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Abstract 

Background 

Emerging technologies based on mass spectrometry or nuclear magnetic resonance enable the 
monitoring of hundreds of small metabolites from tissues or body fluids. Profiling of 
metabolites can help elucidate causal pathways linking established genetic variants to known 
disease risk factors such as blood lipid traits. 



Methods 

We applied statistical methodology to dissect causal relationships between single nucleotide 
polymorphisms, metabolite concentrations and serum lipid traits, focusing on 95 genetic loci 
reproducibly associated with the four main serum lipids (total-, low-density lipoprotein- and 
high-density lipoprotein- cholesterol and triglycerides). The dataset used included 2,973 
individuals from two independent population-based cohorts with data for 151 small molecule 
metabolites and four main serum lipids. Three statistical approaches, namely conditional 
analysis, Mendelian Randomization and Structural Equation Modelling, were compared to 
investigate causal relationship at sets of a single nucleotide polymorphism, a metabolite and a 
lipid trait associated with one another. 

Results 

A subset of three lipid-associated loci (FADS1, GCKR and LPA) have a statistically 
significant association with at least one main lipid and one metabolite concentration in our 
data, defining a total of 38 cross-associated sets of a single nucleotide polymorphism, a 
metabolite and a lipid trait. Structural Equation Modelling provided sufficient discrimination 
to indicate that the association of a single nucleotide polymorphism with a lipid trait was 
mediated through a metabolite at 15 of the 38 sets, and involving variants at the FADS1 and 
GCKR loci. 

Conclusions 

These data provide a framework for evaluating the causal role of components of the 
metabolome (or other intermediate factors) in mediating the association between established 
genetic variants and diseases or traits. 

Background 

Recent technological advances allow for the collection of high-dimensional molecular 
phenotype datasets in thousands of individuals in a highly standardized manner. 
Metabolomics technologies based on mass spectrometry (MS) or nuclear magnetic resonance 
(NMR) enable the monitoring of hundreds of small molecule metabolites in tissues or body 
fluids [1-3]. Metabolites are intermediates in metabolic pathways, which can be used to 
obtain a snapshot of the physiological status of an individual at a given time point. These 
datasets are typically organized into metabolic correlation networks, which are mined to 
deduce unknown pathways from observed correlations, for instance to identify metabolic 
signatures of disease status [4]. 

An emerging application of quantitative or semi-quantitative technologies such as LC-MS-
based metabolomics is their combination with genome-wide association data to discover 
genetic loci underlying variation in human metabolism. Genome-wide metabolomics scans 
based on hundreds of metabolite and lipid species measured using standardized high-
throughput assays have to date identified over one hundred independent loci for metabolites 
[5-14]. Importantly, several of the metabolite-associated loci correspond to loci previously 
associated with risk of disease or their risk factors such as Crohn's disease, kidney disease 
and serum lipids. These first studies have demonstrated the usefulness of large-scale 
metabolomics scans for formulating novel hypotheses on biochemical processes 



underpinning complex traits and diseases. Once correlations between a metabolite and a trait 
have been observed at a locus, however, the next challenge is to tease apart causal relations 
from shared environmental effects or confounding. 

This study explored the application of statistical inference to dissect causal relationships at 
complex-trait loci where there is a concomitant association with one or more metabolites. The 
analysis was focused on (i) a set SNPs robustly associated with the four main circulating 
serum lipids in genome-wide association studies at the time of analysis, and including total 
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C) and triglycerides (TG) [15,16], (ii) 151 metabolites [10], and (iii) the 
same four main serum lipids stated above. Briefly, subsets of the SNPs that have statistically 
significant associations with at least one metabolite and one lipid in our data were selected. 
Conditional analysis, Mendelian Randomization (MR) [17] and Structural Equation 
Modelling (SEM) [18-20] were then applied to the data to infer statistically causal 
relationships in each of SNP-metabolite-lipid sets previously defined. 

The overarching aim of this study was to apply statistical approaches to interrogate causal 
relationships using genomic, metabolomic and circulating lipid biomarker measures as an 
exemplar model. This provides a framework that can be applied in many other settings both 
in relation to metabolomics data as well as other -omic measures. 

Methods 

Study description 

KORA 

The Cooperative Health Research in the Region of Augsburg (KORA) study is a series of 
independent population-based epidemiological surveys and follow-up studies of participants 
living in the region of Augsburg, Southern Germany [21]. Blood samples for KORA F4 
participants were collected between 2006 and 2008 in a standardized manner as previously 
described in detail [10]. Genotyping. For genotyping, 1,814 KORA F4 samples were 
randomly selected and genotyped using the Affymetrix Human SNP Array 6.0. After filtering 
out low call rate SNPs and SNPs violating Hardy-Weinberg Equilibrium (HWE), imputation 
was conducted using IMPUTE v0.4.2 [22] based on HapMap2. Lipid measurement. Four 
serum lipid measurements (in mg/dl) were collected using the Dimension RxL (Dade 
Behring); total cholesterol was determined by cholesterol-esterase method (CHOL Flex, 
Dade-Behring, CHOD-PAP method), HDL-C cholesterol by the AHDL Flex (Dade-Behring, 
CHOD-PAP method after selective release of HDL-C), LDL-C cholesterol by the ALDL Flex 
(Dade Behring, CHOD-PAP method after colourless usage of all non-LDL-cholesterol) and 
triglycerides (TG) by the TGL Flex (Dade Behring, enzymatic colorimetric test, GPO-PAP 
method). Metabolite measurement. 3,044 KORA F4 samples were profiled using Biocrates 
AbsoluteIDQ Kit p150 across three periods of time (August/September 2008, 
November/December 2008 and March/April 2009; which were marked as three batches for 
the analysis). Finally, a total of 1,797 KORA F4 samples were available with genotypes, 
metabolite and serum lipid measurements [Additional file 1: Table S1]. 



