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Abstract

Background

Emerging technologies based on mass spectrometry or nuclgaeticaesonance enable the

monitoring of hundreds of small metabolites from tissues or body fliRdsfiling of
metabolites can help elucidate causal pathways linking establigmetic variants to known
disease risk factors such as blood lipid traits.




Methods

We applied statistical methodology to dissect causal relatipn$igtween single nucleoti
polymorphisms, metabolite concentrations and serum lipid traits, focasi®§ genetic log
reproducibly associated with the four main serum lipids (total-sdemsity lipoprotein- an
high-density lipoprotein- cholesterol and triglycerides). The datased included 2,97
individuals from two independent population-based cohorts with data for 15llrsatetule
metabolites and four main serum lipids. Three statistical appreaciaenely conditiona
analysis, Mendelian Randomization and Structural Equation Modellingg @@nmpared tp
investigate causal relationship at sets of a single nuclgmigenorphism, a metabolite and a
lipid trait associated with one another.
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Results

A subset of three lipid-associated lodtADSL, GCKR and LPA) have a statistically
significant association with at least one main lipid and one mémtaincentration in ou
data, defining a total of 38 cross-associated sets of a singleotide polymorphism, g
metabolite and a lipid trait. Structural Equation Modelling providedaefft discriminatior
to indicate that the association of a single nucleotide polymorphisima lipid trait wag
mediated through a metabolite at 15 of the 38 sets, and involving gaaiatiteFADSL and
GCKRloci.

=

Conclusions

metabolome (or other intermediate factors) in mediating the iaisocbetween establish

These data provide a framework for evaluating the causal roleomponents of th
d
genetic variants and diseases or traits. F

Background

Recent technological advances allow for the collection of high-diomeals molecular
phenotype datasets in thousands of individuals in a highly standardizeshem
Metabolomics technologies based on mass spectrometry (MS) eanuathgnetic resonance
(NMR) enable the monitoring of hundreds of small molecule metakah tissues or body
fluids [1-3]. Metabolites are intermediates in metabolic pathwaysch can be used to
obtain a snapshot of the physiological status of an individualgitem time point. These
datasets are typically organized into metabolic correlation arksy which are mined to
deduce unknown pathways from observed correlations, for instance tdyidaetabolic
signatures of disease status [4].

An emerging application of quantitative or semi-quantitative teclgndosuch as LC-MS-
based metabolomics is their combination with genome-wide associddi@a to discover
genetic loci underlying variation in human metabolism. Genome-wielabuolomics scans
based on hundreds of metabolite and lipid species measured using dstaoddrigh-
throughput assays have to date identified over one hundred independeot roetdbolites
[5-14]. Importantly, several of the metabolite-associated logiespond to loci previously
associated with risk of disease or their risk factors sudbrakn's disease, kidney disease
and serum lipids. These first studies have demonstrated the usefolndssye-scale
metabolomics scans for formulating novel hypotheses on biochemical spesce



underpinning complex traits and diseases. Once correlations betwestalzolite and a trait
have been observed at a locus, however, the next challenge isd@peat causal relations
from shared environmental effects or confounding.

This study explored the application of statistical inferencdigsect causal relationships at
complex-trait loci where there is a concomitant association with one ormetadolites. The
analysis was focused on (i) a set SNPs robustly associdtiedhe four main circulating
serum lipids in genome-wide association studies at the timaabysss, and including total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), hdgnsity lipoprotein
cholesterol (HDL-C) and triglycerides (TG) [15,16], (i) 151 nhbet#tes [10], and (iii) the
same four main serum lipids stated above. Briefly, subsets &NPe that have statistically
significant associations with at least one metabolite and pitkiti our data were selected.
Conditional analysis, Mendelian Randomization (MR) [17] and Structuig@ation
Modelling (SEM) [18-20] were then applied to the data to infer sdiedilly causal
relationships in each of SNP-metabolite-lipid sets previously defined.

The overarching aim of this study was to apply statisticalcgmres to interrogate causal
relationships using genomic, metabolomic and circulating lipid biomarieasures as an
exemplar model. This provides a framework that can be applied iy ather settings both

in relation to metabolomics data as well as other -omic measures.

Methods
Study description

KORA

The Cooperative Health Research in the Region of Augsburg (KQRWAY is a series of
independent population-based epidemiological surveys and follow-up studiegicippats
living in the region of Augsburg, Southern Germany [21]. Blood samiple& ORA F4
participants were collected between 2006 and 2008 in a standardized @msupmneviously
described in detail [10]Genotyping. For genotyping, 1,814 KORA F4 samples were
randomly selected and genotyped using the Affymetrix Human Sy A.0. After filtering
out low call rate SNPs and SNPs violating Hardy-Weinberg Eguitn (HWE), imputation
was conducted using IMPUTE v0.4.2 [22] based on HapMap#d measurement. Four
serum lipid measurements (in mg/dl) were collected using tmeelsion RxL (Dade
Behring); total cholesterol was determined by cholesteroteestemethod (CHOL Flex,
Dade-Behring, CHOD-PAP method), HDL-C cholesterol by the AH#x (Dade-Behring,
CHOD-PAP method after selective release of HDL-C), LDL-C chalelsby the ALDL Flex
(Dade Behring, CHOD-PAP method after colourless usage ooaHLDL-cholesterol) and
triglycerides (TG) by the TGL Flex (Dade Behring, enzymablorimetric test, GPO-PAP
method).Metabolite measurement. 3,044 KORA F4 samples were profiled using Biocrates
AbsolutdDQ Kit pl150 across three periods of time (August/September 2008,
November/December 2008 and March/April 2009; which were marked asbiduaees for
the analysis). Finally, a total of 1,797 KORA F4 samples werdaala with genotypes,
metabolite and serum lipid measurements [Additional file 1: Table S1].



Twins UK

The TwinsUK cohort is an adult twin British registry recruitexin the general population in
the United Kingdom [23]. Blood samples collection has been describedoysbyvi[9].
Genotyping. TwinsUK samples were genotyped using a combination of Illluminaysrr
(HumanHap300 [24,25], HumanHap610Q, 1 M-Duo and 1.2MDuo 1 M). For each dataset,
the Illluminus calling algorithm [26] was used to assign genotypesterior probability>
0.95) and applied the standardized data QC criteria based orl rateal heterozygosity,
ethnicity and relatedness (for sample exclusion); and ii) HWBomallele frequency and
call rate (for SNPs). After pair-wise concordance check antiefuvisual inspection, the
genotype datasets from different arrays were merged. Imputatierperformed using the
IMPUTE software package (v2) [22] using two reference panels(HaPMap2, rel 22,
combined CEU + YRI + ASN panels) and P1 (610 k+, including the combined
HumanHap610k and 1 M reduced to 610 k SNP contermi)d measurement. Serum lipids

for TwinsUK samples were measured (in mmol/L) as describg¥jrand the LDL-C values
were derived from HDL-C and TG values using Friedewald’'s emuatWe converted all
lipid measurements to mg/dl values to be consistent with KORA, by multiplying 38.@vef
LDL-C, HDL-C and TC measurements and 87.5 for the TG measmtemletabolite
measurement. Metabolite measurements were performed using the metabolphaiésrm
Biocrates AbsolutdQ Kit p150 under an identical protocol as for the KORA study at the
Genome Analysis Center of the Helmholtz Zentrum Munchen. For 1,235 randelatted
TwinsUK samples with genotypes available, the metabolite merasmts were conducted in
two batches: one for 422 individuals in April 2009 and the other for Bd®iduals in
November 2009. One reference sample was included in each of the tes rpla in the
second batch, and metabolites were measured five times in eaeh Tlase reference
measurements were used for quality control purposes. After f@gmore details below),

a total of 1,176 TwinsUK samples were available with metabgi#eotype and serum-lipids
measurements.

