
 

  

 

 

 

 

 

 

 
 
 
 

 
1. Introduction 
 

Experimental design techniques are crucial in terms of time and 
cost efficiency as well as to minimize the number of animal 
experiments. Reliable testing strategies are essential, especially in the 
course of the REACH legislation,[1] which includes the requirement 
that every chemical compound produced in/or imported into the 
European Union in an amount of more than one ton, has to be 
registered regarding a number of endpoints. But the application of 
selecting a representative and descriptive sub-sample from the 
chemical space of interest, and using it for the calculation of 
prediction models, is not only limited to risk assessment within 
REACH.[2],[3],[4] Also tasks as large scale scanning of chemical 
databases,[5] QSAR modeling,[6] drug target evaluation[7] or other 
pharmaceutical applications require systematic approaches to select 
representative subsamples. 

The variety of concepts to address these problems in 
computational chemistry and QSAR modeling is widely spread,[8],[9] 
but most of them can be reduced to one of three basic ideas. Firstly, 
the selection of compounds with maximum dissimilarity, which is 
based on the theory that the most distinct compounds contain the 
most diverse information. This idea/theory is optimal for linear 
modeling. The D-Optimal criterion[10],[11],[12] and the Kennard-
Stone algorithm[13] belong to this group of approaches. Secondly, 
the similarity selection aims to find compounds with high 
representativeness for the whole collection of relevant compounds. 
Approaches referring to this concept, e.g. the most descriptive 
compound  selection  (MDC),[14]  usually  select  compounds  from 

  
 
 
 
 
 

 
 

 
  

 

densely populated regions of the chemical space. Thirdly and lastly is 
an approach that aims to cover the whole chemical space of interest. 
The full factorial design[15] and space filling designs[16] are 
examples thereof. Recently, approaches that utilized hierarchical or 
density based clustering techniques were proposed.[9],[17] In our last 
study[18] we presented the advantages of an adaptive approach that 
combines a dissimilarity selection with an iteratively refined 
representation of the chemical space, by taking into consideration the 
information about the analyzed property that accumulates in the 
experimental process. 

In QSAR modeling and chemoinformatics the focus within the 
evaluation of a novel approach is often exemplified on a particular 
dataset. Statistical evaluations, taking performance measures such as 
reliability and robustness of an approach into consideration are 
rare.[19] Due to chance correlations, this can result in misleading 
conclusions about the applicability of an approach. Furthermore 
stability, which is the ability of adapting small changes in a dataset, or 
to process structural outliers in a data collection, also needs to be 
taken into consideration. This is a quality criterion, which is as 
important as the performance itself. 

In this study we present DescRep, a stepwise adaptive approach 
combining an iteratively refined descriptor selection with a sampling 
based on the concept of representative compounds. We compare this 
approach to experimental design strategies, which are commonly used 
in chemistry. An evaluation pipeline was implemented and applied to 
an ensemble of randomly selected subsets of three datasets, each with 
an endpoint relevant for REACH.  We show that in comparison to 
the traditional approaches that select all compounds at the same time, 
DescRep performs significantly better. 

We exemplify the importance of a statistical evaluation by 
investigating the effects of small changes in the underlying dataset on 
both the composition of the selected compounds and the performance 
of the resulting model. Furthermore, the collected datasets are 
extended with concerted structural outliers, to evaluate their influence 
on the selection approaches and the resulting models. Our results 
indicate that stepwise approaches, DescRep in particular, contribute 
to stability and reliability in experimental design. 
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Abstract: The quality criteria for experimental design approaches in chemoinformatics are numerous. Not only the error 
performance of a model resulting from the selected compounds is of importance, but also reliability, consistency, stability and 
robustness against small variations in the dataset or structurally diverse compounds. We developed a new stepwise, adaptive 
approach, DescRep, combining an iteratively refined descriptor selection with a sampling based on the putatively most 
representative compounds. A comparison of the proposed strategy was based on statistical performance of models derived from 
such a selection to those derived by other popular and frequently used approaches, such as the Kennard-Stone algorithm or the 
most descriptive compound selection. We used three datasets to carry out a statistical evaluation of the performance, reliability and 
robustness of the resulting models. Our results indicate that stepwise and adaptive approaches have a better adaptability to changes 
within a dataset and that this adaptability results in a better error performance and stability of the resulting models. 
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We investigate the benefits of a representation of the chemical 

space, which takes the correlation to the target property into 
consideration, and consequently arranges the compounds to a certain 
reference endpoint. Finally, we analyze our results with respect to the 
variability and adaptability of the examined approaches. 

