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SELECTION APPROACHES
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Abstract: The quality criteria for experimental design approaches in chemoinformatics are numerous. Not only the error

performance of a model resulting from the selected compounds is of importance, but also reliability, consistency, stability and

robustness against small variations in the dataset or structuraﬂy diverse compounds. We developed a new stepwise, adaptive
approach, DescRep, combining an iteratively refined descriptor selection with a sampling based on the putatively most

representative compounds. A comparison of the proposed strategy was based on statistical performance of models derived from

such a selection to those derived by other popular and frequently used approaches, such as the Kennard-Stone algorithm or the

most descriptive compound selection. We used three datasets to carry out a statistical evaluation of the performance, reliability and
robustness of the resulting models. Our results indicate that stepwise and adaptive approaches have a better adaptability to changes

within a dataset and that this adaptability results in a better error performance and stability of the resulting models.

RESEARCH ARTICLE

1. Introduction

Experimental design techniques are crucial in terms of time and
cost efficiency as well as to minimize the number of animal
experiments. Reliable testing strategies are essential, especially in the
course of the REACH legislation,[ 1] which includes the requirement
that every chemical compound produced in/or imported into the
European Union in an amount of more than one ton, has to be
registered regarding a number of endpoints. But the application of
selecting a representative and descriptive sub-sample from the
chemical space of interest, and using it for the calculation of
prediction models, is not only limited to risk assessment within
REACH.[2],[3],[4] Also tasks as large scale scanning of chemical
databases,[5] QSAR modeling,[6] drug target evaluation[7] or other
pharmaceutical applications require systematic approaches to select
representative subsamples.

The variety of concepts to address these problems in
computational chemistry and QSAR modeling is widely spread,[8],[9]
but most of them can be reduced to one of three basic ideas. Firstly,
the selection of compounds with maximum dissimilarity, which is
based on the theory that the most distinct compounds contain the
most diverse information. This idea/ theory is optimal for linear
modeling. The D-Optimal criterion[10],[11],[12] and the Kennard-
Stone algorithm[13] belong to this group of approaches. Secondly,
the similarity selection aims to find compounds with high
representativeness for the whole collection of relevant compounds.
Approaches referring to this concept, eg. the most descriptive

compound selection (MDC),[14] usually select compounds from
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densely populated regions of the chemical space. Thirdly and lastly is
an approach that aims to cover the whole chemical space of interest.
The full factorial design[IS] and space filling designs[16] are
examples thereof. Recently, approaches that utilized hierarchical or
density based clustering techniques were proposed.[9],[17] In our last
study[ 18] we presented the advantages of an adaptive approach that
combines a dissimilarity selection with an iteratively refined
representation of the chemical space, by taking into consideration the
information about the analyzed property that accumulates in the
experimental process.

In QSAR modeling and chemoinformatics the focus within the
evaluation of a novel approach is often exemplified on a particular
dataset. Statistical evaluations, taking performance measures such as
reliability and robustness of an approach into consideration are
rare.[19] Due to chance correlations, this can result in misleading
conclusions about the applicability of an approach. Furthermore
stability, which is the ability of adapting small changes in a dataset, or
to process structural outliers in a data collection, also needs to be
taken into consideration. This is a quality criterion, which is as
important as the performance itself.

In this study we present DescRep, a stepwise adaptive approach
combining an iteratively refined descriptor selection with a sampling
based on the concept of representative compounds. We compare this
approach to experimental design strategies, which are commonly used
in chemistry. An evaluation pipeline was implemented and applied to
an ensemble of randomly selected subsets of three datasets, each with
an endpoint relevant for REACH. We show that in comparison to
the traditional approaches that select all compounds at the same time,
DescRep performs significantly better.

We exemplify the importance of a statistical evaluation by
investigating the effects of small changes in the underlying dataset on
both the composition of the selected compounds and the performance
of the resulting model. Furthermore, the collected datasets are
extended with concerted structural outliers, to evaluate their influence
on the selection approaches and the resulting models. Our results
indicate that stepwise approaches, DescRep in particular, contribute
to stability and reliability in experimental design.
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Figure 1. The change in the principal components view due to one structural outlier in the dataset. The principal components were calculated for the dataset
with (b, c) and without (a) structural outlier. ALOGPS and E-State indices were used (a, b), as well as DRAGON descriptors (c). The protocol to calculate the

principal components was always the same.

