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Zusammenfassung

Thema dieser Bachelorarbeit ist die Computertomographie. In der Computertomographie ver-
sucht man Informationen über das Innere eines Objekts aus einer Vielzahl seiner Projektionen
zu gewinnen. Die Computertomographie ist der Prototyp eines inversen Problems und bed-
ingt durch seine vielfältigen Anwendungsmöglichkeiten in der industriellen und medizinischen
Bildgebung wurde in den letzten Jahrzehnten stark an der Stabilisierung der zugrundeliegenden
Rekonstruktionsalgorithmen gearbeitet.

Diese Arbeit befasst sich genauer mit dem Problem der Tomographie unter eingeschränktem
Winkelbereich, welches sich aus verschiedenen Anwendungen in der industriellen und medizinis-
chen Bildgebung ergibt. In diesen Anwendungen ist der mögliche Winkelbereich beschränkt, so
dass Tomographie-Daten in einem zusammenhängenden Winkelbereich fehlen. Als Folge dessen
ist das betrachtete Rekonstruktionsproblem enorm schlecht gestellt und charakteristische Bil-
dartefakte entstehen in den berechneten Bildern.

Unser Ziel ist es eine Methode zu entwickeln, welche diese Artefakte reduziert und dabei so
viel Information wie möglich aus den gegebenen Daten nutzt. über den Verlauf dieser Arbeit
werden wir zwei Methoden vorstellen, welche gegebene Tomographie-Daten geeignet für eine
weitere Verarbeitung mit einer herkömmlichen Rekonstruktionsmethode aufbereiten. Davor
machen wir uns mit der Computertomographie, der ihr zugrundeliegenden Mathematik und der
Rekonstruktion durch gefilterte Rückprojektion vertraut.

In unserem ersten Ansatz verwenden wir eine starke Modellannahme, indem wir davon ausge-
hen, dass unser untersuchtes Objekt aus einer Superposition von einer oder mehreren Ellipsen
besteht. Dies ermöglicht es uns Tomographie-Daten über den gesamten Winkelbereich wieder-
herzustellen, was insbesondere durch die Ludwig-Helgason Konsistenzbedingungen motiviert
wird. Nur bei Erfüllung dieser Bedingungen können Tomographie-Daten im Bild der Radon-
Transformation liegen. Die Radon Transformation ist der mathematische Operator, welcher die
Computertomographie modelliert.

Ausgehend von den im ersten Ansatz gewonnenen Kenntnissen, leiten wir eine weitere Meth-
ode her, welche die Daten nur in einer lokalen Nachbarschaft am Rand der verfügbaren Daten
wiederherstellt. Das Ziel dieser Strategie ist es die durch den eingeschränkten Winkelbereich her-
vorgerufenen Artefakte zu reduzieren und dabei sowohl so viel Information wie möglich aus den
gegebenen Daten zu verarbeiten, als auch so wenig neue Information wie möglich hinzuzufügen.
Unser Vorgehen bei diesem Ansatz basiert auf Ergebnissen aus dem Gebiet der mikrolokalen
Tomographie, welches wir kurz einführen werden.
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1 Introduction

The main topic of this bachelor’s thesis is computerized tomography. In computerized tomog-
raphy one generally wants to gain knowledge about the interior of an object from a number of
its projections. It is the prototype of an inverse problem and since it has various applications
in industrial and medical imaging, a lot of e↵ort has been made in stabilization of underlying
reconstruction algorithms during past decades.

To be more specific, we are concerned with the problem of limited angle tomography that arises
naturally from various medical and industrial applications. These applications enforce a limi-
tation on the angular range of tomographic data so that a coherent range of angles is missing
in tomography data. As a consequence we have to deal with a severely ill-posed reconstruction
problem, in which certain artifacts are produced in reconstructed images.

In the following it is our goal to find a method which reduces these artifacts, while still incor-
porating as much information from the limited angle data as possible. We have come upon
two methods acting on projection data (“sinogram”) during research. These methods shall be
derived and evaluated over the course of this thesis. Before that, we start of by familiarizing
ourselfs with computed tomography, its underlying mathematics, and the filtered backprojection
reconstruction method.

In our first approach we employ a strong model requirement. We assume that the object
examined is a superposition of one or more ellipses. This enables us to recover data for the full
range of projections, which is motivated by the so called Ludwig-Helgason consistency conditions.
Fulfillment of these conditions is required for tomographic data to lie in the range of the Radon
transform - the mathematical operator modelling computed tomography.

We use the knowledge gained in our first approach to derive a second method that restores
information in a local neighbourhood of missing data. The aim of our strategy is to reduce
artifacts inherent to the limited angle problem, while keeping as much information as possible
from available projections and adding as less new information as possible. Our procedure for this
approach is motivated by results of microlocal tomography, which we will briefly introduce.

I have to express my profoundest gratitude to my thesis adviser, Dr. Laurent Demaret. He
gave me great freedom in writing this thesis and still pointed out a direction, whenever this
was necessary. Without his patience and constant encouragement throughout the last month,
this thesis would not have been possible to accomplish. Furthermore I would like to express my
sincere gratitude to Prof. Dr. Rupert Lasser, who agreed to be supervisor for this thesis.
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2 Basic properties of the limited angle tomography problem

2 Basic properties of the limited angle tomography problem

In this chapter we present basic concepts and properties of the limited angle tomography prob-
lem. We begin with an overview of modern computerized tomography, introduce the Radon
transform and present the method of tomographic reconstruction through filtered backprojec-
tion. Lastly we state the limited angle problem, which we want to consider throughout this
thesis.

Mathematics of computerized tomography are understood quite well and numerous articles and
books have been published on the subject. In our discussion over the course of this chapter we
aggregate some well known results that can be found in the textbooks [Nat01, NW01, RK96,
Eps08], to which we refer the keen reader for further information and proof of given theorems.

2.1 Overview of computerized tomography

The word tomography is derived from the Greek words tome (“cut”) and graphein (“to write”).
It is a broader term for various methods in medical imaging that allow the reconstruction of an
objects’ unknown interior from a number of one dimensional projections. The great advantage of
these methods, in contrast to conventional x-ray projection, is that they produce superposition
free slices of the examined object.

Common examples for tomographic methods are computed tomography (CT), single-photon
emission computed tomography (SPECT), magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET). They are used in a variety of medical and industrial applications, which
led to an increased interest for an e�cient implementation of the underlying algorithms during
the past decades.

This bachelor’s thesis is concerned with classical x-ray computed tomography using parallel
beam geometry. In a modern computer tomograph data is obtained by rotating an emitter and
a set of detectors around the object of interest, while it gathers the attenuation of penetrating
rays at evenly spaced angles. The so gained projection data serves as input for a tomographic
reconstruction software that produces an image of the objects’ interior.

Source

Detector

f

Figure 1 – The mechanism of computed tomography: Opposing arrays of emitters and detectors are
rotated around the object of interest. Rays penetrating the object are attenuated and con-
sequently the distribution of the attenuation coe�cient is gathered for evenly-spaced angles.
Projection data is then used to reconstruct the objects’ interior.
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2.2 Mathematical notation and definitions

2.2 Mathematical notation and definitions

Before we can start to introduce the mathematics of computed tomography, let us first provide
definitions and notations for some objects that we will come across frequently throughout this
thesis. As computed tomography is a rich subject, various tools out of the mathematical toolbox
are required. To begin with, let us recall the notation of a few classical function spaces:

C

1(U) (space of smooth functions)

L

p(U) (space of p-integrable functions)

L

p(U, dµ) (space of weighted p-integrable functions).

A function space that is particularly important for the Fourier and Radon transform is the
Schwartz space S(Rn). It consists of all infinitely di↵erentiable functions f(x) 2 C

1(Rn) which
rapidly decay with all their derivatives; or more precisely f 2 S(Rn) if, and only if

sup
x2Rn

�

�

�

x

↵

@

�

x

f(x)
�

�

�

< 1,

where @

x

= ( @

@x1
, . . . ,

@

@xn
) and ↵,� 2 Nn

0 are arbitrary multi-indices (tuples of non-negative
integers). Let us now define several important sets that we will use.

