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Zusammenfassung

Die Limited Angle Tomography ist ein tomographisches Verfahren, bei dem Messdaten eines Pati-
enten oder eines Objektes nicht von allen Seiten, sondern nur aus einem eingeschränkten Winkelbe-
reich heraus erhoben werden. Der Grund für diese Einschränkung des Messbereiches liegt oft darin,
empfindliche Strukturen in der Nähe der betrachteten Stelle vor Strahlungseinflüssen zu schützen.
Ein Beispiel für solche Strukturen ist der Hirnstamm bei der Tomographie des Kiefers in der Zahn-
medizin oder die inneren Organe wie die Lunge in der Mammographie. Die aus diesem Verfahren
resultierende Unvollständigkeit der Messdaten im Vergleich zu einer herkömmlichen, kompletten to-
mographischen Messung führt dazu, dass das betrachtete Rekonstruktionsproblem schlecht gestellt
ist. Zusammen mit der Tatsache, dass tomographische Messdaten immer leicht verrauscht sind, lie-
fern übliche Rekonstruktionsmethoden, wie die Filtered Backprojection keine zufriedenstellenden
Ergebnisse, sondern stark von Artefakten beeinträchtigte Bilder.

Das Ziel dieser Masterarbeit ist die Weiterentwicklung einer Rekonstruktionsmethode in der Limi-

ted Angle Tomography, die artefaktfrei und unempfindlich in Bezug auf verrauschte Messdaten ist.
Unter Verwendung des Fourier Slice Theorems kann man anhand der Winkel, zu denen Messdaten
existieren, eine Unterteilung der Fourierebene vornehmen: Fourier Koe�zienten innerhalb bestimm-
ter Winkelbereiche des Fourier Raumes können durch die Messungen berechnet werden; Fourier
Koe�zienten in den übrigen Bereichen können nicht berechnet werden. Dies motiviert die Verwen-
dung der Curvelet Transformation. Ein grundlegender Aspekt in der Definition dieser Transformation
ist die Unterteilung des Fourierraumes in verschiedene Winkelbereiche. Hiermit lassen sich gezielt
die Bereiche der Fourierebene von der Rekonstruktion ausschließen, die nicht gemessen wurden.
Hierfür werden im Laufe dieser Arbeit mehrere Aufteilungen der Fourierebene entwickelt, die dann
für die Definition einer modifizierten Curvelet Transformation verwendet werden. Bei der Aufteilung
des Fourier Raumes wird insbesondere auf die Vermeidung von artefakterzeugenden Strukturen, wie
harte Kanten zwischen verfügbaren und nicht verfügbaren Koe�zienten, geachtet. Für die entwi-
ckelten Aufteilungen wird eine schnelle digitale Curvelet Transformation implementiert.

Anschließend stellen wir mit Hilfe der Curvelet Transformation das Rekonstruktionsproblem auf.
Hierbei nutzen wir eine weitere Eigenschaft der Curvelet Transformation: Diese Transformation ist
optimal geeignet, um Kanten in Bildern mit wenigen Koe�zienten darzustellen. Dies motiviert die
Betrachtung eines Rekonstruktionsproblems, das die Anzahl der nicht nullwertigen Curveletkoe�-
zienten bestraft.

Schließlich zeigen wir numerische Ergebnisse der Rekonstruktion mit Hilfe der modifizierten Cur-
velet Transformation und des vorgestellten Rekonstruktionsproblems. Es zeigt sich, dass die entwi-
ckelte Rekonstruktionsmethode gut für den Einsatz in der Limited Angle Tomography geeignet ist.
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Abstract

Limited Angle Tomography is a tomographic procedure, where measurements are not taken from
each direction around a patient or an object, but only from within a limited angular range. This
limitation of the measurements often is a consequence of protecting sensible structures close by the
object that is to be imaged. Typical examples are the brainstem in the tomography of the jaws or the
inner organs like the lung in mammography. In comparison to a traditional, full angular scan the data
in limited angle tomography is incomplete. This leads to a severe ill-posedness of the considered
reconstruction problem. Together with the fact that tomographic measurements always exhibit some
noise, conventional reconstruction methods like the filtered backprojection do not yield satisfying
results but images that are strongly corrupted by artifacts.

The aim of this master’s thesis is the further development of an artifact-free and noise-insensitive
reconstruction method in limited angle tomography. We use the Fourier-Slice Theorem in order to
subdivide the Fourier plane into angular regions of coe�cient that can be computed based on based
on the angles that are given by the data acquisition and angular region of the Fourier plane that
are uncomputable. This motivates the consideration of the curvelet transform. A basal aspect in
the definition of this transform is the tiling of the Fourier plane into di↵erent angular scales. With
this, the regions of the Fourier plane that are not computable by the measurements can be excluded
from reconstruction process. In the course of this thesis we develop di↵erent tilings of the Fourier
plane that are used for the definition of a modified curvelet transform. We take care of structures
in the tilings that cause artifacts, like hard cut-o↵s at the boundary of measurable and unmeasurable
coe�cients. For the presented tilings a fast digital curvelet transform is implemented.

Afterwards, we set up the reconstruction problem using the curvelet transform. We use another
feature of the curvelet transform: This transform yields an optimal sparse representation of objects
with edges. This motivates the consideration of a reconstruction problem that punishes the number
of non-zero curvelet coe�cients.

Finally, we present the numerical results of our reconstruction method in combination with the
modified curvelet transform. It becomes apparent that the developed reconstruction method is well
suited for the use in limited angle tomography.
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Introduction

The present thesis is concerned with mathematical methods in medical image processing, in partic-
ular computed tomography. Tomography is a common and wide spread tool for medical diagnoses.
It is of great benefit to have the possibility to look inside a patient without the hazards of a surgery.
Especially in the field of cancer check-ups tomography opens new possibilities. E.g. the detection of
small tumors that are not palpable from the outside is one great benefit of this technique. But every
tomography based on x-rays naturally involves the risk of causing damage to cells in the body and
hence, to the patient. Therefore, in medical imaging it is important to reduce the dose of radiation
the patient is exposed to, in order to minimize the risk of causing harm. One possibility to reduce the
overall dose, a patient is exposed to, is to perform the single tomographic measurements with less
radiation. Unfortunately, a decrease of the radiation level leads to an increasing of the noise level of
the measurement data.

Another consequence of the reduction of radiation dose is to take measurements solely of the part
of the body that is needed for the considered diagnosis. E.g. in breast tomosynthesis only mea-
surements of the breast and not of the whole upper torso are made. Or even more critical, in dental
tomography only the jaws and not he whole head, including the very sensitive brainstem, are radi-
ated during image acquisition. This procedure reduces radiation, but brings along some challenging
problems: the considered body part is at least partially surrounded by other body parts that make
it physically impossible to take measurements from every direction. As a consequence, in a lot of
applications only measurements within a certain angular range are taken. This technique is called
Limited Angle tomography. Unfortunately, the exclusion of measurements has a negative influence
on the resulting image quality. In limited angle tomography strong artifacts are present. These ar-
tifacts can withhold the diagnosis or in the worst case, can lead to misdiagnoses. Nevertheless, this
technique is especially interesting in situations, where the acquisition of measurements is physically
impossible for all angles around the considered object. Among others, the above mentioned breast
tomosynthesis or dental tomography are examples, where the use of limited angle tomography is
very common.

Motivated by this medical background, the aim of this thesis is the construction of an artifact-
free reconstruction method in limited angle tomography that is capable of handling noise in the
measurement data. A reconstruction method with these features is well suited to be used in the
described situations and therefore, helps diagnosing a patient with minimal exposure of radiation
and hence, minimal risk of causing damage to the patient during image acquisition. To archive this
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we organize our thesis in the following way:

We introduce the mathematic background in Chapter 1. Here the data acquisition process is mod-
eled, using the Radon transform. This transform describes the physical situation of the tomographic
measurements. We introduce the curvelet Transform, which is powerful in representing objects with
edges in a sparse way. This will be used for the sparse reconstruction algorithm introduced after-
wards. We finish Chapter 1 by showing typical artifacts that are present in images reconstructed from
limited angle tomographic measurements.

Chapter 2 is dedicated to the adaption to the limited angular range. Here we present di↵erent
methods to adjust the curvelet transform to the use in limited angle tomography. This is done by
adjusting the curvelet tiling, the tiling of the Fourier plane that defines the curvelet transform. In
particular, artifact reduction is considered at this point.

In Chapter 3 we elaborate a fast discrete version of the curvelet transform. We start with a min-
imal, straight forward workflow for the curvelet analysis and synthesis algorithm. This algorithm
is examined and the occuring problems are handled. In the end, we present a fast digital curvelet
transform that is suited for the use in limited angle tomographic reconstruction. To conclude the
chapter, we compare our implementation to another implementation of the curvelet transform, that
is not optimized for the use in limited angle tomography.

The final algorithm is then used for numerical experiments in Chapter 4. Here, we compare results
for di↵erent parameter values and work out which parameter values lead to the best results.

Finally, we conclude this thesis by discussing our results in Chapter 5.
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1 Curvelets in Limited Angle Tomography

Tomography is concerned with the reconstruction of objects by sectional measurements. An object is
radiated by a penetrating wave. Hereby, the attenuation of the wave through the object is measured.
This is done for various directions, penetrating the object on di↵erent paths. Afterwards, these
measurements are used to estimate the attenuation coe�cient of the considered object at every point.

It is very useful to organize the measurements by their angular direction in relation to the object.
All measurements taken with the same angular direction form one projection of the measured object.
In tomography a data set consists of projections for angles in a range from zero to 180 degrees. E.g.
often equispaced angles ↵k =

k⇡
n for k = 1 . . . n, n 2 N are used.

Limited angle tomography corresponds to the case where the angles of the projections are re-
stricted by an interval. The acquisition angle of each measurement has to be within a given limited
angular range, ↵k 2 [��,�] for a given parameter value � 2 [0, ⇡]. This parameter � is called the
limiting or limited angle. Also in this case equispaced angles are common: ↵k = �� + k 2�

n , k =

1 . . . n, n 2 N. In comparison to standard tomography the resulting data set is incomplete, as all
angles outside the limited angular range [��,�] are missing.

We use a mathematical model to simulate the tomographic measurements. The Radon transform,
introduced by Johan Radon in 1917 ([19]), describes the physical background of tomographic mea-
surements. The projections are computed by integrals over oriented lines with specific angles and
locations. We dedicate Section 1.1 to describe this mathematical model.

Afterwards we develop the reconstruction technique. We give an introduction to the curvelet
transform and define it in continuous settings in Section 1.2. Curvelets were suggested to be used
in reconstruction by E. Candès and D. Donoho in [3] and introduced in the field of limited angle
tomography by J. Frikel in [13]. The connection between the measurements and the curvelet trans-
form is given by the Projection Slice Theorem. Given the incomplete measurements in limited angle
tomography, the Fourier coe�cients of the considered object can be computed for certain angles in
the Fourier space. The curvelet transform is defined in the Fourier space using a tiling that divides the
plane into di↵erent angular areas. This can be used to concentrate on the areas that are given by the
incomplete measurement data and exclude the areas that are not available from the reconstruction.

Another aspect is that curvelets form a tight frame of the vector space L2(R2) and are optimal
for the sparse representation of objects with edges. Therefore they are suited for edge-preserving
reconstruction.

Finally we are able to formulate the reconstruction problem using both, the Radon and the curvelet
transform. We present an algorithm, the Iterated Soft-thresholding for sparse regularization in com-
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1 Curvelets in Limited Angle Tomography

bination with curvelets, introduced in [13]. We conclude this chapter by showing typical artifacts
that occur in the reconstruction of tomographic data with a limited angular range.

1.1 Data Acquisition: The Radon Transform

In this section we follow the definitions given in [11] in order to introduce the Radon transform
and the limited angle Radon transform. We will establish a connection between the Radon and the
Fourier transform, which will become especially interesting, as soon as we consider the curvelet
transform and its adaption to limited angle tomography in Chapter 2.

The Radon transform is commonly used to model the data acquisition process in x-ray tomography.
One physical measurement uses a wave which is attenuated while penetrating the tissue along a
line given by the location of the source of radiation and the receiver. This single measurement
corresponds to the integration of the object along the given line. The Radon transform describes
the measurements for a full scan of the object. I.e. the results of all lines penetrating the object are
computed.