Twins UK 

The TwinsUK cohort is an adult twin British registry recruited from the general population in 
the United Kingdom [23]. Blood samples collection has been described previously [9]. 
Genotyping. TwinsUK samples were genotyped using a combination of Illumina arrays 
(HumanHap300 [24,25], HumanHap610Q, 1 M-Duo and 1.2MDuo 1 M). For each dataset, 
the Illuminus calling algorithm [26] was used to assign genotypes (posterior probability ≥ 
0.95) and applied the standardized data QC criteria based on i) call rate, heterozygosity, 
ethnicity and relatedness (for sample exclusion); and ii) HWE, minor allele frequency and 
call rate (for SNPs). After pair-wise concordance check and further visual inspection, the 
genotype datasets from different arrays were merged. Imputation was performed using the 
IMPUTE software package (v2) [22] using two reference panels, P0 (HapMap2, rel 22, 
combined CEU + YRI + ASN panels) and P1 (610 k+, including the combined 
HumanHap610k and 1 M reduced to 610 k SNP content). Lipid measurement. Serum lipids 
for TwinsUK samples were measured (in mmol/L) as described in [27] and the LDL-C values 
were derived from HDL-C and TG values using Friedewald’s equation. We converted all 
lipid measurements to mg/dl values to be consistent with KORA, by multiplying 38.67 for the 
LDL-C, HDL-C and TC measurements and 87.5 for the TG measurement. Metabolite 
measurement. Metabolite measurements were performed using the metabolomics platform 
Biocrates AbsoluteIDQ Kit p150 under an identical protocol as for the KORA study at the 
Genome Analysis Center of the Helmholtz Zentrum München. For 1,235 randomly selected 
TwinsUK samples with genotypes available, the metabolite measurements were conducted in 
two batches: one for 422 individuals in April 2009 and the other for 813 individuals in 
November 2009. One reference sample was included in each of the ten plates run in the 
second batch, and metabolites were measured five times in each plate. These reference 
measurements were used for quality control purposes. After further QC (more details below), 
a total of 1,176 TwinsUK samples were available with metabolite, genotype and serum-lipids 
measurements. 

All the participants in both KORA and TwinsUK cohorts have provided informed consent 
and this study has been approved by Local Research Ethics Committee, Guy’s and St. 
Thomas’ Hospital Ethics Committee for TwinsUK, and Bayerische Landesärztekammer for 
KORA. Summary information for all the samples can be found in Additional file 1: Table S1. 

Metabolomics measurements and QC 

Metabolite panel 

The analysed metabolite panel comprises 163 different metabolites, including 14 amino 
acids, hexoses (H1), free carnitine (C0), 40 acylcarnitines (Cx:y), hydroxylacylcarnitines 
(C(OH)x:y), and dicarboxylacylcarnitines (Cx:y-DC), 15 sphingomyelins (SMx:y) and N-
hydroxylacyloylsphingosylphosphocholine (SM (OH)x:y), 77 phosphatidylcholines (PC, aa = 
diacyl, ae = acyl-alkyl) and 15 lyso-phosphatidylcholines. Quality parameters and 
quantification procedures were as described by us [28]. After quality control, 151 different 
metabolites remained in the dataset (Additional file 1: Table S2). Lipid side-chain 
composition is abbreviated as Cx:y, where x denotes the number of carbons in the side chain 
and y the number of double bonds. For example, “PC ae C32:1” denotes an acyl-alkyl 
phosphatidylcholine with 32 carbons in the two fatty acid side chains and a single double 
bond in one of them. Full biochemical names are provided in Additional file 1: Table S1. The 
precise position of the double bonds and the distribution of the carbon atoms in different fatty 



acid side chains cannot be determined with this technology. In some cases, the mapping of 
metabolite names to individual masses can be ambiguous. For example, stereo-chemical 
differences are not always discernible, and neither are isobaric fragments. In such cases, 
possible alternative assignments are indicated. 

Metabolite measurements in KORA and TwinsUK 

Liquid handling of serum samples (10 µl) was performed with a Hamilton Star (Hamilton 
Bonaduz AG) robot, and samples were prepared for quantification using the AbsoluteIDQ Kit 
p150 (BIOCRATES Life Sciences AG). Sample analyses were done on 4000 Q TRAP 
LC/MS/MS System (AB Sciex) equipped with a Shimadzu Prominence LC20AD pump and a 
SIL-20 AC autosampler. The complete analytical process was performed using the MetIQ 
software package, which is an integral part of the AbsoluteIDQ kit. The MetIQ version 1.2.1r 
(Lithium), released in April 2010 was used, which incorporates an isotope correction. The 
experimental targeted metabolomics measurement technique is described in detail by US 
patent US 2007/0004044 [29] and in the manufacturer's manuals. A summary of the method 
can be found in elsewhere [30-32], and a comprehensive overview of the field and the related 
technologies is given in [33]. Briefly, a targeted profiling scheme is used to quantitatively 
screen for known small-molecule metabolites using multiple reaction monitoring. 
Quantification of the metabolites of the biological sample is achieved by reference to 
appropriate internal standards. The method has been proven to conform to 21CFR (Code of 
Federal Regulations) Part 11, which implies proof of reproducibility within a given error 
range. It has been applied in different academic and industrial applications [11,33,34]. 
Concentrations of all analysed metabolites are reported in µM. 

Batch effects 

The mean differences of the metabolomics measurements across different measurement 
batches were compared to assess the influence of possible batch effects due to calibration of 
the machines at periodical time points. To account for these differences in mean a batch 
variable was included in all analyses of metabolomics data. For consistency this batch 
variable was applied to all metabolites independent of demonstration of significant batch 
effects. 

Quality control 

Quality control of the metabolomics datasets was conducted in two steps. In the first step the 
quality of all metabolites was controlled by their coefficient of variation (CV) and missing 
value rate. For CV calculation, one reference blood sample was measured five times on each 
plate across all ten plates. The CV for each metabolite was calculated as follows: 

)tsmeasuremenreferencefiveall(

)tsmeasuremenreferencefiveall(

mean

sd
CV =

  
 

The mean CV for each metabolite was computed from all ten plates. All metabolites with a 
mean CV greater than 25% were excluded. In addition to this criterion, a maximal missing 
value rate of 5% was imposed. The second step of our quality control was removing outlying 
data points and outlying samples. This step was applied to log-transformed metabolites, 
which were consistently closer to normality than the untransformed metabolites based on the 



Anderson Darling test. Outlying data points were defined as values greater than 5 sd away 
from the mean for each metabolite. For each sample, two outlying data points were claimed 
to be independent if the correlation of corresponding metabolites is less than 70%. Samples 
with more than three independent outlying data points were excluded. For samples with less 
than or equal to three independent outlying data points, only the data points were excluded. 
Finally, all missing values were imputed using the R-package “mice” [35], which applies a 
linear regression approach to estimate a distribution of each variable with missing values 
conditional on all the other variables in the same multivariate dataset, and replaces missing 
values with simulated values drawn from this distribution. 

Data summary 

A total of 163 metabolites were measured in 3,061 samples of KORA F4 and in 1,237 
samples of TwinsUK. In the first step of quality control, 11 metabolites were excluded for 
having a CV higher than 25% and one metabolite for having more than 5% missing values 
(Additional file 1: Table S2). In the second step, 17 samples were discarded in KORA F4, 
due to their multiple independent outlying data points and two samples in TwinsUK. In 
addition, 419 and 254 outlying data points were treated as missing values in KORA F4 and 
TwinsUK, respectively. Together with the original missing data points, 0.09% of all data 
points were imputed in KORA F4 and 0.16% in the TwinsUK. After sample and metabolite 
exclusions, a total of 151 metabolites were available for analysis in 3,044 samples in KORA 
F4 and 1,235 samples in TwinsUK (among which 1,797 samples in KORA F4 and 1,176 in 
TwinsUK had available metabolite, genotype and serum-lipids measurements). 

