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Zusammenfassung

Diese Arbeit untersucht effiziente Methoden, die die Bildgré83e von JPEG komprimierten Ul-
traschall Bildern verkleinern. Zuerst wird das Thema der Arbeit von einem medizinischen Pro-
blemfall aus der Praxis her motiviert. Anschlieend wird eine mathematische Formulierung
dieses Problems gegeben. In Kapitel 2 werden die notwendigen mathematischen Grundlagen
eingefithrt. Aufgrund der Nachteile des Sampling Theorems von Shannon, gibt das nichste
Kaptitel Einblicke in die moderne Sampling Theorie. Kapitel 4 beschéftigt sich mit B-Spline ba-
sierten Sampling Methoden, die wegen ihrer ausgezeichnetetn Approximationseigenschaften
ausgewihlt wurden. Zur Veranschaulichung wird zudem eine Verbindung zu dem Butterworth-
Filter hergestellt. Das Runterskalieren von Bildern wird in Kapitel 5 behandelt und verschiede-
ne Methoden werden vorgestellt und nach Bildqualitat und Komplexitét untersucht. Am Ende
wird ein neues hybrides Verfahren vorgestellt. Die numerische Evaluierung in Kapitel 6 belegt
die Uberlegenheit des hybriden Verfahren gegentiber den anderen vorgestellten Verfahren.

Abstract

This thesis discusses the efficient downscaling of ultrasound images that are compressed by
JPEG. First the topic is motivated by a real-world medical scenario and a mathematical for-
mulation of the problem is developed. In Chapter 2, the mathematical foundations to consider
this problem are provided. The next chapter introduces recent enhances of modern sampling
theory due to the drawbacks of the classical Shannon sampling theorem. Sampling with B-
splines is exclusively discussed in Chapter 4 due to their excellent approximation properties,
and a connection to the Butterworth filter is outlined. Downscaling methods are shown in
Chapter 5, where finally a new hybrid downscaling method is introduced. These downscal-
ing methods are evaluated in Chapter 6, where the provided hybrid downscaling methods
outperformed the others in terms of efficiency.
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1. Introduction

In the present-day world, digital images play an important part in life. To reduce the amount
of data, down sized versions of large images are provided in many use cases. Some examples
are the thumbnails of directories or web sites for image galleries. While these thumbnails
usually can be pre-computed, this thesis investigates methods that are able to generate low-
resolution images on the fly. Efficient downscaling methods are examined and furthermore
the quality of the low resolution approximation is considered. High quality is important to
donwscale ultrasound images in health-care scenarios. Ideal efficient downscaling methods
have low computational complexity, i. e., they can be performed in real-time and guarantee a
high image quality.

First, the topic is motivated by a medical real world scenario and its related problems. As med-
ical images are compressed with the JPEG standard, a short introduction to the JPEG compres-
sion standard is given, followed by the downscaling problem formulated as a mathematical
problem, concluding with an outline of the current state of the art. Chapter 2 introduces the
mathematical background to consider the downscaling problem, with the Shannon sampling
theorem as a central point. Based on Shannon’s sampling theory, the concepts of the mod-
ern sampling theory are established in Chapter 3, while Chapter 4 reveals a useful relation
between the sampling with B-Splines and the Butterworth filter. After these theoretical chap-
ters several downscaling methods are discussed extensively and a new hybrid downscaling
method is introduced that reduces complexity while preserving image quality. Finally, the
downscaling methods are evaluated numerically in Chapter 6 and an outlook for future work
is given in Chapter 7.

1.1. Motivation

The investigations of this thesis are motivated by a medical real-world scenario. In this sce-
nario a doctor wants to observe several ultrasound streams at once to detect changes between
them. The original sized streams are too large to fit on one single monitor side by side, hence
the images have to be downscaled. Figure 1.1 shows an example with 4 downscaled ultrasound
images in a 2x2 grid. A long waiting time is not acceptable in this scenario, therefore, a real-
time algorithm is crucial. Specifically, medical applications require the guarantee of an image
to be nearly without any loss in quality, because the loss of important information can be
life-critical. The algorithm has to be efficient in the sense of image quality and computational
complexity. Of course, the efficient solution of this problem can be applied to other problems
as well. For example, the solution can be applied to a surveillance scenario, where several
camera streams should be displayed simultaneously on one monitor for a security guard.
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Figure 1.1. Ultrasound images in a 2x2 grid

The remainder of this section is devoted to the detailed description of the medical application
considered in this thesis and its related problems. At the end, the importance of efficient
algorithms is motivated once more.

In the present medical application, 16 streams of ultrasound images have to be displayed on a
monitor in a 4x4 grid, as illustrated in Figure 1.2. The input and the output of the application
is specified as:

Input: 16 grayscale image streams of size 1024x768 compressed with JPEG
Output: 1 single stream of size 1024x768 with all 16 images at a resolution of 256x192,
displayed as a video stream with 30 frames per second.

To scale down a single image of size 1024x768 to 256x192, a down-scaling factor of 4 is used.
Other scaling factors can be analogously addressed, as the algorithms described in this thesis
are scalable, i. e, independent of a specific scaling factor.

The ultrasound image streams in clinical networks are usually stored on a server. On request,
the images are transmitted to a client for further processing. There are multiple options for
solving the tasks of downscaling and displaying, and two of them are discussed in the follow-
ing. One solution transmits 16 image streams to the client simultaneously and the client scales
down and displays the image stream. This model is shown in Figure 1.3. It is not optimal due
to the highly increased data transmission from the server to the client. In addition, it needs
a high performance client system because of the time consuming downscaling task and its
violating real-time requirement.

A more efficient solution can be achieved by minimizing the transmission costs. Therefore, the
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Figure 1.2. The 4x4 grid displayed at the client.
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Figure 1.3. Scheme of the suboptimal scenario model.
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Figure 1.4. Scheme of the chosen scenario model.

images should be scaled down on the server side, and only one single compressed image stream
is transmitted to the client. Performing the downscaling and re-encoding tasks on the server
includes no additional hardware requirements, because servers are usually high end systems.
Any recent PC or tablet is able to display a video stream in real-time. According to these
considerations, this approach not only minimizes the transmission costs, it also addresses a
larger range of clients, in contrary to the previously discussed model. The tasks on the server
side are the

1. downscaling of the images, and the
2. re-encoding of the downscaled images,

as illustrated in Figure 1.4. To decode the compressed image stream and to display it, is in the
hand of the client.

Even though this scenario model is designed in a proper way, there are still several issues
to solve. First of all, there are lots of data to be transmitted from the server to the client. If
the stream would contain only 5 seconds, the (downscaled) uncompressed data to transfer
is around 1 GB, which would result in a rate greater than 200 MB/s. Today, usual networks
have a throughput of 100 MB/s, therefore data compression is important to make this scenario
possible. Second the downscaling process is significant for quality, but is also time consum-
ing. There will be a trade off between quality gain and performance. Finding an acceptable
compromise between those two factors is crucial. The re-encoding step afterwards should be
quality preserving and fast. As the whole scenario is a streaming application, a good choice
is to prefer a video codec over an image codec.

Remaining problems are the fast access of the scattered JPEG files on the file system and the
handling of the client side. Both of them are not addressed in this thesis. The former problem
can be solved technically with better hardware, e. g., RAID-systems or with the use of faster
storage mediums like solid state disks. Solutions for the latter exist already that can receive,
decode, and display a video stream.

The tasks of the server are discussed now. The server has to scale down 16 images simulta-
neously and re-encode them into a single video stream. The computational performance as
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well as the achieved quality of the downscaling process are the most important aspects on the
server side. To re-encode the data, a standardized method like JPEG or H.264/AVC is used.
Consequently, the efficient downscaling of images is the focus of this thesis.

To further motivate the need of efficient algorithms, the problem is handled first in a naive
approach with the available open source implementation of the Independent JPEG Group.
Decoding and downscaling of a single big image of size 4096x3072, which corresponds to the
16 images of size 1024x768, is tested. A time measurement on a high performance PC ! showed
that the decoding and downscaling task requires a computation time around 1 second. But
to challenge a frame rate of 30 frames per second, there is only time of 0.03 seconds left to
process a single frame.

This example shows that further improvements are necessary to reduce the time of this task.
One aspect is the parallelization of the downscaling and re-encoding process. Another is to
find a method which has low complexity and good quality. Even though the tasks of the server
can be parallelized, the speeding up gain is not sufficient to fulfill the real-time requirement.
Once more, this demonstrates the need of efficient downscaling algorithms. Implementation
details for the fast final server application using parallelization are described in Appendix A.

In general, downscaling methods can be separated in two classes, namely
1. downscaling in the pixel domain, and
2. downscaling in the DCT domain.

The pixel domain corresponds to the image pixel values, while the DCT domain denotes the
frequency representation used by the JPEG compression, which is explained in the next sec-
tion. Methods of the second approach result in faster algorithms, because these methods oper-
ate directly on the frequency representation, while the methods working in the pixel domain
require the additional decoding step. Downscaling methods will be discussed exclusively in
Chapter 5 and their properties will be outlined. As a compromise between performance and
quality a new hybrid downscaling algorithm is introduced in Section 5.3.

1.2. The JPEG compression standard

As mentioned in the last section, the input images are compressed with the JPEG standard
[15]. This section only gives a short overview of the JPEG encoding and decoding scheme,
while a complete overview can be found in Wallace [45].

The JPEG standard was established in 1992 by the Joint Photographic Experts Group (JPEG)
as an international standard. It was the first standard for the compression of continuous-tone
still images. Today, this standard is still the most used image compression method. JPEG also
plays an important role for medical imaging. It was included in the DICOM standard, which
specifies the file format for medical images. Thus, most of the medical images are compressed
with the JPEG standard. This thesis considers the efficient downscaling of ultrasound images,

1CPU Intel Core i5 with 3.1 GHz, 8Gb RAM of memory, a 128 GB Intel SSD
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Figure 1.5. JPEG coding scheme.

which are encoded with JPEG. Medical images are usually compressed at the most by a factor
of 1:7 to preserve the image quality.

The most important technical aspects are described in the following. First of all, one has
to separate the encoding and the decoding process. Encoding compresses an image and the
result is a size minimized bitstream. The decoding process is the inverse of the encoding of
an image, a compressed bitstream is processed to get the original image back. Both processes
are illustrated in Figure 1.5.

The encoding process can be subdivided in the following core parts:
1. forward transformation with the 8x8 DCT,
2. quantization, and
3. entropy coding.

Before the forward transformation, the whole image is tiled into 8x8 blocks. Then, every block
is transformed with the 8x8 discrete cosine transform (DCT), where the pixels are transformed
to related frequencies. These frequencies are called coefficients, as they refer to the decompo-
sition into the sinusoidal basis functions. The construction of the DCT basis is given in (1.1)
and explained later in detail. The coefficients resulting from the transformation are then quan-
tized, i. e., frequencies are thresholded according to their contribution to the image. Usually
this step loses information that cannot be reconstructed in the decoding process. Having the
coefficients quantized, the corresponding representation is further compressed by an entropy
encoder on the bit level. The JPEG standard uses the so called Huffman encoding, that tries
to minimize the entropy of the bitstream. The same parts in reversed order are contained in
the decoding process. First the bitstream is processed by the entropy decoder. The quantized
coeflicients are dequantized and finally transformed to pixels via the inverse 8x8 DCT.

In the scenario described in Section 1.1, the images are encoded with JPEG. To scale these
down, the entropy decoding step as well as the dequantization step are necessary. Thus, there
are only two possible ways left to perform the downscaling of the image. One can deal with
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the DCT coefficients directly or transform them to pixel values. Of course, the additional
transformation step is time consuming and methods that can resize an image by its DCT
coefficients are worth considering. Such methods are discussed in Section 5.2.