We investigate the benefits of a representation of the chemical
space, which takes the correlation to the target property into
consideration, and consequently arranges the compounds to a certain
reference endpoint. Finally, we analyze our results with respect to the
variability and adaptability of the examined approaches.

2. Materials and Methods
2.1. Materials

To compare and evaluate the selection approaches, we collected
three datasets, which vary in several criteria. The respective endpoints
of these datasets, which were also used in our previous study,[18]
were a physicochemical property, boiling point, a soil sorption
coefficient, IogKoc, and environmental aquatic toxicity —against
freshwater fish fathead minnow.

We extracted a collection of boiling point values from the
Estimation Programs Interface (EPI) suite data.[20] The compounds
within the dataset were restricted to halogenated compounds,
containing bromine, chlorine and/or fluorine. As no further structural
filters were applied, this set still provided a broad diversity regarding
molecule size and chemical structures. We did not apply any kind of
structural filter to the other datasets. The second dataset was based on
the collection of logKoc values by Meylan et al.[21] logKoc is the log
scale of the adsorption coefficient of a contaminant in the organic
fraction of the soil. The endpoint for the toxicity dataset was the log
scaled aquatic LCso value on the fathead minnow. The measurements
were taken from the fathead minnow acute toxicity database[22] of
the Environment Protection Agency (EPA).

All datasets were free of duplicate compounds. Measurements
providing intervals of minimum or maximum values were excluded. In
order to avoid problems in descriptor calculation, inorganic
compounds, radicals, charged molecules and salts were filtered out.
The final dataset for the boiling point contained 1198 compounds,
the datasets for logKoc and for toxicity on the fathead minnow
contained 648 and 535 chemicals, respectively.

For each dataset, a collection of two types of descriptors was
calculated. The first type was calculated using the ALOGPS 2.1
program[23] and contained two descriptors: solubility and
lipophilicity of molecules. ALOGPS was the top-ranked model for
prediction of logP.[24] The type included E-State
indices.[25],[26] These are electrotopological descriptors calculated

second
for each atom and each bond in a compound and then summed

according to their types over all atoms. The number of descriptors for
the second type is determined by number of different chemical groups
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and thus it was not a fixed one. On our datasets, we calculated 179,
220 and 230 descriptors for logl.Cso, logKoc and the boiling point
dataset, respectively. The Online CHEmical database and Modeling
environment (OCHEM)[27] was used for the calculation of the
descriptors. To represent the chemical space of each dataset the
descriptors were normalized to a [0,I] range. The rationale to use
normalization instead of standardization is that standardization works
on the underlying assumption that the objects are normally
distributed. This assumption is not true for descriptors determined
for chemical groups, e.g., in particular for the E-State indices. As they
are linked to the presence of certain substructures, for most
compounds, their value is just zero.

One of the aims of this study was to investigate the influence of
structurally diverse compounds on the selection and accuracy of the
resulting models. Therefore each of the three datasets was extended by
the inclusion of a compound, which was characterized as a structural
disrupter. We defined a structural disrupter as a data point that (a)
influences the recalculated loadings of the first or the second principal
component in such a manner that the principal properties represented
by these components are changed and (b) results in one or more
instances in the data set that are — according to the distribution of the
instances in that principal component — at least five standard
deviations from 97% of all other compounds.

Structural outliers like the ones used in this study are not
artificial, but can result from several reasons, eg. (a) from few
compounds within the dataset, which have a specific chemical group
that is different from other compounds and functionally is not
relevant, (b) from the choice of a specific descriptor set, or (¢) from a
certain procedure within the multivariate analysis (centering or not the
data, usage of raw, normalized or standardized data).

