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Kurzdarstellung

Nach der Entdeckung der Röntgenstrahlen 1895 wurde schnell festgestellt, dass diese
Strahlen Zellen beschädigen. Schon bald darauf wurden Röntgen- oder Gammastrahlen
zur Krebs-behandlung eingesetzt. Seitdem ist Radiotherapie ein wichtiges Instrument zur
Krebsbekämpfung geworden. Heutzutage werden mehr als 50% der Tumorpatienten mit
Radiotherapie behandelt.
Seit den Fünfzigerjahren hat die Radiotherapie auch in der mathematischen Model-

lierung eine wichtige Rolle erlangt. Dabei ist es möglich die Auswirkungen von Radiother-
apie auf das Tumorwachstum zu simulieren.
In dieser Arbeit stelle ich zuerst sowohl die Grundprinzipien des Tumorwachstums, als

auch der Radiotherapie dar. Des Weiteren erläutere ich die gängigen mathematischen
Modelle, die zur Beschreibung von Tumorwachtum und den Gebrauch von Radiothera-
pie, um Krebszellen zu töten, verwendet werden. Auf dieser Basis habe ich die gegebenen
Modelle erweitert, um mehrere Faktoren der Radiotherapie wie Reparatur, Repopulation
und Radiosensitivität, zu integrieren. Dies wurde im Falle der kontinuierlichen als auch
der periodischen Bestrahlung durchgeführt. In jedem Modell wurde analysiert welche Do-
sis an Radiotherapie benötigt wäre, um alle Tumorzellen zu töten. Zusätzlich wurden
diese erweiterten Modelle anschlieÿend mit Daten der T47D Zelllinie (Brustkrebszellen)
verglichen.

Abstract

After Wilhelm Röntgen's discovery of X-rays in 1895, it was soon recognised that cells
were damaged by radiation [AHN09]. Since then, radiotherapy has become a vital tool in
�ghting cancer. In fact, more than 50% of tumour patients are treated with radiotherapy
[Wan00, AHN09].
Since the nineteen �fties, radiotherapy has also gained an important role in mathematical

modelling, where it is possible to simulate the e�ects of radiotherapy on tumour growth.
This thesis begins with a biological introduction on tumour development and growth and

how radiotherapy works as a treatment mechanism. Furthermore, I describe mathematical
models for tumour growth which are currently in use and compare these to data collected
in vitro. On this basis I propose new models to optimise the pre-existing ones and develop
new approaches to modelling radiotherapy. This was done in two ways, one by assuming
constant radiation and the other by assuming periodic radiation. Each model was then
extended to either incorporate repair, repopulation or radiosensitivity. In each model the
aim was to �nd the amount of radiation needed to kill all tumour cells. Finally, these
models were compared to data collected in vitro of the T47D cell line (human breast
cancer cells).
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1 INTRODUCTION

1. Introduction

The `birth' of radiobiology can be traced back to Wilhelm Röntgen's discovery of X-rays
in 1895. It was soon recognised that cells were damaged by radiation [AHN09]. Already
in 1896 hair loss was observed in a radiation worker [Nia98]. Two years later Pierre and
Marie Curie isolated the radioactive elements polonium and radium, which within a few
years were used to treat cancer [HG12]. Since then, radiotherapy has become a vital tool in
�ghting cancer. In fact, more than 50% of tumour patients are treated with radiotherapy
[Wan00, AHN09]. The goal of radiotherapy is to deliver high radiation doses to malignant
tissue while at the same time radiating as little of the healthy tissue as possible.
Since the nineteen �fties, radiotherapy has also gained an important role in mathematical

modelling, where it is possible to simulate the e�ects of radiotherapy on tumour growth.
In this thesis I will describe mathematical models that are currently in use to describe
tumour growth as well as models including the use of radiotherapy to kill tumour cells.
On the basis of these models I will then develop further models that could improve the
existing equations. In accordance to that goal, this thesis will be structured as follows.
Chaper 2 begins with a biological introduction on tumour development and growth and

how radiotherapy works as a treatment mechanism. In chapter 3, I describe mathematical
models for tumour growth which are currently in use and compare these to data collected
in vitro from [Ana11]. Chapter 4 describes commonly used mathematical models that
quantify the e�ect of radiotherapy on cells. In chapter 5, I aim to propose new models to
optimise the pre-existing ones and to develop new approaches to modelling radiotherapy.
These models are also compared to data collected in vitro of the T47D cell line (human
breast cancer cells) by the Institute of Radiation Biology, Helmholtz-Zentrum München
[AH12]. Finally, chapter 6 shows conclusions and results of this thesis as well as an outlook
for possible further research.
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2 BIOLOGICAL BACKGROUND

2. Biological Background

2.1. Tumour Growth

A tumour is medically de�ned as:

�A mass of tissue formed as a result of abnormal, excessive and inappropriate
proliferation of cells, the growth of which continues inde�nitely and regardless
of the mechanisms which control normal cellular proliferation.� ([And85])

Tumour cells have been found to have distinct features as mentioned in the above quote,
for example, they can escape from the controls of normal birth and death processes and
from the controls of maturation and di�erentiation processes, where normal cells begin
to develop distinct phenotypes and form a certain type of tissue. Tumour cells have
poor control over genetic processes, are insensitive to anti-growth signals and are able
to produce their own nutrient supply. Finally, they are able to escape from the control of
normal migration processes and apoptotic signals [Bri05, BCA08].
The words �cancer� and �tumour� are not interchangeable. In a clinical sense, cancer is

when tumour cells have spread from the original site, the primary tumour, to numerous
distant sites (metastasis).
The disorder seen in a tumour appears to be derived from the malfunction of the above

mentioned controls, which are normally responsible for determining when and where cells
will multiply or die [Wei07]. But why are these controls malfunctioning?
The reason for this can be a single alteration in a cell's genetic material, which can

already result in the growth of a tumour. This alteration causes the cell to respond
di�erently to normal growth regulators, which leads to uncontrolled proliferation of these
cells [WK97]. Some tumours are caused by random acts of nature, however, some factors
increase the total number of cancer cases, for example hereditary and environmental
factors such as water, air and the lifestyle of a person [Wei07]. It is estimated that smoking
15 cigarettes is enough to cause one mutation [PSO+10]. 1

Humans have 23 pairs of chromosomes, each comprising of two chromatids, joined to-
gether at the centromere. Each chromatid has alleles with di�erent information. The
combination of two alleles, one from the paternal gene and one from the maternal gene,
encode one gene [ECAV07, BCA08]. If the information content of these genes is altered
we call this a mutation. Mutant alleles of a gene can be passed from parent to o�spring,
through the germ cells (sperm and egg), if the speci�c mutation a�icted a gene carried
in the genome of such a germ cell. Mutations a�ecting genomes of other cells (somatic
mutations2) are not transferred to the o�spring [Wei07]. Hereditary mutations only play
a role in about 5% to 10% of all cancers; whereas most cancers are caused by somatic
mutations [PV10].
As mentioned above, there are controls to prevent unrestrained growth of cells. This

is ensured by speci�c genes. However, if these are mutated, cells become prone to devel-
oping a cancerous phenotype [WK05]. At least 200 genes that may promote or prevent

1This alone will not cause cancer. On average, lung cancer develops after 50 pack-years of smoking,
meaning smoking a pack (20 cigarettes) per day for 50 years [PSO+10].

2Mutations of the DNA that occured after conception can occur in any cell except the germ cells
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2.1 Tumour Growth 2 BIOLOGICAL BACKGROUND

cancer have been identi�ed in the human genome [GM03]. Two genes in particular that
are involved in the development of tumours are oncogenes and tumour suppressor genes
[Wei07]. In healthy cells, oncogenes are involved in the regulation of proliferation and
di�erentiation [Bri05]. If one of its two alleles is mutated (meaning activated), orderly
cell death (apoptosis) is suppressed and cells do not die [Wei07, BCA08]. They divide
continuously irrespective of the presence or absence of growth signals [WK05]. Tumour
suppressor genes (TSG) are anti-growth genes. They suppress cell proliferation if a cell
is damaged or mutated. Since TSG are recessive genes, both alleles need to be mutated
(meaning inactivated) to loose functionality [ECAV07, BCA08]. So if a TSG is mutated,
the growth of a damaged cell is not prevented any more [WK05].
The protein p53 (a TSG) is contained in nearly all cells and makes sure that everything is

in order. It arrests the advance of the cell through its cycle of growth and division, should
genetic damage exist. If this functionality is lost, the cell can continue to proliferate
inappropriately [Wei07]. p53 is inactivated in more than 50% of all cancers [WK05].
After one or more speci�c mutations have occured within a single cell, the uncontrolled

division of that cell leads to the growth of an avascular tumour, meaning the tumour does
not have its own blood supply [BK05]. Primary tumours like that are localised. They can
reach up to 1010 or 1011 cells and are responsible for about 10% of deaths from cancer.
As a reference, a cubic centimeter of tissue may contain up to 109 cells [Wei07].
A tumour needs oxygen and other nutrients to grow. In the early stages, a tumour does

not have its own blood supply and relies on nutrients di�using in from adjacent normal
tissue. These are consumed by live, proliferating tumour cells. At �rst, the tumour cells
receive enough nourishment from the existing vasculature, but as the tumour grows, not
enough nutrients reach the cells in the centre of the tumour. The cells in the centre will
stop proliferating and eventually die, creating a necrotic core, which continues to grow
while the tumour increases. This decline in proliferation slows down the growth of the
tumour. Figure 1 shows the structure of an avascular tumour, which consists of an outer
rim of nutrient-rich, live and proliferating cells and a necrotic core. These regions can be
separated by a layer of oxygen-deprived (hypoxic) cells that are quiescent - viable but not
proliferating. They can recover if enough nourishment is restored [WK97, Bri05, BK05].

necrotic core

hypoxic region

proliferating rim

Figure 1: Tumour structure

However, an avascular tumour cannot grow inde�nitely. At some point it reaches satu-
ration, due to the limited nutrient level. Therefore, tumours enter into the vascular stage
by stimulating blood vessel formation (angiogenesis) and thus being able to supply them-
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2.1 Tumour Growth 2 BIOLOGICAL BACKGROUND

selves with nutrients. These tumours can develop into malignant tumours and grow 16,000
times their original volume in a few weeks [Bri05].
When secondary tumours start to arise through metastasis, the disease becomes life

threatening since they have access to nearly an endless supply of nutrients. Secondary
tumours are responsible for about 90% of deaths from cancer [Bri05, Wei07, BK05].
Cancers can be grouped depending on the type of cells that are involved. Carcinomas

are cancers of the epithelial cells, which form linings of the inner and outer body cavities.
They account for 90% of all cancers and over 80% of cancer-related deaths in the western
world. Sarcomas are cancers of the connective tissue (e.g. cancer of the bone or muscle)
and only make up about 1% of all cancers. Then there are leukaemias, which are cancers of
the blood cells and lymphomas, cancers of the lymphocytes (cells for the immune system)
[Bri05, Wei07].
In the year 2008 cancer was one of the top ten leading causes of death, with 7.6 million

people dying of the disease worldwide and 12.7 million new cases diagnosed. In Germany
45% of all deaths were related to cardiovascular diseases and 26% to cancer, making it
the second most frequent cause of death [FSB+10].
Germany reported 480,000 new cancer cases in 2008, with the risk of developing cancer
before the age of 75 being 23.6% in women and 32.5% in men. Of the 212,000 deaths due
to cancer (Germany, 2008), 18% of the deaths in women were related to breast cancer,
see �gure 2. In men, lung cancer is the cause of 25% of all deaths due to cancer, see �gure
3. As seen in �gure 4, the three most frequent cancers in women are breast, colorectum
and lung. Although breast cancer is by far the most common cancer in women, it has a
low mortality, with roughly a quarter as many deaths as incidences in 2008, compared to
lung or even pancreatic cancer with 98% as many deaths as incidences. In men the most
frequent cancers are prostate, colorectum and lung. Together they make up nearly 50%
of all cancer related deaths [FSB+10]. Data for �gures 2 to 4 can be found in appendix A
in tables 5 and 6.

Breast: 18%

Colorectum: 14%

Lung: 13%

Pancreas: 7%

Ovary: 6%

Stomach: 5%

Leukaemia: 3%

Brain, nervous system: 3%
Other: 32%

Figure 2: Percental distribution of deaths due to cancer in Germany, 2008 (female). Data
from [FSB+10].
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Lung: 25%

Colorectum: 12%

Prostate: 11%

Pancreas: 6%

Stomach: 5%

Liver: 4%
Kidney: 4%

Leukaemia: 3%

Other: 29%

Figure 3: Percental distribution of deaths due to cancer in Germany, 2008 (male). Data
from [FSB+10].
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Figure 4: Incidence vs. mortality of cancer types in Germany, 2008, female (left) and male
(right) (in thousands). Data from [FSB+10].
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2.2 Radiation Therapy 2 BIOLOGICAL BACKGROUND

2.2. Radiation Therapy

From the above statistics one can see how vital research in the area of cancer is, especially
in curing this disease.
There are three primary treatment modalities used to cure cancer, which are surgery,

chemotherapy and radiation therapy. 50% to 60% of patients diagnosed with cancer will
require radiation therapy, as a cure or palliation [Wan00].
Take early stage breast cancer, for example, the typical treatment being a lumpec-

tomy (breast conserving surgery) followed by external beam radiotherapy. 30% of patients
treated with lumpectomy alone develop a local recurrence within ten years of the primary
treatment. Radiotherapy reduces this by about two thirds, leaving a recurrence rate of
only 10%, 92% of those cases being at the site of the primary tumour [BCA08].
To understand how radiotherapy works, one needs to understand the cell cycle. Depend-

ing on the growth factors in a cell's surrounding, the cell receives signals and decides
whether to enter into a quiescent state (phase G0) and not to multiply or to start the ac-
tive cell cycle, seen in �gure 5. If the cell is in the quiescent state it can enter the cell cycle
at a later stage. In phase G1, the cell grows and goes over to phase S, where the DNA
is replicated. This takes place about twelve to 15 hours after mitosis (phase M). DNA
replication itself takes about six to eight hours. In phase G2 the cell prepares to divide,
which takes about three to �ve hours. Finally, the cell returns to phase M (mitosis3) that
is separated into prophase, metaphase, anaphase and telophase, altogether lasting about
one hour. These time measurements depend greatly on the cell type and are only average
values.
A healthy cell goes through various quality checks throughout the cycle. At checkpoint

R the cell either goes into phase G0, remains in G1 or continues through the cycle. At the
end of the growth phase (G1), the cell cannot enter phase S if the genome is damaged.
A further check is in place in phase S: DNA replication is halted if the DNA is damaged.
At the end of phase G2, the entrance into phase M is blocked if DNA replication is not
complete. Cancer cells have inactivated one or more of these checks, making it possible
to proliferate despite being mutated [Wei07].

R

G1

S
G2

M

cycle begins

Figure 5: Cell cycle

3Where the mother cell is divided into two daughter cells
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2.2 Radiation Therapy 2 BIOLOGICAL BACKGROUND

There are di�erent forms of radiation used for treating cancer, one being external beam
radiotherapy (EBT). Linear energy is transfered to stop the growth and death of tumour
cells. This is done by emitting highly energized particles from a radioactive source that
ionizes the atoms, which constitute the DNA. This in turn damages the DNA, resulting
in single-strand breaks (SSB) or double-strand breaks (DSB). SSB are breaks where only
one strand of the DNA double helix is broken. These breaks are repairable with time as
the complementary base information on the opposite strand is still available. DSB are
breaks of both strands of the DNA double helix, so the whole DNA chain is broken apart.
They are the most di�cult to repair. This is done by homologous recombination or non-
homologous endjoining mechanisms. These are crucial DNA alterations and can lead to
cell death. As mentioned above, normal healthy DNA has repair mechanisms at di�erent
checkpoints in the cell cycle, which can detect and �x most radiation damage induced
by low dosages. Cancer cells, however, lack such mechanisms, thus the genetic damage is
carried on or the cell dies. Hence it is common to receive treatment in fractioned doses,
thereby allowing the healthy cells to repair themselves in-between radiation treatments.
In 12% of all radiation-induced DSB, the mutations limit the cells' ability to survive. In
this way a proportion of cells die with each small dose of radiation.
Another approach is targeted intraoperative radiotherapy (Targit). Hereby, the tumour

bed is targeted with a single high dose delivered intraoperatively while the patient is
anaesthetised. A geographical miss is neglected since the applicator is placed directly into
the tumour bed [BCA08]. Misses in external beam radiotherapy, however, range between
24% to 88% [ECAV07].
Di�erent factors a�ect the radiosensitivity of cells, meaning the sensitivity to radiation

and how easily cells die from radiation. These can be the degree of oxygenation or hypoxia
(low oxygenation), the phase of the cell cycle that the cell is in, the total dose and the
dose per treatment, cell type and the ability to repair sublethal damage after radiation
injury. Already in 1955 Thomlinson and Gray in [TG95] assumed that oxygenated cells are
damaged more by irradiation than hypoxic cells, meaning they are more radiosensitive.
In chapter 2.1 it was discussed that the necrotic core contains hypoxic cells. Therefore,
radiation therapy will mostly only kill the outer rim of oxygenated cells, and less cells that
are further in the centre of the tumour. However, once the outer rim has been eliminated,
more nutrients can reach the quiescent cells and in the next few fractioned doses these cells
will be more radiosensitive than before. According to Cappuccio et al. in [CHN09], oxygen
is supplied via blood vessels and radioresistance depends on the underlying vasculature.
Thomlinson and Gray, who are considered to have created the �rst mathematical model on
tumour growth, were right. After the �rst dose, a proportion of the tumour cells are killed
and therefore the oxygen consumption declines. In addition, radiation has been proven
to increase blood perfusion. Thus due to less consumption and higher blood �ow, oxygen
levels increase. Consequently, quiescent cells can become active again and proliferate,
subsequently changing the cell cycle distribution. In addition, proliferating cells in phase
M have a greater sensitivity compared to cells in phase S of the cell cycle. For that
reason, cells that survive the �rst dose of treatment will largely be cells that were in a
radioresistant phase of the cell cycle during irradiation [Wan00, CHN09].
The total dose a patient receives depends on treatment time, number and dosage of

daily fractions, cell type, tolerance of the tumour bed and the response of the tumour and
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2.2 Radiation Therapy 2 BIOLOGICAL BACKGROUND

patient to the treatment [Wan00]. Radiation doses are nowadays measured in Gray (1
Gray = 1 Gy = 1 Joule/Kg) [CHN09]. As an example, using external beam radiotherapy,
a radioresponsive tumour such as a germ cell (sperm or egg) tumour or a lymphoma would
receive in total 30 to 40 Gy over the course of four to �ve weeks. A squamous cell carcinoma
(type of skin cancer) would typically receive 65 to 70 Gy over seven to eight weeks. To
cure a radioinsensitive (radioresistant) tumour, such as bone and soft tissue sarcomas, a
dosage of more than 70 to 75 Gy over seven to eight weeks would be used [Wan00]. In
90% of all cases, 45 to 50 Gy in �ve weeks is enough to control a small accumulation of
tumour cells. Larger tumours need 65 to 70 Gy in seven weeks and for advanced tumours
with a large number of radioresistant hypoxic cells, a dose of 75 to 80 Gy is needed.
However, it would be improbable to use radiotherapy in this case as it can go beyond
the tolerance level of normal vascular connective tissue [Wan00]. Usually a combination
of surgery and radiation therapy is used to cure a patient. Then radiotherapy can be
used preoperatively or postoperatively, but usually the latter is used, for example to cure
breast and chest tumours [CHN09]. The advantage of surgery compared to radiotherapy
is that during surgery, the central core of the tumour containing radioresistant hypoxic
cells can be removed. On the other hand, radiotherapy can destroy cells that are growing
on the edge and surroundings of the tumour [Wan00].
Concluding, tumour cell survival is in�uenced by sublethal repair after radiation injury,

oxygenation, total dose, dose per treatment and cell cycle phase. These factors will be
analysed in the following chapters.
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3 MODELLING TUMOUR GROWTH

3. Modelling Tumour Growth

3.1. Homogeneous Tumour Growth

When modelling tumour growth, I will look at the population of cells making up the
tumour. I start here by only considering one type of cells (a homogeneous population),
thus assuming the tumour has no structure. In addition, I only consider tumours in their
early stages, so those that have not developed their own blood supply (avascular tumours).
There are many approaches to modelling the growth of a tumour. First of all, I need to
decide if I am going to use a stochastic or a deterministic model. Since I am looking at
a large population of cells, I choose to use a deterministic model, for example in form of
ordinary or partial di�erential equations. Furthermore, I need to decide on a time setting.
As I am not looking at single generations but at a continously growing population, I will
only consider continuous time models (not discrete time models). A list of variables used
in this thesis can be found in appendix B. In addition, all �gures in this thesis were plotted
using MATLAB (Mathworks), the codes can be found in appendix C.

3.1.1. Exponential Growth Equation

I start with a simple growth model, a �rst-order linear ordinary di�erential equation. Let
N(t) be the number of tumour cells at time t and r be the net proliferation rate, then the
model reads

dN

dt
= rN,

N(0) = N0.
(3.1)

The right-hand side of the equation describes how the number of tumour cells changes
over time [Pre03]. N0 represents the initial number of tumour cells, meaning from the
start of the observation. The solution of equation (3.1) is

N(t) = N0e
rt. (3.2)

To analyse this model I introduce a de�nition.

De�nition 3.1. Let f : Rn → Rn, f ∈ C0, (f , Rn) is a time-continuous dynamical
system via x0 ∈ Rn. x(t) is the solution of

x(0) = x0,
dx

dt
= f(x).

x is called a stationary point if f(x) = 0. x is stable if ∀ε > 0 there ∃δ > 0 such that ∀x0

with |x− x0| < δ
|x(t)− x| < ε

holds ∀t. x is locally asymptotically stable if ∃ U ⊆ Rn, U open, x ∈ U ∀x0 ∈ U with

lim
t→∞

x(t) = x.

x is called unstable otherwise. [Mül12]

9



3.1 Homogeneous Tumour Growth 3 MODELLING TUMOUR GROWTH

Stability guarantees that the solution will be near the stationary point x, if it starts
close enough to it. Asymptotic stability guarantees that the solution starting su�ciently
close to x will really tend to it. The following theorem helps to analyse the stability of a
stationary point.

Theorem 3.2. Let dx
dt

= f(x), x ∈ R, f(x) = 0, f ∈ C2, then x is locally asymptotically
stable if f ′(x) < 0 and unstable for f ′(x) > 0. [Mül12]

Proof. Refer to [Mül12].

In accordance with de�nition 3.1, equation (3.2) has one stationary point, namely

N = 0.

Using theorem 3.2, the stability of the stationary point depends on the sign of the prolifer-
ation rate r, since f ′(N) = r. If r > 0 the stationary point is unstable and the population
tends to in�nity. On the other hand, if r < 0, N = 0 is a stable stationary point and the
population size will tend to zero. If r = 0 the population size does not change and stays
constant. When considering tumour cells, one only looks at the case where r > 0 as this
is the only realistic case when modelling tumour growth without therapy.

3.1.2. Logistic Growth Equation

The exponential equation assumes no constraints on cell growth so the population can
grow without limitation. This is accurate in the beginning, but after some time has passed,
the cells start to compete for space and nutrients. As these are not available endlessly,
cell growth in fact slows down and eventually reaches a limit. Therefore we introduce a
growth limited model, the logistic equation [Bri05].

dN

dt
= rN

(
1− N

K

)
with r,K > 0,

N(0) = N0

(3.3)

Again the right-hand side of equation (3.3) describes the rate of change of the population
size over time. K is the carrying capacity of the tumour bed, meaning the maximum pop-
ulation size that can be reached due to spacial constraints and nutrient supply. Therefore
the term in brackets, multiplied with the exponential growth model, limits cell growth.
To solve the logistic equation, I introduce v(t) := 1

N(t)
with v(0) = v0 = 1

N0
. Then

dv

dt
= − 1

N2
N ′

= − 1

N2
Nr

(
1− N

K

)
= − 1

N
r +

r

K

= −rv +
r

K

10
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Using variation of constants, it follows that

v(t) = v0e
−rt +

r

K

∫ t

0

e−rt+rs ds

= v0e
−rt +

r

K

[
1

r
e−rt+rs

]t
0

= v0e
−rt +

1

K

(
1− e−rt

)
.

Inserting v(t) = 1
N(t)

yields the solution for equation (3.3)

N(t) =

(
1

N0

e−rt +
1

K

(
1− e−rt

))−1

=
N0K

N0 + e−rt(K −N0)
.

(3.4)

The stationary points can be calculated as above. They are

N1 = 0 and N2 = K.

The derivative of equation (3.3) is

f ′(N) = r

(
1− 2

N

K

)
.

As f ′(N1) = r > 0 (I am only interested in cases where r > 0), N1 = 0 is an unstable
stationary point. In turn the stationary point N2 = K is asymptotically stable because
f ′(N2) = −r < 0. Concluding, the population will tend to the carrying capacity over
time.
At this point one can di�erentiate between the initial number of tumour cells N0 being

larger or smaller than K. If N0 > K, dN
dt
< 0 and the population decreases until it reaches

the capacity. If the starting value lies between 0 and K, the population will grow and
converge to K from below.
A problem with this model is that it is not very �exible when �tting data, since the

steepest part of equation (3.4) is �xed at half the capacity
(
K
2

)
. This is the maximum of

equation (3.3), in particular the maximum growth rate. In reality this is not always the
case. Figure 6a shows the solution of the logistic equation (equation (3.4)) and �gure 6b
shows the right-hand side of the ODE function (equation (3.3)). From the �gure on the
left one can see that the population tends to the capacity when it starts in (0, K]. The
dot indicates the maximum growth rate.

11
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(a) Solution to the logistic growth equation,

equation (3.4).

(b) Right hand side of the logistic ODE,

equation (3.3).

Figure 6: Logistic growth equation, the dot marks the in�ection point, the maximum
growth rate.

3.1.3. Generalised Logistic Growth Equation

To avoid the above mentioned problem one can adjust the logistic growth equation to
include a parameter that varies where the equation's maximum lies. This adjusted model
is called the generalised logistic equation [Pre03]. Equation (3.5) is similar to the logistic
equation but with an additional parameter α. Depending on the value of α the solution
of this model can reach saturation faster (α < 1) or slower (α > 1). For α = 1 the model
is identical to the previous logistic equation (equation (3.3)).

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
with α > 0,

N(0) = N0

(3.5)

To solve equation (3.5) I use the same substitution as for the logistic equation, v(t) := 1
N(t)

with v(0) = v0 = 1
N0
. Then

dv

dt
= − 1

N2
N ′

= − 1

N2

r

α
N

(
1−

(
N

K

)α)
= − 1

N

r

α
+
r

α

Nα−1

Kα

= − r
α
v +

r

αKα
v1−α

12
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By using the substitution z := vα with z0 = vα0 I can solve this Bernoulli di�erential
equation.

dz

dt
= αvα−1v′

= αvα−1
(
− r
α
v +

r

αKα
v1−α

)
= −rvα +

r

Kα

= −rz +
r

Kα

This is just an inhomogeneous linear di�erential equation, which I have already solved for
the logistic growth equation. The solution reads

z(t) = z0e
−rt +

1

Kα
(1− e−rt).

Inserting the substitution for z results in

v(t) =

(
vα0 e

−rt +
1

Kα
(1− e−rt)

) 1
α

.