In order to understand these methods in detail, let us recall the definition and some properties
of the discrete cosine transform. The DCT is basically the real part of the discrete Fourier
transform. Therefore, the DCT basis has almost the same properties. The N basis functions
for a DCT of size N are given by the matrix Cy € RV*¥ with entries

2 204+ 1)k
c,i\;: \/Nakcos <(;_]\[)7T>, for k,l € {0,...,N — 1}, (1.1)

where

1, k=0 L
*TIL 1<k<N-1 2

V2’
The basis functions are orthonormal and the matrix C'y is unitary, i. e, Cy - C]TV =1d.

The two-dimensional DCT can be separated into first transforming the rows of the image
followed by transforming the columns of the image. An 8x8 pixel block has the DCT transform

X = CsXCF, (1.3)
and can be inverted by

X =CiXCs. (1.4)

The 64 two-dimensional basis functions are shown in Figure 1.6. Note that from the left to
the right the horizontal frequency is increased, while from the top to the bottom the vertical
frequency increases. The 8x8 DCT expresses an 8x8 block of pixels as a linear combination of
those 64 basis functions. With increasing frequency the represented information gets more
and more detailed. Often, the highest frequency (the bottom right corner) contains mostly in-
formation about noise. The quantization step will suppress exactly those detailed information
over the more important low frequency information by the use of a weighted quantization
matrix.

1.3. Mathematical model

This section transforms the technical model developed in Section 1.1 to a mathematical formu-
lation. The goal is to provide a solution for the medical application, where 16 image streams
have to be scaled down by a factor of 4. To scale down 16 images simultaneously will be
reduced in the mathematical model to the problem of downscaling one single image. The
resulting downscaling algorithm will be applied then to every single image, which can be
parallelized very efficiently.
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Figure 1.6. The 64 basis function of the 2D-DCT.

Digital images are always discrete copies of their corresponding real-world representations.
Therefore, it is reasonable to model the downscaling task for the real-world representation of
the image. The reconstruction of this continuous representation is crucial to model this image
processing problem with a general mathematical framework. If a solution in this continuous
framework exists, the downscaled image is provided by sampling of this solution.

According to these considerations, one can split the downscaling problem into two tasks. First,
a continuous approximation of the discrete image has to be obtained. Having this continuous
representation, the downscaling problem can be solved by dilating this function.

A discrete image of size n X m can be represented as a matrix F' € R™*"™, where the entries
of the matrix F; ; represent the intensity value of the pixel 7, j. The underlying continuous
representation will be a two-dimensional function f : R x R — R, where the intensity values
coincide at the discrete pixels, i.e., f(i,j) = F; j, or they even differ, if the discrete image is
e.g., corrupted by noise. Thus, the matrix F' is the sampled version of the function f. The
function space of the function f is unknown, thus the mathematical model has to provide
an appropriate function space that corresponds to the discrete image. The literature often
uses the space of square-integrable functions, L?(R?). As sampling is not well-defined for
every function f € L?(R), this thesis considers subspaces V' C L?(R?) where the sampling
operation is well-defined.

The approximation of the discrete image yields to an optimization problem. The best approx-
imation g € V of the discrete image F' in some space V € L?(R?) is informally given by

g = argmin [lg — F[, (1.5)
gev
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for some suited norm ||-||. Note that the the function g is continuous, while F is discrete.
Therefore, the distance between g and F' in the space V' is not uniquely defined.

In the least-square sense, this problem yields to the interpolation problem

g = argmin P(g), suchthatg(i,j) = F;; Vi,j € Z, (1.6)
gev

or to the approximation problem

g =argmin » > |g(i,j) — F ;| + AP(g). (1.7)
9€V =1 j=1

The former problem interpolates the discrete image exactly, i.e., g(i,j) = F; j, while in the
latter this is in general not the case. Both minimization problems use a penalty term P(g) >
0, that restricts the solution. For example, it penalizes the smoothness of the solution with
P(g) = |D™g]||%, m € N. The approximation problem uses a regularization parameter A > 0
to adjust the penalty term. Note that the existence and the uniqueness of the solution depends

mainly on the chosen function space V.

If the space V' € L?(IR?) has a Hilbert basis, the approximated function g € V has a repre-
sentation as a unique expansion of the basis functions. Function spaces of interest are spaces
which are generated by integer translates of one single function. First, having only one func-
tion minimizes the computational complexity and second, the space V is translation invariant
which is important for handling convolutions. Another reason is that translation invariant
spaces have been studied quite well in the literature about wavelets, e. g., Mallat [22], and a
solid mathematical foundation has been established.

Let ¢ € L?(R?) and the span of its integer translates generate the closed subspace V. Then
the discrete image F' is approximated by an expansion

g(z) =Y arpla — k), (1.8)

keZ?

where the coefficients (cj ) ez minimize the approximation error of the continuous represen-
tation f € L?(R) of F in V/,

(ck)rezz = argmin ||f — > cpo(- — k)|,
(Ck)EZQ(ZQ) kez?

Downscaling the approximation g is done by dilation with a factor o > 1:
ga(z,y) = glaz,ay), forz,y e R (1.9)

Sampling of g, leads finally to the discrete solution. Note that g, is in general not in V. But
if sampling is well-defined for g € V/, so it is for g, due to the unitary dilation operator, see
Section 2.1.
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Since the model is entirely described by the pixel values it has to be noted, that this can also
be done in the DCT domain. Equation (1.9) can be expressed equivalently in the DCT domain
as expansion of the transformed basis functions

Cg= > cCo(z —k), (1.10)
keZ?

where C denotes the two dimensional DCT transform operator. The explicit discussion of
downscaling methods are treated in Chapter 5.

Chapter 2 deals with the mathematical foundations required for the downscaling problem, but
first an overview of the research of downscaling is given in the next section.

1.4. Related work

Section 1.1 mentioned that downscaling methods can be separated into downscaling in the
pixel domain and downscaling in the DCT domain. The difference is that downscaling meth-
ods in the frequency domain operate on the specific 8x8 block tiling of JPEG, while the pixel
based methods operate on the whole image. The former methods have less computational
complexity, as they avoid the complete process of inversion of the DCT coefficients and the
subsequent DCT of the down-scaled image. They scale down the image directly in the DCT
domain. In contrast, pixel domain methods require the complete inverse/forward DCT, but
can achieve high image qualities with the disadvantage of high computational costs.

1.4.1. DCT domain downscaling methods

In the literature of downscaling methods in the DCT domain there are two different ap-
proaches. One approach uses ideal filtering, i.e., truncation and zero-padding of the DCT
coeflicients for downscaling [11, 12, 23, 26, 31], while the other approach adapts pixel do-
main downscaling methods to the DCT domain [21, 24]. Methods of the first type are using
a rescaling of the DCT basis, as discussed by Martucci [23] for general block DCT’s and for
JPEG images explicitly by de Queiroz [11]. Based on this idea, Dugad and Ahuja [12] devel-
oped a fast algorithm for down-sampling and up-sampling by a factor of two and analyzed
this algorithm in theory and in numerical experiments. A so called L/M-fold image resizing
method with higher computational complexity was introduced by Park et al. [26], based on
the correspondence of multiplication in the spatial domain and symmetric convolution in the
DCT domain. The downscaling factor was also generalized to L /M, where L and M are in-
tegers. A fast version of this method was given later using fast DCT algorithms [27]. Salazar
and Tran [31] generalized the method of Dugad and Ahuja [12] to any rational scale, as this
method only considered downscaling by a factor of two. The drawbacks of all of these meth-
ods are due to the use of the ideal filter. On the one hand, they introduce ringing and aliasing
effects, but on the other hand these methods have low computational complexity [12].

Other methods are using the fact that downscaling in the DCT domain can be separated into
inverse DCT, downscaling, and finally the forward DCT. They combine this process into a
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double sided matrix multiplication. In the work of Merhav and Bhaskaran [24], the pixel
domain downscaling process was chosen as a linear interpolation scheme. The related double
sided matrix multiplication was then factorized into sparse matrices to reduce computational
complexity. A generalization of this idea, namely choosing any kind of sub-sampling scheme
is discussed by Lee and Eleftheriadis [21]. The quality and the computational complexity of
these methods depend only on the chosen pixel-domain downscaling method. Thus the most
significant drawback is the increased complexity introduced by the usual non-sparse matrix
multiplication.

However, all these DCT downscaling methods suffer from the fixed 8x8 block tiling of the
image and thus may introduce blocking artifacts.

1.4.2. Pixel domain downscaling methods

Downscaling methods were first considered as re-sampling with a larger sampling step, ac-
cording to Shannon’s sampling theorem [34] from 1949. This directly corresponds to the so
called sinc-interpolation method. To determine the best interpolation method, Parker et al.
[28] considered in 1983 different interpolation functions which correspond to the nearest
neighbor, the linear, and the cubic B-spline interpolation. The result showed the advantage
of the cubic B-spline over the others, which approves the theoretical results of the approx-
imation quality of B-splines examined by De Boor [8, 9]. Keys [16] introduced a fast cubic
spline convolution method. In 1991, Unser et al. [42] considered fast B-spline transforms for
image interpolation and further enhanced the theory and applications of discrete B-splines
[43, 44]. Using B-splines to downscale images with arbitrary scaling factors is discussed in
the sense of least square approximation, which led to orthogonal projection methods. The
concept of downscaling is extended to pre-filtering, sub-sampling and post-filtering. Based
on these considerations, Thevenaz et al. [37] introduced a generalized interpolation concept
and compared several basis functions according to their approximation properties. This paper
concludes that the approximation order is the most important factor for image quality, while
the computational complexity is mostly affected by the support of the basis functions. The
B-splines outperform almost every other method regarding the image quality and the com-
putational complexity. Better in this sense are the so called MOMS basis functions discussed
in Blu et al. [3], because they have maximal approximation order regarding their minimal
support due to the lack of smoothness. Lee et al. [19] introduced a fast image resizing ap-
proach using oblique projections instead of orthogonal projections. Downscaling factors that
are a power of two are extensively discussed in the wavelet literature [22]. A comprehensive
overview of this history is given in [39] and a widespread discussion about the B-splines is
shown in Unser [38].

In general, downscaling methods in the pixel domain have been well studied, where the re-
sulting image quality corresponds to the approximation properties of the used basis functions.
Therefore, high image qualities can be achieved due to higher computational costs compared
to the DCT-based methods.
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2. Mathematical Preliminaries

This chapter gives the foundation for the modern sampling theory, that will be discussed
in the next chapter. First, the most important facts of the Fourier Analysis are reviewed.
These facts are used frequently in this thesis, since most of the results rely on the Fourier
transform. Then the theory of sampling of band-limited functions according to Shannon is
introduced. Section 2.2 concludes with the result that band-limited functions can be perfectly
reconstructed by their sampled values at a proper sampling rate. The next chapter introduces
a generalized sampling approach by the use of a sequence of integer translates of a single basis
function. This sequence is usually not orthonormal, which leads naturally to the concept of
frames and Riesz bases. These concepts can be seen as an extension to orthonormal bases
and will be considered in Section 2.3. Next, basis properties about B-splines are discussed. B-
splines have excellent approximation properties and will be used in this thesis as the chosen
basis function for the generalized sampling theory. It will be shown, that the integer translates
form a Riesz basis. Finally, a computational problem related to the calculation of the expansion
of a function in frames will be outlined, which is important for the numerical experiments.