 
2. Materials and Methods 
 

 
To compare and evaluate the selection approaches, we collected 

three datasets, which vary in several criteria. The respective endpoints 
of these datasets, which were also used in our previous study,[18] 
were a physicochemical property, boiling point, a soil sorption 
coefficient, logKOC, and environmental aquatic toxicity against 
freshwater fish fathead minnow. 

We extracted a collection of boiling point values from the 
Estimation Programs Interface (EPI) suite data.[20] The compounds 
within the dataset were restricted to halogenated compounds, 
containing bromine, chlorine and/or fluorine. As no further structural 
filters were applied, this set still provided a broad diversity regarding 
molecule size and chemical structures. We did not apply any kind of 
structural filter to the other datasets. The second dataset was based on 
the collection of logKOC values by Meylan et al.[21] logKOC is the log 
scale of the adsorption coefficient of a contaminant in the organic 
fraction of the soil. The endpoint for the toxicity dataset was the log 
scaled aquatic LC50 value on the fathead minnow. The measurements 
were taken from the fathead minnow acute toxicity database[22] of 
the Environment Protection Agency (EPA). 

All datasets were free of duplicate compounds. Measurements 
providing intervals of minimum or maximum values were excluded. In 
order to avoid problems in descriptor calculation, inorganic 
compounds, radicals, charged molecules and salts were filtered out. 
The final dataset for the boiling point contained 1198 compounds, 
the datasets for logKOC and for toxicity on the fathead minnow 
contained 648 and 535 chemicals, respectively. 

For each dataset, a collection of two types of descriptors was 
calculated. The first type was calculated using the ALOGPS 2.1 
program[23] and contained two descriptors: solubility and 
lipophilicity of molecules. ALOGPS was the top-ranked model for 
prediction of logP.[24] The second type included E-State 
indices.[25],[26] These are electrotopological descriptors calculated 
for each atom and each bond in a compound and then summed 
according to their types over all atoms. The number of descriptors for 
the second type is determined by number of different chemical groups 

and thus it was not a fixed one. On our datasets, we calculated 179, 
220 and 230 descriptors for logLC50, logKOC and the boiling point 
dataset, respectively. The Online CHEmical database and Modeling 
environment (OCHEM)[27] was used for the calculation of the 
descriptors. To represent the chemical space of each dataset the 
descriptors were normalized to a [0,1] range. The rationale to use 
normalization instead of standardization is that standardization works 
on the underlying assumption that the objects are normally 
distributed. This assumption is not true for descriptors determined 
for chemical groups, e.g., in particular for the E-State indices. As they 
are linked to the presence of certain substructures, for most 
compounds, their value is just zero. 

One of the aims of this study was to investigate the influence of 
structurally diverse compounds on the selection and accuracy of the 
resulting models. Therefore each of the three datasets was extended by 
the inclusion of a compound, which was characterized as a structural 
disrupter. We defined a structural disrupter as a data point that (a) 
influences the recalculated loadings of the first or the second principal 
component in such a manner that the principal properties represented 
by these components are changed and (b) results in one or more 
instances in the data set that are – according to the distribution of the 
instances in that principal component – at least five standard 
deviations from 97% of all other compounds. 

Structural outliers like the ones used in this study are not 
artificial, but can result from several reasons, e.g. (a) from few 
compounds within the dataset, which have a specific chemical group 
that is different from other compounds and functionally is not 
relevant, (b) from the choice of a specific descriptor set, or (c) from a 
certain procedure within the multivariate analysis (centering or not the 
data, usage of raw, normalized or standardized data). 