All the participants in both KORA and TwinsUK cohorts have providedrméd consent
and this study has been approved by Local Research Ethics Comn@ug's and St.
Thomas’ Hospital Ethics Committee for TwinsUK, and Bayeriscardesarztekammer for
KORA. Summary information for all the samples can be found in Additional filedleT3.

Metabolomics measurements and QC

Metabolite panel

The analysed metabolite panel comprises 163 different metapohtdsding 14 amino
acids, hexoses (H1), free carnitine (C0), 40 acylcarnitines JCRydroxylacylcarnitines
(C(OH)x:y), and dicarboxylacylcarnitines (Cx:y-DC), 15 sphingolnge(SMx:y) and N-

hydroxylacyloylsphingosylphosphocholine (SM (OH)x:y), 77 phosphatidylch®liRE, aa =
diacyl, ae = acyl-alkyl) and 15 lyso-phosphatidylcholines. Quafpgrameters and
guantification procedures were as described by us [28]. Aftertgwalntrol, 151 different
metabolites remained in the dataset (Additional file 1. Table. &#)id side-chain

composition is abbreviated as Cx:y, where x denotes the number ohsarbthe side chain
and y the number of double bonds. For example, “PC ae C32:1” denotes |-akycy
phosphatidylcholine with 32 carbons in the two fatty acid side clemdsa single double
bond in one of them. Full biochemical names are provided in Additiondl:fifable S1. The
precise position of the double bonds and the distribution of the carboniatdifisrent fatty



acid side chains cannot be determined with this technology. In s@es, ¢the mapping of
metabolite names to individual masses can be ambiguous. For exatepés-chemical

differences are not always discernible, and neither are isofstagments. In such cases,
possible alternative assignments are indicated.

Metabolite measurements in KORA and TwinsUK

Liquid handling of serum samples (1) was performed with a Hamilton Star (Hamilton
Bonaduz AG) robot, and samples were prepared for quantification using the AlXQI ke
pl50 (BIOCRATES Life Sciences AG). Sample analyses were donéd000 Q TRAP
LC/MS/MS System (AB Sciex) equipped with a Shimadzu PromineG@AD pump and a
SIL-20 AC autosampler. The complete analytical process waerpedl using the MetlQ
software package, which is an integral part of the Absiid@ekit. The MetlQ version 1.2.1r
(Lithium), released in April 2010 was used, which incorporates anpisatorrection. The
experimental targeted metabolomics measurement technique isbedsicr detail by US
patent US 2007/0004044 [29] and in the manufacturer's manuals. A summaryrudttioel
can be found in elsewhere [30-32], and a comprehensive overview of tharfiiette related
technologies is given in [33]. Briefly, a targeted profiling schemused to quantitatively
screen for known small-molecule metabolites using multiple igeacmonitoring.
Quantification of the metabolites of the biological sample iseagli by reference to
appropriate internal standards. The method has been proven to confi@RB (Code of
Federal Regulations) Part 11, which implies proof of reproducibiithin a given error
range. It has been applied in different academic and industrialcaipmhs [11,33,34].
Concentrations of all analysed metabolites are reportelllin

Batch effects

The mean differences of the metabolomics measurements atiffesent measurement
batches were compared to assess the influence of possible batth é@tfe to calibration of
the machines at periodical time points. To account for these difiesein mean a batch
variable was included in all analyses of metabolomics data. émsistency this batch
variable was applied to all metabolites independent of demonstm@itisignificant batch

effects.

Quiality control

Quiality control of the metabolomics datasets was conducted isteps. In the first step the
quality of all metabolites was controlled by their coefficiehtvariation (CV) and missing

value rate. For CV calculation, one reference blood sample wasured five times on each
plate across all ten plates. The CV for each metabolite was calculdtdidas:

_ o (all fivereferencaneasuremes )
mean (all five referencemeasuremés )

The mean CV for each metabolite was computed from all ten pkitemetabolites with a
mean CV greater than 25% were excluded. In addition to thisienfea maximal missing
value rate of 5% was imposed. The second step of our quality controémasing outlying
data points and outlying samples. This step was applied to lodetmaesl metabolites,
which were consistently closer to normality than the untrangdmmetabolites based on the



Anderson Darling test. Outlying data points were defined as vatemater than 5 sd away
from the mean for each metabolite. For each sample, two outlytagodants were claimed

to be independent if the correlation of corresponding metabolitessgshan 70%. Samples
with more than three independent outlying data points were excludedamptes with less

than or equal to three independent outlying data points, only the data\peretexcluded.

Finally, all missing values were imputed using the R-packagee®ni85], which applies a

linear regression approach to estimate a distribution of eachbleanvith missing values

conditional on all the other variables in the same multivariatesefatand replaces missing
values with simulated values drawn from this distribution.

Data summary

A total of 163 metabolites were measured in 3,061 samples of KBRANd in 1,237
samples of TwinsUK. In the first step of quality control, 11 abetites were excluded for
having a CV higher than 25% and one metabolite for having more than Stigniglues
(Additional file 1: Table S2). In the second step, 17 samples wescarded in KORA F4,
due to their multiple independent outlying data points and two sampl@&svinsUK. In
addition, 419 and 254 outlying data points were treated as missing ValK®©RA F4 and
TwinsUK, respectively. Together with the original missing datéents, 0.09% of all data
points were imputed in KORA F4 and 0.16% in the TwinsUK. After sarapte metabolite
exclusions, a total of 151 metabolites were available for araly$,044 samples in KORA
F4 and 1,235 samples in TwinsUK (among which 1,797 samples in KORA F4, Bl in
TwinsUK had available metabolite, genotype and serum-lipids measur¢ments

Candidate SNPs

The analysis focused on a total of 102 SNPs at 95 lipid-assotaieeported as primary
association signals in a large-scale GWAS [16] for four lipatd under the genome-wide
significance threshold (p-value5 x 10®) since our study would not have the same statistical
power to detect additional novel lipid-associated loci with evenlemadriances explained.
Among the 102 SNPs, 52 were associated with TC, 37 with LDL-C, #vHL-C and 32
with TG in the original study. Many of these loci were asgediavith multiple lipid traits;

for example, 41 with two lipid traits, seven with three lipigits and six with all four lipid
traits. Summary information for these SNPs measured in KORATavinsUK cohorts can
be found in Additional file 1: Table S3.