As a first step we define the oriented lines l✓,s B {x 2 R2 : hx, (cos ✓, sin ✓)T i = s}. A line l✓,s has
the normal direction (cos ✓, sin ✓)T and the distance from the origin s 2 R. Note, that this distance is
directed and is allowed to be negative. This leads to the following identity:

l✓,�s = l✓+⇡,s 8 ✓ 2 [0, 2⇡], s 2 R. (1.1)

For a better understanding, the definition of lines is depicted in Fig.1.1.

s

l✓,s

✓

Figure 1.1: Parametrization of oriented lines in the plane.

Using this notation we are able to define the integral over an oriented line. In the following we
assume f to be such that all stated integrals exist for all parameters (✓, s). We call this the natural

4



1.1 Data Acquisition: The Radon Transform

domain of the Radon transform.

R f (✓, s) =
Z

l✓,s

f (x)dS (x) =
1Z

�1

f (s cos ✓ � x sin ✓, s sin ✓ + x cos ✓)dx. (1.2)

The Radon transform R f is now defined as the collection of integrals of f along the lines in the plane.
This defines a function on R ⇥ [0, ⇡].

In limited angle tomography the Radon transform is not available for the complete angular range,
but only given for a limited angular range ✓ 2 [��,�]. The angle � < ⇡

2 is called the limiting
angle. We note this by R� f to emphasize that the Radon transform of f is defined only on the limited
angular domain [��,�]⇥R. The transformR� is called the limited angle Radon transform. The main
problem with the limited angle Radon transform is that the corresponding reconstruction problem y =

R� f is extremely ill-conditioned, as was shown in [8]. As a consequence small perturbations in the
measurements can cause huge errors during the reconstruction process. In practice, this is especially
troubling, since small corruptions of the measurements are always present as a consequence of noise.

1.1.1 Projection Slice Theorem

The Projection Slice Theorem, also called Fourier Slice Theorem, establishes a link between the
Radon transform and the Fourier transform of a function.
Theorem 6.2.1 taken from [11]: Let f be an absolutely integrable function in the natural domain of
the Radon transform R. For any real number r and unit vector ! = (cos ✓, sin ✓), we have the identity

1Z

�1

R f (s,!)e�isrds = f̂ (r!). (1.3)

The proof of this theorem can be found, for instance, in [11] and is not given here.
The message of the theorem is: the results of the following two computations are the same for a
two-dimensional function f:

a) compute the one-dimensional Fourier transform of a projection of f onto a line.

b) compute the two-dimensional Fourier transform and take the a slice of the Fourier plane par-
allel to the projection line in a) going through the origin.

For a better understanding, the Theorem is illustrated in Fig. 1.2.
The important consequence in limited angle tomography is that if the radon transform is available

only for angles ✓ 2 [��,�], the Fourier plane of the measured function is given on two cones
perpendicular to the measurement angles like illustrated in Fig. 1.3. This area in Fourier domain is
called the visible cone and is defined properly at the beginning of Chapter 2. This separation of the
Fourier space into angular segments, that are available and segments that are unavailable leads us to
the curvelet transform.
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1 Curvelets in Limited Angle Tomography

Radon Transfrom

1D Fourier Transform of

l

✓,s

for variable s

2D Fourier Transform

l

✓,0

Figure 1.2: Illustrationof the Projection Slice Theorem

1.2 Curvelet Transform: Continuous Setting

The curvelet Transform is a multiscale, highly directional transform. Similar to the well known
wavelet transform, or other (multiscale) transformations (Contourlet transform [9], Wedgelet trans-
form [10], Bandlet transform [16]), the curvelet transform represents images or functions with the
use of certain atoms, here called curvelets. Curvelets are essentially supported on an ellipse in spa-
tial domain and supported on a polar wedge in frequency domain as can be seen for representative
curvelets in Fig.(1.4). The last feature builds the connection to limited angle tomography. As in
Fourier domain curvelets are supported on a polar wedge, we can distinguish curvelets that are de-
fined in the measurable area from curvelets that lie in the not measurable area of the Fourier plane.
This will become an important feature during reconstruction.

During this section we introduce the curvelet Transform, following the definitions given by Emanuel
Candès et al. in [3] and [2].

1.2.1 Definition

Curvelets are defined in Fourier space. More precisely they are constructed by a tiling of the Fourier
space. A sketch of it is shown in Fig. 1.5. The tiling is centered around the origin of the Fourier

6



1.2 Curvelet Transform: Continuous Setting

�

(a) Measurements in spatial domain

�

(b) Computable coe�cients in Fourier domain

Figure 1.3: Radon transform for a range of � angles and the corresponding Fourier plane given on
the slices, perpendicular to the projection direction.

space and subdivides it into di↵erent radial scales. Points within a certain distance to the origin lie
in the same radial scale. Additionally, each radial scale except the low pass element, the radial scale
containing the origin, is subdivided into angular scales. Points within a certain angular range lie in
the same angular scale. We firstly consider the fine scale elements, the element that do not contain
the origin:

Here, the radial scale provides elements of di↵erent magnitude, whereas the angular scale deter-
mines the direction of an element. In addition to that, the location of a given element is influenced by
a translation parameter k 2 N2. Curvelets are defined via a generating curvelet  j,0,0 for each radial
scale 2� j, j 2 N0 and a rotation according to an angular scale l 2 [1, 2, . . . , 2 · 2d j+1

2 e�1]. In order
to define these generating curvelets, we introduce two window functions, W(r) the “radial window”
and V(!) the “angular window”, in the Fourier domain using polar coordinates (r,!). Both windows
are assumed to be smooth, non-negative and real-valued. Further,

supp W ⇢ (1/2, 2), supp V ⇢ [�1, 1] (1.4)

and the admissibility conditions

1X

j=�1
W2(2 j · r) = 1, r 2 (3/4, 3/2), (1.5)

1X

l=�1
V2(! � l) = 1,! 2 (�1/2, 1/2), (1.6)

are required to be satisfied.

7



1 Curvelets in Limited Angle Tomography

(a) Spatial domain (b) Fourier domain

Figure 1.4: Sum of three curvelet atoms at various scales, directions and translations in spatial do-
main and the modulus of it’s Fourier transform in Fourier domain.

A generating curvelet  j,0,0 is defined in the Fourier domain using the product of the window
functions W and V:

 ̂ j,0,0(r,!) B 2
�3 j

4 ·W
⇣
2� j · r

⌘
· V

0
BBBBB@

2d
j
2 e+1

⇡
· !

1
CCCCCA . (1.7)

For j �, l 2 {1, . . . , 2d j+1
2 e+1}, k 2 N2 the curvelet  j,l,k is defined by translation and rotation of its

generating curvelet j,0,0. Hence we introduce the (scale-dependent) equispaced sequence of rotation
angles

✓ j,l B l · ⇡ · 2�d j/2e�1, l = 0, 1, . . . , �2d j/2e  l < 2d j/2e+1, (1.8)

and the (scale-dependent) sequence of translation parameters

b j,l
k B R�1

✓ j,l

 
k1

2 j ,
k2

2 j/2

!
, k = (k1, k2) 2 Z2, (1.9)

where R✓ B

0
BBBBB@

cos ✓ sin ✓
� sin ✓ cos ✓

1
CCCCCA denotes the ✓-rotation matrix and R�1

✓ its inverse.

Using these notations, we are able to define curvelets  j,l,k(x), x 2 R2 at scale 2� j, orientation ✓ j,l

and location b j,l
k by

 j,l,k(x) B  j,0,0(R✓ j,l(x � b j,l
k )). (1.10)

Since supp W(2 j·) ⇢ (1/2,1) for j 2 N0, the region
S

( j,l,k)
supp  ̂ j,l,k does not contain any low-

pass elements. Therefore, similar to Wavelets, coarse scale elements have to be defined. This is
accomplished by a low-pass function  �1,0 and its translates

�
 �1,k

 
k2Z2 . As usual  �1,0 is given by

8



1.2 Curvelet Transform: Continuous Setting

Figure 1.5: The standard tiling of the Fourier space used in the curvelet definition.

its Fourier transform:

 ̂�1,0(r,!) = W0(r), with W2
0 (r) B 1 �

1X

j=0

W2(2� j · r) (1.11)

and  �1,k derived by translation

 �1,k(x) =  �1,0(x � b�1,0
k ). (1.12)

Note, that, as the low-pass curvelets  �1,k are non-directional, no rotation of the generating curvelet
is needed. Altogether the curvelet transform consists of two parts: The fine-scale, directional el-
ements ( j,l,k) j>0,l,k depicted in Fig.1.6(a) and the isotropic low-pass elements ( �1,k)k depicted in
Fig.1.6(b).

1.2.2 Features

Now that we have defined the curvelet system { j,l,k} j,l,k, we state some features that will be important
for our work.

9



1 Curvelets in Limited Angle Tomography

(a) Anisotropic fine-scale element (b) Isotropic low-pass element

Figure 1.6: Comparison of low-pass and fine-scale curvelet atoms in spatial domain.

Tight frame

One of the most important features of the curvelet transform is that the curvelet system constructed
is a tight frame. A brief introduction to frames, a generalization of bases, where the uniqueness of
representation is dropped and tight frames, frames with a minimal number of elements, is given in
the Appendix. Similar to an orthonormal basis, we can represent a function f 2 L2(R2) as a series of
curvelets

f =
X

j,l,k

h f , j,l,ki ·  j,l,k . (1.13)

Moreover, a Parseval relation holds true

X

j,l,k

|h f , j,l,ki|2 = || f ||2L2(R)2 , 8 f 2 L2(R)2. (1.14)

The term
c j,l,k( f ) B h f , j,l,ki (1.15)

is called curvelet coe�cient of f for scale j, orientation or direction l and location k.

Sparse representation of Objects with C2 Singularities

Curvelets yield an optimally sparse representation for functions that are C2 except for discontinuities
along C2 curves [4].

This shows that curvelets are well suited to represent objects with edges. This feature is very
important for using curvelets in the later reconstruction algorithm, as we aim on preserving edges.

10



1.2 Curvelet Transform: Continuous Setting

In this context, sparse regularization and hence the sparse representation by curvelets is useful.

Tiling of the Fourier space

As stated before, every curvelet is compactly supported on a polar wedge in Fourier space. Hereby,
all curvelets corresponding to the same scale and orientation parameters ( j, l) belong to one single
support wedge. The shape of the wedges obeys an anisotropic scaling relation “width ⇡ length2”
with length ⇡ 2� j and width ⇡ 2�2 j ([4]). This property is also called parabolic scaling ([2]).

There are 4 · 2d j/2e angular wedges on each radial scale j 2 N. This means, starting with 4 wedges
in the first and 8 in the second and third, the number of wedges doubles in every second scale. In
opposition the length 2 j of the wedges doubles in every scale. This leads to a very characteristic
tiling of the Fourier space by the wedges of all curvelets, as can be seen in Fig.1.5. (Note that the
support of two adjacent wedges intersect. For simpler illustration this is not visible in Fig.1.5.)

Oscillatory behavior

In Fourier space a generating curvelet  ̂ j,0,0 is supported away from the vertical axis, but near the
horizontal axis. This results, in spatial domain, in a highly oscillatory behavior in horizontal direc-
tion and a low frequency in vertical direction. The same argumentation holds for any dilated and
translated  j,l,k leading, in spatial domain, to a low frequency in the perpendicular direction to the
wedge orientation in Fourier space. This can be seen nicely in Fig.1.4. The essential support of a
curvelet  j,l,k is an ellipse located around b j,l

k in spatial domain.

1.2.3 Selection of the window functions

The window functions W and V form the core of the curvelet definition. Nevertheless, only two
conditions have to be satisfied:

supp W ⇢ (1/2, 2), and
1X

j=�1
W2(2 j · r) = 1, r 2 (3/4, 3/2), (1.16)

respectively

supp V ⇢ [�1, 1], and
1X

l=�1
V2(! � l) = 1,! 2 (�1/2, 1/2). (1.17)

In the following we present one possibility for the choice of these two functions taken from [17]
and based on [6]. We consider the scaled Meyer windows

V(!) =

8>>>>><
>>>>>:

1 |!|  1/3,
cos

⇣
⇡
2⌫(3|!| � 1)

⌘
1/3  |!|  2/3,

0 else,
(1.18)

11



1 Curvelets in Limited Angle Tomography

W(r) =

8>>>>>>>><
>>>>>>>>:

cos
⇣
⇡
2⌫(5 � 6r)

⌘
2/3  r  5/6,

1 5/6  r  4/3,
cos

⇣
⇡
2⌫(3r � 4)

⌘
4/3  r  5/3,

0 else,

(1.19)

where ⌫ is assumed to be smooth and satisfies

⌫(x) =

8>><
>>:

0 x  0,
1 x � 1,

⌫(x) + ⌫(1 � x) = 1, x 2 R. (1.20)

The function ⌫(x) = x for x 2 [0, 1] satisfies Eq.(1.20) and leads to su�cient windows V and W. In
order to receive smoother windows, ⌫ has to be be chosen smoother. For example the polynomials
⌫(x) = 3x2 � 2x3 or ⌫(x) = 5x3 � 5x4 + x5 for x 2 [0, 1] lead to a higher order of smoothness. But
also arbitrarily smooth functions are available:

⌫(x) =
s(x � 1)

s(x � 1) + s(x)
, x 2 [0, 1], (1.21)

with s(x) = exp
⇣
�

⇣
1

(1+x)2 +
1

(1�x)2

⌘⌘
.