2.1. Short review of Fourier analysis

In this section a short review of the most important statements of the Fourier analysis is given.
To hold this section compact, the proofs are omitted, but can be looked up in Lasser [18], Mallat
[22], and Ramanathan [29].

The Fourier transform for a function f € L'(R) is defined as
flw) = / f(z)e 2™ dy, forw € R. (2.1)
R

The function f is bounded and uniformly continuous on R.

If further f € L'(R), the inversion formula holds:

flx) = Af(w)eQ”iw'xdx, for z € R. (2.2)

Because L!(R) N L?(R) is dense in L?(R), the Fourier transform can be extended to the
space of square-integrable function L?(IR). The space L?(R) as Hilbert space with its inner
product is usually preferred over the L!(R). This extension yields to the Fourier operator
F : L*(R) — L?(R). The inverse operator is denoted by F 1. Note that in contrast to the
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pointwise defined L! Fourier transform, the operator F for functions in L?(R) is only defined
by the limit of a uniformly converging sequence in L!(R).

Some properties for f,g € L?(R) are
O F £l = 1112
(i) (Ff,Fg)=(f,9), and
(iii) for f € L'(R) N L?(R) the equality Ff(w) = f(w) holds.

Now the translation, dilation and the modulation operator Ty, Dy, My : L*(R) — L%*(R) are
introduced for a,b € R and @ > 0 for easier notation:

Taf(:E) f(l‘ - CL),
Daf(x)=f ().
Myf(x) = ™% f(z).

All these operators are unitary and their inverse is given by

In combination with the Fourier transform the commutator relations of the operators
Fly,=M_o,F, FDy=DiF, FMy="TF

hold.

The convolution of two functions f, g € L'(R) is defined as

(f % g)(x) = /R F(w)g(a —y)dy = /R ) Ty9(x)dy. (23)

The convolution is well defined and further f * g € L'(R).

The convolution theorem states an interesting relation between the convolution and their Fourier
transform:

—

(f*9)w) = f(w) - §(w). (2.4)

Note that this equation also holds for function f, g € L?(R) with the L?—Fourier transform

F. With this observation the convolution can be seen as filtering the function f with a filter

g where certain frequencies are omitted. A typical filter is the so called ideal filter defined

by X[-1.1] (w), which removes all frequencies larger than 1/2. The ideal filter is shown in
272

Figure 2.1 with its Fourier transform, the sinc-function that is not in L*(R) but in ?(R).
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A function f € L'(R) can be transformed into a corresponding 1-periodic function fye, €
LY(T) by

Jper(z) = Z flx+ k), for almost all z € T. (2.5)
keZ

The function fpe, is 1-periodic and thus f,e, € L'(T). For 1-periodic functions f € L!(T),
the spectrum of the Fourier transform is discrete. The k’th Fourier coefficient of f is defined

by

i) = [ sy, (2:6)
with inversion
f@) =" fk)e*me. (2.7)
kEZ

As above, the following properties hold for f,g € L'(T):
(i) (f * g)(x) is well defined and f * g € L'(T),

@) (f«g)(k) = f(k) - 9(k).
The Poisson summation formula states that the inversion of the Fourier series, where the co-
efficients are the integer sampled values of f, leads to the 1-periodic version of f according
to (2.5). To be more specific, for f € L'(R) sufficient smooth and such that f € L*(R) has
sufficient fast decay

D Fk)e T =N " f(z+ k) (2.8)

k€EZ keZ

holds. Interpreting this result yields, that sampling in the frequency domain corresponds to
periodization in the time domain and vice versa.

2.2. Shannon sampling theorem

In communication theory, the reduction of the amount of data to be sent over a network is
crucial. In order to achieve data reduction, the continuous real-world signals are sampled and
only the discretized signal values are sent. Therefore, one can ask for the minimal sampling
rate at which continuous signals can be reconstructed without loss of information. This mini-
mal rate was firstly considered by Nyquist in 1928. Later, in 1949 Shannon proofed this lower
bound in his well known sampling theorem. This section will state this theorem and discuss
related problems in the sense of sampling.

For some o > 0 we consider the Paley-Wiener space
PW, = {f € L2(R) : supp f C [—%%]} (2.9)
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(@) X[-1,1] (b) sinc(x)

Figure 2.1. The characteristic function and the sinc-function.

which is the space of functions that are band-limited to [—a/2, «/2]. Note that sampling in
this space is well-defind, as all functions f € PW, are continuous.

Sampling, i. e., discretizing, a function f € PW,, leads to periodization of its Fourier trans-
form. This is a direct consequence of the inversion of the Fourier series and the Poisson
summation formula (2.8):

D Fk)eF Y =3 f(w+ k). (2.10)

k€EZ keZ

Now the main theorem of this section can be formulated according to Shannon [34]. Note
that Kotelnikov (1933) and Whittaker (1935) proved similar results earlier in the context of
interpolation theory.

Theorem 1 (Shannon sampling theorem) Let f € PW, and T > O where p := % > a.
Then

f(z) = Zf(kT) sinc <% — k:) = Zf (l;) sinc (px — k). (2.11)

keZ keZ

The function sinc(z) € L?(R) is defined as (see Figure 2.1)

{sini;r:p)’ T 7& 0

. 2.12
1, z=0 212

sinc(x) =

The term p corresponds to the sampling rate of the function f and is often called the Nyquist
rate according to its originator. The values f(kT), k € Z are called samples or sample values.

This theorem states that for perfect reconstruction of f we only need the sample values
f(ET), k € Z. 1f the function f is not bandlimited or the sampling rate p is too low, then the
so called aliasing artifacts occur. This effect is illustrated in Figure 2.3 and an example in 2D
is given in Figure 2.4.

To get a fundamental understanding of the aliasing effect, a sampling rate lower than the
theorem states is assumed now. Therefore let f € PW, and p < «. As in the Sampling
theorem, a function f is reconstructed by the interpolation formula

fao) =3¢ (i) sinc (pz — k). (2.13)

kEZ
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Clearly, the values of f and f conincide at the sample values, But if the Fourier transforms of
f and f are compared, one can see that f is not equal to f. First, note that the relation

omizw % oimw e—7riw _ em’w
](W) = X[_; ;](l‘)e dr = e dx =
R 2732 _%

= sinc(w) (2.14)

—2miw

holds. Then the Fourier transform of f yields to

fw)= [ (ﬁ) sinc (p — k)e™ 277 da

> / sinc (pz — k)e 2Ty
R

In the middle of the derivation the fact that F sinc(w) = x

11 (w) is used while in the last
272
step the Poisson summation formula (2.8) is applied.

The last line shows that the ideal filter X[-g.e] (w) cuts off the frequencies of the periodized
22

version of f with period p. Hence the function F f and Ff would be only equal if f € PW,,.
The last considerations are illustrated in Figure 2.2 and Figure 2.3. The former illustrates sam-
pling with an appropriate sampling rate, while the latter demonstrates the aliasing effect.

Note that the ideal filter represents the ideal anti-aliasing filter, because everything beyond

the interval [—g, g] is removed. A drawback of using this ideal filter is its discontinuity.

flw

o ' & w

2 2

(a) Fourier transform

kez F(w + pk X[-2.2](@) Xez flw+ pk
‘,0 | )7 0y ‘p | b
2 2 —5 2
(b) Periodization (c) Filtering

Figure 2.2. Sampling theorem with appropriate sampling rate p = a.
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flw > okez f(w + pk

T | & W }p | Lé) W

2 2 2

(b) Periodization

(@) Sher flw+ k)

S

| |
w L w
2 2

(c) Periodization (d) Filtering

Figure 2.3. Sampling theorem with a sampling rate p < «.

Therefore, the sinc-function as the Fourier transform of the ideal filter is not compactly sup-
ported. Also the sinc-function has a low decay asymptotically like 1/z. At least it has to be

mentioned that a real world device like the ideal filter does not exist, which underlines the
meaning of ideal.

If a function is not band-limited it has to be pre-filtered with an anti-aliasing filter to apply the
Shannon theorem. Shannon proposes the ideal filter for anti-aliasing. This pre-filtering step

is an important step to consider, because functions occurring in the real world are usually not
band-limited.

%

Z

(a) Correctly sampled image (b) Undersampled image

Figure 2.4. Aliasing effects in 2D.
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2.3. Frames and Riesz bases in L*(R)

Orthonormal bases provide a well known framework to deal with in the Hilbert space L?(R),
because every function can be represented as expansion of the elements of the orthonormal
basis. The integer translates of the sinc-function, used in Shannon’s theorem, form an or-
thonormal basis of the space of band-limited function. Usually, translates of other functions
do not lead to an orthonormal basis. Frames can be seen as extension of this concept. For
each function an expansion with frame elements exists. But in general, this expansion is not
unique. The introduction of Riesz bases as special frames will fix this issue in Section 2.3.2.
Finally, motivated by the preceding discussion, some properties for Riesz bases that are gen-
erated by integer translates of a single function will be developed.

This section gives only a compact overview about frame theory and more detailed information
can be found in Christensen [6].

2.3.1. Frames

Definition 1 A sequence {f). : k € Z} C L?(R) is called complete in L?(R), if

span{fy : k € Z} = L*(R). (2.15)

Trivially, every sequence is complete for its closed span, span { fx : k € Z}, as direct conse-
quence of its definition.

Definition 2 A frame for L?(R) isasequence {fi, : k € Z} C L?(R), if there exist constants
0 < A < B, such that

AIFIP <Y KA P < BIfI?,  forall f € L*(R). (2.16)

kEZ

The constants A and B are called the lower and upper frame bounds respectively. The frame
is an orthonormal basis iff A = B = 1.

In the following, the sequence {f; : k € Z} is assumed to be a frame. As stated, the interest
lies on expressing a function as an expansion with frame elements. For that purpose one can
examine the expansion

kEZ

Because of the existing upper frame bound this expansion is also well defined. To formalize
this expansion, two important operators are introduced next.

Definition 3 The synthesis operator U : 1?(Z) — L?*(R) is defined as

Uc= chfk (2'17)

keZ
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Its adjoint U* : L?(R) — 1%(Z),
U f = ((f, fi)kez » (2.18)

is called the analysis operator. Together they form the frame operator S : L?(R) — L%(R),

o0

Sf=UU"f= > (f fe)f- (2.19)

k=—o0

Theorem 2 The frame operator S' is bounded, invertible, self-adjoint, and positive. Furthermore
the inverse frame operator generates the so called dual frame {Sflfk ke Z} with frame
bounds B~' and A~'. The inverse frame operator has the same properties as the frame operator.

As the inverse frame operator is a frame operator by itself, it has the same properties. It is
bounded, invertible, self-adjoint, and positive.

Analog to the decomposition of a function to an expansion with uniquely defined coefficients
and elements of a basis, one can express every function f € L?(R) as a linear combination of
the frame elements:

=887 =Y (ST i) e =D (L ST k) e (2.20)

kez keZ
Not that in difference to a orthonormal basis, this representation is not unique.

Compared to bases, a frame is not a minimal system, i. e., the elements are linearly dependent,
and as such, contains in general redundant information. In the next section the concept of
Riesz bases is introduced which can be seen as minimal frames.

2.3.2. Riesz bases

This section specializes the concept of the frames to those allowing for a unique decomposition
into the frame elements.

Definition 4 A complete sequence {f; : k € Z} in L?(R) is a Riesz basis for L?(R), if there
exist constants 0 < A < B such that for every sequence ¢ = (c;)rez € [2(Z) the following
constraint holds:
2

2
Alleliz@z) <

> et

kEZ

< Bllelizz - (2.21)
L*(R)

Every sequence that only fulfills (2.21) is a Riesz basis for its closed span and is called a Riesz
sequence.