The structural outliers in our study were (a) ethyl 2-chloro-3-[2-
chloro-5-[4-(difluoromethyl)-3-methyl-5-oxo-1,2,4-triazol-1-yl]-4-
fluorophenyl]propanoate (carfentrazone-ethyl) for the boiling point 
dataset,  (b) (1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-
3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid 
(isopimaric acid) for the logLC50 dataset and (c) (1,2-dimethyl-3,5-
diphenyl-pyrazol-1-yl) methyl sulfate for the logKOC dataset. All these 
three compounds were retrieved from the same source as the rest of 
the respective dataset. Fig. 1a) shows the first two principal 
components of the boiling point dataset without outliers whereas Fig. 
1b) shows the first principal components of the same dataset with the 
structural disruptor. The structural disrupter has a red color. The 
principal components were derived from the whole set of normalized 
ALOGPS descriptors and E-State indices and thus no variable 
selection was performed. Furthermore, the data were not centered 
before the orthogonal transformation. 

Figure 1. The change in the principal components view due to one structural outlier in the dataset. The principal components were calculated for the dataset 
with (b, c) and without (a) structural outlier. ALOGPS and E-State indices were used (a, b), as well as DRAGON descriptors (c). The protocol to calculate the 
principal components was always the same. 
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To show how the concerted outlier for boiling point structurally 
fits into the dataset, we calculated its Tanimoto distance to all other 
compounds. ISIDA fragments[28] were used therefore. Fig. 2 shows 
the outlier in the center and the four most similar compounds around. 
The value assigned to the edges indicates the similarity score. It is 
obvious that the outlier is a larger molecule and contains a triazole 
group, which is absent in other compounds.  Such types of outliers 
could naturally happen to be present in the datasets. The appearance 
of such outliers depends on the used descriptors. Fig. 1c shows, if 
Dragon descriptors[29] are used, this compound is not anymore an 
outlier (although it is located at the periphery of the data cloud). 
Indeed, Dragon software calculates many more descriptors and in 
their space the analyzed molecule does not have descriptors, which 
make it to be the outlying point in the PCA space. Thus, a property 
of a molecule to be a structural outlier depends on the used set of 
descriptors, i.e. on the representation of the molecule. 

 

 
 
 
 
 

 
2.2.1. Static experimental design approaches 

We implemented several commonly used experimental design 
strategies to evaluate and compare the robustness and reliability of 
selections derived by these approaches. All of the following 
approaches were applied to five principal components derived from a 
principal component analysis of the descriptor space. The results of 
our recent study[18] showed that a search space of that 
dimensionality worked equally well for all datasets.  
 
D-Optimal design 

The D-Optimal design[10],[11],[30] uses the determinant of the 
information matrix to evaluate all possible subsets of n out of m 
compounds (n < m). The set with the maximum entropy,[31] and 
therefore the most distinct one, is the one with the maximum value on 
the determinant. We used the D-Optimal criterion in combination 
with the Fedorov heuristic[32] to minimize the runtime requirements. 
The D-Optimal design works well for linear models, but reveals a bias 
towards outlier selection in higher order spaces.[8]  

  
Kennard-Stone algorithm 

Starting from an initially selected compound, the Kennard-Stone 
algorithm[13] selects compounds in a fixed order. In this study, the 
initial selected compound was the central point within the dataset, 
which was defined to be the compound with the minimum sum of 
distances to all other compounds. From this initial seed, each step in 
the selection extends the chosen compounds by that one that has the 
highest Euclidean distance to its closest neighbor within the 
previously selected ones. The disadvantages of this approach are 
similar to those of the D-Optimal design. 

 

Space filling design 
The space filling design as a variant of the full factorial design is 

working by partitioning the chemical space into subspaces. These 
subspaces are derived by dividing each axis into the same number of 
bins. Therefore, for a number of b bins and a number of a axes, the 
number of resulting subspaces is ba. From each of these resulting 
subspaces a compound is selected as representative, but as the 
compounds are not equally distributed in the chemical space, 
subspaces can be completely without a representative compound. It is 
therefore difficult to fix the number of finally selected compounds. In 
our implementation, the number of bins each axis is divided into is 
not prefixed, but automatically detected to be optimal for the desired 
number of compounds to be selected as described elsewhere.[33] The 
compound selected as representative for each subspace is the one with 
the lowest Euclidean distance to the center of the subspace. Since the 
number of subspaces is exponentially increasing with each dimension 
in the search space, we fixed this approach to work on three principal 
components. 