Statistical analyses

Metabolite and lipid trait transformation

The Anderson Darling test with and without log-transformation wad tsdest deviation
from normality for metabolite values. The log-transformed bwdiges were consistently
closer to normality than the untransformed metabolites, and theetbolite measurements
were log-transformed for analysis. The skewness of metabosegsin our causal analyses is
reported in the Additional file 1: Table S8. Most metabolites hawskss between -0.5 and
0.5, indicating a symmetrical distribution, with the exception of RCC&82:2 in KORA
(skewness of —-0.934) and five metabolites in TwinsUK. However, thesd deviations
from symmetry had no impact on the results and interpretatioausiat relationships (data
not shown), so no filtering or transformation were applied at tagest-or lipids, TG values



were log-transformed to achieve normality. The distribution ot4@ HDL-C and TC
approximated normality and no transformation was applied.

Heritability

For each metabolite, the narrow sense heritability was estinieam 86 monozygotic and
245 dizygotic twin pairs in TwinsUK under the ACE model. The ACE madslmes that
the phenotypic variance is influenced by additive genetic vamiatiommon environmental
effects and unique environmental effects (or random effects)jndeid the narrow sense
heritability as the ratio of the estimated additive genetiamae to the phenotypic variance.
The estimation was done by maximum likelihood methods implementepgenMX software
[36].

Spearman’s correlation tests

Spearman’s correlation tests were used to identify correlagtdbwiite-lipid pairs, defined

as p-value < 8.3 x 18 (Bonferroni corrected for 4 lipids and 151 metabolites) and the same
direction of Spearman’s rho in both cohorts. We note that this correxte@rnthe number of
tests may be over-conservative owing to highly correlated meiabotincentrations.
Significant covariates (sex, age and batch effect) wageeseed out from metabolites and
lipids prior to the correlation test. The computation of the p-valueSapearman’s rho were
done using the function “cor.test” in R. Correlations were visualigeéd heat map plot
combined with a hierarchical clustering using the “heatmap.2’tfum®f the R-package
“gplots” [37] with default settings.

Single-trait association and meta-analysis

The association of the 102 candidate SNPs with all 151 metabohtesnwestigated under
the linear model adjusting for age, batch and sex, using SNPAaB& MERLIN (with --
fastassoc option) in the KORA and TwinsUK sample respecti@ignmary statistics for the
two cohorts were combined based on the inverse of the variance unéigedheffect meta-
analysis model, and SNPs with p-value < 3.3 X°18 0.05 / (102 x 151)) in the meta-
analysis and nominal association (p < 0.05) in both cohorts were del@stsciations of the
102 candidate SNPs and main lipids were also tested using theapanoach, and SNPs
with p-value < 0.05 in the TwinsUK-KORA meta-analysis were retained for sinaly

SNP-MET-LIP sets

Each metabolite with its statistically significantly asated SNP and lipid trait (defined by
the criteria above) was assigned to a unique SNP-MET-LIsetataehere SNP denotes a
genetic variant, MET denotes a metabolite and LIP denotes a Bpritnait. Only unrelated
samples in TwinsUK (N = 845) were included for analysis. Foabwites and lipid traits,
covariates adjustment were performed including age, sex and &idéch using a linear
regression model [16].

Conditional analysis

For each SNP-MET-LIP set, the association between SNP andddRested under a linear
regression model with and without adjustment for MET.



Unadjustednodet y, . =a+ BIXqp+&
Adjustednodeffor themetabolitey, ,, =a,; + B, Xqp * Vag Kuer * €

To examine the influence of MET on SNP-LIP association, the p-value betwéearN_IP

in adjusted model was examined (in the way that p-valQe€5 was considered as unlikely
to have direct association) and the change of the estimatet ®ffe®f SNP was measured
as follows.

A A

,Badj A_ /8

Effect size change=:

Mendelian randomization

To estimate the causal effect of a metabolite on a lipitj MeEndelian Randomization (MR)
[17,38] was applied to each SNP-MET-LIP set. Briefly in the &ffRroach, a genetic variant
(G, here SNP) is used as an instrumental variable, which isanalated with unknown

confounders (U), to test a hypothesis that a variable (X, here MEBusal to the outcome
(Y, here LIP).

SN

G —> X —m> Y

MR studies rest on three assumptions; (1) G is associated wW#) % is independent of U,
and (3) G is independent of Y given X and U, i.e. there is only aihefjmem G to Y which is
through X. For the estimation in MR, the Wald ratio, two-stage Isgqsares and limited
information maximum likelihood are commonly used, which are equivalent femgle
instrument [39]. The Wald ratio method was applied here to estithateinconfounded
causal effect from MET to LIP [40] from the ratio of the eggion coefficient of SNP in a
linear regression of MET and LIP on SNP, respectively, under a simple linear model.

— ﬁSNPaLIP

ﬁMETHLIP p
ﬁSNP—»MET

The confidence interval of the unconfounded causal effect was campsteg 1,000
bootstrap replicates [41] using the R-package “boot”.

Structural Equation Modelling

SEM represents a generalization of the MR model. While MB tia® magnitude of an
unconfounded effect under a given hypothesis on a causal relationsregdfople, SNP-
MET — LIP), SEM measures the likelihood of each of the possible hgpes on path
model implying a causal relationship, to select the best fiisgh model. When a SNP and
two traits are cross-associated with one another, ten path moelsisggested to be possible



[18] (Figure 1). Of these, only Models 4-10 were tested for SNMH-MIP sets because
Models 1-3 in Figure 1 were overparameterized in our study (i.e.héeyero degrees of
freedom). Models 1-3 are also Markov equivalent and cannot be sthyistisanguished as
their maximized likelihood are the same [42-44]. It should be alsal rtbee Model 4 in
Figure 1 corresponds to the MR model, however, the estimation of Madéhid the SEM
framework would be done by the full information maximum likelihoodhoe, rather than
by the limited information maximum likelihood method that coincidék the MR we used
above. The former maximizes the full joint likelihood and the ldtierreduced likelihood
only [39].

Figure 1 SEM models.The figure shows all ten possible path models for a cross associated
set of a SNP, a metabolite or ratio, and a serum lipid, conditioned on the paths originating
from the SNP [18]. Of these, only Models 4-10 were tested because Models 1-3 were
overparameterized in our study (i.e. they had zero degrees of freedom). Models 4ls8 ar
Markov equivalent and cannot be statistically distinguished.