Thereby using N(t) = 1
v(t)

, I get the solution for equation (3.5)

N(t) =
1(

1
Nα

0
e−rt + 1

Kα (1− e−rt)
) 1
α

=

(
1

1
Nα

0
e−rt + 1

Kα (1− e−rt)

) 1
α

=

(
Nα

0 K
α

Kαe−rt +Nα
0 (1− e−rt)

) 1
α

=
N0K

(Nα
0 + e−rt(Kα −Nα

0 ))
1
α

.

(3.6)

The stationary points are the same as for the logistic equation, N1 = 0 and N2 = K.
In addition, the stability properties from the logistic equation are applicable to the two
stationary points found here, since f ′(0) = r

α
> 0 and f ′(K) = −r < 0.

The in�ection point of the solution, however, is not �xed at K
2
anymore, but varies

depending on the value of α. This allows for much better data �tting and variability. By
setting

df(N)

dN
!

= 0

the in�ection point can be calculated to

⇔ Ninfl =
K

(α + 1)
1
α

.
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Figure 7 shows three examples of the generalised logistic equation. The solid line is the
simple logistic equation with α = 1. Its maximum lies at K

2
. The dashed line depicts the

generalised logistic equation using α = 0.5, its maximum lying at 4
9
K. Using α = 2 results

in the dotted line and a maximum larger than K
2
.

Figure 8 compares all three models explained in this chapter. The green line uses the
generalised logistic equation with α = 0.5. As one can see, saturation is reached faster
compared to the normal logistic equation using α = 1 (blue line). On the other hand,
using an α > 1 (red line) results in saturation being reached at a later point in time. The
exponential equation (black line) follows a similar growth pattern in the beginning, but
then tends to in�nity, whereas the other models converge to the carrying capacity.

3.1.4. Other Growth Models

There are many more approaches to modelling tumour growth. So far I have only looked
at deterministic models, but stochastic models exist as well. In [WK05] for example, the
probability of a mutation occuring during cell division is included in the modelling process.
Another deterministic approach could use partial di�erential equations as for example

in works by Franks et al. [FBK+03, FBM+03], where the authors include the nutrient
supply in their model. The tumour is described as a viscous �uid, using reaction-di�usion
equations to model the fact that nutrients di�use in from the surrounding material. This
idea was based on the earlier work by Burton from 1966 [Bur66] and Greenspan from
1972 [Gre72].
Instead of just implementing ordinary di�erential equations, mathematicians have also

come up with models using delay di�erential equations, as for example in [VR03]. The
idea there is to incorporate the e�ect of the cell cycle on the tumour's growth.
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Figure 7: Comparison of di�erent generalised logistic growth rates using equation (3.5),
solid line for α = 1, dashed line for α = 0.5 and dotted line for α = 2.

Figure 8: Comparison of di�erent tumour growth models. Black line for the exponential
equation (equation (3.2)), blue line for the logistic equation (equation (3.4)),
green line for the generalised logistic equation with α = 0.5 and red line for the
generalised logistic equation with α = 2 (equation (3.6)). Parameter values are
r = 0.0289, N0 = 10 and K = 100.
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3.1.5. Model versus Data

Ehrlich Ascites Tumour Schuster and Schuster [SS94] experimented with the Ehrlich
ascites tumour in a mouse. They measured the number of cells that grew over a time
period of 17 days after having transplanted 4 · 107 cells into female mice on day 0. I used
the generalised logistic growth equation (equation (3.6)) to model this experiment. The
parameter values were taken from [KT85]. From �gure 9 one can see that the equation
manages to model the data well until about day eleven, when the model tends to the ca-
pacity and the data points decrease in value. This may have di�erent reasons, for example
the capacity in the model equation was set too high, the data could be incorrect or the
cells started to die due to the experimental settings.

Figure 9: Modelling the growth of the Ehrlich ascites tumour in mice. Solid red line is
the solution of the logistic equation with α = 1 (equation (3.6)) and the black
points are the data points. Further parameter values are r = 0.6, N0 = 4 · 107

and K = 150 · 107. Data from [SS94].

As a result of the last data points not �tting the model, I calculated the weighted sum
of squares for the parameters used in �gure 9 according to equation (3.7).

error =
N∑
i=1

(
Datai −Modeli

Modeli

)2

(3.7)

Modeli represents the i-th point calculated in the model equation and Datai is the i-th
data point. The error calculated for the above mentioned parameters is 0.4201. Adjusting
the carrying capacity to K = 140 · 107, as seen in �gure 10, results in a smaller error of
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0.3414. This is mainly due to the fact that the last few data points stray so far away from
the carrying capacity.

Figure 10: Modelling the growth of the Ehrlich ascites tumour in mice. Solid red line is
the solution of the logistic equation with α = 1 (equation (3.6)) and the black
points are the data points. Further parameter values are r = 0.6, N0 = 4 · 107

and K = 140 · 107. Data from [SS94].

Human Ductal Breast Epithelial Tumour Cells The growth of T47D cells (human
breast cancer cells) was measured in vitro by the Institute of Radiation Biology, Helmholtz-
Zentrum München [Ana11] using the xCELLigence System [MC09]. In this experiment,
10, 000 cells were placed on a 96-well plate (at t = 0) and counted every 15 minutes for
nearly 142 hours with a hemocytometer. The system counts the cells and returns a cell
index value. This value is a measure for the amount of cells present. It is zero if no cells
exist and grows or declines depending on if the cells multiply or die. Figure 11 shows how
the data points (black line) are modelled by the generalised logistic growth equation (red
line). The �rst 48 hours show a discrepancy between the data and the model, however
this can be due to the way the experiment is carried out and how the cells are measured.
I am interested in the growth of the tumour from day two onwards. Parameter values for
the initial number of cells N0 and the net proliferation rate r were chosen according to the
given data. The parameter r can be calculated based on the doubling time of the tumour
in the experiment. In accordance to [MC09] a doubling time of 19.8 hours was chosen,
resulting in a proliferation rate of r = ln 2

19.8
= 0.035. Using algorithm 1 in appendix C,

I calculated α and K that resulted in the smallest error. Figure 11 uses α = 0.017 and
K = 4.978. The value of α depends on the cell line and allows for better data �tting,

17



3.1 Homogeneous Tumour Growth 3 MODELLING TUMOUR GROWTH

especially in this case as the carrying capacity is reached much faster than the normal
logistic equation could model. The error was calculated using equation (3.7) and with the
above mentioned parameters sums up to 294.5. However, since I am interested in tumour
growth from day two onwards, I calculate the error from this point forth, resulting in an
adjusted error of 0.0396. This is the smallest error I could �nd using algorithm 1, which
calculated K and α to three decimal places.

Figure 11: Modelling the growth of T47D breast cancer cells. Red line is the generalised
logistic growth model (equation (3.6)) and the black curve are the data points.
Parameter values are r = 0.035, N0 = 0.02, α = 0.017 and K = 4.978. Data
from [Ana11].

Figures 12 and 13 show scatter plots of the errors calculated at the corresponding time
points. From �gure 12 one can see that the initial 40 hours show a much larger error
compared to the later time points, as we have already seen in the comparison between
the data and model in the previous �gure. Figure 13 shows the same errors but zoomed
in on the y-axis. Here one can see that after the initial 48 hours have passed, the model
manages to depict the data very well, resulting in only a small error throughout.
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Figure 12: Error calculated using equation (3.7) and the values r = 0.035, N0 = 0.02,
α = 0.017 and K = 4.978.

Figure 13: Error calculated using equation (3.7) and the values r = 0.035, N0 = 0.02,
α = 0.017 and K = 4.978, y-axis from 0 to 0.003.
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Human Breast Carcinoma Cells The second experiment done by the Institute of Radi-
ation Biology, Helmholtz-Zentrum München [Ana11] used the same system and conditions
as the previous experiment. This time a di�erent cell line was chosen, the MDA361 cell
line. Again the parameters N0 and r were set according to the data given, with N0 = 0.01
and r = ln 2

7
= 0.099. In addition K was set to 4.18 and α to 1.3. The results are shown

in �gure 14.
As one can see, the data is represented well by the model, however I used algorithm 2

in appendix C to try and �nd an even better �t. The programme found the best values
(calculated to three decimal places) for α and K. These values were used in �gure 15.
Changing the parameter values results in an improved error of 3824.8 from the original
error of 3841.5. If I look at the data points from t = 48 hours onwards, as with the
previous experiment, I get an adjusted error of 0.2705 when using the better parameter
values, compared to 0.3376 when using the values as in �gure 14. This is an improvement
of 20%.
Figures 16 and 17 show scatter plots of the errors calculated at the corresponding time

points. From �gure 16 one can see once more that the initial 40 hours show a much larger
error compared to the later time points. Figure 17 shows the same errors but zoomed in
on the y-axis. Here one can see that after the initial 48 hours have passed, the model
manages to depict the data well, resulting in a small error.

Summarizing, I can say that the models introduced in this chapter succeed in modelling
actual data. Using the generalised logistic growth equation allows me to shift the curve
to the left or right depending on how fast the cells reach the capacity. This gives more
�exibility and allows me to use the same equation with appropriate parameter values for
di�erent cell types.
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Figure 14: Modelling the growth of MDA361 cells. Red line is the generalised logistic
growth model (equation (3.6)) and the black curve are the data points. Pa-
rameter values are r = 0.099, N0 = 0.01, α = 1.3 and K = 4.18. Data from
[Ana11].

Figure 15: Modelling the growth of MDA361 cells. Red line is the generalised logistic
growth model (equation (3.6)) and the black curve are the data points. Pa-
rameter values are r = 0.099, N0 = 0.01, α = 1.296 and K = 4.101. Data from
[Ana11].

21



3.1 Homogeneous Tumour Growth 3 MODELLING TUMOUR GROWTH

Figure 16: Error calculated using equation (3.7) and the values r = 0.099, N0 = 0.01,
α = 1.296 and K = 4.101.

Figure 17: Error calculated using equation (3.7) and the values r = 0.099, N0 = 0.01,
α = 1.296 and K = 4.101, y-axis from 0 to 0.006.
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3.2. Heterogeneous Tumour Growth

In chapter 3.1 I introduced models for a homogeneous cell population but as described in
chapter 2.1, tumours do not just consist of one type of cell. In the early stage, a tumour
consists of proliferating cells but later on, as it becomes larger, fewer nutrients can reach
the cells in the centre of the tumour and these cells stop proliferating. They become
quiescent. While the tumour continues to grow, the cells in the centre are deprived of
nutrients for too long so that they die, forming a necrotic core (see �gure 1 on page
3). Therefore, a well-developed tumour consists of two or even three types of cells that
behave di�erently. Necrotic tumour cells will not proliferate anymore and are degraded;
quiescent cells are not dead and can proliferate again in the future should the nutrient
level increase and �nally, proliferating cells continue to multiply as they have enough
nutrients to consume.
The following compartment model [Pre03] can be used to specify these three types of

tumour cells with di�erent rates describing how the cells switch from one compartment
to the other.
Let P (t) be the number of proliferating tumour cells at time t, Q(t) the number of

quiescent cells and D(t) the number of dead tumour cells. Then the total number of
tumour cells is

N(t) = P (t) +Q(t) +D(t).

The model equations read

dP

dt
= (kPP − kPQ − kPD)P + kQPQ, (3.8)

dQ

dt
= kPQP − (kQP + kQD)Q, (3.9)

dD

dt
= kPDP + kQDQ− λD (3.10)

with initial values
P (0) = P0, Q(0) = Q0 and D(0) = D0.

The rates kij depend on the local nutrient level and describe the rate at which cells go
from state i to state j.
Equations (3.8) to (3.10) respectively describe the change over time of the number of

proliferating tumour cells, quiescent and dead cells. kPP is the proliferation rate, kPQ is the
rate at which proliferating cells become quiescent and kPD is the rate at which proliferating
cells die due to natural causes. kQP is the rate at which quiescent cells become viable again.
kQD used in equation (3.9) describes the rate at which quiescent cells become necrotic. λ
is the degradation rate. Figure 18 illustrates the model equations.
This model can be extended to include more sophisticated proliferation rates as seen in

chapter 3.1, for example

kPP = r

(
1− N

K

)
or even

kPP =
r

α

(
1−

(
N

K

)α)
.
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P(t) Q(t)

D(t)

kPD kQD

λ

kPQ

kQPkPP

Figure 18: Model of equations (3.8) to (3.10).

I want to analyse the heterogeneous growth model and simplify it to two compartments:
proliferating cells and quiescent cells. Then the model equations read

dP

dt
=
r

α
P

(
1−

(
P +Q

K

)α)
− kPQP + kQPQ =: f(P,Q) (3.11)

dQ

dt
= kPQP − kQPQ =: g(P,Q) (3.12)

with initial values
P (0) = P0 and Q(0) = Q0.

Thus the whole tumour is made up of proliferating and quiescent cells, meaning N(t) =
P (t) + Q(t). Both equations (3.11) and (3.12) are zero if (P 1, Q1) = (0, 0). The second
stationary point can be calculated by setting equation (3.12) to zero.

⇒ Q2 =
kPQ
kQP

P

Inserting the result for Q into equation (3.11) results in

P 2 = K
kQP

kQP + kPQ

⇒ Q2 = K
kPQ

kQP + kPQ
.

Adding both points together results in the same nontrivial stationary point as in the
homogeneous generalised logistic growth model

P 2 +Q2 = K = N2.

Of course this is also true for the trivial stationary point. To �nd the stability of the two
stationary points I calculate the Jacobian matrix of the coupled system.

J(P,Q) =

(
∂f
∂P

∂f
∂Q

∂g
∂P

∂g
∂Q

)

=

(
r
α

(
1−

(
(P+Q)
K

)α)
− r

KαP (P +Q)α−1 − kPQ kQP − r
KαP (P +Q)α−1

kPQ −kQP

)

24



3.2 Heterogeneous Tumour Growth 3 MODELLING TUMOUR GROWTH

Inserting the trivial stationary point yields

J(0, 0) =

(
r
α
− kPQ kQP

kPQ −kQP

)
(3.13)

The stationary point (0, 0) is stable if both eigenvalues of the Jacobian matrix in equation
(3.13) are smaller than zero. The eigenvalues are calculated to

λ1/2 = −1

2
(− r
α

+ kPQ + kQP )±
√

1

4
(− r
α

+ kPQ + kQP )2 +
r

α
kQP

Both eigenvalues are larger than zero since r
α
kQP > 0, thus the trivial stationary point

(0, 0) is unstable. This corresponds to the results from chapter 3.1, where the tumour cells
grew until they reached their capacity, the nontrivial stationary point. I insert the second
stationary point into the Jacobion matrix to analyse its stability.

J(P 2, Q2) =

(
−kPQ − r kQP

kQP+kPQ
kQP − r kQP

kQP+kPQ

kPQ −kQP

)
(3.14)

The eigenvalues of the Jacobian matrix are

λ1/2 = −1

2
Γ±

√
1

4
Γ2 − rkQP (kQP + kPQ)

kQP + kPQ

with

Γ = (kPQ + kQP + r
kQP

kQP + kPQ
).

Both eigenvalues are smaller than zero, meaning the nontrivial stationary point is stable,
if 0 < rkQP , which is always the case. Thus the tumour cells will tend to (P 2, Q2) over
time.
Since they are not sti� di�erential equations, I used the explicit euler method to solve

the coupled system of equations in Matlab to be able to plot simulations of the model.
Starting with the initial value (P0, Q0) each next value can be calculated by setting(

Pi+1

Qi+1

)
=

(
Pi
Qi

)
+ h ·

(
r
α
Pi
(
1−

(
Pi+Qi
K

)) 1
α − kPQPi + kQPQi

kPQPi − kQPQi

)
(3.15)

with h being the step size [QSS00].
Figure 19 shows the complete tumour growth in black, the proliferating cells in red and

the quiescent cells in green. Since I chose a higher rate for kPQ than for kQP the tumour
will be predominantly made up of quiescent cells after a certain period of time. This
corresponds to �ndings by Thomlinson and Gray in [TG95]. Together both type of cells
reach their capacity of 100 cells, since (P 2, Q2) = (17, 83). Changing the rates to make
kQP larger than kPQ results in �gure 20. Here the tumour (black line) is predominantly
made up of proliferating tumour cells (red line). However, this is not a realistic case.

25



3.2 Heterogeneous Tumour Growth 3 MODELLING TUMOUR GROWTH

Figure 19: Total number of tumour cells in black, proliferating cells in red and quiescent
cells in green using equation (3.15). Parameter values are h = 0.1, r = ln 2/24,
P0 = 8, Q0 = 2, K = 100, α = 1.5, kPQ = 0.005 and kQP = 0.001

Figure 20: Total number of tumour cells in black, proliferating cells in red and quiescent
cells in green using equation (3.15). Parameter values are h = 0.1, r = ln 2/24,
P0 = 8, Q0 = 2, K = 100, α = 1.5, kPQ = 0.001 and kQP = 0.005
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4. Modelling Radiotherapy

One model that has been predominantly used since the sixties to explain the relation-
ship that radiotherapy has on tumour growth is the linear-quadratic model (LQ-model)
[CHN09]. Over the years many publications have been made to improve this model, e.g.
by adding terms to the equation to try and incorporate the complexity of the results that
radiotherapy has on cells. In this chapter I will look at the basic LQ-model and its more
complex variations.

4.1. Linear Quadratic Model

As explained in chapter 2.2, the most important radiation damage is to the DNA in a
cell, especially double-strand breaks (DSBs) of the DNA double helix. A dose of one Gy
results in thousands of ionizations in the cell's nucleus of which a small part (about 40 in
humans) induce DSBs. Most of these DSBs are repaired and some are misrepaired. Many
misrepairs involve a reaction between two di�erent DSBs. At a typical dose of several Gy,
at least one misrepair usually occurs, resulting in the cell's death [SHH01].
The LQ-model incorporates these aspects and renders a survival fraction depending on

the dose administered. This model is used to develop treatment schedules based on the
best outcome of the equation [OMH09].
The model describes cell killing by the following mechanisms: a single radiation track

(e.g. γ-ray) produces various lethal lesions (DSBs) with a yield proportional to the dose,
and misrepair of pairs of DSBs produced from di�erent radiation tracks produce lethal
lesions with a yield proportional to the square of the dose. This results in the following
equation for the yield of lethal lesions

Y = αD + βD2 with α, β > 0. (4.1)

D is the dose administered in Gy, αD are the lethal lesions produced per single radiation
track and βD2 are the lethal lesions produced from di�erent radiation tracks [OMH09,
ECAV07, BHH+98, CHN09]. If more than one unrepaired break exists in a cell at the
same time, a misjoining can produce a lethal lesion. These lethal lesions follow a poisson
distribution from cell to cell [CHN09]. Therefore, the LQ-model reads

S =
S∗

S0

= exp(−Y ) = e−αD−βD
2

(4.2)

where S is the survival fraction, S∗ are the number of cells left after radiation and S0 are
the initial number of cells.
Figure 21 shows three survival curves using equation (4.2), each with a di�erent value

for the ratio α
β
. The red curve depicts a survival curve for prostate cancer, the green curve

for non-small cell cancers and the blue curve for advanced head and neck cancer. The
ratios were taken from [OMH09]. From this plot one can see how di�erent cancer types
need di�erent radiation doses to kill the same percentage of cells. Clearly, advanced head
and neck cancer cells are more radioresistant and need a higher dose to die compared to
prostate cancer cells.
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Figure 21: Cell survival curves after a single dose of radiation using equation (4.2), with
red for α/β = 1.5, green for α/β = 10 and blue line for α/β = 20. Ratios from
[OMH09].

The ratio α
β
is a measure of a tissue's sensitivity. Prostate cancer is slow proliferating and

the tissue responds late, thus having a higher repair capacity (since the cells have time
to repair the damage before replicating) compared to advanced head and neck cancer,
which is an early responding tissue with an aggresive cell proliferation rate and low repair
capacity [OMH09]. Low α

β
ratios are equivalent to a higher capacity for self-repair (e.g.

normal tissue) and high ratios mean that the capacity for self-repair is low (e.g. tumours).
Most normal tissue ratios are about one to three Gy whereas most tumours have a ratio
of about ten Gy [CHN09].

The LQ-model in equation (4.2) only allows for a single dose of radiation. However, if
the dose is not administered in one single session but in n fractions, each of dose d, the
equation reads

S = e−αnd−βnd
2

. (4.3)

So far this is a very simple model that describes cell killing depending on the dose of
radiation. However, as mentioned in chapter 2.2 there are more factors that in�uence
the capability of cells surviving radiation. These are known as the �5 Rs� of radiobiology:
repair, repopulation, re-distribution over the cell cycle, re-oxygenation and radioresistance
[OMH09, CHN09]. Some of these factors have been included in extended LQ-models and
I will analyse them in the following.
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Repair As mentioned previously, DSBs can be repaired, which is modelled by a constant
repair rate λ. Therefore, a term is included in the model that reduces cell killing due to
repair between dose fractions or during continued low dose-rate radiation, resulting in
equation (4.4) [BHH+98].

S = e−αD−βGD
2

(4.4)

G ∈ [0, 1] is the generalised Lea-Catcheside time factor. If G = 1 equation (4.4) goes back
to being the standard LQ-model and if G < 1 cell killing is reduced. The function for the
time factor reads

G =
2

D2

∫ ∞
−∞

Ḋ(t) dt

∫ t

−∞
e−λ(t−t′)Ḋ(t′) dt′.

The term after the second integral depicts the �rst pair of DSBs required to produce a
lethal lesion. The exponential term is the reduction in numbers of such DSBs through
repair. DSBs produced at t′ may interact (if not repaired) with a second lethal lesion. The
term after the �rst integral is the second DSB interacting with DSBs produced earlier
that have not been repaired yet [BHH+98]. If radiation is given at a constant dose-rate of
D/T over a period of time T , G becomes

G =
2

(λT )2
(e−λT − 1 + λT ) (4.5)

λ is the repair rate with λ = ln 2
τ
, τ being the repair half-time. If radiation is given in n

short fractions, separated by a time T , G results in

G =
2e−λT

1− e−λT

(
n− (1− e−λT )n

1− e−λT

)
. (4.6)

Figure 22 depicts equation (4.5) with τ = 1 hour. Inserting this equation into the LQ-
model results in �gure 23, where one can see that the survival fraction slows down de-
creasing due to repair. The solid line shows the normal LQ-model using α

β
= 1.5 (prostate

cancer) and two di�erent repair half-times τ = 2 hours (dashed line) and τ = 1 hour
(dotted line).
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Figure 22: Lea-Catcheside time factor (using equation (4.5)) with a repair rate of λ = ln 2.

Figure 23: Solid line shows the standard LQ-model for prostate cancer (α/β = 1.5).
Dashed line shows equation (4.4) using equation (4.5) for the time factor
(τ = 2) and the dotted line uses τ = 1.
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Repopulation In between fractions of radiation, tumour cells do not only repair them-
selves but they can also continue to proliferate [OMH09, CHN09]. If I assume that the
repopulation constant is

µ =
ln 2

Tp

where Tp is the doubling time and T the overall exposure time (complete timescale of the
treatment), then the equation for the adjusted LQ-model reads

S = e−αnd−βnd
2+µT . (4.7)

Usually repopulation does not begin straight away but after a certain delay, thus I add a
time delay, Tk, to equation (4.7), resulting in

S = e−αnd−βnd
2+µ(T−Tk). (4.8)

For simplicity I have assumed a constant doubling time, however, in reality larger tumours
have a longer doubling time than smaller tumours in some cancer types.

Hypersensitivity It has been shown that the normal LQ-model underestimates cell re-
sponse in a low dose range of up to one Gy. In fact, cells may show an abnormally high
radiosensitivity (hypersensitivity), which is not included in the LQ-model from equation
(4.2). Therefore, the model was extended to include a hypersensitivity factor h(D) in
equation (4.9).

h(D) = 1 +
(αs
α
− 1
)
e−D/dc (4.9)

with dc being the threshold dose to which the cells are hypersensitive. For small doses
the survival fraction S is decreased more and for larger doses h(D) ≈ 1 holds, meaning
the hypersensitivity factor does does not change the survival fraction [CHN09]. Figure 24
models this equation using a threshold dose of 0.5 Gy. Integrating equation (4.9) into the
LQ-model results in

S = e−h(D)αD−βD2

. (4.10)

Figure 25 shows the e�ect that adding h(D) into the model has on the survival fraction.
The dashed line shows the normal LQ-model for prostate cancer (α/β = 1.5) and the solid
line shows the LQ-model including the hypersensitivity factor (equation (4.10)) with a
threshold dose of 0.5 Gy. The adjusted model takes on the same values as the normal
LQ-model from about four Gy onwards, but due to hypersensitivity the amount of cells
surviving radiation is decreased signi�cantly in the low dose range.

Summing up, one can see that these are very simple models. The two main parame-
ters needed (α and β) are known for many tissues and cancer types. Unfortunately, a
strong drawback of the LQ-model is the fact that the time course of the treatment is not
included. I will try to improve this in the following chapters.
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Figure 24: Using equation (4.9) to model hypersensitivity. Parameter values are dc = 0.5
and αs = 2.5.

Figure 25: Dashed line depicts the normal LQ-model and the solid line the LQ-model
including hypersensitivity (equation (4.10)). Parameter values are dc = 0.5,
αs = 2.5, α/β = 1.5
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4.1.1. Biological E�ective Dose

One can calculate the total dose of a treatment schedule, which would have the same e�ect
on a given tissue as another treatment schedule with di�erent doses of radiation [OMH09].
The same physical dose is administered in both schedules but in di�erent fractions. This
results in di�erent biological e�ects. Two schemes that deliver the same biological e�ective
dose are called �iso-e�ective� [CHN09]. The biological e�ective dose (BED) is de�ned as

BED :=
− lnS

α

=
αnd+ βnd2

α

= D +
β

α
Dd

= D

(
1 +

β

α
d

)
.

(4.11)

The term in brackets is the relative e�ectiveness of a treatment. An increased BED, means
an increased biological e�ect, which in turn means a reduced survival fraction S. Table 1
lists treatment examples where in each case the BED for normal tissue (BED3, α/β = 3)
and cancer tissue (BED20, α/β = 20) has been calculated using equation (4.11).

D d n BED3 BED20

66 2.2 30 114.4 73.26
66 2 33 110 72.6

59.4 1.8 33 95 64.7

Table 1: Biological e�ective dose

One can see that a total dose of 66 Gy in 30 fractions (row 1) results in an increased BED
for normal and cancer tissue, compared to 66 Gy in 33 fractions (row 2). Therefore this
treatment schedule results in a higher toxicity, and fewer tumour cells as well as healthy
cells would survive. This is the same when we compare the second and third row of table
1, where we have the same amount of treatment fractions, but using a lower total dose.
Of course the higher total dose results in more healthy and cancer cells dying than using
a lower total dose.
The aim of a treatment schedule is to minimise BED3 and to maximize BED20 since one

wants as many healthy cells as possible to survive and as many cancer cells as possible to
die. Therefore, the optimum treatment means I want to maximise

BED20 −BED3.

⇔ max(BED20 −BED3) = max

(
D

(
1 +

d

20

)
−
(

1 +
d

3

))
= max

(
D

(
d

20
− d

3

))
= max

(
−17

60
Dd

)
.

