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Preface
Zusammenfassung

Vorliegende Bachelorarbeit basiert hauptsächlich auf dem stochastischem Modell, das in dem
Artikel [1] vorgestellt wird. Es werden zwei verschiedene mathematische Modelle, die sich mit
dem Wachstum des Pseodomonas syringae, einem Krankheitserreger von Pflanzen, beschäftigen,
vorgestellt und überarbeitet.
Die Arbeit ist unterteilt in vier Teile, der erste enthält eine Erörterung biologischer Hintergründe
und eine Einführung in die stochastische Modellierung. Der zweite Teil stellt besagtes Modell,
die Implementierung des Autors und eine alternative, räumliche Modellierung vor. Anschließend
wird das stochastische Modell anaylisiert und Verbesserungansätze gemacht. Im letzten Teil
befinden sich eine Zusammenfassung der Ergebnisse und ein Zukunftsausblick.

Abstract

This bachelor thesis is based on a stochastic model presented in the article [1]. We revise
two different mathematical model of growth for the bacteria Pseudomonas syringae, a plant
pathogen.
The work is divided in four parts, the first explains the biological setting and basics of stochastic
modeling. Then, the model, the author’s implementation and an alternative spatial model are
presented. In the third part the analysis of the model and improvement suggestions can be
found. The final part contains a summary and a perspective on future work.
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Part I.

Introduction

1. Pseudomonas Syringae

Due to factors like fluctuating temperatures or humidity the phyllosphere (the surface of the
leaf ) considered to be a rather complex environment. However, leaf surfaces still provide a
habitat for several microbes, among them Pseudomonas syringae.
This is a gram negative bacterium capable of growing on the phyllosphere and damaging leaves
(e.g.Pseudomonas syringae can cause frost injuries by catalysing ice nucleation), it can also
spread plant diseases, potentially destroying vast amounts of crops. As it can live and populate
symptomless, environmental changes may cause quick outbreaks with devastating effects. To
further understand and investigate its spreading behaviour one can work with mathematical (in
particular stochastic) models.

source: [1]

2. Stochastic Modelling of Bacterial Growth

Assuming that bacterial movements or birth-death processes are completely predictable, as
done in deterministic models, in general seems not suitable. A stochastical model which assigns
probabilities to certain events, e.g. the following by J.Perez-Velazquez et.al., is more realistic
and provides several advantages.
Deterministic models, like a continous linear birth-death process , described by the following
ODE,

dN(t)/dt = (λ− µ)N(t)
(N(t) : population size, λ : birth rate, µ : death rate)

(1)

can take non-integer values for N(t), which should be a natural number. Also, deterministic
models do not produce fluctuations, e.g. in the linear case: if the net rate (λ − µ) equals zero,
the population size N(t) remains constant, unlike real data.
These fluctuations in stochastic models can lead to totally different results, although initial
states remain unchanged for several realizations and stochastic models cannot be reproduced.
The corresponding stochastic model to the deterministic linear birth-death process is

dPN (t)/dt = λ(N − 1)PN−1(t)− (λ+ µ)NPN (t) + µ(N + 1)PN+1(t) (2)

(PN (t) denotes the probability that the population size equals N at time t). Its solution can be
the coefficient of zN in the expansion of{

µ(1− z)− (µ− λz)exp(−(λ− µ)t)

λ(1− z)− (µ− λz)exp(−(λ− µ)t)

}n0

(n0 is the initial population size), but handling this expression becomes impractical for n0 > 1.
Further analysis could be made but this thesis will focus on simulation.
The following is a rough introduction to chemical reactions systems and short explanation of the
mathematical background of the stochastic simulation algorithm by Daniel T. Gillespie, Fig.??
, for more information consult [5].
Most general chemical reactions with n chemical species X1,...,n and m chemical reactions R1,...,m

are of the form:

ν1,jX1 + ν2,jX2 + ...+ νn,jXn

k+j


k−j

η1,jX1 + η2,j + ...+ ηn,jXn (3)
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with i ∈ [n], j ∈ [m]:

• νi,j , ηi,j ∈ N0 are stoichiometric coefficients

• k = [k+1, k−1, k+2, k−2, ..., k+m, k−m] ∈ R2m
+ are the deterministic reaction rate constants.

For k+j-rates the lefthand side of the chemical reaction Rj contains the reactant molecules.1

Let x = [x1, x2, ..., xn]T be the concentration state vector, xi, i ∈ N is the concentration of
the chemical species Xi. xi = Xi

Ω , where Ω denotes the reaction volume. Xi is the number of
molecules in Ω.
The reaction flux vj(x) = k+j

∏n
i=1 x

νi,j
i − k−j

∏n
i=1 x

ηi,j
i is the instantaneous frequency with

which reaction Rj takes place given a concentration state x. vj consists of k+j
∏n
i=1 x

νi,j
i , the

forward reaction, and k−j
∏n
i=1 x

ηi,j
i , the backward reaction.

The stoichiometric coefficients νi,j , ηi,j lead to the stoichiometric matrix S:

S =

 η1,1 − ν1,1 η1,2 − ν1,2 . . .
η2,1 − ν2,1 η2,2 − ν2,2 . . .

...
...

 .

The number of rows equals n, the number of columns equals m. We can define an ODE model
of this system, also called the reaction rate equation, v = [v1, v2, ..., vm]T :

.
x = Sv(x).

