
Entropy Coding of Adaptive Sparse Data
Representations by Context Mixing

von

Thomas Wenzel
Matrikel-Nr. 5960073

geboren am
23.07.1987

Masterarbeit im Studiengang Mathematik
Universität Hamburg

2013

Gutachter: Prof. Dr. Armin Iske
Zweitgutachter: Dr. Laurent Demaret

Erklärung

Die vorliegende Arbeit habe ich selbständig verfasst und keine anderen als die angegebe-
nen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen
- benutzt. Die Arbeit habe ich vorher nicht in einem anderen Prüfungsverfahren eingere-
icht. Die eingereichte schriftliche Fassung entspricht genau der auf dem elektronischen
Speichermedium.

Abstract

In this thesis improvements on the video compression scheme AT3D, which relies on
linear spline interpolation over anisotropic Delaunay tetrahedralizations, are presented by
introducing a more sophisticated entropy coding stage and optimizing several intermediate
computations to reduce compression time. A detailed literature summary on information
theory basics and a detailed implementation summary of AT3D is presented. The original
entropy coding stage is replaced by the core of the general purpose data compression scheme
PAQ by Matt Mahoney, which employs a geometric context-mixing technique based on
online convex programming for coding cost minimization. Novel models for pixel position-
and grayscale value encoding are incorporated into the new AT3D_PAQ implementation
and investigated numerically. A significant average improvement was achieved on a wide
variety of test sequences, and in a comparison with H.264 a sequence class is presented,
in which AT3D_PAQ outperforms H.264. Theoretical and numerical results additionally
demonstrate the higher computational efficiency of AT3D_PAQ and show significantly
reduced compression times in a variety of test environments.

Contents

1 Introduction 3
1.1 Thesis organization and contributions . 6

2 Fundamentals 8
2.1 Notational conventions . 8
2.2 A brief introduction to video compression 8

2.2.1 Summary and outlook . 13
2.3 MPEG4-AVC/H.264 . 14

2.3.1 Overview . 14
2.3.2 Coding units . 14
2.3.3 Intra- and inter-frame prediction . 16
2.3.4 Transform coding . 17
2.3.5 Scan, quantization and entropy coding 18
2.3.6 In-loop deblocking filter . 18
2.3.7 Rate control . 19
2.3.8 Summary . 19

2.4 Introduction to information theory . 20
2.4.1 Basic definitions . 20
2.4.2 Entropy . 21
2.4.3 Linking entropy to data compression 25
2.4.4 Arithmetic coding . 29
2.4.5 Separation of modeling and encoding 34
2.4.6 Summary . 35

2.5 AT3D . 36
2.5.1 Delaunay tetrahedralizations . 37
2.5.2 Linear splines over Delaunay tetrahedralizations 38
2.5.3 Pre-processing . 40
2.5.4 Adaptive thinning . 41
2.5.5 Post-processing: Pixel exchange . 43
2.5.6 Post-processing: Best approximation 45
2.5.7 Quantization . 46
2.5.8 Implementation of arithmetic coding 47
2.5.9 Entropy coding: Pixel positions . 47
2.5.10 Entropy coding: Grayscale values . 51

2.5.11 Numerical results regarding stationarity 54

3 Development of AT3D_PAQ 55
3.1 PAQ . 56

3.1.1 PAQ8 - Building blocks . 57
3.1.2 Context mixing in PAQ1-3 . 60
3.1.3 Context mixing in PAQ4-6 . 61
3.1.4 Context mixing in PAQ7-8: Logistic/geometric mixing 64
3.1.5 PAQ8 - Modeling tools . 67
3.1.6 PAQ8 - Adaptive probability maps 68

3.2 Integration of PAQ into AT3D . 69
3.3 Modifications of PAQ after the integration 70

3.3.1 Modeling pixel positions . 71
3.3.2 Modeling grayscale values . 75

3.4 Numerical results: AT3D_PAQ vs. AT3D 79
3.4.1 Pixel position encoding results . 81
3.4.2 Grayscale value encoding results . 85
3.4.3 Total compression results for selected sequences 85
3.4.4 Summary and analysis of overall results 90
3.4.5 Compression time comparison: AT3D_PAQ vs. AT3D 90

3.5 Numerical results: AT3D_PAQ vs. H.264 91
3.5.1 Summary and analysis of results . 98

3.6 Conclusion . 98
3.7 Outlook . 99

4 Runtime optimization 100
4.1 Improvements of the AT3D implementation 101

4.1.1 Assignment of pixels to tetrahedra 101
4.1.2 Custom queue implementation . 117
4.1.3 Further improvements . 119

4.2 Numerical results . 120
4.3 Conclusion . 127
4.4 Outlook . 127
4.5 Further code improvements . 128

Appendices 129

A List of used hard- and software 129

B Test video sequences 130

C Detailed compression results 133

D Detailed H.264 results 137

E Detailed runtime results 139

1 Introduction

1 Introduction

Given a sequence S of symbols from an alphabet A, that is to be stored on a medium
or transmitted via a channel, it is natural to ask which is the shortest representation, that
allows an exact reconstruction of S, and how to obtain it. This requires the process of
lossless data compression or entropy coding, a transformation of an input sequence into
a preferably shorter output sequence. First answers were found by Shannon in 1948, when
he created the field of information theory. Shannon introduced the concept of entropy of
a sequence S. Entropy may be measured in bits per symbol and refers to the expected
information content per symbol of a sequence with respect to a probability distribution
P of the symbols in S. One of the most important results of his work was showing that
entropy is a lower bound for the minimal length of an encoded sequence, which still allows
exact reconstruction. We will present results from the information theory literature ex-
tending Shannon’s results to sources S, which are defined as random processes generating
sequences Si, and their entropy rates, which describe the expected information content
per symbol of a sequence emitted by S. Those results show that a lower bound for the
expected code-length per symbol of such a sequence Si exists and that it is given by the
entropy rate of S, if S is stationary. The latter notion refers to the independence of joint
probability distributions of arbitrary symbols from their time of emission. Even if S is
not stationary, which is the case in our application, a lower expected code length bound
per symbol is given by the joint entropy of a finite consecutive subsequence of random
variables that S consists of. It is calculated based on the joint probability distribution of
those random variables. Unfortunately, in practical applications all of these lower bounds
are not computable. The above concepts and results will later be introduced in detail and
provide a theoretical background for data compression and lead to a better understanding
of our later goals.
We will focus on a specific kind of data to compress: video data. It is a digital representation
of a sequence of images. The need for efficient video compression schemes is due to the
large sizes of typical video sequences and the variety of fields, where video sequences have
to be stored or transmitted. Most video compression schemes, and in particular the ones
considered in this thesis, are lossy schemes, which introduce an error in the reconstructed
video data. In 1989 the scheme H.262/MPEG-1 was introduced, which created the basis
of today’s state-of-the-art general purpose compression scheme H.264/MPEG4-AVC .
Both rely on intra-frame compression via a discrete cosine transform (or a closely related
transform respectively) and translational inter-frame motion compensation of pixel-blocks.
Besides a vast number of small improvements, H.264 additionally introduced an in-loop
deblocking filter, which improved the visual quality of its output significantly by reducing

5

the tendency to produce visible block-artifacts. A detailed introduction to the specification
of H.264 is given in a dedicated chapter.
In this thesis we focus on the improvement of a different compression scheme, yet we
will compare it to H.264 later: AT3D. The latter was developed by Demaret, Iske, and
Khachabi, based on the two-dimensional image-compression scheme AT (adaptive thinning).
Given data is interpreted as a 3d scalar field with domain X, and the scheme then relies on
linear spline interpolation over anisotropic Delaunay tetrahedralizations. The linear spline
space is indirectly determined by the greedy iterative adaptive thinning algorithm, which
selects a sparse set Xn of significant pixels from the initial grid by removing one least
significant pixel or edge in each iteration. We call a tuple p = (px, py, pz) ∈ R3 a pixel. The
significance of a pixel is determined by simulating its removal from the tetrahedralization
and calculating the incurred mean squared interpolation error. The pixels in each set Xk

span a unique Delaunay tetrahedralization, which in turn yields a linear spline space, which
contains an interpolant and a unique best approximation to the original video data. The
removal of a pixel can be efficiently calculated, because it is a local operation only affecting
its cell of adjacent tetrahedra, when performing an interpolation. The calculation of the
best approximation is a global operation, thus it is only obtained once for the final set Xn.
The option to remove two pixels connected by a tetrahedral edge at once further improves
the compression. The resulting pixel set is further optimized by a local pixel exchange
algorithm before the final calculation of the best approximation on Xn. The output of
adaptive thinning is a set of pixels Y ⊂ N3