 
Most descriptive compound selection (MDC) 

The most descriptive compound selection is working in a 
sequential manner. Initially all compounds get assigned a score 
displaying their representativeness for all other compounds. In each 
step the compound with the highest score is selected and all other 
scores are updated by eliminating the deduced information content of 
the selected compound. Our implementation of this approach was 
based on the work of Hudson et al.[14] Instead of using the 
suggested stop criterion, we selected a fixed number of compounds. 

 
Random selection 

Additionally, to provide a reference a random selection was used 
for comparison. 
 
2.2.2. Adaptive experimental design approaches 

The adaptive experimental design approaches we use in this study, 
work in a stepwise manner, where each step consists of two phases. In 
the first phase the representation of the chemical space is refined. This 
is done by using the preliminary gathered information from the target 
property and analyzing its correlation to the chemical space. In the 
second phase a selection algorithm is executed on the newly arranged 
chemical space. The selection is hereby taking all previously selected 
compounds into consideration. These phases are executed in an 
alternating way until a prefixed number of compounds are reached. 

The idea behind the rearrangement of the chemical space is to 
adjust the design of an experiment to a certain endpoint and 
consequently to reach a faster increase in the resulting model 
performance. Experimental designs derived from PCA space are not 
aligned to the target property, but are identical for the same selection 
algorithm and executed on the same compound collection, regardless 
of the endpoint. For this reason they are unspecific and most probably 
not optimal. 

 
PLS-Optimal 

PLS-Optimal is an adaptive approach that combines the D-
Optimal criterion with the partial least squares technique (PLS). The 
representation of the chemical space within this approach is realized 
with PLS components instead of PCA components. The principal 
components derived by a PCA are ranked by their variance in 
descriptor space; in contrast the PLS latent variables are ranked by 
their correlation to the target property. The latent variables in our 
implementation are derived from a PLS model on the pre-selected 
compounds. In our previous study on this approach, we showed by 
taking the correlation to the target property into consideration, we 

Figure 2. The structural outlier and similar compounds in the dataset. 
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could significantly improve the performance of the D-Optimal 
selection criterion.[18] 

 
DescRep 

The new approach, DescRep works in a similar way as PLS-
Optimal. However, it combines a similarity-based approach (instead 
of a dissimilarity based one) with a representation of the chemical 
space using selected descriptors (instead of PLS components). As for 
PLS-Optimal, the preselected compounds are used as reference 
information to evaluate the most important descriptors.  

 
Descriptor selection: The search space for DescRep is spanned by 

a fixed number of selected descriptors. The selection process follows a 
simple idea and is therefore straight and efficient. 

In the first step a scoring list S, containing the correlation 
coefficient of each descriptor to the target property, is built. This 
correlation coefficient is derived only from the preselected 
compounds, which are already ‘measured’. Additionally, the 
correlation matrix M, containing the absolute pairwise correlation of 
any combination of two descriptors, is built. 

According to the scoring list, the descriptor that should be 
selected is the one with the highest score, which is initially equivalent 
to the one with the highest correlation to the target property. After 
the selection of a descriptor x the scores are updated to avoid pairwise 
correlations in the final selection. Regarding the compound i, its score 
Si gets updated to Si * (1 - Mix)3. Thereby the scores of descriptors, 
which are highly correlated to the preselected ones are decreased, 
which helps to avoid the selection of redundant information. The 
underlying idea of selecting variables with a high correlation to the 
target property and the elimination of inter-correlated variables is 
similar to partial least squares.[34] This procedure is repeated until a 
predefined number of descriptors are selected. 

 
Selection of compounds: As a stepwise experimental design 

procedure requires a selection method, which is able to take a 
preselected initial seed of compounds into consideration, it is not 
possible without further ado to use the MDC selection, as its concept 
of ranking distances cannot be adapted to this precondition. 
Therefore we developed a selection method based on the idea that 
structural similarity of compounds also conditions similar values 
regarding a certain endpoint.  

We select an initial seed of compounds starting from a k-Means-
based partition of the chemical space (represented by the principal 
components) into a predefined number of clusters. The initial seed 
contains the most representative compound of each cluster. The most 
representative one is hereby defined as that compound with the lowest 
sum of pairwise distances to all other compounds within the same 
cell. The k-Means clustering was initialized 15 times with randomly 
assigned starting compounds. The finally picked clustering was the 
one with the lowest sum of pairwise differences within each cluster. 