(4.12)
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For smaller fractioned doses d, the di�erence between healthy tissue and tumour tissue is
increased, which is the aim of a successful treatment. Therefore, one would opt for more
frequent smaller doses resulting in the same total dose [OMH09].

4.1.2. Tumour Control Probability

Furthermore, one can measure how much a tumour is controlled by radiation. In the ideal
case, all tumour cells should die as a result of radiation, leaving a surviving fraction of
zero. The tumour control probability (TCP) calculates the probability of no tumour cells
surviving radiation [OMH09, CHN09]. As in the previous section, I start with an initial
number of tumour cells S0. After treatment S∗ cells are left. I assume that S∗ is random
with distribution P (S∗). Since TCP is the probability that no tumour cells are left, I
de�ne it as

TCP := P (0).

I di�erentiate between two cases, �rst S∗ is poisson distributed and secondly S∗ is bino-
mially distributed [OMH09, CHN09].
If I assume a poisson distribution, I assume that S0 is large, cell survival is a rare event

and the probability that k cells survive is

P (S∗ = k) = λk · e
−λ

k!
(4.13)

with λ = S0 · S being the expected value. Then the tumour control probability can be
calculated as

TCP = P (0) = e−S0·S. (4.14)

In the case that S∗ is binomial distributed, I assume that p is the survival probability of
a cell, cells are independent and identical and the probability that k cells survive is

P (S∗ = k) =

(
S0

k

)
pk(1− p)S0−k. (4.15)

Then the tumour control probability can be calculated to

TCP = P (0) = (1− S)S0 . (4.16)

Figure 26 shows three tumour control probability curves using equation (4.14) and S0 =
100. The red curve uses an α

β
ratio of 1.5, the green line of 10 and the blue line of 20. As

we saw earlier in �gure 21, prostate cancer (red line) needs a much lower radiation dose
than an advanced head and neck cancer (blue line) to die. Prostate cancer cells would
only need just over six Gy to completely die compared to over 18 Gy for advanced head
and neck cancer.

4.1.3. Normal Tissue Complication Probability

The equivalent model to the TCP for normal healthy tissue is the normal tissue complica-
tion probability (NTCP). NTCP is the probability that a given treatment induces severe
side e�ects to normal tissue. These side e�ects can be damage to epithelial surfaces for
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example, or other organs su�ering from side e�ects depending on where the tumour is
located. In addition, radiation itself is a potential cause of cancer (seen in a minority of
patients) [CHN09].
Figure 27 compares TCP (dashed line) and NTCP (solid line) for α

β
= 1.5. The red dots

mark a TCP of 90% and a NTCP of 23%. An increase of just �ve percent points to 95%
of the TCP (blue dots) already results in a NTCP of 38%. The aim, of course, is to have
the curves as far apart as possible, resulting in less normal tissue damage per percentage
point increase in TCP.

Figure 26: Modelling tumour control probability using equation (4.14). Parameter values
are S0 = 100, α/β = 1.5 (red), α/β = 10 (green) and α/β = 20 (blue).

Figure 27: Dashed line models the tumour control probability and the solid line models
the normal tissue complication probability. Red dots mark a TCP of 90% and
a NTCP of 23%. Blue dots mark a TCP of 95% and a NTCP of 38%.
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4.2. Other Radiation Models

As mentioned above, the LQ-model is the model predominantly used in modelling radi-
ation and in calculating the optimal dosage. However, other models have been set up to
simulate the e�ects radiation has on tumour growth. For example a two compartment
ordinary di�erential equation model by Capuccio, Herrero and Nunez in [CHN09]. Here,
the authors modelled the fraction of viable cells with C and the mean number of DSBs
per cell that are caused by radiation by U . Then the model reads

dC

dt
= −

(
αḊ +

1

2
kU2

)
C

dU

dt
= δḊ − ωU − 2kU2

(4.17)

First, look at the equation for U , where δḊ is the production of non-repairable DSBs,
which depend on the dose rate Ḋ. ω is the DSB repair constant. Thus the repaired DSBs
are subtracted from the equation. Furthermore, kU2 is the DSB misrepair rate, whereby
two DSBs are needed to create a misrepair. On average half of these misrepairs turn out to
be lethal and result in cell death. This is modelled by subtracting the term o� the fraction
of viable cells (1

2
kU2). Finally, the lethal action of radiation due to non-repairable lesions

is denoted by α.
Figure 28 shows solutions to the above mentioned model with di�erent amounts of

radiation. The red line shows the number of DSBs per cell, which starts at 0 and tends
to about 3 with a dose of 0.5 Gy and about 4.4 when a dose of 1 Gy is administered. The
green line shows the fraction of viable cells, which starts at 1, meaning that all cells are
viable, and decreases until all cells are killed by radiation.

(a) Ḋ = 0.5 (b) Ḋ = 1

Figure 28: Solution to equations (4.17) with viable cells in red and number of DSBs per
cell in green. Parameter values are k = 0.05, α = 0.3, δ = 0.8, ω = 0.01 C0 = 1
and U0 = 0.

Another model in [CHN09] is used to simulate postoperative radiotheray and devel-
opment of local recurrence. Hereby a set of partial di�erential equations were used. n
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denotes the tumour cell concentration, f the extracellular matrix (ECM) and m the
matrix-degrading enzymes. Then the equation for n reads

∂n

∂t
= λn(1− f − n) + dn∇2n− γ∇ · (n∇f).

Tumour cells, assumed here, proliferate (�rst term), di�use with di�usion coe�cient dn
(second term) and move along the ECM due to haptotaxis (third term). The equation for
the ECM reads

∂f

∂t
= −νmf.

The extracellular matrix is degraded by the enzymes m. The equation for these enzymes
on the other hand reads

∂m

∂t
= dm∇2m+ αn(1−m)− βm.

The enzymes di�use with di�usion coe�cient dm (�rst term), are produced by the tumour
cells n (second term) and decay with rate β (third term).
Since radiation was applied postoperatively, the equations were set to zero after surgery.

Then the LQ-model was applied to the tumour and healthy cell population. The results
demonstrated that radiotherapy kills tumour cells that may have been missed in the
operation. However healthy cells with genetic mutations that were close to the primary
tumour have an increased susceptibility to further mutations, which could result in a
new tumour. Using targeted intraoperative radiotherapy (Targit) as explained in chapter
2.2 may eliminate these potentially malignant cells surrounding the site of the primary
tumour. Targit is believed to have a bigger advantage compared to conventional fractional
therapy [CHN09].
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5. Improved Models for Radiotherapy

5.1. Cell Population Models

As we saw in chapter 4, the existing radiotherapy model (LQ-model) does not include the
time course t of the treatment in its equation. This is a huge disadvantage as one cannot
see the long term e�ect of radiation and should be included in future models. Therefore,
I will revisit the previous growth models from chapter 3 that were able to replicate real
data and incorporate radiotherapy in them.

5.1.1. Continuous Radiation

Basic Model Once again I look at a population of tumour cells and assume the avascular
tumour has no structure. When I compared data to the mathematical models, I saw that
the generalised logistic growth model from equation (3.5) in section 3.1.3 succeeded in
replicating the data in the best possible way and gives me enough variability to �t the
solution curve to the data.
To derive a model (based on a model in [Pre03]) that includes radiation, I add a term

to the existing model that reduces the amount of cells if radiation is administered.

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN with µ > 0,

N(0) = N0

(5.1)

The right hand side of equation (5.1) is the same as the generalised logistic growth model
(equation (3.5)) except for the term µAN being subtracted from the growth term. A is the
amount of radiation administered (in Gy) and µ relates to how much the drug damages
the cell per Gy. I assume continuous radiation and therefore set

A = a ∀t ≥ 0.

a is a constant amount of radiation given. If a = 0, i.e. no radiation is administered, the
model is reduced to the growth model of equation (3.5).
To solve equation (5.1) I introduce v(t) := 1

N(t)
with v(0) = v0 = 1

N0
as in chapter 3. Then

dv

dt
= − 1

N2
N ′

= − 1

N2

(
r

α
N

(
1−

(
N

K

)α)
− µAN

)
= v

(
µA− r

α

)
+

r

αKα
v1−α

By using the substitution z := vα with z0 = vα0 I can solve this Bernoulli di�erential
equation.

dz

dt
= αvα−1v′

= z(αµA− r) +
r

Kα
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This is similar to the inhomogeneous linear di�erential equation, which I have already
solved in chapter 3. The solution reads

z(t) = z0e
−rt+αµAt +

r

Kα(r − αµA)
(1− e−rt+αµAt).

Inserting the substitution for z results in

v(t) =

(
vα0 e

−rt+αµAt +
r

Kα(r − αµA)
(1− e−rt+αµAt)

) 1
α

.

Thereby using N(t) = 1
v(t)

, I get the solution for equation (5.1)

N(t) =
N0K(

Nα
0 r

r−αµA + e−rt+αµAt(Kα − Nα
0 r

r−αµA)
) 1
α

. (5.2)

The stationary points of the model can be calculated by setting equation (5.1) to zero.

dN

dt
!

= 0

⇒ N1 = 0

This trivial stationary point of no tumour existing, only exists if I start with no tumour
cells (N0 = 0) or if radiation damages all cells. As in the previous chapters I only look at
the case where N0 > 0. The non trivial stationary point is calculated to

r

α

(
1−

(
N

K

)α)
− µA = 0

⇔ − r
α

Nα

Kα
= µA− r

α

⇔ Nα = Kα

(
1− αµA

r

)
⇒ N2 = K

(
1− αµA

r

) 1
α

.

In chapter 3 I saw that if N0 ∈ (0, K] the tumour tends to its carrying capacity K.
However, if a certain amount of radiation is given (A > 0) the tumour cells can tend to
N2, which is smaller than its carrying capacity K. Now I want to know how high the
radiation dose has to be so that all tumour cells die, meaning the tumour does not tend
to N2 but to zero (N1). To �nd the stability of the two stationary points I di�erentiate
the function dN

dt
= f(N) with respect to N .

df(N)

dN
=
r

α
− µA− r

α

Nα

Kα
(α + 1)

Inserting the trivial stationary point leads to

df(N1)

dN
=
r

α
− µA.
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N1 is asymptotically stable if

A >
r

αµ

and unstable if A < r
αµ
. Inserting the nontrivial stationary point results in

df(N2)

dN
= αµA− r.

Clearly N2 is asymptotically stable if

A <
r

αµ

and unstable if A > r
αµ
. This means that if the radiation dose is high enough (larger than

r
αµ
) the trivial stationary point is stable and the nontrivial stationary point is unstable,

eventually resulting in the death of all tumour cells. If the dose is too small (lower than
r
αµ
) not enough tumour cells die and the surviving cells continue to proliferate, eventually

tending to N2. Therefore A is a bifurcation parameter. This means that the stability of a
stationary point changes depending on the value of the bifurcation parameter.
Figure 29a shows the di�erence a dose of 0.1 Gy has on a tumour cell population.

The black line is the solution to the generalised logistic growth equation. As one can
see the tumour starts with an initial number of tumour cells larger than zero and tends
to the capacity of 100 cells. Plotting the solution of my model for radiation (equation
(5.2)) renders the red line. As I chose a too low dose (A = 0.1 < 0.1925 = r

αµ
) not all

tumour cells are killed by radiation and enough are left to proliferate, eventually tending

to N2 = K
(
1− αµA

r

)1/α
= 61.4. The red line in �gure 29b on the other hand uses a dose

of 0.3 Gy, which is larger than 0.1925 = r
αµ
. One can see that the cell number tends to

zero, all tumour cells will die.
Figure 30 shows the solution curve for di�erent values of µ, the degree to which the cells

are a�ected by radiation. Increasing the value of µ reduces the value of the stationary point
N2, which the tumour tends to as long as µ < r

αA
. The blue line uses a low �e�ectiveness�

of the radiation on the cells whereas the green curve uses a higher value, resulting in more
cells being killed.
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(a) A = 0.1 (b) A = 0.3

Figure 29: Tumour growth without radiation in black and with continuous radiation in
red, using equation (5.2). Parameter values are N0 = 10, K = 100, α = 1.5,
r = ln 2/24 and µ = 0.1.

Figure 30: Comparison of how cells are a�ected by radiation using equation (5.2) with
blue for µ = 0.1, red for µ = 0.2 and green line for µ = 0.3. Parameter values
are N0 = 10, K = 100, α = 0.5, r = ln 2/24 and A = 0.1.
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Figures 31 and 32 show how the stability of the model depends on the bifurcation
parameter A. Figure 31 shows two graphs of the right-hand side of the model equation
(5.1). The arrows on the x-axis indicate if the population grows or decreases. If A < r

αµ
=

0.1925, the nontrivial stationary point N2 = 61.4 is stable. Once A is larger than 0.1925
the trivial stationary point becomes stable and the population will tend to zero.
Figure 32 is a bifurcation diagramm. N1 = 0 is unstable for A < 0.1925 (dotted line) and
becomes stable once A > 0.1925 (blue line). N2 = K(1− αµA

r
)1/α is stable for A < 0.1925

(blue curve). The two branches intersect at A = 0.1925 and exchange their stability.

(a) A = 0.1 (b) A = 0.3

Figure 31: Comparison of the change in the value of the bifurcation parameter A. Ad-
ditional parameter values are r = ln 2/24, N0 = 10, K = 100, α = 1.5 and
µ = 0.1.

Figure 32: Stability depends on the value of the bifurcation parameter A. The blue line
shows the stable node and the dotted line shows the unstable node. Parameter
values are as in �gure 31.
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Now that I have a basic model for radiotherapy, I can include di�erent factors that e�ect
tumour growth, as discussed in chapter 2.2.

Repair Since I know that DSBs caused by radiation can be repaired (see chapter 2.2), I
want to include this in my model by adding a term, which increases the number of cells.
The equation reads

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN + ρλAN with ρ > 0,

N(0) = N0

(5.3)

ρ represents the factor of cells that are able to repair themselves after radiation and λ is
the repair rate as in chapter 4, with λ = ln 2

Tr
, Tr being the repair half-time. To �nd the

solution of this model I use the same method as with equation (5.1). The solution reads

N(t) =
N0K(

Nα
0 r

r−αµA+αρλA
+ e−rt+αµAt−αρλAt(Kα − Nα

0 r

r−αµA+αρλA
)
) 1
α

. (5.4)

The stationary points of the model can be calculated by setting equation (5.3) to zero.

dN

dt
!

= 0

⇒ N1 = 0

The trivial stationary point is the same as with the previous model. The nontrivial sta-
tionary point, however, reads

0 =
r

α

(
1− Nα

Kα

)
− µA+ ρλA

⇒ N2 = K

(
1− αµA

r
+
αρλA

r

) 1
α

.

This stationary point is larger than the nontrivial stationary point in the previous model
without repair, which is clear since more cells will survive radiation due to self-repair.
By analysing the stability of the two stationary points I can determine which radiation

dose is required to kill all tumour cells, thus for the trivial stationary point N1 to be stable.
To do this, I di�erentiate equation (5.3) with respect to N and insert the stationary points.

df(N)

dN
=
r

α
− µA+ ρλA− r

α

Nα

Kα
(α + 1)

⇒ df(N1)

dN
=
r

α
− A(µ− ρλ)

N1 is asymptotically stable if

A >
r

α(µ− ρλ)
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and unstable if A < r
α(µ−ρλ)

. Inserting the nontrivial stationary point results in

df(N2)

dN
= A(αµ− αλρ)− r.

Clearly N2 is asymptotically stable if

A <
r

α(µ− ρλ)

and unstable if A > r
α(µ−ρλ)

. This means that the radiation dose A now needs to be higher
for all tumour cells to die and the trivial stationary point to be stable, compared to the
basic model without repair.
Figure 33 shows three di�erent plots using equation (5.4). I used the same parameters

as in �gure 29a and 29b, however varying the amount of radiation A. The black line shows
the tumour growth without radiation and the blue line shows tumour growth including
radiation. As one can see from the blue curve in plot 33a, the tumour cell population tends
to N2 = 61.4 if the radiation dose is too low. This was shown in the previous model. Now
that I have included repair, the tumour cell population tends to a higher level, N2 = 95.3
(red curve). Plot 33b shows the di�erence between the model without repair and the one
with repair, which is that the amount of radiation A now needs to be higher than before,
to result in the death of all cells. For A > r

α(µ−ρλ)
= 1.4415 the cell population tends to

zero (plot 33c).

(a) A = 0.1 (b) A = 1 (c) A = 2

Figure 33: Tumour growth without radiation in black, with radiation in blue and including
repair in red, using equation (5.4). Additional parameter values are r = ln 2/24,
N0 = 10, K = 100, α = 1.5, µ = 0.1, ρ = 0.5 and λ = ln 2/4.

Repopulation In addition to repair, cells can also continue to proliferate, either between
fractions of radiation or during continued low dose radiation. If I assume β to be the
amount of cells able to proliferate, then the model reads

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN + βA

r

α
N

(
1−

(
N

K

)α)
with β > 0,

N(0) = N0

(5.5)
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The solution of equation (5.5) is

N(t) =
N0K(

Nα
0 (r+βAr)

r−αµA+βAr
+ e−rt+αµAt−βArt(Kα − Nα

0 (r+βAr)

r−αµA+βAr
)
) 1
α

. (5.6)

The stationary points of the model can be calculated by setting equation (5.5) to zero.

dN

dt
!

= 0

⇒ N1 = 0

The nontrivial stationary point reads

0 =
r

α

(
1− Nα

Kα

)
− µA+ βA

r

α

(
1− Nα

Kα

)
⇒ N2 = K

(
1− αµA

r(1 + βA)

) 1
α

.

This stationary point is larger than the nontrivial stationary point in the basic model
without repopulation, which is clear since more cells will exist due to repopulation.
By analysing the stability of the two stationary points I can determine which radiation

dose is required to kill all tumour cells, in order for the trivial stationary point N1 to be
stable. To do this, I di�erentiate equation (5.5) with resect to N and insert the stationary
points.

df(N)

dN
=
r

α
− µA+ βA

r

α
− r

α

Nα

Kα
(α + 1)− βA r

α
(α + 1)

Nα

Kα

⇒ df(N1)

dN
=
r

α
− A(µ− β r

α
)

N1 is asymptotically stable if

A >
r

αµ− βr
and unstable if A < r

αµ−βr . The nontrivial stationary point is asymptotically stable if

A <
r

αµ− βr

and unstable if A > r
αµ−βr . This means that the radiation dose A needs to be higher

compared to the basic model without repopulation, for all tumour cells to die and the
trivial stationary point to be stable.
Figure 34 shows two di�erent plots using equation (5.6). I used the same parameters as

in �gure 29a and 29b. The black line shows tumour growth without radiation, the blue line
shows tumour growth including radiation, as in the basic model, and the red curve uses
the model with repopulation. As one can see from the blue line in plot 34a, the tumour
cell population tends to N2 = 61.4 if the radiation dose is too low. The red curve tends
to N2 = 62.6. This is higher since more cells survive radiation. For A > r

αµ−βr = 0.2403

the tumour cell population including repopulation tends to zero (plot 34b). Of course the
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model without repopulation (blue line) does so as well, since the A only had to be larger
than 0.1925 in this model.

(a) A = 0.1 (b) A = 0.3

Figure 34: Tumour growth without radiation in black, with radiation in blue and including
repopulation in red, using equation (5.6). Additional parameter values are r =
ln 2/24, N0 = 10, K = 100, α = 1.5, µ = 0.1 and β = 0.3.

Radiosensitivity of proliferating and quiescent tumour cells In chapter 3.2 I in-
troduced a model for heterogenous tumour growth. The idea is that a tumour does not
consist of a uniform cell population that proliferates at the same rate, but of di�erent
cell types. I assume here that the tumour consists of proliferating and quiescent cells.
Proliferating cells are radiosensitive and can be killed by radiation, quiescent cells cannot
[Wan00, CHN09, TG95]. Let P (t) be the number of prolilferating cells and Q(t) be the
number of quiescent cells. Then the model equations read

dP

dt
=
r

α
P

(
1−

(
P +Q

K

)α)
− µAP − kPQP + kQPQ =: f(P,Q)

dQ

dt
= kPQP − kQPQ =: g(P,Q)

(5.7)

with initial values
P (0) = P0 and Q(0) = Q0.

Then the total number of tumour cells is

N(t) = P (t) +Q(t).

The rate kPQ in equations (5.7) is the rate at which proliferating cells become quiescent.
This can be due to the lack of nutrients as the tumour increases in size. The rate at which
quiescent cells become viable again is kQP . Therefore the two populations di�er in the way
that only proliferating cells can multiply and are able to be killed by radiation whereas
quiescent cells cannot multiply and are not a�ected by radiation.
Again I �nd the trivial stationary point to be zero

(P 1, Q1) = (0, 0).
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Setting dQ
dt

= 0 I �nd that

Q =
kPQ
kQP

P. (5.8)

Inserting Q from equation (5.8) into dP
dt

= 0 results in

P 2 = K

(
1− αµA

r

) 1
α

· kQP
kPQ + kQP

⇒ Q2 = K

(
1− αµA

r

) 1
α

· kPQ
kPQ + kQP

Both points together add up to the same nontrivial stationary point as in the basic model.

P 2 +Q2 = K

(
1− αµA

r

) 1
α

= N2

From equation (5.8) I know that either both types of cells do not exist (P 1, Q1) or they
coexist (P 2, Q2). To �nd the stability of the two stationary points I calculate the Jacobian
matrix of the coupled system.

J(P,Q) =

(
∂f
∂P

∂f
∂Q

∂g
∂P

∂g
∂Q

)

=

(
Γ1 Γ2

kPQ −kQP

) (5.9)

with

Γ1 :=
r

α

(
1− 1

Kα
(P +Q)α − α

Kα
P (P +Q)α−1

)
− µA− kPQ

and
Γ2 := kQP −

r

Kα
P (P +Q)α−1

Inserting the trivial stationary point yields

J(0, 0) =

(
r
α
− µA− kPQ kQP

kPQ −kQP

)
(5.10)

The stationary point (0, 0) is stable if both eigenvalues of the Jacobian matrix in equation
(5.10) are smaller than zero. The eigenvalues are calculated to

λ1/2 = −1

2
(µA− r

α
+ kPQ + kQP )±

√
1

4
(µA− r

α
+ kPQ + kQP )2 − kQP (µA− r

α
)

Therefore for λ1 and λ2 to be smaller than zero,

A >
r

αµ
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has to hold. If A < r
αµ

both eigenvalues are larger than zero and the trivial stationary
point is unstable. This is the same criteria for stability as in the basic model for the trivial
stationary point N1 = 0. Inserting the nontrivial stationary point (P 2, Q2) into equation
(5.9) results in

J(P 2, Q2) =

(
−kPQ − r

(
1− αµA

r

) kQP
kQP+kPQ

kQP − r
(
1− αµA

r

) kQP
kQP+kPQ

kPQ −kQP

)
(5.11)

The eigenvalues of the Jacobian matrix are

λ1/2 = −1

2
Λ±

√
1

4
Λ2 − kQP (r − αµA)

with

Λ := kPQ + kQP +
kQP

kQP + kPQ
(r − αµA)

Both eigenvalues are smaller than zero, meaning the nontrivial stationary point is stable,
if

A <
r

αµ

and unstable if A > r
αµ
. Again, the stability property of the nontrivial stationary point

N2 = K
(
1− αµA

r

) 1
α of the basic model is applicable here.

I used the explicit euler method to solve the coupled system of equation (5.7) in Matlab.
Figure 35 shows the model using di�erent doses of radiation. Proliferating cells are marked
in red, quiescent cells in green and the total number of tumour cells are shown in black.
A is still below the threshold of r

αµ
= 0.1925 in plot 35a and therefore the cells tend to

the nontrivial stationary point (P 2, Q2) = (10.2, 51.2). In total the population tends to
N2 = 61.4 as in the basic model. However, looking at the x-axis in �gure 35a one can see
that it takes much longer for the tumour to reach its capacity compared to �gure 29a.
This also holds true for the case where A > 0.1925 in plot 35b. Here the tumour cells tend
to the trivial stationary point (0, 0) since the radiation dosage is high enough. The reason
for the more lengthy timespan is the fact that only the proliferating cells P are a�ected
by the radiation. The quiescent cells Q can `escape' from it, leaving a smaller population
to be irradiated at a certain point in time. In �gure 35 one can see that the quiescent
cells make up the majority of the tumour. This is due to kPQ > kQP , so the rate at
which proliferating cells become quiescent is higher than the rate at which quiescent cells
become viable again. This makes sense since it has been shown that the oxygen deprived
core of a larger tumour grows at the same rate as the whole tumour, leaving the rim of
proliferating cells to stay constant over time [TG95].
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(a) A = 0.1 (b) A = 0.3

Figure 35: Total number of tumour cells in black, proliferating cells in red and quiescent
cells in green, using equation (5.7). Parameter values are h = 0.1, r = ln 2/24,
P0 = 8, Q0 = 2, K = 100, α = 1.5, µ = 0.1, kPQ = 0.005 and kQP = 0.001.

Figure 36 shows that no matter which starting point is used, the cell population will
always tend to its nontrivial stationary point if A is small enough. It was produced using
pplane in Matlab.

Figure 36: Global PQ diagram using equation (5.7). Red dots are the stationary points
and the blue lines show possible trajectories. Parameter values are A = 0.1,
r = ln 2/24, K = 100, α = 1.5, µ = 0.1, kPQ = 0.005 and kQP = 0.001.
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Radiosensitivity of sensitive and resistant tumour cells Another approach to mod-
elling a heterogenous tumour population is to assume that some cells are more radiosen-
sitive than others, but all being viable and not quiescent. As seen in chapter 4 cells
that proliferate at a faster rate are more sensitive than those that grow at a slower rate
[OMH09]. Let S(t) be the number of radiosenstive tumour cells and R(t) the number of
radioresistant tumour cells. Then the model equations read

dS

dt
=
r1

α
S

(
1−

(
S +R

K

)α)
− µ1AS =: f(S,R)

dR

dt
=
r2

α
R

(
1−

(
S +R

K

)α)
− µ2AR =: g(S,R)

(5.12)

with initial values
S(0) = S0 and R(0) = R0.

The total number of tumour cells is

N(t) = S(t) +R(t).

Since the sensitive tumour cells grow faster and are more sensitive to radiation, I assume
that r1 > r2 and µ1 > µ2. Therefore the two populations di�er by their growth and death
rates but are otherwise the same type of cell.
Again the trivial stationary point is zero

(S1, R1) = (0, 0).

Setting dS
dt

= 0 I �nd that

S = K

(
1− αµ1A

r1

) 1
α

−R.

Analogously setting dR
dt

= 0 I �nd that

R = K

(
1− αµ2A

r2

) 1
α

− S.

By inserting S into dR
dt

= 0 I �nd that R has to be zero and vice versa, meaning that both
type of cells cannot coexist. The nontrivial stationary points are

(S2, R2) = (K

(
1− αµ1A

r1

) 1
α

, 0)

and

(S3, R3) = (0, K

(
1− αµ2A

r2

) 1
α

).

To �nd the stability of the three stationary points I calculate the Jacobian matrix of the
coupled system.