Candidate SNPs 

The analysis focused on a total of 102 SNPs at 95 lipid-associated loci reported as primary 
association signals in a large-scale GWAS [16] for four lipid traits under the genome-wide 
significance threshold (p-value ≤ 5 × 10−8) since our study would not have the same statistical 
power to detect additional novel lipid-associated loci with even smaller variances explained. 
Among the 102 SNPs, 52 were associated with TC, 37 with LDL-C, 47 with HDL-C and 32 
with TG in the original study. Many of these loci were associated with multiple lipid traits; 
for example, 41 with two lipid traits, seven with three lipid traits and six with all four lipid 
traits. Summary information for these SNPs measured in KORA and TwinsUK cohorts can 
be found in Additional file 1: Table S3. 

Statistical analyses 

Metabolite and lipid trait transformation 

The Anderson Darling test with and without log-transformation was used to test deviation 
from normality for metabolite values. The log-transformed metabolites were consistently 
closer to normality than the untransformed metabolites, and thus all metabolite measurements 
were log-transformed for analysis. The skewness of metabolites used in our causal analyses is 
reported in the Additional file 1: Table S8. Most metabolites had skewness between −0.5 and 
0.5, indicating a symmetrical distribution, with the exception of PC aa C32:2 in KORA 
(skewness of −0.934) and five metabolites in TwinsUK. However, these small deviations 
from symmetry had no impact on the results and interpretation of causal relationships (data 
not shown), so no filtering or transformation were applied at this stage. For lipids, TG values 



were log-transformed to achieve normality. The distribution of LDL-C, HDL-C and TC 
approximated normality and no transformation was applied. 

Heritability 

For each metabolite, the narrow sense heritability was estimated from 86 monozygotic and 
245 dizygotic twin pairs in TwinsUK under the ACE model. The ACE model assumes that 
the phenotypic variance is influenced by additive genetic variation, common environmental 
effects and unique environmental effects (or random effects), and infers the narrow sense 
heritability as the ratio of the estimated additive genetic variance to the phenotypic variance. 
The estimation was done by maximum likelihood methods implemented in OpenMx software 
[36]. 

Spearman’s correlation tests 

Spearman’s correlation tests were used to identify correlated metabolite-lipid pairs, defined 
as p-value < 8.3 × 10−5 (Bonferroni corrected for 4 lipids and 151 metabolites) and the same 
direction of Spearman’s rho in both cohorts. We note that this correction over the number of 
tests may be over-conservative owing to highly correlated metabolite concentrations. 
Significant covariates (sex, age and batch effect) were regressed out from metabolites and 
lipids prior to the correlation test. The computation of the p-value and Spearman’s rho were 
done using the function “cor.test” in R. Correlations were visualized by a heat map plot 
combined with a hierarchical clustering using the “heatmap.2” function of the R-package 
“gplots” [37] with default settings. 

Single-trait association and meta-analysis 

The association of the 102 candidate SNPs with all 151 metabolites was investigated under 
the linear model adjusting for age, batch and sex, using SNPTEST and MERLIN (with --
fastassoc option) in the KORA and TwinsUK sample respectively. Summary statistics for the 
two cohorts were combined based on the inverse of the variance under the fixed effect meta-
analysis model, and SNPs with p-value < 3.3 × 10−6 (= 0.05 / (102 × 151)) in the meta-
analysis and nominal association (p < 0.05) in both cohorts were selected. Associations of the 
102 candidate SNPs and main lipids were also tested using the same approach, and SNPs 
with p-value < 0.05 in the TwinsUK-KORA meta-analysis were retained for analysis. 

SNP-MET-LIP sets 

Each metabolite with its statistically significantly associated SNP and lipid trait (defined by 
the criteria above) was assigned to a unique SNP-MET-LIP dataset, where SNP denotes a 
genetic variant, MET denotes a metabolite and LIP denotes a serum lipid trait. Only unrelated 
samples in TwinsUK (N = 845) were included for analysis. For metabolites and lipid traits, 
covariates adjustment were performed including age, sex and batch effect using a linear 
regression model [16]. 

Conditional analysis 

For each SNP-MET-LIP set, the association between SNP and LIP was tested under a linear 
regression model with and without adjustment for MET. 
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To examine the influence of MET on SNP-LIP association, the p-value between SNP and LIP 
in adjusted model was examined (in the way that p-value ≥ 0.05 was considered as unlikely 
to have direct association) and the change of the estimated effect size of SNP was measured 
as follows. 

Effect size change  :=   
β̂adj − β̂

β̂
 
  

 

Mendelian randomization 

To estimate the causal effect of a metabolite on a lipid trait, Mendelian Randomization (MR) 
[17,38] was applied to each SNP-MET-LIP set. Briefly in the MR approach, a genetic variant 
(G, here SNP) is used as an instrumental variable, which is not correlated with unknown 
confounders (U), to test a hypothesis that a variable (X, here MET) is causal to the outcome 
(Y, here LIP). 

 

MR studies rest on three assumptions; (1) G is associated with X, (2) G is independent of U, 
and (3) G is independent of Y given X and U, i.e. there is only one path from G to Y which is 
through X. For the estimation in MR, the Wald ratio, two-stage least squares and limited 
information maximum likelihood are commonly used, which are equivalent for a single 
instrument [39]. The Wald ratio method was applied here to estimate the unconfounded 
causal effect from MET to LIP [40] from the ratio of the regression coefficient of SNP in a 
linear regression of MET and LIP on SNP, respectively, under a simple linear model. 

METSNP

LIPSNP
LIPMET

→

→
→ =

β
ββ
ˆ

ˆ
ˆ

  
 

The confidence interval of the unconfounded causal effect was computed using 1,000 
bootstrap replicates [41] using the R-package “boot”. 

Structural Equation Modelling 

SEM represents a generalization of the MR model. While MR tests the magnitude of an 
unconfounded effect under a given hypothesis on a causal relationship (for example, SNP → 
MET → LIP), SEM measures the likelihood of each of the possible hypotheses on path 
model implying a causal relationship, to select the best fitted path model. When a SNP and 
two traits are cross-associated with one another, ten path models are suggested to be possible 

X Y G 

U 



[18] (Figure 1). Of these, only Models 4–10 were tested for SNP-MET-LIP sets because 
Models 1–3 in Figure 1 were overparameterized in our study (i.e. they had zero degrees of 
freedom). Models 1–3 are also Markov equivalent and cannot be statistically distinguished as 
their maximized likelihood are the same [42-44]. It should be also noted that Model 4 in 
Figure 1 corresponds to the MR model, however, the estimation of Model 4 within the SEM 
framework would be done by the full information maximum likelihood method, rather than 
by the limited information maximum likelihood method that coincides with the MR we used 
above. The former maximizes the full joint likelihood and the latter the reduced likelihood 
only [39]. 