0 and a set EV , which contains the grayscale
values at each of the significant pixels. The theoretical complexity of this whole process is
O(N logN), where N denotes the number of removed pixels.
Those two sets are then entropy coded. One of the two central results of this thesis will be
the improvement of the entropy coding stage of AT3D by replacing it with a general-purpose
lossless data compression scheme called PAQ, which was then adapted to the specific
characteristics of the adaptive thinning output. The new implementation, which is the
result of this thesis, will be denoted by AT3D_PAQ.
In AT3D an arithmetic encoder was used in the entropy coding stage. It compresses a
given sequence S = (s0, s1, . . . , sm) of symbols from an alphabet A = {a0, . . . , an} by
starting with the interval I0 = [0, 1] and dividing it into n+ 1 subintervals Ik with lengths
according to the occurrence probabilities of the symbols ai in the current iteration step.
When the whole sequence was processed, the number x ∈ Im with the shortest binary
fractional representation is chosen and stored. A binary fraction is stored by saving the
bit-stream representing its numerator, while its denominator has to be a power of 2. The
probabilities used for interval partitioning may vary in the encoding process and are based
on the probability distribution model of its source S. In this case, the arithmetic coder is
called adaptive. If the source emits stochastically dependent random variables, the use of
conditional probabilities is advantageous and leads to better compression results, because
they allow modeling the dependencies between random variables without explicitly knowing
their joint probability distribution. In this case it is called a contextual arithmetic coder.
It will be shown later, that the compression achieved in our practical application entirely
depends on the employed source models, and that a more accurate model directly results
in improved compression and vice versa.

6

1 Introduction

In AT3D pixel positions are encoded by iterating through all positions in the original pixel
grid row by row and encoding a bit for each position, that is set if it contains a significant
pixel. It uses a context-based arithmetic coder for pixel position coding, where contexts
are based on significant pixel counts in projected 2d-context boxes. When considering
a pixel position y to be encoded, a context box refers to all previously encoded pixel
positions x in the same frame as y satisfying ‖y − x‖∞ < r. A projected 2d-context box is
the projection of y into the first and last frame of a video sequence, where the counts of
significant pixels are summed up in the corresponding 2d-context box. Therefore, the first
and the last frame of a sequence are encoded first, before encoding the remaining frames
in their original order. This is necessary for the decoder to be able to reconstruct the
bit-stream. This approach is obviously tailored to a very specific kind of adaptive thinning
output, which allows for a significant improvement.
Grayscale values are encoded by an adaptive arithmetic coder. The employed probabilities
are directly deducted from the count of a grayscale value’s occurrence, which also suggests
the possibility for improvements.

One of the major drawbacks of the original AT3D implementation is its limitation to at
most one class of contexts. If a video sequence has properties, that are not incorporated into
the probability model of that context class, compression will suffer. Therefore, AT3D_PAQ
features the integration of the general purpose lossless data compression scheme PAQ,
which was originally developed by Mahoney and first presented in [Mah02]. It relies on
a technique called context mixing, which combines predictions from numerous context
classes into a resulting probability distribution, that in general performs at least as good
as the best individual distribution. Besides giving a detailed introduction of PAQ we will
describe the context classes we implemented in AT3D_PAQ later.
In our numerical investigations of AT3D_PAQ we will consider a large number of examples,
which will demonstrate that our efforts resulted in improved compression for all test
sequences. In particular it is remarkable, that this thesis was not focused on improving
special cases, but on achieving a general improvement, which was successful. Compression
results are improved by 15.04 % on average and by up to 56.06 % in certain test cases. A
detailed comparison of AT3D and AT3D_PAQ is presented in a dedicated chapter.
Additionally, we investigated the performance of AT3D_PAQ in comparison to H.264. The
results varied significantly for the different test sequences, yielding mixed results. For cer-
tain sequence types, H.264 outperforms AT3D_PAQ by far, while for others it depends on
the quality settings, and for one class of test sequences we obtained (partially significantly)
better results by AT3D_PAQ. For this class of artificially generated geometric sequences,
AT3D_PAQ is drastically improved over AT3D, which was not capable of outperforming
H.264 for all quality settings.

In the second major part of this thesis we describe our work to improve the runtime of
AT3D. Despite its theoretical runtime of O(N logN) it suffers from the implicitly given
large constant. We applied numerous changes to the implementation, which reduced the
number of memory allocations and deallocations significantly. Additionally we reduced the
number of geometry tests, which have to be performed to assign a pixel to a tetrahedron,

7

1.1 Thesis organization and contributions

which is necessary in the significance update of a pixel. Furthermore many minor changes
were applied, yielding significant runtime improvements. Later we will provide theoretical
evidence for the poor performance of the original assignment algorithm and describe our
new implementation in detail.
Finally, detailed numerical results are presented, showing best- and worst-case improvements
in different environments and on different microarchitectures. Our improvements result in
a runtime reduction of 38.46 % in the worst case and of 48.88 % in the best case.
Additionally we want to note that for the first time a 64-bit implementation of AT3D
was considered, which allowed the investigation of significantly larger video sequences
than before. The largest considered sequences contain up to 2.4 million pixels, while in a
32-bit implementation sequences with at most 0.8 million pixels could be processed due to
memory limitations.

1.1 Thesis organization and contributions

In the first chapter we introduce all concepts mentioned above in detail and sum up all
conclusions needed. After fixing notational conventions in section 2.1 we start with setting
up the framework we will operate in in section 2.2. There we define video data, video
compression scheme notions, and quality measures needed to evaluate the output of a lossy
compression scheme. In the following section 2.3 today’s state-of-the-art video compression
scheme, H.264, is described in detail. We pay particular attention to the features that are
new compared to the well-known scheme H.261.
In chapter 2.4 we focus on information theory and provide a detailed summary of available
literature and define entropy, entropy rates of sources and present results connecting these
notions to data compression. We then introduce the concept of codes, illustrate it by
Huffman codes and move on to arithmetic coding, which is one key ingredient in the entropy
coding stage of AT3D as well as the one of AT3D_PAQ. We relate the notions from 2.4
to arithmetic coding and present results from the literature which show that arithmetic
coding is close to optimal for our purposes. Finally we come to the conclusion, that it is a
tool, whose compression performance is entirely dependent on our model development.
After all these literature summaries on topics, that played an important role in our work,
we introduce AT3D in detail and for the first time present detailed summaries of the actual
implementations of adaptive thinning, pixel exchange and the entropy coding stage in
particular. All of these were extracted from the source code by performing a close analysis,
which also led to the discovery of implementation errors, which were partly corrected in
AT3D_PAQ, but without having a measurable impact on its performance.

In chapter 3 we start focusing on results of this thesis. We introduce PAQ, and the
detailed documentation in this thesis extends the rare existing literature based on source
code analysis and links mathematical investigations of techniques used in PAQ to the
available literature on it in section 3.1. Our main focus is a detailed description of the
architecture and the employed mathematical methods, but we also quote some recently
published investigations, which for the first time proved theoretical results underlining the

8

1 Introduction

quality of the architecture of PAQ. The following sections 3.2 and 3.3 are dedicated to
a summary of our integration of PAQ into AT3D and to describing the architecture of
AT3D_PAQ. We then continue with a presentation of our modifications and modeling
approaches taken to improve compression.
Finally, we give numerical results in chapter 3.4, comparing AT3D to AT3D_PAQ in a
wide variety of test cases, including different sequence types, lengths, and resolutions. We
continue with a comparison of those two schemes and H.264 in order to allow a classifica-
tion of the compression performance of AT3D_PAQ in comparison to a state-of-the-art
compression scheme. We summarize our results in section 3.6 and give an outlook on
possible further research projects in section 3.7.