B

n

r

:= {x 2 Rn : kxk2  r}, r 2 R+ (ball with radius r in Rn)

S

n�1 := {x 2 Rn : kxk2 = 1} (unit sphere in Rn)

Z

n := S

n�1 ⇥ R (unit cylinder in Rn)

L(✓, t) := {x 2 Rn : x · ✓ = t}, ✓ 2 Rn

, t 2 R (a�ne hyperplane in Rn)

As we will later see, the Fourier transform is closely related to the Radon transform. For
f, g 2 S(Rn), we use the following definitions for the Fourier transform F and its inverse F�1:

f̂(⇠) := Ff(⇠) :=

Z

Rn
f(x)eix·⇠dx,

f(x) = F�1
f̂(x) :=

1

(2⇡)n

Z

Rn
f̂(⇠)e�ix·⇠

d⇠.

We will also need the convolution in Rn, which we define through

(f ⇤ g)(x) :=
Z

Rn
f(x� y)g(y)dy

for f, g 2 S(Rn). When f is a function of two variables, its convolution and Fourier transform
are always taken with respect to the second variable throughout this bachelor’s thesis. In the
following sections we are going to proceed with definition and characterization of the Radon
transform.

2.3 The Radon transform

Mathematical foundations of computerized tomography have been set in 1917 by Johann Radon
in his writing “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
Mannigfaltigkeiten” [Rad17; translated in Rad86]. The publication shows that it is theoretically
possible to recover a function f on R2 from its line integrals. Consequently the transform that
maps a function of points to a function of plane integrals, became known as Radon transform.
We are now going to introduce it.
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2 Basic properties of the limited angle tomography problem

Definition 2.1. The Radon transform Rf : Z

n ! R of a function f from n-dimensional
Schwartz space S(Rn) is defined by

f̃(✓, t) := Rf(✓, t) :=

Z

L(✓,t)
f(x)dx, (2.1)

where L(✓, t) is an a�ne hyperplane in Rn and dx is the associated Lebesgue measure. In the
following we will sometimes write R

✓

f(t) for Rf(✓, t).

Figure 2 depicts the geometry of the Radon transform in a two dimensional setting: An unknown
function f is integrated along lines orthogonal to the unit vector ✓ with a lateral displacement
of t in direction ✓. We identify the vector ✓ with an angle � 2 [0, 2⇡] by setting ✓ = (cos�, sin�)
and note that integrating along a line L(✓, t) can be seen as attenuation of a ray through an
object in the computer tomograph.

f

x

y

t

✓

�

L(✓, t)

Figure 2 – The geometry of computed tomography: An unknown function f 2 R2 is integrated over
all lines L(✓, t) parametrized by the unit vector ✓ = (cos�, sin�), � 2 [0, 2⇡] and a lateral
displacement t 2 R.

Remark. We have defined the Radon transform as an operator R : S(Rn) ! S(Zn). However
it can also be introduced for or extended to some other spaces. It is important to note that the
operator is unbounded on L

2(Rn), even though S(Rn) is dense in L

2(Rn). A key factor that the
Radon transform of a function is well-behaved is if it has a compact support. For example it
is shown in [Nat01, p. 17] that R : L2(Bn

1 ) ! L2(Zn

, (1 � s

2)(1�n)/2) is a continuous operator.
We will assume that the Radon transform is defined for the objects used, yet one may find
characterization of its domain in the textbooks mentioned in introduction of this chapter.

2.3.1 Basic properties of the Radon transform

Now that we have defined the Radon transform, let us aggregate some of its basic properties
and well known statements.

Proposition 2.2 ([RK96, pp. 11-14]). If f, g 2 S(Rn), ✓ 2 Rn

, t 2 R, then the following
statements hold

1. R is a linear operator, R(af + g) = aR(f) +R(g).

2. Rf is an even function, Rf(✓, t) = Rf(�✓,�t).

3. If f
⇠

(x) := f(x+ ⇠), then Rf

⇠

(✓, t) = Rf(✓, t+ ⇠ · ✓).
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2.4 Inversion of the Radon transform

2.3.2 Radon transform of a convolution

As the next proposition states, convolution in Rn is converted to convolution in the a�ne
parameter by the Radon transform. Note that ⇤ on the right hand side of the equation
indicates one-dimensional convolution with respect to the second argument of functions Rf and
Rg here.

Proposition 2.3 ([NW01, Theorem 2.2]). Assume f, g 2 S(Rn), ✓ 2 Rn

, t 2 R. Then

R(f ⇤ g)(✓, t) = Rf ⇤Rg. (2.2)

2.3.3 Fourier slice theorem

An important result for the Radon transform is its connection with the Fourier transform. The
Fourier slice theorem states that it is equal to take the one-dimensional Fourier transform of
a function’s projection on a plane and to take a slice of the function’s two-dimensional Fourier
transform, whereby the slice has to be parallel to the projection and going through the origin.
This theorem is sometimes also referred to as projection slice theorem.

Theorem 2.4 ([NW01, Theorem 2.1]). For f 2 S(Rn) we have

dR
✓

f(�) = f̂(�✓), � 2 R (2.3)

In computed tomography we are given data Rf and want to draw conclusions about the trans-
formed function f . In this manner we are now going to familiarize ourselfs with an inversion
method for the Radon transform.

2.4 Inversion of the Radon transform

Reconstruction methods for tomographic data fall in two classes. Analytical methods which take
a direct approach to the mathematical problem and algebraic methods that address a discrete
version of the problem. The method of filtered backprojection (FBP) is an analytical method;
it is often employed in practical settings, as it allows a fast, almost real-time computation of
solutions and is robust to errors.

2.4.1 The backprojection operator

First, let us understand the mechanism of backprojection and see why an additional filtering
step is required.

Definition 2.5. The adjoint R⇤ : S(Zn) ! S(Rn) of the Radon transform characterized by

hRf, giS(Z) = hf,R⇤
giS(Rn)

is defined as

R⇤(x) :=

Z

S

n�1
g(✓, ✓ · x)d✓. (2.4)
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2 Basic properties of the limited angle tomography problem

As R⇤ integrates a function f over all planes through point x, it is also referred to as backpro-
jection operator in computerized tomography. A natural interpretation is that it “smears” back
all projections’ values over the corresponding plane to produce an image. We have the following
important results for the backprojection operator:

Theorem 2.6 ([RK96, p. 17]). Let f(x) 2 S(Rn), then

R⇤Rf(x) =
�

�

S

n�2
�

� kxk�1
2 ⇤ f(x), (2.5)

where
�

�

S

n�2
�

� denotes the area of the unit sphere in Rn.

The above theorem states that backprojection of data gained by Radon transformation does
not recover the original function, but a blurred version of it. This circumstance is depicted in
Figure 3 (top right) that shows the backprojection of the Shepp-Logan head phantom (cf. [Jai89,
p. 439]), a well-known sample image in the field of computed tomography.

We want to avoid the blurring that occurs in (2.5) and thus have to improve our method. Many
inversion techniques of the Radon transform are based on subsequent formula and we are going
to use it as starting point for derivation of filtered backprojection.

Theorem 2.7 ([RK96, p. 20]). Take f, g 2 S(Rn), then

(R⇤
g) ⇤ f = R⇤(g ⇤Rf). (2.6)

2.4.2 Explicit inversion formula

Before we continue with the method filtered backprojection, we are going to state an explicit
version for the inversion of the Radon transform. To this end, we need to define the Riesz
potential of a function f .

Definition 2.8. The Riesz potential Ia for f(x) 2 S(Rn) is defined by

Ia

f := F�1(k⇠k�a

f̂(⇠)), a < n, a 2 R

and for g(✓, t) 2 S(Zn) it is defined by

Ia

g := F�1(k⌧k�a

ĝ(✓, ⌧)), a < n, a 2 R.

Now we are able to state a general inversion formula for the Radon transform. We recall the
notation f̃ for Rf .