Note that this is still a deterministic model. (xi are concentrations, k contains rates) A short
demonstration with the deterministic linear birth-death model, which is equal to the following:

X
λ


0

2X

X
µ


0
∅

. (4)
λ: birth rate
µ: death rate

As only forward reactions exist (k−1 = k−2 = 0) the flux vector v =

(
λx
µx

)
is very simple

(the right hand side of the reaction equation is meaningless for the evaluation of v). With
S = (2− 1 0− 1) this leads to

.
x = Sv(x) = (1 − 1)

(
λx
µx

)
= (λ− µ)x. (5)

x is equal to a concentration (x = X
Ω ). Ω can be treated as a constant. Multiplying Equation

(5) with Ω procudes an equation similiar to the deterministic linear birth-death process:

.
X = (λ− µ)X.

The stochastic reaction constant cµdt, defined as the average probability that a particular com-
bination of Rµ reactant molecules will react accordingly in the next infinitesimal time interval
dt, is closely related to the deterministic reaction-rate constant kµ. D. T. Gillespie’s approach
reaches the form
1Chemical reactions Rµ with k+µ, k−µ > 0 can be regarded as two reactions with no backward reaction. Then

it is possible to arrange them, so only lefthand-sides contain the according reactants which can be easier to
handle. In the following, if not stated otherwise, we let reactions be in that form.
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kµ = ΩN−1

〈
N∏
i=1
Xi〉

N∏
i=1
〈Xi〉

cµ.

for chemical reactions which require at most one of each reactant (that means ν ∈ 0, 1), where
N is the number of reactants.2 Gillespie does not distinguish between the product of averages
and the average of a product (Detemernistic formulation of chemical kinetics) and acquires the
form:

kµ = ΩN−1cµ.

In the deterministic linear birth-death model the deterministic and stochastic reaction rate are
equal (kµ = cµ), because it has only one reactant molecule (see (4)).
Gillespie uses the reaction probability density function3 P (τ, µ) to develop his algorithm:

P (τ, µ)dτ ≡ probability that given the state (X1, ..., XN ) at time t the

next reaction V will occur in the infinitesimal time

interval (t+ τ, t+ τ + dτ) and will be an Rµ reaction

and P0(τ) shall be the probability that no reaction will take place in (t, t+ τ) for a given state
(X1, ..., XN ) and time t. Furthermore we define:

hµ ≡ number of distinct Rµ molecular reactant combinations

available in the state (X1, ..., XN ).

The stochastic reaction constant and hµ lead to:

aµdt ≡ hµcµdt ≡ probability that an Rµ reaction will occur in V in (t, t+ dt)

in the state (X1, ..., XN ) at time t

The reaction probability density function can now be expressed as:

P (τ, µ)dτ = P0(τ)aµdτ. (6)

With P0(τ ′ + dτ ′) = P0(τ ′)(1 −
m∑
ν=1

aνdτ
′), the probability that no reaction will occur in time

dτ ′, given the state (X1, ...XN ) is (1−
m∑
ν=1

aνdτ
′), providing us: P0(τ) = exp(−

m∑
ν=1

aνdτ)

Thus, (6) evolves to (a0 ≡
m∑
ν=1

aν is also known as ”total reaction rate”):

2A reaction which needs more than 1 molecule of one chemical species, e.g. R∗ : 2X → anything, has the
relation k∗ = V c∗/2. There are X(X − 1)/2! possibilities to match molecule X with another X, not XX as a
molecule cannot match itself.

3Gillespie also uses and explains more thoroughly with aid of the chemical master equation. Consult [5] for more
information.
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P (τ, µ) =

{
aµexp(−a0τ) if r ∈ [0,∞), µ ∈ {1, ...,m}
0 else

(7)

Overall, P (τ, µ) in Equation (7) requires:

• all m reaction constants c1, ..., cm

• the current molecule number of all reactant species X1, ..., XN

Depending on the case one can speak of events instead of reactions, e.g. if population events
like births and deaths are regarded.

sources:[2],[4],[5]

3. Gillespie’s Stochastic Simulation Algorithm

Figure 1: Schematic of stochastic simulation algorithm

N : number of species cν : stochastic reaction constant
M : amount of reaction equations aν : reaction rates

source: see [5]

To implement numerically a stochastic process starting from a given state, the needed infor-
mations are the interevent-time, to say the duration until the next event occurs, and an entity

4



telling what kind of event happens then. Gillespie describes in Fig.1 an algorithm that simulates
both requirements with the help of two unit-interval uniform random numbers with three steps
(and an initialization). The two random variables shall be denoted as r1, r2 ∈ (0, 1) respectively.4

The general idea is that from these random numbers the interevent-time τ and kind of event µ
can be generated corresponding to the reaction/event probability density function.

τ = 1
a0
ln( 1

r1
) and µ is natural so

µ−1∑
ν=1

aν < r2a0 ≤
µ∑
ν=1

aν .5

Following the schematic in Fig.1, for each loop a unit-interval uniform random number generator
(URN) creates new variables r1, r2. That means that even with the same initial conditions (and
unchanged r1, r2) in step 0 multiple realisations will most likely produce different results which
can, obviously depending on parameters and the model, disperse greatly. In practice one will
run the algorithm until the number of simulated events n or the elapsed simulation time t reach
a certain limit. A total event rate a0 equaling zero is an abort criterion, a zero-divison in step
2 must be avoided.
If we develop the example of the linear birth-death model (expressed as a chemical reaction in
(4)) further, then:

c1 = λ h1 = X ⇒ a1 ≡ λX
c2 = µ h2 = X ⇒ a2 ≡ µX

⇒ a0 = λX + µX . (8)

This provides for a given state x = X and τ ≥ 0:

P (τ, 1) = λxe(−(λ+µ)xτ), P (τ, 2) = µxe(−(λ+µ)xτ) . (9)

P (τ, 1) can be interpreted as the probability that a birth takes place after an elapsed time τ ,
P (τ, 2) for a death respectively.