Runtime optimization of AT3D is described in chapter 4. In section 4.1 we summa-
rize all modifications applied to AT3D in order to improve its runtime. We begin with
our new queue implementation, which reduces the number of memory allocations and
deallocations significantly in section 4.1.2. Then we continue with a theoretical investiga-
tion of the original algorithm, which assigns pixels to tetrahedra in section 4.1.1. These
theoretical investigations, which are a result of this thesis, suggest several ideas for reducing
the number of necessary geometry-tests to assign pixels successfully, most importantly by
using a technique called tetrahedron-walking. The implementation of these ideas is then
described and the properties of walking are summarized from the literature. In section
4.1.3 a number of additional small improvements is listed, which also improved the runtime
measurably.
These measurements are then presented in section 4.2, where we first select two benchmark
environments based on a small selection of numerical results and then continue with the
presentation of the average improvements in a best-case scenario and in a worst-case sce-
nario. Results are then summarized in section 4.3 and some ideas for further improvements,
which were out of the scope of this thesis, are presented in section 4.4. In appendix A the
software used in this thesis is listed, appendix B contains a listing of all test sequences
with a short summary of the contents of each scene. In the following appendix C detailed
compression results comparing AT3D and AT3D_PAQ are listed. Additionally tables
containing the numerical results of the comparison to H.264 are presented in appendix
D. The results regarding the runtime investigation are listed in appendix E. All figures
and illustrations are drawn and developed by the author of the thesis, unless indicated
otherwise.

9

2 Fundamentals

2.1 Notational conventions

In this section we introduce some notational conventions that will be used in the
remainder of this thesis.

Remark 2.1.1.

• Let N be the set of natural numbers starting at 1. Let N0 = N ∪ {0}.

• A sequence is denoted by (c)k∈Z, or (c)k. A specific element of the sequence at index
j is referred to by cj . Note that the index may be negative.

• An equivalence, which is expressed by the term "if and only if" is abbreviated by "iff".

• For any vector p ∈ R3 its x-, y- and z-components are denoted by px, py and pz.

• A set {m ∈ N0 |m ≤ n ∈ N0} will be denoted by n.

• In listings of algorithms we will use a notation close to program code, allowing
statements of the type m := m+ 1, where convenient.

2.2 A brief introduction to video compression

Video compression has been subjected to research for several decades now. In this
section, we will sum up the emerged standard notions necessary for the description of a
video compression scheme, and fix, where this thesis fits into this large framework.
We will start with the formalization of the structure of video data, continue with the
structure of a video compression scheme, and introduce the most common quality measure
for compressed video sequences, called PSNR, which is also of great importance in AT3D.

The notion of a signal is a very general one, therefore we will start with a more spe-
cific definition that suits our purposes:

Definition 2.2.1 (Signal). A signal f is a mapping

f : T → R,

10

2 Fundamentals

where T ⊂ R is a set of points in time and R is an arbitrary set of values.

• The signal f is called continuous, if T = [a, b] for a, b ∈ R.

• It is called discrete-time signal, if T is a countable set. Then the numbers
(f)n := f(nTs), n ∈ Z are called samples of f with sampling interval Ts. Its
inverse fs := 1

Ts
is called sampling frequency. Signals sampled at a varying

frequencies are not considered.

Remark 2.2.2. Note that the notion of sampling only refers to the discretization of a
continuous signal. When trying to reconstruct a continuous signal from a discrete one, the
Nyquist-Shannon sampling theorem formulates necessary conditions on the sampling
frequency to be able to fully reconstruct the sampled continuous signal. Violating this
necessary condition can lead to sampling artifacts.
In the scope of this thesis we will not consider these reconstruction problems and therefore
refer to [Bla02] for further information on this subject.

Also note that the range of a discrete-time signal can still be an uncountable set. In
this case signal processing on a computer would not be possible, because an infinite number
of bits may be needed to save the signal. Therefore we need the following definition:

Definition 2.2.3 (Quantizer). Let R be a range of values. Then a quantizer Q is a
mapping

Q : R→ S, with |R| ≥ |S| = s ∈ N.

In particular S is a finite set.

Definition 2.2.4. Let f be a continuous signal and Q be a quantizer. Then a digital
signal (fQ)n is the sequence related to the discrete-time signal (f)n by

fQn := Q(fn), with n ∈ Z.

In the following we will consider digital signals only.

Example 2.2.5. An audio signal fA is a signal with R = R, where the absolute values
|fA(t)| with t ∈ T represent the amplitude of an audible tone. This amplitude results from
the superposition of several frequencies in the signal.

Video sequences can be defined in several different ways depending on the compression
scheme to be used. The most common definition of a video sequence is the following (note
that we will not use this approach in AT3D):

Definition 2.2.6 (Grayscale video sequence). Let W,H ∈ N be a width and a height and
let f : T → RW×H+ be a continuous signal. Let Q : RW×H+ → 2ρ − 1W×H , be a quantizer,

11

2.2 A brief introduction to video compression

where ρ ∈ N. Then the grayscale values in one frame of the video sequence (fQ)n∈Z are
defined by

fQn := Q(f(nTs)) for n ∈ Z.

Then the k-th frame of a sequence may be defined as

Fk :=
{(
i, j, (fQk)ij

)
∈W − 1×H − 1× 2ρ − 1

}
.

A pixel is a tuple (i, j, k). Both W and H are fixed throughout the sequence. The size of
a frame is called resolution of the video sequence. The values from 2ρ − 1 represent
grayscale values, with ρ = 8 in general. 1

Ts
is called frame-rate of the video sequence.

Remark 2.2.7. Note that following this definition a sample of a natural image sequence
is a frame, not a pixel.

Another common approach is the natural extension of the mathematical approach of
defining audio sequences as uni-variate mappings, images as bi-variate mappings and video
sequences as tri-variate mappings. We will use it for AT3D:

Definition 2.2.8 (Grayscale video sequence as trivariate mappings). Let f be a mapping
satisfying

f : R2
+ × R→ R ⊂ R+.

Let Q be a quantizer satisfying
Q : R→ 2ρ − 1.

The corresponding digital signal is defined by

fQijn := Q(f(i, j, nTs)), with 0 ≤ i < W and 0 ≤ j < H, n ∈ Z.

The frame Fk is defined by

Fk :=
{

(i, j, fQi,j,k) ∈W − 1×H − 1× 2ρ − 1
}
.

We will refer to tuples (i, j, k) as pixels and to the corresponding grayscale value fQijk as
the (grayscale) value at a pixel (position).

Remark 2.2.9. Note that opposed to the general definition of a video sequence, two
spatial dimensions are part of the domain of the mapping and not of the range. When
considering an analogous definition for images, there is no temporal component in the
domain, thus an image is not time-dependent and can therefore not be defined as a signal
in the classical sense mentioned before.

Two major organizations are responsible for issuing standards and so-called recommen-
dations in video compression: The International Telecommunication union (ITU),
founded in 1865, with its subsection ITU Telecommunication Standardization Sec-
tor (ITU-T), and the Moving Picture Expert Group (MPEG), which was founded

12

2 Fundamentals

by the ISO in 1988 to define standards for audio and video compression and transmission
schemes. Video compression is subject to this standardization process to ensure widespread
availability of implementations of efficient compression schemes for video data transmission
over networks like the internet.
One family of standards regard the format of color information: These values are coded by
a RGB-color model, which models a color space created by the additive combination of
three basic colors: red, green, and blue. In order to save bandwidth in the transmission of
color data, intermediate formats that represent RGB data by color differences were devel-
oped. Examples include YUV, YPbPr, YCbCr and several others. Their commonality
lies in the separation of RGB-colors into luma- and chrominance-components.
This separation reflects the important property of the human visual system to be more
sensitive to differences in brightness than to differences in color.
RGB-colors are first non-linearly transformed into gamma-corrected R’G’B’-colors before
calculating the corresponding luma-value by computing the weighted sum of those three
R’- G’- and B’-components. The weights may slightly vary depending on the used ITU
recommendation (most commonly [ITU11] or [ITU02]). The luma-component contains the
brightness information of a color. The remaining two chrominance-components can then be
derived from the R’G’B’-color and its luma-component. A common first compression step
reduces the amount of color information: chroma-sub-sampling, which is essentially a
down-sampling of chroma information.
The employed color model, resolution and frame-rate depend on the used standard, e.g.
NTSC, PAL or SECAM, which have also been developed by the organizations mentioned
above.