The structural outliers in our study were (a) ethyl 2-chloro-3-[2-
chloro-5-[4-(difluoromethyl)-3-methyl-5-oxo-1,2,4-triazol-1-yl]-4-
fluorophenyl]propanoate (carfentrazone-ethyl) for the boiling point
dataset, (b) (IR,4aR4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-
3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic  acid
(isopimaric acid) for the logl.Cso dataset and (c) (I,2-dimethyl-3,5-
diphenyl-pyrazol-1-yl) methyl sulfate for the logKoc dataset. All these
three compounds were retrieved from the same source as the rest of
the respective dataset. Fig. Ia) shows the first two principal
components of the boiling point dataset without outliers whereas Fig.
Ib) shows the first principal components of the same dataset with the
structural disruptor. The structural disrupter has a red color. The
principal components were derived from the whole set of normalized
ALOGPS descriptors and E-State indices and thus no variable
selection was performed. Furthermore, the data were not centered
before the orthogonal transformation.

Computational and Structural Biotechnology Journal | www.csbj.org



To show how the concerted outlier for boiling point structurally
fits into the dataset, we calculated its Tanimoto distance to all other
compounds. ISIDA fragments[28] were used therefore. Fig. 2 shows
the outlier in the center and the four most similar compounds around.
The value assigned to the edges indicates the similarity score. It is
obvious that the outlier is a larger molecule and contains a triazole
group, which is absent in other compounds. Such types of outliers
could naturally happen to be present in the datasets. The appearance
of such outliers depends on the used descriptors. Fig. Ic shows, if
Dragon descriptors[29] are used, this compound is not anymore an
outlier (although it is located at the periphery of the data cloud).
Indeed, Dragon software calculates many more descriptors and in
their space the analyzed molecule does not have descriptors, which
make it to be the outlying point in the PCA space. Thus, a property
of a molecule to be a structural outlier depends on the used set of
descriptors, i.e. on the representation of the molecule.

mc

Figure 2. The structural outlier and similar compounds in the dataset.

2.2. Methods

2.2.1. Static experimental design approaches
We implemented several commonly used experimental design
strategies to evaluate and compare the robustness and reliability of

All of the following

approaches were applied to five principal components derived from a

selections derived by these approaches.

principal component analysis of the descriptor space. The results of
our recent study[I8] showed that a search space of that
dimensionality worked equally well for all datasets.

D-Optimal design

The D-Optimal design[10],[11],[30] uses the determinant of the
information matrix to evaluate all possible subsets of 2 out of m
compounds (7 < m). The set with the maximum entropy,[31] and
therefore the most distinct one, is the one with the maximum value on
the determinant. We used the D-Optimal criterion in combination
with the Fedorov heuristic[32] to minimize the runtime requirements.
The D-Optimal design works well for linear models, but reveals a bias
towards outlier selection in higher order spaces.[8]

Kennard-Stone algorithm

Starting from an initially selected compound, the Kennard-Stone
algorithm[13] selects compounds in a fixed order. In this study, the
initial selected compound was the central point within the dataset,
which was defined to be the compound with the minimum sum of
distances to all other compounds. From this initial seed, each step in
the selection extends the chosen compounds by that one that has the
highest Euclidean distance to its closest neighbor within the
previously selected ones. The disadvantages of this approach are
similar to those of the D-Optimal design.

Volume No: 7, Issue: 9, May 2013, 201305002
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Space filling design

The space filling design as a variant of the full factorial design is
working by partitioning the chemical space into subspaces. These
subspaces are derived by dividing each axis into the same number of
bins. Therefore, for a number of b bins and a number of 2 axes, the
number of resulting subspaces is /. From each of these resulting
subspaces a compound is selected as representative, but as the
compounds are not equally distributed in the chemical space,
subspaces can be completely without a representative compound. It is
therefore difficult to fix the number of finally selected compounds. In
our implementation, the number of bins each axis is divided into is
not prefixed, but automatically detected to be optimal for the desired
number of compounds to be selected as described elsewhere.[33] The
compound selected as representative for each subspace is the one with
the lowest Euclidean distance to the center of the subspace. Since the
number of subspaces is exponentially increasing with each dimension
in the search space, we fixed this approach to work on three principal
components.