Figure 2: Simulations of linear birth-death model λ = 0.8, µ = 0.3, 10 events

Fig.2 presents four exemplary run simulations for the linear birth-death model, generated by
SimLinBirthDeath.m. Each realisation generated ten events starting at time t0 = 0 with birth
rate λ = 0.8 and death rate µ = 0.3 and an initial population x0 = 1.

4The boundaries are excluded to prevent problems with zero-division.
5With aid of an independence assumption P1(τ)P2(µ) = P (τ, µ), τ ∈ R and µ ∈ N are generated according to
P1(τ) = a0e

(−a0τ) and P2(µ) =
aµ
a0

.
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Notice that Sim1 and Sim3 do not reach values as high as Sim2 and Sim4 and events happen
less frequently (in the case Sim1 the third event already leads to extinction, but requires almost
the doubled time Sim4 needs to complete ten events). This is connected with the total event
rate a0, decreasing for lower values of X, thus the interevent-time τ = 1

a0
ln( 1

r1
) in step 2 tends

to larger values for smaller populations.

source:[5]
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Part II.

Models and Impementations

4. A Stochastic Model of Bacterial Growth

Pérez-Velázquez et al. consider a continuous-time Markov process A(t) to simulate the bacterial
colony dispersal of Pseudomonas Syringae on the phyllosphere:

A(t) = (N(t), X1(t), X2(t), ...), t > 0 (10)

where N(t) is the number of colonies that were formed until time t and X1(t), X2(t), ... stand
for the population sizes of the aggregates. The inititial state is A(0) = (1, 0, 0, 0, ...). Pérez-
Velázquez et al. state that linear birth-death process do not provide sufficient quality compared
to reported distributions, they relate on a logistic birth-death process:
Let X(t) be a markov process with state space S = {0, 1, ...,K},K ∈ N displays the carrying
capacity.

Definition: λi := iλ(1− i
K ), µi := iµ with λ > 0, µ ≥ 0. Then X(t) is called a

logistic birth-death process with birth rate λi and death rate µi
if and only if for j ∈ {0, ...,K} and k ∈ N\{j − 1, j, j + 1} is satisfied:

• P (X(t+ ∆t) = j + 1|X(t) = j) = λj∆t

• P (X(t+ ∆t) = j − 1|X(t) = j) = µj∆t

• P (X(t+ ∆t) = k|X(t) = j) = o(∆t) as ∆t→ 0

However, this kind of process is still not able to explain new colonies that were observed on the
leaf after four days after the inoculation (placement of bacteria on the phyllosphere). As it is
known that Pseudomonas Syringae is capable of movement on the leaf surface Pérez-Vélazquez
et al. presume cell migration with the following assumptions:

• Cells land, attach and then move

• Cells can leave the aggregate at any time point

• Cells disperse successively, no group movement!

• Emigration(i.e.migrating cells abandon leaf )

• Migrating cells create new colonies, they do not join existing ones

• Colonies are created by inoculation or migration

• Inoculation happens only once (no additional immigration)

• Each colony has a random capacity (log-normally distributed)

• Migration doesn’t depend on the aggregate size, it happens at a constant rate

7



The final model of Pérez-Velázquez et al. is
a stochastic logistic birth-death pro-
cess with migration with the following
parameters and transition probabilites:

Table 1: Model parameters

Parameter Description

λ(=0.4) Growth rate
µ(=0.1) Death rate
I Migration rate
ρ, σ lognormal parameters

.
p
Xi
x (t) = pXix−1(t)λi,x−1 + (µx+1 + I)pXix+1(t)− (λi,x + µx + I)pXix (t) (11)

.
p
N
m(t) = pNm−1(t)(m− 1)I − pNm(t)mI (12)

where pNm(t) = P (N(t) = m) denotes the probability that there are m colonies at time t,
pXix (t) = P (Xi(t) = x) the probability that the i-th colony has x cells respectively. The birth,
death and migration rate values in Table 1 λ = 0.4, µ = 0.1, and I = 0.1 shall be referred to as
standard parameter values.
λi,x = xλ(1 − x

Ki
) is the logistic birth rate, µx = µx the linear death rate and Ki ∼ lnN (ρ, σ)

is the capacity of the i-th colony.6 Note that (11), (12) are not defined for x = 0 or m = 0, for
this case:

.
p
Xi
0 (t) = (µ+ I)pXi1 (t)

.
p
N
0 (t) = −IpN0 (t)

It is assumed that migration does not alter the size of the affected colony thereby enabling in-
dependence assumptions significant for analysis. This leads to the model, N,Y1, Y2, Y3, ... where
Yi, i ∈ N are independent stochastic processes:

N is linear birth process(N(0) = 1), representing the evolution of the number of colonies

.
p
N
n (t) = pNn−1(t)(n− 1)I − pNn (t)nI

Yi is a birth-death process(Yi(0) = 1), representing the time-shifted size evolution of the colony
i after its creation!

.
p
Yi
x (t) = pXix−1(t)λi,x−1 + (µx+1)pYix+1(t)− (λi,x + µx)pYix (t)

The process Xi(t) =

{
0 if t < Ti
Yi(t− Ti) if t ≥ Ti

, with Ti = min(t ≥ 0 : N(t) ≥ i) as the formation

time of colony i. Xi describes the size development of the i-th colony from initial time 0 onwards.

source: [1]

5. Numerical Implementation

This section explains the structure of my implementation. It can reproduce results from the
code from Pérez-Velázquez et al., examine the folder ’PartTwo-Numerical Implementation’ for
more information on this matter.