Theorem 2.9 ([RK96, p. 28]). If f 2 S(Rn), |a| < n, a 2 R, then

f =
1

2(2⇡)n�1
I�aR⇤Ia�n+1

f̃ (2.7)

This result is valid for n-dimensional space and we can easily simplify it for two dimensional
space.

Corollary 2.10. Set a = 0 in (2.7) to get

f =
1

2(2⇡)n�1
R⇤I�n+1

f̃ ,

and obtain

f =
1

4⇡
R⇤F�1(k⇠k ˆ̃f(⇠)) (2.8)

from (2.10) in the two dimensional setting (n = 2).
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2.5 Sinogram representation of projection data

2.4.3 Filtered backprojection

The method of filtered backprojection can be seen as a numerical implementation of formula
(2.8). To derive the method we start from (2.6) however:

W

✏

⇤ f = R⇤(w
✏

⇤ f̃), f̃ = Rf, W

✏

= R⇤
w

✏

(2.9)

Our idea is to find a sequence of su�ciently smooth functions w
✏

so that W
✏

approximates the
dirac-�-function as ✏ goes to zero. With such a sequence W

✏

⇤ f will be a good approximation
to f for small ✏.

We see that w
✏

⇤ f̃ acts as a filter on our data f̃ and note that several choices for the filter w
✏

can
be found in literature. A standard choice is the so-called Ram-Lak or ramp filter that emphasizes
high frequencies and filters out low frequencies.

2.4.4 Parallel beam protocol

Let us now apply our inversion formula to discrete projection data f̃(✓
j

, t

k

) available on an
evenly spaced lattice:

✓

j

= (cos�
j

, sin�
j

), �

j

= j��, �� = ⇡/p, j = 0, . . . , p� 1,

t

k

= k�t, �t = ⇢/q, k = �q, . . . , q

(2.10)

As derived in [NW01, p. 85], the discrete inversion formula is obtained by discretizing the
convolution integral in a first step and then discretizing the backprojection integral in a second
step. This leaves us with approximately

(W
✏

⇤ f)(x) ⇡ 2⇡

p

�t

p�1
X

j=0

q

X

k=�q

w

✏

(x · ✓
j

� t

k

)f̃(✓
j

, t

k

) (2.11)

In practice it is su�cient to compute the values of the convolution for (w
✏

⇤ f̃)(✓
j

, t

k

) and then
obtain the values (w

✏

⇤ f̃)(x · ✓
j

� t

k

) that are necessary in (2.11) by interpolation.

Unless stated otherwise, backprojection images in this thesis have been computed using the Ram-
Lak filter with linear interpolation, as can be done with the following MATLAB® command:

iradon(R,theta,'linear','Ram�Lak');

We will now concentrate on the tomographic problem in two dimensions, where we will identify
unit vector ✓ with an angle �, as we have done before. This is our preferred way of parametriza-
tion in two dimensions and wherever we write R(�, t), it has the same meaning as R(✓, t) with
✓ = (cos�, sin�).

2.5 Sinogram representation of projection data

A visual representation of the raw data retrieved by one tomography scan is called sinogram. It
can be seen as a two-dimensional image of the attenuation coe�cient and is created by plotting
the Radon transform Rf to as grayscale image.
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2 Basic properties of the limited angle tomography problem

We already noticed that the Radon transform is an even function Rf(�, t) = Rf(�+⇡,�t) and
thus it is su�cient to consider data only in a connected angular range [�0,�0 + ⇡] , �0 2 [0,⇡],
as data in the remaining range can be obtained through easy computation. We call data of this
form full tomographic data.

In our sinogram representation the x-axis corresponds to the angle of the ray and subsequently
the y-axis corresponds to the distance of the ray from the center (projection displacement).
Figure 3 (bottom left) displays a sinogram representation of the Shepp-Logan head phantom.

2.6 The limited angle tomography problem

Main subject of this thesis is the reconstruction problem of limited angle tomography. This
problem arises naturally in applications like digital breast tomosynthesis, dental tomography or
electron microscopy, where a limitation of the angular range is necessary due to various reasons
(e.g. X-ray dose decrease, time constraints when imaging moving objects, or X-rays being ob-
structed when passing through high-density regions). In such a situation we are presented with
highly incomplete data, which leads to a severely ill-posed problem. The traditional reconstruc-
tion methods are not suited for this situation and produce low quality output (cf. [Fri13]).

To state our limited angle situation more precisely, let us consider a problem, where data is miss-
ing for an angular double cone C

�1,�2 , defined by C
�1,�2 := ([�1,�2] [ [�1 + ⇡,�2 + ⇡]), �1,�2 2

[0,⇡], as limited angle tomography problem.

As a consequence of the incomplete data, image artifacts appear in reconstructed images cf. Fig-
ure 3 (middle right). These artifacts are located on straight lines and extend over the whole
reconstruction area, whereby they appear to emerge from smudging of actually existing singu-
larities.

Goal of this bachelor’s thesis was to find a method that reduces the artifacts inherent to the lim-
ited angle problem by manipulating underlying sinogram data in a suitable way. In the following
chapters, we present and evaluate two methods that we have come up during research.

8



2.6 The limited angle tomography problem

Figure 3 – The well-known Shepp Logan phantom (top left) with various of its reconstructions: unfil-
tered backprojection (top right), filtered backprojection of complete data (middle left) and
filtered backprojection of limited angle data (middle right). Underlying projection data is
displayed in the bottom row. Data in the limited angle case is only available within the range
� = [�⇡/4,⇡/4].

9



3 Range consistent sinogram restoration for ellipses

3 Range consistent sinogram restoration for ellipses

During this chapter we are going to take a reconstruction approach that recovers projection data
for the full angular range and see that resulting sinograms satisfy some of the Ludwig-Helgason
consistency conditions. Fulfillment of these conditions is a necessary prerequisite for projection
data to lie in the range of the Radon transform.

We consider the discrete limited angle tomography problem in two dimensions, where angles in
the angular double cone C

�1,�2 are missing. Furthermore we assume that we are given projection
data Rf for a su�cient number of angles and projections, so that reconstruction artifacts arise
solely from the limited angle situation and not from angular undersampling. Our goal is to
derive an algorithm that recovers a full angle sinogram for images fitting our model, based on
the strong assumption that images being examined are a superposition of various ellipses. On
one hand this problem is obviously oversimplified, on the other hand it already captures well
essential features of the more general problem. We hope to gain insight on the problem and
intend to use some of the results obtained for a further approach regarding a more general
model.

To begin with, we derive a method that works for the image of a single ellipse. We show that it is
possible to transform known projections to match a fitted curve of singularities. We then extend
the technique to images of multiple ellipses, that provide projections where the support of each
ellipse is separate. This situation allows an easy enhancement of our procedure for these images.
Thereafter we outline the procedure to enhance our method for general images of overlapping
ellipses theoretically, noticing that several practical obstacles have to be overcome.

3.1 Sinogram restoration for a single ellipse

When studying the consequences of a limited angular range to the reconstruction problem for
an image of ellipses, it became evident that the position of singularities in the Radon domain
is characterizing their sinogram up to a factor necessary for determining the correct grey-level.
Over the course of this section, we want to deduce how we can transform the projection of
an ellipse at an angle �2 to the projection at an angle �1, if we only know the position of its
singularities in the Radon domain for these angles.

Throughout this chapter we identify the singularities of a function with its jump points. This
definition is quite informal and we will give a more mathematical definition in 4.5.

3.1.1 Analytical formula for projections of an ellipse

Beginning with the indicator function of an ellipse x

2

a

2 + y

2

b

2  1, we obtain a more general
characteristic function by rotating the coordinate system counter-clockwise and subsequently
translating its center to (x0, y0).

For the description of an ellipse it is su�cient to know its axes a and b, its rotation angle ↵, and
the translation coordinate (x0, y0). We store these values in a parameter vector p.