Most descriptive compound selection (MDC)

The most descriptive Compound selection is working m a
sequential manner. Initially all compounds get assigned a score
displaying their representativeness for all other compounds. In each
step the compound with the highest score is selected and all other
scores are updated by eliminating the deduced information content of
the selected compound. Our implementation of this approach was
based on the work of Hudson et al[I4] Instead of using the

suggested stop criterion, we selected a fixed number of compounds.

Random selection
Additionally, to provide a reference a random selection was used
for comparison.

2.2.2. Adaptive experimental design approaches

The adaptive experimental design approaches we use in this study,
work in a stepwise manner, where each step consists of two phases. In
the first phase the representation of the chemical space is refined. This
is done by using the preliminary gathered information from the target
property and analyzing its correlation to the chemical space. In the
second phase a selection algorithm is executed on the newly arranged
chemical space. The selection is hereby taking all previously selected
compounds into consideration. These phases are executed in an
alternating way until a prefixed number of compounds are reached.

The idea behind the rearrangement of the chemical space is to
adjust the design of an experiment to a certain endpoint and
consequently to reach a faster increase in the resulting model
performance. Experimental designs derived from PCA space are not
aligned to the target property, but are identical for the same selection
algorithm and executed on the same compound collection, regardless
of the endpoint. For this reason they are unspecific and most probably
not optimal.

PLS-Optimal

PLS-Optimal is an adaptive approach that combines the D-
Optimal criterion with the partial least squares technique (PLS). The
representation of the chemical space within this approach is realized
with PLS components instead of PCA components. The principal
components derived by a PCA are ranked by their variance in
descriptor space; in contrast the PLS latent variables are ranked by
their correlation to the target property. The latent variables in our
implementation are derived from a PLS model on the pre-selected
compounds. In our previous study on this approach, we showed by
taking the correlation to the target property into consideration, we

Computational and Structural Biotechnology Journal | www.csbj.org



could significantly improve the performance of the D-Optimal

selection criterion.[ 18]

DescRep

The new approach, DescRep works in a similar way as PLS-
Optimal. However, it combines a similarity-based approach (instead
of a dissimilarity based one) with a representation of the chemical
space using selected descriptors (instead of PLS components). As for
PLS-Optimal, the preselected compounds are used as reference
information to evaluate the most important descriptors.

Descripror selectron: The search space for DescRep is spanned by
a fixed number of selected descriptors. The selection process follows a
simple idea and is therefore straight and efficient.

In the first step a scoring list S containing the correlation
coefticient of each descriptor to the target property, is built. This
correlation  coefficient is derived only from the preselected
Additionally, the

correlation matrix M, containing the absolute pairwise correlation of

compounds, which are already ‘measured’.
any combination of two descriptors, is built.

According to the scoring list, the descriptor that should be
selected is the one with the highest score, which is initially equivalent
to the one with the highest correlation to the target property. After
the selection of a descriptor x the scores are updated to avoid pairwise
correlations in the final selection. Regarding the compound 7 its score
Si gets updated to S * (I - Mi)*. Thereby the scores of descriptors,
which are highly correlated to the preselected ones are decreased,
which helps to avoid the selection of redundant information. The
underlying idea of selecting variables with a high correlation to the
target property and the elimination of inter-correlated variables is
similar to partial least squares.[34] This procedure is repeated until a
predefined number of descriptors are selected.

Selection of compounds: As a stepwise experimental design
procedure requires a selection method, which is able to take a
preselected initial seed of compounds into consideration, it is not
possible without further ado to use the MDC selection, as its concept
of ranking distances cannot be adapted to this precondition.
Therefore we developed a selection method based on the idea that
structural similarity of compounds also conditions similar values
regarding a certain endpoint.

We select an initial seed of compounds starting from a k-Means-
based partition of the chemical space (represented by the principal
components) into a predefined number of clusters. The initial seed
contains the most representative compound of each cluster. The most
representative one is hereby defined as that compound with the lowest
sum of pairwise distances to all other compounds within the same
cell. The k-Means clustering was initialized 15 times with randomly
assigned starting compounds. The finally picked clustering was the
one with the lowest sum of pairwise differences within each cluster.