6The migration constant does not depend on the colony size. See chapter Analysis for more details.
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My implementation of this model in Matlab is based on the function LBD_multiple_wanted_

2MigRates.m. As input values it requires in the following order7:

• Birth rate λ

• Death rate µ

• First migration rate I1

• Second migration rate I2

• Capacities for initial colonies K*

• Sizes for inital colonies x0*

• Initial time t0

• Wanted time points wantedT imes*

All arguments are of the type double, arguments marked with * can be an array, x0,K naturally
must have the same dimension, here s.8 Let l be the length of wantedT imes. Its outputs are
t1, x1 ∈ Rl×s and t2, x2 ∈ Rl×m, where m is the number of colonies created by migration.
Columns of x1 hold the colony size for each starting colony at time points given by wanted times,
columns of x2 for the colonies formed by migration respectively. t1, t2 denote the times corre-
sponding x1, x2 and are almost dispensable as they obviously resemble the entries of wantedT imes.
LBD_multiple_wanted_2MigRates.m uses LBD_single_wanted.m, which simulates the events
for a single colony. Besides using only one migration rate and scalar values for K and x0 it has
the same kind of input values.
LBD_single_wanted.m produces column vectors tout, xout, combined they form the output of
LBD_multiple_wanted_2MigRates.m. An additional output migV ek contains the times migra-
tion events occured (i.e. the formation times of migration colonies).
Pérez-Velázquez et al. fix the birthrate λ = 0.4, death rate µ = 0.1, the migration rates
I1 = I2, the lognormal-parameters ρ = 1.4511, σ = 1.7025 for the capacities, t0 = 0 for the
initial time and the initial sizes of all colonies to 1. Their implementation callpod.m requires
the user to enter the number of realistations, i.e. the number of starting colonies, here de-
noted by s, and a migration rate I. Running LBD_multiple_wanted_2MigRates(0.4,0.1,I,

I,CapacityGenerator(s),ones(s),0,wantedTimes) is an equivalent realisation, but only re-
quested data will be given out.
Setting wantedT imes = [24 48 72 96] will produce data t1, x1, t2, x2 so DataOverview.m pro-
vides a possibility to transform the composed vector x = [x1 x2] enabling comparison with the
data by Dulla and Lindow, Table 2. Henceforth wantedT imes = [24 48 72 96] if not stated
otherwise.
As this is a stochastic simulation one is well advised to conduct several realisations. Executing
getSimulationData2(N,I,I,s) saves N simulations in a comparable form equal to callpcod

in a 14× 5×N -double-matrix SimData, getInfoSimData2(SimData) returns mean and vari-
ance of respective data points in 14 × 5-matrices, M and V . Moreover PlotSim2(SimData)

provides illustration of SimData,M, and V compared to the Table 2 in the wet case.

7If no input values are given, the user will be asked to provide them in this order.
8s can be considered the number of colonies created by inoculation.
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wet dry

Col. size day1 day 2 day 3 day 4 total day1 day 2 day 3 day 4 total

1-10 115 91 49 19 274 168 29 40 37 274
11-20 21 13 22 3 59 23 13 8 19 63
21-30 4 10 2 0 16 4 6 3 5 18
31-40 1 4 2 1 8 1 3 5 1 10
41-50 3 2 2 3 10 3 3 1 1 8
51-60 0 1 4 2 7 0 0 2 2 4
61-70 0 0 4 3 7 0 0 3 1 4
71-80 0 1 2 0 3 0 2 0 2 4
81-90 0 0 0 1 1 0 1 1 0 2
91-100 2 2 0 0 4 2 0 2 0 4
100-500 0 4 7 2 13 0 1 2 0 3
500-1000 1 0 0 2 3 1 1 0 0 2
1000+ 1 1 1 0 3 1 0 0 0 1

total 148 129 95 36 408 203 59 67 68 397

Table 2: Experimental data by Dulla & Lindow

6. PHYLLOSIM - a spatial approach

The following provides a brief overview over the model by Annemieke van der Wal et. al..
In this spatial model, a 2D-grid consists of 100 × 100 elements with periodic boundary condi-
tions each representing 100 µm2 of the cuticle. The reproduction dynamics are based on nutrient
consumption and biomass gain. Depending on the water constellation nutrients like sugar pho-
tosynthates appear on the leaf surface via diffusion and are consumed by the individual cells in
each time step.

Figure 3: Exert from the PHYLLOSIM-article ([3], Table1)
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Each cell also has, besides its Biomass B, an identification number id. If the biomass B ex-
ceeds a value of 2, the cell splits and biomass is divided equally, the daughter cell receives the
same id. The individual cell volume V = B ∗ 1µm3, presuming a height of 1µm, lead to an
area coverage B ∗ 1µm2 of a grid element. If the number of cells in one grid element surpasses
100 cells newly created bacterial cells will assort themselves in one of the adjacent grid elements
randomly. Fig.3 provides an impression of the dynamics of PHYLLOSIM.
The authors first tried to explain and simulate the dispersion of water on the leaf by regarding
different scenarios, the ’null’ model where a continuous water film covers the phyllosphere and
the ’patchy water’ models where four water drops, capable of varying in size, reside upon the leaf
surface. As the observations they refered to were made under circumstances of 100% relative
humidity they neglected effects like vaporisation.
Upon receiving unsatisfactory simulation results which did not seem to differ greatly they in-
troduced migration dynamics into the model. The cell id system was modified so migrated
cells were assigned a new id providing information about the resident colony.9 This yielded
qualitatively better results and like Pérez-Velazquez et. al. they concluded the detachment and
relocation (and possibly re-attachment) to take a primary role in observed patterns.

source: [3]

9At the inoculation all inhabitants of a colony bear the same id.
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Part III.