10



3.1 Sinogram restoration for a single ellipse

Definition 3.1. Given parameter vector p = (a, b, x0, y0,↵) with a, b 2 R+
, x0, y0 2 R and

↵ 2 [0, 2⇡] we define the characteristic function of an ellipse E
p

(x, y) as

E
p

(x, y) :=

8

<

:

1 for
((x� x0) cos↵+ (y � y0) sin↵)2

a

2
+

((�x� x0) sin↵+ (y � y0) cos↵)2

b

2
 1

0 otherwise.

and its projections P
p

(�, t) as

P
p

(�, t) :=

Z

L(✓,t)
E
p

(x, y)dx

whereby ✓ = (cos�, sin�), � 2 [0, 2⇡] and t 2 R.

Ellipses have been used as prototypes in the field of computed tomography for a long time and
analytical formulas for its projections are well known. We start out from the formula found in
[CM01, p. 56] and apply the same coordinate transformations, as we have done for derivation of
the indicator function. By doing so, we obtain an analytical formula for the projections of our
general ellipse.

Proposition 3.2. Given an ellipse E
p

(x, y) parameterized by p = (a, b, x0, y0,↵) we have the
following statement regarding its projections P

p

(�, t)

P
p

(�, t) =
c

a

2
↵

(�)

p

a

2
↵

(�)� (t� s cos(� � �))2, (3.1)

whereby

c := 2AB, a

2
↵

(�) := a

2 cos2(�� ↵) + b

2 sin2(�� ↵),

s :=
q

x

2
1 + x

2
2, � := arctan(x2/x1),

whenever the term under the root is not negative and zero otherwise.

One can readily recognize that for each projection two singularities exist, each at the point where
the expression inside of the square root is equal to zero.

3.1.2 Re-computation of an ellipses’ projection at one angle for another angle

In the following we want to derive, how we can compute the projection of an ellipse at an
arbitrary angle �2, when we are given the ellipses’ projection at an angle �1 and the location
of its singularities for both angles. The following proposition reveals how one projection can
be transformed into any other projection. We will subsequently see that required projection
parameters can be obtained from position of singularities.

Proposition 3.3. Given �1,�2 2 [0, 2⇡], we get

uP
p

(�1, ut+ w) = P
p

(�2, t), (3.2)

whereby u,w are understood as

u :=
a

↵

(�1)

a

↵

(�2)
, w := s cos(� � �1)� us cos(� � �2).

11



3 Range consistent sinogram restoration for ellipses

Proof.

P
p

(�2, t) =
c

a

2
↵

(�2)

 

a

2
↵

(�2)�
�

t� s cos (� � �2)
�2

!

1
2

=
c

a

2
↵

(�1)

a

2
↵

(�1)

a

2
↵

(�2)

 

a

2
↵

(�2)

a

2
↵

(�1)

!

1
2

| {z }

u

 

a

2
↵

(�1)�
a

2
↵

(�1)

a

2
↵

(�2)
| {z }

u

2

�

t� s cos (� � �2)
�2

!

1
2

= u

c

a

2
↵

(�1)

 

a

2
↵

(�1)�
�

ut� us cos(� � �2)
�2

!

1
2

= u

c

a

2
↵

(�1)

 

a

2
↵

(�1)�
�

ut+ w � s cos(� � �1)
�2

!

1
2

= uP
p

(�1, ut+ w)

The following lemma states that transformation parameter a
↵

(�) is half the width of an ellipses’
projection and therefore it can be computed from its singularities in the Radon domain.

Lemma 3.4. Assume P
p

(�, t) is singular at t1 and t2. It holds

a

↵

(�) =
|t1 � t2|

2
. (3.3)

Proof.

P
p

(�, t) is singular at t1/2 , a

2
↵

(�)� (t1/2 � s cos(� � �))2 = 0

, a

↵

(�) = ±(t1/2 � s cos(� � �)) , 2a
↵

(�) = |t1 � t2|

The translation parameter w can be obtained from a pair of points in the target and source
projection, as it is independent of t and thus constant for fixed angles �1,�2. We summarize
our results in the following statement of this subsection.

Proposition 3.5. Given the singularities of an ellipses’ projections at two distinct angles �1

and �2, we can compute the transformation parameters u and w of formula (3.2). Thus we can
transform one projection into the other (cf. Proposition 3.3).

Proof. Obtain u by applying Lemma 3.4 to u = a

↵

(�1)/a↵(�2). Then observe that we get w by
computing the translation related to a pair of singularities, and by using the property that w is
constant for fixed �1,�2.

12



3.1 Sinogram restoration for a single ellipse

3.1.3 Estimating position of singularities in the sinogram of an ellipse

The next challenge is to approximate singularities for unknown projections. This is a two
fold task; one first has to determine the position of singularities in the range of available data,
following which one has to estimate the location of singularities in the range of unknown data.

In the case of a single ellipse it is an easy task to determine its singularities. As we have
already seen, each projection has two of them, at the locations where it transitions from zero
to positive or vice versa. The situation is more complicated in the case of multiple ellipses, as
their projections generally overlap at some point.

Since it is a di�cult subject on its own, detection of singularities is not part of this thesis.
The approach made in [Rag04] incorporates both local and global data, which seems a suitable
way to reliably detect singularities in given sinograms. We are primarily interested in gaining
insight to the reconstruction problem and choose not to deal with the details of implementation.
Therefore we choose to pick singularities manually.

Now that we know the location for each curve of singularities in the range of available data, we
can obtain the approximate position of missing singularities by fitting a polynom to each curve
in least squares sense. If we approximate with a polynom of su�ciently high degree, this is a
natural fit, as the curves are adequately well-behaved.

3.1.4 Implementation of the approach

Let us summarize the results regarding the restoration problem of a single ellipses’ sinogram:
We detect curves of singularities in the range of available data, expand them over the range of
missing data by least-squares fitting a polynom of su�ciently large degree and thereafter use
transformation formula (3.2) to calculate missing projections from a known projection. By doing
so we obtain approximated sinogram data.

This approach is detailed in algorithm 1a below and a listing of its MATLAB® implementation
can be reviewed in appendix A.

Algorithm 1a.

1. Determine position of singularities in range [0, 2⇡]\C
�1,�2 by looking for the position where

each projection transitions from zero to non-zero or vice versa.

2. Use singularities obtained in Step 1 to calculate coe�cients of a least-squares polynomial
fit for both curves of singularities.

3. Generate projection data for each unknown angle �

m

2 C
�1,�2 from a known projection �

a

:

a) Estimate singularities at angle �

m

by evaluating polynomials gained in Step 2.

b) Calculate parameter u (cf. 3.2) by dividing the distance of singularities at known
angle �

a

through the distance of singularities at the unknown angle �

m

.

c) Calculate w as the signed distance of the smaller (with respect to t) singularity at �
a

from the corresponding singularity at the unknown angle �

m

.

d) Obtain projection P
p

(�
m

, t

k

) trough linear interpolation of the projection at �
a

along-
side the formula P

p

(�
a

, ut

k

+ w). Hereby t

k

is the discrete projection displacement
from our parallel beam protocol (2.10).
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3 Range consistent sinogram restoration for ellipses

Figure 4 – Various backprojections of a single ellipse alongside with their corresponding sinograms
are depicted in the first to third row; first row: reconstruction from limited an-
gle data (PSNR 13.75 dB), second row: reconstruction from data obtained by Algo-
rithm 1a (PSNR 25.11 dB), third row: reconstruction from full angle tomographic data
(PSNR 32.45 dB). A zoomed-in view on the reconstructions gained from the restored and
the full angle sinogram is given in the last row.
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3.2 Ludwig-Helgason consistency conditions

Outcome of this algorithm for a sample ellipse and a comparison with reconstruction from limited
angle data, as well as full tomographic data is displayed in Figure 4.

Before we expand our algorithm to multiple ellipses, let us point out why we do not attenuate
recovered projections.

3.2 Ludwig-Helgason consistency conditions

It is obvious that we will make a certain error in the recovery process of a projection. In order
to compensate for this error it seems reasonable to attenuate the projection. As this will result
in a violation of the consistency conditions however, and as our strong model assumptions keep
the error fairly small, we chose not to attenuate the projections in our first approach.