Remark 2.2.10. Note that in the scope of this thesis we will only be interested in grayscale
video sequences, which we defined above. The employed video formats only contain data
following this definition (.yuv and .pgmv), thus all regulations imposed by the standards
mentioned above are irrelevant for us. These formats do not contain information regarding
the frame-rate and in our case no chrominance-, but only luma information.

After fixing the framework regarding input-data, we will now introduce the basic layout
of a compression scheme.

Definition 2.2.11 (Video codec). An encoder is a software program or hardwired circuit
that converts an input bit-stream of video data into an encoded output bit-stream. To
reconstruct a video a suiting decoder is needed, which decodes the bit-stream generated
by the corresponding encoder, i.e. into the original format. An encoder together with a
suitable decoder is called a video codec.
If the input bit-stream is equal to the decoded encoder output bit-stream, the video codec
is called lossless. Otherwise it is called lossy.

A codec is an implementation of a video compression scheme. A key property of most
encoders is the reduced size of its output bit-stream compared to the input bit-stream. If

13

2.2 A brief introduction to video compression

the encoding process requires significantly less computational effort than the decoding, a
video codec is called asymmetric. Otherwise it is called symmetric. Generally, in an
asymmetric codec the encoder is considerably harder to design and implement compared
to the decoder.
Compression ratios achieved by lossless codecs are significantly worse than the ones achieved
by lossy codecs. High-resolution video data is always encoded by lossy codecs in practical
applications.

Definition 2.2.12 (Bit-rate). The bit-rate of video data is the number of bits needed to
save a sequence of frames that is played back within one second. It is measured in bits per
second, abbreviated by bit/s.
It is not necessarily constant throughout a video sequence. In this case the bit-rate refers
to the average bit-rate of the sequence.

Remark 2.2.13. The bit-rate of a video depends on the used codec. It also depends on
the frame-rate of the sequence. A higher bit-rate tends to result in better visual quality
when a fixed compression scheme is used.

The goal of video compression is to make use of redundancies in video sequences and
to define a scheme to remove those redundancies, and thereby transform the sequence into
a shorter representation. We will give an exact definition of redundancy in chapter 2.4, for
now we regard redundancies as pieces of information contained in the luma- or color-values
at pixel positions, that are also implicitly contained in values of neighboring pixels.
While audio sequences only contain temporal redundancies, images contain spatial re-
dundancies. When considering video sequences to be composed of frames, note that they
contain intra-frame spatial redundancies and inter-frame temporal redundancies. These can
be related (e.g. consider a sequence showing a moving box, where spatial redundancies are
caused by the structure of the box and temporal redundancies are caused by its motion).
A very simple example of a scheme to remove redundancies from an audio sequence would
be the coding of differences of sample values instead of coding the sample values themselves.

When applying a lossy compression scheme, the reconstructed signal will differ from
the original one. Since we are considering digital signals, this resulting error can be
measured by mathematical means. The most common error measure is the following:

Definition 2.2.14 (Peak signal-to-noise ratio, PSNR). Let (fQ)n be a finite digital signal
with k samples sampled from a bounded continuous signal f . Let fmax be the upper bound
of the range of f . Let (̃fQ)n be the coded and decoded reconstruction of (fQ)n. Then the
PSNR is defined as

PSNR = 10 log10
f2
max

η̃2((fQ)n, (̃fQ)n)
dB,

14

2 Fundamentals

with
η̃2((fQ)n, (̃fQ)n) := 1

k

∑
n

∣∣∣∣fQn − f̃Qn ∣∣∣∣2.
The mean-squared error is denoted by η̃2.

While it is a mathematically simple measure and yields a fairly good estimation of the
codec-induced error, it sometimes does not correspond to the perceived error. When the
error created by the compression becomes perceptible, it is usually called an artifact. In
rare cases reconstructed signals with a large PSNR-value may be considered as signals of
poor quality. Conversely, signals with low PSNR-value may be considered as having high
quality. Perceived quality is strongly dependent on the perceiving individual. Generally, a
value above 40 dB indicates very good visual quality and a value below 30 dB indicates
poor visual quality. The type of audible or visible artifacts is usually a characteristic
property of a compression scheme, e.g. MPEG compression schemes are known to suffer
from block artifacts at low bit-rates.
The design of appropriate quality measures is an important task of today’s research. For
further information we refer to [Wan03].

The development of efficient (lossy) video compression schemes has been subject to research
for the last decades. There were many successful developments, most notably the standards
MPEG1, MPEG2/H.262, MPEG4 and MPEG4-AVC/H.264 . They all have their
usage of a discrete cosine transform for residual coding, their block-based motion estimation
and compensation scheme for inter-frame coding, and a final entropy coding procedure in
common. MPEG1 introduced those key ingredients, and throughout the years many details
in the standard were improved. H.264 is today’s benchmark in multi-purpose compression
schemes. A detailed introduction of H.264 is presented in section 2.3.

2.2.1 Summary and outlook

In order to link the notions introduced above to the contents of this thesis we may
formulate the following summary:

• We consider AT3D, an asymmetric (lossy) video codec which bases its compression
on a 3d-interpretation of the given input data. It will be introduced in chapter 2.5.

• We will compare it to the second considered codec, H.264, which is lossy and
asymmetric as well and assumes a sequence of 2d images. It is today’s benchmark in
video compression. We will introduce H.264 in detail in chapter 2.3.

• Input- and output data are grayscale video sequences, which are saved in the .yuv-
or .pgmv-formats and do not contain standardized information regarding frame-rate,
resolution or color-information, therefore all playback-related data and formatting is
irrelevant for us.

• The comparison between both codecs will be based on the PSNR-value of the encoded
and decoded test sequences.

15

2.3 MPEG4-AVC/H.264

2.3 MPEG4-AVC/H.264

In this section we will introduce MPEG4-AVC/H.264 (abbreviated by H.264 in the
remainder of this thesis) in more detail and summarize its properties. Our main focus is
the description of the core mechanisms, which contribute to the compression performance
most. Since only grayscale video sequences are in the scope of this thesis, we will restrict
ourselves to describing the luminance value compression of H.264. Note that for H.264 only
the decoding process is specified. Hence its practical performance is always dependent on
the encoder implementation to some extent.

2.3.1 Overview

As a successor of earlier MPEG-standards, H.264 is a transform-based coding scheme,
which relies on translational motion compensation and estimation between frames to take
advantage of inter-frame redundancies. In general, a frame is predicted first by several
mechanisms. Then a residual of the prediction to the original frame is calculated, which
is transform-encoded afterwards. Therefore H.264 features very sophisticated prediction
mechanisms in order to generate a low-entropy residual. A visualization of the H.264-
encoder is provided in figure 1.
In this section, we follow [Pur04] and [Sul05] and also recommend these to the reader for
further details.

2.3.2 Coding units

We will now describe the units into which frames are divided for encoding purposes.
Note that H.264 uses the video sequence definition given in 2.2.6 and assumes a sequence
of still images.

Definition 2.3.1 (Macro-block). A macro-block is a 16x16 pixel area within a frame
which forms the basic building block for compression. It may be partitioned into smaller
units in some of the coding steps. The smallest possible sub-block covers a 4x4 pixel area.

Definition 2.3.2 (Slice). Slices partition frames into sets of macro-blocks and remain
fixed across frame boundaries. Thus, a slice can be interpreted as a mask applied to all
frames. Each slice is encoded separately. The maximum size of a slice is the full frame size.

Definition 2.3.3 (Slice types). There are five different slice types, which determine the
encoding techniques applied to an individual slice. We will only present the three types
relevant for our application:

1. I-slice: only intra-slice encoding techniques are applied.

16

2 Fundamentals

Figure 1: Overview of the H264 encoding process ([Pur04], p.7).

