _’YfBezt~
ot ot Ox? or 1 n A1 +A

(6.2)
The governing equations for AHL and the nutrients in the biofilm stay the same
as seen in chapter [3 except for the diffusion-terms. In the PDE describing the
dynamics of N, the inflow of nutrients is realised differently to the ODE-model
(3.4)). Instead of explicitly appearing in the governing equation the inflow is now part
of the boundary condition. It is realised by an inhomogeneous Dirichlet boundary
condition. Thus, the concentration of the nutrients at the left boundary assumes

the value 1y, fiow-
Unless stated otherwise, the PDEs are considered on (g, teng) X [0, Zena)-

According to the above introduced changes, i.e., assuming the distribution of the
substances in the flow-direction to be inhomogeneous, the complete model has the
following form
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8?;7“ Dy a;i;nt bepe Inw Bl Bmtﬁ + BintBint%
88_1;1 ZDA% + Bint (OéA + 614#1142) —(ya+dv)A
mg;’nt =Dn,.. a;]z;nt + en (Newt — Ning) — q&m% — N Nint, .
6.3

with homogeneous Neumann boundary conditions for all variables, but N, on the
left boundary and an inhomogeneous Dirichlet boundary condition for N,

OBewt(t,0)  OBj(t,0)  0A(t,0)  ONyy(t,0) 0

Oz Ox Ox Oz (6.4)
Newt(ta 0) = Ninflow

and initial conditions

Bea:t(oax) - Be$t0(x)7 ant(o ) - Bz’nt()(x)a A(O,(L’) — AO(x)

s
’ 6.5
Next<07 LY)) = NeztO(x)a int(owx) = NintO(m)' ( )
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7 Mathematical analysis of the PDE-model

At first, we will analyse model - for positivity of its solutions. Then the
model is examined for a potential pattern formation. For this purpose the model will
be simplified assuming different time scales. Afterwards, the stationary states of the
so-derived model will be calculated, assuming a spatially homogeneous distribution
of the substances again. Finally some conclusions about pattern formation are
drawn.

7.1 Positivity of solutions

In biological problems treated with mathematical tools, a question that often has
to be answered, is the positivity of solutions. As negative quantities in biology
most of the time make no sense, the solutions of the governing equations in the
mathematical model should be non-negative for all times, in which a solution exists.
The existence and uniqueness of solutions of model with inital conditions
and the boundary condition (6.4) up to time ¢.,4 are not subject to this work and
will be unconditionally assumed for the following parts. For more information on
the existence and uniqueness of reaction diffusion equations refer to, e.g., [Gri90]
and on the existence and uniqueness of parabolic equations to [Heng&1].

To show the positivity of our model, we proceed according to [ES10].

First of all, we want to rewrite our model. The model is therefore identified as a
semi-linear parabolic system of equations, because the equations are linear in the
higher order derivatives.

With the assumption of a spatially decaying solution the above derived model can
be rewritten in the following form:

Ou = DOyyu — adyu~+ f(u) (to, tenal % [0, 00)

U=ty = Ug to x [0,00) 71
aru + az Oul,_q =g (to, tena) X 0 (7.1)

lim v =0 (to, tend),

Tr—r0o0

where u = (BextaBint7A7Next7Nint)T7 D = (DBeztaDBm,nDA7DN5M7DN,L-",5)T7 a =
(vfa 07 07 vy, 0)T7 a; = (07 07 Oa 17 O>T7 as = <1a 17 17 07 1)T7 g = (07 07 07 Ninflow, O>T and

35



7 Mathematical analysis of the PDE-model

% p—CBint capg. A
n € Beat + n Bing A1 LA /nyext

—cBin A N;
cpe © tBext - CABint At A + 5intBint Nthrf]t\[im
A2
f(u> = Bint (OéA + BAA?h 2+A2> - (’)/A + dv>A

_CWN (Newt - Nmt) - /VNNe:vt
CN (Next - Nint) — ClBint% - ’VNNint
The colonisation term was simplified in this approach to avoid complications that
might arise from the integral form of the colonisation term. Here we assume that
the bacteria only probe if at the exact spot, where they want to colonise, another
bacterium is already situated.
It is easy to verify that the reaction term f satisfies: f € C*(R®, R%).

Definition 7.1.1. We define the positive cone KT by K := {u : [0, Zena] — R |
u' € L*([0,00)),u’ > 0 a.e.,i =1,...,5}, at which u® the different components of u
are.

Therefore, uy € KT means that the initial condition is non-negative for almost every
xr € [O, xend]‘

Some more assumptions have to be made to formulate a theorem concerning the
positivity of our model:

Assumption 7.1.1. All parameters used in model (7.1)) are non-negative and there
exists a unique solution u € L*([0,00)) for all initial conditions uy € K.

Hence, we arrive at the following theorem:

Theorem 7.1.1 (Positivity). Let assumption [7.1.1] be fulfilled. Furthermore, we
assume that the initial condition uy € K satisfies the boundary conditions of model
7).

Then, our model has a non-negative solution u € L?*([0,00)) for all times t € [to, tend]
in terms of the L*-norm.

Proof. First of all, we want to give a short outline of the proof. In a first step, the
solution will be divided into a positive and a negative part. After that an estimate
on the derivative with respect to time of the negative part of the solution will be
achieved. At last, Gronwall’s Lemma (Theorem and the uniqueness of the
solution is used to bring about the sought after result.

As already mentioned, we start by dividing each component of our solution u into two

parts: the positive part v’ := maz{0,u'} and the negative part u’ := maz{—u’,0}
for © = 1,...,5. The complete positive part of the solution is therefore defined as
uy = (ul,...,u5)" and the negative part correspondingly.
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7.1 Positivity of solutions

This leads to the following results concerning the negative and positive parts: u’ =
uly —ul, ut| = Wl +ut, wiu’ = 0. We also know that for u € H'([0,00)) it
holds that u,,u_ € H'([0,00)). The space H'(]0,0)) is a Sobolev space. For more
information on Sobolev spaces, refer to, e.g., [EvalQ]. A result for the derivative
with respect to x that can be easily attained, is:

. out iful >0 . —oyut ifut >0
335“1:{ o and c%cul_:{ oon

0 else 0 else

This is obviously also true for derivatives with respect to time.
Thus we get: d,u’ v’ = dyu’u’ = du’ v’ = du',u’ = 0.
After the positive, respectively the negative part, of the solution has been introduced,
we now want to get an a priori estimate of the derivative with respect to time of
all components u’ . Therefore, we write our governing equation, shown in ([7.1]),
componentwise, multiply each resulting equation by the respective component u®
and integrate over our space domain:

/ ou'u! dr = / D;0yu'u! dx — / a;0,u'u’ dr + / filwulde  (7.2)

0 0 0 0

Each term of the above integral equation is now examined separately.

One can rewrite the first term in the following way:
oo@uiui dr = Ooa(ui —u' ' dr = — Ooaui u' da::—la |’ H2
o t — o t\ W4 — — 0 tWw_Ww_ 9 t — L2([07OO))

To rewrite the diffusion term, we use integration by parts:

~ i i x i 1. i, | i |2
Di/o Ogzt'u’ dr = —Di/0 Opptt’ u' dx = —D;0pu’ “—}x:o+Di H(’?xu_HLz([OW))

The next term that will be dealt with, is the advection term. Again, using integration
by parts will lead to the desired form of the advection term:

o0

o0 o o0 S 1 .
ai/ o u'u’ dx = —ai/ o,u' u' de = ——aq; (M_)2
0 0 2

=0
At last, we attend to the reaction term. Here we use that f € C'(R® R5). This

allows us to express the components f; of our reaction term f using the fundamental
theorem of calculus as follows:

1
fi(ul,...u®) = fi(ut,..., 0 ,...,u5)+ui/0 ifi(ut, ... sul,... ud)ds Yi={1,...,5}

i
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7 Mathematical analysis of the PDE-model

Thus, we arrive at an approximation of our last term:

0 o 0 1
/ fi(w)u® dx :/ ul fi(ut, ..., 0 ,...,u5)d:c—/ (uZ_)Q/ difi(ut, ... sul,... u’)dsdx
0 0 ~ 0 0

fect oo ) )
> / fi(ula"'707"'7u5)uz—dx_CHuz—Hi2([0,oo))
0

Using all the above derived alternative forms of the terms found in equation ([7.2)),
we arrive at the following:

=0

1 i 12 i 112 1 i\2
50 0222 0.00y) F P 10U ]| 2 10,00y T 5% (ul)

00 1 0o
D; 8xuiui‘;ozo+/ (uZ)Q/ @fi(ul,...,sui,...,u5)dsdx—/ u' fi(ul,...,0,...,ud)ds
0 0 0

The scalars D; and a; are positive constants and hence the terms on the left hand
side of the equation are positive. This and the approximation for the reaction term
yields

1 ‘ . o 0

5& Huz_ Hii’([o,oo)) <c HUZ—H2L2([0,OO)) + DiOyu’u’ | _ — /0 u' fi(ut,...,0,...,u")ds.
(7.3)

As we want to apply Gronwall’s Lemma to the above inequality, we still have to

approximate the remaining unsuitable terms.

First of all, we take a look at the diffusion term. With the assumption that
our solution decays to zero when x tends to infinity, we only consider the term
pu’ (0,t)u’ (0,t). In our model, we have homogeneous Neumann boundary condi-
tions on the left boundary for all substances, but N,.;, as the nutrients in the flow
have inhomogeneous Dirichlet boundary condition. Therefore, our model has Robin
boundary conditions, which can be written as a;u + as dul,_, = g.