Clearly this is a stronger condition than required in (2.16) to be a frame. Indeed the next
theorem states that every Riesz basis is a frame.
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Theorem 3 A Riesz basis { f, : k € Z} is a frame, i. e., there exist constants 0 < A < B, such
that

ANFIP <Y KL P <BIFI?, forall f € L(R).

kEZ

Since every Riesz basis is a frame, the frame operator S allows a decomposition of a function
f € L?(R). Further it induced the dual frame basis {S_lfk t ke Z}.

The difference between a frame and a Riesz basis is characterized by its unique decomposition
of the null function.

Theorem 4 A frame {fy, : k € Z} for L>(R) is a Riesz basis for L?(R), iff from the statement

Z ckfr =0, for some ¢ = (cx)rez € 1*(Z)
keZ

follows that c;, = 0 forallk € Z.

That means reversely that in a frame that is not a Riesz basis the null element has no unique
representation, thus the frame elements are not linear independent.

Finally the decomposition of a function f € L?(R) results into the unique representation for
the Riesz basis elements fj, k € Z:

=887 = (ST ) e =D (L ST k) e (2.22)

keZ keZ

2.3.3. Riesz bases of translates

The Shannon sampling theorem introduced in Section 2.2 motivated the use of translates of
a function, where in this particular case the sinc-function is used. This section investigates
the properties of Riesz bases that are generated by the integer translates of a certain func-
tion. In contrast to the last sections, some proofs are provided that demonstrate some typical
calculations.

Let ¢ € L*(R). The closed space V,, C L?(R) is defined as the span of the integer translates
of ¢,

Vo, =span{Typ : k€ Z} = {Z ckTip  (ck)kez € lz(Z)}. (2.23)
kEZ

This ¢ is called the generator of its generating space V.

The Riesz basis property depends only on the function ¢ and can be furthermore characterized
by its periodization in the Fourier domain.
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Theorem 5 The sequence {Typ : k € Z} is a Riesz basis for V., iff there exist constants 0 <
A < B with

A<D glw+Ek)* < B. (2.24)
keZ

The generated space V,, is a proper subspace of the L*(RR).

Proof. Let c = (c)rez € 1*(Z).

o0 [e.e] 2
> T :' ( > Cke—k> Fep 2/ > ke k(W) @) dw
keZ k=—o00 Rir=—co
© il 2 ,
-> exep(@)| [¢(w)] dw
I=—o0 /! k=—o00
1 oo 9] 2
[ 2| X et d)| oD
0 l=—00 |k=—00
1 o0 2 o0
~ [ 2 cento)| - 3 P
0 Jk=—oo l=—00
1] oo 2
< B/ Z cre—_k(w)| dw
0 k=—oc0
= Bllellizz) -
The result about the lower bound follows in an analogous manner. ]

Clearly the function Y, ., |#(w + k)|? is 1-periodic. To simplify the notation, this periodic
function is denoted by

D(w) = [@(w+ k). (2.25)

keZ

Lemma 1 Let p € L%(R). Then the previously defined function ® is 1-periodic and ® € L*(T).
It has the Fourier coefficients

e, = (p, T — k). (2.26)

Lemma 2 If{Typ : k € Z} is a Riesz basis for V,, = span{Typ : k € Z}, then the following
holds:

(i) f € Vo, iff f(w) = h(w) - p(w) where h € L*(T),
(i) If f = > ez ckTrp, then f(w) = h(w) - ¢(w) where h(w) = Y ore oo ke (w).
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Item (i) characterizes all functions in V,,, while in (ii) a helpful version of the convolution
theorem of a discrete convolution of a discrete and a continuous function is provided (compare
with (2.4)). Both properties will be used in the following.

Now some important properties of the dual frame are developed. In the next theorem it will
be shown, that the dual frame is also generated by the translates of a function depending on

®.

Theorem 6 Let ¢ € L*(R), {Ty¢ : k € Z} a Riesz basis for V, with frame operator S. Then
the commutator relation

STy, =T} and SilTk = TkS’l

holds. As a consequence the sequence of integer translates {TkS_lgo ke Z} constitutes the
dual basis of the frame.

Proof. For f € L?(R), it holds:

o0 [e.9]

STif = Y (Tf. Tip)Tio = D (f, Tire)Tip
l=—o0 l=—00
= > (£ Tip)Tiine
l=—o0
=T}.Sf. 0

Because the dual basis is given by {T,S" !¢ : k € Z} a function f € V,, can be uniquely
decomposed as

o o

F=85TF= Y (ST Tep = Y (f,TeS ) Thep,

k=—o00 k=—o00

Theorem 7 Let D = {w € R : ®(w) = 0}. Then

2(w)
By =0 0 D
0 , wé¢D

defines the dual generator S~'¢ to .

Proof. Let h(w) = ®(w)~L. Thenfor 0 < a < b: a < |h(w)| < band h € L2(T). Hence,
P(w) = h(w) - p(w) where h € L*(T). According to Lemma 2, ¢ € V.
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Further we get

[e.e]

FSp = (&, Thp) FTrep

k=—o00
oo

= > (¢, FTh) Flrgp

k=—o0

= ( > (@ ek@fek) @

k=—o00
The inner product gets
(breot) = [ H)F

/ Z qgw—kn w_|_n) 27riw(k+n)dw

n=—0oo

/ Z d(w + n)p(w + n)e?™ k) 4y,

n=—oo

The functions e_g, @, and xp are 1-periodic, thus

¢,6 kSO / Z |90 w+n (w+n)62ﬂiw(k+n)dw

1 00
_/o ®(w) Ly p(w)e?™ ik Z |p(w +n)*dw

1
= / Xp(w)e_gdw,
0

which is exactly the —k’th Fourier coeflicient of x p. Therefore, the series yields to

o0

> (b e k@) Fe i = xpe.

k=—o00

As result we obtain FS¢ = yp¢. By definition of the set D, it follows that yp(w) = 1 <
H(w) # 0. To sum up,

FSop=xpp=¢ =Sp=p =¢=5"¢ O

Theorem 8 Let o € L%(R) generate the Riesz sequence {Typ : k € Z} and § generate the
dual frame, i.e., = S~ p. Then for all f € V,

f=> (£, Thd)Trep (2.27)

kEZ
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and

(¢, Tkp) = o k- (2.28)

The sequences {Typ : k € Z} and {Tp : k € 7} are said to be bi-orthogonal.

Note that the dual frame elements T, € V,, for all £ € Z and therefore, the dual frame is
also generated by integer translates.

2.4. B-Splines

In general, splines are continuous piecewise polynomial functions up to a certain degreen € N
which do have continuous derivatives up to order n — 1. If the knots of the splines are at the
integer values, Schoenberg showed in 1946 that the integer translates of the B-splines form
a basis for the space of splines of equivalent degree. Curry and Schoenberg generalized this
result in 1966 to arbitrary knots [7, 8]. The B-Splines are compactly supported and have an
interpolation order of n. Moreover, they have minimal support for a given interpolation order,
as shown by Blu et al. [2], Boor and Lynch [4].

In this section, elementary properties and results about these basic splines are shown.

Definition 5 (B-Spline) The symmetric cardinal B-Spline (3,, of order n € Ny is inductively
defined for z € R as

bole) 1= X[-4,
/6 (LL’) (Bn 1

z)

(2
Bo)(x), forn € N.

w\»—'

*

Figure 2.5 shows the cardinal B-Splines of orders 0 to 3. With increasing order the spline gets
smoother while the support gets larger.

To be more specific the characteristic properties of the B-Spline are shown next.
Theorem 9 (Basic properties) Letn € Ny, then
(i) supp(fn) = [—"T“, =,

(”) /B’I’L fR /Bn x = ]-:
(iii) forn > 1, the partition of the unity holds, i.e, > ., Bn(x — k) = 1 forallz € R, and
finally

(iv) Bn(w) = <7Sin7(rzw)>n+l = (sinc(w))™ 1.
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The first property states that a B-Spline of order n is supported on an interval of length n.
Secondly the L?-energy of B-Spline of any order is always normalized, i. e., equal to one. B-
Splines form a partition of the unity, thus they are able to reproduce constants exactly. The last
item characterizes the frequency behavior of the B-Spline where the fast decay with increasing
degree has to be remarked.

According to Strang and Fix [36] having interpolation order of n can be examined by the
derivatives of the Fourier transform.

Theorem 10 (Strang-Fix) Let ¢ € L%(R). Then the following conditions are equivalent:
1. ¢ has interpolation or approximation order n

2. It holds that
5(0) = 1, (229)
and forallm € {0,1,...,n}

D™"p(k) =0 forallk € Z\ {0} (2.30)
3. All monomials of degree up ton can be reproduced

Property 3 of Theorem 10 implies the first condition for the characterization with the deriva-
tives of the Fourier transform. Using the basic property (iv), for £k € Z \ {0} and m €
{0,1,...,n} the following equality holds

(n+1)!

1= m) (sinc(k))" ™7™ - R(k), (2.31)

D™ B (k) =
with some unspecified term R(k). Because sinc(k) = dg for integer numbers k € Z it

follows directly that Dmﬁn(k) = 0. Thus, the second Strang-Fix condition of Theorem 10
shows that B-Splines of degree n have interpolation order n. More specifically, they have
minimal support for this property, see Boor and Lynch [4].

In the beginning it was mentioned that the B-Splines of degree n form a basis of the Splines
with the same degree. The next theorem will link this statement with the results of the frame
theory and guarantee the uniqueness of the B-Spline expansion.

Theorem 11 Forn € N, the translates of the B-spline of order n {Ty.(3,, : k € Z} form a Riesz
sequence and a Riesz basis for span {T}.0,, : k € Z}.

2.5. Calculation of the frame coefficients

Looking back to Shannon’s sampling theorem, it is known that the integer translates of the
B-Spline of zero degree, Bo(x) = x[_1 17(x), build an orthonormal basis for its generating
272

space, as the shifted sinc-function build an orthonormal basis.
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1 Bo 1
| | &
; ; . ‘ | o
—0.5 0 0.5 -1 0 1
(@) Bo (b) 51
Y Yy
! Bo ! B3
| | — | | b
—1.5 0 1.5 —2 0 2
(c) B2 (d) 33

Figure 2.5. Examples of the cardinal B-Spline.

B-Splines of higher degrees only form a Riesz basis. According to Theorem 7, the dual frame
basis can be calculated, if one can evaluate the series

2
) (2.32)

d(w) =Y }Bn(w k)

kEZ

The evaluation of these series for high orders is a difficult and time consuming task. In real
world problems the dual frame basis is usually not explicitly required, the interest instead lies
only on the analysis coefficients which can be examined by another way.

This section introduces one way to calculate these frame coeflicients.

If the translates of ¢ build a Riesz basis then the coefficients are uniquely defined through the
dual basis {1}, : k € Z}:

ek = ([, Tp)- (2.33)
There is also a way to calculate the coefficients without the knowledge of the dual basis:

cr = (f,Thp) = (f, >_(Tu, Tig)Tigp)
leZ

IEZ

Written with the frame operators, where U and U denotes the analysis operator of the frame
basis and its dual basis respectively.

c=UU-U*f. (2.34)

Because the dual basis is characterized through the bi-orthogonality constrained (Typ, T;@) =
O, for k, 1 € Z, it holds that

UU U0 = U (UU*)U = U*U =1d. (2.35)
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By multiplying (2.34) with U*U, the coefficients can be calculated as solution of
UUe = U, (2.36)

where no knowledge about the dual basis is needed anymore. But instead, the inverse of the
grammian U*U is needed.