Figure 1 SEM models. The figure shows all ten possible path models for a cross associated 
set of a SNP, a metabolite or ratio, and a serum lipid, conditioned on the paths originating 
from the SNP [18]. Of these, only Models 4–10 were tested because Models 1–3 were 
overparameterized in our study (i.e. they had zero degrees of freedom). Models 1–3 are also 
Markov equivalent and cannot be statistically distinguished. 

In details, the structural model can be denoted as 
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where v is the vector of all the variables included in the model, u is the vector of residuals, 
and A is the matrix of the model coefficients. Under the same assumptions of a simple 
regression model (including independence, constant variance, and normality of the errors as 
well as linearity between dependent and independent variables), the expected covariance 
matrix Σ can be estimated as follows 
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The matrix Σ = Σ(θ) is a function of model parameter vector θ which includes model 
coefficients, measurement errors and structural disturbances. Next, the observed covariance 
matrix S is computed directly from the variable values. Finally, the difference between 
expected and observed covariance matrices Σ and S is evaluated by Pearson’s chi-squared test 
(Goodness of Fit Test) under the null hypothesis that the model fits the observation. The test 
statistic is derived as 

21 ~ln))(()(ln XpSStr −−Σ+Σ − θθ    

where p is the number of variables included. All SEM analyses were performed by using the 
R-package “sem” [45]. 

Once the fit of all possible path models was evaluated, the best fitted model was required to 
fit the following four criteria as defined previously [46-48]: (i) Goodness of Fit Test p-value 
≥ 0.05 (indicating how likely the hypothesis is, or how well the observed data fits the 
expectation of the model); (ii) 0.9 < Goodness of Fit Index (GoFI) ≤ 1; (iii) Root Mean 
Squared Error Approximation (RMSEA) ≤ 0.05; (iv) smallest negative Bayesian Information 
Criterion (BIC). Where multiple models fit to the data, the best fitted model was selected if 
its BIC was at least two units smaller than the next lowest BIC [48], otherwise none was 
selected. 



Software programs 

Most analyses were carried out using publically available packages in the R environment. 
SNP-metabolite association analyses were carried out using SNPTEST and MERLIN. 
Heritability estimation was carried out in OpenMx. 

Results 

The study design is shown in Figure 2. The Biocrates metabolomics profiling described in 
Illig et al. [10] was extended to an additional 813 TwinsUK samples. After stringent quality 
controls, a complete set of data for 151 metabolite concentrations (Additional file 1: Table 
S2) and four main serum lipid traits (TC, LDL-C, HDL-C and TG) collected at the same time 
point became available for 1,797 and 1,176 individuals from the KORA (Germany) and 
TwinsUK (UK) samples, respectively (Additional file 1: Table S1). 

Figure 2 Study design. 

To quantify the genetic basis of each metabolite concentration, the proportion of the heritable 
variance was estimated from 86 monozygotic and 245 dizygotic twin pairs in TwinsUK 
samples under the ACE model. A total of 96 metabolites were observed to be moderately to 
highly heritable (68 with 25% ≤ h2 < 50% and 28 with h2 ≥ 50%) (Additional file 1: Table 
S2) confirming a broad genetic basis for small metabolites. 

Metabolite levels are associated with four main serum lipids 

The Biocrates metabolite panel is particularly informative for the study of lipid metabolism 
as it assays predominantly lipid species including sphingolipids and glycerophospholipids, 
besides amino acids. Correlation between metabolites and the four main serum lipid traits 
were assessed using Spearman’s correlation test, showing that all 151 metabolites were 
associated with at least one of the four lipid traits, and 30 metabolites with all lipid traits, at a 
stringent significance cutoff (p-value < 8.3 × 10−5; Additional file 1: Table S4). In particular, 
94 metabolites were statistically significantly associated with TC, 84 with LDL-C, 71 with 
HDL-C and 55 with TG in both KORA and TwinsUK samples. A heat map plot of 
metabolite-lipid correlation combined with a hierarchical clustering highlights six main 
groups of metabolites showing similar patterns of correlation (Additional file 2: Figure S1). 

Metabolite levels are associated with known lipid SNPs 

Genetic associations between 151 metabolites and 102 SNPs at 95 known lipid loci [16] were 
further tested. Three loci, namely FADS1, GCKR and LPA, were associated with at least one 
metabolite in the combined KORA and TwinsUK dataset (p-value < 3.3 × 10−6, Table 1). 
SNP rs174546 in FADS1 was statistically significantly associated with concentrations of 34 
different phosphatidylcholines (among which the strongest association was observed at PC aa 
C38:4 with Beta = −0.138(SE = 0.007) and p-value = 6.22 × 10−83), rs1260326 in GCKR was 
associated with the phosphatidylcholine PC aa C40:5 (Beta = 0.037(0.008) and p-value = 
1.26 × 10−6) and rs1564348 in LPA with carnitines C3 (Beta = 0.053(0.011) and p-value = 
4.94 × 10−7) and C8:1 (Beta = 0.09(0.017) and p-value = 6.28 × 10−8). Among them, the 
phosphatidylcholine PC aa C40:5 was associated with both rs174546 in FADS1 and 
rs1260326 in GCKR. 



Table 1 Association summary statistics 
Locus & SNP (effect/other allele) Metabolite Meta-analysis KORA  TwinsUK  

Beta (SE) P-value Beta (SE) P-value Beta (SE) P-value 

GCKR rs1260326 (T/C) PC aa C40:5 0.037 (0.008) 1.26 × 10−6 0.032 (0.009) 3.19 × 10−4 0.047 (0.014) 8.09 × 10−4 
LPA rs1564348 (T/C) C3 0.053 (0.011) 4.94 × 10−7 0.049 (0.013) 1.15 × 10−4 0.062 (0.019) 1.24 × 10−3 

C8:1 0.09 (0.017) 6.28 × 10−8 0.064 (0.02) 1.60 × 10−3 0.143 (0.029) 4.86 × 10−7 
FADS1 rs174546 (T/C) PC aa C32:0 −0.038 (0.006) 3.69 × 10−10 −0.039 (0.007) 4.21 × 10−8 −0.036 (0.012) 1.70 × 10−3 