Analysis and Improvement of the
stochastic Model
In this part the stochastic approach is examined more closely and improvements concerning
assumptions will be attempted and partially implemented. Criticism and improvement proposals
are based on the article [3] and my own perception and conclusions. The focus lies on migration
rate, capacity conditions and inoculation circumstances.

7. Migration Rate

1 while T(j)<Tmax
2
3 bN=max([r*N(j)−r*N(j)ˆ2/(K),0]); %birTh probabiliTies model 1
4 dN=d*N(j); %deaTh probabiliTies model 1
5 iN=I; %immigration probabiliTies model 1
6 lambda=bN+iN+dN;
7 T(j+1)=T(j)−log(rand)/lambda; %add expoNeTial disTribuTed iNTer−eveNT iNTerval of Time
8 a(j)=T(j+1)−T(j);
9 ra=rand;
10 if ra < bN/lambda;
11 N(j+1)=N(j)+1; %iT was a birTh
12 elseif ra < (bN+dN)/lambda;
13 N(j+1)=N(j)−1; %iT was a deaTh
14 else
15 N(j+1)=N(j)−1; %iT was an Immigration
16 aux(j+1)=j;
17 end;
18
19 if N(j+1)==0 %Check To see if N(j)==0
20 j=j+1; %fiNish ouT program
21 T(j+1)=Tmax;
22 N(j+1)=0;
23 end; %if
24 j=j+1; %iNcremeNT couNTer
25
26 end; %while

Figure 4: while-loop of pcod1.m, apart from denotation similiar to pcod2.m

Although not explicitly mentioned in the article [1] of Pérez-Velázquez et. al., in their implemen-
tation only initial colonies (created by inoculation) are capable of migration but the migration
rate is not modified for new colonies. pcod1.m and pcod2.m are equivalent, only their output is
treated differently. In line 16 of Fig.4 the array aux holding required data for colony foundations
simply remains unused for second-generation colonies.
Therefore all initial colonies have a constant migration rate I while daughter colonies have an
effective migration rate of 0. Filial generation colonies still have migration events but in case of a
migration event no new colonies will be found. The migration rate I then works as an additional
death rate for non-initial colonies. I didn’t find any biological reason why the second-generation
could not bring up colonies themselves.
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Figure 5: Examplary Migration probability h(N)

The constant migration rate poses another controversal subject because the migration prob-
ability decreases for high population values. The probability of a migration event (else case,
line 14) happening is P (Next event is migration) = P ( bN+dN

Rtot
≤ ra ≤ 1) = P (ra ≤ iN

Rtot
) =

iN
Rtot

= I
rx− r

K
x2+dx+I

=: h(x) with population number10 x, ra ∼ unif(0, 1) and Rtot as the total

event rate (line 6). Due to logistic growth x does not exceed the capacity K, so x ∈ [0,K]. For
r = 0.4, d = 0.1 and I = 0.1, chosen like in the stochastic simulation:11

∂

∂x
h(x) = − I

R2
tot

(r − 2
r

K
x+ d) =


< 0 x ∈ [1, 5

8K)
= 0 x = 5

8K
> 0 x ∈ (5

8K,K]

The boundaries yield h(1) = 1
6− 4

K

and h(K) = 1
K+1 leading to h(1) →

K→∞
1
6 and h(K) →

K→∞
0.

For K > 4 is h(1) > h(K) hence for higher capacities K the migration chance reaches its
maximum for colonies with only one resident, for example in the case of newly created colonies.
Fig.5 gives an impression of the development of h(N)(red line) and birth(blue) and death(green)
probabilities for a capacity K = 40.

It is debatable if this is qualitatively suitable. The migration probability should be increasing
with augmenting population x towards K as the capacity displays the availability of resources
and intraspecific stress. Aspects like intraspecific cooperation cannot justify such extreme be-
haviour of the migration probability. Regarding the situation in Fig.5 one can observe that
h(1)
h(40) = 6.9492. It seems highly unrealistic that it is almost seven times more likely for a solitary
resident which may just have arrived via migration or inoculation to migrate again than the
case that in a brimmed colony one bacterial cell leaves to settle elsewhere. This boundary limit
relation grows more unrealistic with increasing K. For colonies restricted by K = 1000 which
do appear in the data the relation h(1)

h(1000) = 166.9446 becomes inapplicable.
Another problem is the assumption that migrating cells always create new colonies. Although
cells are able to sense their environment, to say apprehend the capacity K and the population
number x, spatial aspects like already occupied adjacent residential areas are entirely neglected.
Especially for longer observation durations regional occupancy of potential colony sites plays a
relevant role as it naturally will be getting more diffult for migrating cells to find new uninhab-
ited sites as travel distances increase and settling sites get rarer. However, introducing dynamics
following such aspects in a stochastic model will most certainly prove to be a highly difficult
task.
10To avoid confusion with the different rates bN, dN, iN the population number is x instead of N .
11r − 2 r

K
x+ d

!
= 0⇔ x = r+d

2r
K
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Figure 6: Simulations with different switchtimes compared, I1 = 0.1 and I2 = 0.05

st denotes switchtime, each colour represents the mean of 25 simulations with differing st