Using one of these choices, V and W satisfy the condition (1.16), respectively (1.17), and therefore
are suitable for the use in defining curvelets. A plot of the window functions can be seen in Fig.1.7.

−2/3 −1/2 −1/3 0 1/3 1/2 2/3
0

0.5

1

ω

V(
ω
)

(a) Window function V(!)

1/2 2/3 5/6 1 4/3 5/3 2
0

0.5

1

r

W
(r)

(b) Window function W(r)

Figure 1.7: Plot of the scaled Meyer windows V(!) and W(r) using ⌫(x) = 5x3 � 5x4 + x5

1.3 Reconstruction via Curvelet Sparse Regularization

In this section we introduce the reconstruction method using the mathematical background we es-
tablished in the last sections. Hereby, we follow the derivation of the so called Curvelet Sparse
Regularization presented in [13].

12



1.3 Reconstruction via Curvelet Sparse Regularization

The aim of the reconstruction procedure is to approximately compute the unknown function f from
the measurements given by the data acquisition process. In our case this is the limited angle Radon
transform R� f . In a first step we will formulate the mathematical minimization problem using both,
the Radon and the curvelet transform.

We have already mentioned in Section 1.1 that in practice the data acquisition is always corrupted
by noise. Therefore the reconstruction problem is formulated as follows:

y� = R� f + ⌘, (1.22)

where ⌘ denotes the noise, � > 0 the noise level, i.e., ||⌘|| < �. Another consequence of the noise is,
that the reconstruction has to be stable. At this point, we assume that the function f is C2 except from
discontinuities along C2 curves. As discussed in Section 1.2 functions of this kind are optimally
sparse with respect to the curvelet frame ([4]). Hence, the reconstruction process is stabilized by
adding the constraint, that the solution of (1.22) has to be sparse with respect to the curvelet frame.
We formulate the reconstruction problem in the curvelet domain to implement this. In other words
we are no longer interested in recovering the function f directly, but in recovering the curvelet
coe�cients c j,l,k = h j,l,k, f i of f . Once we have the curvelet coe�cients we are able to derive f by
the use of the synthesis operator f = T ⇤c =

P
i2I

ci i. We reformulate the problem according to the

curvelet coe�cients:
y� = R�T ⇤c + ⌘. (1.23)

For simpler notation we define the operator K D R�T ⇤. Now, we can formulate the minimization
problem by sparse regularization via the l1-penalized Tikhonov type functional, i.e.,

ĉ = arg min
c2RN

(
1
2
||Kc � y�||2L2(S 1⇥R + ||c||1,w

)
, (1.24)

where ||c||1,w =
P
k

wk|ck| denotes the weighted 1-norm with a weight sequence w satisfying wk �
w0 > 0.

In [7] it is shown that sparse regularization is indeed a regularization method. Therefore, the
reconstruction process via (1.24) and f̂ =

P
i inI

ĉi i is stable and favors sparse solutions [14]. This

method is called Curvelet Sparse Regularization ([13]).

Now, that we have set up the minimization problem we concentrate on solving it. In the following
we elaborate a minimization algorithm to find a minimum of Eq. (1.24). It was shown in [13] that
the set of minimizers of the l1-penalized Tikhonov functional

 (c) =
1
2
||Kc � y�||2L2(S 1⇥R) + ||c||1,w (1.25)

13



1 Curvelets in Limited Angle Tomography

is non-empty and each minimizer ĉ of  is characterized by

ĉ = S�w(ĉ � �K⇤(Kĉ � y�)) (1.26)

for any � > 0. The well known iterative soft-thresholding algorithm, introduced in [7] and [1], is
used to minimize the problem (1.24). Modified to fit our situation, this algorithm consists of a fixed
point iteration of Eq. (1.26):

ĉn+1 = S⌧n(ĉn � snK⇤(Kĉn � y�)). (1.27)

This iteration can be divided into two consecutive parts: first a gradient descent step with step size
sn is performed. The step length sn should satisfy

0 < s  sn  s̄ <
2
||K||2 , (1.28)

with s, s̄ > 0 like described in [1]. Afterwards, soft-thresholding with respect to a thresholding se-
quence ⌧ = (⌧( j,k,l))(( j,k,l)2I) is applied. In general, there is no rule how to choose this thresholding
sequence. In [13] two di↵erent possibilities are discussed. The simplest way is a constant threshold-
ing

⌧( j,l,k) = ↵, (1.29)

for a suitable ↵ > 0. A second possibility is to adapt the thresholding sequence scale-dependently
via setting

⌧( j,l,k) = 2 j�J�
q

2 loge N j,l, (1.30)

where N j,l denotes the number of curvelet coe�cients at scale 2� j and at orientation ✓ j,l and J 2 N is
the largest available scale parameter for the considered image. The parameter � denotes the standard
deviation of the noise ⌘ and can be estimated ([18, p. 565]), assuming additive white Gaussian noise,
by

� ⇡ 1.4826MAD(cn
J). (1.31)

Here, MAD(cn
J) denotes the median of the absolute values of the curvelet coe�cients cn

J .
All in all we are now capable of solving problems in limited angle tomography. We have set up

a minimization problem including a stabilization by sparse regularization. Furthermore, we stated a
method to solve the given minimization problem using the iterative soft-thresholding algorithm. The
algorithm is stated in Section 4.4, Algorithm 1.

1.4 Classification of Artifacts

This section is dedicated to the artifacts that are present in images from classical reconstruction meth-
ods in limited angle tomography. We use the Projection Slice Theorem presented in Section 1.1.1,

14



1.4 Classification of Artifacts

to calculate Fourier coe�cients from the given measurements. Afterwards, this (incomplete) set of
Fourier coe�cients is transformed back using the inverse Fast Fourier Transform. This procedure is
simple and fast, but, as we will see, causes strong artifacts in the resulting images. We show typical
artifacts that can be found in the images and give some qualitative elements for their classification
them. We give explanations of the source of these artifacts and how or whether one is able to reduce
them. The possibility of reducing artifacts will be especially interesting in the later construction of
an artifact-free reconstruction method.

We simulate the above described procedure by computing the Fast Fourier Transform of a given
phantom, here the Shepp-Logan head phantom with improved contrast depicted in Fig. 1.8. After

(a) In image domain. (b) In Fourier space

Figure 1.8: Shepp-Logan head phantom with improved contrast.

that, the Fourier plane is multiplied by a mask, setting all coe�cients outside the computable angles
of the Fourier plane to zero. The Fourier coe�cients and the corresponding backtransformed images
are shown in Fig.1.9. These images will be used to illustrate and classify artifacts in limited angle
tomography. We make three observations:

• Due to the lack of Fourier coe�cients not all edges of the original image can be found in the
recovered image. This artifact is a direct result of the limited angle tomography itself and
cannot be removed. Only singularities perpendicular to the given measurement directions are
recoverable.

• The second apparent artifacts are the bright and dark lines covering the whole image. These
artifacts are caused by the sharp cut o↵ in the Fourier plane. These artifacts can be reduced or
even removed. We will discuss this topic in greater detail after finishing the classification of
the artifacts.

15



1 Curvelets in Limited Angle Tomography

• A third class of artifacts can be seen solely at the location of the singularities of the original
image. All along the original edges small point singularities are present. This is a result of the
discretization process, causing curves to always have singularities in vertical and horizontal
direction along each pixel. As horizontal singularities are recovered at this locations point
singularities can be seen in the resulting image. We ignore these artifact, since they are only
visible for the simulated measurements and will not be visible for real measurements.

In the following we concentrate on the bright and dark lines that are present in images from limited
angle tomography. These lines are troublesome, as they reduce the image quality and can obscure
structures in the image that can be important for the observer.

The source of these artifacts is the hard cut-o↵ of the given coe�cients in Fourier domain. This
result can be showed by micro-local analysis [12, Chapter 3.4] using Wavefront sets [15, Chapter
8.1]. One possibility to prevent or reduce these artifacts is to avoid the hard cut-o↵. This can be
achieved by smoothing the boundaries of the given cones in Fourier space. This fact, will be used in
later chapters.
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1.4 Classification of Artifacts

(a) � = 160 (b) � = 35

(c) � = 160 (d) � = 35

Figure 1.9: Images from limited angle tomography using reconstruction according to the Projection
slice Theorem.
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1 Curvelets in Limited Angle Tomography
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2 Adaption to limited angular range

In the present chapter we introduce an adaption of the curvelet Transform to the data acquired by lim-
ited angle tomography. This will be accomplished by di↵erent tilings of the Fourier space, covering
not the whole angular range but concentrating on the angles for which measurements are available by
the data acquisition process. This approach is motivated by the results presented in [13], especially
Theorem 4.1:

Theorem 4.1 from [13]: Let 0 < � < ⇡/2. We define the polar wedge W� by

W� = {⇠ 2 R2 : ⇠ = r(cos!, sin!), r 2 R, |!|  �}. (2.1)

Moreover, we define the invisible subset of the curvelet index set by

Iinvisible
� = {( j, l, k) 2 I : supp  ̂ j,l,k \W� = ;}, (2.2)

where  j,l,k denotes a curvelet and I is the curvelet index set. Then,

R� j,l,k ⌘ 0, for all ( j, l, k) 2 Iinvisible
� . (2.3)

The message of this theorem is, that a curvelet whose support does not intersect with the polar wedge
W� in Fourier plane, lies in the kernel of the limited angle radon transform and therefore should not
be considered in the reconstruction process. The proof of this theorem can be found in [13] and is
not given here. In the following we refer to the polar wedge W� as visible wedge or visible cone,
since only points in Fourier space within this cone are visible to the data acquisition process.

Our adaption consists in two steps: first, all wedges of the tiling that are completely outside the
visible cone are dropped. This step can be found in great detail in [13] and is described in Section
2.1. In a second step we do not only drop wedges, but also adjust the remaining wedges to fit the
visible cone. This topic is discussed in Section 2.2.

2.1 Adaption by dimensionality Reduction

Theorem 4.1 motivates the following adaption to limited angle tomography, which can be found in
greater detail in [13]. Here, the curvelet tiling itself stays untouched, only the wedges subtending the
visible cone are considered, wedges without an intersection with the visible cone are neglected. To
this end, the index set I = Ivisible[̇Iinvisible is partitioned into the set of visible and invisible index
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2 Adaption to limited angular range

sets

Ivisible
� = {( j, l, k) 2 I : supp  ̂ j,l,k \W� , ;}, (2.4)

Iinvisible
� = {( j, l, k) 2 I : supp  ̂ j,l,k \W� = ;}. (2.5)

Coe�cient for indices in the invisible set are excluded from the reconstruction process and are set

(a) � = 100� (b) � = 80�

(c) � = 70�

Figure 2.1: Adaption to limited angular range with standard tiling for various values of �. Corre-
sponding visible cone shown in yellow.

to zero.
c j,k,l B 0, 8( j, k, l) 2 Iinvisible

� (2.6)

20



2.2 Further adaption by adjusting the curvelet tiling

This can be illustrated by removing the concerned curvelet wedges from the tiling. Some examples
of resulting curvelet tilings are depicted in Fig. 2.1.

This procedure yields a significant dimensionality reduction of the reconstruction problem pre-
sented in Section 1.3. The problem can be reformulated in reduced form and reads

ĉ� = arg min
c2RN�

(
1
2
||K�c � y�||22 + ||c||1,w

)
, (2.7)

where N� = |Ivisible| and (K�)m,n = R� n(✓m, sm), 1  m  M, n 2 Ivisible
�

with parameters accord-
ing to Section 1.3.

Depending on the angle �, the number of coe�cients that have to be reconstructed is dramatically
reduced. But the tiling does not necessarily fit to the visible cone, as can be seen in Fig.2.1. Depend-
ing on the limited angle the tiling still covers large areas outside the visible wedge. These points are
still considered during reconstruction. Furthermore, the area outside the visible cone varies depend-
ing on the radial scale. The dimensionality reduction does not change the reconstruction problem.
The solution of the reduced system is the same as the solution of the original one. This is a matter
of fact, that only elements within the kernel of the limited angle radon transform, and hence the
operator K�, have been removed.