In the discrete setting the gram matrix is usually very sparse for integer translates. An efficient
way to solve this is to use the conjugate gradient method ([35]). For large images, solving this
linear system with conjugate gradient methods is still too slow. The next chapters will show
an alternative calculation method, where the special characteristics of the gram matrix are
used.
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3. Introduction to Modern Sampling
Theory

In Chapter 2, the tools of the classical sampling theory were introduced. This chapter con-
tinues with a brief insight into recent advances of modern sampling theory. In Unser [39],
the reader finds a comprehensive overview of the progress in the sampling theory of in last
decades.

This chapter extends the sampling theory based on Shannon from the space of band-limited
functions to the space generated by the translates of a certain function. Especially, the space
of splines generated by shifted B-splines is considered due to its approximation properties. As
splines are in general not band-limited and cannot be reconstructed from the sample values
with Shannon’s sampling theorem, shown in the last chapter, sampling in the space of splines
is a true generalization. Also, this chapter shows that the space of band-limited functions is
equal to the space of splines of infinite degree.

Recall that the translates of a function ¢ € L?(R) generate a closed subspace of L?(R)

Vo = {Z eIy (Ck)kez}-

kEZ

If there are 0 < A < B such that

A< fgw+ k)P <B,
kEZ

the sequence {1} : k € Z} form a Riesz basis for the closed space V,,, as shown in Sec-
tion 2.3.3.

In this setting, the orthogonal projection of a general function f € L?*(R) into the space V,,
is given by the operator P, : L*(R) — V,,
P,f =argmin||f — gl 2y = >_(f> Tu?) Tep,
9V keZ

where the integer translates of ¢ generate the bi-orthogonal dual basis as shown in Theo-
rem 7.

INTRODUCTION TO MODERN SAMPLING THEORY 28



3.1. Shannon sampling revisited

In this section, the already known sampling theory according to Shannon is viewed in the
context of translates of a basis function. In particular, the integer translates of the function
() = sinc(x) are considered.

One can show that these translates form an orthonormal basis:

(T}, sinc, Ty sinc) = sinc(k — 1) = dj; for k,l € Z.

To simplify notation, the following is discussed only for functions which are band-limited to
[—1/2,1/2]. This corresponds to proper sampling rates of p > 1 and to a sampling step lower
than one. Here the sampling rate of p = 1 is chosen, because sampling at the integers is
required in a discrete setting. Different sampling rates are treated in an analog manner.

The Shannon sampling theorem (Section 2.2) states that every function f € PWj can be
represented as

Z f (k) sinc ( Z ¢k sinc (z — k),

k€EZ kEZ

for the coefficients ¢, = f(k), k € Z. As a consequence, the translates of sinc form an
orthonormal basis of the space of band-limited functions PW7, and the coefficients

cx = (f, Ty sinc) = f(k)

are the projections to the translates. Not that if f ¢ PWj, then ¢, # f(k). The Fourier
transform yields

ék:(f,ﬁ;nd f*51nC—wa+l Zx . (w+1)
12 lez 23

leZ

which is obviously different to f, if f ¢ PWj. The samples are pre-filtered with the ideal
filter.

With that knowledge, the orthogonal projection Py : L%(R) — PWj is given by

Fiincf = Z(f, Ty sinc) T}, sinc,

keZ

and obviously Pf = f holds for f € PWj. Interpreting this results yields to the fact that the
Shannon sampling theorem minimizes the L2-error for a function f that is not in PW;

min
(Ck)EZZ Z)

f— Z ¢ Ty, sinc

kEZ

L2(R)
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with the coefficients (cx)rez = ((f, T}k sinc)), o5 Furthermore, if f € PW7, the coefficients
coincide with the sampled values of f.

The question arises if there are other spaces that are larger than the space of band-limited
functions. Then more functions can be reconstructed from the samples if they are in this
space. The space of piecewise polynomials is considered as this space and will be treated in
the next section.

3.2. Generalized sampling

To generalize the Shannon sampling concept instead of the sinc-function general functions
¢ € L%(R) are considered, that satisfy certain properties.

Let ¢ € L?(R), such that the sequence of integer translates {Typ : k € Zz} form a Riesz
basis for its generated space

Vo =span{Tp : k€ Z}. (3.1)

In the same manner as in the Shannon sampling theorem the orthogonal projection into this
space can be considered. Let f € L?(R)

Pof(x) =Y (£, Ta@)p(z —k) = cxpla — k). (3.2)

kEeZ keZ

The difference to the Shannon theorem are the coefficients (c;) which are different than the
sampled values of f.

The coefficients ¢, can be seen as a pre-filtered version of f with the filter ¢(—x). The follow-
ing synthesis with the translates of ¢ can be seen as post-filtering. Instead of the ideal pre-
and post-filter proposed by Shannon, the filters determined by the function ¢ are used.

For the discrete setting Thevenaz et al. [37] showed an interesting relation to interpolation.
Let (fi) € [?(Z). The minimizer for the discrete minimization problem

2
min fn— ckTrp(n) (3.3)
cer(z) nez ! 1;2
interpolates the sequence exactly at the integer values, i. e,
fn = Z e Tre(n), foralln € Z. (3.4)

keZ

This restriction can be re-written as a discrete convolution of the missing coefficients (cy)
and the integer values of ¢. For a clear notation, the sequence (¢ )xecz denotes the integer
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sequence generated by ¢, i.e., o = @(k) for all k£ € Z. Then the minimization problem (3.3)
yields to the deconvolution problem

fa= ckp(n—k) = ((ck)rez * (¢r)rez) (n).

keZ

The problem now consists of two tasks. First the coefficients c; have to be calculated then the
orthogonal projection can be represented as the series expansion with those coefficients and
the integer translates of ¢.

If one denotes with golzl the convolution inverse of the sequence (¢ )kecz, i €.

((er) ™" = (0r)) (n) = So,n, (3.5)

the calculation of the coefficients simplifies to
() = (i) * () ) (n).

Combining the previous steps, the interpolated function g € L?(R), where g(n) = f,, for all
n € Z, is given by

g(x) = ap(x—k) =D (fxop )olx—k) (3.6)

kEZ keZ
=Y fR)D e ez —k—1) =3 f(k)pimi(z — k).
keZ leZ keZ
@intz;*k)

In brief, the function ¢;,¢(x — k) replaces the sinc-function and the property
pin(k—1) = 0py,  fork,l €7 (3.7)

holds. For a given sequence ( fi)rcz, the representation in (3.2) defines a projection into V.
With respect to the computation of this projection, the function ¢;,; should be compactly
supported in contrast to the sinc function. As a consequence the series would turn into a
finite sum.

3.3. Sampling with B-splines

The space of band-limited function PW,, is appropriate to handle in theory, but has too many
drawbacks for real-world problems. The space of splines of a certain degree is significantly
larger. An increasing order of the degree leads to smoother functions and the Paley-Wiener
space PW; corresponds to the space of splines of infinite degree.

According to the theory of the last section, this section considers integer translates of a B-
spline function. Therefore, let () = (,(z) for a given order n. A general function f €
L*(R) has to be approximated in the space V3, generated by the translates of B-Spline. To
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clarify the notation the integer samples of the B-Spline are denoted with by, = [, (k) also it
should be kept in mind that the B-Splines are compactly supported. The convolution inverse
(bk);éz of the sequence (by)xez is defined as in (3.5).

According to (3.2), the orthogonal projection of f to the space of splines of degree n has the
B-Spline expansion

F@) = f, TeBm-1)Bm—1(z — k) (3.8)

keZ

=37 1) (B 1 (=) * B 1 (2)) (& — K);

keZ

Pint(x—k)

while the interpolating projection is defined by

F@) =" cxBulz — k)

keZ
=D fR)D b Bulw—k—1). (3.9)
kEZ I€Z

int(z—Fk)
In the following the functions ¢;,+ will be discussed and related to the sinc-function.

Figure 3.1 shows that the function ¢;,; looks very similar to the sinc-function. In common is
the interpolation property, i. e.,

pint(k) = b 'Bu(k—1) =0y forallk € Z, (3.10)
leZ

as a direct consequence of the definition of the inverse convolution. Furthermore Aldroubi
et al. [1] showed that if the spline degree tends to infinity, the function ;,; converges to the
sinc-function in the L2-norm as well as the corresponding Fourier transform ¢;,,; converges
to the ideal filter X[-1,1]- This result clarifies, that the sampling theory based on Shannon is

2
included as a limit case of the B-Spline interpolation.

Next the decay rate is compared. The slow decay rate of % follows directly by the definition of
the sinc-function. De Boor [10] showed that, in contrary, the function ¢;,; has an exponential
fast decay rate. For all degrees the function ¢;,; is numerically compactly supported and
hence can be computed very efficiently. The decay of several ;,;-functions are illustrated in
Figure 3.1.
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The sinc-function and the @;n;-function for several B-splines.
Compared to the infinite support of the sinc-function, the compact support of the w;,+ function
gets larger with increasing degree of the B-splines. Note that all functions values are zero at

the integers except they have value one at the origin.
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4. Splines and the Butterworth filter

In the preceding chapter, sampling with B-splines was introduced by the projection to the
space of splines. B-splines have minimal support and are maximally flat in respect to a given
interpolation order. Furthermore, the B-spline interpolation function ;,, defined in (3.9),
converges with increasing degree of the B-spline to the sinc-function. Or equivalently, the
Fourier transform ¢;,,; converges to the ideal filter [1].

Since 1930, the so called Butterworth filter is well known in the literature of signal processing
[5]. This filter is specified by a cutoff frequency and the order of the filter. It is designed to
be maximally flat, i. e, the derivatives up to twice the order of the filter are continuous. As
the function ;,¢, the Butterworth filter converges to the ideal filter with increasing order.
Additionally, the filter has no ripples and can be interpreted through the cutoff frequency
analog to the ideal filter.

This chapter connects the theory of the splines with Butterworth filter, which leads to a new
interpretation of B-spline approximation due to the recent work of Unser and Blu [41]. Be-
sides, the relation of a regularized minimization problem and the splines is established. The
intention is to get a better understanding of the projection to spline spaces and to motivate
their usage in this thesis once more.

The first section naturally relates the mathematical model, introduced in Section 1.3, to the
space of splines as the smoothest interpolating functions. Section 4.2 re-interprets the inter-
polation function ;y,; with the use of the Butterworth filter.

4.1. Interpolation problem

For a given sequence (fx)xez € [2(Z) one is interested in an interpolated function f € L?(R),
where f(k) = fi for k € Z and f sufficient smooth. The smoothness is specified by the
continuous derivatives up to a certain order m € N. To achieve a smooth solution, the highest
order derivative is minimized in the L?-norm. The function space, where all functions are
differentiable up to order m, is the Sobolev space W™ (R),

W™(R) := {f € L2(R) : D*f € L*(R) for all k < m} . (4.1)
Note that for all m € N, the space W (R) is continuously embedded into the space of con-

tinuous functions. In two dimensions, this statement is only true for m > 1. As consequence,
sampling in this space is well defined.
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A formulation of previously discussed constraints leads to the minimization problem

min [[D™g||, suchthat g(k) = fi Vk € Z. (4.2)
gewm

The next theorem, first stated by Schoenberg [33] in 1973 and further enhanced by Unser and
Blu [40], characterizes the solution of the minimization problem (4.2).