In each further step the chemical space is represented by a 
selection of descriptors based on the preselected compounds. The 
preselected compounds are extended by new ones, which are assigned 
to be the most informative ones for all other compounds based on a 
priority score (PS) calculated for each compound. PS estimates how 
well a compound is represented by all previously selected compounds. 

Initially, all compounds are assigned a PS of 1.0 and the distance 
matrix DM, containing the pairwise distances between all compounds, 
is calculated. The distance matrix (normalized to [0,1] range) is used 
as PS to select the first compound. The use of such matrices to 
represent datasets has been shown useful in numerous 
publications.[35],[36] 

For all following compounds, the normalized pairwise distances 
of N preselected compounds to the remaining compounds in the 
dataset are used to determine how well each compound is already 
represented and select the least represented ones. Each compound x 
within the set gets assigned a correction factor CFxi for each 
preselected compound i. The correction factor refers to a hyperbolic 
distance function and it is used to adjust the PS to the preselected 
compounds. 

 

             ∏    

 

   

 

 
The correction factor is calculated as  

               )
   ). 

 
The exponent exp is not fixed, but depends on the distribution of 

the data in the descriptor space and the number of compounds to be 
selected. It is recalculated in each selection cycle. Referring to the 
most central point within the dataset (which is again defined as the 
one with the lowest sum of pairwise distances to all other 
compounds) exp is determined as the value for which the number of 
preselected compounds and compounds to be selected in the present 

cycle has to have a value of         )
   , which is higher than a 

given threshold. This procedure is a variation of the MDC,[14] which 
is based on distances, instead of reciprocal ranks. The threshold value 
we used in this study was lamda=0.75. For the calibration datasets on 
density, bioconcentration, lipophilicity and solubility were used. We 
experimentally determined that this is an appropriate value. This 
additional feature of the recalculated exponent enables one to also 
handle exceptional data distributions.  The method is not sensitive to 
the parameterization. We tried different versions of lamda within the 
range of 0.5-0.9 and did not observe significant changes in the 
method performance. Moreover, it should be mentioned that 
parameterization and an appropriate distance function are general 
issues for similarity-based selections.[14] 

Based on these prior conditions, the correction factors for all 
combinations of not yet selected compounds are calculated. The 
collection of compounds finally selected for testing is the one that 
minimize the sum of priority scores over all compounds.  

 
2.2.3. Validation 

All three datasets were split into two partitions. The first partition 
(design set), containing 84% of the compounds, was used to execute 
the selection approaches and the second partition, containing the 
remaining 16% of the compounds, was used as a respective validation 
set. A split of that size was chosen, as it guarantees that two randomly 
generated design sets have 68% (approximately two third) of 
compounds of the whole dataset in common. To retrieve a statistically 
meaningful foundation to evaluate and compare the approaches, 250 
of these splits were generated. Therefore each compound is present in 
average in 210 of the design sets and in 40 of the validation sets. Each 
of the splits was used for the evaluation of each of the selection 
approaches. For all datasets, we used the approaches to select samples 
containing 5, 7, 10, 15, 20, 25, 30, and 40 compounds. For the 
boiling point dataset, additional samples containing 50 and 60 
compounds were selected. The selection process for the static 
approaches was started from scratch for each sample size, whereas for 
the adaptive approaches the selection process was strictly based on the 
sequence as mentioned above. Thereby the compounds selected in 
each previous step are in the next step used as a known seed and the 
newly selected compounds just extend this seed.  
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The evaluation of each selection is obtained by building a PLS 
regression model. The number of latent variables to be used for the 
final model was determined in a five-fold cross validation on all 
selected training set compounds using the coefficient of determination 
as criterion for the optimal number.[34] 

The models were built using all normalized descriptors and not 
by using only the principal components that spanned the search space. 
These models were applied to the validation set which contained all 
compounds that have been excluded from the selection process. 
Therefore the models performance on this dataset provides an 
independent measurement of the prediction quality on new 
compounds. The criteria for the model evaluation were the root mean 
squared error (RMSE) and the correlation coefficient between 
observed and predicted values. We estimate the significance of the 
difference in performance according to a binomial test (the binomial 
distribution with N=250 trials). All mentioned significant differences 
in the article had p < 0.05. 