17

2.3 MPEG4-AVC/H.264

2. P-slice: in addition to the techniques for I-slices, at most one piece of motion
compensated prediction information may be applied per macro-block.

3. B-slice: in addition to the coding types for P-slices, two pieces of motion predicted
information may be applied per macro-block by calculating a weighted average.

In H.264, a large number of different macro-block coding modes is supported, whose
selection is performed by the encoder. These decisions are coded in a header to make them
available to the decoder. In our further summary, we will not describe all options in full
detail and instead refer the reader to [Pur04], which provides deeper insight into the design
and inner workings of H.264.

2.3.3 Intra- and inter-frame prediction

A variety of intra-frame prediction mechanisms is provided in H.264. Such predictions
may either be performed on 4x4-blocks for textured areas or on 16x16-blocks for smooth
areas.

Definition 2.3.4 (Prediction). In the following, we will refer to prediction or estimation
as the process of estimating a coding unit by already processed or encoded data.

The predicted unit is then subtracted from the original unit and the residual is transform-
encoded. Conversely, decoding reverses these steps. H.264 predicts both sizes of intra-frame
blocks from pixels in previously encoded blocks in the same slice in the spatial domain,
which means that the luma information is used. Earlier MPEG-standards conducted
intra-frame prediction in the frequency domain.
4x4-blocks are predicted by either a fixed linear combination of surrounding pixels encoded
before or by a directional prediction from those pixels to model edges with various angles.
16x16-blocks are predicted from a larger number of surrounding pixels or may be estimated
in a plane-mode, where each luma-prediction at (x, y) is generated by a function of the
pixels (x, ỹ), (x̃, y) and (x̃, ỹ), where x̃ and ỹ are the coordinates of the encoded pixels
right outside the current block.

Inter-frame motion estimation plays a key role in the compression performance of H.264
and is applied to P- and B-slices. It may be performed on sub-blocks of macro-blocks with
width and height combinations of 16 and 8 pixels, or of 8 and 4 pixels.

Definition 2.3.5 (Motion vector). A motion vector is a vector

m ∈
{
v ∈ Q2

∣∣∣∣ v =
(
kWLW

4 ,
kHLH

4

)
, kW , kH ∈ N

}
,

where LW , LH ∈ Q are horizontal and vertical distances between neighboring luma samples,
which is a pixel in general. In other words, the resolution of motion vectors is a quarter pixel

18

2 Fundamentals

in both dimensions in general, sometimes abbreviated by qpel-accuracy. This motion
vector defines the translation applied to a source block in the same slice of a previously
encoded source frame to a predicted target block.

If a motion vector points to a non-integer location in a pixel grid, the values at integer
positions are interpolated. Additionally, note that the source block may be located in
any previously encoded frame (which may even be a future frame in the sequence order),
not only in the previous one as in earlier MPEG-standards. While motion-estimation in
P-slices only relies on a single motion vector, H.264 allows the utilization of two motion
vectors with source blocks being located in different frames or a linear combination of two
such motion vectors for B-slices. H.264 also provides a block estimation mode, which omits
the transform-coding of the residual, yielding high efficiency encoding of blocks with little
or no changes compared to the source block.
In the final encoding process, only the difference to the median of the motion vectors of
previously encoded surrounding blocks is encoded instead of the motion vector itself.

One key question left open by the H.264-standard is how these motion vectors are to be
calculated. Extensive research has been conducted on this topic, and we refer to [Pur04]
for a summary of currently used algorithms.

2.3.4 Transform coding

In earlier versions of the MPEG-standards, the key ingredient in transform coding was
a discrete cosine transform (DCT) on 8x8-pixel-blocks. It is based on the real-valued cosine
transform, which closely resembles the Fourier transformation, in which the sin-terms are
omitted. It was introduced in [Ahm74], with a proof of the decorrelation properties of the
DCT being very close to the optimal Karhunen-Loéve-transform.
In H.264 the DCT was replaced by a 4x4 pixel integer transformation, which is also referred
to as high correlation transform (HCT), an approximation of the DCT. It may be
calculated using 16-bit integer arithmetic only, thus reducing the computational complexity
of the transform. Additionally, the 4x4 transform matrix to be used is specified by H.264,
which eliminates differing accuracies of encoder and decoder, which introduced additional
errors in previous standards.

Remark 2.3.6. Note that the reduction of the transform size from 8x8 pixels to 4x4 pixels
reflects the increase in prediction accuracy achieved by H.264. Earlier standards relied
more on the decorrelation properties of the DCT.

If a 16x16 block is intra coded and transformed, the first four entries of the resulting
4x4 matrices (in the literature referred to as DC-coefficients) are transformed again by
a 4x4 Hadamard transform, which is also related to the Fourier transform.

19

2.3 MPEG4-AVC/H.264

2.3.5 Scan, quantization and entropy coding

The final stage of encoding a macro-block consists of entropy coding the output values
of the above transform coding. In order to prepare the values, the quantization of the
resulting coefficients is already incorporated into the transform, but it may vary between
blocks. The calculation of the quantization parameters is processed by the encoder and
its rate control unit and is then saved in the header of the compressed output bit-stream.
Quantization step sizes depend on the corresponding parameters logarithmically, opposed
to the linear dependency in earlier standards.
Scanning refers to the order, in which a set of values is processed. In order to encode the
transformed values more efficiently, they are scanned following a zig-zag-scheme, which
tends to order them by their magnitude due to the properties of the 4x4 integer transform.
Therefore correlations between the coefficients are better localized, resulting in more
efficient entropy coding.
The final entropy coding stage is divided into two major steps:
In the first one, the value to be encoded is transformed into a binary representation.
Since the variety of encoded integer values may be very large, using the ordinary binary
representation of it may be inefficient, if the probability distribution of possible values is
highly skewed. This is exploited by transforming each integer into a binary representation
following a scheme called exponential golomb code (exp-golomb code). Similar to
Huffman codes shorter sequences are assigned to more likely values, yielding a compressed
binary representation. These assignments are based on hard-coded tables, which are
additionally based on some context, depending on the data previously encoded. This
scheme is called CAVLC (context adaptive variable length coding).
A more efficient coding scheme is called CABAC (context adaptive binary arithmetic
coding). It employs exp-golomb coding or another variable length coding scheme with
context modeling based on previously encoded data and an efficient arithmetic coder, based
on an integer implementation. CABAC yields results improved by 10-15% compared to
CAVLC at the cost of increased compression times.

2.3.6 In-loop deblocking filter

One substantial improvement in H.264 has been achieved by introducing the in-loop
deblocking filter. Due to the transform block size of 8x8 pixels in earlier versions of MPEG
standards, encoded video sequences showed massive block artifacts at low bit-rates.
H.264 still contains two elements possibly inducing block artifacts: The 4x4 integer
transform with its included quantization, and errors in the motion compensation procedure
caused by error-propagation of errors in the source blocks of motion vectors.
The in-loop deblocking filter in H.264 applies countermeasures to these artifacts during
the encoding process (cf. figure 1). Since the deblocking filter is part of the encoding and
decoding process, it is specified in detail by H.264. We refer to [Pur04] for further details
regarding this specification.
Note that the described deblocking filter is a substantially different concept compared to an
ordinary deblocking filter applied during playback of a sequence. The encoder (and hence

20

2 Fundamentals

also the decoder) use output of the in-loop filter directly, which results in significantly
increased visual quality of the compressed video sequence.

2.3.7 Rate control

Another important element of the encoding process is rate control, which refers to
the process of adjusting the quantization and other quality-impairing features during the
encoding process to ensure reaching a target bit-rate specified in advance. There are several
efficient algorithms available, and we refer to [Pur04] for further reference on this topic.

2.3.8 Summary

Finally, we may summarize the design of MPEG4-AVC/H.264 and describe some of its
characteristics:

• H.264 relies on intra- and inter-frame prediction of variable sized pixel blocks and
encoding of the residual values by an integer transform, which approximates the
DCT.

• In contrast to earlier MPEG standards, H.264 is less dependent on the decorrelation
performance of the integer transform.

• Prediction quality has increased significantly due to the introduction of variable sized
blocks, quarter-pixel accuracy of motion vectors in combination with a more efficient
interpolation, and a large set of macro-block encoding modes.