J(S,R) =

(
∂f
∂S

∂f
∂R

∂g
∂S

∂g
∂R

)
(5.13)
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with
∂f

∂S
: =

r1

α

(
1− 1

Kα
(S +R)α − α

Kα
S(S +R)α−1

)
− µ1A

∂f

∂R
: =

r1

Kα
S(S +R)α−1

∂g

∂S
: =

r2

Kα
R(S +R)α−1

∂g

∂R
: =

r2

α

(
1− 1

Kα
(S +R)α − α

Kα
R(S +R)α−1

)
− µ2A

Inserting the trivial stationary point yields

J(0, 0) =

(
r1
α
− µ1A 0

0 r2
α
− µ2A

)
(5.14)

The stationary point (0, 0) is stable if both eigenvalues of the Jacobian matrix in equation
(5.14) are smaller than zero. The eigenvalues are

λ1 =
r1

α
− µ1A

λ2 =
r2

α
− µ2A

Therefore if
A >

r1

αµ1

and A >
r2

αµ2

both eigenvalues are zero. If A < r1
αµ1

or A < r2
αµ2

at least one eigenvalue is positive and

the trivial stationary point is unstable. Inserting the nontrivial stationary point (S2, R2)
into equation (5.13) yields

J(S2, R2) =

(
−r1 + αµ1A r1 − αµ1A
0 −µ2A+ r2

r1
µ1A

)
(5.15)

The eigenvalues of the Jacobian matrix are

λ1/2 = −1

2
Λ±

√
1

4
Λ2 + A(r1µ2 + µ1(−r2 − αµ2A+ αµ1A

r2

r1

))

with
Λ := r1 + A(−αµ1 + µ2 −

r2

r1

µ1)

Both eigenvalues are negative, meaning the stationary point is stable if

A <
r1

αµ1

and unstable else. Inserting the second nontrivial stationary point (S3, R3) into equation
(5.13) yields

J(S3, R3) =

(
−µ1A+ r1

r2
µ2A 0

r2 − αµ2A −r2 + αµ2A

)
(5.16)
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Both eigenvalues of this Jacobian matrix are negative, meaning the stationary point is
stable if

A <
r2

αµ2

and unstable else.
Once again I used the explicit euler method to solve the coupled system of equations

(5.12) in Matlab.
Figure 37 shows the model using di�erent doses of radiation. Radiosensitive cells are

marked in red, resistant cells in green and the total number of tumour cells are shown
in black. I need to di�erentiate between two cases, one that the ratio r1

αµ1
< r2

αµ2
and the

other that the ratio r1
αµ1

> r2
αµ2

. Figure 37 shows the �rst case, with r1
αµ1

= 0.1925 and
r2
αµ2

= 0.9627. Since the larger ratio is r2
αµ2

, the cells will tend to the nontrivial stationary

point (S3, R3) if A is small enough, meaning that the resistant cells will survive and grow
to their capacity and the sensitive cells will die. A is small enough in plot 37a and therefore
the cells tend to the nontrivial stationary point (0, 92.9). The green line is equal to the
black line after a certain time period since the sensitive cells (red line) die out and only
the resistant cells remain, making up the whole tumour. In �gure 37b A is still smaller
than r2

αµ2
= 0.9627, therefore the resistant cells survive and the sensitive cells die out. The

total population tends to 61.4 cells. Obviously fewer cells survive than in �gure 37a since
a higher radiation dose is administered. In �gure 37c A is larger than r1

αµ1
and r2

αµ2
and

therefore both cell types die out. The trivial stationary point (0, 0) is stable.
Figure 38 shows the second case, where r1

αµ1
= 0.1925 > 0.1373 = r2

αµ2
. In �gures 38a and

38b A < 0.1925, therefore the tumour survives radiation. This time the stationary point
(S2, R2) is stable, thus the sensitive cells survive and the resistant cells die out.
Summing up, sensitive and resistant cells will die out if A is large enough, as seen in

�gures 37c and 38c. If A is too small, however, only one type of cell will survive. This
depends on its ratio of ri

µi
. The type of cell whose ratio is larger than that of the other

type of cell, survives and the tumour ends up being made up solely of cells of that type.
In addition, in both cases it does not take as long as in the previous model for all cells to
die if A is large enough, thus for the trivial stationary point (0, 0) to be reached. The time
scale on the x-axis is similar to the basic model in �gure 29b. This is due to the fact that
both type of cells are `attacked' by radiation and not just one as in the previous model.
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(a) A = 0.1 (b) A = 0.5 (c) A = 2

Figure 37: Total number of tumour cells in black, proliferating cells in red and quiescent
cells in green, using equation (5.12). Additional parameter values are h = 0.1,
r1 = ln 2/24, r2 = ln 2/48, S0 = 6, R0 = 4, K = 100, α = 1.5, µ1 = 0.1 and
µ2 = 0.01.

(a) A = 0.1 (b) A = 0.165 (c) A = 0.5

Figure 38: Total number of tumour cells in black, proliferating cells in red and quiescent
cells in green, using equation (5.12). Additional parameter values are h = 0.1,
r1 = ln 2/24, r2 = ln 2/48, S0 = 6, R0 = 4, K = 100, α = 1.5, µ1 = 0.1 and
µ2 = 0.07.
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5.1.2. Periodic Radiation

The idea behind the models in section 5.1.1 was to show the long term e�ect that radiation
has on tumour cells compared to the LQ-model in chapter 4. However irradiating a patient
with a constant amount of radiation over a certain period of time is not realistic and could
be more harmful to healthy organs and tissue. In reality patients will receive periodic
radiation treatments over a period of a few weeks, examples were listed in chapter 2.2.
This gives the healthy cells time to repair in-between radiation sessions, unfortunately
this is also the case for tumour cells.

Basic Model I use the basic model for continuous radiation (equation (5.1) on page 38)
but change the variable A (based on a model in [Pre03]). Thus the model reads

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN with µ > 0,

N(0) = N0

(5.17)

Instead of administering a constant amount of radiation as before, I change A to be
periodic.

A(t) =

{
a if n < t ≤ n+ τ ,

0 if n+ τ < t ≤ n+ 1

with n = 0, 1, 2, ... being the radiation session and τ ∈ (0, 1) being the proportional
duration of radiation. So inbetween each session there is a period of radiation, of amount
a, and a period without radiation. τ decides how long the period of radiation is compared
to the period without. If τ were 1, the model would be reduced to the continuous case.
The solution to equation (5.17) can be calculated as in the continuous case for n <

t ≤ n + τ and as in the generalised logistic growth equation for n + τ < t ≤ n + 1. The
complete solution reads

N(t) =


NnK(

Nαn r
r−αµa+e(−r+αµa)(t−n)(Kα− Nαn r

r−αµa )
) 1
α

if n < t ≤ n+ τ ,

Nn+τK

(Nα
n+τ+e−r(t−n−τ)(Kα−Nα

n+τ ))
1
α

if n+ τ < t ≤ n+ 1.
(5.18)

The stationary points of the model can be calculated by setting equation (5.17) to zero.

⇒ N1 = 0

The nontrivial stationary point switches between K as in the generalised logistic growth

equation andK
(
1− αµa

r

) 1
α as in the basic model with continuous radiation. By linearising

equation (5.17) I can �nd the amount of radiation needed to kill o� the tumour, resulting
in the trivial stationary point N1 being stable.

∂f(N)

∂N
=
r

α
− µA− r

αKα
Nα(α + 1)

⇒ ∂f(N1)

∂N
=
r

α
− µA

⇒ ∂f(N1)

∂N
(N(t)−N1) =

( r
α
− µA

)
(N(t)−N1)
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By setting N∗(t) = N(t)−N1 I can �nd the solution N∗(t)

dN∗

dt
=
( r
α
− µA

)
N∗(t)

⇒ N∗(t) =

{
N∗ne

(r/α−µa)(t−n) if n < t ≤ n+ τ ,

N∗n+τe
r/α(t−n−τ) if n+ τ < t ≤ n+ 1,

From the case with radiation I can calculate N∗n+τ

N∗n+τ = N∗(t = n+ τ) = N∗ne
(r/α−µa)τ .

Then inserting this into the case without radiation I get

N∗n+1 = N∗(t = n+ 1) = N∗ne
r/α−µaτ .

For
a >

r

αµτ

it holds that
N∗n+1 < N∗n ∀n.

This means that when a is large enough the tumour shrinks each session, eventually dying
out. This means that N1 = 0 is stable. a needs to be larger than in the case of continuous
radiation ( r

αµτ
> r

αµ
). This is not surprising since the cells are not radiated with the same

total amount as in the continuous case.
For a < r

αµτ
N1 = 0 is unstable, since N∗n+1 > N∗n ∀n thus the tumour grows each session.

Figure 39a shows the di�erence a dose of 0.5 Gy has on a tumour cell population. The
black line is the solution to the generalised logistic growth equation. As one can see the
tumour starts with an initial number of tumour cells larger than zero and tends to the
capacity of 100 cells. Plotting the solution of my model for periodic radiation (equation
(5.18)) renders the red line. As I chose a too low dose (a = 0.5 < 1.9254 = r

αµτ
) not all

tumour cells are killed by radiation and enough are left to proliferate. The red line in
�gure 39b on the other hand uses a dose of 3 Gy, which is larger than r

αµτ
. One can see

that the cell number tends to zero, all tumour cells will die. For �gure 39 I assumed the
time between two sessions to be 20 hours and the duration of radiation in each session to
be two hours, thus τ = 0.1
Now I can implement di�erent factors as in section 5.1.1 into this basic model for periodic

radiation.
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(a) a = 0.5 (b) a = 3

Figure 39: Tumour growth without radiation in black and with periodic radiation in red,
using equation (5.18). Parameter values are N0 = 10, K = 100, α = 1.5,
r = ln 2/24, µ = 0.1 and τ = 0.1.

Repair As explained in section 5.1.1 tumour cells are able to repair themselves during
low doses of radiation, so I want to include this in the model with periodic radiation as
well. The equation reads

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN + ρλAN with ρ > 0,

N(0) = N0

(5.19)

with

A(t) =

{
a if n < t ≤ n+ τ ,

0 if n+ τ < t ≤ n+ 1.

The solution is

N(t) =


NnK(

Nαn r
r−αµa+αρµa+e(−r+αµa−αρµa)(t−n)(Kα− Nαn r

r−αµa+αρµa )
) 1
α

if n < t ≤ n+ τ ,

Nn+τK

(Nα
n+τ+e−r(t−n−τ)(Kα−Nα

n+τ ))
1
α

if n+ τ < t ≤ n+ 1.
(5.20)

The stationary points of the model can be calculated by setting equation (5.19) to zero.

⇒ N1 = 0

The nontrivial stationary point switches between K as in the generalised logistic growth

equation and K
(
1− αµa

r
+ αρλa

r

) 1
α as in the case with continuous radiation with repair.

By linearising equation (5.19) I can �nd the amount of radiation needed to kill o� the

56



5.1 Cell Population Models 5 IMPROVED MODELS FOR RADIOTHERAPY

tumour, thus for the trivial stationary point N1 to be stable.

∂f(N)

∂N
=
r

α
− µA+ ρλA− r

αKα
Nα(α + 1)

⇒ ∂f(N1)

∂N
=
r

α
− µA+ ρλA

⇒ ∂f(N1)

∂N
(N(t)−N1) =

( r
α
− µA+ ρλA

)
(N(t)−N1)

By setting N∗(t) = N(t)−N1 I can �nd the solution N∗(t)

dN∗

dt
=
( r
α
− µA+ ρλA

)
N∗(t)

⇒ N∗(t) =

{
N∗ne

(r/α−µa+ρλa)(t−n) if n < t ≤ n+ τ ,

N∗n+τe
r/α(t−n−τ) if n+ τ < t ≤ n+ 1,

From the case with radiation I can calculate N∗n+τ

N∗n+τ = N∗(t = n+ τ) = N∗ne
(r/α−µa+ρλa)τ .

Then inserting this into the case without radiation I get

N∗n+1 = N∗(t = n+ 1) = N∗ne
r/α−µaτ+ρλaτ .

For
a >

r

α(µ− ρλ)τ

it holds that
N∗n+1 < N∗n ∀n.

This means that when a is large enough the tumour shrinks each session, eventually
dying out. This means that N1 = 0 is stable. Again a needs to be larger than in the
case of continuous radiation with repair ( r

α(µ−ρλ)τ
> r

α(µ−ρλ)
). For a < r

α(µ−ρλ)τ
, N1 = 0 is

unstable, since N∗n+1 > N∗n ∀n and the tumour would grow each session.
Figure 40 shows three di�erent plots using equation (5.20). I used the same parameters

as in �gure 39, however, varying the amount of radiation A and setting ρ = 0.5 and
λ = ln 2/4. The black line shows the tumour growth without radiation and the blue line
shows tumour growth including periodic radiation but without repair. As one can see from
�gure 40b A is large enough to kill all tumour cells in the case without repair (blue line)
but not enough when I include repair in the model (red line). Here, A needs to be larger
than r

α(µ−ρλ)τ
= 14.4 to kill all tumour cells, as seen in �gure 40c. In �gure 40 I assumed a

radiation session to take two hours, followed by a resting period of 18 hours, as in �gure
39.
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(a) A = 0.5 (b) A = 3 (c) A = 18

Figure 40: Tumour growth without radiation in black, with radiation in blue and including
repair in red, using equation (5.20). Parameter values are N0 = 10, K = 100,
α = 1.5, r = ln 2/24, µ = 0.1, ρ = 0.5, λ = ln 2/4 and τ = 0.1.

Repopulation In addition I want to include repopulation as in the case of continuous
radiation, thus I assume β to be the amount of cells able to proliferate despite being
radiated. Then the model reads

dN

dt
=
r

α
N

(
1−

(
N

K

)α)
− µAN + βA

r

α
N

(
1−

(
N

K

)α)
with β > 0,

N(0) = N0

(5.21)

The solution of equation (5.21) is

N(t) =


NnK(

Nαn (r+βar)
r−αµa+βar+e(−r+αµa−βar)(t−n)(Kα− Nαn (r+βar)

r−αµa+βar )
) 1
α

if n < t ≤ n+ τ ,

Nn+τK

(Nα
n+τ+e−r(t−n−τ)(Kα−Nα

n+τ ))
1
α

if n+ τ < t ≤ n+ 1.
(5.22)

The stationary points of the model can be calculated as usual

⇒ N1 = 0.

The nontrivial stationary point switches between K as in the generalised logistic growth

equation andK
(

1− αµa
r(1+βa)

) 1
α
as in the case with continuous radiation with repopulation.

By linearising equation (5.21) I can �nd the amount of radiation needed to kill o� the
tumour, thus for the trivial stationary point N1 to be stable.

∂f(N)

∂N
=
r

α
− µA+ βA

r

α
− r

αKα
Nα(α + 1)− βA r

α

(
N

K

) 1
α

(α + 1)

⇒ ∂f(N1)

∂N
=
r

α
− µA+ βA

r

α

⇒ ∂f(N1)

∂N
(N(t)−N1) =

( r
α
− µA+ βA

r

α

)
(N(t)−N1)

By setting N∗(t) = N(t)−N1 I can �nd the solution N∗(t)

dN∗

dt
=
( r
α
− µA+ βA

r

α

)
N∗(t)
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⇒ N∗(t) =

{
N∗ne

(r/α−µa+βar/α)(t−n) if n < t ≤ n+ τ ,

N∗n+τe
r/α(t−n−τ) if n+ τ < t ≤ n+ 1,

From the case with radiation I can calculate N∗n+τ

N∗n+τ = N∗(t = n+ τ) = N∗ne
(r/α−µa+βar/α)τ .

Then inserting this into the case without radiation I get

N∗n+1 = N∗(t = n+ 1) = N∗ne
r/α−µaτ+βar/ατ .

For
a >

r

(αµ− βr)τ
it holds that

N∗n+1 < N∗n ∀n.
This means that when a is large enough the tumour shrinks each session, eventually dying
out, meaning N1 = 0 is stable. Again a needs to be larger than in the case of continuous
radiation with repopulation. For a < r

(αµ−βr)τ , N1 = 0 is unstable, since N∗n+1 > N∗n ∀n
thus the tumour grows each session.
Figure 41 shows two di�erent plots using equation (5.22). I used the same parameters

as in �gure 39 as well as setting β = 0.3. The black line shows tumour growth without
radiation, the blue line shows tumour growth including periodic radiation, as in the basic
model, and the red curve uses the model with repopulation. As one can see, adding
repopulation does not change the outcome as much as repair does, for example. This can
be due to the parameter values chosen in �gures 40 and 41. As one can see from the blue
and the red line in plot 41a, the tumour cell population grows if the radiation dose is
too low. For a > r

(αµ−βr)τ = 2.4 the tumour cell population including repopulation tends

to zero (plot 41b). Of course the model without repopulation (blue line) does so as well,
since a only had to be larger than 1.925 in this model.

(a) a = 1 (b) a = 3

Figure 41: Tumour growth without radiation in black, with radiation in blue and including
repopulation in red, using equation (5.22). Additional parameter values are
r = ln 2/24, N0 = 10, K = 100, α = 1.5, µ = 0.1, τ = 0.1 and β = 0.3.
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5.1.3. Model versus Data

As I did in section 3.1.5 when I compared tumour growth data to my model, I now want
to compare data of radiated tumour cells to the models in this chapter.

Human Ductal Breast Epithelial Tumour Cells The growth of T47D cells was mea-
sured in vitro by the Institute of Radiation Biology, Helmholtz-Zentrum München [AH12]
using the GravityPLUS System from InSphero (www.insphero.com). This is the same cell
line as one of the experiments in section 3.1.5 and is known to be radioresistant. In this
experiment, 500 cells were placed on a 96-well plate and left to grow to a spheroid in a
hanging drop for three days, after which it was dropped into a gravity plate and left for
one more day. Time t was set to zero and the cells were radiated once with either 2, 4, 6
or 8 Gy of γ-rays. It is assumed that the γ-rays reach all cells equally. In addition, cells
without radiation were measured to compare normal growth to growth with radiation.
The area (in µm2) of the spheroids were measured starting at t = 0 every three days until
day 15. Each experiment was done twelve times and the mean of the collected data can
be seen in table 2. To be comparable, the areas were normalised to the value at day zero
and zero Gy.
Another experiment done by the same authors was a cell counting experiment (also

with T47D cells). Various spheroids on four di�erent days were measured and the cells
were counted, resulting in a mean area of each measured day and a mean cell number per
µm2. I �tted these four data points to a function as seen in �gure 42. This allowed me
to approximate the number of cells for each measurement in table 2. The results of the
function applied to the data in table 2 can be found in table 3. One can see from �gure
42 that the larger the tumour becomes, the less space a single cell occupies. This means
that in the early growth stages the cells are spaced further apart and take up more space
than in the later stages. This is why I need to approximate the number of cells using a
funtion as in �gure 42 rather than using simple linear interpolation.

Area (µm2) days
radiation 0 3 6 9 12 15
0 Gy 77,664 130,903 193,318 216,481 231,863 243,738
2 Gy 77,664 121,184 163,614 177,630 197,306 206,191
4 Gy 77,664 118,167 141,484 157,978 155,417 172,166
6 Gy 77,664 121,163 137,945 144,074 152,006 158,432
8 Gy 77,664 119,279 131,165 125,826 135,066 145,247

Table 2: Mean spheroid areas measured over a period of 15 days and di�erent radiation
doses; source: [AH12].
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Figure 42: Function (blue line) to �t data (black dots) by [AH12].

No. of cells days
radiation 0 3 6 9 12 15 Survival
0 Gy 564.32 2,393.71 6,885.54 9,037.09 10,539.96 11,721.89 100%
2 Gy 564.32 1,922.83 4,455.84 5,545.76 7,243.12 8,060.54 69%
4 Gy 564.32 1,789.94 2,981.46 4,050.18 3,872.42 5,107.74 44%
6 Gy 564.32 1,921.87 2,776.20 3,137.19 3,642.32 4,082.09 35%
8 Gy 564.32 1,838.21 2,407.38 2,139.53 2,615.68 3,209.19 27%

Table 3: Corresponding number of cells based on data in table 2 approximated by the
function in �gure 42.

Before applying a model with radiation to the data, I need to �nd the basic model
parameters for tumour growth. Thus I use the generalised logistic growth equation from
section 3.1.3 to model the data with no radiation (0 Gy). The value for the initial number
of tumour cells N0 was set to 564.32 as in table 3 and the net proliferation rate r was set
to ln 2

60
as the cells have a doubling time of 60 hours. This means that the time between

two successive mitoses is 60 hours. The values for the capacity K and α were chosen to
minimise the error (calculated as in equation (3.7)). Therefore K was set to 12, 690 and
α to 0.169. α is a lot smaller than one since this speci�c cell line reaches its capacity very
quickly. In section 3.1.5 the growth of the T47D cell line was also analysed and α was
equally fairly small. Figure 43 shows the results of the model (red line) compared to the
data (black dots), resulting in an error of 0.0283. Since the model manages to capture the
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data, I can now start applying radiation and compare this to the data for two to eight
Gy.

Figure 43: Modelling the growth of T47D breast cancer cells. Red line is the generalised
logistic growth model (equation (3.6)) and the black dots are the data points.
Parameter values are r = ln 2/60, N0 = 564.32, α = 0.169 and K = 12, 690.
Data from [AH12].

To include radiation, I used a model with periodic radiation as in section 5.1.2 but
with only one period, so n = 0, since the cells were only radiated once at t = 0 in this
experiment. I began with comparing the data to the basic model from equation (5.17),
setting µ = 0.4 to get the best �t. This minimises the error (calculated as in equation
(3.7)). After this, I compared the data to the extended model with repopulation. By
setting β=0.9 I get the best �t to the data. This also further minimises the error, even if
it is only a small improvement. As seen in �gure 41 repopulation did not result in a huge
change compared to the basic model. Figure 44 compares the model (red lines) with the
above mentioned parameters to the data (black dots), whereby with each plot the amount
of radiation increases. However, so do the errors, with the model for a = 2 having the
best �t with an error of 0.0214 and the model for a = 8 the worst with an error of 1.1223.
The error for a = 4 is 0.0429 and 0.2911 for a = 6. Figure 45 compares all �ve models for
the di�erent amounts of radiation.
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(a) a = 2 (b) a = 4

(c) a = 6 (d) a = 8

Figure 44: Modelling the growth of T47D breast cancer cells. Red lines use the model for
periodic radiation with repopulation (equation (5.22)). Black dots are the data
points. Same parameters as in �gure 43 with µ = 0.4 and β = 0.9. Data from
[AH12].

Figure 45: Comparison of the previous �ve �gures with black/dots for 0 Gy, blue/stars
for 2 Gy, green/diamonds for 4 Gy, red/crosses for 6 Gy and cyan/triangles for
8 Gy. Data from [AH12].
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5.2. Spatial Model

The previous chapter showed that my mathematical models managed to capture the
given data. However, since this data was only based on estimated number of cells, I now
want to apply a model to the data that was actually measured. Table 2 in section 5.1.3
listed the means of the measured tumour areas over a period of 15 days and for di�erent
amounts of radiation. From this data I can easily calculate the corresponding mean radii.
Consequently, I need to �nd an equation or a system of equations that can model the
spatial growth of the tumour.
Burton [Bur66] and Greenspan [Gre72] created the earliest spatially-structured models

of avascular tumour growth in the nineteen sixties and seventies. Thereby they were able
to �nd the proportions of the tumour that were hypoxic and nectrotic. In this chapter
I assume (as did Burton and Greenspan) that I am working with a radially-symmetric
tumour in form of a spheroid [Pre03].
In chapter 2.1 I explained the structure of a tumour as seen again in �gure 46. A tumour

needs oxygen and other nutrients to grow. Nutrients di�using in from adjacent normal
tissue are consumed by proliferating tumour cells. As the tumour grows, not enough
nutrients reach the cells in the centre of the tumour and they will stop multiplying and
eventually die, creating a necrotic core, which continues to increase in size while the
tumour grows. Figure 46 shows the structure of an avascular tumour, which consists of
an outer rim of proliferating cells and a necrotic core. These regions are separated by a
layer of hypoxic cells that are quiescent.

R(t)

RH(t)

RN (t)

Figure 46: Tumour structure with outer radius R(t), hypoxic radius RH(t) and necrotic
radius RN(t).

R(t) denotes the outer tumour radius, so the radius of the entire tumour, RH(t) the
radius of the hypoxic part of the tumour, this includes the necrotic core if it exists and
RN(t) denotes the radius of the necrotic core. All three radii change over time, thus this is
a moving boundary problem. As explained in chapter 2.1 the growth of the tumour and the
development of hypoxic and necrotic regions depends on the local nutrient concentration,
hence this needs to be included in the following model.
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5.2.1. Mathematical Model

The main source of motion and transport at a molecular level is di�usion. Cells move
around in random motion and thereby spread out [Mur89]. Suppose c(x, t) describes a
population density at time t ∈ [0,∞) and spatial position x ∈ R. Then a simple one-
dimensional di�usion equation is

∂c

∂t
= Dc

∂2c

∂x2

⇔ ∂c

∂t
= Dc∇2c

(5.23)

where Dc denotes the di�usion coe�cient, which is constant and represents the degree of
random motion [All07]. The left-hand side of the equation describes the rate of change of
the population density.
From this di�usion equation I can obtain a simple reaction-di�usion equation of the

form
∂c

∂t
= Dc

∂2c

∂x2
+ f(c) (5.24)

where f(c) describes the population growth rate [Mur89].
For this spatial model I assume c(r, t) to be the nutrient concentration at time t at

distance r from the core of the tumour. Then the equation for c reads

∂c

∂t
= Dc∇2c− ΓH(r −RN) (5.25)

where Dc denotes the constant di�usion equation of the nutrients [Pre03]. The reaction
term in this equation is f(c) = −ΓH(r − RN) and it describes nutrient consumption
by proliferating and quiescent cells at a constant rate Γ. The Heaviside step function
H(r − RN) equals one if r ≥ RN and zero otherwise. This means that the reaction term
is f(c) = −Γ if r ≥ RN and zero otherwise, meaning only the cells in the hypoxic region
and proliferating rim consume nutrients at rate Γ, necrotic cells do not.
Since I assume the tumour to be a radially-symmetric spheroid, the di�usion term of

equation (5.25) reads

Dc∇2c = Dc
1

r2

∂

∂r

(
r2 ∂c

∂r

)
.

The equation for the nutrient concentration throughout the tumour is one part of the
model. The other part is the growth of the tumour, which depends on the nutrient con-
centration. The rate of change of the tumour volume V is described by looking at the rate
of change of the tumour radius R, since the volume of a spheroid is calculated based on
its radius

V =
4

3
πR3.

Therefore the equation for the rate of change of the tumour volume reads

1

3

dR3

dt
= R2dR

dt
=

∫ R

RH

pc(r, t)r2 dr −
∫ R

0

p (λA + λNH(RN − r) + µA) r2 dr (5.26)
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where the �rst integral describes the total rate of cell proliferation proportional to the
nutrient concentration c and the second integral the total rate of cell death [Pre03]. Since
cell proliferation only occurs in nutrient-rich regions, the �rst integral is larger than zero
if r ≥ RH , meaning for radii in the proliferating rim. The total rate of cell death is the
sum of the rate of apoptosis (orderly cell death) λA, which is constant throughout the
tumour, the rate of necrosis λNH(RN − r) in nutrient-poor regions (in the necrotic core
where r ≤ RN) and the rate of cell death due to radiation µA.

When considering other forms of treatment, for example, chemotherapy, the amount A
could be substituted by

∫ R
0
A(r, t)dr in the above equation since the curing chemical does

not have the same concentration throughout the tumour. Then the equation for the rate
of change of the chemical would read

∂A

∂t
= DA

1

r2

∂

∂r

(
r2∂A

∂r

)
.