This leads us to a di↵erent, new approach by adjusting the curvelet tiling to a given visible wedge.

2.2 Further adaption by adjusting the curvelet tiling

In this section we no longer restrict ourselves to the standard tiling and the removal of invisible
wedges. We adjust the tiling of the Fourier plane in order to match with the visible cone. In other
words, we also change visible curvelet wedges in order to fit the visible cone. This changes the
curvelet Transform and hence leads to a di↵erent reconstruction problem, as the operator K changes.
In the following we present three approaches to adjust the tiling to the visible cone. We concentrate
on three aspects of the tiling:

• The tiling, especially the boundaries, should be smooth, as we want to reduce artifacts.

• The tiling should be similar to the standard curvelet tiling, as we want to use the ideas and
results from the standard curvelet transform.

• The tiling should allow as few points outside the visible wedge as possible, as we want to be
optimally adapted to the visible wedge.

We present three di↵erent possibilities. These are based on the standard tiling for full angular range
introduced in chapter 1.2, depicted in Fig.1.5 and can also be seen with consideration of the image
boundaries in Fig.3.1.

For each of the following tilings we will outline the motivation and construction as well as some
remarks.
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2 Adaption to limited angular range

2.2.1 Representation of one curvelet wedge in Fourier domain

At this point, we introduce the representation of a single wedge, in order to be able to understand
the whole tiling in the later,. During this chapter a single wedge of the curvelet transform will be
represented according to Fig.2.2 in Fourier domain. Hereby, the dashed area represents the part of

Figure 2.2: Representation of one curvelet in Fourier domain.

the wedge which is used for the fading in angular direction. More precisely, the area for which
V j,l,k(!) 2 (0, 1), where V j,l,k denotes the angular window function corresponding to the curvelet
 j,l,k. (Note, that only the fading in angular direction is depicted. The fading in radial direction is
not shown, as we want to concentrate on the angular direction in this chapter. Therefore the wedge
does not show the support of  ̂ j,l,k, but only the area for which (W j,l,k(r))2 2 (0.5, 1), where W j,l,k

denotes the radial window corresponding to  j,l,k. Nevertheless, the radial fading should be kept in
mind.)

2.2.2 Inner Fading

The Inner Fading restricts the tiling to the visible cone. Only coe�cients within the visible cone are
allowed to be non-zero. Therefore the fading of the wedges at the angular boundaries closes with
the visible cone. This prevents the reconstruction of coe�cients, that were not measured during data
acquisition. The smooth fading at the boundaries of the tiling is aimed at reduction of artifacts. The
number of curvelet wedges is set to the number of wedges of the standard tiling within the visible
wedge, in order to stay close to the standard curvelet transform.

Construction

Let the angle � be given. The number and location of the radial scales is taken from the standard
tiling, defined in Section 1.2. We compute the number of wedges for each radial scale by taking �

⇡

times the number of wedges of the standard tiling of that scale:

n j = 2 · d �
2⇡
· 2d

j+1
2 ee. (2.8)

Now, we can calculate the wedge width ww, the width of the part of the wedge, where it is dominant,
e.g. V(!)2 2 (0.5, 1], and the wedge support width wsw, the width of the support of the wedge. At
a first point in the construction of the tilings we have to decide which window functions are used.
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2.2 Further adaption by adjusting the curvelet tiling

Figure 2.3: The Inner fading for � = 90�.

We choose Meyer windows, like described in Section 1.2.3. The important feature is, that here at
every end 1

3 of the wedge width or equivalently 1
4 of the wedge support width is used for the fading.

This can be seen in Fig.2.4. For other window functions similar results can be derived and with this
the following computation can be performed analogously. Solely the proportion of the fading area
to the wedge width is of importance. In the case of Meyer windows, using the above mentioned
proportions, we get

� = n j · ww +
1
3

ww, � = n j · wsw � (n j � 1) · 1
4

wsw. (2.9)

and obtain

ww j =
�

n j +
1
3

, wsw j =
�

3
4 · n j +

1
4

. (2.10)

Now we can compute the curvelet direction � j,k in dependency of the radial and angular scale j, k

� j,k =

8>>>>><
>>>>>:

��2 + 1
6 · ww j + (k � 0.5) · ww j 0 < k  n j

2 ,

for
⇡ � �

2 +
1
6 · ww j + (k � 0.5) · ww j

n j
2 < k  n j.

(2.11)
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2 Adaption to limited angular range

−2/3 −1/2 −1/3 0 1/3 1/2 2/3
0

0.5

1

ω

V(
ω
)

Curvelet width

Curvelet support width

(a) Sketch of the angular window function V(r)

Curvelet width

support width

(b) Curvelet view

Figure 2.4: Sketch of curvelet width and support width.

Finally, we can evaluate the window functions and hence, compute the curvelet of radial and angular
scale ( j, k) in Fourier space, using polar coordinates

�̂ j,k(r,!) = V(2� jr) ·W(|! � � j,k|). (2.12)

Discussion

On one hand it is desirable to ignore all coe�cients that are not measured during data acquisition
and therefore lie outside the visible cone. On the other hand the problem is that we need smooth
boundaries in order to reduce artifacts. This is due to the fact that a hard cuto↵ (at the border of the
visible cone) leads to strong artifacts. Therefore, the only possibility to get a smooth cuto↵ is a lower
weight of the values near to the angular boundaries, but within the visible wedge. Unfortunately, this
fading inside the visible cone has consequences: The admissibility condition no longer holds true
for every point within the visible cone. Hence, using this tiling, consecutive forward and backward
curvelet transformations do not leave the image unchanged. For angles ! inside the region of the
fading areas W(!)2 < 1. Therefore consecutive forward and backward transformation smooth the
Fourier cone of an image.

One further characteristic that occurs is the staircasing at the boundaries of the visible cone. As
the number of angular wedges increases for higher radial scales, the fading area at the boundaries
decreases. At this point it is important to recall, that there is a radial fading, too. This radial fading
smoothes the staircases. Nevertheless, it is not apparent whether this has an influence on the resulting
images, or not.
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2.2 Further adaption by adjusting the curvelet tiling

2.2.3 Outer Fading

The Outer Fading concentrates on improving two issues, that occurred, considering the Inner Fading.
On the one hand side, every point inside the visible cone should be weighted in the same way. Hence,
at every point inside the visible cone the squared weights should sum up to one. In other words: the
admissibility conditions should be satisfied for each point inside the visible cone. On the other hand
a hard cut-o↵ at the boundaries of the visible wedge is not desirable in order to reduce artifacts.
Therefore, values outside the visible cone have to be non-zero. These outside values are weighted
the less the further away they are from the visible cone, decreasing smoothly to zero. The other issue
with the Inner fading is that consecutive forward and backward transformations change an image. As
a consequence of the alignment of the fading area with the visible wedge, here, the forward transform
is inverted by a subsequent backward transform, if images are considered, that are supported inside
the visible wedge in Fourier domain.

Figure 2.5: The Outer fading for � = 90�.

Construction

Let the angle � be given. The number and location of the radial scales is taken from the standard
tiling. Analogue to the construction of the Inner Fading we obtain the number of wedges for each
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2 Adaption to limited angular range

scale
n j = 2 ·

&
�

2⇡
· 2

l j+1
2

m'
. (2.13)

Now we can calculate the wedge width ww and wedge support width wsw, defined in Section 2.2.2.
Again, at this point we use the knowledge about the angular Meyer window function. The important
feature is, that at each end 1/3 of the wedge width is used for the fading. In case of another window
function similar results can be computed. Analog to the Inner fading, we obtain

ww j =
�

n j � 1
3

, wsw j =
�

3
4 · n j � 1

4

, (2.14)

using

� = n j · ww � 1
3

ww, � = n j · wsw � (n j + 1) · 1
4

wsw. (2.15)

Note, that Eq.(2.10) for the Inner Fading and Eq.(2.14) here, only di↵er in the sign of the constants
in the denominator.

Now we compute the curvelet direction � in dependency of the radial and angular scale { j, k}

� j,k =

8>>>>><
>>>>>:

��2 � 1
6 · ww j + (k � 0.5) · ww j k  n j

2 ,

for
⇡ � �

2 � 1
6 · ww j + (k � 0.5) · ww j k > n j

2 .

(2.16)

Finally, we can evaluate the window functions and hence, compute the curvelet of radial and angular
scale ( j, k) in Fourier space, using polar coordinates

�̂ j,k(r,!) = V(2� jr) ·W(|! � � j,k|). (2.17)

Discussion

In opposition to the Inner Fading, the weighting of the Outer Fading is very well motivated. For
points inside the visible cone, the squared weight sums constantly up to one, leaving them untouched.
But points outside the visible cone are constraint by a lower weight, depending on the angular dis-
tance to the visible cone. In order to reduce artifacts, this weighting decreases smoothly to zero. As a
side e↵ect of this, there are still parts of the tiling outside the window. This outside part of the tiling
is minimal for the given number of angular scales.

Remarkable is, that the forward transform is inverted by the backward transform, as long as we
consider images with corresponding Fourier transform supported inside the visible wedge. This is
due to the fact that the admissibility conditions hold true for each point within the visible cone.

One characteristic that also occurs in the Outer fading is the staircasing at the boundaries of the
visible cone. In opposition to the Inner Fading, here the staircases are located outside of the visible
wedge, not inside. Like before, one has to keep in mind, that the staircases are smoothed due to

26



2.2 Further adaption by adjusting the curvelet tiling

radial fading.

2.2.4 Uniform Fading

The Uniform Fading avoids the staircases at the boundaries of the visible wedge, which can be found
in both, the Inner and Outer Fading. These are caused by the increasing number of angular wedges
for higher radial scales. Therefore, we use the same, freely selectable angular range for the fading,
independently of the radial scale. Hence, the same number of wedges is found in each radial scale.
This tiling can be adapted to both, an Inner and an Outer Uniform Fading, where either the outer
angle or the inner angle is aligned with the visible cone. This leads to either only coe�cients within
the visible wedge in case of the inner Uniform Fading or constant weight one within but also positive
weights outside the visible wedge in case of the outer Uniform Fading.

Like before, this choice has consequences on the admissibility condition. For the Outer Uniform
Fading this criterion is satisfied, as the squared weights sum up to one for each point inside the visible
wedge. For the Inner Uniform Fading the admissibility condition does not hold true for each point
inside the visible wedge.

Figure 2.6: The Inner fading for 'i = 60�,'o = 90�.

Construction

The uniform Fading requires three parameters. An inner angle 'i 2 [0, ⇡), an outer angle 'o 2 (0, ⇡]
and the number n 2 N of angular scales. But not every choice of parameters is possible. The fading
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2 Adaption to limited angular range

area has to be at most half of the curvelet wedge width. We have to check if a given parameter set is
admissible, after the wedge width is computed.

If Phi = 'o and hence, the fading area lies inside the visible wedge, we denote the fading by Inner
Uniform Fading, if Phi = 'i and hence, the fading area lies outside the visible wedge, we denote it
by Outer Uniform Fading.

Like before, the number and location of the radial scales is taken from the standard tiling. The
number of angular wedges is the same for every scale

n j = n. (2.18)

We can calculate the wedge width ww and wedge support width wsw, defined in the previous section,
by considering

'o + 'i

2
= n · ww, 'o � 'i = wsw � ww, (2.19)

and obtain

ww =
'o + 'i

2n
, wsw =

'o + 'i

2n
+ 'o � 'i. (2.20)

As mentioned before, now we have to check if the parameters were chosen correctly. The fading
areas starting at the opposing ends of the wedge must not overlap. To verify this, we compute the
proportion f of the wedge width that is equal to one. This proportion has to be non-negative.

f = 1 � ('o � 'i)
ww

!
� 0. (2.21)

As f varies depending on the parameters, we are no longer able to use the angular Meyer window
function, since it has a fixed value of f = 2

3 . Therefore we will modify the function V(!).

V f (!) =

8>>>>><
>>>>>:

1 !  f ,

cos( 1
2�2· f · (|!| � f ) · ⇡2 for f < |!|  2 � f ,

0 else.
(2.22)

The function V f is similar to the Meyer window function but modified with respect to the proportion
f.

Now we are able to compute the curvelet direction � in dependency of the angular scale k. Note
that, as each radial scale has the same number of angular wedges, the curvelet direction depends
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2.3 Conclusion

exclusively on the angular scale k and no longer on the radial scale j.