PC aa C32:2 0.072 (0.012) 5.15 × 10−9 0.091 (0.017) 9.24 × 10−8 0.051 (0.018) 5.60 × 10−3 
PC aa C34:2 0.038 (0.005) 2.03 × 10−13 0.037 (0.006) 2.13 × 10−10 0.044 (0.012) 1.82 × 10−4 
PC aa C34:3 0.041 (0.008) 8.24 × 10−7 0.04 (0.01) 5.15 × 10−5 0.042 (0.015) 5.08 × 10−3 
PC aa C34:4 −0.100 (0.01) 1.45 × 10−23 −0.106 (0.012) 3.24 × 10−17 −0.09 (0.017) 7.61 × 10−8 
PC aa C36:2 0.043 (0.006) 6.32 × 10−14 0.045 (0.006) 3.75 × 10−12 0.034 (0.012) 4.01 × 10−3 
PC aa C36:3 0.055 (0.006) 5.48 × 10−19 0.053 (0.007) 1.13 × 10−13 0.058 (0.012) 3.38 × 10−6 
PC aa C36:4 −0.113 (0.006) 6.36 × 10−69 −0.112 (0.007) 1.21 × 10−48 −0.116 (0.013) 1.49 × 10−19 
PC aa C36:5 −0.129 (0.012) 8.72 × 10−26 −0.143 (0.016) 8.29 × 10−20 −0.105 (0.02) 1.12 × 10−7 
PC aa C36:6 −0.054 (0.011) 1.52 × 10−6 −0.051 (0.014) 2.34 × 10−4 −0.059 (0.019) 1.82 × 10−3 
PC aa C38:4 −0.138 (0.007) 6.22 × 10−83 −0.136 (0.008) 5.47 × 10−56 −0.144 (0.014) 2.14 × 10−26 
PC aa C38:5 −0.106 (0.007) 4.79 × 10−51 −0.108 (0.008) 4.48 × 10−36 −0.102 (0.013) 2.14 × 10−14 
PC aa C40:4 −0.075 (0.008) 9.54 × 10−20 −0.075 (0.01) 6.79 × 10−14 −0.076 (0.015) 2.14 × 10−7 
PC aa C40:5 −0.075 (0.008) 2.29 × 10−21 −0.075 (0.01) 8.02 × 10−15 −0.075 (0.014) 1.18 × 10−7 
PC aa C40:6 −0.050 (0.009) 1.21 × 10−7 −0.045 (0.012) 9.55 × 10−5 −0.058 (0.016) 2.74 × 10−4 
PC aa C42:0 −0.042 (0.009) 1.14 × 10−6 −0.035 (0.01) 7.54 × 10−4 −0.055 (0.015) 2.13 × 10−4 
PC aa C42:1 −0.065 (0.008) 6.13 × 10−15 −0.062 (0.01) 4.31 × 10−10 −0.075 (0.016) 2.12 × 10−6 
PC aa C42:4 −0.065 (0.007) 1.82 × 10−20 −0.064 (0.007) 1.15 × 10−17 −0.067 (0.02) 6.77 × 10−4 
PC aa C42:6 −0.050 (0.007) 3.05 × 10−14 −0.05 (0.008) 2.70 × 10−10 −0.05 (0.012) 4.05 × 10−5 
PC ae C36:2 0.060 (0.008) 1.58 × 10−15 0.07 (0.009) 5.04 × 10−15 0.034 (0.014) 1.41 × 10−2 
PC ae C36:3 0.069 (0.007) 1.11 × 10−22 0.076 (0.008) 1.87 × 10−19 0.051 (0.013) 8.28 × 10−5 
PC ae C36:4 −0.066 (0.007) 9.79 × 10−20 −0.058 (0.009) 2.46 × 10−11 −0.082 (0.013) 1.08 × 10−10 
PC ae C36:5 −0.096 (0.008) 1.22 × 10−37 −0.088 (0.009) 1.09 × 10−22 −0.116 (0.014) 3.38 × 10−17 
PC ae C38:4 −0.081 (0.006) 8.79 × 10−40 −0.076 (0.007) 5.96 × 10−26 −0.094 (0.012) 2.11 × 10−14 
PC ae C38:5 −0.076 (0.006) 1.72 × 10−34 −0.071 (0.007) 1.30 × 10−21 −0.092 (0.012) 5.76 × 10−15 
PC ae C38:6 −0.047 (0.007) 1.95 × 10−10 −0.041 (0.009) 2.91 × 10−6 −0.063 (0.014) 3.93 × 10−6 
PC ae C40:1 −0.062 (0.008) 8.54 × 10−17 −0.067 (0.009) 1.85 × 10−14 −0.049 (0.015) 9.82 × 10−4 
PC ae C40:4 −0.066 (0.006) 1.60 × 10−25 −0.064 (0.007) 3.23 × 10−20 −0.076 (0.016) 1.38 × 10−6 
PC ae C40:5 −0.065 (0.006) 2.60 × 10−26 −0.063 (0.007) 1.38 × 10−19 −0.076 (0.014) 4.91 × 10−8 
PC ae C40:6 −0.036 (0.008) 2.14 × 10−6 −0.029 (0.009) 9.86 × 10−4 −0.051 (0.014) 1.67 × 10−4 
PC ae C42:1 −0.048 (0.008) 2.12 × 10−9 −0.047 (0.009) 7.56 × 10−8 −0.052 (0.02) 8.09 × 10−3 
PC ae C42:5 −0.062 (0.006) 1.74 × 10−22 −0.057 (0.008) 4.97 × 10−14 −0.075 (0.012) 1.59 × 10−9 
PC ae C44:5 −0.071 (0.008) 1.08 × 10−19 −0.066 (0.009) 2.49 × 10−12 −0.081 (0.014) 6.64 × 10−9 
PC ae C44:6 −0.079 (0.008) 6.01 × 10−23 −0.075 (0.01) 3.47 × 10−14 −0.088 (0.014) 1.58 × 10−10 

Summary statistics for the three loci selected for having a metabolite statistically significantly associated with a SNP and at least one lipid. 



Metabolites mediate some lipid pathways 

Based on the association result, all 38 significant SNP-MET-LIP sets were selected (i.e. 
where a metabolite was statistically significantly associated with a SNP and a lipid; Table 2). 
For each SNP-MET-LIP set, three different statistical approaches were used to test the 
hypothesis that MET might mediate SNP → LIP pathway. 