For i # 4, i.e., all substances but the nutrients in the flow, we get: d,u’ (0,t)u’ (0,t) =0

As we assumed N, 10 t0 be non-negative, one arrives at u* (0,¢) = g* = 0. Thus,
the diffusion term from above is equal to zero for all i € {1,...,5}.

The last term that needs attention, before we are able to apply Gronwall’s Lemma,
is the integral term in equation (|7.3)).

Obviously fi(u',..., 0 ,...,u°) >0, if f is defined as in model (7.1 and u* > 0

for all i € {1,...,5}.
Under the assumption that u* > 0 for all ¢ € {1,...,5}, we therefore arrive at the
following inequality:
i 112
o < e [Jul || e

i 12
|u— ||L2([o,oo)) [0,00))
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7.1 Positivity of solutions

Finally we can use Gronwall’s Lemma (Theorem [2.3.2)) on this inequality, which

||ui*||iﬂ([0,oo)) =0.
This accordingly brings us to

leads to

u' (2,t) =0 a.e. in [ty, tena) X [0,00).

Apparently, this would already show our theorem as it means that u(t, ;ug) € KT,
if ug € K*. Only the assumption on the reaction term still has to be justified.
This is done by considering a modified system

Oyt = DDyt — adypti + (1) (to, tena) X [0, 00)

ﬁ‘t:to = U ty X [0, OO)

8xﬁ|x:0 =g (t07 tend] x 0
hm ﬂ - O (t07 tend]7
T—00

where the components of the new reaction term f are defined as

1
ﬁ@h”ﬁ%:ﬁmmwwauﬁmn+w/am@k”ﬁmwwﬁm&
0

Using all the above derived approximations for the modified model, it is obvious that
for a solution 4" of the modified model, it holds that @* = 0 a.e. in [0, 00) X [to, tendl,
Le., u(t,;ug) € KT for ug € K.

Hence we get 4° > 0 a.e. in [0,00) X [to, tena]. Therefore, @ is also a solution of our
original model as f;(|at],...,0,...,|@°]) = fi(@',...,0,...,4°) in this case.
Because of the uniqueness of the solution as demanded in assumption [7.1.1] it follows
that u = .

Therefore u € K, which concludes the proof of our theorem. n
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7 Mathematical analysis of the PDE-model

7.2 Pattern formation

Various patterns have been observed to form in plenty of different biological systems.
The first one to mathematically analyse the formation of patterns was A.M. Turing.
In his excellent work ([Tur52]) a nowadays well-known pattern forming mechanism
was examined, i.e., the so-called Turing pattern formation. Less known is another
pattern formation, which he already outlined in [Tur52]. It is known as the wave
instability pattern formation.

For a pattern arising from a Turing or wave instability, there has to exist at least
one stable non-trivial stationary state of the spatially independent model. This is
the necessary condition for a pattern formation of the Turing- or wave instability-
type. The sufficient condition is the loss of the stability of the stationary state
for a certain eigenvalue of Laplace’s equation (equation ([7.19))), when introducing
the spatial coordinates into the model again. A possible shape of the two different

patterns can be seen in figures 2.3] and [2.4] in chapter [2.2.2]

A Hopf bifurcation was found in the spatially homogeneous model. This led us to
the idea of examining the PDE-model for a possible pattern formation. We were
interested to see if the model would show such a behaviour, assuming that there were
no influences from the outside, i.e., homogeneous Neumann boundary conditions on
all boundaries.

In this thesis the system is simplified to a three-component model to analyse for a
possible pattern formation. We will check if the necessary and sufficient conditions
of the Turing mechanism as well as of the wave instability pattern formation are

fulfilled.

7.2.1 Simplification of the model

Before we can start to check for any conditions on the formation of patterns, our
model has to be simplified such that it can be handled analytically.

Again, we use the simplification - as already seen in chapter - that for the
recolonisation of the biofilm only bacteria at exactly the site of recolonisation are
relevant and not the bacteria upstream as well.

The biggest simplification of our model is the assumption of fast and slow processes
within our biological system, which we consider next.

We assume that movement due to the flow and diffusion of B.,; are considerably
slower than the reaction terms. This lets us rewrite equation (6.2)) in terms of a
small parameter e:

aBe:pt 62 Bext aBext
= — — EUf

Cb e, ., ca A
— —¢€ " Bex + _Bin v . 1 Bex
Ox n ' Ui "Agpr + A s Feat
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7.2 Pattern formation

For ¢ — 0 we arrive at an algebraic equation, which can be solved for B,.;:

eCBint A

& B
cp + nypecBint AT At + A

ext —

Using this result in the governing equation for B;,; leads to:

] 20 cBint
8Bmt - D 0 Bmt + Cbechmt <6— A )

= Dp,, " eaBint—————
at ant ax2 Cb _|_ rr]/yfechnt A tAthrl + A
A Nint
—C an -— + in an N AT
4 tAthrl + A B ' tNthr + Nint

This gives a modified governing equation for the bacteria in the biofilm:

0B;, 9% B,, nry pecBint N,
F = Bint 2 - - ! B, + Bint Bint e
ot ox Cp + nypeint Nipr + Nipg

The same assumptions are used for the nutrients in the flow and a basal nutrient
production rate ng is included such that a trivial stationary state exists, which
is necessary from a biological point of view. The parameter ng is already known
from the model, where a homogeneous distribution of all substances over space was
assumed. This yields:

eﬁNm 82Nea:t a]Veyct

ot~ oz Yo

C
- WN(Next - Nmt) - fYNNext + No

Therefore, assuming € — 0, this equation results in the following expression for the
nutrients in the flow:
CN Mo

ext — Nint

cN +Nyn cN + NN

This expression used in the governing equation for the nutrients in the biofilm leads
to

a-Zvint 82j\fint (( CN Mo ) >
=Dy, — +¢ ——— Ny +——— | — Nin,
ot Nt Zgz2 T \New + ™ ew + 1w '
Nin
— YNNint — 1B L

int .
NthT + Nint

Some straight forward calculations admit us to write the governing equation for NV,
in the following way:

a-Zvint 82 Nint Nint
ot Nime ™ 2 M 2fint = €1 5int Ninr + Ning
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7 Mathematical analysis of the PDE-model

where My 1= G 2 0 and My = B 2 0

Considering all the above, we arrive at a reduced model, where we also assume
homogeneous Neumann boundary conditions and, in contrast to the original model

(6.3) - (6.5), a bounded domain:

OB 0’B N nyre? A
at P oa? Ox? ﬁ ' Nthr +N Cp + 77’Yf€CB e Athrl + A
0A 0*A A?
=Dy,—+ B — ) - d,) A
N A9 + (aA+5AAt2hr2+A2) (va +dy)
N N
a——DNa + My — MyN — 1B

ot D22 N+ N

with the boundary conditions

OB(t,0)  OA(t,0) ON(£,0)  OB(t,Zend) OA(t, Zena)  ON(t, Tona)

or oxr Oz or B ox B ox =0
(7.4)
and initial conditions
B(0,z) = By(z), A(0,z) = Ao(x), N(0,x) = No(x), (7.5)

where the subscripts were dropped for reasons of brevity.

Even though the model has been simplified to a three component model, it is still
not possible to calculate the stationary states analytically. Thus, the model needs
some more adjustments to analyse it for a possible pattern formation.

The first assumption in terms of simplifying the model even further is to linearise
the term JVth—+ about 0. This is justified, when accepting the fact that there are
little nutrients available for the bacteria in a non-trivial stationary phase.

Linearisation yields:
N N
Nine + N 7 Nip

The next term that will be approximated, is the positive feedback of the AHL-
production due to quorum sensing. The original term is a sigmoidal function with
respect to the present AHL-concentration. This will be approximated via a jump
function as represented in figure [7.1](a).

The original production term reads h(A) := as+0 AAQ—W and the simplified term

o< o) L if A< Ao
=T a4 Ba i A> A
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7.2 Pattern formation

x10°

g 3 1
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Figure 7.1: (a) Original AHL-production rate with respect to the present AHL-
concentration is shown in blue and the approximated production rate
(jump function) in red. (b) In blue the term e~“F is shown, which is
part of the colonisation of the biofilm by bacteria from the flow. The
approximation used in this section is represented by the red line.

In contrast to the colonisation term below, we use a jump function to approxi-
mate the production rate; otherwise we cannot analytically calculate the stationary
states. In the following we will always assume the system to be either activated or
not. Hence, the AHL-concentration is either small or high. Therefore, the AHL-
concentration is far away from Ay, and can be approximated via our jump function.

The last term that has to be coped with, is the colonisation term. As it is exponen-
tially decaying, it is hard to analytically work with. It is approximated by a straight
line for small densities of bacteria in the biofilm, which basically means, if there are
no bacteria in the biofilm a colonisation is possible. For higher densities of B;,; the
term is approximated by zero, i.e., as soon as bacteria have settled in the biofilm at
a certain site, there is no colonisation at this site:

1—%3 it p < 10
R i
0 if B>
C

The parameter ¢ is assumed to be rather big such that there is no colonisation of
the biofilm by bacteria from the flow, if there are other bacteria already present at
the specified place. Thus, the decay is fast and our approximation is justified.