However, as explained in section 5.1.3 all tumour cells received the same amount of radi-
ation in the experiments done by the Institute of Radiation Biology, Helmholtz-Zentrum
München [AH12], which I will later apply to the spatial model. Thus I set ∂A

∂t
= 0 = ∂A

∂r

and A(r, t) =: A constant throughout the tumour.

The boundaries of the inner radii are de�ned as

• c(r, t) > cH ∀r ∈ (0, R)

⇒ RN = RH = 0

• ∃r ∈ (0, R(t)) s.t. cN < c(r, t) ≤ cH

⇒ RN = 0 < RH < R with c(RH , t) = cH

• ∃r ∈ (0, R(t)) s.t. c(r, t) ≤ cN < cH

⇒ 0 < RN < RH < R with c(RN , t) = cN and c(RH , t) = cH

(5.27)

with cH being the minimum nutrient concentration at which cells are able to proliferate
and cN the maximum nutrient concentration at which necrosis occurs [Pre03]. To complete
the model, initial and boundary conditions need to be speci�ed. They are given by

• ∂c
∂r

= 0 at r = 0

• c = c∞ on r = R(t)

• c and ∂c

∂r
continuous across r = RH(t) and r = RN(t)

• c(r, 0) = c0(r) and R(t = 0) = R0.

(5.28)

On r = 0 the tumour is symmetric, so that there is no continuous movement in the core
of the tumour. In addition, a constant nutrient concentration c∞ governs outside of the
tumour.

66



5.2 Spatial Model 5 IMPROVED MODELS FOR RADIOTHERAPY

To be able to analyse the model, the system needs to be brought to a dimensionless
form, meaning the variables need to be rescaled. In the following, dimensionless variables
are denoted by carets. The variables are rescaled as followed

ĉ =
c

C
, r̂ =

r

X
, t̂ =

t

T

R̂ =
R

X
, R̂H =

RH

X
, R̂N =

RN

X

where C, X and T denote typical nutrient concentration, length and time scales. Substi-
tuting into the model gives the following dimensionless equations

∂ĉ

∂t̂
=
TDc

X2

1

r̂2

∂

∂r̂

(
r̂2 ∂ĉ

∂r̂

)
− ΓT

C
H(r̂ − R̂N) (5.29)

dR̂

dt̂
R̂2 =

∫ R̂

0

p
(
ĉCTH(r̂ − R̂N)− λAT − λNTH(R̂N − r̂)− µAT

)
r̂2 dr̂ (5.30)

I use the tumour doubling time 1
pC

to set the timescale T . In addition, I know that

O(Γ) = O(Dc/X
2)� O(1/T ) from experiments and I multiply equation (5.29) with X2

TDc
.

This results in

∂ĉ

∂t̂

X2

TDc

= 0 =
1

r̂2

∂

∂r̂

(
r̂2 ∂ĉ

∂r̂

)
− Γ̂H(r̂ − R̂N) (5.31)

dR̂

dt̂
R̂2 =

∫ R̂

0

(
ĉH(r̂ − R̂N)− λ̂A − λ̂NH(R̂N − r̂)− µ̂A

)
r̂2 dr̂ (5.32)

with Γ̂ = ΓX2

DcC
, λ̂A = λAC, λ̂N = λNC and µ̂ = µC [Pre03].

The initial and boundary conditions for the dimensionless system are given by

• ∂ĉ
∂r̂

= 0 at r̂ = 0

• ĉ = ĉ∞ =
c∞
C

on r̂ = R̂

• R̂H = 0 if ĉ > ĉH =
cH
C
∀r̂ otherwise ĉ(R̂H , t̂) = ĉH

• R̂N = 0 if ĉ > ĉN =
cN
C
∀r̂ otherwise ĉ(R̂N , t̂) = ĉN

• R̂(0) = R̂0.

(5.33)

From now on I will drop the carets for brevity.
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5.2.2. Model Analysis

Tumour growth can be split into three stages:

1 only proliferating cells exist,

2 due to a reduced nutrient concentration in the centre of the tumour, quiescent cells
start to develop,

3 due to an even lower nutrient concentration in the tumour's core, cells start to die
in the centre, giving rise to a fully developed avascular tumour with three di�erent
regions.

Stage 1 I solve equation (5.31) for the nutrient concentration

0 =
1

r2

∂

∂r

(
r2 ∂c

∂r

)
− Γ

⇔ c(r, t) =
Γ

6
r2 − z1

r
+ z2

with z1 and z2 ∈ R. Applying the boundary conditions from equation (5.33) renders the
exact solution for the nutrient concentration

c(r, t) = c∞ −
Γ

6
(R2 − r2). (5.34)

At this stage, the tumour only consists of proliferating cells, so c > cH ∀r ∈ (0, R) and
RN = RH = 0. Therefore

c(r, t) > cH ⇔ c∞ −
Γ

6
(R2 − r2) > cH

⇔ 6

Γ
(c∞ − cH) > R2 − r2

Thus for this stage I only look at radii for which

0 < R2(t) <
6

Γ
(c∞ − cH)

holds. Consequently, if R2 → 6
Γ
(c∞ − cH) the nutrient concentration will tend to cH for

r → 0. Meaning the nutrient concentration tends to cH in the tumour's core if R2 tends to
its maximum for which only proliferating cells exist. This con�rms that neither quiescent
nor necrotic cells exist (RH = RN = 0).
Inserting the solution for the nutrient concentration into equation (5.32) for the tumour

radius and setting RH = RN = 0 renders

dR

dt
R2 =

∫ R

0

(
c∞ −

Γ

6
(R2 − r2)− λA − µA

)
r2 dr

⇒ dR

dt
=
R

3

(
c∞ − λA −

Γ

15
R2 − µA

)
(5.35)
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Stage 2 The nutrient concentration for this stage is the same as in equation (5.34)

c(r, t) = c∞ −
Γ

6
(R2 − r2)

since both proliferating and quiescent cells consume nutrients at the same rate. As pro-
liferating and quiescent cells exist at this stage, c(RH , t) = cH holds according to the
boundary conditions and, therefore, the size of of quiescent radius can be calculated to

cH = c∞ −
Γ

6
(R2 −R2

H)

⇔ R2
H = R2 − 6

Γ
(c∞ − cH). (5.36)

Therefore, the outer tumour radius needs to be larger than 6
Γ
(c∞− cH) for both cell types

to exist in this stage. In addition, no necrotic cells exist, so c > cN ∀r ∈ (0, R) and thereby
6
Γ
(c∞ − cN) > R2 − r2. Accordingly for this stage, I only look at radii for which

6

Γ
(c∞ − cH) < R2(t) <

6

Γ
(c∞ − cN)

holds. Hence if R2 → 6
Γ
(c∞ − cN) the nutrient concentration will tend to cN for r → 0.

Meaning the nutrient concentration tends to cN in the tumour's core if R2 tends to its
maximum for which both proliferating and quiescent cells exist. This con�rms that no
necrotic cells exist (0 = RN < RH).
Inserting the solution for the nutrient concentration into equation (5.32) for the tumour

radius and setting RN = 0 renders

dR

dt
=
R

3

((
c∞ −

Γ

6
R2 − λA − µA

)(
1− R3

H

R3

)
+

Γ

10
R2

(
1− R5

H

R5

))
. (5.37)

Stage 3 The �nal growth stage of an avascular tumour consists of necrotic, quiescent and
proliferating cells. This time when solving equation (5.31) for the nutrient concentration,
I need to di�erentiate between the case where r is smaller than RN (no nutrients are
consumed) and where r is larger than RN (nutrients are consumed by quiescent and
proliferating cells). The solution for the nutrient concentration is then

c(r, t) =

{
cN if 0 < r ≤ RN ,

cN + Γ
6r

(r −RN)2 (r + 2RN) if RN < r < R.
(5.38)

The outer tumour radius needs to be larger than 6
Γ
(c∞ − cN) for all three types of cells

to exist. Thus for this stage I only look at radii for which

R2(t) >
6

Γ
(c∞ − cN)

holds. The hypoxic radius can be calculated as in stage 2 and the necrotic radius as follows

R2
N = R2 − 6

Γ
(c∞ − cN). (5.39)
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Inserting the solution for the nutrient concentration into equation (5.32) for the tumour
radius renders

dR

dt
=
R

3

(
cN

(
1− R3

H

R3

)
− (λA + µA)

(
1 +

R3
N
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(5.40)

Now that I have a complete system for all three stages of growth I can apply the given
data to this model.

5.2.3. Model versus Data

As explained in section 5.1.3 the growth of T47D cells was measured in vitro by the Insti-
tute of Radiation Biology, Helmholtz-Zentrum München [AH12] using the GravityPLUS
System from InSphero (www.insphero.com). In this experiment, 500 cells were placed on
a 96-well plate and left to grow to a spheroid in a hanging drop for three days, after
which it was dropped into a gravity plate and left for one more day. Time t was set to
zero and the cells were radiated once with either 2, 4, 6 or 8 Gy of γ-rays. It is assumed
that the γ-rays reach all cells equally. In addition, cells without radiation were measured
to compare normal growth to growth with radiation. The area (in µm2) of the spheroids
were measured starting at t = 0 every three days until day 15. Each experiment was done
twelve times and the mean of the collected data can be seen in table 2. The areas were
normalised to the value at day zero and zero Gy to be comparable. From the given tumour
areas, I calculated the corresponding radii, which can be seen in table 4.

Radius (µm) days
radiation 0 3 6 9 12 15
0 Gy 157 204 248 263 272 279
2 Gy 157 196 228 238 251 256
4 Gy 157 194 212 224 222 234
6 Gy 157 196 210 214 220 225
8 Gy 157 195 204 200 207 215

Table 4: Mean spheroid radii corresponding to areas in table 2 measured over a period of
15 days and di�erent radiation doses; source: [AH12].

As in the previous chapters, before applying the model with radiation to the data, I
need to �nd the model parameters for tumour growth without radiation. To be able to
implement the model I need to make the following assumptions: if the tumour radius is
larger than 200µm, a necrotic core exists [TG95, GMK96, DS81] and if the distance to the
nutrients is larger than 100µm, cells become quiescent [DS81]. In addition, the external
nutrient concentration c∞ is set to one, since this was an in vitro experiment. Based on
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these assumptions I can calculate the concentrations cH and cN as follows

cH = 1− Γ

6
1002

cN = 1− Γ

6
2002.

To plot the model I used equation (5.35) (stage 1) if R < 100µm, equations (5.37) and
(5.36) (stage 2) if 100µm ≤ R < 200µm and equations (5.40), (5.36) and (5.39) if R ≥
200µm. I used algorithm 3 in appendix C to �nd smallest error based on equation (3.7).
The algorithm �nds the best values for λA, λN and Γ. Figure 47 uses λA = 0.24, λN = 0.57
and Γ = 0.00014 and the error is 4.85 · 10−4. This is a much better �t than in section
5.1.3 where I looked at the estimated number of cells. Figure 47 compares the model to
the data for no radiation, so A = 0.

Figure 47: Modelling the growth of T47D breast cancer cells. Cyan line is the outer tumour
radius, blue line the hypoxic radius and the black line the necrotic radius.
Parameter values are R0 = 157, λA = 0.24, λN = 0.57, Γ = 0.00014 and
A = 0. Data from [AH12].

In �gure 48 I plotted the outer tumour radius (cyan circles) using the data from table 4.
The hypoxic (blue circles) and necrotic (black circles) radii were calculated by applying
equations (5.36) and (5.39) to the data, which are the outer tumour radii. Here one can
see that the thickness of the viable rim remains fairly constant once necrosis has started.
In addition, one can see that the growth between day zero and day three is much larger
than in the later stages, for example, between day twelve and day 15. This corresponds to
the �ndings in chapter 3.1, where I analysed di�erent tumour growth models. The result
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being that the initial growth phase is exponential, which, however, slows down over time
until the tumour eventually reaches its capacity.

(a) Day 0 (b) Day 3 (c) Day 6

(d) Day 9 (e) Day 12 (f) Day 15

Figure 48: Modelling the growth of T47D breast cancer cells. Cyan lines are the outer
tumour radii, blue lines the hypoxic radii and the black lines the necrotic radii.
Parameter values are R0 = 157, λA = 0.24, λN = 0.57, Γ = 0.00014 and A = 0.
Data from [AH12].

To include radiation, I used the same models as for the plots above without radiation
but set A > 0. Figure 49 compares the model (cyan lines) to the data (black dots),
whereby the amount of radiation increases with each plot. The same parameter values
were chosen as in the above plots for simple tumour growth. In addition, the parameter µ
had to be set. As in the previous chapters I want to choose the paraemters so to minimise
the error. However, plotting the model versus the data, I found that µ depends on the
amount of radiation. Meaning here that lower doses of radiation have a higher impact than
larger doses (per Gy). This suggests that cells show an abnormally high radiosensitivity
(hypersensitivity) to lower doses of radiation, as discussed in chapter 4 [CHN09]. This
can also be seen by looking at the data in table 4 from which one can calculate the mean
volumes of the tumours. Whilst two Gy results in a decline of 22% of the tumour's volume
after 15 days, eight Gy only results in a reduction of 54%, which is not four times as much
as the result two Gy gives. For this reason I choose to di�erentiate between low radiation
doses of up to �ve Gy and high radiation doses from �ve Gy onwards. Therefore the
parameter µ takes on di�erent values depending if A ≤ 5 or A > 5. Setting

µ =

{
0.078 if A ≤ 5,

0.055 if A > 5
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results in the smallest error based on equation (3.7).
Figure 49 shows the results when using the above mentioned parameters and increasing

radiation doses. The errors increase with the increase in radiation, however, they are still
much smaller than in the previous section where I compared the estimated number of
cells to my models. Using A = 2 results in an error of 6.9 · 10−4, using A = 4 in an error
of 6.1 · 10−3, using A = 6 in an error of 0.0119 and, �nally, using A = 8 results in an
error of 0.0238. Looking at table 4 one can see that day three, does not show sinking radii
values with increased radiation, as one would expect. In addition, looking at the values for
eight Gy, one can see that the tumour radius seems to shrink at day nine and then grow
again. Since these are only experimental values, some points can stray further away from
the model solution curve. Figure 50 compares all �ve models for the di�erent amounts of
radiation.

(a) A = 2 (b) A = 4

(c) A = 6 (d) A = 8

Figure 49: Modelling the growth of T47D breast cancer cells using radiation. Cyan line
is the outer tumour radius, blue line the hypoxic radius and the black line the
necrotic radius. Black dots are the data points. Same parameters as in �gure
43 with µ = 0.4 and β = 0.9. Data from [AH12].
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Figure 50: Comparison of the previous �ve �gures with black/dots for 0 Gy, blue/stars for
2 Gy, green/diamonds for 4 Gy, red/crosses for 6 Gy and magenta/triangles
for 8 Gy. Data from [AH12].

Figure 51 shows the development of the tumour as in �gure 48 however using a radiation
dose of six Gy this time. The outer tumour radii (cyan circles) are plotted using the data
from table 4. The hypoxic (blue circles) and necrotic radii (black circles) were calculated
by applying equations (5.36) and (5.39) to the data. Comparing these plots to the ones
using no radiation in �gure 48, one can see the e�ect radiation has on the growth of a
tumour. Using radiation once at t = 0 clearly hinders the tumour from growing as fast
and to the size it could without radiation.

(a) Day 0 (b) Day 3 (c) Day 6

(d) Day 9 (e) Day 12 (f) Day 15

Figure 51: Modelling the growth of T47D breast cancer cells using radiation. Cyan lines
are the outer rumour radii, blue lines the hypoxic radii and the black lines
the necrotic radii. Parameter values are R0 = 157, λA = 0.24, λN = 0.57,
Γ = 0.00014 and A = 6. Data from [AH12].
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6. Conclusion

Discussion

In this thesis, I have presented two complementary modelling approaches that have been
used to study the growth of avascular tumours. These range from cell population models,
which can be formulated as coupled systems of ordinary di�erential equations, to moving
boundary problems showing the spatial growth of a tumour. In each case, I applied ra-
diation therapy to the growth models and compared these to data collected of the T47D
cell line.
I refrained from using the LQ-model or any of its extensions, since its strong drawback

is the fact that the time course of the treamtment is not included in the equations.
In addition, the two main parameters α and β are known for many cell lines but not
necessarily for all.
Having compared growth models for a tumour cell population to various data sets, I

found that the generalised logistic equation allows for the best �t and �exibility and is
well suited to represent data. Based on this model, I extended the growth equation to
incorporate radiotherapy. This was done in two ways, one by assuming constant radiation
and the other by assuming periodic radiation. Each model was then extended to either
incorporate repair or repopulation. In addition, I looked at a heterogenous tumour cell
population, whereby I di�erentiated between two cases. One was the case where I looked
at proliferating and quiescent cells and their di�erence in radiosensitivity. This resulted
in the possible coexistance of the two cell types. The second case looked at the di�erence
in radiosensitivity of either more sensitive or more resistant cells. Hereby coexistance of
the two cell types was not possible. In each model the aim was to �nd the amount of
radiation needed to kill all tumour cells.
A complementary approach to modelling cell populations is to look at the spatial growth

of the tumour. This was done in the �nal chapter. Again, radiotherapy was incorporated
into the growth model and �nally compared to the given data.
The spatial model was a much better �t to the given data. However, considering the fact

that the cell population models with radiation were only compared to data of estimated
number of cells, they also succeeded in modelling real data. Concluding, I can say that it
is best to use a model that can be directly compared to given data as every estimation
can further impair the quality and exactness of the data. On the other hand, it depends
on what kind of information one is looking for and what the tolerated error is.

Outlook

The risk of developing cancer before the age of 75 is 23.6% in women 32.5% in men in
Germany [FSB+10] and this motivates further research in this area.
The models in chapter 5.1 could be extended to include the nutrient concentration inside

the tumour. For example, the rates for proliferating cells becoming quiescent and vice versa
could depend on the local nutrient concentration c. Then the system of equations (5.7)
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would become

dP

dt
=
r

α
P

(
1−

(
P +Q

K

)α)
− µAP − kPQ(c)P + kQP (c)Q =: f(P,Q)

dQ

dt
= kPQ(c)P − kQP (c)Q =: g(P,Q)

The equation for the nutrient concentration could be set as in the spatial model in chapter
5.2.
The spatial model could also be extended by only applying radiation to proliferating

and quiescent cells, since necrotic cells are very radioresistant. Then the equation for the
rate of change of the tumour volume would read

1

3

dR3

dt
= R2dR

dt
=

∫ R

RH

pc(r, t)r2 dr −
∫ R

0

p (λA + λNH(RN − r) + µAH(r −RN)) r2 dr

In addition to the factors repair, repopulation and radiosensitivity, the aspect of redis-
tribution over the cell cycle could be analysed. This can be done with the help of delay
di�erential equations.
However, analysing these models would go beyond the scope of this thesis.
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Appendix A Data used for Figures in Chapter 2.2

Female
Deaths Cancer type
# %

16967 18% Breast
13155 14% Colorectum
12521 13% Lung
7216 7% Pancreas
5486 6% Ovary
4606 5% Stomach
3253 3% Leukaemia
2721 3% Brain, nervous system
2659 3% Non-Hodgkin lymphoma
2551 3% Kidney
2303 2% Liver
2210 2% Gallbladder
2018 2% Cervix uteri
1979 2% Multiple myeloma
1787 2% Bladder
1760 2% Corpus uteri
1159 1% Oesophagus
1111 1% Melanoma of skin
621 1% Lip, oral cavity
433 0% Thyroid
398 0% Other pharynx
178 0% Larynx
111 0% Hodgkin lymphoma
40 0% Nasopharynx

9375 10% Other
96618 100% Total

Male
Deaths Cancer type
# %

29274 25% Lung
14427 12% Colorectum
12153 11% Prostate
7016 6% Pancreas
5970 5% Stomach
4416 4% Liver
4328 4% Kidney
3917 3% Leukaemia
3818 3% Oesophagus
3487 3% Bladder
3090 3% Brain, nervous system
2858 2% Non-Hodgkin lymphoma
2026 2% Other pharynx
2021 2% Multiple myeloma
1488 1% Lip, oral cavity
1403 1% Melanoma of skin
1371 1% Gallbladder
1270 1% Larynx
265 0% Thyroid
150 0% Testis
127 0% Hodgkin lymphoma
79 0% Nasopharynx

10617 9% Other

115571 100% Total

Table 5: Data for Figures 2 and 3; Source: [FSB+10]
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Incidence Mortality Cancer type

# #

64,147 16,967 Breast

32,165 13,155 Colorectum

15,070 12,521 Lung

10,776 1,760 Corpus uteri

8,711 5,486 Ovary

8,566 1,111 Melanoma of skin

7,344 7,216 Pancreas

6,996 2,551 Kidney

6,744 2,659 Non-Hodgkin lymphoma

6,423 4,606 Stomach

6,021 1,787 Bladder

4,917 3,253 Leukaemia

4,440 2,018 Cervix uteri

3,233 2,721 Brain, nervous system

2,823 433 Thyroid

2,790 2,210 Gallbladder

2,718 1,979 Multiple myeloma

2,543 2,303 Liver

2,023 621 Lip, oral cavity

1,409 1,159 Oesophagus

911 398 Other pharynx

674 111 Hodgkin lymphoma

479 178 Larynx

113 40 Nasopharynx

16,652 9,375 Other

218,688 96,618 Total

Incidence Mortality Cancer type

# #

70,792 12,153 Prostate

38,239 14,427 Colorectum

34,799 29,274 Lung

17,183 3,487 Bladder

11,673 4,328 Kidney

8,840 5,970 Stomach

7,682 1,403 Melanoma of skin

7,349 7,016 Pancreas

6,879 2,858 Non-Hodgkin lymphoma

6,162 3,917 Leukaemia

5,131 4,416 Liver

4,930 3,818 Oesophagus

4,145 1,488 Lip, oral cavity

4,028 2,026 Other pharynx

3,676 1,270 Larynx

3,630 150 Testis

3,628 3,090 Brain, nervous system

2,932 2,021 Multiple myeloma

1,887 1,371 Gallbladder

1,546 265 Thyroid

861 127 Hodgkin lymphoma

208 79 Nasopharynx

14,973 10,617 Other

261,173 115,571 Total

Table 6: Data for Figure 4 (left: female, right: male); Source: [FSB+10]
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Appendix B List of Variables

Variables used in Chapter 3.1
t time
N(t) number of tumour cells at time t
N0 initial number of tumour cells
r net proliferation rate, r > 0
K carrying capacity
α generalised logistic equation variable, α > 0

Variables used in Chapter 3.2
N(t) total number of tumour cells at time t
P (t) number of proliferating tumour cells
Q(t) number of quiescent tumour cells
D(t) number of dead tumour cells
λ rate of degradation
kij rate at which tumour cells leave state i for state j

Variables used in Chapter 4
Y yield of lethal lesions
S survival fraction
S∗ number of cells left after irradiation
S0 initial number of cells
D radiation dose
α cell kill per Gy of linear component
β cell kill per Gy2 of quadratic component
d dose per fraction
n number of fractions
λ repair rate
τ repair half-time
µ repopulation constant
Tp doubling time
Tk time delay
dc threshold dose for hypersensitivity

Variables used in Chapter 5.1
A(t) amount of radiation administered at time t in Gy
µ how much cells are damaged per Gy of radiation
ρ how many cells are able to repair themselves in an hour per Gy
λ repair rate
Tr repair half-time (in hours)
β how many cells are able to proliferate per Gy
P (t) number of proliferating cells
Q(t) number of quiescent cells
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kPQ rate at which proliferating cells become quiescent
kQP rate at which quiescent cells become viable
S(t) number of sensitive cells
R(t) number of resistant cells
τ proportional duration of radiation
n radiation session

Variables used in Chapter 5.2
R(t) outer tumour radius
RH(t) hypoxic radius
RN(t) necrotic radius
c(r, t) nutrient concentration
r distance from tumour core
cH nutrient concentration at r = RH(t)
cN nutrient concentration at r = RN(t)
c∞ external nutrient concentration
Dc di�usion coe�cient
Γ nutrient consumption rate
λA rate of apoptosis
λN rate of necrosis
A radiation dose administered in Gy
µ how much cells are damaged per Gy of radiation

Table 7: Variables used in Chapters 3 to 5
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Appendix C MatLab Codes

Chapter 3

Homogenous Tumour Growth

Used for �gure 6a on page 12.

1 %log growth equation with inflection point
2 clear all
3 %parameter values
4 t=0:300; %time
5 T=length(t);
6 N0=10; %initial number of cells
7 r=log(2)/24; %net proliferation rate
8 K=100; %carrying capacity
9 N2=zeros(1,T); %tumour cells

10 for j=1:T−1
11 N2(1)=N0;
12 N2(j+1)=K*N0/(N0+exp(−r*j)*(K−N0));
13 end
14 Ya=[' 0 ';'K/2';' K ']; %y−axis ticks
15 tinfl=log((K−N0)/N0)/r; %inflection point
16 figure;
17 plot (t,N2,'Color','k')
18 hold on
19 plot(tinfl,K/2,'ok','MarkerFaceColor','k')
20 xlabel('time, t')
21 ylabel('Cell number, N(t)')
22 ylim([0 120])
23 set(gca,'YTick',[0:50:100])
24 set(gca,'YTickLabel',Ya)

Used for �gure 6b on page 12.

1 %Tumour growth rate f(N) with inflection point
2 clear all
3 %parameter values
4 r=log(2)/24; %net proliferation rate
5 K=100; %carrying capacity
6 f=zeros(1,K); %growth function
7 f(1)=0;
8 for N=1:K
9 f(N+1)=r*N*(1−N/K);

10 end
11 Xa=[' 0 ';'K/2';' K ']; %x−axis ticks
12 figure;
13 plot (0:100,f,'Color','k')
14 hold on
15 plot(K/2,r*K/4,'ok','MarkerFaceColor','k')
16 ylabel('Tumour growth rate, f(N)')
17 xlabel('Cell number, N(t)')
18 ylim([0 0.8])
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19 set(gca,'YTick',[]);
20 set(gca,'XTick',[0:50:100])
21 set(gca,'XTickLabel',Xa)

Used for �gure 7 on page 15.

1 %differnet values for alpha; inflection points
2 clear all
3 %parameter values
4 alpha1=1; %general logistic equation parameter 1
5 alpha2=0.5; %general logistic equation parameter 2
6 alpha3=2; %general logistic equation parameter 3
7 r=log(2)/24; %net proliferation rate
8 K=100; %carrying capacity
9 f1=zeros(1,K); %growth functions

10 f2=zeros(1,K);
11 f3=zeros(1,K);
12 for N=1:K
13 f1(1)=0;
14 f1(N+1)=r/alpha1*N*(1−(N/K)^alpha1);
15 end
16 for N=1:K
17 f2(1)=0;
18 f2(N+1)=r/alpha2*N*(1−(N/K)^alpha2);
19 end
20 for N=1:K
21 f3(1)=0;
22 f3(N+1)=r/alpha3*N*(1−(N/K)^alpha3);
23 end
24 Xa=[' 0 ';'K/2';' K ']; %x−axis ticks
25 figure;
26 plot (0:100,f1,'Color','k')
27 hold on
28 plot (0:100,f2,'−−k')
29 hold on
30 plot (0:100,f3,':k')
31 hold on
32 plot(K/2,r*K/4,'ok','MarkerFaceColor','k')
33 hold on
34 plot(K/(alpha2+1)^(1/alpha2),r/alpha2*K/(alpha2+1)^(1/alpha2)*(1−1/(...

alpha2+1)),'ok','MarkerFaceColor','k')
35 hold on
36 plot(K/(alpha3+1)^(1/alpha3),r/alpha3*K/(alpha3+1)^(1/alpha3)*(1−1/(...

alpha3+1)),'ok','MarkerFaceColor','k')
37 ylabel('Tumour growth rate, f(N)')
38 xlabel('Cell number, N(t)')
39 ylim([0 1])
40 grid on
41 set(gca,'YTick',[]);
42 set(gca,'XTick',[0:50:100])
43 set(gca,'XTickLabel',Xa)
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Used for �gure 8 on page 15.