Let us now see, which conditions have to be fulfilled for range consistency. Range of the Radon
transform is not arbitrary, but rather characterized by the so-called Ludwig-Helgason consistency
conditions that are also referred to as moment conditions in literature. We recapitulate their
statement for a two dimensional setting in the following theorem.

Theorem 3.6 ([WP90, Theorem 1]). It is a necessary and su�cient requirement for a given
function f̃(✓, t) to be the Radon transform of a function f̃(✓, t), to satisfy the following conditions:

1. f̃ 2 S(Z2) and even, i.e. f̃(✓, t) = f̃(�✓,�t).

2. The integral
Z 1

�1
f̃(✓, t)tkdt (3.4)

is a homogeneous trigonometric polynomial of degree k in ✓ for each k 2 Z+.

From here we can acquire an important geometric condition for the Radon transform known as
constant body mass.

Corollary 3.7 ([WP90]). Set k = 0 to receive the first order consistency condition

µ =

Z 1

�1
f̃(✓, t)dt =

Z

R2
f(x)dx 8✓ 2 S

1
. (3.5)

One notices easily that attenuation of projections would result in violation of this geometric
condition. On the other hand integration by substitution reveals that a sinogram recovered by
Algorithm 1a satisfies it:

Z 1

�1
f̃(✓, ut+ w) · u dt =

Z 1

�1
f̃(✓, u0) du0.
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3 Range consistent sinogram restoration for ellipses

3.3 Extension of the method to further, more complex objects

We now want to find a solution for the case of an image f that is built up from a sum of ellipses,
i.e. f =

P

i

c

i

E
pi . Due to linearity of the Radon transform we are able to represent the sinogram

of such an image as the sum of its ellipses’ projections: Rf =
P

i

c

i

P
pi .

This situation presents us with another obstacle. For each ellipse we need a reference projection
that we can transform alongside our formula (2.10). In the case where we have at least one
projection with separate regions of each ellipses’ support, we can simply divide this projection
as we will do in the next subsection. If projections of two or more ellipses overlap for each angle
however, we have to determine which values belong to each ellipse. We will outline how this
task can be solved in the next subsection but one.

3.3.1 Multiple ellipses that can be separated in a projection

In the case of multiple ellipses we restrain to a manual inspection for the task of determining
singularities of each ellipse. To do so, a polynom is fitted to hand-picked reference points in the
sinogram. Our approach is represented in Figure 5.

Figure 5 – A polynom is fitted to hand picked reference points for each curve of singularities.

As previously indicated we now suppose to have at least one angle �

a

for which the projections
P
pi(�a

, t) have distinct support. Hereby the support of each projection is given by the region
between its singularities respectively. We can now divide R(�

a

, t) into the particular P
pi(�a

, t)
by setting values lying outside the support of the respective projection to zero.

After doing so, we possess location of singularities and a reference projection for each ellipse.
Thus we can continue the same way, as we did for a single ellipse. We summarize our approach
in Algorithm 1b below. A listing of its MATLAB® implementation can be reviewed in appendix
A.

Algorithm 1b.

1. Determine the position of singularities in range [0, 2⇡] \ C
�1,�2 by manual inspection and

extend these singularities over range C
�1,�2 through a least-squares polynomial fit.

2. For each pair of singularities procede with Steps 3a to 3d of Algorithm 1a. Obtain the
necessary reference projection from R(�

a

, t) by setting values lying outside the support of
respective projection to zero. The reconstructed sinogram is a sum of the sinograms for
each ellipse respectively.
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3.3 Extension of the method to further, more complex objects

Figure 6 – Various backprojections of two ellipses alongside with their corresponding sinograms
are depicted in the first to third row; first row: reconstruction from limited an-
gle data (PSNR 11.13 dB), second row: reconstruction from data obtained by Algo-
rithm 1a (PSNR 21.08 dB), third row: reconstruction from full angle tomographic data
(PSNR 28.76 dB). A zoomed-in view on the reconstructions gained from the restored and
the full angle sinogram is given in the last row.
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3 Range consistent sinogram restoration for ellipses

Outcome of this algorithm for a sample image of two ellipses and a comparison with reconstruc-
tions from limited angle data and full tomographic data is displayed in Figure 6.

3.3.2 General idea for all images solely made up from ellipses

Let us now outline the procedure for the case, when the projection data for some ellipses overlaps
in a way that we cannot split the sinogram data into separate parts for each ellipse respectively.

We are given a sinogram of the form Rf =
P

i

c

i

P
pi . As we already know the singularities for

each ellipse, we can calculate P
pi(�a

, t

k

). Hereby t

k

denotes the discrete projection displacement
from our parallel beam protocol (2.10).
Now we know the amount each ellipse contributes to a specific point in the sinogram up to its
coe�cient c

i

. We obtain this coe�cient by solving an overdetermined system of linear equations
in the least-squares sense.

0

@P
p1(�a

, t

k

) . . . P
pn(�a

, t

k

)

1

A

0

B

@

c1
...
c

n

1

C

A

=

0

@Rf(�
a

, t

k

)

1

A

As we can already evaluate the quality of our approach from Algorithm 1b, we will not conduct
a practical implementation of this generalization here.

3.4 Conclusion of the method

Over the course of this chapter we have proposed an approach to recover an image from limited
angle tomographic data. Thereby we have employed a model that assumes the image we want
to recover is comprised of various ellipses. Under this strong assumption, we could derive a
method that is able to compute full angle tomographic data from limited angle sinograms.

Reconstructions of obtained full angle data has approximated the shape of ellipses somewhat bet-
ter than reconstructions from the initial limited angle sinograms. Our approach has significant
drawbacks however. At first it is to mention that the practical relevance of ellipse reconstruc-
tion is very limited for real-world applications. One could argue that it is possible to apply our
method to images that do not meet the model conditions. This strategy results in guessing of
a significant amount of information however, and we are not guaranteed that resulting recon-
structions do not contain considerable misinterpretations of the situation, as we have evaluated
in concise experiments. In the second place it remains to say that artifacts originating from
the limited angle situation are not completely removed and closer inspection of reconstructions
reveals that even additional circular artifacts are created by our procedure.
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4 Smooth truncation of sinogram data through local extension near
cut-o↵ edges

Over the course of this chapter we consider the same limited angle tomography problem as we
did in the previous chapter, i.e. projections are missing for the angular double cone C

�1,�2 . Since
we have seen that a range consistent full angle reconstruction has significant shortcomings, we
will extend available projections only within a local neighbourhood this time.

In the following it is our goal to develop an algorithm that does not impose additional conditions
on the original image. We want to find a method that avoids to add a significant amount of
additional information to the sinogram and incorporates as much of the information available
in projections as possible.

We will interpret our findings in the context of microlocal analysis that we introduce in the
following.

4.1 Micro-local analysis

Main purpose of this section is to familiarize the reader with the framework of microlocal analysis.
Important results concerning the Radon transform will be summarized and some expectations
for a reconstruction algorithm that we subsequently develop are presented.

The general idea behind microlocal analysis is to investigate a function not only by localizing
in space through the use of cut-o↵ functions, but also by microlocalizing with respect to the
cotangent space of directions at a given point through methods based on Fourier transforms.

At first we are going to introduce an important microlocal concept, the wavefront set of a
distribution, which was coined by Lars Hörmander in [Hör71]. Following that we will familiarize
ourselves with statements on the wavefront set of the Radon transform and their impact on
limited angle tomography, as developed by Eric T. Quinto in [Qui93].

4.1.1 Mathematical prerequisites

Let us now recall some mathematical concepts that we will need during the rest of this chap-
ter. We begin with definition of distributions, which can be seen as objects that generalize
functions.

Definition 4.1. A distribution is a continuous linear functional that maps the space of com-
pactly supported test functions D(Rn) := {f 2 C

1(Rn) : f has compact support} to the set of
real numbers. We want to denote distributions by D0(Rn).