 
3. Results and discussion 

 

To enable a comparison of the quality of the models resulting 
from the examined selection approaches, we calculated the average 
RMSE performance and the average correlation coefficient for each 
number of compounds selected. Fig. 3a-c) shows the results of this 

comparison using the prediction error, whereas Fig. 3d-f) shows the 
comparison using the correlation. The x-axis displays the number of 
selected compounds and the y-axis the measurement of quality. 

The first general observation on all of the datasets and selection 
approaches is that with an increasing number of selected compounds 
the average error decreases, whilst the average correlation in the 
models increases. This is expected as a larger number of molecules 
provide an increase in the amount of information obtained and 
thereby enables one to build a better model. Furthermore, for all 
datasets the stepwise approaches reach a good performance, which is 
constantly within the range of the best approaches. PLS-Optimal 
reveals problems with the BP dataset, these problems were explained 
in our previous study[18] with the similarity between the loadings of 
the PLS latent variables and the loadings of the principal components. 
The average performance of models derived from compounds selected 
with DescRep is also the best for the boiling point. 

A further observation is the smooth hyperbolic development of 
the average error performance on the 250 splits for each dataset. 
Whereas the static approaches result in unexpected deviations, there 
are no irregularities for the stepwise approaches, neither in the error, 
nor in the correlation development. MDC is the only systematic 
approach that derives selections resulting in a performance, which is as 
comparably good, although it reveals similar problems as the other 
approaches for the boiling point and the logKOC dataset until 20 
selected compounds. 

Figure 3. Average performance of the models resulting from the selections of the examined approaches, displayed as a-c) RMSE and d-f) correlation coefficient 
on the datasets for a, d) boiling point (°C), b, e) logKOC and c, f) logLC50. The stepwise approaches are displayed by the dashed orange lines (DescRep) and the 
dashed yellow lines (PLS-Optimal). The color assigned to the random selection is black, red for the MDC selection, green for the space filling design and blue for 
the dissimilarity selections. 
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The models derived from the selection of both stepwise 

approaches show a low initial prediction error. The performance of 
PLS-Optimal for seven selected compounds is better than e.g. than 
that of the D-Optimal criterion for 25 selected compounds on the 
boiling point dataset, for 15 compounds on the logKOC dataset and on 
the logLC50 dataset for 20 compounds. Further worth mentioning, is 
the good performance of models resulting from the random selection. 
Like the stepwise approaches, the random selection provides models 
that reliably decrease in average error and increase in average 
correlation for a growing number of compounds selected.  

Regarding the correlation coefficient, MDC shows the fastest 
increase of all examined methods for the boiling point and the 
logLC50 dataset. The models from the MDC selection on the logKOC 
dataset, clearly show a worse initial correlation for less than 20 
selected compounds. Although the convergence in the correlation for 
the stepwise approaches is not that fast, it works equally well on all 
datasets and it is still faster in comparison to all other systematic 
approaches. 

Referring to the binomial test, we found that the observed 
improvements in the resulting models derived with DescRep are of 
high statistical significance (p < 0.001) for the range of 7 to 20 
selected compounds for the boiling point dataset, 7 to 25 selected 
compounds for logKOC and 15 to 40 selected compounds for logLC50, 
when compared to the random selection. Regarding a comparison of 
PLS-Optimal with a random approach, we observed this level of 
statistical significance for the range of 10 to 25 selected compounds 
for the logKOC dataset and 7 to 15 selected compounds for the 
logLC50 dataset. Furthermore, DescRep performed better than MDC 
(the best static approach) with high statistical significance (p < 
0.001) over the whole examined range for the boiling point and for 5 
to 15 selected compounds for the logKOC dataset. 
 

In addition to the average error, the reliability and stability in the 
performance of the resulting models have to be taken into 
consideration. We therefore calculated the standard deviation within 
the models of the 250 trials on each dataset, for each number of 
selected compounds, and for each selection approach. The results are 
shown in Fig. 4. The colors are identical to that of Fig. 3 and the y-
axis displays the standard deviation, whereas the x-axis displays the 
number of compounds selected. 

The first general observation is that with an increasing average 
error the standard deviation also increases for most of the approaches. 
The exceptions are the models derived with the Kennard-Stone 

algorithm on the logKOC dataset, as they show an increase in standard 
deviation by a factor of two for 20 compounds selected in 
comparison to 10 compounds selected. Regarding the random 
approach, the variations in the initial performance are high. This high 
level of uncertainty in the resulting models is why this approach is 
frequently found inappropriate, in spite of its reasonable average 
performance. 