1 %comparison of models for tumour growth
2 clear all
3 %parameter values
4 t=0:300; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha1=0.5; %general logistic equation parameter 1

10 alpha2=2; %general logistic equation parameter 2
11 N1=zeros(1,T); %tumour cells, exp. equation
12 N2=zeros(1,T); %tumour cells, log. equation
13 N3=zeros(1,T); %tumour cells, log. equ., alpha1
14 N4=zeros(1,T); %tumour cells, log. equ., alpha2
15 %exponential equation
16 for i=1:T−1
17 N1(1)=N0; %at t=0
18 N1(i+1)=N0*exp(r*i); %from t=1 onwards
19 end
20 %log equation
21 for i=1:T−1
22 N2(1)=N0;
23 N2(i+1)=K*N0/(N0+exp(−r*i)*(K−N0));
24 end
25 %general log equation, alpha1
26 for i=1:T−1
27 N3(1)=N0;
28 N3(i+1)=K*(N0^alpha1/(N0^alpha1+(K^alpha1−N0^alpha1)*exp(−r*i)))^(1/...

alpha1);
29 end
30 %general log equation,alpha2
31 for i=1:T−1
32 N4(1)=N0;
33 N4(i+1)=K*(N0^alpha2/(N0^alpha2+(K^alpha2−N0^alpha2)*exp(−r*i)))^(1/...

alpha2);
34 end
35 figure
36 plot(t,N1,'Color','k')
37 hold on
38 plot (t,N2,'Color','b')
39 hold on
40 plot (t,N3,'Color','g')
41 hold on
42 plot (t,N4,'Color','r')
43 xlabel('Time, t')
44 ylabel('Cell number, N(t)')
45 grid on
46 ylim([0 120])
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Used for �gures 9 and 10 on pages 16 and 17.

1 %EAT − Ehrlich Ascites Tumour Growth
2 clear all
3 %data
4 t=[0,2,3,4,5,6,7,9,11,13,14,15,17]; %days
5 EAT=[4,8.46,19.9,31.4,53.6,69.2,91.2,132,142,130,132,114,81.5]; %cell ...

no.
6 EAT=EAT*10000000;
7 %parameter values
8 N0=EAT(1);
9 T=0:0.1:17;

10 TT=length(T);
11 K=150*10000000; r=0.6; alpha=1; %error=0.4201; erroradj=0.1291
12 %K=140*10000000; r=0.6; alpha=1; %error=0.3414; erroradj=0.1282
13 %K=160*10000000; r=0.6; alpha=1.1; %error=0.4697; erroradj=0.0935
14

15 %general logistic equation
16 N=K*N0./(N0^alpha+(K^alpha−N0^alpha)*exp(−r.*T)).^(1/alpha);
17

18 figure
19 plot(T,N,'Color','r')
20 hold on
21 plot(t,EAT,'.k','markersize',15)
22 xlabel('Time, t (days)')
23 ylabel('Cell Number, N(t)')
24 grid on
25 xlim([0 17])
26

27 %error
28 x(1)=((N(1)−EAT(1))/N(1))^2;
29 x(2)=((N(21)−EAT(2))/N(21))^2;
30 x(3)=((N(31)−EAT(3))/N(31))^2;
31 x(4)=((N(41)−EAT(4))/N(41))^2;
32 x(5)=((N(51)−EAT(5))/N(51))^2;
33 x(6)=((N(61)−EAT(6))/N(61))^2;
34 x(7)=((N(71)−EAT(7))/N(71))^2;
35 x(8)=((N(91)−EAT(8))/N(91))^2;
36 x(9)=((N(111)−EAT(9))/N(111))^2;
37 x(10)=((N(131)−EAT(10))/N(131))^2;
38 x(11)=((N(141)−EAT(11))/N(141))^2;
39 x(12)=((N(151)−EAT(12))/N(151))^2;
40 x(13)=((N(171)−EAT(13))/N(171))^2;
41 fehlerEAT=sum(x)
42 %adjusted error
43 y(1)=((N(1)−EAT(1))/N(1))^2;
44 y(2)=((N(21)−EAT(2))/N(21))^2;
45 y(3)=((N(31)−EAT(3))/N(31))^2;
46 y(4)=((N(41)−EAT(4))/N(41))^2;
47 y(5)=((N(51)−EAT(5))/N(51))^2;
48 y(6)=((N(61)−EAT(6))/N(61))^2;
49 y(7)=((N(71)−EAT(7))/N(71))^2;
50 y(8)=((N(91)−EAT(8))/N(91))^2;
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51 y(9)=((N(111)−EAT(9))/N(111))^2;
52 fehleradjEAT=sum(y)

Parts of code used for �gures 11,12 and 13 on pages 18 and 19.

1 %clear all
2 %function[N0,t,alpha,r,T,A34]=datagrowth()
3 t=[0,0.0008,0.0042,0.0292,0.0542,0.0792,0.1042,0.1292,0.1372,linspace(0...

.3875,67.1375,268),67.1375+0.0008,67.1375+0.0028,linspace(67.1375+0...

.2528,67.1375+72.5028,290),67.1375+72.7525,67.1375+73.0025,67.1375+73...

.2525,67.1375+73.5025,67.1375+73.7525,67.1375+74.0025,67.1375+74.2525...
,67.1375+74.5025,67.1375+74.7522];

4

5 A34a=[0
6 −0.0045
7 −0.0033

· · ·

1 %parameter values
2 N0=0.02;
3 T=length(t);
4 K=4.978; r=log(2)/19.8; alpha=0.017; %cell multiplies every 19.8 ...

hours
5

6 %general log equation for tumour growth, N3: cell index
7 N3=zeros(T,1);
8 for j=2:T
9 N3(1)=N0;

10 N3(j)=K*N0/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(j)))^(1/alpha);
11 end
12

13 %error
14 x=zeros(1,T);
15 errorA34=0;
16 for jj=1:T
17 x(jj)=((N3(jj)−A34(jj))/N3(jj))^2;
18 errorA34=errorA34+x(jj);
19 end
20 errorA34
21

22 %adjusted error
23 y=zeros(1,T−200);
24 erroradj=0;
25 for jj=201:T
26 y(jj−200)=((N3(jj)−A34(jj))/N3(jj))^2;
27 erroradj=erroradj+y(jj−200);
28 end
29 erroradj
30

31 figure
32 plot(t,N3,'Color','r')
33 hold on
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34 plot(t,A34,'k')
35 xlabel('Time, t (hours)')
36 ylabel('Cell Index')
37 grid on
38 ylim([0 5])
39 set(gca,'XTick',[0:20:200])
40

41 figure
42 scatter(t,x,'.b')
43 xlabel('Time, t (hours)')
44 ylabel('error')
45 grid on
46 %ylim([0 0.003])
47 set(gca,'XTick',[0:20:200])
48

49 %end

Algorithm 1: Used to �nd best �tting K and α for the T47D cell line.

1 %to get best K and best alpha, given N0 and r
2 clear all
3 [N0,t,empty,r,T,A34]=datagrowth();
4

5 stepk=0.001;
6 stepa=0.001;
7 model=zeros(T−200,1);
8 capacity=4.5:stepk:5.1;
9 alphas=0.0001:stepa:0.2;

10 KK=length(capacity);
11 aa=length(alphas);
12 y=0;
13 errormat=zeros(aa,KK);
14

15 ii=1;
16 for alpha=0.0001:stepa:0.2
17 i=1;
18 for K=4.5:stepk:5.1
19 for j=201:T
20 model(j−200)=K*N0/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(j)))...

^(1/alpha);
21 y=((model(j−200)−A34(j))/model(j−200))^2;
22 errormat(ii,i)=errormat(ii,i)+y;
23 end
24 i=i+1;
25 end
26 ii=ii+1;
27 end
28

29 [smallesterroralpha,indexalpha]=min(errormat);
30 [smallesterrorK,indexK]=min(smallesterroralpha);
31

32 Kbest=capacity(indexK)
33 alphabest=alphas(indexalpha(indexK))
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34 erroradjusted=smallesterrorK

Parts of code used for �gures 14, 15, 16 and 17 on pages 21 and 22.

1 %function[N0,t,alpha,r,T,E34]=datagrowth2()
2 clear all
3 t=[0,0.0008,0.0042,0.0292,0.0542,0.0792,0.1042,0.1292,0.1372,linspace(0...

.3875,67.1375,268),67.1375+0.0008,67.1375+0.0028,linspace(67.1375+0...

.2528,67.1375+72.5028,290),67.1375+72.7525,67.1375+73.0025,67.1375+73...

.2525,67.1375+73.5025,67.1375+73.7525,67.1375+74.0025,67.1375+74.2525...
,67.1375+74.5025,67.1375+74.7522];

4

5 E34a=[0
6 0.0004
7 0.001

· · ·

1 %model
2 N0=0.01;
3 T=length(t);
4 K=4.101; r=log(2)/7; alpha=1.296; %cell doubles every 7 hours
5 %K=4.18; r=log(2)/7; alpha=1.3; %error 3841.5; 0.3376
6

7 %general log equation
8 N3=zeros(T,1);
9 for j=2:T

10 N3(1)=N0;
11 N3(j)=K*(N0^alpha/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(j))))^(1/...

alpha);
12 end
13

14 %error
15 x=zeros(1,T);
16 errorE34=0;
17 for jj=1:T
18 x(jj)=((N3(jj)−E34(jj))/N3(jj))^2;
19 errorE34=errorE34+x(jj);
20 end
21 errorE34
22

23 %adjusted error
24 y=zeros(1,T−200);
25 erroradjE34=0;
26 for jj=201:T
27 y(jj−200)=((N3(jj)−E34(jj))/N3(jj))^2;
28 erroradjE34=erroradjE34+y(jj−200);
29 end
30 erroradjE34
31

32 figure
33 plot(t,N3,'Color','r')
34 hold on
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35 plot(t,E34,'Color','k')
36 xlabel('Time, t (hours)')
37 ylabel('Cell Index')
38 grid on
39 set(gca,'XTick',[0:20:200])
40 ylim([0 4.5])
41

42 figure
43 scatter(t,x,'.b')
44 xlabel('Time, t (hours)')
45 ylabel('error')
46 grid on
47 %ylim([0 0.006])
48 xlim([0 145])
49 set(gca,'XTick',[0:20:200])
50 %end

Algorithm 2: Used to �nd best �tting K and α for the MDA cell line.

1 %to get best K and alpha, given N0 and r; cell line MDA
2 clear all
3 [N0,t,empty,r,T,E34]=datagrowth2();
4

5 stepk=0.001;
6 stepa=0.001;
7 model=zeros(T−200,1);
8 capacity=3.8:stepk:4.5;
9 alphas=0.8:stepa:1.2;

10 KK=length(capacity);
11 aa=length(alphas);
12 y=0;
13 errormat=zeros(aa,KK);
14

15 ii=1;
16 for alpha=0.8:stepa:1.2
17 i=1;
18 for K=3.8:stepk:4.5
19 for j=201:T
20 model(j−200)=K*N0/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(j)))...

^(1/alpha);
21 y=((model(j−200)−E34(j))/model(j−200))^2;
22 errormat(ii,i)=errormat(ii,i)+y;
23 end
24 i=i+1;
25 end
26 ii=ii+1;
27 end
28

29 [smallesterroralpha,indexalpha]=min(errormat);
30 [smallesterrorK,indexK]=min(smallesterroralpha);
31

32 Kbest=capacity(indexK)
33 alphabest=alphas(indexalpha(indexK))
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34 erroradj=smallesterrorK
35

36 N3=zeros(T,1);
37 for j=2:T
38 N3(1)=N0;
39 N3(j)=Kbest*N0/(N0^alphabest+(Kbest^alphabest−N0^alphabest)*exp(−r*t...

(j)))^(1/alphabest);
40 end
41

42 figure
43 plot(t,N3,'Color','r')
44 hold on
45 plot(t,E34,'k')
46 xlabel('Time, t')
47 ylabel('Cell Index')
48 grid on
49 ylim([0 4.5])
50 set(gca,'XTick',[0:20:200])

Heterogenous Tumour Growth

Used for �gures 19 and 20 on page 26.

1 %forward (explicit) Euler method to solve equations for P and Q
2 clear all
3 %parameter values
4 t0=0; %start time
5 T=1000; %end time
6 h=0.1; %delta t − step size
7 t=t0:h:T; %time
8 F0=[8,2]; %Starting points [P0,Q0]
9 tumour(:,1)=F0; %tumour cells

10 r=log(2)/24; %net proliferation rate
11 K=100; %carrying capacity
12 alpha=1.5; %general logistic equation parameter
13 kPQ=0.005; %rate from P to Q
14 kQP=0.001; %rate from Q to P
15 %Euler method to solve equations
16 for i =1:length(t)−1
17 tumour(:,i+1)=tumour(:,i)+h*[r/alpha*tumour(1,i)*(1−((tumour(1,i)+...

tumour(2,i))/K)^alpha)−kPQ*tumour(1,i)+kQP*tumour(2,i),kPQ*tumour...
(1,i)−kQP*tumour(2,i)]';

18 end
19 %end
20 tumour(:,end)
21 tumour(1,end)+tumour(2,end)
22 figure
23 plot (t,tumour(1,:),'Color','r') %P
24 hold on
25 plot (t,tumour(2,:),'Color','g') %Q
26 hold on
27 plot (t,tumour(1,:)+tumour(2,:),'Color','k') %N
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28 xlabel('Time, t')
29 ylabel('Cell Number')
30 grid on

Chapter 4

LQ model

Used for �gure 21 on page 28.

1 %LQ model; cell survival curves after single dose of radiation
2 clear all
3 %parameter values
4 alpha=1/3.35; %ratios
5 beta1=alpha/1.5;
6 beta2=alpha/10;
7 beta3=alpha/20;
8 D=0:0.05:15; %radiation dose
9 %survival fractions

10 S1=100*exp(−alpha.*D−beta1.*D.^2);
11 S2=100*exp(−alpha.*D−beta2.*D.^2);
12 S3=100*exp(−alpha.*D−beta3.*D.^2);
13

14 Ya=['0.1';' 1 ';' 10';'100']; %y−axis ticks
15 figure
16 semilogy(D,S1,'Color','r')
17 hold on
18 semilogy(D,S2,'Color','g')
19 hold on
20 semilogy(D,S3,'Color','b')
21 xlabel('Dose (Gy)')
22 ylabel('Survival fraction (%)')
23 xlim([0 15])
24 ylim([0.1 100])
25 set(gca,'YTick',[0.1,1,10,100])
26 set(gca,'YTickLabel',Ya)
27 set(gca,'XTick',[0:1:15])

Used for �gure 22 on page 30.

1 %LQ model; Lea−Catcheside time factor
2 clear all
3 %parameter values
4 lambda=log(2)/2; %repair rate
5 T=0:0.05:30; %time
6 %L−C function
7 G=(2./(lambda.*T).^2).*(exp(−lambda.*T)−1+lambda.*T);
8

9 figure
10 plot(T,G,'k')
11 xlabel('time, t')
12 ylabel('G(t)')
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13 xlim([0 30])
14 ylim([0 1])

Used for �gure 23 on page 30.

1 %LQ model including Lea−Catcheside time factor
2 clear all
3 %parameter values
4 alpha=1/3.35;
5 beta1=alpha/1.5; %ratios
6 D=0:0.05:15; %dose
7 lambda1=log(2)/2; %repair rate 1
8 lambda2=log(2)/1; %repair rate 2
9 T=0:0.1:30; %time (hours)

10

11 G1=(2./(lambda1.*T).^2).*(exp(−lambda1.*T)−1+lambda1.*T); %lea−...
catcheside 1

12 G2=(2./(lambda2.*T).^2).*(exp(−lambda2.*T)−1+lambda2.*T); %lea−...
catcheside 2

13

14 S1=100*exp(−alpha.*D−beta1.*D.^2); %normal LQ−model
15 S1G1=100*exp(−alpha.*D−beta1.*G1.*D.^2); %with rate 1
16 S1G2=100*exp(−alpha.*D−beta1.*G2.*D.^2); %with rate 2
17

18 Ya=['0.1';' 1 ';' 10';'100']; %y−axis ticks
19

20 figure
21 semilogy(D,S1,'Color','k')
22 hold on
23 semilogy(D,S1G1,'−−k')
24 hold on
25 semilogy(D,S1G2,':k')
26 xlabel('Dose (Gy)')
27 ylabel('Survival fraction (%)')
28 xlim([0 15])
29 ylim([0.1 100])
30 set(gca,'YTick',[0.1,1,10,100])
31 set(gca,'YTickLabel',Ya)
32 set(gca,'XTick',[0:1:15])

Used for �gure 24 on page 32.

1 %LQ model; h(D)
2 clear all
3 %parameter values
4 D=0:0.05:5; %dose
5 alpha=1/3.35; %from LQ−model
6 dc=0.5; %threshold dose
7 %hypersensitivity function
8 h=1+(2.5/alpha−1).*exp(−D./dc);
9

10 figure
11 plot(D,h,'k')
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12 xlabel('Dose, D (Gy)')
13 ylabel('h(D)')
14 xlim([0 5])
15 ylim([0 9])

Used for �gure 25 on page 32.

1 %LQ model including hypersensitivity h(D)
2 clear all
3 %parameter values
4 alpha=1/3.35; %ratios
5 beta1=alpha/1.5;
6 beta2=alpha/10;
7 beta3=alpha/20;
8 D=0:0.05:15; %dose
9 dc=0.5; %threshold dose

10 %hypersensitivity function
11 h=1+(2.5/alpha−1).*exp(−D./dc);
12

13 S1=100*exp(−alpha.*D−beta1.*D.^2);
14 S1h=100*exp(−alpha.*D.*h−beta1.*D.^2);
15 S2=100*exp(−alpha.*D−beta2.*D.^2);
16 S2h=100*exp(−alpha.*D.*h−beta2.*D.^2);
17 S3=100*exp(−alpha.*D−beta3.*D.^2);
18 S3h=100*exp(−alpha.*D.*h−beta3.*D.^2);
19

20 Ya=['0.1';' 1 ';' 10';'100'];
21 figure
22 semilogy(D,S1,'−−k')
23 hold on
24 semilogy(D,S1h,'k')
25 xlabel('Dose (Gy)')
26 ylabel('Survival fraction (%)')
27 xlim([0 10])
28 ylim([0.1 100])
29 set(gca,'YTick',[0.1,1,10,100])
30 set(gca,'YTickLabel',Ya)
31 set(gca,'XTick',[0:1:15])

Used for �gure 26 on page 35.

1 %TCP
2 clear all
3 %parameter values
4 alpha=1/3.35;
5 beta1=alpha/1.5; %ratios
6 beta2=alpha/10;
7 beta3=alpha/20;
8 D=0:0.05:20; %dose
9 S0=100; %initial number of cells

10

11 TCP1=exp(−S0*exp(−alpha.*D−beta1.*D.^2))*100; %in percent
12 TCP2=exp(−S0*exp(−alpha.*D−beta2.*D.^2))*100;
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13 TCP3=exp(−S0*exp(−alpha.*D−beta3.*D.^2))*100;
14

15 figure
16 plot(D,TCP1,'Color','r')
17 hold on
18 plot(D,TCP2,'Color','g')
19 hold on
20 plot(D,TCP3,'Color','b')
21 grid on
22 xlabel('Dose (Gy)')
23 ylabel('TCP (%)')

Used for �gure 27 on page 35.

1 %NTCP model
2 clear all
3 %parameter values
4 alpha=1/3.35;
5 beta1=alpha/1.5; %ratio
6 D=0:0.05:15; %dose
7 S0=100; %initial number of cells
8

9 TCP1=exp(−S0*exp(−alpha.*D−beta1.*D.^2))*100; %TCP
10 NTCP1=exp(−S0*exp(−alpha.*D−beta1/2.*D.^2))*100; %NTCP
11

12 figure
13 plot(D,TCP1,'−−k')
14 hold on
15 plot(D,NTCP1,'k')
16 hold on
17 plot(D(105),TCP1(105),'or','MarkerFaceColor','r')
18 hold on
19 plot(D(105),NTCP1(105),'or','MarkerFaceColor','r')
20 hold on
21 plot(D(111),TCP1(111),'ob','MarkerFaceColor','b')
22 hold on
23 plot(D(111),NTCP1(111),'ob','MarkerFaceColor','b')
24 grid on
25 xlabel('Dose (Gy)')
26 ylabel('Probability (%)')

Other Radiation Models

Used for �gure 28 on page 36.

1 %forward (explicit) Euler method to solve equations
2 clear all
3 %parameter values
4 t0=0; %start time
5 T=50; %end time
6 h=0.1; %delta t − step size
7 t=t0:h:T; %time
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8 F0=[1,0]; %Starting points [C0,U0]
9 model(:,1)=F0; %model

10 alpha=0.3; %lethal lesions
11 D=0.5; %radiation dose rate
12 k=0.02; %DSB misrepair rate
13 delta=0.8; %production of non−rep. DSBs
14 omega=0.01; %DSB repair constant
15 %Euler method to solve equations
16 for i =1:length(t)−1
17 model(:,i+1)=model(:,i)+h*[−(alpha*D+0.5*k*(model(2,i))^2)*model(1,i...

),delta*D−omega*model(2,i)−2*k*(model(2,i))^2]';
18 end
19 figure
20 plot (t,model(1,:),'Color','g') %C
21 hold on
22 plot (t,model(2,:),'Color','r') %U
23 xlabel('Time, t')
24 ylabel('Viable cell fraction (red) / Number of DSBs per cell (green)...

')
25 grid on
26 ylim([0 4.5])

Chapter 5

Cell Population Models

Used for �gures 29 on page 41.

1 %model tumour growth with continuous radiation
2 clear all
3 %parameter values
4 t=[0:0.1:500]; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells
11 mu=0.1; %how much drug damages cell
12 a=2; %amount of radiation (Gy)
13 A=a; %radiation
14

15 %model with radiation
16 for i=2:T
17 N(1)=N0;
18 N(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu*A))*exp((−r+alpha*mu*A)*t(i)))^(1/alpha);
19 end
20

21 %model without radiation
22 M=zeros(1,T);
23 for i=2:T
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24 M(1)=N0;
25 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
26 end
27

28 %bifurcation parameter value:
29 bif= r/(alpha*mu)
30 %capacity tumour tends to with radiation
31 if A<bif
32 cap=K*nthroot(1−alpha*mu*A/r,alpha)
33 else cap=0
34 end
35

36 figure
37 plot (t,N,'Color','r') %radiation
38 hold on
39 plot (t,M,'Color','k') %no radiation
40 xlabel('Time, t')
41 ylabel('Cell number, N(t)')
42 grid on
43 ylim([0 K])

Used for �gures 30 on page 41.

1 %model tumour growth with continuous radiation, different values for mu
2 clear all
3 %parameter values
4 t=[0:0.1:300]; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=0.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells
11 mu1=0.1; %how much drug damages cell
12 mu2=0.2; %how much drug damages cell
13 mu3=0.3; %how much drug damages cell
14 a=0.1; %amount of radiation (Gy)
15 A=a; %radiation
16

17 %model with low mu
18 for i=2:T
19 N(1)=N0;
20 N(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu1*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu1*A))*exp((−r+alpha*mu1*A)*t(i)))^(1/alpha);
21 end
22

23 %model with medium mu
24 M=zeros(1,T);
25 for i=2:T
26 M(1)=N0;
27 M(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu2*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu2*A))*exp((−r+alpha*mu2*A)*t(i)))^(1/alpha);
28 end
29

95



C MATLAB CODES

30 %model with higher mu
31 L=zeros(1,T);
32 for i=2:T
33 L(1)=N0;
34 L(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu3*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu3*A))*exp((−r+alpha*mu3*A)*t(i)))^(1/alpha);
35 end
36

37 %capacity tumour tends to with radiation
38 cap1=K*nthroot(1−alpha*mu1*A/r,alpha)
39 cap2=K*nthroot(1−alpha*mu2*A/r,alpha)
40 cap3=K*nthroot(1−alpha*mu3*A/r,alpha)
41

42 figure
43 plot (t,N,'Color','b')
44 hold on
45 plot (t,M,'Color','r')
46 hold on
47 plot (t,L,'Color','g')
48 xlabel('Time, t')
49 ylabel('Cell number, N(t)')
50 grid on

Used for �gure 31 on page 42.

1 %model tumour growth with radiation
2 clear all
3 %parameter values
4 r=log(2)/24; %net proliferation rate
5 N0=10; %initial value
6 K=100; %carrying capacity
7 alpha=1.5; %general logistic equation parameter
8 mu=0.1; %how much drug damages cell
9

10 %bifurcation parameter value
11 bif=r/(alpha*mu)
12 A=0.3;
13

14 if A<bif
15 cap=K*nthroot(1−alpha*mu*A/r,alpha)
16 else cap=0
17 end
18

19 N=0:K;
20 f=r/alpha.*N.*(1−(N/K).^alpha)−mu*A*N;
21

22 figure
23 %line([35,37],[0.05,0],'Color','k') %arrows for bif1
24 %hold on
25 %line([35,37],[−0.05,0],'Color','k')
26 %hold on
27 %line([87,85],[0.05,0],'Color','k')
28 %hold on
29 %line([87,85],[−0.05,0],'Color','k')
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30 %hold on
31 %line([37,35],[0.05,0],'Color','k') %arrows for bif2
32 %hold on
33 %line([37,35],[−0.05,0],'Color','k')
34 %hold on
35 plot(0:1:100,0,'−−k')
36 hold on
37 plot(N,f,'k')
38 hold on
39 plot(0,0,'.b','MarkerSize',15)
40 hold on
41 plot(cap,0,'.b','MarkerSize',15)
42 xlabel('Cell Number, N')
43 ylabel('Growth equation, f(N)')
44 ylim([−1,1])

Used for �gure 32 on page 42.

1 %model tumour growth with radiation
2 clear all
3 %parameter values
4 r=log(2)/24; %net proliferation rate
5 N0=10; %initial value
6 K=100; %carrying capacity
7 alpha=1.5; %general logistic equation parameter
8 mu=0.1; %how much drug damages cell
9

10 %bifurcation parameter value:
11 bif= r/(alpha*mu)
12

13 A=0:0.001:1;
14 AA=length(A);
15 for i=1:AA
16 if A(i)<bif
17 N(i)=K*nthroot(1−alpha*mu*A(i)/r,alpha);
18 else N(i)=0;
19 end
20 end
21

22 figure
23 plot(0:0.01:1,0,'−−k')
24 hold on
25 plot(A,N,'b')
26 xlabel('Radiation Dose, A (Gy)')
27 ylabel('Final Cell Number, N')
28 ylim([−10,K])

Used for �gure 33 on page 44.