In details, the structural model can be denoted as
v=Av+u

wherev is the vector of all the variables included in the mode$ the vector of residuals,
and A is the matrix of the model coefficients. Under the same assmspbdf a simple
regression model (including independence, constant variance, and npowhdtié errors as
well as linearity between dependent and independent variables), thetegexjgevariance
matrix X can be estimated as follows

S=EW) =(1 - A EWT)(I - A).

The matrixX = X(0) is a function of model parameter vectdrwhich includes model
coefficients, measurement errors and structural disturbances. tNextbserved covariance
matrix S is computed directly from the variable values. Finally, the diffee between
expected and observed covariance matitasdSis evaluated by Pearson’s chi-squared test
(Goodness of Fit Test) under the null hypothesis that the mod#iditsbservation. The test
statistic is derived as

In[Z(8)| +tr (S=74(8)) ~In|S - p~ X?

where p is the number of variables included. All SEM analyses penformed by using the
R-package “sem” [45].

Once the fit of all possible path models was evaluated, the tiedtdfodel was required to
fit the following four criteria as defined previously [46-48]: @podness of Fit Test p-value
> 0.05 (indicating how likely the hypothesis is, or how well the observéd fita the
expectation of the model); (ii) 0.9 < Goodness of Fit Index (GeFl); (iii) Root Mean
Squared Error Approximation (RMSEA)O0.05; (iv) smallest negative Bayesian Information
Criterion (BIC). Where multiple models fit to the data, the igtstd model was selected if
its BIC was at least two units smaller than the next b8 [48], otherwise none was
selected.



Software programs

Most analyses were carried out using publically available paskagthe R environment.
SNP-metabolite association analyses were carried out usingrfESSNP and MERLIN.
Heritability estimation was carried out in OpenMx.

Results

The study design is shown in Figure 2. The Biocrates metabaagunidiling described in
lllig et al. [10] was extended to an additional 813 TwinsUK samples. Aftergsint quality
controls, a complete set of data for 151 metabolite concentratiatbtighal file 1: Table
S2) and four main serum lipid traits (TC, LDL-C, HDL-C and T&8lected at the same time
point became available for 1,797 and 1,176 individuals from the KORA (Ggjnaand
TwinsUK (UK) samples, respectively (Additional file 1: Table S1).

Figure 2 Study design.

To quantify the genetic basis of each metabolite concentration,dperpon of the heritable
variance was estimated from 86 monozygotic and 245 dizygotic twin jpaifsvinsUK
samples under the ACE model. A total of 96 metabolites were obsernmdmoderately to
highly heritable (68 with 25% h? < 50% and 28 with > 50%) (Additional file 1; Table
S2) confirming a broad genetic basis for small metabolites.

Metabolite levels are associated with four main sem lipids

The Biocrates metabolite panel is particularly informativetifier study of lipid metabolism
as it assays predominantly lipid species including sphingolipids amergphospholipids,
besides amino acids. Correlation between metabolites and the foursemam lipid traits
were assessed using Spearman’s correlation test, showinglltiil metabolites were
associated with at least one of the four lipid traits, and 3@buoktes with all lipid traits, at a
stringent significance cutoff (p-value < 8.3 x 3(Additional file 1: Table S4). In particular,
94 metabolites were statistically significantly associatétt TC, 84 with LDL-C, 71 with
HDL-C and 55 with TG in both KORA and TwinsUK samples. A heat rpby of
metabolite-lipid correlation combined with a hierarchical clusterighlights six main
groups of metabolites showing similar patterns of correlation (Additioea2 fiFigure S1).

Metabolite levels are associated with known lipid SPs

Genetic associations between 151 metabolites and 102 SNPs at 95likimblaci [16] were
further tested. Three loci, namdhADSL, GCKR andLPA, were associated with at least one
metabolite in the combined KORA and TwinsUK dataset (p-value <«318°, Table 1).
SNP rs174546 irADSL was statistically significantly associated with concertnat of 34
different phosphatidylcholines (among which the strongest associatis observed at PC aa
C38:4 with Beta = —0.138(SE = 0.007) and p-value = 6.22 %)10s1260326 irGCKR was
associated with the phosphatidylcholine PC aa C40:5 (Beta = 0.037(0.008)vahce =
1.26 x 10° and rs1564348 iPA with carnitines C3 (Beta = 0.053(0.011) and p-value =
4.94 x 10") and C8:1 (Beta = 0.09(0.017) and p-value = 6.28 ¥)1@mong them, the
phosphatidylcholine PC aa C40:5 was associated with both rs1745&D&1 and
rs1260326 irGCKR.