Table 2 Results of conditional analysis, Mendelian randomization and Structural Equational Modeling for the 38 significant SNP-MET-LIP sets 
  Conditional Analysis Mendelian Randomization Structural Equation Modeling  
  KORA  TwinsUK  KORA  TwinsUK  KORA  TwinsUK  
Locus SNP - MET – LIP Beta Beta Beta Beta Beta Beta 95% CI for Beta 

(MET → LIP using 
SNP as an IV)) 

90% CI for Beta (MET 
→ LIP using SNP as an 

IV)  

Best fitted model Best fitted model 
  (LIP ~ 

SNP) 
(LIP ~ SNP 

+ MET)  
changes (LIP ~ 

SNP) 
(LIP ~ SNP 

+ MET)  
changes 

GCKR rs1260326 - PC aa C40:5 – TC 2.789 0.685 −75% 4.770 2.747 −42% 0.34,177.04 −21.33,168.93 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs1260326 - PC aa C40:5 – TG 0.081 0.054 −33% 0.075 0.058 −24% 0.28,3.86 −0.38,2.30 Model 8 (SNP → LIP → MET)  
LPA rs1564348 - C3 - HDL-C 1.095 1.640 50% 0.248 1.171 372% −26.39,46.60 −50.74,35.81   
 rs1564348 - C8:1 - HDL-C 1.095 1.328 21% 0.248 1.319 432% −24.00,35.48 −16.69,16.23   
FADS1 rs174546 - PC aa C32:0 - TG 0.043 0.061 43% 0.048 0.050 3% −2.02,0.35 −2.45,2.68  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC aa C32:2 - TG 0.043 0.017 −61% 0.048 0.034 −29% 0.02,0.88 −0.59,1.56 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C34:2 - TG 0.043 0.006 −87% 0.048 0.037 −22% 0.20,2.25 −0.52,1.75 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C34:3 - TG 0.043 0.021 −50% 0.048 0.035 −27% −0.41,2.08 −1.09,1.87 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C34:4 - TG 0.043 0.102 139% 0.048 0.076 58% −0.77,0.04 −1.13,0.44   
 rs174546 - PC aa C36:2 - TG 0.043 0.004 −90% 0.048 0.041 −15% 0.14,1.78 −1.20,2.20 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C36:3 - TG 0.043 −0.016 −138% 0.048 0.022 −54% 0.20,1.55 −0.10,1.43 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C36:4 - TG 0.043 0.157 268% 0.048 0.084 75% −0.72,-0.02 −0.83,0.07   
 rs174546 - PC aa C36:5 - TG 0.043 0.077 79% 0.048 0.054 13% −0.54,0.03 −0.95,0.12  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC aa C36:6 - TG 0.043 0.060 40% 0.048 0.053 10% −1.52,0.73 −1.92,2.04   
 rs174546 - PC aa C38:4 - TG 0.043 0.177 315% 0.048 0.097 102% −0.59,0.01 −0.67,0.06   
 rs174546 - PC aa C38:5 - TG 0.043 0.131 206% 0.048 0.069 44% −0.74,-0.02 −0.96,0.07   
 rs174546 - PC aa C40:4 - TG 0.043 0.103 140% 0.048 0.076 58% −1.10,0.13 −1.27,0.44   
 rs174546 - PC aa C40:5 - TG 0.043 0.115 168% 0.048 0.077 60% −1.07,0.15 −1.22,0.33   
 rs174546 - PC aa C40:6 - TG 0.043 0.071 65% 0.048 0.055 14% −1.84,0.84 −2.20,2.10   
 rs174546 - PC aa C42:0 - TG 0.043 0.025 −41% 0.048 0.030 −37% −2.62,0.72 −1.73,0.53 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C42:1 - TG 0.043 0.016 −62% 0.048 0.030 −38% −1.39,-0.07 −1.24,0.15 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC aa C42:4 - TG 0.043 0.054 26% 0.048 0.051 6% −1.29,0.03 −1.20,0.63  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC aa C42:6 - TG 0.043 0.067 57% 0.048 0.048 0% −1.77,0.33 −1.76,0.48  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC ae C36:2 - TG 0.043 0.058 36% 0.048 0.054 12% −0.06,1.14 −3.89,2.77   
 rs174546 - PC ae C36:3 - TG 0.043 0.069 61% 0.048 0.062 29% −0.01,1.03 −0.76,1.89   
 rs174546 - PC ae C36:4 - TG 0.043 0.044 2% 0.048 0.037 −23% −1.39,0.11 −1.13,0.10  Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C36:5 - TG 0.043 0.031 −29% 0.048 0.016 −66% −0.93,-0.07 −0.84,0.02 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C38:4 - TG 0.043 0.036 −16% 0.048 0.044 −8% −1.10,-0.06 −1.01,0.07  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC ae C38:5 - TG 0.043 0.030 −30% 0.048 0.022 −55% −1.18,-0.05 −1.02,-0.01 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C38:6 - TG 0.043 0.039 −10% 0.048 0.030 −37% −1.99,0.18 −1.52,0.13  Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C40:1 - TG 0.043 0.056 30% 0.048 0.046 −3% −1.19,0.10 −2.02,1.04  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC ae C40:4 - TG 0.043 0.013 −71% 0.048 0.049 2% −1.36,-0.08 −1.20,0.23 Model 4 (SNP → MET → LIP) Model 10 (MET ← SNP → LIP) 
 rs174546 - PC ae C40:5 - TG 0.043 0.014 −68% 0.048 0.042 −13% −1.35,-0.05 −1.26,0.19 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C40:6 - TG 0.043 0.037 −13% 0.048 0.034 −29% −2.90,2.54 −1.99,0.64 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C42:1 - TG 0.043 0.060 41% 0.048 0.051 6% −1.81,0.26 −1.74,1.72  Model 10 (MET ← SNP → LIP) 
 rs174546 - PC ae C42:5 - TG 0.043 −0.003 −106% 0.048 0.031 −36% −1.43,-0.11 −1.35,0.15 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C44:5 – TG 0.043 −0.001 −102% 0.048 0.022 −54% −1.26,-0.14 −1.16,0.12 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 
 rs174546 - PC ae C44:6 – TG 0.043 −0.007 −117% 0.048 0.006 −87% −1.10,-0.10 −1.02,-0.05 Model 4 (SNP → MET → LIP) Model 4 (SNP → MET → LIP) 

Effect size declines in conditional analysis, confidence intervals not containing 0 in Mendelian randomization, and Model 4 reported as the best fitted model in 
Structural Equation Modeling in each cohort were highlighted in bold to provide evidence for the mediating role of MET in SNP-LIP pathways. SEM Model 4: 
SNP → MET → LIP; Model 8: SNP → LIP → MET; Model 10: SNP → MET; SNP → LIP. 



Firstly, the SNP-LIP association was conditioned on MET under a linear regression model in 
each SNP-MET-LIP set. A total of 19 metabolites associated with loci GCRK and FADS1 
resulted in marked declines of effect sizes in the metabolite-adjusted model (Table 2 and 
Additional file 1: Table S5). For example, the association between rs1260326 in GCKR and 
TC showed a 66% decrease in the effect size (from 3.274 mg/dl per copy of allele T, p-value 
= 0.00429 to 1.125 mg/dl, p-value = 0.275) after adjusting for PC aa C40:5. These 
observations were compatible with the hypothesis that these metabolites may mediate the 
lipid pathways. 