1 %model tumour growth with continuous radiation and repair
2 clear all
3 %parameter values
4 t=[0:0.1:500]; %time

97



C MATLAB CODES

5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells with radiation and no repair
11 L=zeros(1,T); %tumour cells with radiation and repair
12 mu=0.1; %how much drug damages cell
13 a=0.1; %amount of radiation (Gy)
14 A=a; %radiation
15 rho=0.5; %factor for the amount of cells able to repair
16 lambda=log(2)/4; %repair rate
17

18 %model with radiation
19 for i=2:T
20 N(1)=N0;
21 L(1)=N0;
22 N(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu*A))*exp((−r+alpha*mu*A)*t(i)))^(1/alpha);
23 L(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu*A+alpha*rho*lambda*A)+(K^alpha...

−(r*N0^alpha)/(r−alpha*mu*A+alpha*rho*lambda*A))*exp((−r+alpha*mu...
*A−alpha*rho*lambda*A)*t(i)))^(1/alpha);

24 end
25

26 %model without radiation
27 M=zeros(1,T);
28 for i=2:T
29 M(1)=N0;
30 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
31 end
32

33 %bifurcation parameter value
34 bif= r/(alpha*(mu−rho*lambda))
35 %capacity tumour tends to with radiation
36 if A<bif
37 cap=K*nthroot(1−alpha*mu*A/r+alpha*rho*lambda*A/r,alpha)
38 else cap=0
39 end
40

41 figure
42 plot (t,N,'Color','b') %radiation, no repair
43 hold on
44 plot (t,L,'Color','r') %radiation, with repair
45 hold on
46 plot (t,M,'Color','k') %no radiation
47 xlabel('Time, t')
48 ylabel('Cell number, N(t)')
49 grid on
50 ylim([0 K])
51

52 figure
53 plot (t,A,'Color','b')
54 xlabel('Time, t')
55 ylabel('Radiation dose (Gy)')
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56 grid on

Used for �gure 34 on page 46.

1 %model tumour growth with continuous radiation and repopulation
2 clear all
3 %parameter values
4 t=[0:0.1:500]; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells with radiation and no repopulation
11 NN=zeros(1,T); %tumour cells with radiation and repopulation
12 mu=0.1; %how much drug damages cell
13 a=0.3; %amount of radiation (Gy)
14 A=a; %radiation
15 beta=0.3; %factor of cells that are able to proliferate after ...

radiation
16

17 %model with radiation
18 for i=2:T
19 N(1)=N0;
20 L(1)=N0;
21 N(i)=(K*N0)/((r*N0^alpha)/(r−alpha*mu*A)+(K^alpha−(r*N0^alpha)/(r−...

alpha*mu*A))*exp((−r+alpha*mu*A)*t(i)))^(1/alpha);
22 L(i)=(K*N0)/(((r+beta*A*r)*N0^alpha)/(r−alpha*mu*A+beta*A*r)+(K^...

alpha−((r+beta*A*r)*N0^alpha)/(r−alpha*mu*A+beta*A*r))*exp((−r+...
alpha*mu*A−beta*A*r)*t(i)))^(1/alpha);

23 end
24

25 %model without radiation
26 M=zeros(1,T);
27 for i=2:T
28 M(1)=N0;
29 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
30 end
31

32 %bifurcation parameter value
33 bif= r/(alpha*mu−beta*r)
34 %capacity tumour tends to with radiation
35 if A<bif
36 cap=K*nthroot(1−alpha*mu*A/(r*(1+beta*A)),alpha)
37 else cap=0
38 end
39

40 figure
41 plot (t,N,'Color','b') %radiation, no repair
42 hold on
43 plot (t,L,'Color','r') %radiation, with repair
44 hold on
45 plot (t,M,'Color','k') %no radiation
46 xlabel('Time, t')
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47 ylabel('Cell number, N(t)')
48 grid on
49 ylim([0 K])

Used for �gure 35 on page 49.

1 %forward (explicit) Euler method to solve equations for continuous
2 %radiation and heterogenous tumour growth
3 clear all
4 t0=0; %start time
5 T=7000; %end time
6 h=0.1; %delta t − step size
7 t=t0:h:T; %time
8 F0=[8,2]; %Starting points [P0,Q0] => N0=10
9 tumour(:,1)=F0;

10

11 %parameter values
12 r=log(2)/24; %net proliferation rate
13 K=100; %carrying capacity
14 alpha=1.5; %general logistic equation parameter
15 mu=0.1; %how much drug damages cell
16 a=0.1; %amount of radiation (Gy)
17 A=a; %radiation in total
18 kQP=0.001; %rate at which quiescent cells become proliferating ...

cells
19 kPQ=0.005; %rate at which prolif. cells become quiescent
20

21 %Euler method
22 for i =1:length(t)−1
23 tumour(:,i+1)=tumour(:,i)+h*[r/alpha*tumour(1,i)*(1−((tumour(1,i)+...

tumour(2,i))/K)^alpha)−mu*A*tumour(1,i)−kPQ*tumour(1,i)+kQP*...
tumour(2,i),kPQ*tumour(1,i)−kQP*tumour(2,i)]';

24 end
25

26 %end
27 tumour(:,end)
28 tumour(1,end)+tumour(2,end)
29

30 figure
31 plot (t,tumour(1,:),'Color','r') %P
32 hold on
33 plot (t,tumour(2,:),'Color','g') %Q
34 hold on
35 plot (t,tumour(1,:)+tumour(2,:),'Color','k') %N
36 xlabel('Time, t')
37 ylabel('Cell number')
38 grid on

Used for �gures 37 and 38 on page 53.

1 %forward (explicit) Euler method to solve equations for sensitive and
2 %resistant tumour cells
3 clear all
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4 t0=0; %start time
5 T=1200; %end time
6 h=0.1; %delta t − step size
7 t=t0:h:T; %time
8 F0=[6,4]; %Starting points [S0,R0] => N0=10
9 tumour(:,1)=F0;

10

11 %parameter values
12 r1=log(2)/24; %net proliferation rate of the radiosensitive tumour ...

cells
13 r2=log(2)/48; %net proliferation rate of the radioresistant tumour ...

cells
14 K=100; %carrying capacity
15 alpha=1.5; %general logistic equation parameter
16 mu1=0.1; %how much drug damages radiosensitive cells
17 mu2=0.01; %how much drug damages radioresistant cells
18 a=0.1; %amount of radiation (Gy)
19 A=a; %radiation in total
20

21 %Euler method to solve equations
22 for i=1:length(t)−1
23 tumour(:,i+1)=tumour(:,i)+h*[r1/alpha*tumour(1,i)*(1−((tumour(1,i)+...

tumour(2,i))/K)^alpha)−mu1*A*tumour(1,i),r2/alpha*tumour(2,i)...
*(1−((tumour(1,i)+tumour(2,i))/K)^alpha)−mu2*A*tumour(2,i)]';

24 end
25

26 %end
27 tumour(:,end)
28 tumour(1,end)+tumour(2,end)
29

30 figure
31 plot (t,tumour(1,:),'Color','r') %S − sensitive
32 hold on
33 plot (t,tumour(2,:),'Color','g') %R − resistant
34 hold on
35 plot (t,tumour(1,:)+tumour(2,:),'Color','k') %N in total
36 xlabel('Time, t')
37 ylabel('Cell number')
38 grid on

Used for �gure 39 on page 56.

1 %model tumour growth with periodic radiation
2 clear all
3 %parameter values
4 t=0:0.1:500; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells
11 A=zeros(1,T); %total radiation
12 tau=0.1; %interval of radiation
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13 mu=0.1; %how much drug damages cell
14 a=0.5; %amount of radiation per session(Gy)
15

16 lenhour=20; %length in hours
17 len=lenhour/(t(2)−t(1)); %length of a session (watch out for time spaces...

in t)
18 maxn=(T−1)/len−1; %number of sessions
19 tauindex=find(t==tau*len*(t(2)−t(1)));
20

21 N(1)=N0;
22 Nn=N0; %start at n=0
23 A(1)=a;
24 for n=0:maxn %for each session do:
25 for i=n*len+2:n*len+tauindex
26 N(i)=(K*Nn)/((r*Nn^alpha)/(r−alpha*mu*a)+(K^alpha−(r*Nn^alpha)/(...

r−alpha*mu*a))*exp((−r+alpha*mu*a)*(t(i)−n*len*(t(2)−t(1)))))...
^(1/alpha);

27 Ntau=N(n*len+tauindex);
28 A(i)=a;
29 end
30 for i=n*len+tauindex+1:find(t==(n+1)*len*(t(2)−t(1)))
31 N(i)=(K*Ntau)/(Ntau^alpha+(K^alpha−Ntau^alpha)*exp(−r*(t(i)−(n+...

tau)*len*(t(2)−t(1)))))^(1/alpha);
32 Nn=N(find(t==(n+1)*len*(t(2)−t(1))));
33 A(i)=0;
34 end
35 end
36

37 %model without radiation
38 M=zeros(1,T);
39 for i=1:T
40 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
41 end
42

43 %bifurcation parameter value:
44 bifold= r/(alpha*mu)
45 bif=bifold/tau
46

47 figure
48 plot(t,N,'Color','r')
49 hold on
50 plot (t,M,'Color','k')
51 xlabel('Time, t')
52 ylabel('Cell number, N(t)')
53 grid on

Used for �gure 40 on page 58.

1 %model tumour growth with periodic radiation and repair
2 clear all
3 %parameter values
4 t=0:0.1:500; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
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7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells with repair
11 L=zeros(1,T); %tumour cells with no repair
12 A=zeros(1,T); %total radiation
13 tau=0.1; %interval of radiation
14 mu=0.1; %how much drug damages cell
15 a=18; %amount of radiation per session(Gy)
16 rho=0.5; %amount of cells able to repair
17 lambda=log(2)/4; %repair rate
18

19 lenhour=20; %length in hours
20 len=lenhour/(t(2)−t(1)); %length of a session (watch out for time spaces...

in t)
21 maxn=(T−1)/len−1; %number of sessions
22 tauindex=find(t==tau*len*(t(2)−t(1)));
23

24 N(1)=N0;
25 Nn=N0; %start at n=0
26 L(1)=N0;
27 Ln=N0;
28 A(1)=a;
29 for n=0:maxn %for each session do:
30 for i=n*len+2:n*len+tauindex
31 N(i)=(K*Nn)/((r*Nn^alpha)/(r−alpha*mu*a+alpha*rho*lambda*a)+(K^...

alpha−(r*Nn^alpha)/(r−alpha*mu*a+alpha*rho*lambda*a))*exp((−r...
+alpha*mu*a−alpha*rho*lambda*a)*(t(i)−n*len*(t(2)−t(1)))))...
^(1/alpha);

32 Ntau=N(n*len+tauindex);
33 L(i)=(K*Ln)/((r*Ln^alpha)/(r−alpha*mu*a)+(K^alpha−(r*Ln^alpha)/(...

r−alpha*mu*a))*exp((−r+alpha*mu*a)*(t(i)−n*len*(t(2)−t(1)))))...
^(1/alpha);

34 Ltau=L(n*len+tauindex);
35 A(i)=a;
36 end
37 for i=n*len+tauindex+1:find(t==(n+1)*len*(t(2)−t(1)))
38 N(i)=(K*Ntau)/(Ntau^alpha+(K^alpha−Ntau^alpha)*exp(−r*(t(i)−(n+...

tau)*len*(t(2)−t(1)))))^(1/alpha);
39 Nn=N(find(t==(n+1)*len*(t(2)−t(1))));
40 L(i)=(K*Ltau)/((r*Ltau^alpha)/(r)+(K^alpha−(r*Ltau^alpha)/(r))*...

exp((−r)*(t(i)−(n+tau)*len*(t(2)−t(1)))))^(1/alpha);
41 Ln=L(find(t==(n+1)*len*(t(2)−t(1))));
42 A(i)=0;
43 end
44 end
45

46 %model without radiation
47 M=zeros(1,T);
48 for i=1:T
49 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
50 end
51

52 %bifurcation parameter value:
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53 bifold= r/(alpha*(mu−rho*lambda))
54 bif=r/(alpha*(mu−rho*lambda)*tau)
55

56 figure
57 plot(t,N,'Color','r') %radiation, repair
58 hold on
59 plot (t,M,'Color','k') %no radiation
60 hold on
61 plot (t,L,'Color','b') %radiation, no repair
62 xlabel('Time, t')
63 ylabel('Cell number, N(t)')
64 grid on

Used for �gure 41 on page 59.

1 %model tumour growth with periodic radiation and repopulation
2 clear all
3 %parameter values
4 t=[0:0.1:500]; %time
5 T=length(t);
6 r=log(2)/24; %net proliferation rate
7 N0=10; %initial value
8 K=100; %carrying capacity
9 alpha=1.5; %general logistic equation parameter

10 N=zeros(1,T); %tumour cells with radiation and no repopulation
11 L=zeros(1,T); %tumour cells with radiation and repopulation
12 A=zeros(1,T); %total radiation
13 tau=0.1; %interval of radiation
14 mu=0.1; %how much drug damages cell
15 a=3; %amount of radiation per session(Gy)
16 beta=0.3; %factor of cells that are able to proliferate despite of...

radiation
17

18 lenhour=20; %length in hours
19 len=lenhour/(t(2)−t(1)); %length of a session (watch out for time spaces...

in t)
20 maxn=(T−1)/len−1; %number of sessions
21 tauindex=find(t==tau*len*(t(2)−t(1)));
22

23 N(1)=N0;
24 L(1)=N0;
25 Nn=N0; %start at n=0
26 Ln=N0;
27 A(1)=a;
28 for n=0:maxn %for each session do:
29 for i=n*len+2:n*len+tauindex
30 N(i)=(K*Nn)/((r*Nn^alpha)/(r−alpha*mu*a)+(K^alpha−(r*Nn^alpha)/(...

r−alpha*mu*a))*exp((−r+alpha*mu*a)*(t(i)−n*len*(t(2)−t(1)))))...
^(1/alpha);

31 L(i)=(K*Ln)/(((r+beta*a*r)*Ln^alpha)/(r−alpha*mu*a+beta*a*r)+(K^...
alpha−((r+beta*a*r)*Ln^alpha)/(r−alpha*mu*a+beta*a*r))*exp((−...
r+alpha*mu*a−beta*a*r)*(t(i)−n*len*(t(2)−t(1)))))^(1/alpha);

32 Ntau=N(n*len+tauindex);
33 Ltau=L(n*len+tauindex);
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34 A(i)=a;
35 end
36 for i=n*len+tauindex+1:find(t==(n+1)*len*(t(2)−t(1)))
37 N(i)=(K*Ntau)/(Ntau^alpha+(K^alpha−Ntau^alpha)*exp(−r*(t(i)−(n+...

tau)*len*(t(2)−t(1)))))^(1/alpha);
38 L(i)=(K*Ltau)/(Ltau^alpha+(K^alpha−Ltau^alpha)*exp(−r*(t(i)−(n+...

tau)*len*(t(2)−t(1)))))^(1/alpha);
39 Nn=N(find(t==(n+1)*len*(t(2)−t(1))));
40 Ln=L(find(t==(n+1)*len*(t(2)−t(1))));
41 A(i)=0;
42 end
43 end
44

45 %model without radiation
46 M=zeros(1,T);
47 for i=1:T
48 M(i)=(K*N0)/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(i)))^(1/alpha);
49 end
50

51 %bifurcation parameter value:
52 bif=r/((alpha*mu−beta*r)*tau)
53

54 figure
55 plot(t,N,'Color','b') %basic radiation
56 hold on
57 plot (t,M,'Color','k') %no radiation
58 hold on
59 plot (t,L,'Color','r') %radiation with repopulation
60 xlabel('Time, t')
61 ylabel('Cell number, N(t)')
62 grid on

Used for �gure 42 on page 61.

1 %function to find number of cells in tumour area
2 clear all
3 %area data
4 area=[0
5 142661
6 203765
7 246000
8 289332];
9 %no. of cells data

10 cells=[0
11 0.02234
12 0.03269
13 0.05269
14 0.05569];
15

16 x=0:1:300000; % Area (micrometer^2)
17

18 %parameters
19 A=0.069;
20 B=0.001;
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21 C=0.000013;
22 D=0.325;
23

24 cellscalc=zeros(length(x),1);
25 for j=2:length(x)
26 cellscalc(1)=B;
27 cellscalc(j)=A*B/(B^D+(A^D−B^D)*exp(−C*x(j)))^(1/D);
28 end
29

30 errorcells=((cellscalc(142662)−cells(2))/cellscalc(142662))^2+((...
cellscalc(203766)−cells(3))/cellscalc(203766))^2+((cellscalc(246001)−...
cells(4))/cellscalc(246001))^2+((cellscalc(289333)−cells(5))/...
cellscalc(289333))^2

31

32 figure
33 plot(x,cellscalc)
34 hold on
35 plot(area,cells,'.k','markersize',15)
36 xlabel('Area (\mum^2)')
37 ylabel('Cell Number per \mum^2')
38 grid on
39 %ylim([0 0.06])

Used for �gures 43, 44 and 45 on pages 62 and 63.

1 %T47D growth with radiation − repopulation model applied
2 clear all
3

4 %time
5 t=0:400; %in hours
6 tmin=0:1/60:400; %minute fractions
7

8 %data from H−Zentrum
9 time=[0,72,144,216,288,360]; %every 3 ...

days
10 cells=[564.32,2393.71,6885.54,9037.09,10539.96,11721.89]; %0 Gy
11 cells_2=[564.32,1922.83,4455.84,5545.76,7243.12,8060.54]; %2 Gy
12 cells_4=[564.32,1789.94,2981.46,4050.18,3872.42,5107.74]; %4 Gy
13 cells_6=[564.32,1921.87,2776.20,3137.19,3642.32,4082.09]; %6 Gy
14 cells_8=[564.32,1838.21,2407.38,2139.53,2615.68,3209.19]; %8 Gy
15

16 %gen. log. growth model parameters
17 N0=cells(1); %initial value
18 T=length(t);
19 Tmin=length(tmin);
20 K=12690; %carrying capacity
21 r=log(2)/60; %cell multiplies every 60 hours
22 alpha=0.169; %equation parameter
23

24 %tumour cells, just growth
25 N=zeros(T,1);
26 for j=2:T
27 N(1)=N0;
28 N(j)=K*N0/(N0^alpha+(K^alpha−N0^alpha)*exp(−r*t(j)))^(1/alpha);
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29 end
30

31 mu=0.4; %how much drug damages cell
32 rate=0.5; %rate at which cells are radiated ...

per min in Gy
33 beta=0.9; %amount of cells able to proliferate ...

despite being radiated
34

35 %data was received by radiating cells once at day 0 − 2 gy
36 a2=2; %amount of radiation in Gy
37 tau2=(1/rate)*a2/(tmin(end)*60); %interval of radiation
38 tauindex2=find(tmin==(1/rate)*a2/60);
39 M2=zeros(1,Tmin);
40 M2(1)=N0;
41 K2=8000;
42 for i=2:tauindex2
43 M2(i)=(K2*N0)/(((r+beta*a2*r)*N0^alpha)/(r−alpha*mu*a2+beta*a2*r)+(...

K2^alpha−((r+beta*a2*r)*N0^alpha)/(r−alpha*mu*a2+beta*a2*r))*exp...
((−r+alpha*mu*a2−beta*a2*r)*(tmin(i))))^(1/alpha);

44 M2tau=M2(tauindex2);
45 end
46 for i=tauindex2+1:Tmin
47 M2(i)=(K2*M2tau)/(M2tau^alpha+(K2^alpha−M2tau^alpha)*exp(−r*(tmin(i)...

−tau2)))^(1/alpha);
48 end
49

50 %data was received by radiating cells once at day 0 − 4 gy
51 a4=4;
52 tau4=(1/rate)*a4/(tmin(end)*60);
53 tauindex4=find(tmin==(1/rate)*a4/60);
54

55 %tumour cells with radiation− basic model
56 M4=zeros(1,Tmin);
57 M4(1)=N0;
58 K4=5100;
59 for i=2:tauindex4
60 M4(i)=(K4*N0)/(((r+beta*a4*r)*N0^alpha)/(r−alpha*mu*a4+beta*a4*r)+(...

K4^alpha−((r+beta*a4*r)*N0^alpha)/(r−alpha*mu*a4+beta*a4*r))*exp...
((−r+alpha*mu*a4−beta*a4*r)*(tmin(i))))^(1/alpha);

61 M4tau=M4(tauindex4);
62 end
63 for i=tauindex4+1:Tmin
64 M4(i)=(K4*M4tau)/(M4tau^alpha+(K4^alpha−M4tau^alpha)*exp(−r*(tmin(i)...

−tau4)))^(1/alpha);
65 end
66

67 %data was received by radiating cells once at day 0 − 6 gy
68 a6=6;
69 tau6=(1/rate)*a6/(tmin(end)*60);
70 tauindex6=find(tmin==(1/rate)*a6/60);
71

72 %tumour cells with radiation − basic model
73 M6=zeros(1,Tmin);
74 M6(1)=N0;
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75 K6=4200;
76 for i=2:tauindex6
77 M6(i)=(K6*N0)/(((r+beta*a6*r)*N0^alpha)/(r−alpha*mu*a6+beta*a6*r)+(...

K6^alpha−((r+beta*a6*r)*N0^alpha)/(r−alpha*mu*a6+beta*a6*r))*exp...
((−r+alpha*mu*a6−beta*a6*r)*(tmin(i))))^(1/alpha);

78 M6tau=M6(tauindex6);
79 end
80 for i=tauindex6+1:Tmin
81 M6(i)=(K6*M6tau)/(M6tau^alpha+(K6^alpha−M6tau^alpha)*exp(−r*(tmin(i)...

−tau6)))^(1/alpha);
82 end
83

84 %data was received by radiating cells once at day 0 − 8 gy
85 a8=8;
86 tau8=(1/rate)*a8/(tmin(end)*60);
87 tauindex8=find(tmin==(1/rate)*a8/60);
88

89 %tumour cells with radiation− basic model
90 M8=zeros(1,Tmin);
91 M8(1)=N0;
92 K8=3200;
93 for i=2:tauindex8
94 M8(i)=(K8*N0)/(((r+beta*a8*r)*N0^alpha)/(r−alpha*mu*a8+beta*a8*r)+(...

K8^alpha−((r+beta*a8*r)*N0^alpha)/(r−alpha*mu*a8+beta*a8*r))*exp...
((−r+alpha*mu*a8−beta*a8*r)*(tmin(i))))^(1/alpha);

95 M8tau=M8(tauindex8);
96 end
97 for i=tauindex8+1:Tmin
98 M8(i)=(K8*M8tau)/(M8tau^alpha+(K8^alpha−M8tau^alpha)*exp(−r*(tmin(i)...

−tau8)))^(1/alpha);
99 end

100

101 bif2=r/((alpha*mu−beta*r)*tau2);
102 bif4=r/((alpha*mu−beta*r)*tau4);
103 bif6=r/((alpha*mu−beta*r)*tau6);
104 bif8=r/((alpha*mu−beta*r)*tau8);
105

106 figure
107 plot(t,N,'Color','r')
108 hold on
109 plot(time,cells,'.k','markersize',15)
110 xlabel('Time, t (hours)')
111 ylabel('Cell Number, N(t)')
112 grid on
113 ylim([0 14000])
114

115 figure
116 plot(tmin,M2,'Color','r')
117 hold on
118 plot(time, cells_2,'.k','markersize',15)
119 xlabel('Time, t (hours)')
120 ylabel('Cell Number, N(t)')
121 grid on
122 ylim([0 14000])
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123

124 figure
125 plot(tmin,M4,'Color','r')
126 hold on
127 plot(time, cells_4,'.k','markersize',15)
128 xlabel('Time, t (hours)')
129 ylabel('Cell Number, N(t)')
130 grid on
131 ylim([0 14000])
132

133 figure
134 plot(tmin,M6,'Color','r')
135 hold on
136 plot(time, cells_6,'.k','markersize',15)
137 xlabel('Time, t (hours)')
138 ylabel('Cell Number, N(t)')
139 grid on
140 ylim([0 14000])
141

142 figure
143 plot(tmin,M8,'Color','r')
144 hold on
145 plot(time, cells_8,'.k','markersize',15)
146 xlabel('Time, t (hours)')
147 ylabel('Cell Number, N(t)')
148 grid on
149 ylim([0 14000])
150

151 figure
152 plot(t,N,'k')
153 hold on
154 plot(tmin,M2,'b')
155 hold on
156 plot(tmin,M4,'g')
157 hold on
158 plot(tmin,M6,'r')
159 hold on
160 plot(tmin,M8,'c')
161 hold on
162 plot(time, cells,'.k','markersize',15)
163 hold on
164 plot(time, cells_2,'pk','MarkerFaceColor','k')
165 hold on
166 plot(time, cells_4,'dk')
167 hold on
168 plot(time, cells_6,'*k')
169 hold on
170 plot(time, cells_8,'^k')
171 xlabel('Time, t (hours)')
172 ylabel('Cell Number, N(t)')
173 grid on
174 ylim([0 14000])
175

176
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177 error2=((M2(4321)−cells_2(2))/M2(4321))^2+((M2(8641)−cells_2(3))/M2...
(8641))^2+((M2(12961)−cells_2(4))/M2(12961))^2+((M2(17281)−cells_2(5)...
)/M2(17281))^2+((M2(21601)−cells_2(6))/M2(21601))^2

178 error4=((M4(4321)−cells_4(2))/M4(4321))^2+((M4(8641)−cells_4(3))/M4...
(8641))^2+((M4(12961)−cells_4(4))/M4(12961))^2+((M4(17281)−cells_4(5)...
)/M4(17281))^2+((M4(21601)−cells_4(6))/M4(21601))^2

179 error6=((M6(4321)−cells_6(2))/M6(4321))^2+((M6(8641)−cells_6(3))/M6...
(8641))^2+((M6(12961)−cells_6(4))/M6(12961))^2+((M6(17281)−cells_6(5)...
)/M6(17281))^2+((M6(21601)−cells_6(6))/M6(21601))^2

180 error8=((M8(4321)−cells_8(2))/M8(4321))^2+((M8(8641)−cells_8(3))/M8...
(8641))^2+((M8(12961)−cells_8(4))/M8(12961))^2+((M8(17281)−cells_8(5)...
)/M8(17281))^2+((M8(21601)−cells_8(6))/M8(21601))^2

Spatial Model

Used for �gures 47 on page 71.