• All inter-frame predictions rely on translation-based predictions, suggesting perfor-
mance degradation for other types of motion.

• The in-loop deblocking filter reduces the tendency to introduce block artifacts
significantly, thus improving the perceived and measured visual quality at low bit-
rates.

• The final entropy coding stage is significantly improved compared to the ones of
earlier MPEG-standards.

• Numerical results indicate, that H.264 produces the same measured and perceived
visual quality of MPEG-2/H.262 at about half the bit-rate.

21

2.4 Introduction to information theory

2.4 Introduction to information theory

In this section we will introduce the fundamentals of information theory, a field that
arose from major contributions of Claude E. Shannon in the 1940’s and 50’s. Its goal is
the definition of information, which is contained in e.g. a message bit-stream. In the
following section we will answer the following important questions:

1. Given a bit-stream of data, what is the size of the shortest possible representation of
this bit-stream?

2. If such a representation exists, how can it be constructed?

3. Are there compression schemes available that achieve optimal compression ratios
under certain conditions?

4. How can we improve the compression performance of the AT3D-implementation?

Some of these questions require notions from the connected field of statistical modeling,
which we will introduce throughout this section. Another goal of this section is an exact
classification of the improvement problem.

2.4.1 Basic definitions

Definition 2.4.1 (Alphabet). Let A be a nonempty set of symbols {ai | i ∈ n− 1}. Then
A is called an alphabet with size n.

Definition 2.4.2 (Sequence). Let A be a given alphabet. Then S = (si)i∈N0
is called a

sequence (of symbols), if si ∈ A is satisfied for all i. The length of S is denoted by |S|.

Definition 2.4.3 (Random variable). Let Ω be a sample space, X an observation space,
E and F be σ-algebras, (Ω, E) and (X ,F) be measurable spaces, all defined as usual. Let
(Ω, E , P) be a probability space, also defined as usual. Then a mapping X : Ω → X is
called a random variable, if X is E − F-measurable, which means that the preimage of
all subsets of F is contained in E .

Remark 2.4.4. It can be shown that X together with P induces a probability measure
PX over (X ,F). The distribution of X under P is denoted by PX. The main purpose of
the definition of random variables is the focus on their distribution and range of values.

Definition 2.4.5 (Source). A source S is a random process generating sequences of
symbols from an alphabet A. A random process S is defined as a sequence of random
variables indexed by a set T ⊂ N0:

S := (St)t∈T .

22

2 Fundamentals

In general, T is a set of discrete units of time, chosen as the set of consecutive natural
numbers starting at 0: T = {0, 1, 2, . . .}.
A source is called (strictly) stationary, iff for all subsets {t0, . . . , tk} =: T̃ ⊂ T and
with a τ ∈ Z all T̃τ :=

{
tk+τ ∈ T

∣∣∣ tk ∈ T̃} ⊂ T with
∣∣∣T̃ ∣∣∣ =

∣∣∣T̃τ ∣∣∣ the corresponding joint
probability distributions satisfy

P (St0 , . . . ,Stk) = P (St0+τ , . . . ,Stk+τ).

In other words, a source is stationary, iff all joint probability distributions of sets of random
variables from the source are independent of the time index t.

Remark 2.4.6. Note that no statement regarding the distribution of the random variables
is made, however they are required to assume values in the same alphabet A.

Example 2.4.7. The following examples illustrate the concept of sources.

• A very simple source S1 with alphabet A1 := {Heads,Tails} is a coin that is flipped.
Each flip generates a sequence with length 1.

• The sources of interest in this thesis are encoders, which typically generate sequences
with symbols from the alphabet A2 := {0, 1} . We will describe the AT3D encoder in
chapter 2.5.8. The size of the generated sequences varies and depends on the input.

2.4.2 Entropy

We will now introduce the important concept of entropy. To the most part, we will
follow [Cov91]. In particular we turn our attention to clarifying the conditions in the
presented theorems and to clarifying the fields of application of the introduced notions,
which are quite confusing in some parts of the literature on this topic.

Definition 2.4.8 (Entropy of a sequence, self-information). Let S be a sequence with
symbols from an alphabet A. Then the distribution of the si in S induces a probability
mass function PS defined as follows:

PS : {si ∈ S} → [0, 1] , PS(si) = |{sj ∈ S | sj = si}|
|S|

.

Then the entropy of the sequence S is defined as

H(S) = −
|S|−1∑
i=0

PS(si) log2 PS(si)
bits

symbol .

The self-information I(si) of a symbol si is defined as

I(si) := − log2 PS(si) bits,

23

2.4 Introduction to information theory

and the self-information of a sequence S is defined as

I(S) := −
|S|−1∑
i=0

log2 PS(si) bits.

Analogously we may define the above notions for random variables X by simply replacing
PS with PX and summing over all possible outcomes.

While the entropy of the sequence can be interpreted as the expected information
content per symbol, self-information can be viewed as the true information content of a
symbol or a sequence.
We may define joint entropy of two random variables and conditional entropy of a random
variable under another random variable as follows:

Definition 2.4.9 (Joint entropy, conditional entropy). Let X1 be a random variable
assuming values in X1 and X2 a random variable assuming values in X2 with joint probability
distribution P ≡ PX1,X2 .
Then the joint entropy of X1 and X2 is defined as

H(X1,X2) := −
∑
x1∈X1

∑
x2∈X2

P (X1 = x1,X2 = x2) log2 P (X1 = x1,X2 = x2),

and the conditional entropy of X2 under X1 is defined as

H(X2 | X1) := −
∑

x1∈X1,x2∈X2

P (X1 = x1,X2 = x2) log2 P (X2 = x2 | X1 = x1)

= −
∑
x1∈X1

P (X1 = x1)
∑
x2∈X2

P (X2 = x2 | X1 = x1) log2 P (X2 = x2 | X1 = x1)

= −
∑
x1∈X1

P (X1 = x1)H(X2 | X1 = x1).

Remark 2.4.10. Note that the only difference in the definitions of entropy of a sequence
and of joint entropy is the probability distribution they are based on.

Definition 2.4.11 (Entropy rate of a source). Let S be a source generating symbols from
an alphabet A. The first-order entropy of S is defined as

H1(S) := H(S0) := −
n−1∑
i=0

P (S0 = ai) log2 P (S0 = ai),

and the n-th-order entropy of S is defined as

Hm(S) := H(S0, . . . ,Sm−1)

:= −
n−1∑
i1=0

. . .
n−1∑
im=0

P (S0 = ai1 , . . . ,Sm−1 = aim) log2 (P (S0 = ai1 , . . . ,Sm−1 = aim)).

The entropy rate of S is defined as

H(S) := lim
m→∞

1
m
Hm(S),

if the limit exists.

24

2 Fundamentals

Definition 2.4.12 (Alternative entropy rate). Let S be a source. Then its entropy rate
may alternatively defined as

H ′(S) = lim
n→∞

H(Sn | Sn−1, . . . ,S0),

if the limit exists.

Theorem 2.4.13. Let S be a stationary source. Then its entropy rate is well-defined, i.e.
both of the above limits exist and are equal:

H(S) = H ′(S).

Proof:
Cf. [Cov91], theorem 4.2.1.

Remark 2.4.14. The definition of H ′(S) yields an interesting interpretation, if S is
non-stationary: The proof of the above theorem in [Cov91] relies on the monotonicity of
H(Sn | Sn−1, . . . ,S0) in the stationary case, which is violated in the non-stationary case.
This means that on average more knowledge of past observations does not yield more
information about the probability distribution of the underlying source.

Remark 2.4.15. Entropy may be measured in different units, depending on the base of
the used logarithm. If the natural logarithm is used, entropy is measured in nats, if the
base is 10, the corresponding unit is called bans.
In the remainder of this thesis we fix the logarithmic base to 2 and thus the corresponding
unit to bits, since we will work with output bit-streams of an encoder. Hence

log x := log2 x

for any positive real number x from now on.
Additionally, we define

0 log2(0) := 0,

which is mathematically justified by limp↓0 p log p = 0 and from an information theoretic
point of view by the focus on occurring symbols only. Otherwise H(S) = a ∈ R+ ∪ {∞}
for sources S, which do not emit all possible symbols or sequences from its alphabet with
strictly positive probability. This strong constraint would render entropy useless in many
applications.