If one tries to amend the two migration rates for parental and filial generations setting the rates
in dependence of time seems most reasonable. LBD_multiple_wanted_2MigRates_time.m pro-
duces a simulation including an alternation of the migration rate at a specified time. Setting the
second migration rate lower than the first seems apparent as resources and available residential
sites get exhausted. Assuming that the influence the switch time point should bear will increase
and decrease with the difference between the two migration rates seems plausible.
But Fig.6 shows that the switch time between migration rates I1 = 0.1 and I2 = 0.05 did not
have a visible impact.
Another idea is to enable migration to colonies but in a stochastic model. Realisation attempts
will probably be fruitless because, beside their difficulty, independence assumptions cannot be
made anymore, making analysis even trickier. I’m confident that spatial aspects like local re-
gions devoid of unoccupied settling sites are the main reason for bacterial cells to reattach. But
in a stochastic model one must rely on other colonies’ status like capacaties and the current
number of residents and cannot take, for example, locally limited sensing abilities of bacteria or
the interspace between colonies into account.
Changing the constant migration rate could bear better results. A linear migration rate iN :=
Ix, with Rtot = r + d+ I − r

Kx, is a good reasonable assumption:

From the previous section we get ∂
∂xh(x) = iN

R2
tot

∂
∂xRtot = Ir

K(r+d+I− r
K
x)2
≥ 0 for x ∈ [1,K].

The migration probability h(x) is strictly increasing, the lower boundary h(1) = I
r(1− 1

K
)+d+I

is the minimum and the upper boundary h(K) = I
I+d the maximum. Also, the relation

h(1)
h(K) = d+I

r(1− 1
K

)+d+I
≤ 1 appears more sensible.

For standard parameters, denoted in 1, Fig.7 shows the behaviour of the probabilities for dif-
ferent migration rate alternation attempts if the capacity K = 40. In the linear case migration
and death rate are equal for the chosen simulation parameters, so iN covers dN . The linear
alternation seems like a promising way to improve the model, the qualitative behaviour looks
consequential.12

12I regard the constant migration as inapplicable. If not stated otherwise the linear migration rate will be used
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Figure 7: Examplary plots of migration probability h(N) for different migration rates

8. Capacity

In the stochastic model a priori assumptions concerning the capacities are made. The authors of
the PHYLLOSIM article [3] criticized this and stated that the model by Pérez-Velázquez et.al.
is imposing a pattern rather than explaining.
I also consider the dynamics of a log-normal-distribution problematic and share their opinion.
Log-normally distributed capacities Ki ∼ lnN (µ, σ), in the model µ = 1.4511 and σ = 1.7025,
represent the availability of nutrients hence providing a tool to measure and compare the attrac-
tiveness of different colony sites. Obviously high capacity resorts should be occupied first but
in the model the capacities Ki are determined irrespective of variation in time. If the migration
chances are extremely low or non-existent later on the extent of this effect is severely reduced
aswell but, beside reasons mentioned in the previous two sections, since low-populated colonies
are still found within the data in Table 2 at any observation point a strongly diminishing or
vanishing migration rate appears unsuitable. Generally the dynamics introducing capacities in
the system are very stiff, for example, considering fusion of colonies looks infeasible.
Examining the data one can observe in both cases, wet and dry, a colony containing more than
1000 cells on the first day which vanished by the fourth day. This leads to the problem that
one colony is hardly able to reach a population of 1000 starting with an initial size of one cell
within 24h. Running simWaiting_multiple_runs(0.4,0.1,0.1,2500,20000,1000) provided
interesting results:
From 1000 colonies with a capacity 2500 each only 478 were able to reach a population of 1000
cells within 20000 event steps. The elapsed time until one these 478 colonies first reached 1000
inhabitants averaged at 41.9874h and the fastest colony required 30.8351h. Thus, none was
able to reach the required 1000 cells within one day although they had very high capacities. If
Ki ∼ lnN (1.4511, 1.7025) then P (Ki > 1000) = 1− P (Ki ≤ 1000) = 1− 0.999324884334486 =
0.0006751156655141477 ≈ 0.07%, so it is very unlikely for a colony to be assigned a capacity
greater than 1000. In addition to a probably insufficient population growth speed reaching this
threshold within one day seems unlikely.
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Figure 8: Probability behaviour for different a-values, time-independant, r = 0.4, d = 0.1 and
I = 0.1

Capacity-bounded colonies aren’t flexible enough to match the data. The biomass dynamics
of the PHYLLOSIM-model avoid capacity boundaries instead it respects the room each cell
requires and ultimately can handle the spatial extentension increasing colonies demand up to
possible fusions. The growth of colonies is based on individual nutrient consumption and avail-
ability so resource competing (including spatial effects) should eventually lead to saturation.
However introducing biomass dynamics in a stochastic model will hardly work without making
radical assumptions. A possibilty is to abolish the capacity and replace the logistic birth rate

bN = rx(1− x
K ) by b̃N := rx( 1

a√x) = rx
a−1
a , where the positive parameter a ∈ R regulates sat-

uration. Higher values for a result in higher birth rates, so instead of a high capacity a greater
a-value stands for better environmental conditions.
The birth probability b(x) := b̃N

λ̃
, λ̃ = b̃N + dN + iN is strictly decreasing as ∂

∂xb(x) =

− r
a
x
a−1
a (d+I)

λ̃2
≤ 0 for all x > 0 and lim

x→∞
b(x) = lim

x→∞
r

r+(d+I)x
a+1
a

= 0.

Fig.8 plots some examplary a-values, note that the migration rate was already assumed to be
linear like suggested in the previous section.
As long as the birth rate b̃N is greater than the death and migration rate dN and iN it appears
intuitive that the colony size will tend to grow and vice versa.

b̃N ≥ dN + iN ⇔ rx
a−1
a ≥ (d+ I)x⇔ x−

1
a ≥ d+ I

r
⇔ x ≤

(
r

d+ I

)a
(13)

Table 3: Development of Xbrd = 2a

a 1 2 4 6 8 10

Xbrd 2 4 16 64 256 1024

The threshold Xbrd :=
(

r
d+I

)a
obtained from Eq.13

with given r = 0.4, d = 0.1, I = 0.1 takes the val-
ues given in Table 3. Obviously Xbrd is an indicator
for the target value population sizes will eventually
fluctuate around.