In each further step the chemical space is represented by a
selection of descriptors based on the preselected compounds. The
preselected compounds are extended by new ones, which are assigned
to be the most informative ones for all other compounds based on a
priority score (PS) calculated for each compound. PS estimates how
well a compound is represented by all previously selected compounds.

Initially, all compounds are assigned a PS of 1.0 and the distance
matrix DM, containing the pairwise distances between all compounds,
is calculated. The distance matrix (normalized to [0,1] range) is used
as PS to select the first compound. The use of such matrices to
useful in

represent  datasets has  been  shown

publications.[35],[36]

numerous
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For all following compounds, the normalized pairwise distances
of NN preselected compounds to the remaining compounds in the
dataset are used to determine how well each compound is already
represented and select the least represented ones. Each compound x
within the set gets assigned a correction factor CFu for each
preselected compound 7 The correction factor refers to a hyperbolic
distance function and it is used to adjust the PS to the preselected
compounds.

N
PSx_new = PSx * I_ICin
i=1

The correction factor is calculated as

CFy = (1 = (1 = DM,)*P).

The exponent exp is not fixed, but depends on the distribution of
the data in the descriptor space and the number of compounds to be
selected. It is recalculated in each selection cycle. Referring to the
most central point within the dataset (which is again defined as the
one with the lowest sum of pairwise distances to all other
compounds) exp is determined as the value for which the number of
preselected compounds and compounds to be selected in the present
cycle has to have a value of (1 — DM,;)®*P, which is higher than a
given threshold. This procedure is a variation of the MDC,[14] which
is based on distances, instead of reciprocal ranks. The threshold value
we used in this study was lamda=0.75. For the calibration datasets on
density, bioconcentration, lipophilicity and solubility were used. We
experimentally determined that this is an appropriate value. This
additional feature of the recalculated exponent enables one to also
handle exceptional data distributions. The method is not sensitive to
the parameterization. We tried different versions of lamda within the
range of 0.5-0.9 and did not observe significant changes in the
method performance. Moreover, it should be mentioned that
parameterization and an appropriate distance function are general
issues for similarity-based selections.[14]

Based on these prior conditions, the correction factors for all
combinations of not yet selected compounds are calculated. The
collection of compounds finally selected for testing is the one that
minimize the sum of priority scores over all compounds.

2.2.3. Validation

All three datasets were split into two partitions. The first partition
(design set), containing 84% of the compounds, was used to execute
the selection approaches and the second partition, containing the
remaining 16% of the compounds, was used as a respective validation
set. A split of that size was chosen, as it guarantees that two randomly
generated design sets have 68% (approximately two third) of
compounds of the whole dataset in common. To retrieve a statistically
meaningful foundation to evaluate and compare the approaches, 250
of these splits were generated. Therefore each compound is present in
average in 210 of the design sets and in 40 of the validation sets. Each
of the splits was used for the evaluation of each of the selection
approaches. For all datasets, we used the approaches to select samples
containing S5, 7, 10, 15, 20, 25, 30, and 40 compounds. For the
boiling point dataset, additional samples containing 50 and 60
compounds were selected. The selection process for the static
approaches was started from scratch for each sample size, whereas for
the adaptive approaches the selection process was strictly based on the
sequence as mentioned above. Thereby the compounds selected in
each previous step are in the next step used as a known seed and the
newly selected compounds just extend this seed.
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Figure 3. Average performance of the models resulting from the selections of the examined approaches, displayed as a-c) RMSE and d-f) correlation coefficient
on the datasets for a, d) boiling point (°C), b, e) logKoc and ¢, f) logLCso. The stepwise approaches are displayed by the dashed orange lines (DescRep) and the
dashed yellow lines (PLS-Optimal). The color assigned to the random selection is black, red for the MDC selection, green for the space filling design and blue for

the dissimilarity selections.

The evaluation of each selection is obtained by building a PLS
regression model. The number of latent variables to be used for the
final model was determined in a five-fold cross validation on all
selected training set compounds using the coefficient of determination
as criterion for the optimal number.[34]

The models were built using all normalized descriptors and not
by using only the principal components that spanned the search space.
These models were applied to the validation set which contained all
compounds that have been excluded from the selection process.
Therefore the models performance on this dataset provides an
independent measurement of the prediction quality on new
compounds. The criteria for the model evaluation were the root mean
squared error (RMSE) and the correlation coefficient between
observed and predicted values. We estimate the significance of the
difference in performance according to a binomial test (the binomial
distribution with N=250 trials). All mentioned significant differences
in the article had p < 0.0S.