As a second approach, Mendelian randomization (MR) analysis was used to estimate the 
unconfounded causal effect of a metabolite on a lipid. For each SNP-MET-LIP set, the causal 
effect was estimated by the Wald method and its confidence interval was generated based on 
1,000 bootstrap replicates. In KORA, 17 SNP-MET-LIP sets showed a causal relationship 
between MET and LIP (i.e. MET → LIP) at the 5% significance level, however, none of 
them were replicated in TwinsUK at the same level of significance (although two of them 
were significant at 10% significance level and in need of further analysis in a larger dataset) 
(Table 2 and Additional file 1: Table S6). For example, by using rs174546 in FADS1 as an 
instrumental variable, the unconfounded causal effect of PC ae C38:5 onto TG was estimated 
to be −0.62 (95% CI = (−1.18, −0.05)) in KORA, but only −0.53 (90% CI = (−1.02, −0.01)) 
in a set of unrelated TwinsUK individuals (Figure 3). 

Figure 3 Three different statistical analyses to test the hypothesis that a metabolite 
mediates the FADS1 → TG pathway. The rs174546-T allele in FADS1 locus is associated 
with both triglycerides and a small molecule metabolite, PC ae C38:5. We have tested the 
hypothesis that a metabolite mediates the lipid pathway using three different statistical 
approaches. The conditional analysis (left) confirmed that the effect size of rs174546 on 
triglyceride decreased conditional on PC ae C38:5 in both KORA and TwinsUK cohorts (top 
and bottom). The Mendelian Randomization (middle) estimated a statistically significant 
causal effect of PC ae C38:5 on triglyceride, which however was not replicated in TwinsUK 
at 5% significance level, perhaps due to the small sample size (KORA = 1,797 and unrelated 
TwinsUK = 845). The Structural Equation Modelling (right) showed that out of all possible 
models tested, the model 4 (rs174546 → PC ae C38:5 → trycliceride) was the best fitted one 
in both cohorts. 

Lastly, SEM was applied to test a broader range of possible paths in each SNP-MET-LIP set. 
In a total of 15 SNP-MET-LIP sets, the best fitted model was shown to be Model 4 (which 
corresponds to the path tested by MR) assuming SNP → MET → LIP (Figure 1) in both 
KORA and TwinsUK. For example, in a set composed of rs174546 in FADS1, PC ae C38:5 
and TG, only Model 4 showed Goodness of Fit Test p-value ≥ 0.05 in both cohorts (Figure 
3). This set also satisfied other criteria to be selected as the best fitted model; such as showing 
0.9 < GoFI ≤ 1, RMSEA ≤ 0.05 and smallest negative Bayesian Information Criterion (BIC) 
(Additional file 1: Table S7). Thus the SEM analysis supports the model tested by MR that 
phosphatidylcholines may mediate associations of GCKR to TC and FADS to TG (Table 2 
and Additional file 1: Table S7). 

Discussion 

Blood lipid levels are major risk factors for coronary artery disease (CAD) and myocardial 
infarction (MI), and targets for therapeutic intervention. Recent large scale meta-analyses of 
genome-wide association scans (GWAS) totaling >100,000 individuals has identified a total 



of 95 independent and common loci statistically significantly associated with at least one of 
the four main lipid traits (TC, LDL-C, HDL-C and TG) [15,16]. Some of these loci are 
mapped to genes that are well known therapeutic targets [49-51], but for the majority, little is 
known in terms of their biological function or their value as therapeutic targets. Further 
characterization of the pathways via which these loci may influence lipid species will help to 
contribute to evaluating their therapeutic potential. 

In this study, the potential roles of metabolites as intermediate phenotypes of the four main 
lipid traits were examined. Firstly, we showed that all 151 small metabolites profiled on the 
Biocrates metabolite panel were statistically significantly associated with lipid traits in two 
independent cohorts. Secondly, we demonstrated that 37 of these metabolites were robustly 
associated with variants at three different lipid-associated loci, including one metabolite 
associated with two loci, highlighting both known and potential new biochemical correlates 
(summarized in Table 3). Thirdly, we applied a statistical framework composed of 
conditional analysis, MR and SEM, to investigate the role of metabolites in lipid pathways, 
and showed that one or more metabolites potentially mediate the SNP-lipid association at two 
loci, FADS1 and GCKR (both statistically significantly by SEM, and FADS1 suggestively by 
MR). 

Table 3 Summary of known evidence or hypothesis on the functional and biological role of 
metabolites for each of the three lipid loci 
Locus Metabolite class Functional and biological evidence 
GCKR phosphatidylcholine GCKR encodes a glucokinase regulatory protein that inhibits 

glucokinase in liver and pancreatic islet cells by binding non-
covalently to form an inactive complex with the enzyme. The 
locus has been shown to have a pleiotropic effect on multiple 
cardio-metabolic phenotypes [15,24,52-56]. We postulate here 
that GCKR SNPs affect TC through regulation of 
phosphatidylcholine metabolism, a hypothesis that needs to be 
validated in experimental settings. 

LPA carnitine A connection between Lp(a) and carnitine has been shown 
before. Derosa et al. [57] observed a statistically significantly 
decreased plasma Lp(a) concentration after L-carnitine intake of 
up to six month . Moreover, after a coadministration of 
simvastatin and carnitine the reduction in Lp(a) was significanty 
greater than after simvastatin medication alone [58]. 

FADS1 phosphatidylcholine The FADS1-2-3 gene cluster encodes for fatty acid desaturase 
enzymes regulating the desaturation of fatty acids by adding 
double bonds between carbons of the fatty acyl chain [59-61]. 
Whereas FADS1 modifies the efficiency of the fatty acid delta-5 
desaturase reaction, FADS2 modifies the fatty acid delta-6 
desaturase reaction. GWAS of polyunsaturated fatty acids have 
shown associations between different fatty acids and the FADS1-
2-3 gene cluster [12]. Arachidonic acid, most likely a side chain 
of PC aa C36:4, is presumably involved in atherosclerotic 
processes [62,63]. 

Overlap of associations of a genomic locus with different complex traits can be useful to 
derive novel hypotheses on possible underlying pleiotropic or causal effects. For instance, 
recent highly powered meta-analyses have systematically compared the association of type 2 



diabetes loci with correlated glycemic (fasting glucose, fasting insulin, 2-hr glucose, HbA1C 
and others) and metabolic traits (BMI, lipids and others) [24,25,64-66] in an attempt to better 
characterize physiologic processes underlying associations at these loci. A similar degree of 
overlap has been characterized at serum lipid and coronary artery disease loci [16]. While 
these efforts have provided first important insights into pathophysiologic correlates at disease 
variants, observed correlations at a locus may often reflect shared environmental effects or 
confounding rather than causal relations between traits. Distinguishing causality from 
correlation in these contexts is essential to identify modifiable causes of disease and to 
unearth new avenues for therapeutic intervention. 