Theorem 12 The solution g € W™(R) of the minimization problem (4.2) is a spline of order
2m — 1. It can be written as expansion of the basis functions () = (Bm-1(z) * Bm-1(—2)):

g() =Y (h* f)(k)p(x = k), (4.3)

keZ
where the coefficients of (hy)rez € I1(Z) are defined by the Fourier series
1

H(w) — Z hke2m‘k-w — -
hez S es ’ B (w + k)

)

Equation (4.3) can be further written as convolution of (f)recz and a function @;,¢,

gl@) =Y (hx f)k)plz—k) =) [Z hif(k — l)] p(z— k) (4.5)

keZ keZ LIlez

=y [Z mf(k)] pla—k=0) =Y f(k)> hple—k=1)
k€Z LIEZ kEZ leZ

= f(R) iz — k),
keZ

where the function @, is defined as i, () = > ;7 hip(z—1). Interpreting the convolution
in the last line as filtering, this function acts like a filter on the integer values (f)rcz. It can
be explicitly expressed as the Fourier transform

Bmfl(w) : Bmfl(w) _ Bmel(W)
N 2 N
> kez |Bm-1(w + k)‘ > kez ‘5m—1(w + k)

Pint(w) = H(w) - p(w) = 5, (4.6)

using the convolution theorem (2.4) and F (B, _1(—2))(w) = Bm_1(w) due to the real-valued
B-spline (3,,—1. The middle representation consists of the B-spline Brm-1 multiplied with its
dual (bi-orthogonal) function as shown in Theorem 7. Note that the solution of the minimiza-
tion problem (4.2) has a similar Fourier transform as the orthogonal projection of the sampled

function f into the space of splines of degree m — 1, namely

9(x) =Y {f, TeBm-1)Bm-1(z — k), (4.7)

keZ

where the bi-orthogonal dual B-spline basis is defined by Theorem 7 for ¢(z) = B—1(2).
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To clarify this relation, the explicit calculation of the projection g(x) yields to

9(x) = > (f, TiBm1)Bm-1(x — k) (4.8)

keZ

= B, T f)Bm1(x — k)
keZ

= Z [Z B () f(k+1)| Bz — k)
keZ Llez

=Y [Z Brn1 (=) f (k — l)] Bin—1(w = k)
keZ LIeZ

= " Fk)> Brna(—1)Bmr(x =k —1)
keZ leZ

—Zf 6m 1 )*Bmfl(l’))(l’_k)
keZ Dint

Using Theorem 7 and the fact that Bm_l is a real function, one finally obtains the result related
to (4.6):

Bimt () = ém_l(w) ‘ Bm—l(w) _ Brm—1(w) - Z}kez 5m—1(w2+ k)
> kez |Bm-1(w + k)

(4.9)

Back to equation (4.6), the interpolated function can be obtained by calculating the convolu-
tion with the discrete values of f and the function ;.

4.2. Regularized approximation

If the interpolation problem is ill-posed where the data is noisy and the solution may not be
continuous or even unique, one tries to regularize it. Since the smoothness of the solution
is related to the energy of its derivatives one can use the highest order differentiation of the
Sobolev space W™ as regularization term. According to this consideration, the interpolation
problem turns into the approximation problem

min | fu = F(B)[* + X[ D™ f*, (4.10)
gewm
keZ

where A > 0 is a regularization parameter. The first term corresponds to the interpolation
problem, while the second term is a penalty term that ensures the smoothness of the solution.
Setting the regularization parameter ) to zero leads to the interpolation problem treated in the
last section. Larger values of A act like a low-pass filter, where high frequencies are attenuated,
and the solution gets smoother. As consequence, the solution may differ at the integer values
from fy.
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Schoenberg [32] and Reinsch [30] showed that the solution of this problem is also a spline of
degree 2m — 1. With the approximation property of the splines follows that every polynomial
up to order 2m — 1 will be reproduced independently of the values of A\. The next theorem
proved by Unser and Blu [41] characterizes the solution more clearly:

Theorem 13 The solution of the regularized interpolation problem in (4.10) is a spline of degree
2m — 1. It is given by

fa) = (hx (k)o@ —k) = frpme(z — k), (4.11)

keZ keZ

where the function ¢ € L*(R) is defined by p(z) = (Bm—1(x) * Bm—1(—2)). The coefficients
of h = (hi)kez are specified through the Fourier series

; 1
H(w) =) hye? e = - 5 . (4.12)
hez Spez |Bam—1(w + k)| + A|1 — e=2miw >
The function @;ns can be represented as the spline expansion
Gint(x) =Y hiBom—1(x — k). (4.13)

kEZ

The Fourier transform of ¢;,; shows some interesting properties. Applying the convolution
theorem, shown in Lemma 2, to (;,,; leads to

Gint(w) = H(W) - Bam—1(w). (4.14)
Replacing those terms shows that

1

Bint(w) = — . (4.15)
+ 27 |w]*™

E:keZ

Tw
Tw+rk

Following the recent work of Unser and Blu [41] the next theorem shows that ¢;,; is an
approximation of the well known Butterworth filter. The Butterworth filter B™ of order m &
N is defined as for wy € (0,1] as

B (W)= — 1 (4.16)

wo 2m”’
1+ (2)

Theorem 14 The Fourier transform Q;n of the smoothing spline estimator of order 2m — 1 and
regularization parameter X\ > 0 given in (4.15) approximates the Butterworth filter of order m
with increasing m or A. The relation between \ and the cut-off frequency wy is given by

_ 1
wo = (A422")72m < 0.5, (4.17)
A =wy2m - 27m, (4.18)
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Figure 4.1. Butterworth filter for ordersn = 1,2, 4, 8.

Returning to the interpolation problem with A = 0 the corresponding Butterworth filter gives
an interesting interpretation of the spline interpolation. The solution of (4.2) is the sequence
(fx)kez filtered by the Butterworth filter with cut-off frequency 0.5.

This shows that the interpolant f € W' is nearby band-limited in [—1/2,1/2] and thus can
be reconstructed at the values f(2k), k € Z according to the generalized sampling theory.
Contrary filtering a sequence with a Butterworth filter of a high order, e.g., m = 8 can be
interpreted as solving the interpolation problem. High order Butterworth filter have a high
interpolation order and as such can reproduce any polynomials up to order 2m — 1. A strictly
positive regularization parameter A leads to a quasi-interpolant of order 2m — 1.
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5. Downscaling

This chapter concerns the link between the preceding theory about sampling and the task of
downscaling.

The downscaling of an image with a fixed downscaling factor corresponds to sampling with
a fixed sampling step. For the original sized discrete image, a sampling step of one can be as-
sumed. According to Shannon, the underlying continuous function can only be reconstructed
if the function is band-limited. As seen in the last chapters the band-limited requirement is
weakened in the generalized sampling theory, depending on function space, that is gener-
ated by the integer translates of a suitable function. The closer the function space is to the
underlying image model, the better is the approximation of the image in this space.

According to the mathematical model introduced in Section 1.3, the first step to do is to ap-
proximate a continuous representation of the discrete image in a function space. Afterwards,
the image can be sub-sampled either at the integer values or at rational values depending on
the alignment of the downscaled grid.

These considerations divide the downscaling process into two parts, namely the
1. approximation and the
2. sub-sampling

process. The approximation process is completely defined by the basis function for the chosen
function space as seen in eq. (3.2) and its corresponding orthogonal projection in the least
square sense. The approximation with B-splines was discussed in detail in the last chapter and
it was shown in eq. (4.3) that it can be performed by digital filtering. Owing to the equivalent
representation in the frequency domain, stated by the convolution theorem, the orthogonal
projection to the space of splines can be computed either in the frequency domain or in the
pixel domain. These two different approaches will be presented in the following.

In the medical scenario introduced in Section 1.1, the input images are encoded with JPEG
(see Section ??), where the underlying data consists of 8x8 blocks of DCT coefficients and
corresponds to a localized frequency representation of the image. This block tiling, consisting
of the DCT coefficients, is in the following called the DCT domain of the image while the
pixel values of the image correspond to the pixel domain. Because the downscaling process
should be fast and have a good quality as well, an efficient method should avoid the expensive
inverse discrete cosine transform and downscale the image directly on the coefficients. The
main drawback using these methods is the localization of the DCT to 8x8 blocks and the
possible occurrence of block artifacts.

Problems to address, that are related with downscaling, are the aliasing effects and ringing
effects mentioned in section 2.2. Also the details of the image have to be preserved as much
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as possible. The aliasing effects can be minimized by smoothing, while the ringing effects de-
pend heavily on the used filter function. For example, the use of the sinc-function introduces
ringing effects because of its low decay rate and its infinite support. The details of the image
correspond to high frequencies in the Fourier domain. Smoothing cancels higher frequen-
cies, therefore there will be a trade-off between a detail-preserving method and a aliasing-
minimizing method.

The next section reviews downscaling in the pixel domain first, followed by the discussion
of downscaling methods in the DCT domain. This chapter finally introduces a new hybrid
downscaling method in Section 5.3, that combines the advantages of both methods.

5.1. Pixel domain downscaling

The problem of downscaling is already examined during the last chapters for function in one
dimension. In this section explicit downscaling schemes that are derived from the B-spline
sampling method are discussed for two-dimensional images. The B-splines of degree 0 to 3
are shown in Figure 2.5 on page 26. As these functions are separable the two dimensional
functions can be easily computed. The two-dimensional B-spline of degree m is defined for
z,y € R as the tensor product of the corresponding one-dimensional B-splines:

B (z,y) = Bm(x) - Bn(y)- (5.1)

As consequence, the approximation of a two-dimensional discrete image reduces to first ap-
proximating the rows and subsequently approximating the columns of the image.

The B-spline of zero degree corresponds to the nearest neighbor interpolation, of degree one to
the linear interpolation, of degree two to the quadratic interpolation, and finally the B-spline
of degree three corresponds to cubic interpolation [28, 37]. These methods will be compared
to the sinc-interpolation method recommended by Shannon. All these methods have been
well studied in the literature.

Figure 5.1 illustrates the interpolating projection of the top image into the spaces generated
by the previously mentioned basis functions. The sinc-interpolation method has the same
drawbacks as mentioned in Chapter 3, as it only approximates functions correctly if they are
band-limited. The image 5.1b shows the heavily introduced ringing effects along the edges
of the shown box. Although the smooth circle is well approximated. The nearest neighbor
method shown in 5.1c exactly approximates the edges, but approximates the smooth circle as
discontinuous step function. The linear interpolation (5.1d) leads to a continuous approxima-
tion due to the lack of smoothness. An often used compromise between smoothness and the
approximation quality is the cubic B-spline approximation, shown in (5.1e), where the second
order derivative is continuous as well. The last chapter gives a natural interpretation, as min-
imizing the second order derivative leads to a smooth function with minimized variation.

Comparing the sinc-approximation with the nearest neighbor approximation approves their
characteristics of the theory. While the nearest neighbor method can only reconstruct all step
functions, the sinc approximation method can only reconstruct all polynomials of infinite
degree, i. e., functions where all derivatives are continuous.
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(b) Sinc

(d) Linear B-spline

Figure 5.1.

(a) Original image

(c) Nearest neighbor

(e) Cubic B-spline

Image projection into different spaces.
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Note that only the sinc- and the (3-approximations are smooth.
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Figure 5.3. Options in choosing the coarse grid.
The big black points are the integer values, while the small ones depict the interpolated floating
values. The chosen sample values are the green circles. In this example, the function is reduced
to half the size. On the top of the figure, 8 discrete values are interpolated with the linear B-
spline. Using the centered grid leads exactly to the linear downscaling algorithm used in the
literature.

After approximation the image is downscaled by sub-sampling. There are different options,
how to choose the sample values. The interpolated integer values form an equally spaced grid.
On this grid, the interpolated function is equal to the original discrete image. Sub-sampling
corresponds to an equally spaced coarser grid, that has to be aligned. Figure 5.3 shows three
options, how this grid can be aligned in one dimension. For image sub-sampling the first two
options are inappropriate, as they choose the integer values as sample values. If these samples
are used, the approximation step has no influence to the downscaled image. The grid shown
at the bottom illustrates the grid aligned at the center of the line.