Finally, we can formulate our reduced and simplified model, where the boundary
and initial conditions (Eq.(7.4) and Eq.(7.5)) persist:
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7 Mathematical analysis of the PDE-model

B 0*B s A N

R _ B + Bin B——

ot =P " i @)ty A, 1A PPN,

0A 9*A

e Z _ 7.6
5 = Dags + By(A) — (ya + d,)A (7.6)
ON O*N

N
— = M, — MsN — ;B
ot N og2 + A 2 “ Nipr'

where My, M,, f(B) and g(A) are defined as above.

7.2.2 Stationary states of the spatially homogeneous model and
their stability

In this part, we calculate the non-trivial stationary states of our reduced model
(7.6) with the assumption of a spatially homogeneous distribution of our bacteria
and substances and investigate their stability. The governing equations of this model
have the following form:

0B Ual: N

= caB + ByuB— =: F(B,A,N

ot avf(B) + vy . Aprg + A Bins Niny ( )

0A

57 = Bo(A) — (1a+d)A=: G(B.AN) (7.7)
ON N

— =M, — M)N — ¢, B =:H(B,A,N

8t 1 2 C1 Nthr ( s 4y )7

To identify the stationary states we proceed as already seen in chapter 4.2, The
stationary states will be denoted by X.
Therefore, we have to solve the algebraic equations:

- N Ual; s A
Bin B = = & = 7.8
"“Nuw  ef(B) + 0y 4 Appr1 + A (7.8)
Bg(A) = (ya+du)A (7.9)
M1 = MQN + Clg (710)
thr
In a first step, equation (7.10)) is solved for IV, which leads to:

— My Ny,

N — 1-Veh (7.11)

MgNthr + Clg

Next, the equation for the stationary state of the AHL-concentration (Eq.(7.9))
yields: ~
A o
94 5 Mma)B (7.12)

A:
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7.2 Pattern formation

In Case 1 we will assume that the system is activated in the stationary phase, i.e.,

the stationary AHL-concentration can be written as A = %B, because a high
number of bacteria leads inevitably to activation. A low density of bacteria will be
assumed in Case 2 and hence, the system is not induced, which in turn leads to:

— A

YA +dy :

We are looking for non-trivial stationary states, so B # 0 is a fair assumption.
Hence, solving equation ([7.8)) gives

o 1y (caNowA = Bint (A + A) N)
B)= v T : 7.13
1) oBint N (Aprg + A) (7.13)

Using the derived equalities for A and N in equation (7.13) yields:

B) — mys (c1caMaB? + (caNyy MaMa — BingMiMa) B — Bing Aspr,1 M)

B = 7.14
f( CbﬁintMlMAB + CbﬁintAthr,lMl ( )

Now there are two cases, which have to be considered depending on the bacteria in
the biofilm.

Case 1: B > m%

We assume that at least one bacterium is in the biofilm. This is equivalent to
f(B) = 0. ~Thus, equation (7.14)), which is a polynomial of second order, can be
solved for B. This gives the non-trivial stationary state:

B Binte MaMa — caAMyMaNy |
1/2 — 9
CchMA

V (aMoMaNine = Bine My M) + ABiuscrcaAunra My Mo
261 CA MA

As obviously B, is negative, only B; is a biological relevant stationary state. There-
fore, By will not be considered in the following. The stationary states for the concen-
tration of the nutrients and of AHL are simply obtained by inserting the calculated

stationary state B; into equations (7.11]) and (7.12).

Case 2: B < 1“%

In this case, there are no bacteria in the biofilm in a stationary phase present, thus

fB)=1- < B

In10—"

As the explicit solution for the stationary state of the different substances will not
be needed for further investigations, it is left out here. It can be calculated using
the same techniques as in Case 1.
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7 Mathematical analysis of the PDE-model

In a next step, we will analyse the stability of our non-trivial stationary states and
check for the possibility of a pattern formation. For this purpose we will proceed
similar to [Eng94].

First of all, model is linearised about the non-trivial stationary state. There-
fore, the Jacobian for (B VAN ) is calculated. The variables of the linearised model
will be denoted by small letters. This leads to:

b
d
— =L 7.15
n n

where L is a real 3 x 3 matrix. This matrix depends on the different cases for the
bacteria in the flow, which were introduced above.
It is a well known fact (e.g., [GHO2]) that a linear continuous dynamical system -

like system ([7.15]) - satisfying the following assumption (Assumption [7.2.1)) has a
trivial stable stationary state. With the theorem of Hartman-Grobman (Theorem

2.3.1]) this result can be extended to the nonlinear model (7.7)).
Assumption 7.2.1. All eigenvalues \; of L satisfy: Re(\;) <0 Vi e {1,2,3}.

For a pattern to form, a non-trivial stable stationary state has to exist in the spatially
homogeneous model. Thus we will check, if the above introduced matrix L satisfies
assumption [7.2.1} For this purpose the Routh-Hurwitz stability criterion (Theorem

2.3.3)) is used.

From the Routh-Hurwitz stability criterion the following three conditions can be
deduced (see appendix [A] for more information):

tr(L) <0
det(L) — tr(L)r(L) >0 (7.16)
det(L) < 0,
"7 9BOA  9AOB ' 9BON  ONOIB ' JAIN ~ ON 9A"
Those have to be satisfied in order to have only eigenvalues of L with negative real
parts.

Case 1: B > ln%
In Case 1 the linearised model ([7.15)) has the following form:

where t(L) ;= 2E0G _ 0F0G | OF 9H _ OF 0H | 9GOH _ 0G oH

BimN _ . A . B Athwa B
d Ninr €A Athr1+A caB (AthT’l-s-A)Q Bint Ninr b
7= 9(A) —(va+dy) 0 a
n —C N]t\iw 0 - (M2 + Cl_Nir) n
-1
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7.2 Pattern formation

Under the assumption that all parameters are positive and only considering the signs
of the entries of the Jacobian matrix Ly, we arrive at the following representation
of the signs of Lq:
0 — +
+ — 0
-0 -

where the entry in the top left corner follows directly from equation (7.8)).
Now it is easy to verify the conditions shown in ([7.16]).

: (7.17)

While the first and third condition are obviously true, the second one is proven to
be valid with straight forward calculations. Therefore, assumption holds and
thus all eigenvalues of L; have only negative real parts.

Hence, using the theorem of Hartman-Grobman yields that the non-trivial stationary
state of model ([7.7)) is stable in Case 1. This is - as already mentioned - a necessary
condition for a Turing pattern to form.

Case 2: B < %
As the stationary state for Case 2 is different, the linearisation changes. The Jaco-
bian L, now has the form:

Bint N M(B A VN n_ Athra B
N ¢ i = caB _ B
Ninr ( ) AAthr,1+A Cb(l_mB)-‘r’yfn A (Athr,1+A>2 ﬁznt Now
L2 = A _(’YA + dv) 0 ’
N B 5
AN 0 (Mg + Nthr)
where m := 55 and M(B) := ven(er+ysn)
nl0

(cb(lme)+'an)2 ’

Again we want to write the Jacobian in a form, in which only the signs of its entries
are considered. Only the first two entries in the first row are different to Case 1.
The second entry is obviously negative as 1 — mB > 0.

Therefore, the only entry that has to be coped with, is the one in the top left corner:

_ N @3 _ A
Bint B ! it caB - <
Niwe (L =mB) +nvp = Amprg + A
¢y + 175 Uali - A .
< _. ] caB _ — M(B)ea _
cy + v —amB cp(1 —mB) 4+ vy Appr1 + A (B) Aphrn + A
>1
Now we arrive at the following for Ls:
- - +
f -0 (7.18)

-0 -

Thus, all three conditions are fulfilled and hence all eigenvalues of L, have negative
real parts. Correspondingly the non-trivial stationary state of model ([7.7)) is stable.
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7 Mathematical analysis of the PDE-model

7.2.3 Diffusion-driven instability | (Turing instability)

Since there exists a non-trivial stable stationary state, the next step is to check for
the possibility of a Turing bifurcation, i.e., the stationary state becomes instable,
when introducing diffusion into model (7.15).

We follow [Mur03] to arrive at a characteristic equation for the eigenvalue A of the
spatially homogeneous problem.