Table 1 Association summary statistics

Locus & SNP (effect/other allele) Metabolite Meta-analysis KORA TwinsUK
Beta (SE) P-value Beta (SE) P-value Beta (SE) P-value
GCKRrs1260326 (T/C) PC aa C40:5 0.037 (0.008) 1.26 X%0 0.032 (0.009) 3.19 x 10 0.047 (0.014) 8.09 x 16
LPA rs1564348 (T/C) C3 0.053 (0.011) 4.94 x 10 0.049 (0.013) 1.15 x 16 0.062 (0.019) 1.24x 10
cs:1 0.09 (0.017) 6.28 x 10 0.064 (0.02) 1.60 x 1H 0.143 (0.029) 4.86 x 10
FADS1rs174546 (T/C) PC aa C32:0 -0.038 (0.006) 3.69 x40 -0.039 (0.007) 421 x1H -0.036 (0.012) 1.70 x 10
PC aa C32:2 0.072 (0.012) 5.15 x%10 0.091 (0.017) 9.24 x 19 0.051 (0.018) 5.60 x 1d
PC aa C34:2 0.038 (0.005) 2.03 x40 0.037 (0.006) 213 x 18 0.044 (0.012) 1.82 x 10
PC aa C34:3 0.041 (0.008) 8.24 X0 0.04 (0.01) 5.15 x 18 0.042 (0.015) 5.08 x 19
PC aa C34:4 -0.100 (0.01) 1.45 x40 -0.106 (0.012) 3.24 x 18 -0.09 (0.017) 7.61 % 10
PC aa C36:2 0.043 (0.006) 6.32 x40 0.045 (0.006) 3.75 x 18 0.034 (0.012) 4.01x 10
PC aa C36:3 0.055 (0.006) 5.48 x40 0.053 (0.007) 1.13 x 18 0.058 (0.012) 3.38x1b
PC aa C36:4 -0.113 (0.006) 6.36 x°0 -0.112 (0.007) 1.21 x 18 -0.116 (0.013) 1.49 x 186
PC aa C36:5 -0.129 (0.012) 8.72 x40 -0.143 (0.016) 8.29 x 1% -0.105 (0.02) 1.12 x 10
PC aa C36:6 -0.054 (0.011) 1.52 x%0 -0.051 (0.014) 2.34x 1 -0.059 (0.019) 1.82 x 10
PC aa C38:4 -0.138 (0.007) 6.22 x40 -0.136 (0.008) 5.47 x 18 -0.144 (0.014) 2.14 x 18
PC aa C38:5 -0.106 (0.007) 4.79 x40 -0.108 (0.008) 4.48 x 18 -0.102 (0.013) 2.14 x 18
PC aa C40:4 -0.075 (0.008) 9.54 x40 -0.075 (0.01) 6.79 x 18 -0.076 (0.015) 2.14 x 10
PC aa C40:5 -0.075 (0.008) 2.29 x40 -0.075 (0.01) 8.02 x 18 -0.075 (0.014) 1.18 x 10
PC aa C40:6 -0.050 (0.009) 1.21 X110 -0.045 (0.012) 9.55 x 1D -0.058 (0.016) 2,74 x 19
PC aa C42:0 -0.042 (0.009) 1.14 x40 -0.035 (0.01) 7.54 x 16 -0.055 (0.015) 213 x1H
PC aa C42:1 -0.065 (0.008) 6.13 x40 -0.062 (0.01) 431 x 18 -0.075 (0.016) 212 x 10
PC aa C42:4 -0.065 (0.007) 1.82 x40 -0.064 (0.007) 1.15 x 18 -0.067 (0.02) 6.77 x 16
PC aa C42:6 -0.050 (0.007) 3.05 x40 -0.05 (0.008) 2.70 x 16 -0.05 (0.012) 4.05 % 18
PC ae C36:2 0.060 (0.008) 1.58 x40 0.07 (0.009) 5.04 x 1§ 0.034 (0.014) 1.41 x 10
PC ae C36:3 0.069 (0.007) 1.11 x%0 0.076 (0.008) 1.87 x 18 0.051 (0.013) 8.28 x 10
PC ae C36:4 -0.066 (0.007) 9.79 x40 -0.058 (0.009) 2.46 x 18 -0.082 (0.013) 1.08 x 18
PC ae C36:5 -0.096 (0.008) 1.22 x40 -0.088 (0.009) 1.09 x 18 -0.116 (0.014) 3.38 x 18
PC ae C38:4 -0.081 (0.006) 8.79 x40 -0.076 (0.007) 5.96 x 1% -0.094 (0.012) 2.11 % 18
PC ae C38:5 -0.076 (0.006) 1.72 x%0 -0.071 (0.007) 1.30 x 18 -0.092 (0.012) 5.76 x 18
PC ae C38:6 -0.047 (0.007) 1.95 x40 -0.041 (0.009) 291x1D -0.063 (0.014) 3.93x 1D
PC ae C40:1 -0.062 (0.008) 8.54 x'10 -0.067 (0.009) 1.85 x 18 -0.049 (0.015) 9.82 x 10
PC ae C40:4 -0.066 (0.006) 1.60 x40 -0.064 (0.007) 3.23x 19 -0.076 (0.016) 1.38 x 10
PC ae C40:5 -0.065 (0.006) 2.60 x40 -0.063 (0.007) 1.38 x 18 -0.076 (0.014) 491 x1b
PC ae C40:6 -0.036 (0.008) 2.14 X410 -0.029 (0.009) 9.86 x 10 -0.051 (0.014) 1.67 x 1b
PC ae C42:1 -0.048 (0.008) 2.12 X410 -0.047 (0.009) 7.56 x 1 -0.052 (0.02) 8.09 x 18
PC ae C42:5 -0.062 (0.006) 1.74 x40 -0.057 (0.008) 4.97 x 18 -0.075 (0.012) 1.59 x 10
PC ae C44:5 -0.071 (0.008) 1.08 x40 -0.066 (0.009) 2.49 x 18 -0.081 (0.014) 6.64 x 19
PC ae C44:6 -0.079 (0.008) 6.01 x40 -0.075 (0.01) 3.47 x 1Y -0.088 (0.014) 1.58 x 18

Summary statistics for the three loci selected for having a metabtdiistically significantly associated with a SNP and at leasipde |



Metabolites mediate some lipid pathways

Based on the association result, all 38 significant SNP-METdHel8 were selected (i.e.
where a metabolite was statistically significantly assed with a SNP and a lipid; Table 2).
For each SNP-MET-LIP set, three different statistical apgies were used to test the
hypothesis that MET might mediate SNPLIP pathway.



Table 2Results of conditional analysis, Mendelian randomization and Structural Egational Modeling for the 38 significant SNP-MET-LIP sets

Conditional Analysis

Mendelian Randomization

Structural Equation Modeling

KORA TwinsUK KORA TwinsUK KORA TwinsUK
Locus SNP - MET - LIP Beta Beta Beta Beta Beta Beta 95% CI for Beta 90% CI for Beta (MET Best fitted model Best fitted model
(LIP~ (LIP ~ SNP changes (LIP ~ (LIP~SNP changes (MET — LIPusing  — LIP using SNP as an
SNP)  +MET) SNP)  + MET) SNP as an 1V)) V)

GCKR 151260326 - PC aa C40:5-TC 2.789 0.685-75% 4.770 2.747 -42% 0.34,177.04 -21.33,168.93 Model 4 (SNP MET — LIP) Model 4 (SNP—» MET — LIP)
rs1260326 - PC aa C40:5-TG 0.081 0.054-33% 0.075 0.058 -24% 0.28,3.86 -0.38,2.30 Model 8 (SNP> LIP — MET)

LPA rs1564348 - C3 - HDL-C 1.095 1.640 50%  0.248 1171 372% -26.39,46.60 -50.74,35.81
rs1564348 - C8:1 - HDL-C 1.095 1.328 21%  0.248 19.3 432% —24.00,35.48 -16.69,16.23