1 %Radius and nutrient concentration
2 clear all
3 %data
4 time=[0,3,6,9,12,15];
5 R_0=[157,204,248,263,272,279];
6 R_2=[157,196,228,238,251,256];
7 R_4=[157,194,212,224,222,234];
8 R_6=[157,196,210,214,220,225];
9 R_8=[157,195,204,200,207,215];

10 %parameter values
11 t0=0; %start time
12 T=16; %end time (in days)
13 h=0.01; %delta t − step size
14 t=t0:h:T; %time
15 R0=[157,0,0]; %initial value from data
16 tradius=zeros(3,length(t));
17 tradius(:,1)=R0;
18 A=0; %radiation amount
19 mu=0;
20 lambdaA=0.24; %rate of apoptosis
21 lambdaN=0.57; %rate of necrosis
22 gamma=0.00014; %rate of nutrient consumption
23 cinf=1; %nutrient concentration outside
24 cH=cinf−100^2*gamma/6; %at r=R_H
25 cN=cinf−200^2*gamma/6; %at r=R_N
26

27 %Euler method to solve equation for tumour radius
28 for i=1:length(t)−1
29 if tradius(1,i)<sqrt(6/gamma*(cinf−cH))
30 tradius(1,i+1)=tradius(1,i)+h*tradius(1,i)/3*(cinf−gamma/15*(...

tradius(1,i))^2−lambdaA−mu*1*A);
31 tradius(2,i+1)=0;
32 tradius(3,i+1)=0;
33 elseif tradius(1,i)<sqrt(6/gamma*(cinf−cN))
34 tradius(3,i)=0;
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35 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH));
36 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*((cinf−gamma/6*(...

tradius(1,i))^2−lambdaA−mu*1*A)*(1−(tradius(2,i))^3/(tradius...
(1,i))^3)+gamma/10*(tradius(1,i))^2*(1−(tradius(2,i))^5/(...
tradius(1,i))^5)));

37 else
38 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH));
39 tradius(3,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cN));
40 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*(cN*(1−(tradius(2,...

i))^3/(tradius(1,i))^3)−(lambdaA+mu*A)*(1+(tradius(3,i))^3/(...
tradius(1,i))^3−(tradius(2,i))^3/(tradius(1,i))^3)−lambdaN*(...
tradius(3,i))^3/(tradius(1,i))^3)+gamma/6*(tradius(1,i))...
^3*(1/5*(1−(tradius(2,i))^5/(tradius(1,i))^5)−(tradius(3,i))...
^2/(tradius(1,i))^3*(1−(tradius(2,i))^3/(tradius(1,i))^3)+(...
tradius(3,i))^3/(tradius(1,i))^4*(1−(tradius(2,i))^2/(tradius...
(1,i))^2)));

41 end
42 end
43 tradius(2,end)=sqrt((tradius(1,end))^2−6/gamma*(cinf−cH));
44 tradius(3,end)=sqrt((tradius(1,end))^2−6/gamma*(cinf−cN));
45

46 %plot time vs radius
47 figure
48 plot(t,tradius(1,:),'c')
49 hold on
50 plot(t,tradius(2,:),'b')
51 hold on
52 plot(t,tradius(3,:),'k')
53 hold on
54 plot(time,R_0,'.k','markersize',15)
55 xlabel('Time, t (days)')
56 ylabel('Tumour Radius, R (\mum)')
57 grid on
58 xlim([0 T])
59

60 %error
61 y=zeros(1,6);
62 for j=2:6
63 y(j)=((tradius(1,time(j)*100+1)−R_0(j))/tradius(1,time(j)*100+1))^2;
64 end
65 error=sum(y)

Algorithm 3: Used to �nd best �tting parameters.

1 %find smallest error
2 clear all
3 %data
4 time=[0,3,6,9,12,15];
5 R_0=[157,204,248,263,272,279];
6 %parameter values
7 t0=0; %start time
8 T=16; %end time (in days)
9 h=0.01; %delta t − step size
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10 t=t0:h:T; %time
11 R0=[157,0,0]; %initial value from data
12 tradius=zeros(3,length(t));
13 tradius(:,1)=R0;
14 A=0;
15 mu=0.1;
16 cinf=1;
17

18 steplambdaA=0.01;
19 steplambdaN=0.01;
20 stepgamma=0.00001;
21 model=zeros(T−200,1);
22 LA=0:steplambdaA:1;
23 LN=0:steplambdaN:1;
24 G=0.00001:stepgamma:0.00014;
25 LLAA=length(LA);
26 LLNN=length(LN);
27 GG=length(G);
28 y=0;
29 fehlertens=zeros(GG,LLNN,LLAA);
30

31 jjj=1;
32 for gamma=0.00001:stepgamma:0.00014
33 jj=1;
34 cH=cinf−100^2*gamma/6;
35 cN=cinf−200^2*gamma/6;
36 for lambdaN=0:steplambdaN:1
37 j=1;
38 for lambdaA=0:steplambdaA:1
39 for i=1:length(t)−1
40 if tradius(1,i)<sqrt(6/gamma*(cinf−cH))
41 tradius(1,i+1)=tradius(1,i)+h*tradius(1,i)/3*(cinf−...

gamma/15*(tradius(1,i))^2−lambdaA−mu*A);
42 tradius(2,i+1)=0;
43 tradius(3,i+1)=0;
44 elseif tradius(1,i)<sqrt(6/gamma*(cinf−cN))
45 tradius(3,i)=0;
46 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH)...

);
47 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*((cinf...

−gamma/6*(tradius(1,i))^2−lambdaA−mu*A)*(1−(...
tradius(2,i))^3/(tradius(1,i))^3)+gamma/10*(...
tradius(1,i))^2*(1−(tradius(2,i))^5/(tradius(1,i)...
)^5)));

48 else
49 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH)...

);
50 tradius(3,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cN)...

);
51 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*(cN...

*(1−(tradius(2,i))^3/(tradius(1,i))^3)−(lambdaA+...
mu*A)*(1+(tradius(3,i))^3/(tradius(1,i))^3−(...
tradius(2,i))^3/(tradius(1,i))^3)−lambdaN*(...
tradius(3,i))^3/(tradius(1,i))^3)+gamma/6*(...
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tradius(1,i))^3*(1/5*(1−(tradius(2,i))^5/(tradius...
(1,i))^5)−(tradius(3,i))^2/(tradius(1,i))^3*(1−(...
tradius(2,i))^3/(tradius(1,i))^3)+(tradius(3,i))...
^3/(tradius(1,i))^4*(1−(tradius(2,i))^2/(tradius...
(1,i))^2)));

52 end
53 if i==301
54 y=((tradius(1,i)−R_0(2))/tradius(1,i))^2;
55 elseif i==601
56 y=((tradius(1,i)−R_0(3))/tradius(1,i))^2;
57 elseif i==901
58 y=((tradius(1,i)−R_0(4))/tradius(1,i))^2;
59 elseif i==1201
60 y=((tradius(1,i)−R_0(5))/tradius(1,i))^2;
61 elseif i==1501
62 y=((tradius(1,i)−R_0(6))/tradius(1,i))^2;
63 else
64 y=0;
65 end
66 fehlertens(jjj,jj,j)=fehlertens(jjj,jj,j)+y;
67 end
68 j=j+1;
69 end
70 jj=jj+1;
71 end
72 jjj=jjj+1;
73 end
74

75

76 [mini idx]=min(fehlertens(:));
77 [gidx lNidx lAidx]=ind2sub(size(fehlertens),idx);
78 mini
79

80 lambdaAbest=LA(lAidx)
81 lambdaNbest=LN(lNidx)
82 gammabest=G(gidx)

Used for �gure 48 on page 72.

1 %tumour growth − area plots every 3 days
2 clear all
3 %data
4 R_0=[157,204,248,263,272,279];
5 R_2=[157,196,228,238,251,256];
6 R_4=[157,194,212,224,222,234];
7 R_6=[157,196,210,214,220,225];
8 R_8=[157,195,204,200,207,215];
9 %model parameter

10 lambdaA=0.24; %rate of apoptosis
11 lambdaN=0.57; %rate of necrosis
12 gamma=0.00014; %rate of nutrient consumption
13 cinf=1; %nutrient concentration outside
14 cH=cinf−100^2*gamma/6; %min nutrient concentration needed for cell ...

proliferation
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15 cN=cinf−200^2*gamma/6; %max nutrient concentration at which necrosis ...
occurs

16

17 %plot tumour area
18 for j=1:6
19 r=R_0(j);
20 rH=sqrt(r^2−6/gamma*(cinf−cH));
21 if r>200
22 rN=sqrt(r^2−6/gamma*(cinf−cN));
23 else
24 rN=0;
25 end
26 x=0;
27 y=0;
28 ang=0:0.01:2*pi;
29 xp=r*cos(ang);
30 yp=r*sin(ang);
31 xpH=rH*cos(ang);
32 ypH=rH*sin(ang);
33 xpN=rN*cos(ang);
34 ypN=rN*sin(ang);
35

36 figure
37 plot(x+xp,y+yp,'c');
38 hold on
39 plot(x+xpH,y+ypH,'b');
40 hold on
41 plot(x+xpN,y+ypN,'k');
42 xlim([−300 300])
43 ylim([−300 300])
44 axis square
45 xlabel('\mum')
46 ylabel('\mum')
47 end

Used for �gures 49 and 50 on pages 73 and 74.

1 %Radius and nutrient concentration
2 clear all
3 %data
4 time=[0,3,6,9,12,15];
5 R_0=[157,204,248,263,272,279];
6 R_2=[157,196,228,238,251,256];
7 R_4=[157,194,212,224,222,234];
8 R_6=[157,196,210,214,220,225];
9 R_8=[157,195,204,200,207,215];

10 %parameter values
11 t0=0; %start time
12 T=16; %end time (in days)
13 h=0.01; %delta t − step size
14 t=t0:h:T; %time
15 R0=[157,0,0]; %initial value from data
16 tradius=zeros(3,length(t));
17 tradius(:,1)=R0;
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18 tradius_2=zeros(3,length(t));
19 tradius_2(:,1)=R0;
20 tradius_4=zeros(3,length(t));
21 tradius_4(:,1)=R0;
22 tradius_6=zeros(3,length(t));
23 tradius_6(:,1)=R0;
24 tradius_8=zeros(3,length(t));
25 tradius_8(:,1)=R0;
26 A_2=2; %radiation amount
27 A_4=4;
28 A_6=6;
29 A_8=8;
30 mu_2=0.078;
31 mu_4=0.078;
32 mu_6=0.055;
33 mu_8=0.055;
34 lambdaA=0.24; %rate of apoptosis
35 lambdaN=0.57; %rate of necrosis
36 gamma=0.00014; %rate of nutrient consumption
37 cinf=1; %nutrient concentration outside
38 cH=cinf−100^2*gamma/6;
39 cN=cinf−200^2*gamma/6;
40

41 %Euler method to solve equation for tumour radius
42 for i=1:length(t)−1
43 if tradius(1,i)<sqrt(6/gamma*(cinf−cH))
44 tradius(1,i+1)=tradius(1,i)+h*tradius(1,i)/3*(cinf−gamma/15*(...

tradius(1,i))^2−lambdaA);
45 tradius(2,i+1)=0;
46 tradius(3,i+1)=0;
47 elseif tradius(1,i)<sqrt(6/gamma*(cinf−cN))
48 tradius(3,i)=0;
49 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH));
50 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*((cinf−gamma/6*(...

tradius(1,i))^2−lambdaA)*(1−(tradius(2,i))^3/(tradius(1,i))...
^3)+gamma/10*(tradius(1,i))^2*(1−(tradius(2,i))^5/(tradius(1,...
i))^5)));

51 else
52 tradius(2,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cH));
53 tradius(3,i)=sqrt((tradius(1,i))^2−6/gamma*(cinf−cN));
54 tradius(1,i+1)=tradius(1,i)+h*(tradius(1,i)/3*(cN*(1−(tradius(2,...

i))^3/(tradius(1,i))^3)−(lambdaA+0)*(1+(tradius(3,i))^3/(...
tradius(1,i))^3−(tradius(2,i))^3/(tradius(1,i))^3)−lambdaN*(...
tradius(3,i))^3/(tradius(1,i))^3)+gamma/6*(tradius(1,i))...
^3*(1/5*(1−(tradius(2,i))^5/(tradius(1,i))^5)−(tradius(3,i))...
^2/(tradius(1,i))^3*(1−(tradius(2,i))^3/(tradius(1,i))^3)+(...
tradius(3,i))^3/(tradius(1,i))^4*(1−(tradius(2,i))^2/(tradius...
(1,i))^2)));

55 end
56 end
57 tradius(2,end)=sqrt((tradius(1,end))^2−6/gamma*(cinf−cH));
58 tradius(3,end)=sqrt((tradius(1,end))^2−6/gamma*(cinf−cN));
59

60 %Euler method to solve equation for tumour radius, A=2 gy
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61 for i=1:length(t)−1
62 if tradius_2(1,i)<sqrt(6/gamma*(cinf−cH))
63 tradius_2(1,i+1)=tradius_2(1,i)+h*tradius_2(1,i)/3*(cinf−gamma...

/15*(tradius_2(1,i))^2−lambdaA−mu_2*1*A_2);
64 tradius_2(2,i+1)=0;
65 tradius_2(3,i+1)=0;
66 elseif tradius_2(1,i)<sqrt(6/gamma*(cinf−cN))
67 tradius_2(3,i)=0;
68 tradius_2(2,i)=sqrt((tradius_2(1,i))^2−6/gamma*(cinf−cH));
69 tradius_2(1,i+1)=tradius_2(1,i)+h*(tradius_2(1,i)/3*((cinf−gamma...

/6*(tradius_2(1,i))^2−lambdaA−mu_2*1*A_2)*(1−(tradius_2(2,i))...
^3/(tradius_2(1,i))^3)+gamma/10*(tradius_2(1,i))^2*(1−(...
tradius_2(2,i))^5/(tradius_2(1,i))^5)));

70 else
71 tradius_2(2,i)=sqrt((tradius_2(1,i))^2−6/gamma*(cinf−cH));
72 tradius_2(3,i)=sqrt((tradius_2(1,i))^2−6/gamma*(cinf−cN));
73 tradius_2(1,i+1)=tradius_2(1,i)+h*(tradius_2(1,i)/3*(cN*(1−(...

tradius_2(2,i))^3/(tradius_2(1,i))^3)−(lambdaA+mu_2*A_2)*(1+(...
tradius_2(3,i))^3/(tradius_2(1,i))^3−(tradius_2(2,i))^3/(...
tradius_2(1,i))^3)−lambdaN*(tradius_2(3,i))^3/(tradius_2(1,i)...
)^3)+gamma/6*(tradius_2(1,i))^3*(1/5*(1−(tradius_2(2,i))^5/(...
tradius_2(1,i))^5)−(tradius_2(3,i))^2/(tradius_2(1,i))^3*(1−(...
tradius_2(2,i))^3/(tradius_2(1,i))^3)+(tradius_2(3,i))^3/(...
tradius_2(1,i))^4*(1−(tradius_2(2,i))^2/(tradius_2(1,i))^2)))...
;

74 end
75 end
76 tradius_2(2,end)=sqrt((tradius_2(1,end))^2−6/gamma*(cinf−cH));
77 tradius_2(3,end)=sqrt((tradius_2(1,end))^2−6/gamma*(cinf−cN));
78

79 %Euler method to solve equation for tumour radius, A=4 gy
80 for i=1:length(t)−1
81 if tradius_4(1,i)<sqrt(6/gamma*(cinf−cH))
82 tradius_4(1,i+1)=tradius_4(1,i)+h*tradius_4(1,i)/3*(cinf−gamma...

/15*(tradius_4(1,i))^2−lambdaA−mu_4*1*A_4);
83 tradius_4(2,i+1)=0;
84 tradius_4(3,i+1)=0;
85 elseif tradius_4(1,i)<sqrt(6/gamma*(cinf−cN))
86 tradius_4(3,i)=0;
87 tradius_4(2,i)=sqrt((tradius_4(1,i))^2−6/gamma*(cinf−cH));
88 tradius_4(1,i+1)=tradius_4(1,i)+h*(tradius_4(1,i)/3*((cinf−gamma...

/6*(tradius_4(1,i))^2−lambdaA−mu_4*1*A_4)*(1−(tradius_4(2,i))...
^3/(tradius_4(1,i))^3)+gamma/10*(tradius_4(1,i))^2*(1−(...
tradius_4(2,i))^5/(tradius_4(1,i))^5)));

89 else
90 tradius_4(2,i)=sqrt((tradius_4(1,i))^2−6/gamma*(cinf−cH));
91 tradius_4(3,i)=sqrt((tradius_4(1,i))^2−6/gamma*(cinf−cN));
92 tradius_4(1,i+1)=tradius_4(1,i)+h*(tradius_4(1,i)/3*(cN*(1−(...

tradius_4(2,i))^3/(tradius_4(1,i))^3)−(lambdaA+mu_4*A_4)*(1+(...
tradius_4(3,i))^3/(tradius_4(1,i))^3−(tradius_4(2,i))^3/(...
tradius_4(1,i))^3)−lambdaN*(tradius_4(3,i))^3/(tradius_4(1,i)...
)^3)+gamma/6*(tradius_4(1,i))^3*(1/5*(1−(tradius_4(2,i))^5/(...
tradius_4(1,i))^5)−(tradius_4(3,i))^2/(tradius_4(1,i))^3*(1−(...
tradius_4(2,i))^3/(tradius_4(1,i))^3)+(tradius_4(3,i))^3/(...
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tradius_4(1,i))^4*(1−(tradius_4(2,i))^2/(tradius_4(1,i))^2)))...
;

93 end
94 end
95 tradius_4(2,end)=sqrt((tradius_4(1,end))^2−6/gamma*(cinf−cH));
96 tradius_4(3,end)=sqrt((tradius_4(1,end))^2−6/gamma*(cinf−cN));
97

98 %Euler method to solve equation for tumour radius, A=4 gy
99 for i=1:length(t)−1

100 if tradius_6(1,i)<sqrt(6/gamma*(cinf−cH))
101 tradius_6(1,i+1)=tradius_6(1,i)+h*tradius_6(1,i)/3*(cinf−gamma...

/15*(tradius_6(1,i))^2−lambdaA−mu_6*1*A_6);
102 tradius_6(2,i+1)=0;
103 tradius_6(3,i+1)=0;
104 elseif tradius_6(1,i)<sqrt(6/gamma*(cinf−cN))
105 tradius_6(3,i)=0;
106 tradius_6(2,i)=sqrt((tradius_6(1,i))^2−6/gamma*(cinf−cH));
107 tradius_6(1,i+1)=tradius_6(1,i)+h*(tradius_6(1,i)/3*((cinf−gamma...

/6*(tradius_6(1,i))^2−lambdaA−mu_6*1*A_6)*(1−(tradius_6(2,i))...
^3/(tradius_6(1,i))^3)+gamma/10*(tradius_6(1,i))^2*(1−(...
tradius_6(2,i))^5/(tradius_6(1,i))^5)));

108 else
109 tradius_6(2,i)=sqrt((tradius_6(1,i))^2−6/gamma*(cinf−cH));
110 tradius_6(3,i)=sqrt((tradius_6(1,i))^2−6/gamma*(cinf−cN));
111 tradius_6(1,i+1)=tradius_6(1,i)+h*(tradius_6(1,i)/3*(cN*(1−(...

tradius_6(2,i))^3/(tradius_6(1,i))^3)−(lambdaA+mu_6*A_6)*(1+(...
tradius_6(3,i))^3/(tradius_6(1,i))^3−(tradius_6(2,i))^3/(...
tradius_6(1,i))^3)−lambdaN*(tradius_6(3,i))^3/(tradius_6(1,i)...
)^3)+gamma/6*(tradius_6(1,i))^3*(1/5*(1−(tradius_6(2,i))^5/(...
tradius_6(1,i))^5)−(tradius_6(3,i))^2/(tradius_6(1,i))^3*(1−(...
tradius_6(2,i))^3/(tradius_6(1,i))^3)+(tradius_6(3,i))^3/(...
tradius_6(1,i))^4*(1−(tradius_6(2,i))^2/(tradius_6(1,i))^2)))...
;

112 end
113 end
114 tradius_6(2,end)=sqrt((tradius_6(1,end))^2−6/gamma*(cinf−cH));
115 tradius_6(3,end)=sqrt((tradius_6(1,end))^2−6/gamma*(cinf−cN));
116

117 %Euler method to solve equation for tumour radius, A=4 gy
118 for i=1:length(t)−1
119 if tradius_8(1,i)<sqrt(6/gamma*(cinf−cH))
120 tradius_8(1,i+1)=tradius_8(1,i)+h*tradius_8(1,i)/3*(cinf−gamma...

/15*(tradius_8(1,i))^2−lambdaA−mu_8*1*A_8);
121 tradius_8(2,i+1)=0;
122 tradius_8(3,i+1)=0;
123 elseif tradius_8(1,i)<sqrt(6/gamma*(cinf−cN))
124 tradius_8(3,i)=0;
125 tradius_8(2,i)=sqrt((tradius_8(1,i))^2−6/gamma*(cinf−cH));
126 tradius_8(1,i+1)=tradius_8(1,i)+h*(tradius_8(1,i)/3*((cinf−gamma...

/6*(tradius_8(1,i))^2−lambdaA−mu_8*1*A_8)*(1−(tradius_8(2,i))...
^3/(tradius_8(1,i))^3)+gamma/10*(tradius_8(1,i))^2*(1−(...
tradius_8(2,i))^5/(tradius_8(1,i))^5)));

127 else
128 tradius_8(2,i)=sqrt((tradius_8(1,i))^2−6/gamma*(cinf−cH));
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129 tradius_8(3,i)=sqrt((tradius_8(1,i))^2−6/gamma*(cinf−cN));
130 tradius_8(1,i+1)=tradius_8(1,i)+h*(tradius_8(1,i)/3*(cN*(1−(...

tradius_8(2,i))^3/(tradius_8(1,i))^3)−(lambdaA+mu_8*A_8)*(1+(...
tradius_8(3,i))^3/(tradius_8(1,i))^3−(tradius_8(2,i))^3/(...
tradius_8(1,i))^3)−lambdaN*(tradius_8(3,i))^3/(tradius_8(1,i)...
)^3)+gamma/6*(tradius_8(1,i))^3*(1/5*(1−(tradius_8(2,i))^5/(...
tradius_8(1,i))^5)−(tradius_8(3,i))^2/(tradius_8(1,i))^3*(1−(...
tradius_8(2,i))^3/(tradius_8(1,i))^3)+(tradius_8(3,i))^3/(...
tradius_8(1,i))^4*(1−(tradius_8(2,i))^2/(tradius_8(1,i))^2)))...
;

131 end
132 end
133 tradius_8(2,end)=sqrt((tradius_8(1,end))^2−6/gamma*(cinf−cH));
134 tradius_8(3,end)=sqrt((tradius_8(1,end))^2−6/gamma*(cinf−cN));
135

136 %plot time vs radius
137 figure
138 plot(t,tradius_2(1,:),'c')
139 hold on
140 plot(t,tradius_2(2,:),'b')
141 hold on
142 plot(t,tradius_2(3,:),'k')
143 hold on
144 plot(time,R_2,'.k','markersize',15)
145 xlabel('Time, t (days)')
146 ylabel('Tumour Radius, R (\mum)')
147 grid on
148 xlim([0 T])
149 ylim([0 300])
150

151 figure
152 plot(t,tradius_4(1,:),'c')
153 hold on
154 plot(t,tradius_4(2,:),'b')
155 hold on
156 plot(t,tradius_4(3,:),'k')
157 hold on
158 plot(time,R_4,'.k','markersize',15)
159 xlabel('Time, t (days)')
160 ylabel('Tumour Radius, R (\mum)')
161 grid on
162 xlim([0 T])
163 ylim([0 300])
164

165 figure
166 plot(t,tradius_6(1,:),'c')
167 hold on
168 plot(t,tradius_6(2,:),'b')
169 hold on
170 plot(t,tradius_6(3,:),'k')
171 hold on
172 plot(time,R_6,'.k','markersize',15)
173 xlabel('Time, t (days)')
174 ylabel('Tumour Radius, R (\mum)')
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175 grid on
176 xlim([0 T])
177 ylim([0 300])
178

179 figure
180 plot(t,tradius_8(1,:),'c')
181 hold on
182 plot(t,tradius_8(2,:),'b')
183 hold on
184 plot(t,tradius_8(3,:),'k')
185 hold on
186 plot(time,R_8,'.k','markersize',15)
187 xlabel('Time, t (days)')
188 ylabel('Tumour Radius, R (\mum)')
189 grid on
190 xlim([0 T])
191 ylim([0 300])
192

193

194 figure
195 plot(t,tradius(1,:),'k')
196 hold on
197 plot(t,tradius_2(1,:),'b')
198 hold on
199 plot(t,tradius_4(1,:),'g')
200 hold on
201 plot(t,tradius_6(1,:),'r')
202 hold on
203 plot(t,tradius_8(1,:),'m')
204 hold on
205 plot(time, R_0,'.k','markersize',15)
206 hold on
207 plot(time, R_2,'pk','MarkerFaceColor','k')
208 hold on
209 plot(time, R_4,'dk')
210 hold on
211 plot(time, R_6,'*k')
212 hold on
213 plot(time, R_8,'^k')
214 xlabel('Time, t (days)')
215 ylabel('Tumour Radius, R (\mum)')
216 grid on
217 xlim([0 T])
218 ylim([0 300])
219

220 %errors
221 y_2=zeros(1,6);
222 for j=2:6
223 y_2(j)=((tradius_2(1,time(j)*100+1)−R_2(j))/tradius_2(1,time(j)...

*100+1))^2;
224 end
225 error_2=sum(y_2)
226

227 y_4=zeros(1,6);
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228 for j=2:6
229 y_4(j)=((tradius_4(1,time(j)*100+1)−R_4(j))/tradius_4(1,time(j)...

*100+1))^2;
230 end
231 error_4=sum(y_4)
232

233 y_6=zeros(1,6);
234 for j=2:6
235 y_6(j)=((tradius_6(1,time(j)*100+1)−R_6(j))/tradius_6(1,time(j)...

*100+1))^2;
236 end
237 error_6=sum(y_6)
238

239 y_8=zeros(1,6);
240 for j=2:6
241 y_8(j)=((tradius_8(1,time(j)*100+1)−R_8(j))/tradius_8(1,time(j)...

*100+1))^2;
242 end
243 error_8=sum(y_8)

Used for �gure 51 on page 74.

1 %tumour growth − area plots every 3 days
2 clear all
3 %data
4 R_0=[157,204,248,263,272,279];
5 R_2=[157,196,228,238,251,256];
6 R_4=[157,194,212,224,222,234];
7 R_6=[157,196,210,214,220,225];
8 R_8=[157,195,204,200,207,215];
9 %model parameter

10 lambdaA=0.24; %rate of apoptosis
11 lambdaN=0.57; %rate of necrosis
12 gamma=0.00014; %rate of nutrient consumption
13 cinf=1; %nutrient concentration outside
14 cH=cinf−100^2*gamma/6; %min nutrient concentration needed for cell ...

proliferation
15 cN=cinf−200^2*gamma/6; %max nutrient concentration at which necrosis ...

occurs
16

17 %plot tumour area
18 for j=1:6
19 r=R_6(j);
20 rH=sqrt(r^2−6/gamma*(cinf−cH));
21 if r>200
22 rN=sqrt(r^2−6/gamma*(cinf−cN));
23 else
24 rN=0;
25 end
26 x=0;
27 y=0;
28 ang=0:0.01:2*pi;
29 xp=r*cos(ang);
30 yp=r*sin(ang);
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31 xpH=rH*cos(ang);
32 ypH=rH*sin(ang);
33 xpN=rN*cos(ang);
34 ypN=rN*sin(ang);
35

36 figure
37 plot(x+xp,y+yp,'c');
38 hold on
39 plot(x+xpH,y+ypH,'b');
40 hold on
41 plot(x+xpN,y+ypN,'k');
42 xlim([−300 300])
43 ylim([−300 300])
44 axis square
45 xlabel('\mum')
46 ylabel('\mum')
47 end
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