The quality of the downscaled image depends on the degree of the chosen B-spline basis. Now
the computational complexity of the discussed methods are evaluated. The coefficients of the
approximation can be obtained by convolution with the pre-filter ¢(—z), as shown in (3.2).
Second, the approximation is calculated by post-filtering with ¢(x). Therefore, the complexity
only depends on the size of the image and size of the support of the function . A B-spline
of degree m is compactly supported on the interval [—(m + 1)/2, (m + 1)/2]. Sampling the
B-spline at the integer values leads to m discrete values. Thus the size of the pre-filter is equal
to the degree of the used B-spline. The computational complexity for filtering an image of size
N x N with a filter of size m x m is N2 - m?. The post-filtering process is computed the same
way, thus the costs for a B-spline based downscaling method is 2- N 2-m?2. To calculate the costs
for the complete downscaling process considered in this thesis, the costs for the JPEG decoding
process have to be added. Thevenaz et al. [37] compared several interpolation methods in the
context of rotation of an image. One can say, that the linear B-spline interpolation is the most
efficient one, and the cubic B-spline reaches the best quality which acceptable computational
costs.
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5.2. DCT domain downscaling

The basic idea behind the concept of DCT resizing is to calculate the downscaled image with-
out separate JPEG decoding and re-encoding of the image. The special characteristic in the
DCT domain is the tiled block structure. It is important to note, that downscaling an image in
its Fourier domain results in equivalent methods as in the pixel domain. This follows directly
from the last chapter, as the function @;;,; is specified in the Fourier transform as well. In
contrast, this section considers methods that deal with the block tiling used by present-day
image and video compression standards like JPEG or H.264/ACV.

Beneficial for computational performance are block sizes that are a power of two, e. g., 8x8 and
16x16, because for these a fast DCT algorithm exists, similar to the fast Fourier transform.

The images of the medical scenario mentioned in Section 1.1 are compressed with JPEG, where
the whole image is tiled into 8x8 blocks. Therefore, this section is mainly devoted to the
discussion of this special case, but other block sizes can be considered analogous. The JPEG
standard is briefly described in Section ?? on page ??.

Every 8x8 block of the tiled image is transformed with the 2-dimensional DCT to a frequency
decomposition. If X € R8%8 denotes such an 8x8 block, the DCT-coefficients of this block are
given as

X = CyXCF, (5.2)
and can be inverted by
X = CIXCs, (5:3)

where (), is the DCT transform matrix of size m x m defined in eq. (1.1) on page 7.

After this short review of the DCT used in JPEG, the downscaling problem is considered next.
An interpretation of the Shannon theorem proposes a simple rescaling of the DCT basis, as
rescaling of the DCT basis corresponds to ideal filtering. In the following this idea will be
described in detail.

For a given quadratic image block X of size B x B, the n x n submatrix (X; ;)i=1,..n; j=1,..,n
will be denoted with X, . As such, the submatrix of DCT coefficients Xnm corresponds to
the lowest n x n frequencies. For n < B, a block downscaled to size n X n can be computed
with the scaled inverse n x n DCT transform

X = %CZXW”C”. (5.4)

Clearly, X is of size n x n. The factor % is necessary to scale the coefficients according to the
smaller basis according to the definition in eq. (1.1). Not that (5.4) is equivalent to filter the
pixel block with an ideal filter of size n x n followed by sampling with a sampling step of n
of the filtered B x B block of pixels.

This concept can be generalized for JPEG images. Every 8x8 block of coefficients will be
downscaled according to (5.4), which results in a downscaled image at n/8 x n/8 times the
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Figure 5.4. Downscaling method for a downscale factor of n/m.
First 4 adjacent blocks are downscaled ton /8 blocks. Then these 4 small blocks are transformed
with am x m forward DCT. Finally the m X m is truncated or zero-padded to an 8x8 block,
depending if m is larger or smaller than 8 respectively.

original image size. Then the low resolution image can be again transformed to the DCT
domain to obtain a downscaled JPEG image.

Using this concept, a fast algorithm to downsize an image to half the original size, was devel-
oped by Dugad and Ahuja [12]. In the paper of Salazar and Tran [31] the downscaling factor is
extended to any rational numbers 1/m, where 1 < n,m < 8. Both papers explicitly include
the final forward DCT transform to achieve a downscaled JPEG image.

In summary the resizing algorithm of Salazar and Tran [31] consists of two steps:
« apply a n-point inverse DCT to the 8-point inverse DCT to yield a resize factor of n/8

« apply a m-point forward DCT and retain only the lowest 8 coefficients to obtain a scal-
ing factor of 8 /m.

The image is now scaled by (n/8) - (8/m) = n/m and the result are 8x8 blocks of DCT-
coeflicients. This algorithm is illustrated in Figure 5.4.

The following example demonstrates the possibilities of this algorithm, because the represen-
tation of n/m is not unique for most of the scaling factors:

Example 1 A downscaled JPEG image by a factor of 0.5 can be achieved with an
1. inverse 3x3 transform and forward 6x6 transform and 8x8 zero padding,
2. inverse 4x4 transform and forward 8x8 transform,
3. inverse 5x5 transform and forward 10x10 transform and 8x8 truncation, or an
4. inverse 6x6 transform and forward 12x12 transform and 8x8 truncation.

The inverse transform, as first executed, influences the cut-off of the high frequencies. The
more frequencies can be preserved in this step, the better the resulting image quality will be.
Of course, the use of higher transformation sizes contains more multiplications and additions
than using a small transformation size.
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(a) Reference Image (b) Downscaled in the DCT domain

Figure 5.5. Sub-sampling with a factor of 4 (2x2 block of the 8x8 DCT-coefficients).

Because the strong smoothing of the image, e. g., shown in Figure 5.5, and the introduction
of aliasing and ringing effects by the use of ideal filtering [12], this method is suboptimal
for achieving a good quality, but optimal to reduce the computational complexity. Also block
artifacts are noted in the image resizing experiments section in [31]. These results all conform,
with the theory of Chapter 3, where these kinds of methods are seen as approximation in the
space of band-limited functions and as such have the same drawbacks.

Other methods [21, 24] try to implement pixel domain based interpolation schemes in the DCT
domain. These methods still suffer from the drawbacks of the block structure but achieve a
better quality with increased computational complexity depending on the chosen interpola-
tion method, due to the non-sparsity of the interpolation matrices. The ideal filter instead has
a very sparse representation.

The computational complexity of computing a B x B two-dimensional DCT is O(B? log B).
The computational costs for the whole N x N image are (N/B)?B?log B = N?log B. The
downscaling methods discussed in this section reduce the B x B DCT to a n x n DCT, where
1 < n < B, which corresponds to a downscaling factor of n/B. In brief, the computational
costs are reduced to N2 log n for the complete JPEG decoding and downscaling process.

5.3. Hybrid downscaling

In the last sections downscaling methods in the pixel domain as well as in the DCT domain
were discussed. Both methods are not efficient in the sense of image quality and the compu-
tational complexity. Methods operating in the pixel domain provide a good image quality due
to high computational costs, while DCT domain methods achieve lower image qualities with
low complexity.

This section combines the low complexity of the DCT downscaling methods with the good
approximation quality of the downscaling methods in the pixel domain. The remainder of
this section considers the scaling of an image of size N X N by some factor of & < 1. Asin
the last section, the block size of the DCT tiling is denoted with B.
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This approach is separated into two steps, first

1. downscaling in the DCT domain to n/B of the original size, where 1 < n < B, and
then

2. downscaling in the pixel domain to achieve the final image size.
Thus, the scaling factor « can be factorized to « = n/B - a.

The first step discards all frequencies higher than n. For n = B, the pure pixel domain method
is used. Therefore, the parameter n acts like a quality parameter, where lower values lead to
lower image quality but decreas the computational complexity. The second step is completely
determined by the approximation method and smoothes the blocking artifacts introduces by
block based DCT downscaling method.

The computational costs for the hybrid method are N2 - (log(n) + 2(n/B)?*m?), where the
pixel domain method uses the B-spline of degree m.

Figure 5.6 compares the previously discussed downscaling methods with the hybrid method
for a downscaling factor of 4 and a cubic B-spline based approximation method. The complex-
ity is reduced to more than a third of the costs of the pure pixel based method. Furthermore,
the next chapter shows that this method achieves comparable results. In brief, the hybrid
method clearly outperforms the other methods in terms of efficiency.

The last chapter allowed an interpretation for this hybrid downscaling method. It was shown,
that the B-spline projection behaves like a low-pass filter with the same characteristics as
the Butterworth filter. To simplify this discussion, a downscaling factor of 4 is assumed and
futher n = 2 is chosen. In step half of all local frequencies are set to zero. The following B-
spline projection further removes half of the global frequencies. The corresponding pure pixel
domain based method, interpreted as Butterworth filter, rejects approximately a quarter of all
global frequencies. Therefore, the DCT based method discards almost only those frequencies,
that are nevertheless discarded in the second step.
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Figure 5.6. Computational complexity of the downscaling methods.
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6. Numerical Experiments

This chapter evaluates the efficiency of the downscaling methods that are presented in the last
chapter.

To compare the quality of images, a reference image is necessary. In most image processing
problems, this image is equal to the original image (e. g., clockwise rotation, compression, de-
noising, ...). In the case of downscaling, no reference image is available. There are two reason-
able methods to measure the quality of the downscaled image. One method uses an upscaling
of the downscaled image to compare it with the original image. This method is not used in
this thesis, as the upscaling process additionally influences the measurement and depends
strongly on the used approximation method. Another method uses a reference image, that
is created by a common high quality downscaling method. This thesis uses the downscaled
images, that result from the projection to spline spaces. This is reasonable for this thesis,
as the B-splines have excellent approximation properties and are often proposed for similar
problems [20, 25]. Most often the cubic B-spline function is chosen due to its smoothness and
high approximation order.

Next, the question arises, how the downscaled image is compared to the reference image. In
the mathematical model of Section 1.3, the approximation of the image minimizes the L?-error.
Therefore, the L?-error leads naturally to an objective quality measure. In the literature, the
so called peak-signal-to-noise ratio (PSNR) is used to measure the image quality in dB. This
measure combines the mean-square error in a logarithmic formulation. The PSNR of two
discrete images F, G € NM*N of size M x N with intensity value between 0 and 255 (8bit)
is defined as

2552

where the mean-square error of two images is calculated by

normF —G? 1 A&
MSE(F,G) = F(i,5) — G(i, j)*. 6.2
(F.Q) N MN;;r (i,4) = G (i) (6.2)
The smaller the mean-square error is, the higher the PSNR-measure will get. With the PSNR-
measure, the downscaling methods can be objectively compared.

As the pure pixel based downscaling methods are too slow to use in the medical scenario
described in Section 1.1, they will serve here as reference images. In the following, the cubic
B-spline will be considered as reference method. As required in the scenario introduced in
Section 1.1, an image has to be scaled down to a quarter of the original size. Therefore, the
hybrid method will reduce the size to a half of the original size with the DCT domain method,
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Image Method PSNR Time
DCT 42.72  1.04s

Hybrid 6143  1.06s

DCT 53.12 4.21s

Hybrid 7473 4.33s

DCT 49.08 4.19s

Hybrid 63.56 4.23s

Lena

Ultrasound

Ultrasound with speckle noise

Table 6.1. Comparison of downscaling methods for a DCT block size of 8.

and further downscale this to the attainable size with the cubic B-spline downscaling method.
The DCT domain algorithm uses the ideal filter described in Section 5.2.