The space filling design has the lowest standard deviation for the 
resulting boiling point and logKOC models, whereas the MDC 
approach, the only systematic method that could at least partially 
reach the same performance as the stepwise approaches, has a 
significantly higher standard deviation than DescRep on all datasets 
and for the whole range of selected compounds.  

Fig. 5 provides a more detailed insight into the distribution of 
performance of the resulting models and the development of 
particular validation splits. It shows the RMSE development of all 
250 validation splits on the logKOC dataset for a) the D-Optimal 
criterion, b) the Kennard-Stone algorithm, c) PLS-Optimal, d) the 
random selection, e) the MDC selection and f) DescRep. 

Both stepwise approaches produce only a small number of low 
performance outliers, whereas the majority of the validation splits 
results in models with quite similar performance. Additionally, for 
almost all splits, the initial performance of the resulting model is 
lower than for the other approaches and the error performance shows 
a fast convergence.  Furthermore, the error on the validation splits 
steadily decreases for a higher number of selected compounds. 
Especially for the dissimilarity approaches this is not the case, e.g. 
Kennard Stone selection delivers a worse model for 20 than for 15 
selected compounds. And for the D-Optimal criterion these 
deviations of worse models for a larger training set are widely spread 
over the whole range of selected compounds. 
 

All calculations were repeated with the extended sets, each 
containing a structural outlier. To compare the effects of such outliers 
to models derived by the selection approaches, we determined the 
difference in the average RMSE between the sets without and the sets 
with outliers. The results are shown in Fig. 6. The colors are in 
accordance with all previous figures, and the y-axis displays the 
difference in average performance. Approaches that result in models 
with a better performance on datasets with structural outliers, have 
positive values, those performing better on sets without structural 
outliers, have negative values. 

 

Figure 4. Comparison of the standard deviation of the selection approaches on a) the boiling point, b) the logKOC and c) the logLC50 dataset. 
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Both stepwise approaches show only small deviations in the 
resulting models. Apart from an initial better performance of PLS-
Optimal on the boiling point dataset without structural outlier, the 
selections derived with the adaptive approaches perform equally well 
on the extended datasets. Also the MDC selection is mostly resistant 
to the outlier, whereupon a tendency to deliver better selections on 
datasets with outliers is observable. Contrary, the effect of only one 

additional compound on the other approaches was incalculably.  The 
models derived with the space filling design, the D-Optimal criterion 
on principal components and the Kennard-Stone algorithm, have no 
clear tendency towards the original or the modified dataset. The sign 
of the difference in the average error of the resulting models differs 
from dataset to dataset. This is also the case for the space filling 
design, even within the logKOC dataset.  

Figure 5. All 250 models on the logKOC dataset. 

Figure 6. Effects of the structural outliers to the selection approaches to the examined datasets, displayed by the difference in average RMSE performance. 
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4. Discussion 
 

Both stepwise approaches: DescRep and PLS-Optimal, performed 
equally well on the analyzed datasets. The error performance of their 
resulting models is in general lower than that of the approaches that 
select all compounds at the same time. The development of the error 
is smooth and reliable. Both methods reveal a lower standard 
deviation compared to MDC, which is the best performing non-
stepwise approach. The average correlation coefficient develops in a 
similar way. Neither on the logLC50 dataset, nor on the logKOC dataset 
any of the classic approaches was performing better than the stepwise 
approaches and on the boiling point dataset, none of the classic 
approaches performed better than DescRep. 

This good performance can also be observed in the depiction of 
the specific models in Fig. 4. At large, for both stepwise approaches 
an increase in the number of selected compounds results in a decrease 
of the error. This is not the case for the Kennard-Stone algorithm and 
the D-Optimal criterion where high variations in performances were 
observed. 

Overall, DescRep is superior over the PLS-Optimal approach, as 
it was able to deliver high quality performance models even on the 
dataset where the performance of PLS-Optimal was not ideal. 
Nevertheless, the decrease in the performance accuracy of PLS-
Optimal on the boiling point can be easily explained and is therefore 
avoidable. The boiling point dataset resulted from a correlation 
between the PLS components and PCA components.[18] It is 
important that DescRep is not affected with such problems. 