We say a distribution f has compact support, if there is a compact set K ✓ Rn, such that
f(�) = 0 for all functions � 2 D(Rn) with support disjoint from K and denote the set of
distributions with compact support as E 0.

The concept of singularities, that we have used in previous sections without a clear definition,
shall be brought to a more mathematical standing with the following definition.
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4 Smooth truncation of sinogram data through local extension near cut-o↵ edges

Definition 4.2 ([Hör71, p. 120]). Define the singular support of a distribution f 2 D0(Rn) as

sing supp f :=
\

�2C1(Rn),
�f2C1(Rn)

{x 2 Rn : �(x) = 0} . (4.1)

We can interpret the singular support of a distribution f as the set of all points, where it
is not smooth (its discontinuities). Here we have localized f by multiplying it with a cut-o↵
function �.

Before we can introduce the wavefront set WF, we still need two definitions. Namely the conical
neighborhood of a set in Rn:

Definition 4.3. A neighborhood N of X ✓ Rn is called conic, if

t⇠ 2 N 8⇠ 2 N, t > 0.

and the definition of a rapidly decaying distribution:

Definition 4.4. We say a distribution f 2 D0(Rn) is rapidly decreasing in X 2 Rn, if it decays
faster than any negative power of its variable x. That is, for every number N there exists a
constant C

N

so that

|f(x)|  C

N

(1 + |x|)�N 8x 2 X.

Now we are ready to introduce the main object of our inspection in this chapter, the wavefront
set of a distribution.

4.1.2 Wavefront set of a distribution

The wavefront set characterizes the singularities of a distribution in space and with respect to
its Fourier transform at each point. It was originally coined by Lars Hrmander, but we want to
use a definition of Quinto as it is more suited for the analysis of our limited angle problem.

Definition 4.5 ([Qui93, Definition 2.1]). Let f 2 D0(Rn), x 2 Rn and ⇠ 2 Rn \ 0. Then we
say (x, ⇠) 2 WFf , the wavefront set of f , if and only if for each cut-o↵ function � 2 D(Rn) at
x with �(x) 6= 0,F(�f) does not decrease rapidly in any open conic neighbourhood of the half
ray {t⇠ : t > 0}.

In more familiar terms, WF(f) tells not only where the function f is singular (which is already
described by its singular support), but also in which direction the singularity occurs. The
singular support of a distribution f can be obtained from the wavefront set WF(f) by projecting
it to its first coordinate.
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4.1 Micro-local analysis

4.1.3 Correspondence of singularities in f and Rf

Application of the microlocal method to limited angle tomography, as first described by Eric T.
Quinto, provides insight on singularities in reconstructed images. The following theorem estab-
lishes a connection between singularities in f and Rf . Based upon that we can determine which
singularities we can faithfully reconstruct and which additional singularities we have to expect
from limited angle data.

Theorem 4.6 ([Qui93, Theorem 3.1]). Assume f 2 E 0(R2), x 2 L(✓, t), (✓, t) 2 Z

2
, a 6= 0 and

⇣ := (�x · ✓?, 1)>, then:

(x, a✓) 2 WF f , ((✓, t), a⇣) 2 WFRf. (4.2)

The theorem bears a powerful statement, as it implies an exact correspondence between the
wavefront set of a function f and the wavefront set of its Radon transform Rf .

As already mentioned, we can use this result to determine which singularities we can faithfully
identify from limited angle data. Other singularities appear smoothed in reconstructed images.

Corollary 4.7 ([Qui93, Corollary]). Only singularities where the direction is available in limited
angle data, can be reconstructed in a stable way. We call

WF
�1,�2 := {(x, ✓) : (x, ✓) 2 WF(f), ✓ = (cos�, sin�), � 2 [0, 2⇡] \ C

�1,�2}

the set of visible singularities of f .

Inspired by the representation in [Fri12, p. 42], we have depicted the set of visible singularities for
a centered circle and for the Shepp-Logan phantom by red lines in Figure 7. The limited angle
reconstructions of these images clearly show that visible singularities are faithfully reconstructed
and other singularities, in contrary, are not distinguishable or smoothed out.

The reconstructions in Figure 7 also expose another phenomenon. We are not only missing some
singularities of underlying function f , but we are further confronted with additional singularities.
These additional singularities seem to originate from existing singularities at the edge of cut-
o↵ angles and are streaked over the entire reconstruction image in straight lines. We find the
following useful proposition.

Proposition 4.8 (cf. [Fri12, Theorem 3.24]). Consider a function f 2 E 0(R2). Then the
wavefront set of a reconstruction from limited angle data with cut-o↵ angles �1,�2 is contained
in

WF
�1,�2(f) [ A

�1,�2(f)

where WF
�1,�2(f) is the set of visible singularities from proposition 4.7 and

A
�1,�2(f) :=

n

(x+ r✓

?
, a✓) : (x, ✓) 2 WF(f), a, r 6= 0, ✓ = (cos�, sin�), � 2 {�1,�2}

o

is the set of additional singularities.

This proposition reveals that the wavefront set of reconstructed images can contain additional
singularities besides to the recovered visible singularities. These additional singularities originate
from singularities with direction along the cut-o↵ angles �1 and �2.

In the following subsection we will apply this knowledge to our limited angle problem.
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4 Smooth truncation of sinogram data through local extension near cut-o↵ edges

Figure 7 – Analysis of reconstructions from limited angle data with cut-o↵ angles �1 = 46�,�2 = 135�.
The objects investigated are a simple disc and the Shepp-Logan phantom. Inspired by the rep-
resentation in [Fri12, p. 42], we indicate visible singularities with red lines (left). Additional
artefact singularities are streaked over the entire reconstruction along lines perpendicular to
the cut-o↵ angles (right).

4.2 Idea for a microlocal approach

Goal of this subsection is to derive a method which manipulates given limited angle data such
that artifact singularities are reduced, while keeping as much information contained in the
sinogram as possible.

We can explain missing singularities (these are singularities, for which the angle of direction
is not available in limited data) simply through lack of information. On the other side of the
spectrum, artifact singularities can be explained by singularities that are introduced in the
Radon domain trough abrupt truncation of data at cut-o↵ angles. These singularities have a
direct counterpart in the image domain, as predicted by Quinto’s theorem 4.6.

Thus, in order to avoid artifact singularities, we have to circumvent hard truncation of data. An
approach made by [Fri12], is to multiply limited angle data with a smooth truncation function
that leads to a gradual decrease of values to the edges of available data. In his thesis he showed
that this procedure reduces limited angle artifacts.

Based on these results, we have come up with a novel approach that inhibits abrupt cut-o↵ at
angles �1 and �2, but in addition keeps available data intact. We accomplish this by re-using
some of the results gained in Chapter 3 and extend available data to a locally limited range,
which we subsequently multiply with a suitable smooth truncation function. Thus we obtain a
gradual decrease of values from the edges of available data and reduce artifacts that stem from
the singularities introduced by abrupt cut-o↵ at these edges.
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4.2 Idea for a microlocal approach

4.2.1 Local extension of data

Let us now describe our procedure for extending a given sinogram to missing angles in a limited
local range. We will capture the most important features well, if we have a good estimation for
singularities.

Similar to our procedure in Algorithms 1a and 1b, we first detect curves of singularities in the
angular range of available data, this time with restriction to singularities close to the cut-o↵
angles. In a next step we approximate these curves by fitting a polynomial of su�ciently high
degree so that we can calculate the position of singularities in the unknown range.

Now that we know the position of singularities for each ellipse and projection, we transform the
last available projection at a cut-o↵ angle into the projections that we want to recover in its
neighborhood. We do so by splitting the source projection in multiple parts separated by its
singularities and then linearly transform these parts so that they match with the position of
singularities in the target projection respectively. The so gained projection is than evaluated at
the sampling points of our discrete grid.

Following this procedure, we recover a limited range of angles near both cut-o↵ edges, i.e.
[�1,�1 + ✏] and [�2 � ✏,�2]. Each projection at an angle � inside this range is attenuated through
multiplication with a smooth truncation function �

k

(�) = (1� �

✏

)k.