�k =

8>>>>><
>>>>>:

�'o + (k � 0.5) · ww k  n
2 ,

for
�'o + (k � 0.5) · ww + ⇡ k > n

2 .

(2.23)

Finally, we can evaluate the window functions and hence, compute the curvelet of radial and angular
scale ( j, k) in Fourier space, using polar coordinates

�̂ j,k(r,!) = V f (2� jr) ·W(|! � �k|). (2.24)

Discussion

Depending on the choice of Inner or Outer Uniform Fading we find the same arguments like in the
corresponding above cases. The curvelet transform with Inner Uniform Fading is not inverted by its
backtransform, as the admissibility condition is not satisfied for each point within the visible cone.
The Outer Uniform Fading solves this problem, but as a consequence of artifact reduction the tiling
intersects with the invisible area of the Fourier space.

Additionally, the Uniform Fading causes more di↵erences to the standard curvelet transform. The
number of wedges of the Uniform Fading has no relation to the number of wedges in the standard
tiling. Each angular wedge corresponds to a curvelet direction. A reduced number of wedges results
in a lower sampling of the angles. This reduces number of modulations of a mother curvelet in the
frame. This is compensated by a higher number of translates of a given modulation of a mother
curvelet. Of course one can set the number of angular scales to the maximum of all radial scales
of the standard tiling. Then it works the other way round. Lower scales are modulated more, but
translated less. All in all, the Uniform Fading results in more di↵erences to the original curvelet
transform.

2.3 Conclusion

This chapter provides di↵erent possibilities to adapt the curvelet transform to a limited angular range
during data acquisition. The basis for each approach is the fact, that wedges which do not subtend
the visible cone lie in the kernel of the limited angle Radon transform. Therefore, as a first step,
these invisible wedges are excluded from the reconstruction process. This leads to a significant
dimensionality reduction of the reconstruction problem. Hereby, the degree of the dimensionality
reduction depends on the limited angle �. The larger the limited angle, the higher is the dimension
of the problem. More details on this approach can be found in [13].

We go further in the manipulation of the tiling. Not only do we drop wedges outside the visible
cone, but we adapt the tiling itself to the given limited angle. This leads to three di↵erent strategies,
depending on the weighting of the criteria we want to satisfy: on the one hand side we want to stay
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2 Adaption to limited angular range

close to the original curvelet tiling in order to use the results from the curvelet theory. Among others
the sparse representation of objects with edges is important to us. On the other hand side, we want the
tiling to cover as few points outside the visible cone as possible in order to prevent the reconstruction
of points that were not measured. Another aspect we want to take care of is artifact reduction. This
forces us to only consider smooth tilings. A hard cut-o↵ at the boundary of the visible cone is not
desirable, as this leads to strong artifacts.

For each of the three tilings presented, we give a brief motivation. We state on which aspects the
single tilings concentrates: the Inner Fading completely excludes the invisible area of the Fourier
plane. Unfortunately, combined with artifact reduction, this has unwanted consequences on the
admissibility condition. The admissibility condition is no longer satisfied and hence, forward and
backward transformations do no longer invert each other. To resolve this issue we introduce the
Outer Fading. Here, the admissibility condition is satisfied. As a consequence of artifact reduction,
however, some points outside the visible cone are considered and therefore reconstructed. In both,
the Inner and Outer Fading staircasing at the boundary of the visible cone can be found. We present
a third attempt, the Uniform Fading, which uses radial independent fading and therefore does not
exhibit staircasing. This tiling can be used in an inner and outer variant. The drawback of this tiling
is the fact, that it leads to more di↵erences to the standard curvelet transform. For all possibilities we
give the construction and some further remarks.

Each of the presented tilings is properly motivated and has its own focus. Therefore, at this point,
it is not clear, which choice is to be preferred. We use all of the presented variants for numerical
reconstruction and compare the results in chapter 4. There we line out the up- and downsides of the
tilings.

But before we present the numerical results, we dedicate the following chapter to the construction
of a fast discrete curvelet Transform.
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3 Fast Discrete Curvelet Transform

In the present chapter we introduce a discrete version of the curvelet Transform discussed in Chap-
ter 1.2. The implementation of the curvelet transform proposed by Candès et.al. in [2] uses the
standard tiling shown in Fig.1.5 and is not optimized for the use in limited angle tomography. The
implementation we develop in this chapter is independent of the tiling and can be used for the tilings
introduced in Chapter 2. Therefore, our implementation is well suited for the use in limited angle
tomography.

Firstly we present a minimal, straightforward workflow for the curvelet analysis and synthesis
algorithms. This initial implementation of the transform exhibits some disadvantages. Among others
we discuss unnecessarily slow computational time and an overcomplete representation of images in
terms of an overcomplete sampling of curvelets in the image domain. We present a new approach to
resolve the encountered drawbacks and obtain an advanced, fast curvelet transform with a minimal
number of curvelet coe�cients. These results are then presented, introducing the final analysis and
synthesis algorithms which are suitable for tomographic reconstruction.

As a last point we conclude the chapter by comparing our implementation to the Fast Discrete
Curvelet Transform proposed by Candès et.al. in [2].

3.1 Overcomplete Curvelet Transform

To begin with, we discuss a naive implementation of the curvelet analysis operator A : ⌦ 7! Cp,
A f = {h f , j,l,ki} j,l,k described in Chapter 1.2. For a given image f , a set of coe�cients c j,k,l is to be
computed. The main result we use reads

c j,l,k( f ) = h f , j,l,ki =
Z

⌦

f̂ (⇠) ̂ j,l,k(⇠)eihb j,l
k ,⇠id⇠. (3.1)

This representation of the coe�cients leads us directly to the following straight forward approach:

3.1.1 Analysis Algorithm

We start with a given n ⇥ n image f [n1, n2], 0 < n1, n2 < n.

1. Firstly we compute the discrete 2D Fast Fourier Transform (FFT) f̂ [n1, n2].

2. For each radial and angular scale { j, l} we compute the curvelet  ̂ j,l[n1, n2] in the Fourier
domain.
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3 Fast Discrete Curvelet Transform

3. Now the point-wise products ⌫̂ j,l[n1, n2] = f̂ [n1, n2] ·  ̂ j,l are calculated.

4. The inverse discrete 2D Fast Fourier Transform (IFFT) yields the coe�cient matrix c j,l,k =

⌫ j,l[k1, k2].

The presented transform yields an n ⇥ n coe�cient matrix c j,l for each scale pair { j, l}. This is due to
the fact, that the radial and angular scale dependency in the translation factor was ignored by setting
b j,l

k = R�1
⇥ j,l

(k1, k2) and hence, every radial scale j is sampled in the same, overcomplete manner. This
overcompleteness troubles in two aspects. It leads to more memory space, as more data is to be
stored and slows down the computations with the coe�cients during reconstruction steps.

3.1.2 Synthesis Algorithm

The synthesis operator S : Cp 7! ⌦, S{ci}i =
pP

i=1
ci i is the adjoint to the analysis operator A. For a

given set of coe�cients c j,l,k the represented image f is to be computed. In the present case it consists
simply in executing the inverse of each step in the appropriate order:

4’. The discrete 2D-FFT of each coe�cient matrix is computed: ⌫ j,l[k1, k2] = FFT(c j,l).

2’. For each radial and angular scale { j, l} we compute the curvelet  ̂ j,l[n1, n2] in the Fourier
domain.

3’. Now the point-wise product ̂ j,l[n1, n2] = ⌫̂ j,l[n1, n2] ·  ̂ j,l is calculated.

1’. At last we compute f [n1, n2] = IFFT (
P
j,l
̂ j,l[n1, n2]) the 2D-IFFT of the sum of the product.

The Synthesis Operator can be seen as the inversion of the analysis Operator. consecutive executions
of the synthesis algorithm after the analysis algorithm yields the input f [n1, n2]. (At least if minor
errors due to machine precision are neglected.) Two facts are to be remarked here: Firstly each step
in the analysis algorithm is inverted and executed in opposite order except for step 3. This step is the
same for both, the analysis and the synthesis. But as long as the admissibility condition

1X

j=�1
| ̂(2� j⇠)|2 = 1, ⇠ 2 R (3.2)

is satisfied, this yields the desired output. Equation 3.2 is a direct consequence of the admissibility
conditions 1.5 and 1.6.

3.1.3 Discussion

The operators presented in Sections 3.1.1 and 3.1.2 are very simple to implement. Unfortunately,
they exhibit some major drawbacks. This transform is very ine�cient in two ways:
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3.2 Fast curvelet computation

1. In step [2.] and [2’.] the curvelets are computed for every point (n1, n2). This computation
is very time-consuming and, as a lot of curvelets have to be computed, it slows down both,
the analysis and the synthesis, significantly. Moreover it is also unnecessary, as curvelets are
supported on a polar wedge and as a matter of fact only a small fraction has to be computed.
We dedicate section 3.2 to the solution of this rather technical problem.

2. The second problem concerns the output of Algorithm 3.1.1. The scale dependent translation
is ignored and therefore a complete sampling in every scale is obtained. This corresponds to
an overcomplete representation with a highly redundant frame set { j,k,l}. As a result, more
memory space is needed and the computation is decelerated in the analysis and synthesis
algorithms. This is especially bothering during the tomographic reconstruction, as here cal-
culations with the unnecessary large number of coe�cients have to be made. Section 3.3 is
dedicated to the solution of this problem.

Note, that the first drawback can be resolved without changing the transform. Drawback 2. on the
other side is a far-reaching problem. Therefore the solution of this problem will be more ambitious
and will need some structural changes of the algorithms. Nevertheless we start by solving the first
drawback.

3.2 Fast curvelet computation

One of the most time-consuming parts of the digital curvelet transform is the computation of the
single curvelets. This is aggravated by the fast growing number of curvelets in higher radial scales
and the fact, that each curvelet is of the size of the original image. In the case of a full angular range,
for an 128 ⇥ 128 image 113 curvelets, each again with 128 ⇥ 128 pixels, have to be computed; a
256 ⇥ 256 image yields 177 curvelets of size 256 ⇥ 256 and a 512 ⇥ 512 image yields 241 curvelets
of size 512 ⇥ 512. It is apparent, that the computation of a single curvelet should be optimized as
much as possible in order to keep the computational time at a minimum.

For every curvelet in Fourier space the product of the window functions W and V has to be evalu-
ated for every pixel of the n⇥n image. Recalling the definition of a single curvelet, we notice, that the
product is supported on a polar wedge. In other words: We know that outside this wedge the curvelet
is zero. Now, we use this fact in order to compute only the non-zero values and set the others to zero
by default. (Or even better: We memorize which values we have computed and save memory space
by not storing the zero values.) The simplest (and in MATLAB possibly the most e�cient) way is
to compute the smallest axial-aligned rectangle containing the complete support of the considered
curvelet. Then the data points within this rectangle are computed as usual, by (matrix-valued) eval-
uation of the window-functions W(r) and V(!), but the entries outside the rectangle are set to zero.
This procedure leads to a major speed-up, as the ratio of the rectangle to the whole matrix is very
low, as can be seen in Fig.3.1.
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3 Fast Discrete Curvelet Transform

Figure 3.1: Comparison between the whole image and the area that actually has to be computed
(shown in yellow) for one representative curvelet. Support of the considered curvelet
shown in red.

In order to compute the described rectangle, we have to know the coordinates of the four edges of
the curvelet wedge. Lets firstly rethink what kind of information is available to compute a curvelet
and how we can use it to calculate the needed points. To begin with, we have the radial and angular
index of the considered curvelet. The radial index yields the minimal radius rmin and maximal radius
rmax of the wedge, meaning the minimal resp. maximal distance of the wedge to the origin. From
the angular index we can derive the curvelet direction ↵, the curvelet width �, the width of the part
of the wedge, where it is dominant, e.g. V(!)2 2 (0.5, 1] and finally the curvelet support width �,
the width of the support of the wedge. Using these information we are able to calculate the lower left
and upper right point of the rectangle. In the following we present this computation in greater detail.

34



3.2 Fast curvelet computation

3.2.1 Computation of the radii

In order to compute rmin and rmax, the minimal and maximal distance of the wedge to the origin, we
revise one property from the definition of the radial Window W(r):

supp W ⇢ (1/2, 2), (1.4a)

and one from the scaling of a single curvelet:

 ̂ j,0,0(r,!) B 2
�3 j

4 ·W
⇣
2� j · r

⌘
· V

0
BBBBB@

2d
j
2 e�1

⇡
· !