FADS1 rs174546 - PC aa C32:.0- TG 0.043 0.061 43%  0.048 .0500 3% -2.02,0.35 -2.45,2.68 Model 10 (METSNP— LIP)
rs174546 - PC aa C32:2 - TG 0.043 0.017 -61% 0.048 0.034 -29% 0.02,0.88 -0.59,1.56 Model 4 (SNP> MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PCaa C34:2 - TG 0.043 0.006 -87% 0.048 0.037 -22% 0.20,2.25 -0.52,1.75 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC aa C34:3-TG 0.043 0.021 -50% 0.048 0.035 -27% -0.41,2.08 -1.09,1.87 Model 4 (SNP MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC aa C34:4 - TG 0.043 0.102 139% 0.0480.076 58% -0.77,0.04 -1.13,0.44
rs174546 - PC aa C36:2 - TG 0.043 0.004 -90% 0.048 0.041 -15% 0.14,1.78 -1.20,2.20 Model 4 (SNP> MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC aa C36:3 - TG 0.043 -0.016-138% 0.048 0.022 -54% 0.20,1.55 -0.10,1.43 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC aa C36:4 - TG 0.043 0.157 268% 0.0480.084 75% -0.72,-0.02 -0.83,0.07
rs174546 - PC aa C36:5- TG 0.043 0.077 79%  0.0480.054 13% -0.54,0.03 -0.95,0.12 Model 10 (METSNP— LIP)
rs174546 - PC aa C36:6 - TG 0.043 0.060 40%  0.0480.053 10% -1.52,0.73 -1.92,2.04
rs174546 - PC aa C38:4 - TG 0.043 0.177 315% 0.0480.097 102% -0.59,0.01 -0.67,0.06
rs174546 - PC aa C38:5- TG 0.043 0.131 206%  0.0480.069 44% -0.74,-0.02 -0.96,0.07
rs174546 - PC aa C40:4 - TG 0.043 0.103 140% 0.0480.076 58% -1.10,0.13 -1.27,0.44
rs174546 - PC aa C40:5- TG 0.043 0.115 168% 0.0480.077 60% -1.07,0.15 -1.22,0.33
rs174546 - PC aa C40:6 - TG 0.043 0.071 65%  0.0480.055 14% -1.84,0.84 -2.20,2.10
rs174546 - PC aa C42:0- TG 0.043 0.025 -41% 0.048 0.030 -37% -2.62,0.72 -1.73,0.53 Model 4 (SNP MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC aa C42:1 - TG 0.043 0.016 -62% 0.048 0.030 -38% -1.39,-0.07 -1.24,0.15 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC aa C42:4 - TG 0.043 0.054 26%  0.0480.051 6% -1.29,0.03 -1.20,0.63 Model 10 (METSNP— LIP)
rs174546 - PC aa C42:6 - TG 0.043 0.067 57%  0.0480.048 0% -1.77,0.33 -1.76,0.48 Model 10 (MEF SNP— LIP)
rs174546 - PC ae C36:2 - TG 0.043 0.058 36%  0.0480.054 12% -0.06,1.14 -3.89,2.77
rs174546 - PC ae C36:3- TG 0.043 0.069 61%  0.0480.062 29% -0.01,1.03 -0.76,1.89
rs174546 - PC ae C36:4 - TG 0.043 0.044 2% 0.048 .0370 -23% -1.39,0.11 -1.13,0.10 Model 4 (SNP MET — LIP)
rs174546 - PC ae C36:5- TG 0.043 0.031 -29% 0.048 0.016 -66% -0.93,-0.07 -0.84,0.02 Model 4 (SNP> MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC ae C38:4 - TG 0.043 0.036 -16% 0.048 0.044 -8% -1.10,-0.06 -1.01,0.07 Model 10 (MEF SNP— LIP)
rs174546 - PC ae C38:5- TG 0.043 0.030 -30% 0.048 0.022 -55% -1.18,-0.05 -1.02,-0.01 Model 4 (SNP> MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC ae C38:6 - TG 0.043 0.039 -10% 0.048 0.030 -37% -1.99,0.18 -1.52,0.13 Model 4 (SNP MET — LIP)
rs174546 - PC ae C40:1 - TG 0.043 0.056 30%  0.0480.046 -3% -1.19,0.10 -2.02,1.04 Model 10 (MEF SNP— LIP)
rs174546 - PC ae C40:4 - TG 0.043 0.013-71% 0.048 0.049 2% -1.36,-0.08 -1.20,0.23 Model 4 (SNP> MET — LIP) Model 10 (MET«— SNP— LIP)
rs174546 - PC ae C40:5-TG 0.043 0.014 -68% 0.048 0.042 -13% -1.35,-0.05 -1.26,0.19 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC ae C40:6 - TG 0.043 0.037 -13% 0.048 0.034 -29% -2.90,2.54 -1.99,0.64 Model 4 (SNP MET — LIP) Model 4 (SNP—» MET — LIP)
rs174546 - PC ae C42:1 - TG 0.043 0.060 41%  0.0480.051 6% -1.81,0.26 -1.74,1.72 Model 10 (METSNP— LIP)
rs174546 - PC ae C42:5-TG 0.043 -0.003-106% 0.048 0.031 -36% -1.43,-0.11 -1.35,0.15 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC ae C44:5-TG 0.043 -0.00%102% 0.048 0.022 -54% -1.26,-0.14 -1.16,0.12 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)
rs174546 - PC ae C44:6 - TG 0.043 -0.00~117% 0.048 0.006 -87% -1.10,-0.10 -1.02,-0.05 Model 4 (SNP> MET — LIP) Model 4 (SNP— MET — LIP)

Effect size declines in conditional analysis, confidence intenatiscontaining 0 in Mendelian randomization, and Model 4 reported as thétieelsmodel in
Structural Equation Modeling in each cohort were highlighted in lwjoravide evidence for the mediating role of MET in SNP-LIP patsw&gEM Model 4:

SNP— MET — LIP; Model 8: SNP— LIP — MET; Model 10: SNP—» MET; SNP— LIP.



Firstly, the SNP-LIP association was conditioned on MET undieearl regression model in
each SNP-MET-LIP set. A total of 19 metabolites associatéiul lti GCRK and FADSL
resulted in marked declines of effect sizes in the metataujtessted model (Table 2 and
Additional file 1: Table S5). For example, the association betwsE260326 iINGCKR and

TC showed a 66% decrease in the effect size (from 3.274 mg/dbpgrof allele T, p-value

= 0.00429 to 1.125 mg/dl, p-value = 0.275) after adjusting for PC aa C40:5. These
observations were compatible with the hypothesis that thesédaohitta may mediate the

lipid pathways.

As a second approach, Mendelian randomization (MR) analysis was aisstinhate the
unconfounded causal effect of a metabolite on a lipid. For each SNPLMESet, the causal
effect was estimated by the Wald method and its confidenceahtgas generated based on
1,000 bootstrap replicates. In KORA, 17 SNP-MET-LIP sets showedisalceelationship
between MET and LIP (i.e. ME® LIP) at the 5% significance level, however, none of
them were replicated in TwinsUK at the same level of sigamice (although two of them
were significant at 10% significance level and in need of fudhalysis in a larger dataset)
(Table 2 and Additional file 1: Table S6). For example, by us#i@4546 inFADSL as an
instrumental variable, the unconfounded causal effect of PC ae @38:3G was estimated
to be —0.62 (95% CI = (-1.18, —0.05)) in KORA, but only —0.53 (90% CI = (-1.02, —0.01))
in a set of unrelated TwinsUK individuals (Figure 3).