Let us sum up our approach in the following algorithm, which we have implemented in MATLAB®

as found for reference in Appendix A. Figure 8 depicts two sample sinograms as returned by the
algorithm.

Algorithm 2.

1. Estimate the location of singularities in a local range close to cut-o↵ edges �1,�2.

a) Detect singularities in [�1 � 2✏,�1] and [�2,�2 + 2✏].

b) Obtain estimate for singularities in [�1,�1 + ✏] and [�2 � ✏,�2] by evaluating a poly-
nomial fitted to available singularities.

2. Extend existing projection data at angles �1,�2 by matching their singularities’ positions
to the position of singularities at the target projection.

a) For each angle � that is contained in our parallel beam protocol and in the recon-
struction range [�1,�1 + ✏][ [�2 � ✏,�2], calculate a projection. Do so by splitting the
source projection at �1 or �2 in multiple parts separated by its singularities and then
linearly transform these parts so that they match with the position of singularities in
the target projection respectively. Then evaluate this projection at the sampling points
of our discrete grid.

b) Hereby attenuate obtained projection through multiplication with the smooth transition
function �

k

(�) = (1� �

✏

)k.
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4 Smooth truncation of sinogram data through local extension near cut-o↵ edges

Figure 8 – Top row: sample output as returned by Algorithm 2. Bottom row: pointwise di↵erence to
output that was generated from attenuated original data. Examined objects are discussed
below.

4.2.2 Advantages and disadvantages of the approach

Compared to out first approach, we immediately observe that our procedure violates the consis-
tency conditions this time. For sensitive reconstruction methods, such as MLEM, this can lead
to a non-converging situation.

As misdiagnoses can happen with the rendering of non-physical features in real-world medical
applications, it is essentially necessary that only actual features of the underlying object are
visible in reconstructed images

Our local approach provides a possibility to choose a trade-o↵ between artifact reduction and
information preservation in a controlled manner.

4.3 Implementation and evaluation in our case for ellipses

Concerning the practical implementation of our algorithm, we still face some technical di�cul-
ties. On one hand we have to define the behaviour for all emerging special cases, as for example
when the curves of singularities overlap within our extension range. On the other hand we
have to cope with flawed projections in real-world applications, as they are always corrupted
by noise. Most of all, however, we still lack an e�cient algorithm for detection of singularities.
We also note that there are certain images, to which the approach cannot be applied without
modification (e.g. smooth objects without singularities).
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4.3 Implementation and evaluation in our case for ellipses

While all of these issues are important, we want to focus on a quick reference implementation
of our algorithm. Therefore we implement the method for images constructed from overlapping
ellipses. For these kind of images we know the exact curves of singularities and their derivatives
from analytical formulas. This is su�cient for a first evaluation of expected outcome.

We note that this procedure is not to confuse with our first approach, where we incorporated
the requirement that an image is a superposition of ellipses directly in its model. Here we only
use the additional information for compensation of technical di�culties, but could apply our
algorithm to other images in theory.

A short empiric study revealed that higher order Taylor approximations do not provide signif-
icant improvement over first order approximation. We further found that k = 1.5 is a good
choice for the parameter of our smooth truncation function. Let us now have a look at some
sample images.

4.3.1 Single ellipse

The outcome of Algorithm 2 for underlying image f = c1Ep1 is depicted in Figure 9. We see
that reconstructions show less streak artifacts for increasing values of ✏.

i A B x0 y0 ↵ c

i

1 0.2 0.6 0.3 0 45 1.0

Table 1 – Ellipse parameters.

Figure 9 – Various backprojections of a single ellipse. Top-left: reconstruction from limited angle data
(�1 = 46�,�2 = 135�), top-right: reconstruction employing Algorithm 2 with ✏ = 7�, bottom-
left: ✏ = 15�, bottom-right: ✏ = 22�.
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4 Smooth truncation of sinogram data through local extension near cut-o↵ edges

4.3.2 Shepp-Logan phantom

The outcome of Algorithm 2 for underlying image f =
P9

n=1 ciEpi is depicted in Figure 10. We
can see the same decrease of artifacts with increasing range of recovery, as we saw for the single
ellipse. However this time we are also confronted with some additional artifacts for increasing
✏, which can be explained by errors we introduce with our extension.

i A B x0 y0 ↵ c

i

1 0.874 0.6624 0 -0.0184 90 1.0
2 0.31 0.11 0.22 0 72 -0.8
3 0.41 0.16 -0.22 0 108 -0.2
4 0.25 0.21 0 0.35 90 -0.2
5 0.046 0.046 0 0.1 0 0.1
6 0.046 0.046 0 -0.1 0 0.1
7 0.046 0.023 -0.08 -0.605 0 0.1
8 0.023 0.023 0 -0.605 0 0.1
9 0.046 0.023 0.06 -0.605 90 0.1

Table 2 – Ellipse parameters of Shepp-Logan phantom.

Figure 10 – Various backprojections of the Shepp-Logan phantom. Top-left: reconstruction from limited
angle data (�1 = 46�,�2 = 135�), top-right: reconstruction employing Algorithm 2 with
✏ = 7�, bottom-left: ✏ = 15�, bottom-right: ✏ = 22�.
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5 Outlook and concluding remarks

Over the course of this bachelor’s thesis we have learned about various aspects from the rich field
of computed tomography. In an introductory chapter we have set the necessary mathematical
foundations and subsequently introduced the method of filtered backprojection, as well as the
problem of limited angle tomography.

This brought us to the main subject of this thesis: finding an algorithm operating on given sino-
gram data in order to reduce artifacts inherent to the limited angle problem. In a first approach
we tried to solve this problem for objects made up solely from a superposition of ellipses. Con-
tingent to this strong model assumption, we were able to come up with a method that allows
us to recover sinogram data over the whole angular range - a requirement imposed for valid
projection data by the consistency conditions. However our approach introduced additional,
circular artifacts and has limited use in real-world applications.

In a next step we have re-employed the knowledge gained in our first approach together with an
idea that we found in the PhD-thesis of Jürgen Frikel, to come up with a novel approach. We
saw that limited angle artifacts can be avoided through smooth decay of values at the cut-o↵
edges of available data. Novel to our approach is that we first extend sinogram data to a locally
limited range in order to keep as much information, contained in sinogram data, as possible. We
then multiplied this data with a smooth truncation function to obtain the desired decay into
the range of missing data.

This approach turned out to be a promising way to reduce limited angle artifacts. However for
a thorough implementation there are still technical di�culties to overcome. These include the
detection and mapping of singularities and the handling of input that is corrupted by noise.

All in all, this bachelor’s thesis has served well to become familiar with the limited angle to-
mography problem and proposes two methods that o↵er an entry point for further research. It
is desirable to evaluate our microlocal approach with an automated algorithm for detection of
singularities or to do further research on discretization issues.
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A Matlab Code

A Matlab Code

Here we present MATLAB® implementations of suggested algorithms.

Algorithm 1a

1

2 %%
3 % Algorithm 1a
4 %
5 % Input: limited angle sinogram: R lim,
6 % (data in the range of theta1 to theta2 is missing)
7 % starting angle of missing data: theta1,
8 % ending angle of missing data: theta2
9 %

10 % Output: reconstructed sinogram: R,
11 % reconstructed image: I
12

13 function [R,I] = algorithm 1a( R, phi1, phi2, imgsize)

14

15 % Step 1: Estimate missing singularities.
16

17 % Gather location of singularities in the interval [0, theta1].
18 for x = 1:(phi1�1);
19 y top(x) = find(R(:,x),1,'first');

20 y bottom(x) = find(R(:,x),1,'last');

21 end

22

23 % Gather location of singularities in the interval [theta2, 179].
24 for x = (phi2+1):180

25 y top(x�(phi2�phi1+1)) = find(R(:,x),1,'first');

26 y bottom(x�(phi2�phi1+1)) = find(R(:,x),1,'last');

27 end

28

29 % Calculate coefficients of a polynom that fits to the existing
30 % singularities in a least squares sense.
31 x = [1:(phi1�1) (phi2+1):180];

32

33 p top = polyfit(x,y top,8);

34 p bottom = polyfit(x,y bottom,8);

35

36 % Step 2: Transform an existing projection to obtain projection data in the
37 % missing range.
38

39 for theta = phi1:phi2

40 % Calculate parameters of the transformation from fitted singularities.
41 a1 = y bottom(phi1�1) � y top(phi1�1);
42 a2 = polyval(p bottom,theta) � polyval(p top,theta);

43 u = a1/a2;

44 w = y top(phi1�1) � u

*

polyval(p top,theta);

45

46 % Actual transformation.
47 t = 1:size(R,1);

48 t = u.