The complexity of these methods was already compared in Section 5.3. It was pointed out,
that the hybrid scheme significantly reduces the computational complexity. Next it will be
shown that it almost achieves the same image quality.

Therefore, the quality of the downscaled images is measured and the results of the DCT based
method are compared to the results of the hybrid downscaling scheme. Evaluated is the use
of different block sizes of the DCT tiling, namely 8, 16, and 32. Three representing images are
used for the evaluation. The classical Lena image is used often in the literature. The other two
images are created synthetically. The first shows some smooth polynomials and the second is
in addition corrupted by speckle noise, as in the case of real-world ultrasound images.

Table 6.1 shows the results for a DCT block size of 8, as used in the JPEG standard. The
downscaled images for a block size of 8 are given in Figure 6.1, Figure 6.2, and Figure 6.3. The
results for the other block sizes are stated in Table 6.2 and Table 6.3.

The results state clearly, that the hybrid scheme is much closer to the chosen reference method
as the pure DCT based method for any block size. Besides, the quality of the DCT method
decreases with increased block size. This can be interpreted by the introduced ringing effects.
In contrast, the quality of the hybrid schemes takes profit of the increasing block size, as the
localized frequency representation tends to a more global one.

Combined with the reduced complexity, the hybrid scheme outperforms the DCT method in
the sense of efficiency. Furthermore, the hybrid method is scalable. It includes the DCT based
method as special case, as well as the pure pixel domain downscaling method.
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Image Method PSNR Time
DCT 40.50 0.28s
Lena
Hybrid 77.12  0.28s
Ultrasound DCT 52.27 1.13s
Hybrid 74.73 1.15s
DCT 49.09 1.13
Ultrasound with speckle noise i
Hybrid 66.70 1.16s

Table 6.2. Comparison of downscaling methods for a DCT block size of 16.

Image Method PSNR Time
DCT 39.22 0.08s

Lena
Hybrid 79.41 0.08s
Ultrasound DCT 51.36  0.30s
Hybrid 74.73 0.33s
Ultrasound with speckle noise DCT 4879 0.32s
Hybrid 69.67 0.33s

Table 6.3. Comparison of downscaling methods for a DCT block size of 32.
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(a) Original

(b) DCT (c) Hybrid

Figure 6.1. Downscaling of the Lena image.
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(a) Original

(b) DCT (c) Hybrid

Figure 6.2. Downscaling of the ultrasound image.
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(a) Original

(b) DCT (c) Hybrid

Figure 6.3. Downscaling of the ultrasound image with speckle noise.
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7. Summary

This thesis investigated efficient downscaling methods for compressed JPEG images and intro-
duced a new hybrid method. The results of the last chapter showed, that while the complexity
is reduced it almost reaches the same quality as the pure pixel based methods. To be clear, for
every pixel based downscaling method the hybrid method achieves almost the same quality,
but descreases the complexity. With this new hybrid method, the tasks of the server, dis-
cussed in Section 1.1, can be solved in an efficient manner. The design of the hybrid method is
scalable in the sense of complexity and image quality, and contains a pure DCT domain down-
scaling method as well as the pure pixel domain downscaling. In addition, this approach is
able to downscale images with arbitrary downscaling factors.

The mathematical tools to consider the downsizing problem in the pixel domain as well as in
the DCT domain were provided in this thesis. The limits of the classical Shannon theorem were
identified and recent enhances of modern sampling theory has been established. Interpolation
and approximation methods related to B-splines have been discussed exclusively Chapter 4
due to their excellent approximation properties. For a better understanding of approximation
with B-splines, an interesting connection to the Butterworth filter was shown. Methods that
downscale an image were discussed in Chapter 5. On the one hand pixel domain downscaling
methods can achieve high image qualities, and on the other hand DCT domain downscaling
methods have low computational complexity. The hybrid method combines the advantages
of both methods to a new efficient downscaling method.

Further improvements might consider adaptive block methods. Furthermore, the use of wavelet
based compression methods like JPEG2000 can be examined in relation to the downscaling of

images. To further improve the results for the ultrasound images in the medical scenario,

the noise model of ultrasound images can be considered. The work of Dutt and Greenleaf

[13], Hyeona Lim [14], Krissian et al. [17] modeles the noise by the Raleigh distribution and

might serve as a good starting point for futher research.
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A. Implementation Details

Mutlti-threaded application

+ Number of thread of downscaling and encoding are scalable

Extendable downscaling code (UML class diagram)

point out bottlenecks

Input Queue Output Queue
Stream 1
Stream 2
Read .
Stream16 | | | | [ [ | [ ]
pre-buffering time measurement
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Figure A.1. UML model of the downscaling.
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B. M-Code

%% approximation 1d: parabola
x = 0:0.01:10;

vy = [0 —(1/8)*([0:8] — 4).72 + 2 0];

hold on;

plot (x, bspline_projection(y, x, 0
plot (x, bspline_projection(y, x, 1
plot (x, bspline_projection(y, x, 2
(
(

B % T N T N

plot (x, sinc_projection(y, x), 'c’
1 plot(0:10, vy,

)
1 hold off
12 hlegl = legend(’\beta 07, \beta 17,
13 matlab2tikz (’
14
15 %% approximation 1d:
6 x = 0:0.01:10;
17 y = [0 0 ones(l, 6) 0 0 0];
18
19 hold on;
20 plot(x, bspline_projection(y, x, 0
a1 plot(x, bspline_projection(y, x, 1
2 plot(x, bspline_projection(y, x, 2
(
(

../img/tikz /approximationld

step

— e — —
= 0 T

23 plot(x, sinc_projection(y, x), ’c’
2 plot(0:10, y, "*7);

25 hold off

26 hlegl = legend(’\beta_ 07, \beta 17,
27 matlab2tikz (.. /img/tikz /approximationld
28

2 Y% sinc vs. phi_int
30

31 X = —6:0.01:6;

32

33 clf;

sa plot(x, phi_int(x, 0), ’k’7);

35 matlab2tikz (.. /img/tikz /sinc_vs_phi_ 0.t
36

37 clf;

38 plot(x, phi_int(x, 1), ’k’7);

s matlab2tikz (.. /img/tikz /sinc_vs_phi_ 1.t
40

a1 clf;

2 plot(x, phi_int(x, 3), ’k’)

4 matlab2tikz (.. /img/tikz /sinc_vs phi 3.t
1

45 clf;

% plot(x, sinc(x), 'k’);

"\beta_3",

"\beta_3",

"sinc’);
parabola.tikz ’);

"sinc’);
step.tikz’);

ikz 7 );

ikz’);

ikz 7 );
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

matlab2tikz (.. /img/tikz /sinc_vs_phi_sinc.tikz’);

clf;
plot (x, phi_int(x, 5), 'k’)
matlab2tikz (.. /img/tikz/sinc vs_ phi 5.tikz");

clf;
plot (x, phi_int(x, 8), 'k7)
matlab2tikz (.. /img/tikz/sinc_vs_ phi 8.tikz’);

%% test 2d

img = im2double(imread(’lena512.pgm’));
img = imresize (img, 1/8);

[M,N] = size(img);

0:0.5:N—-1;
y = 0:0.5:M—1;
= zeros (M, length (x));
int = zeros(length(y),length(x));

for i = 1:M

tmp(i,:) = bspline_projection (img(i,:), x, 2)’;
end
for i = 1l:length(x)

int (:,1) = bspline_projection (tmp(:,i), y, 2);
end
imshow (int)
%for i = 1:M
% int (:,i)bspline_projection (img(i,:), x, 3);
Y%end

%% approximation vs interpolation 1d: step
x = 0:0.1:7;

%y = [0 0 ones(1l, 35) 0 0 0];

%y = ones (41,1);

Ny = [—(1/8)*([=5:19] — 4).72 + 2];

y = [zeros(1, 3) omes(1, 3) 2%ones(1, 2)];
Yy = [1:11];

hold on;

%plot (x, bspline_projection(y, x, 0), ’'b’);
plot (x, bspline_projection(y, x, 1), ‘g’ );
%plot (x, bspline_projection(y, x, 3), 'r’);
plot (x, bspline_approximation(y, x, 0), 'g’);
plot (x, bspline_approximation(y, x, 1), 'b’);
plot (x, sinc_projection(y, x), 'c’)

plot (0:7, y, *7);

hold off

%hlegl = legend (’\beta_0’,’\beta_1’, ’\beta_3’, ’sinc’);
Y%matlab2tikz (.. /img/tikz /approximationld_ step.tikz ’);

function y = bsplineN (x, n)
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3 if n=20

4 y = zeros(size(x));

5 idx = find (x>-1/2 & x<1/2) ;

6 y(idx) = 1;

7 elseif n =1

8 y = zeros(size(x));

9 idx = find (x>—1 & x<1) ;

10 y(idx) = 1 — abs(x(idx));

1n else

12 a = (n+1)/2;

13 y = (((x + a)/(n)).*bsplineN (x+0.5 ,n—1)) + (((a—x)/(n)).*bsplineN (x—0.
14 end

1 function y = bspline_dual(x, m)

2 dim = size(x);

3 x =x(:);

4 N = length(x);

5 t = linspace(—(2*m+2),(2*m+2), 2*(2*m+2)+1)7;

6 dual = real(ifft (1./fft (bsplineN(t,2*m+1)7)))’;
7 phi = bsplineN(x(:,ones(1, 2*(2*m+2)+1)) — t(:,ones(size(x)))’, m);
8 y = dual(:,ones(1,N))’ * circshift (phi, [0 1])’;
9 y =vy(1,:);

10 y = reshape(y, dim);

1 end

VA

2 function y = phi_int(x, m)

3 % x values

4 % m order of b—spline

5 dim = size(x);

6 x =x(:);

7 = length (x);

8 t = linspace(—(m+1),(m+1), 2*(m+1)+1)’;

9 bspline = bsplineN (t ,m) ’;

10 bspline__dual = real (ifft (1./fft(bspline)))’;

11 phi = bsplineN (x(:,ones(1, 2*(m+1)+1)) — t(:,ones(size(x)))’, m);
12

13 y = bspline__dual (:,ones(1,N))’ * circshift (phi, [0 1])7;
1 y =y(1,:);

15 y = reshape(y, dim);

16 end

1 function H = bw(M, N, w0, n)

2 [u, v] = meshgrid ([0:(M-=1)], [0:(N=1)]);

3

4 D= u."2+ v."2;

5 D = max(u,v). 2;

6

7 % create butterworth filter with

8 % w0 cutoff frequency

9 % n  order
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11
12
13
14

end

H=1./(1.0 + (D./(w072))."n);

%G
%eg

H.*F;
abs(ifft2 (ifftshift (G)));
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List of Symbols

R  The real numbers.

N  The natural number: 1,2,3,... .

7Z  'The integers.

Q  The rational numbers.

C  The complex numbers.

D™ f The m’th order derivative of the function f.

Ff The Fourier transform for f € L?(R).

f The Fourier transform for f € L'R.

X4 The indicator function for the set 4, i.e, xa(z) = 1forallxz € A, and xa(z) = 0
otherwise.

A The closure of the the set A.

span A The linear span of the the set A: span A = {>°, , cra : a € A, ¢ = (c)ez € P(Z)}.

supp f The support of the function f: supp f = {x € R : f(x) # 0}.
0k, The Kronecker delta, d;,; = 0if k = [ and d;,; = 1 otherwise.
Ty The translation operator (T f)(z) = f(z — k).

D, The dilation operator (D, f)(x) = f(z/a).
M, The modulation operator (M f)(z) = >,
U  The synthesis operator.

S The frame operator.
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