To investigate the major difference between the stepwise and the 
non-stepwise (static) approaches, we analyzed the compounds selected 
by the different methods and compared their distribution in the 
design sets. To compare the variability in the selections of the 
methods, we counted the number of different compounds selected in 
the 250 trials. We found a significant difference between the stepwise 
and the static approaches. Whereas the systematic approaches, which 
select all compounds at the same time, have a comparably small pool 
of compounds that are selected, the stepwise approaches are resulting 
in a higher variety of selected compounds. This variability is shown in 
Fig. 7. The stepwise approaches have a better adaptability to small 
variations in the datasets. The observance that PLS-Optimal has a 
lower variability in selection than DescRep is coherent as the D-
Optimal criterion also has lower variability than MDC. Still, the 
variability of DescRep is significantly lower than that of the random 
approach. This shows that the selection process is still systematic and 

contributes to better performance of DescRep compared to random 
selection.  

It is interesting to note that despite step-wise approaches have a 
higher variation in the number of selected compounds, the models 
developed with these compounds have lower variation compared to 
those developed using static approaches. The contradiction clearly 
indicates that the variability in selected compounds in both stepwise 
approaches is a meaningful adaption to changes in the dataset. Whilst 
the variation within the selected compounds is clearly increased for 
the MDC approach compared to the stepwise approaches, the 
resulting models show a significantly higher standard deviation than 
the stepwise approaches. 

Additionally, not only referring to the adaption of small variations 
in the dataset, but also in terms of outlier adaption, the stepwise 
approaches show a convincing performance. The average error of the 
resulting models is similar with or without an outlier. The influence 
of structurally diverse compounds is only minor, when compared to 
the changes in performance for the static approaches. 

We repeated all calculations with design sets of different size 
(66% and 75% of compounds) for all datasets and found no 
significant difference to the results presented in this study. 

5. Conclusion 
 
The results of our study show that stepwise approaches, which 

take the correlation to the target property into consideration, 
significantly improved the quality of experimental design in terms of 
QSAR modeling. This observation is in agreement with the results of 
our recent study.[37] We recommend, whenever this is feasible, to 
design experiments in a stepwise manner. Especially in the case of 
high cost experiments, e.g. measuring aquatic bio-concentration 
factor,[38] that allow only a limited number of tests, the stepwise 
approaches can significantly decrease the financial effort to produce 
models of the same predictive quality. These models can be used to 
predict the molecules without measurements thus decreasing costs and 
time.  

The PLS-Optimal approach is an appropriate choice for 
compounds and endpoints, where a linear correlation between the 
target property and the descriptor space is expected.[18] For other 
kinds of dependencies, DescRep shows a fast convergence in error, a 
reliable performance with a low standard deviation, and a high 
robustness against structural outliers. With respect to the structural 

Figure 7. Variability in selection. 
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outlier, it was dramatic to see how the majority of selection 
procedures were strongly affected with the inclusion of only one 
compound, which was not representative of the analyzed set. This 
resulted in higher variability of models developed with such sets. 

Compared to the static approaches, the selection within stepwise 
approaches is not so focused on certain compounds, but on a 
harmonious context within the selection. Thus small variations in the 
dataset, as they were introduced by the random splits into design and 
validation set, get buffered in an efficient way. 

The analyzed step-wise approaches, DescRep and PLS-Optimal 
design, explore different ideas for selection of compounds based on 
similarity and dissimilarity measures. Both methods produced 
comparable results. Thus, we can conclude that the major 
contribution to their performance was not the selection method, but 
the accounting for the resulting property, i.e. informational basis on 
which the selection was performed. Similar observations were done 
for QSAR modeling, where the underlying data, but not the chosen 
machine learning method or descriptors determined the accuracy of 
models.[39],[40],[41] 

 
6. Software used 

 
PLS models to evaluate the performance of the analyzed 

approaches were calculated with WEKA.[42] 

 
7. Implementation and accessibility of data 

 
The datasets used in this article are provided as excel tables in 

Supporting Information-1. To support the validity of the graphical 
representations provided in this article, the validation statistics are 
provided as Supporting Information-2. The datasets used in this 
article and the developed models are available at: http://ochem.eu/ 
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