Figure 3 Three different statistical analyses to test the hypothesis that a metalite
mediates theFADS1 — TG pathway. The rs174546-T allele IRADSL locus is associated
with both triglycerides and a small molecule metabolite, PC ae C38:5. We htackttee
hypothesis that a metabolite mediates the lipid pathway using three diffatesticsl
approaches. The conditional analysis (left) confirmed that the effeaifsig&74546 on
triglyceride decreased conditional on PC ae C38:5 in both KORA and TwinsUK cobprts (t
and bottom). The Mendelian Randomization (middle) estimated a statissicadlficant
causal effect of PC ae C38:5 on triglyceride, which however was not replicdtednsUK

at 5% significance level, perhaps due to the small sample size (KORA = 1,797 datkdnre
TwinsUK = 845). The Structural Equation Modelling (right) showed that out of all pessibl
models tested, the model 4 (rs17454@°C ae C38:5- trycliceride) was the best fitted one
in both cohorts.

Lastly, SEM was applied to test a broader range of possillie paeach SNP-MET-LIP set.

In a total of 15 SNP-MET-LIP sets, the best fitted moded slaown to be Model 4 (which
corresponds to the path tested by MR) assuming SNMET — LIP (Figure 1) in both
KORA and TwinsUK. For example, in a set composed of rs17458AD51, PC ae C38:5
and TG, only Model 4 showed Goodness of Fit Test p-valQed5 in both cohorts (Figure
3). This set also satisfied other criteria to be selected as the eestridtlel; such as showing
0.9 < GoFI< 1, RMSEA< 0.05 and smallest negative Bayesian Information Criterion (BIC)
(Additional file 1: Table S7). Thus the SEM analysis supports théeintested by MR that
phosphatidylcholines may mediate association&©KR to TC andFADSto TG (Table 2
and Additional file 1: Table S7).

Discussion

Blood lipid levels are major risk factors for coronary artéisease (CAD) and myocardial
infarction (MI), and targets for therapeutic intervention. Recagelacale meta-analyses of
genome-wide association scans (GWAS) totaling >100,000 individuals hSiédea total



of 95 independent and common loci statistically significantly agsstiwith at least one of
the four main lipid traits (TC, LDL-C, HDL-C and TG) [15,16]. Sometloése loci are
mapped to genes that are well known therapeutic targets [49-51], Itkué fiorajority, little is
known in terms of their biological function or their value as therapdatigets. Further
characterization of the pathways via which these loci may miéipid species will help to
contribute to evaluating their therapeutic potential.

In this study, the potential roles of metabolites as intermegladaotypes of the four main
lipid traits were examined. Firstly, we showed that all 151llsmetabolites profiled on the
Biocrates metabolite panel were statistically signifitaassociated with lipid traits in two
independent cohorts. Secondly, we demonstrated that 37 of these metalmrktasbustly

associated with variants at three different lipid-associated including one metabolite
associated with two loci, highlighting both known and potential new bioda¢morrelates

(summarized in Table 3). Thirdly, we applied a statistical éaork composed of
conditional analysis, MR and SEM, to investigate the role of metaboh lipid pathways,

and showed that one or more metabolites potentially mediate théif@iRssociation at two
loci, FADSL andGCKR (both statistically significantly by SEM, ameADSL suggestively by

MR).

Table 3Summary of known evidence or hypothesis on the functional and biological ®bf
metabolites for each of the three lipid loci

Locus Metabolite class Functional and biological evidence

GCKR phosphatidylcholine GCKR encodes a glucokinase regulatory protein that inhibits
glucokinase in liver and pancreatic islet cells by binding non-
covalently to form an inactive complex with the enzyme. The
locus has been shown to have a pleiotropic effect on multiple
cardio-metabolic phenotypes [15,24,52-56]. We postulate here
that GCKR SNPs affect TC through regulation of
phosphatidylcholine metabolism, a hypothesis that needs to be
validated in experimental settings.

LPA carnitine A connection between Lp(a) and carnitine has been shown
before. Derosa et al. [57] observed a statistically significantly
decreased plasma Lp(a) concentration after L-carnitine intake of
up to six month . Moreover, after a coadministration of
simvastatin and carnitine the reduction in Lp(a) was significanty
greater than after simvastatin medication alone [58].

FADS1  phosphatidylcholine ThEADSL-2-3 gene cluster encodes for fatty acid desaturase
enzymes regulating the desaturation of fatty acids by adding
double bonds between carbons of the fatty acyl chain [59-61].
Whereas FADS1 modifies the efficiency of the fatty acid delta-5
desaturase reaction, FADS2 modifies the fatty acid delta-6
desaturase reaction. GWAS of polyunsaturated fatty acids have
shown associations between different fatty acids angARDES]L-

2-3 gene cluster [12]. Arachidonic acid, most likely a side chain
of PC aa C36:4, is presumably involved in atherosclerotic
processes [62,63].

Overlap of associations of a genomic locus with different comphbats tcan be useful to
derive novel hypotheses on possible underlying pleiotropic or causetseff®r instance,
recent highly powered meta-analyses have systematically cedhfiee association of type 2



diabetes loci with correlated glycemic (fasting glucosstirig insulin, 2-hr glucose, HbA1C
and others) and metabolic traits (BMI, lipids and others) [24,25,64-6@)] attampt to better
characterize physiologic processes underlying associatiohesa toci. A similar degree of
overlap has been characterized at serum lipid and coronary disease loci [16]. While
these efforts have provided first important insights into pathoplogstocorrelates at disease
variants, observed correlations at a locus may often reflectdsbarkgronmental effects or
confounding rather than causal relations between traits. Distimggiscausality from
correlation in these contexts is essential to identify modédiata@uses of disease and to
unearth new avenues for therapeutic intervention.

The advantage of using metabolites as intermediate phenotypest ithélgaare more
proximal to genes and biological pathways than downstream pheaatypknical endpoints
[11], ensuring more statistical power to detect genetic assmsacompared to more
complex lipid traits. Furthermore, analysis of metabolites previde opportunity to dissect
complex metabolic pathways into their components. We showed here hitwatgh
appropriate statistical tools and prioritization strategies cae begin to dissect causal
relationships. Although our inferences are limited by the lipidgeducontent of the
Biocrates metabolomic panel and by the study power, it is fabked¢hat information
relevant to this and other physiological context can be obtainedpplyirsg similar
approaches to broader metabolite panels and larger study sizes.

Importantly, we demonstrate that our results are robust in two indepepopulations and
recapitulate a known biological process. For instance, the massilga path model at
FADSL predicts that phosphatidylcholines mediate the association et3ME rs174546
and TG.FADSL encodes a fatty acid desaturase regulating the desaturafiattycdcids by
the addition of a fourth double bond between carbons of the fatty acyl [8l8aiii], a role
compatible with the observation in this study. This provides proof-ofiptenevidence that
these approaches deliver robust and interpretable evidence. Wer fdiscriminated path
models connecting rs1260326 GCKR to TC through phosphatidylcholingSCKR encodes
a glucokinase regulatory protein that inhibits glucokinase in lindrpancreatic islet cells by
binding non-covalently to form an inactive complex with the enzyme.lddwes has been
shown to have a pleiotropic effect on multiple cardio-metabolic pherotfiie24,52-56].
We postulate here thaGCKR SNP rs1260326 affects TC through regulation of
phosphatidylcholine metabolism, a hypothesis that needs to be validagegberimental
settings.