3. Results and discussion

3.1. Model performance

To enable a comparison of the quality of the models resulting
from the examined selection approaches, we calculated the average
RMSE performance and the average correlation coefficient for each
number of compounds selected. Fig. 3a-c) shows the results of this

Volume No: 7, Issue: 9, May 2013, 201305002

comparison using the prediction error, whereas Fig. 3d-f) shows the
comparison using the correlation. The x-axis displays the number of
selected compounds and the y-axis the measurement of quality.

The first general observation on all of the datasets and selection
approaches is that with an increasing number of selected compounds
the average error decreases, whilst the average correlation in the
models increases. This is expected as a larger number of molecules
provide an increase in the amount of information obtained and
thereby enables one to build a better model. Furthermore, for all
datasets the stepwise approaches reach a good performance, which is
constantly within the range of the best approaches. PLS-Optimal
reveals problems with the BP dataset, these problems were explained
in our previous study[18] with the similarity between the loadings of
the PLS latent variables and the loadings of the principal components.
The average performance of models derived from compounds selected
with DescRep is also the best for the boiling point.

A further observation is the smooth hyperbolic development of
the average error performance on the 250 splits for each dataset.
Whereas the static approaches result in unexpected deviations, there
are no irregularities for the stepwise approaches, neither in the error,
nor in the correlation development. MDC is the only systematic
approach that derives selections resulting in a performance, which is as
comparably good, although it reveals similar problems as the other
approaches for the boiling point and the logKoc dataset until 20

selected compounds.
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Figure 4. Comparison of the standard deviation of the selection approaches on a) the boiling point, b) the logKoc and c) the logLCs, dataset.

The models derived from the selection of both stepwise
approaches show a low initial prediction error. The performance of
PLS-Optimal for seven selected compounds is better than e.g. than
that of the D-Optimal criterion for 25 selected compounds on the
boiling point dataset, for 15 compounds on the logKoc dataset and on
the logl.Cso dataset for 20 compounds. Further worth mentioning, is
the good performance of models resulting from the random selection.
Like the stepwise approaches, the random selection provides models
that reliably decrease in average error and increase in average
correlation for a growing number of compounds selected.

Regarding the correlation coefficient, MDC shows the fastest
increase of all examined methods for the boiling point and the
logL.Cso dataset. The models from the MDC selection on the logKoc
dataset, clearly show a worse initial correlation for less than 20
selected compounds. Although the convergence in the correlation for
the stepwise approaches is not that fast, it works equally well on all
datasets and it is still faster in comparison to all other systematic
approaches.

Referring to the binomial test, we found that the observed
improvements in the resulting models derived with DescRep are of
high statistical significance (p < 0.00I) for the range of 7 to 20
selected compounds for the boiling point dataset, 7 to 25 selected
compounds for logKoc and 15 to 40 selected compounds for log.Cso,
when compared to the random selection. Regarding a comparison of
PLS-Optimal with a random approach, we observed this level of
statistical significance for the range of 10 to 25 selected compounds
for the logKoc dataset and 7 to 15 selected compounds for the
logL.Cso dataset. Furthermore, DescRep performed better than MDC
(the best static approach) with high statistical significance (p <
0.001) over the whole examined range for the boiling point and for §
to IS selected compounds for the logKoc dataset.

3.2. Consistency and stability

In addition to the average error, the reliability and stability in the
performance of the resulting models have to be taken into
consideration. We therefore calculated the standard deviation within
the models of the 250 trials on each dataset, for each number of
selected compounds, and for each selection approach. The results are
shown in Fig. 4. The colors are identical to that of Fig. 3 and the y-
axis displays the standard deviation, whereas the x-axis displays the
number of compounds selected.