In a first step, we consider the time-independent solution W (x) of the spatial eigen-
value problem:

Op Wi +E*W; =0 Viec{l1,2,3}

7.19
OW; =0 Vie{l,2,3}, Ve {0, rena} ( )
The eigenfunctions of this problem have the form:
¢y cos | 2L
Tend
W(x) =] cocos - , C1,09,c3 E R NEZL

C3 COS %

The eigenvalues corresponding to the above eigenfunctions are: £k = . Sometimes

end

the eigenvalue k will be referred to as wavenumber.
This lets us define the following function in dependence on the eigenfunctions as:

c1 cos (kx)
Wi(x) := | cacos (kx)
c3 cos (k)

In this approach the time component of our system was neglected. This changes,
when linear combinations of Wy(z) are used to define:

w(x, t) = che’\th(x), cr, € R
[

Be aware of the difference between the ¢;’s in the definition of w(x,t) and the
parameters ci, ¢o and c3 from above.
Obviously w(z,t) is a solution of the linearised problem:

Wy = Lw + Daxw [Oa xend] X [t07 tend]

w(z,0) = wp(x) Vo € [0, Tend (7.20)
0,w(0,t) = yw(xepng, t) =0 Vt € [t, tendl,s
D 0 0
where D = 0 Dy O and L is the matrix defined in model ([7.15)).
0 0 Dy
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7.2 Pattern formation

Using the definition of w(z,t) in problem ([7.20)), yields for each k:
AWy, = LWy + Do, W, 2 Lw, — k2DW,

As we are looking for non-trivial functions Wy, the eigenvalue \ of the space indepen-
dent eigenvalue problem is determined by the roots of the characteristic equation:

det(L —k*D — X ) =0 (7.21)

Some cumbersome but straight forward calculations (as shown in appendix lead
to the following polynomial:

/\3 + al)\Q + CLQ)\ + as = O, (722)
with

a, = k*(Dg + D4 + Dy) — tr(L)
a9 = ]C4<DBDA + DBDN + DADN)
OF oG OH
— K (a_B(DA + Dy) + a_A(DB + Dn) + 8_N(DB + DA)) +1(L) = Q(K*)
az = bok® — b1k* + byk® — det(L) =: P(k?),

where
bo = DpDsDpy
oF oG oH
bl = @DADN + a714DBDN + a7]\7DBDA

by — 0GOH 09GOH\  , (OFOH OFOH\ . (O0FO0G OFOG
2= YB\9AON ~ ON 0A A\9BON 9N 0B N\9BoA 0AOB)"

To apply the Routh-Hurwitz stability criterion once more, three conditions have to
be satisfied:

ap > 0
as >0
ajaz > as (7.23)

Because of tr(L) < 0 the first condition is satisfied.
All three conditions can only be fulfilled, if a; € R, \{0}.

As ay is a parabola opening up as a function of k2, the roots of Q(k?) in terms of
k? have either to be negative or to have an imaginary part. This is true due to the
fact that as(k? = 0) = r(L) > 0 as seen in the previous subsection.
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60

T %
-60 -2 0 2
k2

Figure 7.2: Possible shapes for P(k?) depending on different values for by, by and by

The roots of Q(k?) are:

(9E(Da+ Dy) + %5 (Dp + D) + 2(Dp + Da)) N

k2 =
2(DpDa+ DDy + DasDny)

2
\/(g—B(DA +Dn) + 9 (Dp + Dn) + 22(Dp + D4))” — 4r(L)(DpDa + DDy + DaDy)

2(DpDa+ DDy + DysDy)

Referring to ([7.17)) and (7.18]), one can check that the above mentioned proposition
that the roots of Q(k?) are either negative or have imaginary parts, is correct.

So far, all conditions of the Routh-Hurwitz stability criterion are fulfilled. For a
Turing instability to occur, one condition, namely az > 0, has to be dissatisfied for
at least one wavenumber k2 > 0.

We already know that az(k?* = 0) > 0. Hence, some possible shapes of the polyno-
mial a3 = P(k?) of third order can be seen in figure The polynomial crosses the
y-axis at — det(L).
For the Turing instability P(k?) needs to have positive as well as negative values for
k% >0, i.e., min P(k*) < 0. So we are looking for a minimum of P(k?).

k2

As P(k?) = bokS — by k* + byk? — det(L), the first derivative with respect to k% can
be easily calculated and has the following form:
dP(k?)
dk?

— 3bok* — 20,k 4+ by = 0

Setting the derivative to zero, lets us determine the position of the minimum.

dP(k?) L byt /57— 3bobs
pr— k p—
gz Ve 3bo

(7.24)
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7.2 Pattern formation

It is a polynomial of second order and hence has two roots (Eq. ) Taking a
look at figure tells us that the smaller k?-value gives the position of the local
maximum, whereas the larger one gives the position of the local minimum.

We will denote the wavenumber, which coincides with the local minimum of P(k?)
with k2. This wavenumber has to be real and positive and P(k?) has to be negative
in order to get a diffusion-driven instability.

Firstly, the requirements for k? are tested. In order to have a positive and real k2,
we need:

b? > 3boby and
by >0or by <0

Those have to be evaluated in a next step. For this purpose the by now well-known
cases are examined separately:

Case 1: B > ln%
it P —c) 2G o
The definition of b; was: by = sgDADN + 55DpDy + 55 DpDa
From the definition of Ly or (7.17) we know that 25 =0, 2% < 0 and 22 < 0. Also
we chose all parameters to be non-negative and at least one diffusion-coefficient has

to be positive. Hence we get: b, < 0.
As by does not satisfy the above, by is tested next. Its definition is:

b (OGO OGOHY  (OFOH OFOHY . (OFOG 0FIGY
2T UB\ 9AON  ON 9A A\ 0BON 0N 0B N\ 0BoA 0AOB
~—_—— ~—— ~—— N~— ~—— =
>0 =0 =0 <0 =0 <0
As the required conditions on b; and by are not fulfilled, it is not possible to show

a Turing instability with this approach in Case 1.

Case 2: B < ln%

In Case 2 the same problem arises as b; < 0 and by > 0 (compare definition of b,
and by and ) Hence, the sufficient conditions for a Turing pattern to arise are
fulfilled neither.

An outline on which conditions have to be fulfilled for a three-dimensional system
such that a Turing pattern can form, is found in appendix [A]

7.2.4 Diffusion-driven instability 11 (Wave instability)

Most parts from section can be used here as well. The only difference is that we
are looking for a possible Hopf bifurcation - not a saddle-node bifurcation - this time,
which occurs when assuming a non-homogeneous distribution of the substances over
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7 Mathematical analysis of the PDE-model

space. We use the idea formulated in [HNAT3| to state a sufficient condition for a
wave instability.

The characteristic equation, which is shown in equation , stays the same. As
we are looking for a Hopf bifurcation, the conditions shown in ([7.23]) still have to
be fulfilled.
In the previous section, we looked at the transition of ag from positive to negative
values. Now theorem [2.3.4] and the afterwards derived condition on the coefficients
are used to arrive at the conclusion that there has to be a transition of P;(k?) :=
a1(k?)ay(k?) — az(k?) from positive to negative values, while a3 has to stay positive.
Thus we need:

JE2>0: min Pi(k2) <0 (7.25)

The actual form of P;(k?) can be found in appendix [Al To find the position of the
local minimum, i.e., k2, the first derivative of P;(k?) with respect to k% has to be
calculated. From appendix , we already know: Pj(k?) = ak® + bk* + ck? + d.
Therefore we get:

dP;(k?)

L2

For the two different cases of non-trivial stable stationary states, one can calculate
that: a > 0,0 >0 and ¢ > 0.
The first derivative is a parabola opening up, which means that its roots, if real, can
only be negative. Hence, there exists no k? such that condition ([7.25)) is fulfilled.

= 3ak® + 2bk* + ¢

The breach of condition ([7.25]) does not allow us to state the possibility of a pattern
formation caused by a wave instability as the sufficient condition for such a pattern
formation is not satisfied.

7.3 Summary of the achieved results

In this chapter, we were able to show the positivity of the solutions of our spatially
inhomogeneous model under a few assumptions.

After we simplified our model, we investigated it for a possible pattern formation
be it of the Turing- or the wave instability-type. While the necessary condition is
satisfied, the sufficient condition introduced in this thesis is never fulfilled as long as
the parameters are non-negative. Even though this is not a proof that there exists
no pattern, it indicates that there might not be a pattern. Biologically this would
mean that there is no stationary state, where separate colonies coexist. So if one
would let the experiment run for a long time, there will be either no bacteria in the
biofilm or the biofilm will be at its capacity with bacteria or the biofilm will change
its bacterial density periodically as seen in chapter 5], where a spatially homogeneous
distribution was assumed.
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8 Simulations on the PDE-model

In this chapter, the simulations of the model explained in chapter [6] will be con-
ducted. For this purpose, the system has to be discretised first, which is done in the
following section. Afterwards, suitable parameter values have to be chosen. Finally,
the simulations can be carried out. The figures in section 8.3 were done with Matlab
([Mat10]).

8.1 Discretisation of the PDE-model

In order to simulate our PDE-model (equations , and ), it has to be
discretised. In this work we follow [Brall] to arrive at a suitable approximation of
our governing equations to simulate them. More on the discretisation of reaction-
diffusion-advection models can be found in [HV03].

We will discretise our model with finite differences in a semi-implicit fashion; while
we consider the reaction terms explicitly, i.e., in the current time step of evaluation,
the diffusion and advection terms are considered implicitly, i.e., in the next time
step.

At first, the domain of interest of the model is divided into a grid. The grid will be
equidistant in both space as well as time. While the dimension of time is split into
Nt parts of size At, the space-dimension is split into Nz parts of size Ax.

The equidistant grid is chosen as it is easier to implement and not as time consuming
during the simulation as a non-equidistant grid. A representation of the grid is seen
in figure [8.1

Next, we introduce the notation, which will be used throughout this chapter:

For reasons of readability we will not refer to the different substances and bacteria
in the theoretical explanation of the discretisation explicitly, but to a variable called
Uu.

The numerical approximation of u(ty) is u”, i.e., u at time-point ¢; and the numerical
approximation of u(x;) is u;, i.e., u at position z;.

k

The three most common schemes in finite differences to approximate derivatives of
first or second order are: forward difference scheme, backward difference scheme and
central difference scheme.

We use the forward difference scheme to discretise the derivative with respect to
time, the backward difference scheme for the advection term and the central differ-
ence scheme for the diffusion term.
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8 Simulations on the PDE-model

tNt—l

0 b X; XNx-1
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Figure 8.1: Grid of the domain for the simulation of the PDE-model

For more information on the different schemes used for the different derivatives
please refer to [Brall|] or [HVO03].