Note the difference between the entropy of a sequence and the entropy rate of a source:
When considering a source S, sequences generated by S can have lower entropy than
the source itself, but in this case the probability of the generation of this sequence is
accordingly smaller. The entropy rate of S is the expected information content per symbol
of all sequences generated by S, while the entropy of a sequence S emitted by S is the
expected information content per symbol of this specific sequence.

25

2.4 Introduction to information theory

Theorem 2.4.16 (Properties of entropy). Let S be a source and let X,Y be random
variables with joint probability distribution P . Then

1. H(X | X) = 0,

2. H(Y | X) ≤ H(Y), equality is assumed iff X and Y are stochastically independent.

3. H(X,Y) = H(X) +H(Y | X),

4. H(S) ≥ 0,

5. H(S) ≤ H1(S), equality is assumed, iff all Si are stochastically independent.

6. H(S) ≤ Hn(S) for all n ∈ N.

Proof:
Cf. [Cov91], chapters 2 and 4.

When investigating conditional entropy in the context of sources, it is immediately seen
that dependencies between the emitted symbols lower the entropy rate of the source. We
will make use of this fact later in the modeling process.

Example 2.4.17. Consider the source S1, a (fair) coin flip. All S1
t are obviously indepen-

dent and identically distributed, with probabilities P (S1
t = 0) = 0.5 and P (S1

t = 1) = 0.5.
Hence

H(S) = H1(S) = 0.5 log 2 + 0.5 log 2 = 1 bit
symbol .

Example 2.4.18. Consider a source S2, representing an unfair coin flip with probabilities
P (S2

t = 0) = 0.1 and P (S2
t = 1) = 0.9. Then

H(S) = 0.1 log 10 + 0.9 log 10
9 ≈ 0.467 bits

symbol .

Note that H(S2) is significantly smaller than H(S1). This reflects the fact, that S2 is very
likely to generate a 1, but in this case a 1 has a self-information of log 10

9 ≈ 0.152 bits -
opposed to the rare zeros, which are more significant and have an information content of
log 10 ≈ 3.322 bits.

Remark 2.4.19. It is shown in [Cov91] that entropy is maximized, if the underlying
probability distribution is the uniform distribution. Entropy assumes the minimal value 0,
if there is a symbol si with P (si) = 1. This can be generalized to the entropy rate with
suitable requirements on the individual random variables Si.

Remark 2.4.20. While it is possible to calculate the entropy rate of simple sources, e.g.
the source entropy rates of S1 and S2, it is not computable for complex sources like the

26

2 Fundamentals

encoder we will investigate in later sections of this thesis. This fact introduces the need for
a good model of the source and raises the questions, how to determine such a model and
the quality of it. We will return to these questions later.

Another question is immediately raised: If an incorrect probability distribution is
assumed for a source, what is the error in the calculation of the entropy rate induced by
this incorrect choice?
It is given by the so-called Kullback-Leibler divergence, also called relative entropy:

Definition 2.4.21 (Relative entropy). Let X,Y be random variables assuming values in
X with probability mass functions P and Q satisfying

P (X = x) = 0 ⇒ Q(Y = x) = 0.

Then the relative entropy or KL-divergence of P and Q is defined as

D(P ||Q) :=
∑
x∈X

P (X = x) log P (X = x)
Q(Y = x) .

Remark 2.4.22.

• Relative entropy is not a metric, since it violates the triangle inequality and since
it is not symmetric. Yet it can be viewed as a distance between two probability
distributions.

• In practical applications there is a problem with the calculation of relative entropy:
the true distribution of a source, P , is not known in general. Thus the relative
entropy is not computable in these cases.

2.4.3 Linking entropy to data compression

The notions of entropy and self-information are closely related and suggest the possibility
of encoding a symbol si with a number of bits that corresponds to its self-information
I(si). In the following subsection we will connect the concepts of entropy and compression.

Definition 2.4.23 (Code). Let X be a random variable which assumes values in an
alphabet A. Let A∗Γ be the set of finite sequences over a codeword alphabet AΓ with
|AΓ| = γ. Then a code is a mapping Γ satisfying

Γ : A → A∗Γ, x 7→ Γ(x).

The range of Γ is called the set of codewords. The number of symbols from AΓ of which
a codeword Γ(x) is composed, is denoted by l(x).
The expected length of a code is

LΓ =
∑
ai∈A

P (X = ai)l(ai).

27

2.4 Introduction to information theory

A code is called prefix code, if no codeword Γ(x) is a prefix of a codeword Γ(y) with
x 6= y.

Remark 2.4.24. It is useful to require a code to be a prefix code: it ensures unique
decodability and the capability of instantaneous decoding without the need to read symbols
in a sequence beyond the ones to be decoded.

A fundamental result, which is known as the source coding theorem, was proved by
Shannon (1948). It provides us with the link between entropy and ideal code length. Here
we give a slightly modified formulation:

Theorem 2.4.25 (Source Coding Theorem). Let X be a random variable. Then the
expected code-length LΓ for any prefix codes Γ satisfies

logγ (2)H(X) ≤ LΓ.

Equality is assumed, if P (ai) = γ−l(ai) for all ai ∈ A.
In other words, the entropy of a random variable is the tight lower bound for the
expected code length per symbol of any prefix code.

Proof:
Cf. [Cov91], theorem 5.3.1.

This result can only be applied to single random variables or to independent and iden-
tically distributed (i.i.d.) sources. In practical applications, both the identical distribution
and the independence are violated in general. Yet, a corresponding result for arbitrary
sources is formulated in the following theorem:

Theorem 2.4.26. Let S be a source. Then the minimal expected codeword length per
symbol, denoted by L∗n, is defined as

L∗n := min
Γ
LΓn := 1

n

∑
(s0,...,sn−1)∈An

P (S0 = s0, . . . ,Sn−1 = sn−1)l(s0, . . . , sn−1).

It satisfies
H(S0, . . . ,Sn−1) ≤ nL∗n ≤ H(S0, . . . ,Sn−1) + 1.

If S is stationary, we additionally get

lim
n→∞

L∗n = H(S).

Proof:
Cf. [Cov91], theorem 5.4.2.

28

2 Fundamentals

These results yield a lower bound for the expected length of a codeword for a sequence S
generated by a source S. Yet in practical applications with complex sources involved, it is
not computable.
One of the goals of this thesis is the development of a model or a class of models of
probability distributions which describe the encoder output as good as possible. From the
above theorems it follows, that models, which are closer (in the sense of KL-divergence) to
the true underlying probability distribution of the source (if existent) will result in better
compression performance.
Note that the entropy rate is only well-defined if the encoder is a stationary source, which
we will investigate in section 2.5.11 for our application. But even in the case of a non-
stationary source the above theorem suggests that finding a model probability distribution,
whose joint entropy is as close as possible to the joint entropy of the source, will help
the overall compression performance. The above result also suggests that the quality of a
model can be measured by its compression performance across a variety of typical outputs
of the encoder of AT3D.

Remark 2.4.27. Note that these lower bounds are only valid, if the original sequence S
has to be identically reconstructed from the generated codeword. If the expected codeword
length is below the entropy (rate), information is lost with a probability close to 1 and the
original sequence may not be reconstructed, making the compression scheme a lossy one.

We now turn our attention to the second introductory question of this chapter, and
investigate how to construct a coding scheme which is capable of compressing sequences
to an optimal length. These schemes exist and a first approach is the construction of
Huffman codes. These are prefix codes which assign the shortest codewords to symbols
si with the highest probabilities. A more detailed description of Huffman coding can be
found in [Cov91], chapter 5.6 and [Say00], chapter 3.

Remark 2.4.28 (Optimality of Huffman code). In the literature, Huffman codes are often
considered to be ”optimal”, e.g. in [Cov91] and [Say00]. This can be misleading, because
only i.i.d. sources with known probability distributions are considered. Additionally, this
notion refers to asymptotic optimality, which is achieved if the expected codeword
length converges to the entropy rate of the i.i.d. source S as the sequence length grows.
True non-asymptotic optimality is only achieved, if the symbol probabilities satisfy

∀si ∈ A : ∃c ∈ N0 : P (si) = 2−c,

i.e. if all symbol probabilities are powers of two.