One could replace the parameter a by a time-dependant monotone decreasing function to further
administer to nutrient depletion or residential sites occupancy.
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Figure 9: Qualitative behaviour of birth rate and event probablities,
β = 4, α = 2, r = 0.4, d = 0.1 and I = 0.08

For example, having an observation duration from t0 to tend, setting a(t) = β−(β−α)( t−t0
tend−t0 ),

with β ≥ α ≥ 0, β 6= 0, t ∈ [t0, tend] provides a linear decrease from a(t0) = β to a(tend) = α.
Fig.9 displays the impact on birthrate and event probabilities for mentioned a.

9. Inoculation

As already mentioned in the section seven it turns out to be difficult for colonies to reach 1000
cells within one day starting with a single resident. Increasing the initial population sizes for
colonies at the inoculation point will probably help adjusting the model to the data.
Fig.10 and Fig.11 give an impression how initial sizes affect the model with logistic and modified
time-independant birth rate, bN and b̃N respectively, (both with linear migration rate). The
logistic birth rate will probabably fluctuate around X∗ := K(1 − d+I

r ) which leads to a ≈ 10.3
if Xbrd = X∗ and parameters chosen like in Fig.10.13

Table 4: Birth probabilites
for bN and b̃N

Pop.x bN b̃N

1200 50.98% 50.10%
1000 54.55% 50.54%
750 58.33% 51.24%

Table 4 and Fig.11 demonstrate that the birth probability as-
certained by b̃N with a = 10.3 approaches values in the proxi-
mate periphery of 0.5 much faster than the capacity-bounded.
Hence b̃N eventually requires additional time to reach the pop-
ulation size x = Xbrd as x-increasing and x-decreasing events
are almost equiprobable quite early. Trying to simulate the
required time for b̃N with a = 10.3 like in Fig.10 did not pro-
cure usable results as the simulated populations do not often
reach values of 1000 or greater in 20,000 steps.(mean (maxi-
mal population reached) was between 900 and 950, see folder
’PartThree-Inoculation’)

13X∗ = 2500(1− 0.1+0.1
0.4

) = 1250 and 1250 = 2a ⇔ a = 10.2877
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Figure 10: Simulation (20,000 events) of required time to reach a population size of 1000 for
different initial sizes with capacity K = 2500, a = 20.5, r = 0.4, d = 0.1 and I = 0.1

To let b̃N decrease less rapidly it could be modified by for example drawing the root, to say

b̃N
∗

:= rx
√
x−

1
a = rx

2a−1
2a , but this is obviously equivalent to simulations produced with b̃N

with doubled parameter a as displayed in Fig.10.

Figure 11: Behaviour of birth probabilities for differing birth rates

The PHYLLOSIM-model uses a Poisson-distribution to spread the cells upon the cuticle. For
the stochastic model one could follow similiar dynamics by introducing this distribution for the
initial population.
As the Poisson-distribution is a discrete distribution it is suitable for generating initial sizes.
If the initial sizes S ∼ Pois(λ) with probability mass function fλ(k) = P (S = k) = λke−λ

k! the
mean and variance are λ.
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Figure 12: Examplary initial size distributions

Although it is stated in both articles that over 50% of cells are in colonies larger than 1000 it is
still difficult to estimate λ with the given data, table 2, which is not very accurate.
It seems apparent regarding Fig.12 that S ∼ Pois(λ), which assigns a probability to every
population size procures an unsuitable centered distribution. Having only rough data to rely on,
assuming S ∼ 2Z , Z ∼ Pois(λ) seems practical. A constant c ∈ (0, 1) can modify S ∼ dc2Ze,
Z ∼ Pois(λ) further to adjust the inital sizes.
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Part IV.

Conclusion

10. Summary and Overview

I suggest to modify the stochastic model for simulation time from t0 to tend in the following way:

Birth rate bN = rx
a(t)−1
a(t) r ∈ R+

a(t) = β − (β − α) t−t0
tend−t0 β, α ∈ R+, β > α ≥ 0

Death rate dN = dx d ∈ R+

Migr. rate iN = Ix I ∈ R+

Init. sizes S ∼ 2Z Z ∼ Pois(λ), λ ∈ R+

Setting β ∼ Pois(ξ), ξ ∈ R+ and
α ∼ βX where X shall be dis-
tributed on the interval (0, 1) provides
good dynamics. Besides unif(0, 1) the
Beta-distribution beta(ν, η) with pdf
fν,η(x) = 1

B(ν,η)x
ν−1(1 − x)η−1I[0,1](x),

beta-function B(ν, η) := Γ(ν)Γ(η)
Γ(ν+η) and

indicator function I[0,1] seems apt.
Γ(n) := (n − 1)! denotes the gamma-
function. Fig.13 gives an impression
of normalized α ∼ β(ν, η) compared
to the uniform-distribution.

Figure 13: Visualisation of beta(ν, η) and unif(0, 1)

Overall 8 parameters appear (time boundaries t0 and tend excluded): r, d, I, λ,N, ξ, ν,and η. The
function Model_multiple_wanted(r,d,I,lambda,N,xi,nu,eta,t0,t_end,wantedTimes) will
simulate this model suggestion accordingly and is capable of procuring data comparable to the
data, Table 2 if wantedT imes = [24 48 72 96]. Some examplary simulations were done, see
folder ’PartFour-Summary and Overview’.