8.1.1 Approximation of the derivative with respect to time

The first discretisation to be considered is the derivative of u with respect to time. As
mentioned above the forward difference scheme is used. Hereby u**! is represented
using a Taylor-series expansion about time t, i.e.,

W = ok Ataua(fk) +O((A)?).
Rearranging the equation leads to:
k+1 _ ok
u u®  Oulty) L o(An)

At Ot

The term on the left hand side can now be used as an approximation of first order
of the derivative of u with respect to time. The truncation error - when neglecting
higher order terms - is of magnitude At. This discretisation is called - as already
mentioned above - forward difference scheme. It will be used to discretise our time-
derivative.

8.1.2 Approximations of the derivatives with respect to space

The two remaining derivatives in our model both depend on the space variable x.
We begin by discretising the first derivative with respect to x.
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8.1 Discretisation of the PDE-model

First derivative: Applying the backward difference scheme to the first derivative
with respect to space approximates our advection term. For this purpose the Taylor-
series expansion of u;_; about z; is considered:

Oulzy)  (Az)® Ou(g;)

w1 =u; —Aw pe 5 57 +O((Ax)?)
A rearrangement yields:
s . 2 .
uj Uj—1 _ au(*rj) . % . 0 u(‘rj) + O((A:B)Q) (8.1)

Azx ox 2 0x?

The left hand side of equation (8.1) will approximate the advection term later on.
Even though the truncation error of the central difference scheme is of O((Ax)?) -
shown in equation (B.1l) in appendix - and hence better than the one for the
backward difference scheme, if it is truncated after the first term, it is not applied
on our model as it leads to unwanted and unrealistic oscillations ([HV03]). This is
why the backward difference scheme is used to approximate the advection term in
the simulations later on.

Second derivative: The last remaining term to be discretised is the diffusion-term.
We approximate it via the central difference scheme. The forward difference scheme
with respect to space - instead of time as above - is needed thereto. Following the
idea shown for the time-derivative gives:

ui —u;  Oulz;) Az 9u(x))

Ax ox 2 0x?

The first derivative disappears when equation (§8.1)) is subtracted from equation (8.2)).
Hence, one arrives at the following approximation for the second derivative:

+ O((Az)?) (8.2)

Rt - S o((Aa) 53)

The left hand side of equation (8.3)) is used to approximate the diffusion term.

8.1.3 Discretisation of our model

So far, only the theoretical variable u was used to explain the different schemes
on how to discretise a PDE-model for the purpose of simulation. Now the gained
knowledge is employed on our model. In a first step, only the inner domain is
regarded as on the boundary of the domain the different boundary conditions have
to be taken into account. Afterwards, the model is discretised on the boundaries;
firstly taken the boundary conditions in the biofilm and last, but not least, the
boundary conditions in the flow into account.
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8 Simulations on the PDE-model

Inner domain:
Exemplarily, we will discretise the governing equation for bacteria in the flow. The
discretisation for the other substances follows accordingly.

Using the different schemes for the derivatives - as it was explained in the previous
part - leads to the following algebraic equation for all j € {1,..., Nz — 2} and
ke{l,.,Nt—1}:

k+1 k k+1 k+1 k+1 k+1 k+1
Be:ﬂt,j - Bezt,j - D Bemt,j+1 - 2Bea:t,j + Bezt,j—l v Bezt,j - Bezt,j—1+
- Bez -
At ' (Azx)? / Az
k

CA Aj Cy k k k
v T %o (BE VB — B
, k wnt, ext, f ext,)
no " A + A ’ ’ ’

where the integral of the colonisation term - as seen in equations (6.1]) and (6.2)) -

is approximated by the function col(B, ;), which is defined as

1 if Z BF . <12.10 —

k int,i
COI(ant,]) : i:h2(j)

0 else,

Jj— o/Azx]| if j—|0/Az] >0

and ¢ = 1.
0 else

where hsy(j) == {

As we are using a deterministic approach, we get an average of a stochastic simula-
tion. When there is a bacterium in a distance of 9, upstream, then there should be
no colonisation. The density of 1.2 - 1010% is equivalent to one bacterium in the
biofilm, thus we use this value as a threshold for the above defined function col.

Also remember that the reaction terms are evaluated at time ¢.

Rearranging this equation such that all terms of time point ¢, are on the left hand
side, gives:

At At

k k k k k k
Be;f,lj - (AI)Z‘DBext (Be;_f,lj—l—l - 2Bea—:tf,1] + Bea—rtf,lj—l) + A.va (Beart,l] - Be;;,lj—l) -
k
% k k €A pk Aj k
=B 4+ At|—"col(BF, )BF, .4+ 2£BE I ~.BF ).
ext,j ( n ( znt,j) ext,j n int,j Athrl'i_A? i ext,j

The discretised equations of all substances are shown in appendix |B.2|
Boundaries:

Obviously for the simulations some boundary conditions (b.c.) have to be formu-
lated. Those depend on the different substances. While for all substances in the
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8.1 Discretisation of the PDE-model
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Figure 8.2: Sketch to justify Neumann boundary conditions for the substances in
the biofilm

biofilm a homogeneous Neumann boundary condition on the left as well as on the
right boundary is assumed, the boundary conditions in the flow have to be chosen
more carefully.

Biofilm: First of all, we take a look at the boundary conditions in the biofilm as

those are more straight forward than those in the flow. As already mentioned, we are
ou ou

= =0.

applying homogeneous Neumann boundary conditions, i.e., &IWO = S loe
- —YLend

The biological justification to use Neumann boundary conditions is seen in figure
B.2] In this figure our biological set-up is shown. While the flow moves unhindered
through the left and right boundaries of the domain, all substances located in the
biofilm can only leave the biofilm by moving into the flow.

Using the above derived ideas to discretise the space derivative, a homogeneous
Neumann boundary condition leads to u_; = ug on the left boundary and to uy, =
Unz+1 on the right boundary.

This yields the following discretised equation for B;,; at the left boundary, which
is shown exemplarily for the discretisation at the boundary of a substance in the
biofilm:

At
k+1 k+1 k+1
Bmt,o - —(Ax)gDBm (Bmt,l - Bmt,o) =
Ak N'kto
=Bt 4+ At|ceycol(BY, )BY  —caBY  ——2 4+ B BF
int,0 (b ( mt,O) ext,0 A znt,OAthM_'_A]g B t mt’ONthr"i_Nz‘];t’o

Both - left and right - boundaries for the substances in the biofilm can be seen in

appendix
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8 Simulations on the PDE-model

Flow: As already mentioned, the boundary conditions in the flow domain have to
be chosen carefully. On the left boundary, we assume a homogeneous Neumann
boundary condition for the bacteria just as for the substances in the biofilm. It is
a reasonable assumption as the flow is really strong and the diffusion of the com-
paratively large bacteria rather slow. Thus, all the bacteria get washed downstream,
if they do not react with a different substance or die, and therefore can not cross
the upstream boundary. This idea gives the following discretised equation for B,
on the left boundary:

At
Mo — WDBM (BELL — Bého) =
=Bk, + At (—@col(B?c )BE,  + 2Bk A >
ext,0 n wnt,0 ext,0 n mt,OAthrl +A(]§ f ext,0

The only substance not having a homogeneous Neumann boundary condition at
the inflow is the nutrient concentration in the flow. The idea that there is at each
time-step the same amount of nutrients available at the inflow is translated into a
non-homogeneous Dirichlet boundary condition. It is important to use the Dirichlet
b.c. as with a Neumann b.c. a constant increase at the inflow would be visible. If we
assume for example a liquid saturated with nutrients which flows through our flow
chamber, this obviously would not be a reasonable choice. Also one can imagine
that the concentration of nutrients at the inflow at a previous time point has been
transported further downstream, while nutrients - which were upstream - are now
at the inflow.

The non-homogeneous Dirichlet boundary condition leads in a discretised form to

Nezt,—l = Ninflow,

where 7100 € Ry is the constant concentration of nutrients in the flow at = 0.
Thus, we arrive at the following equation for N.,; at the left boundary:

2 DNe:ct (Nea:—‘g,ll - 2Nex—t,10) + _UfNeajl;,lO =

Nk—‘rl o
ext,0 (Ax) Az

CN At At
= fot,0+At (_7 (Nekzt,o - Ni’izt,O) - P)/NNekxt,O) + (WDNQM + A_.Z'vf) Ninflow

The last boundary condition still missing is the right boundary condition for the
two substances in the flow. Referring to figure |8.2 again, yields the idea of an open
boundary condition, i.e., the substances are supposed to flow through the boundary
unhindered. The realisation of this condition is taken from [PSLI7]. In figure
the basic idea of the open boundary condition is shown. As there should be no
change of the substances due to the boundary, the slope left of the boundary has to
be the same as right of it.
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8.1 Discretisation of the PDE-model

- )

uNx—l uN< uNx+1

Figure 8.3: Schematic representation of the open boundary condition for the sub-
stances in the flow.

Mathematically this is expressed by

UNg—2 + UNg

UNg—1 = 9

as our grid is supposed to be equidistant.
Thus, the approximation for uy, reads as follows:

UNg = 2UNg—1 — UNz—2 (8-4)

With the approximation seen in equation (8.4, we arrive at the following discre-
tised equation for the nutrients in the flow at the right boundary, which is shown
exemplarily:

At

k+1 k+1 k+1 _
Next,Nmfl + A.Z'Uf (Next,Nxfl - Nea:t,N:v72) -

CN
= fot,Na:—l + At <_? (NekxtNx—l - Ni]jmt,Nx—l) - ’}/Nfot,Nx—1>

Using all the above derived discretised equations lets us rewrite our initial model
(equations (|6.3]) - (6.5])) such that we have a system of linear, algebraic equations,
which can be solved numerically.