1
CCCCCA . (1.7)

From the scaling
⇣
2� j · r

⌘
of the radial window function one can see, that the radial value 2 j in

Fourier domain corresponds to 1 in the radial-window domain and 2 j+1 corresponds to 2. Therefore,
considering Eq.(1.4a), the radial support of the wedge lies in (2 j�1, 2 j+1) as W(r) = 0 for r < 0.5 =
2� j ⇤ 2 j�1 and r > 2 = 2� j ⇤ 2 j+1. This yields rmin = 2 j�1, rmax = 2 j+1.

These borders are the minimal and maximal borders for any choice of the window function W(r).
For a specific choice we can get an even larger minimal and lower maximal border. E.g. the Meyer
windows introduced in Section 1.2.3 are supported in (2/3, 5/3) ( (1/2, 2). This choice leads to the
following borders,

rmin = 2 j � 2
6

2 j =
2 j+1

3
, (3.3)

rmax = 2 j+1 � 2
6

2 j =
5
3

2 j , (3.4)

as can easily be derived by considering Fig.3.2: like before W(1) corresponds to 2 j and W(2) to 2 j+1.
Therefore one unit in the window-function domain corresponds to 2 j units in the Fourier domain.
We have to subtract 2/6 units from 1 to get to the minimal non-zero value, hence, yielding Eq.(3.3).
With the same argumentation we reach the maximal non-zero value by subtraction 2/6 units from 2,
resulting in Eq.(3.4).

3.2.2 Computation of the angles

Similar to the computation of the radii we need to revise two properties from the definition of the (in
this case angular) window and the scaling in the definition of the mother curvelet:

supp V ⇢ [�1, 1], (1.4b)

 ̂ j,0,0(r,!) B 2
�3 j

4 ·W
⇣
2� j · r

⌘
· V

0
BBBBB@

2d
j
2 e+1

⇡
· !

1
CCCCCA , (1.7)

As we already know from the tiling of the Fourier space in section 1.2.2, the standard tiling is
subdivided into 2d j/2e+2 angular wedges for a radial scale j. Using this, we can derive the curvelet
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Figure 3.2: Sketch of the radial window function W(r)

width �, the width, where the curvelet is dominant, e.g. the value is larger than 0.5:

� =
2⇡

2d j/2e+2 =
⇡

2d j/2e+1 (3.5)

With this �/2 in Fourier domain corresponds to 2d
j
2 e+1

⇡ · �2 = 1
2 in angular window domain. Hence,

using Eq.(1.4b) the curvelet support width � is maximal 2�.

Again, this is the maximal support width for any choice of V(!). For a specific choice we can get
a smaller support width. In the case of Meyer windows V is supported in [�2/3, 2/3] ( [�1, 1] and
leads to curvelet support width � = 4

3� as depicted in Fig.3.3.

for the adapted tilings presented in Chapter 2, the curvelet width and support width is given in the
construction sections.

3.2.3 Computation of the smallest axial aligned rectangle

With the computed values rmin, rmax and � we can now derive the coordinates of the edges of the
wedge, labeled in Fig.3.4. As we know the distance to the origin and the angles the points lie on, the
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Figure 3.3: Sketch of the angular window function V(r)

coordinates can be calculated by transformation from polar to Cartesian coordinates. We obtain

tl = rmax · (sin(↵ +
1
2
�), cos(↵ +

1
2
�)),

tr = rmax · (sin(↵ � 1
2
�), cos(↵ � 1

2
�)),

bl = rmin · (sin(↵ +
1
2
�), cos(↵ +

1
2
�)), (3.6)

br = rmin · (sin(↵ � 1
2
�), cos(↵ � 1

2
�)).

Using these points, we can easily compute the coordinates of the points rl and rt, representing the
rectangle R. The point rl consist of the minimal x and y values of Eq.(3.6), the point rt consists
analogously of the maximal x and y values of Eq.(3.6). Additionally one special case has to be
considered. If the horizontal axis lies inside the angular support, the point (rmax, 0) has to be added
to the maximization process.

These argumentations only fit if the curvelet direction lies in the East region of the image, e.g.
↵ 2 [�⇡/4, ⇡/4]. The other three cases follow analog.

37



3 Fast Discrete Curvelet Transform

br

tr

tl

bl

C

u

r

v

e

l

e

t

d

i

r

e

c

t

i

o

n

rl

rt

Figure 3.4: Sketch of one curvelet with curvelet direction ↵ and curvelet support width �

3.3 Reduction of Curvelet Coefficients: From overcomplete to tight

Frames

As mentioned in Subsection 3.1.3, the analysis algorithm introduced in the beginning of this chapter
computes an overcomplete set of coe�cients. This means, that the curvelet dictionary { j,l,k}, used to
represent a given image f, contains more elements than needed. In other words, the same image can
be represented by a smaller dictionary and hence, less coe�cients. Besides this mathematically nicer
representation, it also has a practical advantage, as it results in a lower memory space requirement.
This is especially noticeable during the reconstruction, when calculations with and modifications of
the coe�cients have to be made.

Using the naive implementation, presented at the beginning of this chapter, for each pair { j, l} of
radial and angular scale an n ⇥ n coe�cient matrix is generated. Hereby each coe�cient c j,l,k corre-
sponds to the curvelet  j,l,k in image domain. Our goal is to represent the product ( f̂ ·  ̂ j,l,·)[n1, n2]
by a matrix c j,l of smaller size without loosing any information.

Once again we can use the fact, that each curvelet is supported on a polar wedge in Fourier space.
A first attempt to reduce the number of coe�cients is to compute the smallest rectangle R containing
the support of a given curvelet like described in Section 3.2 for a fast curvelet computation. Instead
of the whole image only the rectangle R is back-transformed using the inverse fast Fourier transform.
This method can be nicely interpreted, as it corresponds to a translation of the rectangle to the center
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3.3 Reduction of Curvelet Coe�cients: From overcomplete to tight Frames

of the Fourier plane. Hence, it corresponds to a modulation in the curvelet coe�cient domain.
Therefore, the smaller coe�cient matrix corresponds to a downsampled version of the originally
overcomplete coe�cient matrix. In other words only every m-th coe�cient in the bigger matrix is
allowed to be non-zero, where m is the proportion of the size of R to the whole image size. It is easy
to see, that the corresponding, smaller set of curvelet atoms is still a frame, as no information was
lost.

But does this go far enough or is there a way to get even less coe�cients without information
loss? One conspicuity is, that the number of coe�cients varies depending on the direction of the
considered curvelet. The reason for this is, that, like depicted in Fig.3.5, the size of the rectangle R
changes as soon as the curvelet direction is changed. This change in the sampling frequency seems
rather unmotivated and we will see, that it leads to an unnecessarily larger coe�cient matrix, if the
curvelet direction is not horizontal nor vertical.

Figure 3.5: Comparison between smallest axial aligned rectangle (yellow) and smallest rectangle
in curvelet direction (green) for one representative curvelet. Support of the considered
curvelet shown in red. Only the first quadrant of the Fourier plane is shown.

The source of this problem is the fact, that the rectangle we want to transform back using IFFT
needs to be axial aligned. In the following we introduce a method providing a minimal number of
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3 Fast Discrete Curvelet Transform

coe�cients for each curvelet independent of its direction. The basic idea is the so called wrapping,
introduced by Candès et. al. in [2], but modified to fit our curvelet tiling. It consists of three steps:

• Firstly we compute the smallest rectangle containing the support of a curvelet  ̂.

• In a second step we will extend the rectangle to the whole Fourier plane by periodisation in a
particular manner

• Finally, we choose an axial aligned rectangle of suitable size and centered around the ori-
gin, containing all information. This rectangle will then be used for the inverse Fast Fourier
transformation.

3.3.1 Computation of the smallest rectangle

In order to determine the smallest rectangle S surrounding the support of a wedge, we derive the
surface area in dependency of the (minimal) angle ↵ between the rectangle side a and the wedge
side w for any wedge support width angle �. The labeling can be found in Fig.3.6. (The angle ↵ is
considered to be zero if the lines are parallel.) For a given ↵ the directions of all sides of the rectangle

B

A

D
w

C

a

b

a1

a2

�

↵

F E

(a) ↵ < 0, angle within curvelet support

B

A

Dw

C

a

b

a1

a2

b1 b2

�

↵

(b) ↵ > 0, angle outside curvelet support

Figure 3.6: Sketch of the smallest rectangle with direction ↵, containing the support of a given
wedge.

are fixed and therefore the smallest rectangle for that direction is the rectangle, whose sides touch the
wedge, but do not subtend it. Without loss of generality only ↵ 2 [⇡2 ��,�/2] have to be considered
because of the symmetry of the wedge and the fact, that ↵ and ↵ + ⇡2 yield the same rectangle.

Two cases have to be distinguished: For ↵  0 the line a touches the arc t tangentially at a point
E < {C,D}8↵ , 0. For ↵ > 0 the line a touches the arc t in the point D non tangentially.
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Let us first consider the case ↵  0: Simple trigonometric arguments lead to

A(↵) = a · b = (a1 + a2) · (2r � Fx)

= (2r sin(�↵) + 2r sin(� + ↵)) · (2r � r cos(� + ↵)) (3.7)

= 2r2 · (sin(�↵) + sin(� + ↵)) · (2 � cos(� + ↵)).

For ↵ � 0 we derive

A(↵) = a · b = (a1 + a2) · (b1 + b2)

=
✓
AB cos(↵ +

�

2
) + r sin(↵ + �)

◆
·
✓
r cos(↵) + AB sin(↵ +

�

2
)
◆

(3.8)

= r2 ·
 cos(↵ + �2 ) · sin(�)

sin(⇡2 � �2 ))
+ sin(↵ + �)

!
·
 
cos(↵) +

sin(↵ + �2 ) · sin(�)
sin(⇡2 +

�
2 )

!
.

A plot of A(↵) can be seen in Fig.3.7. As a next step, the derivative dA(↵)
d↵ is computed:

Figure 3.7: Plot of the surface area A(↵) in dependency of the rectangle direction ↵ for parameters
� = 30�, r = 25.

dA(↵)
d↵

= 2r2[(sin(�↵) + sin(� + ↵)) · (� sin(� + ↵))

+ (cos(↵) � cos(� + ↵)) · (2 � cos(� + ↵))] (3.9)

Especially interesting are the points ↵ = 0 and ↵ = ��2 :

dA
d↵

(��
2

) = 2r2
✓
2 sin2(

�

2
) + 0

◆
= 4r2 sin2(

�

2
) > 0 (3.10)
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This shows that we have an at least local minimum for ↵ = ��2 . Now we take a look at alpha = 0:

dA
d↵

(0) = 2r2
⇣
sin2(�) + (�1 + cos(�)) · (2 � cos(�))

⌘

= 2r2
⇣
sin2(�) � 2 + cos(�) + 2 cos(�) � cos2(�)

⌘

= 2r2
⇣
�2 + 3 cos(�) + sin2(�) + cos2(�) � 2 cos2(�)

⌘

= 2r2
⇣
�1 + 3 cos(�) � 2 cos2(�)

⌘
(3.11)

= 2r2 (�1 + cos(�) � 2 cos(�)(�1 + cos(�)))

= 2r2 (�1 + cos(�))|           {z           }
<0

(1 � 2 cos(�)) =

8>>><
>>>:
< 0 if � > ⇡3 ,

> 0 if � < ⇡3 .

Additionally one can show A(0) > A(��2 ) for any 0 < �  ⇡2 :

A(0) � A(��
2

) = 2 sin�|{z}
=2 sin �2 cos �2
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= 4 sin
�

2|  {z  }
>0

✓
1 � cos

�

2

◆

|        {z        }
>0

✓
cos
�

2
� sin2 �

2

◆

|               {z               }
>0, for 0<� ⇡2

> 0

This leads to the following Proposition:

Proposition: Assuming no minimums for ↵ 2 (��2 , 0), the surface area A(↵) reaches its minimum at
↵ = ��2 .

This shows that the rectangle R in curvelet direction is the smallest rectangle surrounding the
support of a given wedge.

3.3.2 Periodisation: Extension to the whole Fourier plane

Now that we have computed the smallest rectangle, containing the complete support we extend this
rectangle by periodisation in a special manner: Firstly, the rectangle is extended along the axis of
the rectangle side, which is perpendicular to the curvelet direction. In a second step the resulting
stripe is extended in x-axis direction. Note that these two periodisation axes are (in general) not
perpendicular and therefore neighboring stripes look shifted to each other, as can be seen in Fig.3.8.
The reason for this kind of periodisation can be seen in the next section.
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Figure 3.8: Periodisation of the rectangle S, shown in green, like described in Subsection 3.3.2.