The first general observation is that with an increasing average
error the standard deviation also increases for most of the approaches.
The exceptions are the models derived with the Kennard-Stone

Volume No: 7, Issue: 9, May 2013, 201305002

algorithm on the logKoc dataset, as they show an increase in standard
deviation by a factor of two for 20 compounds selected in
comparison to 10 compounds selected. Regarding the random
approach, the variations in the initial performance are high. This high
level of uncertainty in the resulting models is why this approach is
frequently found inappropriate, in spite of its reasonable average
performance.

The space filling design has the lowest standard deviation for the
resulting boiling point and logKoc models, whereas the MDC
approach, the only systematic method that could at least partially
reach the same performance as the stepwise approaches, has a
significantly higher standard deviation than DescRep on all datasets
and for the whole range of selected compounds.

Fig. 5 provides a more detailed insight into the distribution of
performance of the resulting models and the development of
particular validation splits. It shows the RMSE development of all
250 validation splits on the logKoc dataset for a) the D-Optimal
criterion, b) the Kennard-Stone algorithm, ¢) PLS-Optimal, d) the
random selection, ¢) the MDC selection and f) DescRep.

Both stepwise approaches produce only a small number of low
performance outliers, whereas the majority of the validation splits
results in models with quite similar performance. Additionally, for
almost all splits, the initial performance of the resulting model is
lower than for the other approaches and the error performance shows
a fast convergence. Furthermore, the error on the validation splits
steadily decreases for a higher number of selected compounds.
Especially for the dissimilarity approaches this is not the case, e.g.
Kennard Stone selection delivers a worse model for 20 than for 15
selected compounds. And for the D-Optimal criterion these
deviations of worse models for a larger training set are widely spread
over the whole range of selected compounds.

3.3. Outlier robustness

All calculations were repeated with the extended sets, each
containing a structural outlier. To compare the effects of such outliers
to models derived by the selection approaches, we determined the
difference in the average RMSE between the sets without and the sets
with outliers. The results are shown in Fig. 6. The colors are in
accordance with all previous figures, and the y-axis displays the
difference in average performance. Approaches that result in models
with a better performance on datasets with structural outliers, have
positive values, those performing better on sets without structural
outliers, have negative values.
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Figure 5. All 250 models on the logKoc dataset.
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Figure 6. Effects of the structural outliers to the selection approaches to the examined datasets, displayed by the difference in average RMSE performance.

Both stepwise approaches show only small deviations in the
resulting models. Apart from an initial better performance of PLS-
Optimal on the boiling point dataset without structural outlier, the
selections derived with the adaptive approaches perform equally well
on the extended datasets. Also the MDC selection is mostly resistant
to the outlier, whereupon a tendency to deliver better selections on
datasets with outliers is observable. Contrary, the effect of only one
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additional compound on the other approaches was incalculably. The
models derived with the space filling design, the D-Optimal criterion
on principal components and the Kennard-Stone algorithm, have no
clear tendency towards the original or the modified dataset. The sign
of the difference in the average error of the resulting models differs
from dataset to dataset. This is also the case for the space filling
design, even within the logKoc dataset.
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Figure 7. Variability in selection.

4. Discussion

Both stepwise approaches: DescRep and PLS-Optimal, performed
equally well on the analyzed datasets. The error performance of their
resulting models is in general lower than that of the approaches that
select all compounds at the same time. The development of the error
is smooth and reliable. Both methods reveal a lower standard
deviation compared to MDC, which is the best performing non-
stepwise approach. The average correlation coefficient develops in a
similar way. Neither on the logl.Cso dataset, nor on the logKoc dataset
any of the classic approaches was performing better than the stepwise
approaches and on the boiling point dataset, none of the classic
approaches performed better than DescRep.

This good performance can also be observed in the depiction of
the specific models in Fig. 4. At large, for both stepwise approaches
an increase in the number of selected compounds results in a decrease
of the error. This is not the case for the Kennard-Stone algorithm and
the D-Optimal criterion where high variations in performances were
observed.

Opverall, DescRep is superior over the PLS-Optimal approach, as
it was able to deliver high quality performance models even on the
dataset where the performance of PLS-Optimal was not ideal.
Nevertheless, the decrease in the performance accuracy of PLS-
Optimal on the boiling point can be easily explained and is therefore
avoidable. The boiling point dataset resulted from a correlation
between the PLS components and PCA components[18] It is
important that DescRep is not affected with such problems.