The set of equations can be written as:
MyuﬁJyrl = u?,y + RHSk,y vy € {Bea:zh Bmt, A; Next; Nmt};

where uﬁy the numerical approximation of the component of u represented by y at
time ?; and at position z;, M, € R™™" the discretisation matrix and RHJSj, the
right hand side of substance y € {Beyt, Bint, A, Next, Nint } at time ty are.
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8 Simulations on the PDE-model

The discretisation matrices - with the definition dc := (AA—;)Q and fc:= AAm;f - for the
substances in the biofilm have the form:

1+dcD, —dcD, 0 e 0
—dcD, 1+ 2deD, —dcD, :
My = 0 0 ; forye {BintaAaNint}
: —deD, 1+ 2dcD, —dcD,
0 . 0 —dcD, 1+ deD,

The two substances in the flow have different boundary conditions and hence the
discretisation matrices differ from the ones used for the substances in the biofilm as
well as among themselves. The discretisation matrix for the bacteria in the flow is
shown beneath.

1+dcDp,,, —dcDp,,, 0 0
—dcDgp,,, — fc 14 2dcDp,,, + fc —dcDgp,,, '
MBea:t: O 0
: —dcDp,,, — fc 1+ 2deDp,,, + fc —dcDp,,,
0 ‘.- 0 —fe 1+ fc

Last, but not least, the matrix for N, resulting from the discretisation of the
time-derivative, the diffusion- and advection-term reads as follows:

1+ 2dcDpy,,, + fc —dcDn,,, 0 e 0
—deDy.,, — fe 1+ 2dcDy,,, + fc —deDy.,, '
My, = 0 0
: —dcDpy,,, — fc 1+ 2dcDy,,, + fc —dcDy,,,
0 e 0 —fc 1+ fc
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8.2 Choice of parameters

8.2 Choice of parameters

After the system has been discretised, the only missing part - before the PDE-
model can be simulated - is to find suitable parameter values. Those have to be
chosen carefully such that a biological relevant behaviour can be observed in the
simulations.

At first, the diffusion parameters are chosen. The diffusion parameter Dy, is
obtained using the theory given in [Hob88]. Assuming the diffusion rate of nutrients
within the biofilm to be one fourth of Dy_, and of AHL to be one tenth, leads to
the diffusion coefficients Dy, , and Dy.

As the bacteria are considerably bigger than AHL, the diffusion rates are assumed
to be just a small fraction of D4. Again, the bacteria in the biofilm are supposed to
diffuse slower than the bacteria in the flow. In fact, they are assumed to be almost
immobile. Those ideas lead to the diffusion constants shown in table [8.11

The flow velocity was taken from [MMKT12]. The channel is rinsed with a nutrient-
saturated fluid at 2’%[. As the flow chamber has a height of 0.4mm and a width of

3.8mm, the velocity can be calculated by

2-102um?/h
Vf = .
77400 wm - 3800 pm

The concentration of nutrients, which is carried into the experimental set-up by the
flow, was chosen arbitrarily to be 1. This is the capacity used in the ODE-model
and hence a reasonable choice.

The colonisation rate ¢, is chosen to be a value, which increases the simulation time
only slightly, but still leads to a fast colonisation of the biofilm. It is assumed that
the bacteria can sense other bacteria in the biofilm up to 250 um upstream and hence
do not colonise the biofilm if there are bacteria present in this region.

The strength of the avoidance of recolonisation due to other bacteria, i.e., the pa-
rameter c, is arbitrarily chosen to be 1.

If not mentioned otherwise, we choose as a initial condition that the liquid within the
flow chamber and biofilm is saturated with nutrients, i.e., Neyo(x) = Nipo(z) = 1
for all x € [0, Zeng|. At Imm, 2mm, 5mm and 8mm after the beginning of the flow
chamber two bacteria are positioned in the biofilm, i.e., By,:0(1000) = Bip(2000) =
Binto(5000) = Bipi0(8000) = 2.4-10'° Bact /ml. We also assume that neither bacteria
in the flow nor AHL in the biofilm are present, which can be realised by rinsing the
flow chamber at the beginning of an experiment.

8.3 Simulations on the PDE-model

In this part, the simulations of our model with an inhomogeneous spatial distribution
are presented. A question that was raised at the beginning of this thesis, was,
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8 Simulations on the PDE-model

Parameter Value Parameter Value

c 1 ) 2.2-10* ¢

5 250 i Dg.., 3000 4
Dg,, 30 5 Da 32325.2
Dy.., 323252 Lm’ Dy, 80813 1
Min flow 1 vy 1.316 - 106 4m

Table 8.1: Parameter values used in simulations. The values of the parameters used
for the ODE-model are shown in table 5.1l Those will be used in the
simulations of the PDE-model as well.

under which circumstances it is beneficial for the whole population to regulate the
detachment of bacteria via quorum sensing in comparison to a constant detachment
rate. Obviously conditions that influence this decision are the danger of being killed
in the stream or the possibility of not finding enough nutrients at the new location.

The parameters used in the simulations are shown in table [8.1]

Figure [8.4]shows the spatial distribution of all substances involved in our simulations
after forty hours. While in the top left corner of this figure one can see, how the
bacteria in the flow are distributed over the flow chamber, the distribution of the
bacteria in the biofilm are shown in the middle of the upper row. Next to it the
AHL-concentration is displayed. In the lower row, the nutrients in the flow are
presented on the left and the nutrients in the biofilm on the right.

In figure the density of bacteria in the biofilm as well as the AHL-concentration
are displayed at different time points. While one can see B;,; in blue, the corres-
ponding AHL-concentration is shown in green. In the top left corner of this figure
the two quantities are shown after ten hours have passed. The bacteria are still
growing and the AHL-concentration is accumulating. After forty hours (seen in
the middle of the top row) the initially, i.e., at the beginning of the simulation,
positioned colonies have reached already its capacity, i.e., about eleven bacteria.

One can extract from this figure the sensitivity of the system to the positive feedback
in the AHL-production. After forty-two hours, one sees the characteristic drop in
AHL-concentration at = ~ 4500um, z ~ 7500pum and z ~ 10000um. On the
right side of this drop in AHL-concentration the threshold-density of bacteria in
the biofilm, i.e., the “quorum”, at which the AHL-production jump starts, has not
yet been reached. A furthermore remarkable feature is the close association of the
AHL-concentration with the distribution of the bacteria in the biofilm even though
the diffusion of AHL is noticeably higher than the diffusion of the bacteria in the
biofilm, which are almost immobile. This is due to the fact that a high rate for
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Figure 8.4: Distribution over the flow chamber of the - in our simulation - involved
substances after forty hours. The death rate of the bacteria in the flow
(vy) is 1000+. Initially a nutrient concentration of 1 is assumed to be
in the flow chamber, i.e., in the flow as well as in the biofilm. As an
initial condition neither bacteria in the flow nor AHL in the biofilm are
present. Two bacteria, i.e., B,y = 2.4 - 101°Bact/ml are positioned at
x = 1000pm, = 2000pm, x = 5000um and x = 8000um at the
beginning of the simulation. In the top left corner the density of the
bacteria in the flow (Bey) is shown. Middle top row: Bacterial density
in the biofilm (B;,;). Right top row: AHL-concentration in the biofilm
(A). Left bottom row: Concentration of nutrients in the flow (Neu).
Right bottom row: Nutrient concentration in the biofilm (Ny,).
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Figure 8.5: Distribution of the density of bacteria in the biofilm (blue) and of the
AHL-concentration (green) in the flow chamber at different time points
(77 = 10002)

the wash out of AHL by the flow is assumed. The drop of the concentration of
bacteria and AHL to the right of the initial colonies can be explained by the fact
that the bacteria do not want to settle next to a place where other bacteria are
already present. In the deterministic approach this effect can be only seen right
next to the initial colonies. At other locations in the flow chamber this cannot be
observed in our model as it is an average of the stochastic simulation, where this
effect should be seen everywhere.

In figure and one can see the time course of the total number of bacteria.
The total number is comprised of the bacteria that were washed out of the flow
chamber, the bacteria in the biofilm and those in the flow. It looks as if the system
does not reach a stationary phase. This is due to the wash out of the bacteria. In
the flow chamber a stationary phase is reached, when the bacteria in the biofilm as
well as in the flow reach its capacity. This is seen in figure One can extract from
this figure that after about 80 hours the bacteria have reached its capacity in the
flow chamber everywhere but left of the first colony in the case of quorum sensing
regulated detachment and the death rate of the bacteria in the flow being 1000%.
The simulation with those assumptions is represented by the blue line. Because of
the fast flow, the bacteria need rather long to colonise the beginning of the flow
chamber. The colonisation of the whole flow chamber is completed after around 150
hours. For larger death rates of the bacteria in the flow, it takes longer to reach
the capacity. This is shown for v; = 10000% in the same figure with the dashed
red line. The quorum sensing regulated detachment rate averaged over the biofilm
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Figure 8.6: Time course of the total number of bacteria for different approaches.
While the blue lines represent the quorum sensing regulated detachment,
the red and green lines show the total number of bacteria for simulations
with constant detachment rates. The detachment rate is 0.15% for the
green lines and 0.2% for the red lines. The solid lines stand for simula-
tions with 7y = 1000+ and the dashed lines for vy = 10000+

in the flow chamber during the course of time can be seen in figure Again the
blue line stands for a simulation with a low death rate of the bacteria in the flow
(v = 1000%) and the red dashed line for a high death rate (v = 100004). The
correlation between the averaged detachment rate and the total number of bacteria
is obvious. The detachment rate is about 0.15% after the stationary phase in the
flow chamber is reached.