*

t + w;

49

50 R(:,theta) = u.

*

interp1q((1:size(R,1))',R(:,phi1�1),t');
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51 end

52

53 R(isnan(R))=0;

54

55 % Filtered back projection with Ram�Lak filter
56 I = iradon(R,0:179,'linear','Ram�Lak',1,imgsize);
57

58 end

Algorithm 1b

1

2 %%
3 % Algorithm 1b
4 %
5 % Input: limited angle sinogram: R lim,
6 % (data in the range of theta1 to theta2 is missing)
7 % starting angle of missing data: theta1,
8 % ending angle of missing data: theta2
9 %

10 % Output: reconstructed sinogram: R,
11 % reconstructed image: I
12 %
13 % Manual steps are needed for fitting of curve. From top to bottom (linke Seite).
14

15 function [R,I] = algorithm 1b(R lim,phi1,phi2,imgsize)

16

17 % 1. Step: Manually select reference points used to interpolate polynomial
18 % curves for singularities.
19

20 % Plot the limited angle sinogram, where we will select reference points.
21 figure();imagesc(R lim);colormap(gray)

22 hold on

23

24 % Number of singularity curves (should be an even number, as we each
25 % ellipse has exactly two curves.
26 num = inputdlg('Please enter the number of singularity curves:');

27 num = str2double(num{1});
28

29 % Degree of polynomial to be fitted.
30 degree = 5;

31

32 % Initialize matrix containing the coefficients of fitted polynomials.
33 coeff = zeros(num,degree+1);

34

35 % For each curve of singularities ...
36 for i = 1:num

37 xy = [];

38 n = 0;

39

40 % Collect reference points by left clicking in the limited angle
41 % sinogram. The last point for the current curve is selected by
42 % clicking with the right mouse button.
43 button = 1;

44 while button == 1

45 [xi,yi,button] = ginput(1);

46 plot(xi,yi,'wx')
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47

48 n = n+1;

49 xy(:,n) = [xi;yi];

50 end

51

52 % Fit a polynom to the singularity curve.
53 x = xy(1,:);

54 y = xy(2,:);

55

56 coeff(i,:) = polyfit(x,y,degree);

57

58 % Plot the fitted polynom in the range of missing angles.
59 xp = 0:179;

60 yp(i,:) = polyval(coeff(i,:),xp);

61

62 plot(phi1:phi2,yp(i,phi1:phi2),'w�');
63 end

64

65 hold off

66

67 % 2. Step: Obtain reference projections by dividing sinogram at one angle
68 % where supports of projections do not overlap. Without limitation we
69 % expect phi1�1 to be that angle.
70

71 for i=1:num/2

72 % Singularities for current ellipse
73 s1(i) = round(polyval(coeff(2

*

i�1,:),phi1�1));
74 s2(i) = round(polyval(coeff(2

*

i,:),phi1�1));
75

76 % Sort singularities
77 if s1(i) > s2(i)

78 temp = s2(i);

79 s2(i) = s1(i);

80 s1(i) = temp;

81 end

82

83 % Set values outside support to zero
84 p(i,:) = R lim(:,phi1�1);
85 p(i,1:(s1(i)�1)) = zeros((s1(i)�1),1);
86 p(i,(s2(i)+1):size(R lim,1)) = zeros(size(R lim,1)�(s2(i)),1);
87 end

88

89 % Continue as in Algorithm 1..
90

91 R = R lim;

92

93 % Round to integers
94 yp = round(yp);

95

96 % Transform an existing projection to obtain projection data in the missing
97 % range.
98

99 for phi=phi1:phi2

100 this projection = zeros(size(R,1),1);

101 for i=1:num/2

102 % Calculate parameters of the transformation from fitted singularities.
103 a1 = yp(2

*

i,phi1�1) � yp(2

*

i�1,phi1�1);
104 a2 = yp(2

*

i,phi) � yp(2

*

i�1,phi);
105 u = a1/a2;

106 w = yp(2

*

i,phi1�1) � u

*

yp(2

*

i,phi);
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107

108 % Actual transformation.
109 t = 1:size(R,1);

110 t = u.

*

t + w;

111

112 this projection = this projection + u.

*

interp1((1:size(R,1))',p(i,:),t');

113 end

114 R(:,phi) = this projection;

115 end

116 R(isnan(R))=0;

117

118 I = iradon(R,0:179,'linear','Ram�Lak',1,imgsize);

Algorithm 2

1 function rec = algorithm 2( r, s, d, dd, num )

2 % r original slice
3 % s singularities at angle of slice
4 % d derivative at angle of slice
5 % num number of angles to extract
6 %
7 % rec reconstructed part of sinogram
8

9 % Sort singularities alongside with derivatives
10 [s, IX] = sort(s);

11 d = d(IX);

12 dd = dd(IX);

13 %dd=zeros(size(dd));
14

15 rec=zeros(size(r,1),num);

16

17 for i=1:num

18 j=i

*

pi/180;

19 si = s + d

*

j + (dd/2)

*

(j.ˆ2);

20 rt = resample( s, r, si )';

21

22 % Mitigation
23 mit=((num�i)/num).ˆ1.5;
24

25 rec(:,i)=rt

*

mit;

26

27 end

28

29 end

30

31 function rt = resample( sing, r, singt )

32

33 % Make column vectors
34 sing=sing(:);

35 singt=singt(:);

36 r=r(:);

37

38 % Singularity vectors and image borders
39

40 s phi=round([1;sing;size(r,1)]);

41 s phit=[1;singt;size(r,1)];

42
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43 % Calculate sampling points at target angle
44

45 nsamples=s phi(2:end)�s phi(1:end�1)�1;
46 spacing=(s phit(2:end)�s phit(1:end�1))./(nsamples+1);
47

48 sampling=[];

49 for i=1:size(nsamples,1)

50 this=(0:nsamples(i))

*

spacing(i)+s phit(i);

51 sampling=[sampling this];

52 end

53 sampling=[sampling s phit(end)];

54

55 % Re�sample to sinogram base points
56

57 resampling=1:size(r,1);

58 rt=interp1(sampling,r,resampling);

59

60 end
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B Glossary of symbols

In the following we provide a summery of important symbols used throughout this thesis.

Symbol Description

C

1(U) Space of smooth functions.
L

p(U) Space of p-integrable functions.
L

p(U, dµ) Space of weighted p-integrable functions.
S(Rn) Schwartz space of all infinitely

di↵erentiable functions that rapidly
decay with all their derivatives.

B

n

r

Ball with radius r in Rn.
S

n�1 Unit sphere in Rn.
Z

n := S

n�1 ⇥ R Unit cylinder in Rn.
L(✓, t), A�ne hyperplane in Rn.

f̂(⇠) := Ff(⇠) Fourier transform.

f(x) = F�1
f̂(x) Inverse Fourier transform.

(f ⇤ g)(x) Convolution in Rn.

f̃(✓, t) := Rf(✓, t) Radon transformation.
R⇤ Backprojection operator.
Ia Riesz potential.

C
�1,�2 Angular double cone.

E
p

(x, y) Characteristic function of an ellipse with
parameter vector p.

P
p

(�, t) Projection of ellipse with parameter
vector p.

WF(f) Wavefront set.
WF

�1,�2(f) Set of visible singularities.
A

�1,�2(f) Set of additional singularities.
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