To investigate the major difference between the stepwise and the
non-stepwise (static) approaches, we analyzed the compounds selected
by the different methods and compared their distribution in the
design sets. To compare the variability in the selections of the
methods, we counted the number of different compounds selected in
the 250 trials. We found a significant difference between the stepwise
and the static approaches. Whereas the systematic approaches, which
select all compounds at the same time, have a comparably small pool
of compounds that are selected, the stepwise approaches are resulting
in a higher variety of selected compounds. This variability is shown in
Fig. 7. The stepwise approaches have a better adaptability to small
variations in the datasets. The observance that PLS-Optimal has a
lower variability in selection than DescRep is coherent as the D-
Optimal criterion also has lower variability than MDC. Still, the
variability of DescRep is significantly lower than that of the random
approach. This shows that the selection process is still systematic and
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Number of compounds selected

Number of compounds selected

contributes to better performance of DescRep compared to random
selection.

It is interesting to note that despite step-wise approaches have a
higher variation in the number of selected compounds, the models
developed with these Compounds have lower variation compared to
those developed using static approaches. The contradiction clearly
indicates that the Variability in selected Compounds in both stepwise
approaches is a meaningful adaption to changes in the dataset. Whilst
the variation within the selected compounds is clearly increased for
the MDC approach compared to the stepwise approaches, the
resulting models show a significantly higher standard deviation than
the stepwise approaches.

Additionally, not only referring to the adaption of small variations
in the dataset, but also in terms of outlier adaption, the stepwise
approaches show a convincing performance. The average error of the
resulting models is similar with or without an outlier. The influence
of structurally diverse compounds is only minor, when compared to
the changes in performance for the static approaches.

We repeated all calculations with design sets of different size
(66% and 75% of compounds) for all datasets and found no
significant difference to the results presented in this study.

5. Conclusion

The results of our study show that stepwise approaches, which
take the correlation to the target property into consideration,
significantly improved the quality of experimental design in terms of
QSAR modeling. This observation is in agreement with the results of
our recent study.[37] We recommend, whenever this is feasible, to
design experiments in a stepwise manner. Especiaﬂy in the case of
high cost experiments, e.g. measuring aquatic bio-concentration
factor,[38] that allow only a limited number of tests, the stepwise
approaches can significantly decrease the financial effort to produce
models of the same predictive quality. These models can be used to
predict the molecules without measurements thus decreasing costs and
time.

The PLS-Optimal approach is an appropriate choice for
compounds and endpoints, where a linear correlation between the
target property and the descriptor space is expected.[18] For other
kinds of dependencies, DescRep shows a fast convergence in error, a
reliable performance with a low standard deviation, and a high
robustness against structural outliers. With respect to the structural
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outlier, it was dramatic to see how the majority of selection
procedures were strongly affected with the inclusion of only one
compound, which was not representative of the analyzed set. This
resulted in higher variability of models developed with such sets.

Compared to the static approaches, the selection within stepwise
approaches is not so focused on certain compounds, but on a
harmonious context within the selection. Thus small variations in the
dataset, as they were introduced by the random splits into design and
validation set, get buffered in an efficient way.

The analyzed step-wise approaches, DescRep and PLS-Optimal
design, explore different ideas for selection of compounds based on
similarity and dissimilarity measures. Both methods produced
comparable results. Thus, we can conclude that the major
contribution to their performance was not the selection method, but
the accounting for the resulting property, i.e. informational basis on
which the selection was performed. Similar observations were done
for QSAR modeling, where the underlying data, but not the chosen
machine learning method or descriptors determined the accuracy of

models.[39],[40],[4l]

6. Software used

PLS models to evaluate the performance of the analyzed
approaches were calculated with WEKA.[42]

7. Implementation and accessibility of data

The datasets used in this article are provided as excel tables in
Supporting Information-1. To support the validity of the graphical
representations provided in this article, the validation statistics are
provided as Supporting Information-2. The datasets used in this
article and the developed models are available at: http:/ /ochem.eu/
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