The advantage of using metabolites as intermediate phenotypes is that they are more 
proximal to genes and biological pathways than downstream phenotypes or clinical endpoints 
[11], ensuring more statistical power to detect genetic associations compared to more 
complex lipid traits. Furthermore, analysis of metabolites provides the opportunity to dissect 
complex metabolic pathways into their components. We showed here that through 
appropriate statistical tools and prioritization strategies we can begin to dissect causal 
relationships. Although our inferences are limited by the lipid-focused content of the 
Biocrates metabolomic panel and by the study power, it is foreseeable that information 
relevant to this and other physiological context can be obtained by applying similar 
approaches to broader metabolite panels and larger study sizes. 

Importantly, we demonstrate that our results are robust in two independent populations and 
recapitulate a known biological process. For instance, the most plausible path model at 
FADS1 predicts that phosphatidylcholines mediate the association between SNP rs174546 
and TG. FADS1 encodes a fatty acid desaturase regulating the desaturation of fatty acids by 
the addition of a fourth double bond between carbons of the fatty acyl chain [59-61], a role 
compatible with the observation in this study. This provides proof-of-principle evidence that 
these approaches deliver robust and interpretable evidence. We further discriminated path 
models connecting rs1260326 in GCKR to TC through phosphatidylcholines. GCKR encodes 
a glucokinase regulatory protein that inhibits glucokinase in liver and pancreatic islet cells by 
binding non-covalently to form an inactive complex with the enzyme. The locus has been 
shown to have a pleiotropic effect on multiple cardio-metabolic phenotypes [15,24,52-56]. 
We postulate here that GCKR SNP rs1260326 affects TC through regulation of 
phosphatidylcholine metabolism, a hypothesis that needs to be validated in experimental 
settings. 

Conditional analysis is a commonly used approach to show dependencies between the 
variables of the unadjusted model and the variable being adjusted for. However, the different 
results between unadjusted and adjusted models might be due to reverse causation or 
confounding rather than causation. One of the most widely applied causal inference 
approaches is MR. If the direction of the association is previously known between two 
variables (for example, a metabolite and a lipid in a SNP-MET-LIP set), MR can measure the 
extent of the unconfounded causal relationship using genetic variants as instrumental 
variables. However, in some –omics level studies, the direction of the association among 
variables cannot be easily assumed. To overcome this limitation of MR, we also applied 
SEM, which evaluates each hypothesis based upon the directional relationship of variables by 
comparing it with all possible hypotheses and infers the most likely causal relationship. By 
applying both SEM and MR to our dataset, we obtained significant support for our hypothesis 
on the direction and the degree of association in each SNP-MET-LIP set. Our framework 
suggests the usefulness of combined statistical methods as an exploratory tool to infer causal 
relationship from high-dimensional molecular data. 



Although our approach helps to infer causation statistically, it has limitations. In MR, the 
validation for all of the assumptions is not always feasible, although its violation could 
increase the bias [67]. MR also has relatively low statistical power and may be affected by 
weak instrument bias as only the small percentage of phenotypic variance is explained by 
single (or often multiple) genotypes for most complex traits. Using weak genetic instruments 
may cause biases [68]. Another limitation of traditional MR may arise from its design itself 
as it tests only known hypothesis. SEM provides a hypothesis-free approach that is 
complementary to MR, as it enumerates all possible models and infers causality from the 
most likely model. However, it may mislead causal inference in the presence of unknown 
confounders [46] or measurement errors [69]. Finally, the use of BIC scores to select the 
most likely model may represent a further limitation of the model. A recent study showed that 
the new causal model selection test (CMST test) outperforms BIC in terms of statistical 
precision, although it has lower statistical power [20]. More generally, both MR and SEM in 
our suggestive framework are designed to detect only linear relationships and targeted on a 
small set of variables, which were statistically significantly cross-associated with one another 
(i.e. SNP-MET-LIP set). Thus, this framework cannot be readily applied to complex dataset 
where hundreds or thousands of variables are linearly and nonlinearly related. 

Recent papers based on Gaussian graphical models or Bayesian networks [42,43,70-72] take 
into account all the observed variables of a dataset to infer direct correlation or directional 
correlation. For example, the IDA method (Intervention-calculus when the DAG is Absent) 
estimates total causal effects from all the observed variables using PC-algorithm and 
intervention calculus [42]. Although these approaches are still at risk of being misled by 
unknown confounders and measurement errors, in contrast to MR, adding more meaningful 
observed variables to the model may help to robustly handle unaccounted-for factors or high 
correlations among variables. Our future studies will include improving the statistical 
framework shown here, to be more adequate for increasingly multiple high-dimensional 
datasets (such as –omics datasets). On another note, well-designed simulation studies would 
be beneficial to understand and hopefully overcome the limitations of each of causal methods 
introduced in this paper. 

Conclusions 

Biological systems are clearly far more complex than relatively simple sets of equations. 
However, new insights on underlying biological processes can be obtained from the analysis 
of data generated in a highly standardized manner and the careful choice of model variables. 
We showed that, with the use of appropriate statistical instruments, we could dissect the 
contribution of metabolites assessed through high-throughput molecular profiling to complex 
biological pathways. The application of these methods to loci identified in large-scale 
associations of genome-wide SNP data will provide powerful tools for dissecting metabolic 
pathways at a wide range of complex trait loci. Preliminary studies exploring metabolic 
signatures associated with hypertension [73,74], myocardial ischemia [75], and others [76,77] 
will aid the dissection of genetic and environmental causes of cardio-metabolic disease. The 
application of metabolomics profiling to samples from large population cohorts, stratified by 
known risk factors or exposures, may thus provide alternative and powerful designs to test 
causal relationships while minimizing the impact of clinical confounding variables [77], and 
new avenues to improve prediction of clinical outcomes. 
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Additional file 1: Table S1. Description of study samples. Table S2.Characteristics of 
metabolites analyzed in this study. Table S3. SNP quality metrics in KORA and TwinsUK. 
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Additional file 2: Figure S1. Metabolite-lipid correlation heat maps. Heat map plot of 
metabolite-lipid correlation combined with a hierarchical clustering to show six main groups 
of metabolites showing similar patterns of correlation with main lipids. The groups are 
separated by the heavy black line in the heat map and labelled 1 to 6 from top to bottom. The 
metabolites in each group can be found in the table below. 
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