Conditional analysis is a commonly used approach to show dependencieerbdghe
variables of the unadjusted model and the variable being adjustétbfwever, the different
results between unadjusted and adjusted models might be due to remasation or
confounding rather than causation. One of the most widely applied cefisednce
approaches is MR. If the direction of the association is previckrsbyvn between two
variables (for example, a metabolite and a lipid in a SNP-MPTset), MR can measure the
extent of the unconfounded causal relationship using genetic varianisstasmental
variables. However, in some —omics level studies, the directioheohssociation among
variables cannot be easily assumed. To overcome this limitafidiR, we also applied
SEM, which evaluates each hypothesis based upon the directionahs#at of variables by
comparing it with all possible hypotheses and infers the niady Icausal relationship. By
applying both SEM and MR to our dataset, we obtained significant support for our higpothes
on the direction and the degree of association in each SNP-MEEdtIPFOur framework
suggests the usefulness of combined statistical methods as aratxgltool to infer causal
relationship from high-dimensional molecular data.



Although our approach helps to infer causation statistically, it inagtions. In MR, the
validation for all of the assumptions is not always feasible, aiffndts violation could
increase the bias [67]. MR also has relatively low statispoawer and may be affected by
weak instrument bias as only the small percentage of phenotypénee is explained by
single (or often multiple) genotypes for most complex traiténdJeeak genetic instruments
may cause biases [68]. Another limitation of traditional MR magedrom its design itself
as it tests only known hypothesis. SEM provides a hypothesisdppeoach that is
complementary to MR, as it enumerates all possible models and o#asality from the
most likely model. However, it may mislead causal inferemcthé presence of unknown
confounders [46] or measurement errors [69]. Finally, the use of Bifesdo select the
most likely model may represent a further limitation of the model. A retedy showed that
the new causal model selection test (CMST test) outperfor@simiterms of statistical
precision, although it has lower statistical power [20]. More ggdiye both MR and SEM in
our suggestive framework are designed to detect only linedioredhips and targeted on a
small set of variables, which were statistically signifibantoss-associated with one another
(i.e. SNP-MET-LIP set). Thus, this framework cannot be reagjylied to complex dataset
where hundreds or thousands of variables are linearly and nonlinearly related.

Recent papers based on Gaussian graphical models or Bayesiarkadgt®,43,70-72] take
into account all the observed variables of a dataset to infeit dme@lation or directional
correlation. For example, the IDA methdatérvention-calculus when the DAG is Absent)
estimates total causal effects from all the observed vasabbking PC-algorithm and
intervention calculus [42]. Although these approaches are stilsktofi being misled by
unknown confounders and measurement errors, in contrast to MR, adding mareghuéa
observed variables to the model may help to robustly handle unaccountadtdéos or high
correlations among variables. Our future studies will include impgothe statistical
framework shown here, to be more adequate for increasinglypheuhigh-dimensional
datasets (such as —omics datasets). On another note, well-desigéation studies would
be beneficial to understand and hopefully overcome the limitationsbfadaausal methods
introduced in this paper.

Conclusions

Biological systems are clearly far more complex than iveligt simple sets of equations.
However, new insights on underlying biological processes can beetitliom the analysis
of data generated in a highly standardized manner and the carefd ohoiodel variables.
We showed that, with the use of appropriate statistical instrumemstould dissect the
contribution of metabolites assessed through high-throughput moleculdingrtdicomplex
biological pathways. The application of these methods to loci idsthtih large-scale
associations of genome-wide SNP data will provide powerful tooldi$secting metabolic
pathways at a wide range of complex trait loci. Prelimingtiydies exploring metabolic
signatures associated with hypertension [73,74], myocardial iscfigbhjand others [76,77]
will aid the dissection of genetic and environmental causes ofoearetiabolic disease. The
application of metabolomics profiling to samples from large populatbtorts, stratified by
known risk factors or exposures, may thus provide alternative and fpbwesigns to test
causal relationships while minimizing the impact of clinical confding variables [77], and
new avenues to improve prediction of clinical outcomes.
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Additional file 2: Figure S1. Metabolite-lipid correlation heat maps. Heat map plot of
metabolite-lipid correlation combined with a hierarchical clustering to shoman groups

of metabolites showing similar patterns of correlation with main lipids. The geoaps

separated by the heavy black line in the heat map and labelled 1 to 6 from top to bottom. The
metabolites in each group can be found in the table below.
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SNP

102 SNPs at 95 known lipid loci

Variable selection (KORA and TwinsUK)

Identify SNP-MET-LIP sets significant under Bonferroni correction

MET
151 metabolites

P<3.3x10°® P<8.3x107

LIP
TC, LDL-C, HDL-C, TG

published

I

Conditional Analysis (KORA)

Measure the effect size decreases from SNP to LIP
after adjusting for MET

Mendelian Randomization (KORA)
Measure the significance of unconfounded effect
from MET to LIP assuming MET->LIP

Structural Equation Modeling (KORA)

Measure the model fit and select the best fitted
path model among the models 4-10 in Figure2

MET MET MET
/’/,,7\ /\
adjusting for MET riaal ?
SNP 5 LIP SNP LIP SNP LIP
v v v
Conditional Analysis (TwinsUK) Mendelian Randomization (TwinsUK) Structural Equation Modeling (TwinsUK)
Replication Replication Replication

Figure 2




Conditional Analysis (KORA)
Measure the effect size decreases from SNP to LIP
after adjusting for MET

PCaeC38:5

adjusting for MET
rs174546 TG

Beta decrease = 30%
(0.043 = 0.030 after adjustment)

Mendelian Randomization (KORA)
Measure the significance of unconfounded effect
from MET to LIP assuming MET->LIP

PCae(C38:5
YA
/’/ Beta =-0.62
95% Cl = (-1.18,-0.05)
rs174546 TG

Structural Equation Modeling (KORA)
Measure the model fit and select the best fitted
path model among the models 4-10 in Figure2

PCaeC38:5

PN
Best fitted model = Model 4
(Goodness of fit P = 0.13)
pd N\

rs174546 TG

Conditional Analysis (TwinsUK)
Replication

Beta decrease = 55%

. (0.048 - 0.022 after adjustment)
igure 3

Mendelian Randomization (TwinsUK)
Replication

Beta =-0.53
95%Cl = (-1.13, 0.12)
90% Cl = (-1.02, -0.01)

Structural Equation Modeling (TwinsUK)
Replication

Best fitted model = Model 4
(Goodness of fit P =0.43)
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