3.3.3 Computation of the wrapping window

In this step our aim is to compute a rectangle, centered around the origin, with the smallest possible
size but containing all information. It is obvious, that the rectangle must at least have the same
surface area as the rectangle computed in step 1. We will see that this lower bound can be reached.
In the following we only consider the case of a curvelet in the Fourier sector East or West. Other
sectors follow analog. We already know the width b and length l of the rectangle S, containing the
support of the considered curvelet. The rectangle W of width b̂ = b

cos↵ and length l̂ = l cos↵ has
the same surface area. You can find a sketch of this transformation in Fig.3.9. The interesting part
is, that if W is placed on the periodised Fourier plane, it always contains each pixel of the original
wedge, independently of the location of W. As depicted in Fig.3.10, only the location of a pixel in
relation to W changes. This corresponds to a relabeling of the pixels. For simplicity we will always
center the wrapping window W around the origin. This rectangle W is used to represent the product
( f̂ ·  ̂ j,l,·)[n1, n2]. But why is this useful?

The interesting point is, this small rectangle can be used for the backprojection using the inverse
Fourier transform, and during syntheses the relabeling can easily be inverted: As we know that the
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↵
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(a) North and South of Fourier plane

↵

b

l

ˆb

ˆl

(b) East and West of Fourier plane

Figure 3.9: Sketch of the determination of the wrapping window size

rectangle W was centered and the size of the original image is known, we can extend W by periodi-
sation over the Fourier plane of size n ⇥ n. We also know where the support of the corresponding
curvelet is located. We can compute the location of S and drop the data outside. Doing this, we
retrieve the original product ( f̂ ·  ̂ j,l,·)[n1, n2] .

In fact the computation of the wrapping window is only motivated in this way. The actual com-
putation is done in an opposite way. Instead of the periodisation of the data, meaning the product
( f̂ ·  ̂ j,l,·)[n1, n2], the position of the wrapping window is translated in a su�cient, periodic way,
sketched in Fig.3.11. These translates are then summed up. This is easier to do and fits very well
with the representation of a curvelet elaborated in section 3.2, as we only have to consider translates
subtending the rectangle R. Every translate of the original wrapping window is computed in a way
that each wrapping window would contain the same information if laid over the periodisation of the
smallest rectangle. This guarantees, that the sum over the data (not the periodisation of the data,)
contains exactly the same as the original wrapping window.

To put this in mathematical terms we first derive the number of vertical stripes. This reads at most
2d n�â

2 /âe + 1, meaning a centered stripe and on both, the left and the right side, a number of d n
2 � â

2e
stripes. Therefore the horizontal index reads i 2 {1, . . . , 2d n�â

2 /âe + 1}. Analog the vertical index
reads j 2 {1, . . . , 2d n�b̂

2 /b̂e + 1}. In a next step we have to calculate the horizontal shift from one
vertical stripe to another. The shift is the di↵erence of the left and right lower points of the rectangle
S, and hence, reads s = |Dy �Cy| = d b

sin↵e. Now we can define the single wrapping windows:

Wi, j(x, y) =
⇣

f̂ ·  ̂ j,l,·
⌘

[bi, j + (x, y)], (3.13)
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(a) Periodisation and location of the wrapping window (b) Zoom of resulting wrapping window

Figure 3.10: Periodisation of the smallest rectangle in curvelet direction (green) and corresponding
wrapping window (violet).

where

bi, j = b j + (i � 1) ⇤ (0, â),

b j = b0 + (( j � 1) ⇤ b̂, ( j � 1) ⇤ s � d ( j � 1) ⇤ s
s

e · s), (3.14)

b0 = (dn
2
� b̂

2
� n � b̂

2
e, (n

2
� (

n � b̂
2
/b̂) · â) � d

n
2 � ( n�b̂

2 /b̂) · â
b̂

e · b̂).

Here, b0 is the left upper corner of the first window, the window containing the point (0, 0). The point
b j denotes the left upper corner of the j-th stripe and finally the point bi, j is the left upper corner of
the i-th window in the j-th stripe. With these notations, the resulting wrapping window reads

W(x, y) =
X

i, j

Wi, j(x, y) for x = 1, · · · , b̂, y = 1, · · · , â. (3.15)

Again these formulations only holds true for the East region of the image, the decomposition of
the other regions is performed an analogous manner.
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3 Fast Discrete Curvelet Transform

(a) Periodisation of the wrapping window (b) Periodisation of the wrapping window laid over the
periodisation of the rectangle S

+ ++ +

(c) Composition of the wrapping window by addition

Figure 3.11: Sketch of the computation of the wrapping window by periodisation and addition of all
windows.

3.4 Final Algorithm

In the above sections we have discussed some major drawbacks of the initial algorithms presented
at the beginning of this chapter. We were able to resolve problems causing unnecessary long com-
putational time in the calculation of single curvelets. This resulted in a significant speed up of the
transform. Moreover we reduced the sampling of curvelets in spatial domain by introducing a wrap-
ping window method. This lead to less redundancy in the corresponding frame and hence, agrees
better with the definitions of the sampling introduced in Section 1.2 in the continuous case. Now we
are able to present the final algorithm using the elaborated results.

3.4.1 Analysis Algorithm

We supplement the initial analysis algorithm introduced in section 3.1 with the enhancements shown
in Section 3.2 and Section 3.3.
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3.4 Final Algorithm

The analysis operator A : ⌦ 7! Cp, A f = {h f , j,l,ki} j,l,k described in Chapter 1.2 is to be imple-
mented. For a given image image f [n1, n2], 0 < n1, n2  n , a set of coe�cients c j,k,l is computed.

1. Firstly we compute the 2D-FFT f̂ [n1, n2].

2. For each radial and angular scale { j, l} we compute the curvelet  ̂ j,l,·[n1, n2] in Fourier domain
for xmin  n1  xmax, ymin  n2  ymax with xmin, xmax, ymin, ymax according to section 3.2.

3. Now the point-wise product ⌫̂[n1, n2] = f̂ [n1, n2] ·  ̂ j,l,·[n1, n2] is calculated for xmin  n1 
xmax, ymin  n2  ymax.

4. The wrapping window Ŵ[x, y] is computed in Fourier space according to Eq.(3.15).

5. The 2D-IFFT yields the coe�cient matrix c j,l,k = W[k1, k2] for 0 < k1  l̂, 0 < k1  b̂ for
sectors East and West and 0 < k1  b̂, 0 < k1  l̂ for sectors North and South.

3.4.2 Synthesis Algorithm

The synthesis of the upper analysis algorithm consists again of executing the inverse of each step in
a di↵erent order.

5’. The 2D-FFT of the coe�cient matrix c j,l is computed and Ŵ[k1, k2] derived.

4’. The window is unwrapped by periodisation: W̃(n1, n2) = Ŵ(n1 � d n1
â e · â� â

2 , n2 � d n2
b̂
e · b̂� b̂

2 )
for xmin  n1  xmax, ymin  n2  ymax.

2’. For each radial and angular scale (j,l) we compute the curvelet  ̂ j,l,·[n1, n2] in Fourier domain
for xmin  n1  xmax, ymin  n2  ymax with xmin, xmax, ymin, ymax according to section 3.2.

3’. Now the point-wise product ⌫̂ j,l[n1, n2] = W̃[n1, n2] ·  ̂ j,l,·[n1, n2] is calculated for xmin  n1 
xmax, ymin  n2  ymax.

1’. At last we compute the inverse 2D-IFFT of the sum of the products
P
j,l
⌫̂ j,l[n1, n2] and obtain

f [n1, n2].

Note that between step [4’] and step [3’] the periodised wrapping window W̃ is not set to zero outside
the curvelet support, as this takes place automatically in the formulation as the product ⌫̂[n1, n2] =
W̃[n1, n2] ·  ̂ j,l,·[n1, n2].

3.4.3 Discussion

The analysis and synthesis algorithm derived in this chapter guarantee a fast computation of the
curvelet coe�cients c j,l,k. The curvelets are downsampled in an optimal way, and hence the corre-
sponding frame has as few redundancy as possible.
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3 Fast Discrete Curvelet Transform

3.5 Comparison to the discrete Curvelet Transformation proposed

by Candès et.al.

In the following we want to elaborate di↵erences in the implementation of our fast discrete curvelet
transform and the one proposed in [2]. For each di↵erence we will state advantages, disadvantages
as well as the motivation for each particular ansatz. Both attempts have their eligibility, as they aim
on di↵erent applications and are optimized for the usage in this field.

The digital transform by Candès et. al. aim on the representation of images in terms of the
curvelet frame. They direct their attention to the adaption to the discrete grid. This simplifies and
hence accelerates the computation, but leads to less conformity to the continuous definitions of the
curvelet transform.

In contrast to that, our implementation treats two aspects: On the one hand side, we want to stick
to the continuous definitions as much as possible. On the other hand side, more importantly we want
to be able to modify the tiling of the Fourier plane in order to adapt the transform for the use (in
reconstruction methods) in limited angle tomography.

The most fundamental di↵erence between the two implementations is the use of other tilings of
the Fourier plane. All of the following di↵erences are direct consequences of this conceptional
distinction.

Instead of concentric circles, Candès et.al. use squares to divide the plane into di↵erent radial
scales. (Moreover the radial scales are divided not by equispaced angles but equispaced slopes. But
this is of no further consequence.) This so called “Cartesian coronae” results in more shear-shaped
wedges in comparison to their continuous analogue and our implementation. A scheme of the tiling
is depicted in Fig.3.12.
The usage of this specific tiling is motivated by the discrete representation of images itself and brings
along some advantages. It is very convenient, as it simplifies the implementation of the window func-
tions W(r) and V(!). Moreover the wedges are nearly parallelograms and therefore it is easy to find
the smallest parallelogram P containing the support of one wedge. These parallelograms simplify
the computation of the wrapping window in a great measure. In addition to that the parallelogram
P contains less values outside the support of these curvelets than our smallest rectangle S in section
3.3.1 does. This leads to even less redundancy in the curvelet representation of an image.

The use of our tiling is motivated by it’s total conformity to the continuous case. All wedges are
uniformly shaped and independent of their angular direction. This is especially useful as soon as we
consider a limited angular range like in the tilings presented in Chapter 2.
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Figure 3.12: Discrete tiling of the Fourier space: “Cartesian coronae”.
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4 Numerical Results

During this thesis we have considered the reconstruction problem

ĉ = arg min
c2RN

(
1
2
||Kc � y�||2L2(S 1⇥R + ||c||1,w

)
, (4.1)

and stated the soft-thresholding algorithm for this problem in Section 1.3. Moreover, we adapted the
curvelet transform to fit to the limited angle data acquisition. This was accomplished by the use of
di↵erent tilings of the Fourier plane. Now, in the present chapter we briefly review the parts of the
previous chapters that are important for the numerical experiments. We state the di↵erent parameters
values we are able to choose, i.e. the curvelet tiling or the initial value we use. Finally, we present
the resulting images, inspect them and evaluate them visually. Hereby, we give possible explanations
for each observation we make. In the end, we work out which parameters leads to the best solution
to our reconstruction problem.

4.1 Phantoms for numerical experiments

For the numerical experiments we use the Shepp-Logan head phantom with improved contrast and
a white circle on black background for the comparison of the numerical results. Both phantoms are
depicted in Fig. 4.1 .

(a) Shepp-Logan head phantom (b) White circle

Figure 4.1: The phantoms used for the numerical experiments in this chapter.
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4 Numerical Results

4.2 The different Curvelet tilings

The following curvelet tilings are used:

(a) Inner Fading (b) Outer Fading (c) Uniform Fading

Hereby, both Uniform Fadings, the Inner Uniform Fading and the Outer Uniform Fading, are used.
For details and the construction of the di↵erent tilings we refer to Chapter 2.

4.3 The Initial Value

We consider the following three initial values for the numerical reconstruction:

• ZERO: A black image is used.

• FBP: The filtered backprojection of the measured data is used. The missing angles are ex-
tended by zero-padding

• SFBP: A smoothed filtered backprojection of the measured data is used. Here, also the missing
angles are extended by zero-padding. Additionally the measurement data is manipulated. In
order to smooth the cut-o↵ between measured angles and not measured angles, the measure-
ments are weighted according to the distance to the limited angle. After that the manipulated
data is backprojected. This reduces some artifacts in the initial image, as can be seen in
Fig. 4.2.