Examining the stochastic model by Pérez-Velázquez et. al. has revealed some inconsistence
with the related article and inappropriate assumptions or dynamics. Especially the fact that
the model cannot pay heed to spatial aspects is a major issue as migration on the phyllosphere
heavily depends on regional circumstances, as Table 2 regarding dry and wet conditions suggests.
I believe an approach with a stochastic model to be rather unsuccessful. Suggestions made in
this thesis may aid in matching the simulation to the data but in the long term a spatial model
like PHYLLOSIM is probably a superior foundation.
Additional and more precise data would also greatly help; as of now it is difficult to even be
certain of good results in particular concerning big colony sizes. It is interesting that the author
teams of both models concluded that migration is essential although they examined the issue
from partly vastly differing angles, I am convinced of this aswell.
I reckon that the stochastic model is not suitable for simulating Pseudomonas Syringae bacteria
dispersions upon the leaf surface.
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11. Future Work

Originally the bachelor thesis’ objective was to estimate parameters for the stochastic model by
Pérez-Velázquez et. al. and efforts have been made in this direction. Great parts of the entire
code were created under this prospect thereby creating a decent basis for paramter estimation
or further model development. The attached CD contains all code that was produced for this
thesis in the folder ’Bachelor’.
Tables 5 and 6 briefly explain some functions that could turn out useful. The explanations are
not precise, so it is advised to have a closer look at the code and its comments to gain a better
understanding.
If one tries to develop the model I presented further I would suggest to work on the migration
dynamics, specifically on reattachment. My belief is that this grows more important with greater
simulation durations but I reckon it highly difficult to find suitable dynamics, even regardless
of run-time efficiency. The introduction of the time-dependant, birth rate modifying function
a(t) = β − (β − α) t−t0te−t0 gave the impression that simulations required much longer so I suspect
reattachment dynamics to deteriorate run-times even more.
Performing parameter estiamation with the provided code should be relatively easy and quite
prompt. Nevertheless due to the absence of accurate and numerous data I recommend to try to
acquire more data, even of other bacterial cultures, to assure a good foundation first.

parameter ∈ meaning/application

r R+ birth rate
d R+ death rate

I, I1, I2 R+ migration rate
N N+ number of simulations
S N+ number of initial colonies
NE N+ number of events
x0, x

∗
0 N+ initial size (vector)

K,K∗ N+ capacity (vector)

a R+ b̃N = rx
a−1
a

t0, ts, te R+ times
st R+ migration switch time
st R+ migration switch time
wT R+ wanted times (vector)
λ R+ x0 ∼ Pois(λ)
ξ R+ β ∼ Pois(ξ)

(ν, η) R+ α ∼ βbeta(ν, η)
α, β R+ a(t) = β − (β − α) t−t0te−t0

SimData N+ 14× 5×N -matrix

Table 5: Input parameters and meaning
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Function name Input Explanation

CapacityGenerator ν, σ generates logN (ν, σ)-distributed
rounded values/capacities

DataOverview x returns 14× 5-matrix comparable to
data. x is output of function including
wanted with wT = [24 48 72 96]

PlotSim2 SimData produces 2 plots, comparing with
experimental data (Wet case)

getInfoSimData2 SimData returns two 14× 5-matrices containing
mean/variance of entries of SimData

getSimulationData2 N, I1, I2, S saves N simulations of LBD_multiple_
wanted_2MigRates as SimData

getSimulationDataTime N, I1, I2, saves N simulations of LBD_multiple_
st, S wanted_2MigRates_time as SimData

getSimulationData_model r, d, I, λ, S, saves N simulations of LBD_multiple_
ξ, ν, η,N wanted_2MigRates_model as SimData

LBD_single_wanted r, d, I,K, simulates one colony, capacity bounded,
x0, t0, wT returns migration times

LBD_single_wanted_2MigRates_time r, d, I1, I2, st, simulates one colony, capacity bounded,
K,x0, t0, wT migration rate changes at sT,

returns migration times

LBD_multiple_wanted r, d, I,K∗, simulates multiple colonies,
x∗0, t0, wT uses LBD_single_wanted

LBD_multiple_wanted_2MigRates r, d, I1, I2, simulates multiple colonies,
K∗, x∗0, t0, wT uses LBD_single_wanted

LBD_multiple_wanted_2MigRates_time r, d, I1, I2, st simulates multiple colonies, uses
LBD_single_wanted_2MigRates_time

Model_single_wanted r, d, I, β, simulates single colony, returns
α, x0, ts, t0, migration times, ts= colony start time,
te, wT t0/te=sim. start /end time

Model_multiple_wanted r, d, I, λ, simulates multiple colonies,
N, ξ, ν, η, uses Model_single_wanted

t0, te, wT

sim_waitingtimes r, d, I, simulates NE events for single colony,
K,NE capacity-bounded

sim_waitingtimes_init r, d, I,K, simulates NE events for single colony,
x0, NE initial size x0, capacity-bounded

sim_waitingtimes_BirthMod_init r, d, I, a, simulates NE events for single colony,
x0, NE initial size x0

simWaiting_multiple_runs r, d, I,K, N multiple events, returns time pop.
NE , N reaches 1000, uses sim_waitingtimes

simWaiting_multiple_runs_init r, d, I,K, N events, returns time pop. reaches
x0, NE , N 1000, uses sim_waitingtimes_init

simWaiting_multiple_birthMod r, d, I, a, N events, returns time pop. reaches
x0, NE , N 1000, uses sim_waitingtimes_

BirthMod_init

simWaiting_multiple_birthMod_max r, d, I, a, multiple events, returns time pop.
x0, NE , N reaches max, uses sim_waitingtimes_

BirthMod_init

Table 6: Outline of MATlab-Functions
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