As already mentioned, the total number of bacteria in the simulation, i.e., including
the bacteria washed out of the flow chamber, are displayed in figure and
for different scenarios. In these figures the blue lines represent a quorum sensing
regulated detachment, the green lines a constant detachment rate of 0.15% and the
red lines a higher constant detachment rate of 0.2%. While the solid lines stand for
s = 1000 %, the dashed lines represent simulations with a death rate of the bacteria
in the flow of 100004

The advantage of a quorum sensing regulated detachment is obvious from these
figures. While the quorum sensing regulated detachment allows the colony to grow
up to a certain threshold before the detachment starts, this is not possible when a
constant detachment rate is assumed. Comparing the three solid lines, i.e., small
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Figure 8.7: Total number of bacteria assuming a large flow chamber, i.e., the length
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of the flow chamber is 85mm instead of 17mm. The colors were as-
signed to the same scenarios as in figure i.e., quorum sensing regu-
lated detachment in blue, low constant detachment rate (0.15 1) in green
and high detachment rate (0.2%) in red. Dashed lines stand for two
initial colonies comprised each of two bacteria at x = 1000pum and
x = 5000um. Solid lines additionally have two bacteria sitting at
x = 2000pum and x = 8000um. The death rate of the bacteria in the
flow is v = 1000%.
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Figure 8.8:

Figure 8.9:
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Total number of bacteria in the flow chamber, i.e., without the bacteria
flowing out of the flow chamber, over the course of time. The blue line
represents a simulation run with v, = 1000% and the dashed red line
shows a simulation with v; = 10000%.

0.15F

0.12F

0.09F

Average detachment rate [1/h]

0.03F

1 1 1 1 1
0 100 200 300 400 500 600
time [h]

Time course of the quorum sensing regulated detachment rate averaged
over the biofilm. In the simulation represented by the blue line ¢ is
assumed to be 1000% and for the dashed red line vy is 10000%.
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death rate of the bacteria in the flow, among each other, shows that the bacteria in
the AHL-regulated detachment have an advantage especially in the beginning of the
simulation. This is not surprising, when one refers to figure [8.9, where the average
detachment rate can be seen. Just after about 80 hours, the average detachment
rate is at the same level as it is in the simulation represented by the green line.
The advantage is kept over the whole simulation, resulting in a higher total number
of bacteria for the quorum sensing regulated detachment. The simulation with
the higher detachment rate (red line) obviously has an even bigger disadvantage,
therefore showing a considerably lower amount of bacteria. Comparing the solid
lines with the dashed lines in figure [8.6] one observes, especially in the case of the
blue lines that in the beginning of the simulation the growth of the bacteria is
approximately the same. This is due to the growth of the - already at the beginning
of the simulation positioned - colonies. But when it comes to the recolonisation of
the biofilm with detached bacteria, the two lines split and finally the simulation with
the lower death rate in the flow exhibits a considerably higher number of bacteria
at the end than the simulation with vy = 10000%.

The total number of bacteria at the end of the different simulations of figure
can be used to calculate ratios between the different scenarios, i.e., constant de-
tachment rates and the AHL-regulated detachment. In the case of v, = 1000% this
is 0.944 for the ratio between the simulation with a detachment rate of 0.15% and
the AHL-regulated detachment and 0.590 for the ratio between the approach with a
detachment rate of 0.2% and the AHL-regulated detachment. These ratios decrease
to 0.860 and 0.379 for vy = 10000%. Therefore, the advantage of the bacteria using
a quorum sensing regulated detachment compared to bacteria using constant de-
tachment rates increases with increasing death rates ;. This increase is greater for
high detachment rates (0.201) in comparison to small detachment rates (0.15+).

In figure the colors are assigned to the same scenarios as in figure [8.0] i.e., the
different detachment mechanisms. The death rate of the bacteria in the flow is 1000%
in this figure. While the dashed lines stand for two bacteria at z = 1000 um and
x = 5000um at the beginning of the simulation, the solid lines represent the same
initial conditions as seen in the other simulations, i.e. additionally at x = 2000 um
and x = 8000um two bacteria are situated. The flow chamber is assumed to be
larger here than in the simulations before, i.e., 85mm instead of 17mm long. One
can see that there is only a slight difference between the scenario with two starting
colonies and the scenario with four starting colonies.

In this case the advantage of bacteria using quorum sensing regulated detachment
compared to bacteria using constant detachment rates is even more obvious at the
beginning of the simulation than in the case of a small flow chamber. This is not
surprising as many bacteria die in this long flow chamber, which therefore favors
mechanisms, where the bacteria stay in the biofilm. Again using the ratios at the
end of the simulation, i.e., after 400 hours in this case, shows about the same value
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for the ratio between detachment rate of 0.15% and AHL-regulated detachment, but
with 0.448 a slightly smaller value for the ratio between 0.2% and the AHL-regulated
detachment.
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9 Summary and Outlook

A motivation of this thesis was the mathematical modelling of a biological experi-
ment similar to the one found in [MMK™12].

In a first step, we modelled this set-up assuming a homogeneous distribution of all
occuring substances. The model was then analysed for positivity to make sure that
it permits us to explain the biology of the experiment. The spatially homogeneous
model was used to find values for the parameters, which have not yet been discussed
in the literature, by choosing the values in the simulations in such a fashion that
a reasonable behaviour of the system could be observed. In the simulations we
were also able to find a Hopf bifurcation for a certain range of parameters in our
system. Interestingly, an oscillating biofilm thickness has been found already in
other biological experiments. Even though the density of bacteria in the biofilm was
rather small in the deterministic approach, it is most likely to find such an oscillating
behaviour in vitro as well.

In the second part of this thesis, we additionally took a spatial distribution of the
occurring substances into account. The new model was then analysed for positivity
again to validate it for the purpose of explaining the biological experiment. After-
wards, we adapted the model slightly such that we could concentrate on a possible
pattern formation during no-flow conditions. No proof of a pattern formation could
be found. This is due to the fact that the non-trivial stationary state is stable for
all wave-numbers k2 as it was shown in our analysis. Therefore, all spatial varia-
tions under no-flow conditions vanish after a long period of time and hence waiting
long enough leads to a spatially homogeneous distribution of the substances in the
biofilm.

Last, but not least, simulations of the flow chamber model were carried out. We
found that bacteria using a quorum sensing regulated detachment mechanism in-
crease their numbers in the beginning of the simulations faster than bacteria having
constant detachment rates. On the one hand in the long-term behaviour of the
simulation the increase of the size of the flow chamber has no effect on the ratio
between the total number of bacteria using AHL-regulated detachment and bacte-
ria having a comparable constant detachment rate (0.153). On the other hand the
advantage of the quorum sensing regulated detachment compared to a constant de-
tachment rate is greater in large flow chambers than in small ones at the early stages
of the simulation. Starting with two or four colonies does not favour any of the two
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9 Summary and Outlook

approaches. The death rate of the bacteria in the flow has a great influence on the
decision of which approach - quorum sensing regulated or constant detachment - is
better for the whole population. The higher the death rate is, the more likely is it
that quorum sensing regulated detachment is favourable for the whole population
compared to the constant detachment of bacteria from the biofilm.

Further work in this field could include the use of discrete values to account for the
number of bacteria instead of bacterial densities. This would solve the problem of
partial bacteria as it was seen in our approach. Using this, the reproduction and
recolonisation should be changed as well. They should be modelled using Poisson
processes. This would lead to more accurate results as this allows for separate
colonies to form. It is not possible to see a formation of separate colonies in our
biological set-up, when a model comprised of partial differential equations without
stochasticity - as in this thesis - is used. Another possible extension would be the
influence of nutrients on the production of AHL as described in [KKCHI3]. One
could also consider the effect of lactonase on the degradation of AHL. This relation
has been postulated to some extent in [FKR™10]. Last, but not least, the negative
effect of the AHL-production - as it is energy consuming - on the reproduction of
the bacteria could be included.
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A Pattern formation

A.1 Derivation of the stability conditions shown in
section [7.2.2 and in [7.2.3

Let fi, gi,h; € R Vi € {1,2,3} and assume the following form of the Jacobian and
the Diffusion matrix:

fl f2 f3 D1 0 0
L= g g 93 and D := 0 Dy O (A.1)
hi hs hs 0 0 Djs

Hence, we need the characteristic equation to calculate the eigenvalues of L:
det(AI—L)=0

This leads to the characteristic polynomial:

AP — (fi + g2+ h3) A+ (fi92 — g1 f2 + fihs — f3h1 + gohs — gsho) A—
%/_/ _/

g

=tr(L)=a1 =:r(L)=az

(frg2hs — figshe — g1 fahs + g1 fsha + hi fags — R fsg2) =0

(. S/

~
=det(L)=as

Thereby one arrives at the conditions shown in ((7.16) in section when applying
the Routh-Hurwitz stability criterion.
Introducing diffusion yields:

det(L — k*D — X)) =0
Expansion of this equation leads to:

A’ + X [(Dy + Dy + Dy)k?* — (f1 + g2 + hs)] +

A [(f192 — gifa + fihs — hifs + gahs — g3hs) + (D1Da + D1 D3 + Do D3)k?
— (fi(D2 4 D3) 4 g2(D1 + D3) + hg(D: + D2))k2}

+ [D1DyD3k® — (fiDaDs + go Dy D3 + hyDy Do) k*

+ (D1(g2hs — gsha) + Da(fihs — fsh) + Ds(fig2 — fog1)) K

— (f192hs — figsha — g1 f2hs + g1 fsha + By fags — ha f392)] = 0



A Pattern formation

This explains the form of condition (7.22)) in section

A.2 Qutline for Turing pattern formation

Outline for conditions to observe a Turing pattern in a three-dimensional system:

1. Stationary state of spatially homogeneous model is stable, i.e., Re()\;(k? =
0)) <0Vie{l,2,3}.

2. Stationary state is unstable when introducing diffusion, i.e., 3 k2 > 0,3 i €
{1,2,3} : Re(N\;(K*)) > 0.
This is true, if the following conditions are fulfilled:

a) a; >0
b) as >0

c) az = P(k?) switches sign for positive k2, i.e.,

. dP(k2) _
L == =0

b2 — 3bby > 0
k>0 b 00

by > 0or by <0

ii. P(k2) <0

If the above conditions in a three-dimensional model are fulfilled, one can observe
the formation of a Turing pattern in this system.

A.3 Polynomial used in wave-instability pattern
formation

Using the definitions of L and D found in equation (A.1)) yields:

Pl(k:2) ‘=a1as — ag =
(k*(Dy + Do + D3) — tr(L)) -
- (x(L) + k*(D1D3 + D1 D3 + DaD3) — k*(f1(Ds + Ds3) + ga(D1 + Ds3) + hy(D1 + D3)))
— P(k?) = ak® + bk* 4 ck? + d,
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A.4 Outline for pattern formation due to a wave-instability

with
a =D}(Da + D3) + D3(Dy + D3) + D3(D; + Ds) +2D1 D2 D3
b=—2(f1(D} + D3) + g2(Di + D3) + h3(D? + D3) +2(f1 + g2 + ha)(D1D2 + D1 D3 + D2 Dy))
¢ =2(f192 + fihs + g2h3)(D1 + D2 + D3) + (D + D3) + g3(D1 + D3) + h3(Dy + Do)
— f291(D1 + D2) — f3h1(D1 + D3) — g3ha(D2 + D3)
d =~ f{(g2 + h3) — g5 (f1 + h3) — h3(f1 + g2) — 2f192h3 + fagrha + fagshi + fifog1 + f1f3m
+ f2g192 + g293h2 + f3h1hs + g3hahs

A.4 Outline for pattern formation due to a
wave-instability

Outline for conditions to observe a pattern due to a wave-instability in a three-
dimensional system:

1. Stationary state of spatially homogeneous model is stable, i.e., Re()\;(k? =
0)) <0Vie{l,2,3}.

2. Stationary state is unstable when introducing diffusion, i.e., 3 k2 > 0,3 i €
{1,2,3} : Re(M\;(K?)) > 0.
This is true, if the following conditions are fulfilled:

a) a; >0
b) ay > 0
C) as > 0
d) ajas — az = Py(k?) switches sign for positive k2, i.e.,
codP(k2)
1. —dkz . 0
. 9 b* — 3ac > 0
ii. k>0«
b>0orc<0

ii. P(k2) <0

If the above conditions in a three-dimensional model are fulfilled, one can observe
the formation of a pattern due to a wave-instability in this system.
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B Discretisation

B.1 Central difference scheme

Adding the equations of the backward difference scheme to the equation of the
forward difference scheme leads - for the approximation of the first derivative with
respect to space - to:

Uj+1 — uj—l _ (9u(xj)

2Ax ox

+O((Az)?) (B.1)

B.2 Discretised model

In this part of the appendix, the whole model is listed in its discretised form. First of
all, the discretised governing equations in the inner domain are shown. Afterwards,
the equations at the spatial boundaries of the substances in the biofilm are presented.
At last, the equations at the spatial boundaries of the bacteria and nutrients in the
flow are written down.

The discretisation of the governing equations of model (6.3) without boundaries,
ie, forall je{l,..., Nz —2}and k€ {1,...,Nt — 1}:

At At
k+1 k+1 k+1 k+1 k+1 k+1 _
Bext,j - (Ax)QDBext (Bext,jJrl - 2Be:ct,j + Bext,jfl) + A_le'vf (Be:z:t,j - Bext,jfl) -
k Ch k k (67 k Ak k
=B, +At|——col(B,)B:, . +—B ——21— — ;B
ext,] ?7 ( mt,j) ext,j ?7 wnt,g Athrl _|_ Af P)/f ext,j
BitL _ At Bo (Bitl —2BItL 4+ BEFL ) =
int,j (AI)2 int int,j+1 int,j int,j—1

J AV

int,j

k k
=BF, + At | c,col(BE, VBY, . — cABF ,—Aj + By BE . Nint,j
mt,j b int,j/ = ext,j A , k mntint,j A
th ~ Nin

IV



B.2 Discretised model

e A
J (A:E)2

Dy (At — 241 4 Al =

= AAt | BE, (aa+ &)—( + d,) A"
A Pt g Gy~

At At
k+1 k+1 k+1 k+1 k+1 k+1
Ne;;,j - (A:L,)Q‘DNext (Ne:(j);,j-i-l - 2Nex47;j + N, " ) + Evf (N s — Now: ) =

ext,j—1 ext,j ext,j—1) —

CN
= Nekmj + At <_?(fot,j - Ni]fzt,j) - ’YNNfa:t,j>

At
k+1 k+1 k+1 k+1 _
Nmt,j - (Ax)zDNm (Nint,j+1 - 2Nmt,j + Nint,j—l) -
=NE 4+ At | en(NE, . — NF. ) — ¢, BE AM_%\,N& .
int,j ext,j wnt,j wnt,j Nth'r 4 Ni]%m int,j

Discretisation on the left boundary of the substances in the biofilm, i.e., 7 = 0 and
ke{l,...,Nt —1}:

e A

Binio — (As)

k41 E+1Y _
Dpg (Bmt,l - Bint,O) -

int

At Ninto
= BE, 4+ At | ¢ycol(BE, VB, o — caBE o ——— + B B, g0
t,0 ( ( t,O) t,0 tyOAthrl +A§ t t’ONthr + Nz‘lflt,o

At
k+1 k+1 _ qk+1) _
AT e (T AT
Ak)2
= AFAL (Bfn ap+ 0 (—O — +d, Ak)
0 t,O( A AA?hrz"‘(AIS)Q) (7A ) 0
k+1 At

k k
int,0 WDNM (Nmt,ll - Nmt,lo) -

Nk
k k k k £,0 k
= Nint,O + At (CN(Next,O - Nint,O) - ClBint,O Nth _:_TLN]C - ’yNNint70>
T int,0



B Discretisation

Right boundary for substances in the biofilm, i.e., j = Nz —1and k € {1,..., Nt —

1}:

k1 At

k+1 k+1
int, No—1 — _(Ax)2 Bint (Bin—;Nx—Q - Bint,Na:—l) =
k k k k Alfv 1
= Bl no1 + At <cb col(BE ne1)Bout No1 — CaABiy Nao -
t,Nrx—1 ( t,N 1) ext, Nx—1 t,N. lAthrl _'_A]]gvx_l
N‘kt Nz—1
TR S——
PN Ny + Ni’fn,Nx—l
At
k+1 k+1 k+1
ANZ—I - —(AI)QDA (ANZ—Q - ANZ—I) =
_ Ak +At (Bk (OCA +5A (Aljg\fx—l)2 )_ (7A +d )Ak >
— fiNzx-1 int,Nx—1 v Nz—1
A?hrZ + (A?Vx—l)Q
k41 AL k1 k1 _
int,Nz—1 (Az)? Nint int,Nz—2 int,Nz—1) =

= ﬁmt,qu‘FAt (CN(Nekzt,Nzl - Nﬁn,qu) - Clent,Nxle Nﬁmex_l - VNNiknt,Nzl>
thr + Nint,Nxfl
Left boundaries for substances in the flow:
K~ Do (B = BETY) =
= fot,o + At (_% COI(Bfnt,O)Bfmt,O + %Bfnt,oﬁﬁ_yg - Vfoxt,())
NAE = s D (NAES = 2NEE) + S0y VAL =

CN At JAN?
= fot,o+At (—7 (Nekxt,o - Ni’fn,o) - VNme,o) + (WDNm + E”f) Nin flow
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B.2 Discretised model

Right boundaries for substances in the flow:

At
k+1 k+1 k+1 _
ext,Nz—1 + A_vf (Bext,Nx—l - Bemt,Nm—2) -
xr
k
:Bext,Nx—1+
A Cy 1 Bk Bk Ca Bk A?Vx—l Bk
+ At _500( int,Na:—l) ext,Nz—1 + F int,Nx—1 Ath'rl _'_A]]ng_l — VfDPext, Nz—1

At
k+1 k+1 k+1 _
ext,Nz—1 + Al'vf (Next,Nx—l - Nea:t,Na:—Q) -

CN
= Neka:t,N:c—l + At (_? (Nekxt,Nx—l - Ni];t,Nx—l) - VNfot,Nx—l>
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