Both, the FBP and the SFBP are very noise sensitive and therefore despite their good results in
absence of noise are not suited for practical application. Note that, as we are interested in recon-
structing the curvelet coe�cients ĉ j,l,k the initial value is also given in form of the curvelet transform
of the above discussed initial images.

4.4 The Reconstruction Algorithm

For the reconstruction process a modified version of the iterated soft-thresholding algorithm dis-
cussed in Section 1.3 is used. An additional step size control was added to assure descent of the
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Figure 4.2: Comparison of the initial values FBP and SFBP with noise level 3% and in absence of
noise.

model error in every iteration: After computing an iteration step, the resulting image and residuum is
computed. The step is accepted only if the residuum is smaller than the residuum of the last iteration
step. If not, the step size is assumed to be too large and hence is decreased by a factor f < 1. We use
f = 1/2. With this smaller step size the current iteration is repeated. If the step size is accepted it
is increased in the next iteration by the factor 1

f > 1 in order to prevent unnecessary small step sizes
in iterations after necessary small steps. This decrease and increase of the step size is limited by a
lower and upper step size bound smin, resp. smax. Algorithm 1 implements this procedure.

During the experiments the following parameter values are used: c0 = 0, ⌧ j,k,l according to (1.30),
smin = 10�10, smax = 1010, nmax = 1000, f = 1/2 if not stated otherwise.

4.5 Numerical Results

In the following we present the numerical results and afterwards discuss our observations. We present
the reconstructed images for the four di↵erent tilings Inner Fading, Outer Fading, Inner Uniform
Fading, Outer Uniform Fading; the three di↵erent initial values ZERO, FBP, SFBP; the limited
angle � 2 {35, 160}; the noise level � 2 {0, 0.03}. The parameters nmax = 1000, smin = 10�10,

smax = 1010, f = 1/2 were used. The resulting images can be found in Figures 4.3 to 4.10.
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Figure 4.3: Reconstruction of the Shepp-Logan head phantom of size 512 x 512 without presence
of noise, limited angle � = 160�. Reconstructions for the initial values ZERO, FBP
and SFBP, and Curvelet tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer
Uniform Fading are shown.
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Figure 4.4: Reconstruction of the Shepp-Logan head phantom of size 512 x 512 without presence
of noise, limited angle � = 160�. Reconstructions for the initial values ZERO, FBP
and SFBP, and Curvelet tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer
Uniform Fading are shown.
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Figure 4.5: Reconstruction of the Shepp-Logan head phantom of size 512 x 512 without presence
of noise, limited angle � = 35�. Reconstructions for the initial values ZERO, FBP and
SFBP, and Curvelet tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer
Uniform Fading are shown.
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Figure 4.6: Reconstruction of the Shepp-Logan head phantom of size 512 x 512 without presence
of noise, limited angle � = 35�. Reconstructions for the initial values ZERO, FBP and
SFBP, and Curvelet tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer
Uniform Fading are shown.
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Figure 4.7: Reconstruction of the ball of size 512 x 512 without presence of noise, limited angle
� = 160�. Reconstructions for the initial values ZERO, FBP and SFBP, and Curvelet
tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer Uniform Fading are
shown.
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Figure 4.8: Reconstruction of the ball of size 512 x 512 without presence of noise, limited angle
� = 160�. Reconstructions for the initial values ZERO, FBP and SFBP, and Curvelet
tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer Uniform Fading are
shown.
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Figure 4.9: Reconstruction of the ball of size 512 x 512 without presence of noise, limited angle
� = 35�. Reconstructions for the initial values ZERO, FBP and SFBP, and Curvelet
tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer Uniform Fading are
shown.
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Figure 4.10: Reconstruction of the ball of size 512 x 512 without presence of noise, limited angle
� = 35�. Reconstructions for the initial values ZERO, FBP and SFBP, and Curvelet
tilings Inner Fading, Outer Fading, Inner Uniform Fading, Outer Uniform Fading are
shown.
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4 Numerical Results

Algorithm 1: Iterative soft-thresholding in limited angle tomography
Data: c0  initial Value according to Section 4.3;

⌧( j,k,l)  thresholding sequence according to (1.29) or (1.30);
smin, smax  minimal and maximal step length according to (1.28);
s initial step length with smin  s  smax;
nmax  maximum number of iterations;

Result: Reconstruction frec

while n < nmax do

cn+1  S⌧n(cn � sK⇤(Kcn � y�));
yn+1

rec  Kcn+1;
if ||y� � yn+1

rec || < ||y� � yn
rec|| then

n n + 1;
s min{ 1f s, smax};

else

if s = smin then

n n + 1;
else

s max{ f s, smin};
end

end

end

frec  Tcnmax ;

4.6 Conclusion: Comparison of the different parameter values

We conclude this chapter by discussing and evaluating the presented numerical results. We divide
this into three topics:

• What influence has the choice of the curvelet tiling?

• What influence has the choice of the initial value?

• What has to be considered in the presence of noise?

The Curvelet tiling

As we can see in Figures 4.3 to 4.10 the choice of the used tiling has a great influence on the
numerical result. The Inner and Inner Uniform Fading clearly showed the most artifacts. This may
be a result of the broken admissibility conditions. Both Uniform Fadings lead to a slightly blurred
image. This can nicely be explained by the fewer angular scales in the higher radial scales. Finally,
the Outer fading yields a sharp image with very reduced artifacts. The computational time for the
Inner and Outer Fading is increased in comparison to both Uniform Fadings. All in all we favor the
Outer Fading or the Outer Uniform Fading depending on the available computational resources and
the desired computational time.
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Initial Value

The choice of the initial value has an influence on the numerical results, too. This can be seen best
in Figures 4.9 and 4.10 in the case of Inner or Inner Uniform Fading. In case of the Outer or Outer
Uniform Fading the initial value is only important in the first iterations. Both the FBP and SFBP lead
to acceptable images in very few iterations. The initial value ZERO naturally needs more iterations
to produce an acceptable image. Therefore for experiments with a large number of iterations and the
use of the Outer or Outer Uniform Fading all three initial values are suitable for both a noise free
and noisy situation. If the computational time is of importance and only a small number of iterations
is acceptable, the initial value SFBP is preferable. Both initial values FBP and SFBP increase the
sensitivity to noise in the first iterations.

All in all the initial value SFBP leads to good results in all of the considered situations and hence,
is to be preferred.

Noise sensitivity

As can be seen in Figures 4.4, 4.6, 4.8 and 4.10, the procedure can handle noise very well. The
qualitative result is not a↵ected. If the initial values FBP or SFP are used the noise leads to strong
artifacts in the initial values, but is removed quickly during the consecutive iterations.

63



4 Numerical Results

64



5 Discussion

In the present thesis we elaborate an artifact-free reconstruction method in limited angle tomography.
The introduced method is capable of handling noise in the measurement data.

We introduce the mathematical background in Chapter 1. The limited angle Radon transform is
used to model the data acquisition process. This transform describes the measurements by integrals
over oriented lines. Bundled by angle, these integrals form projections. In limited angle tomography
these projections are only available for a limited angular range. The data for angles outside this range
is missing. Afterwards, we introduce the curvelet frame. This frame is powerful in representing ob-
jects with edges in a sparse way. Curvelets yield an optimally sparse representation for functions that
are C2 except for discontinuities along C2 curves. This gives rise to consider sparse reconstruction
with respect to the curvelet frame. We describe an iterative soft-thresholding algorithm that solves
the established minimization problem and finish Chapter 1 by showing three typical artifacts that are
present in images reconstructed from limited angle tomographic measurements. In these images only
singularities perpendicular to the data acquisition are recoverable. This feature can not be changed.
Furthermore, in reconstructed images from limited angle tomographic measurements dark and bright
lines are present all over the image. We concentrate on removing this artifact, which is caused by the
hard cut-o↵ of the measurement data at the angular boundaries.

Chapter 2 is dedicated to the adaption to the limited angular range. We present three variants to
adjust the curvelet transform to the use in limited angle tomography. The basis for these adaptions is
that curvelets, which do not subtend the visible wedge, lie in the kernel of the limited angle Radon
transform. We introduce the Inner Fading, which concentrates on solely allowing the reconstruction
of coe�cients that are measured during data acquisition. The Outer Fading, that weights all mea-
surable coe�cients by 1 and weights coe�cients that are not measurable lower in order to reduce
artifacts. Finally, the Uniform Fading, which uses a uniform, scale independent angular range to re-
move the hard cut-o↵ by smooth fading, is introduced. All the resulting tilings take artifact reduction
into account.

In Chapter 3 we elaborate a fast discrete version of the curvelet transform. We improve a minimal,
straight forward workflow of the curvelet analysis and synthesis algorithm until we present a fast
digital curvelet transform that is suited for the use in limited angle tomographic reconstruction. This
improvements include the removal of unnecessarily slow computations of curvelets in Fourier space
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5 Discussion

and the reduction of the number of coe�cients in order to reduce the redundancy of the correspond-
ing curvelet frame. In the end, we compare our implementation to another implementation of the
curvelet transform that is not optimized for the use in limited angle tomography.

The final algorithm is then used in Chapter 4 for numerical experiments. It turns out that both
the Outer and Outer Uniform Fading show the least artifacts. In addition to that, for low numbers
of angular scales the Uniform Fading leads to a lower computational expense but a blurring of the
resulting image. We suggest to use the initial value SFBP, a smoothed filtered backprojection of the
measurement data, as it leads to the best compromise between computational time and artifact reduc-
tion. We see that the method is capable of handling noise: the qualitative results are left unchanged
in comparison to the noise-free simulations.

This thesis is based on the curvelet sparse regularization introduced by Jürgen Frikel in [13] and
the curvelet transform introduced by Emanuel Candès et al. in [3]. The main contribution of this
work is the development of new tilings of the Fourier plane and the implementation of a modified
fast digital curvelet transform that uses these tilings. With these modifications the curvelet transform
is well suited for the use in limited angle tomography.

For the numerical experiments the iterative soft-thresholding was used. This method can be split
up in two steps: first the descent step, followed by a soft-thresholding step. These two steps are
independent from each other. We used gradient descent in the present thesis. For a faster convergence
in future works also other, higher order methods could be used. The conjugated gradient or the
Newton method could be possible candidates. A speed-up of the computational time would be of
great benefit for the applicability of this method.
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Short introduction to Frames

In this section we will give a brief introduction to frames, following the definitions in [5]. Frames
are a mathematic tool to represent elements of a vector space with the use of a known dictionary
{ fk}k2I for some index set I. We already know such a tool from basic linear algebra: bases. But the
conditions to a basis are very restrictive: A sequence {ek}mk=1, in the vector space V is called a basis
of V if the following two condition are satisfied:

i) V = span{ek}mk=1,

ii) {ek}mk=1 is linearly independent.
(.1)

The first condition seems very natural, as we want to represent every element of the considered vector
space. This condition will also be required in the context of frames. The second condition claims
linear independence of the elements {ek}mk=1. This is a very strict condition, but it leads to some nice
features, like the unique representation of elements v 2 V , i.e. there exist unique scalar coe�cients
{ck}mk=1 such that

v =
mX

k=1

ckek. (.2)

Although this feature is desirable, the linear independence makes it very hard (or even impossible)
to satisfy extra conditions, like in our case the later Curvelet definition. Therefore Condition (.1ii) is
dropped in the context of frames. This leads to the following definition for finite sets { fk}k2I:

A sequence { fk}mk=1, m 2 N of elements in V is called frame, if

V = span{ fk}mk=1. (.3)

With this definition one can think of frames as a kind of overcomplete basis, a basis to which addi-
tional elements are added. Of course this is not always true. The set { fk}k2I does not have to contain
an actual basis.

The definition (.3) can be generalized by the following definition, assuming not only finite, but
also countable index sets I:
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A family of elements { fk}k2I in V is a frame for V if there exist constants A, B > 0 such that

A|| f ||2 
X

k2I

|h f , fki|2  B|| f ||2, 8 f 2 V. (.4)

The proof of the equivalence of (.3) and (.4) for finite index sets I can be found in [5, Corollary
1.1.3].

Now that we have defined frames, we want to give some further definitions and features.
Definition: The numbers A, B in Definition (.4) are called frame bounds. As obviously for A, B also
A/2, 2B are frame bounds, they are not unique. Therefore the optimal lower and optimal upper frame

bounds, inf A
{A is lower frame bound}

respectively sup B
{B is lower frame bound}

, are defined.

If the optimal upper and lower frame bounds coincide, i.e.

A|| f ||2 =
X

k2I

|h f , fki|2, 8 f 2 V. (.5)

a frame is called tight.
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