Remark 2.4.29 (Practical drawbacks of Huffman code). In practice, we have to consider
the following issues:

• As stated in [Cov91], Huffman codes only converge to the source entropy as the block
size of blocks of symbols assigned to codewords grows. Thus the coding of a binary

29

2.4 Introduction to information theory

alphabet would only be optimal, if both 0 and 1 are equiprobable, or asymptotically
optimal if long symbol blocks are coded. Due to the construction technique used to
generate a Huffman code, large block sizes m require exponentially more memory as
m grows, which leads to problems in practical applications.

• A Huffman code cannot be changed during the compression of a sequence - therefore
locally changing probability distributions cannot be taken into account, resulting in
suboptimal compression performance.

• In summary, static Huffman codes will not achieve satisfactory results in our applica-
tion. As stated in [Cov91], there are adaptive Huffman codes available, but they also
suffer from several drawbacks.

When turning to practical aspects of entropy coding, we have to introduce another
concept of great importance. It enables us to compute the true code length of a symbol.

Definition 2.4.30 (Bit-wise coding cost). The coding cost of encoding a bit x ∈ {0, 1}
with probability estimates P̂ (1) = p ∈ [0, 1] and P̂ (0) = 1− p is defined as

up(x) := − log(P̂ (x)) + δ, δ > 0.

The bit-wise coding cost of a sequence S with n elements si with 0 ≤ i < n, whose
probabilities are estimated to be P̂ (1) = pi ∈ [0, 1] and P̂ (0) = 1− pi is defined as

u(S) := −
n∑
i=0

log(P̂ (si)) + δ, δ > 0.

Remark 2.4.31. For Huffman codes, the above estimates P̂ (1) and P̂ (0) are necessarily
given by the probability distribution, from which the code symbols are derived. As we
have seen in the above remark, Huffman codes are not suitable for binary encoding, i.e. δ
is large.

Note that coding cost is very closely related to self-information. Bit-wise coding cost
refers to single symbols and is based on a probability estimate, which is not necessarily
related to the probability distribution of the encoded sequence or its source, if it exists.
But if the estimate and true probability are equal, then coding cost and self-information
are equal as well. Additionally note that coding cost of a sequence is independent of the
entropy of the sequence, since the estimates used for coding may be independent of the
probability distribution of the source. Yet, we may relate coding cost to the joint entropy
of emitted sequences of a source:

Lemma 2.4.32. Let S be an arbitrary source emitting sequences to be encoded and let
si with 0 ≤ i < n be the realizations of the random variables Si, forming sequences Sn.
We denote the joint probability distribution of S0, . . . ,Sn−1 by Pn and the joint probability

30

2 Fundamentals

distribution induced by the corresponding estimates of P (si) by Qn. Then the expected
value of coding cost E(u(Sn)) satisfies

Hn(S) +D(Pn || Qn) ≤ E(u(Sn)) < Hn(S) +D(Pn || Qn) + 1.

Proof:
Follows from [Cov91], theorem 5.4.3 by replacing the probabilities p and q by the joint
probabilities of the sequence.

2.4.4 Arithmetic coding

In the previous section an example of a coding scheme was introduced, which essentially
achieves compression by an efficient replacement of the symbols in a sequence according to
their individual probabilities. Arithmetic coding uses a different approach:
A sequence S with |S| = n from an alphabet A is coded as a real number x ∈ [0, 1). This
is achieved by starting with I0 = [0, 1) and then iteratively choosing sub-intervals before
selecting a number from the final sub-interval. In the k-th step the sub-interval Ik ⊂ [0, 1)
is partitioned into intervals Iki whose sizes correspond to the probabilities of the symbols
from A. Then Ik+1 = Iki is chosen to encode the symbol sk = ai ∈ A. Finally in the
n-th step, the real number x ∈ In with the shortest representation is chosen, which is the
codeword for S.
In this section the concept of arithmetic coding will be introduced in detail and it will be
connected to the concepts from the previous section. Finally, we will return to the problem
of modeling a suitable probability distribution. Algorithm 1 describes the arithmetic coding
of a given sequence S and a known probability distribution.

Remark 2.4.33. Given a source S with alphabet A, Huffman codes are mappings ΓH :
Am → A∗Γ, with A∗Γ being the set of finite sequences over the codeword alphabet AΓ and
m ∈ N fixed. It maps symbols or blocks of symbols to codewords.
An arithmetic code is a mapping ΓA : A∗ → A∗Γ, where A∗ denotes the set of finite
sequences of symbols from A. It maps whole sequences of symbols to codewords.

While the algorithm is straightforward, the last step raises the question, which repre-
sentation of x is the most space-efficient and how it is determined. For that purpose we
introduce the following notion:

Definition 2.4.34 (Binary fraction in the unit interval). A finite binary fraction xb =
0.b1b2 . . . bn ∈ [0, 1), with bi ∈ {0, 1} and n ∈ N can be converted into a real number x by
applying the following mapping:

Decn : {0, 1}n → [0, 1) , (b1, . . . , bn) 7→ Decn(b1, . . . , bn) :=
∑n
i=1 bi2n−i

2n .

31

2.4 Introduction to information theory

Algorithm 1 Arithmetic coding: Encoder
1: Input: A = {a0, . . . an−1} , P (a0), . . . , P (an−1), S = (s0, . . . , sm−1)
2: Let a0 := 0, b0 := 1, I0 := [a0, b0)
3: for k = 1 to m do
4: Determine j, s.t. sk−1 = aj

5: ak := ak−1 + (bk−1 − ak−1)
∑j−1
i=0 P (ai)

6: bk := ak−1 + (bk−1 − ak−1)
∑j
i=0 P (ai)

7: Ik := [ak, bk)
8: end for
9: return x ∈ Im with shortest representation

The inverse of Decn is only defined on RDecn :=
{
x ∈ [0, 1)

∣∣∣ x = i
2n , i ∈ N0, i < 2n

}
.

Thus finding the number x ∈ In with the shortest possible binary fractional representation
is equivalent to finding the smallest n, such that RDecn ∩ In 6= ∅.

Example 2.4.35. The following examples illustrate the conversion of binary fractions to
decimal numbers:

1. xb = 0.01b = 3
4 ,

2. xb = 0.110b = 6
8 = 3

4 ,

3. xb = 0.111b = 7
8 .

In practical applications only the fractional part is saved as a bit-stream. Note that
the calculation of x depends on the employed implementation. Therefore, we will not go
into further detail and refer to [Say00] for more information on this subject.

Example 2.4.36 (Encoding). Let S be an i.i.d. source with alphabet A = {a, b, c} and
the following probability distribution: P (St = a) = P (St = b) = 1

5 , P (St = c) = 3
5 for all

t ∈ Z. Let S1 = (a, c, c, c, b) be a sequence emitted by S.
Note that here the symbol probability distributions of S and S1 are identical by coincidence.
The encoding procedure is visualized in figure 2 and starts with initializing I0 = [0, 1).

• For k = 1 the partition of I0 results in

I00 = [0, 0.2) , I01 = [0.2, 0.4) , I02 = [0.4, 1) .

Since s0 = a, the sub-interval I1 is defined as

I1 := I00 = [0, 0.2) .

• For k = 2 the partition of I1 results in

I10 = [0, 0.04) , I11 = [0.04, 0.08) , I12 = [0.08, 0.2) .

Since s1 = c, the sub-interval I2 is defined as

I2 := I12 = [0.08, 0.2) .

32

2 Fundamentals

• The following steps are performed analogously. The final interval is given by I5 =
[0.16544, 0.17408), and the number x ∈ I5 with the shortest binary representation is

x = 0.001011b = 0.171875.

Hence S1 is represented in 6 bits, which is shorter than the entropy rate of the source
and the (equal) entropy of S1 suggest.

|S1| ·H(S1) = 5
(
−1

5 log2

(1
5

)
− 1

5 log2

(1
5

)
− 3

5 log2

(3
5

))
≈ 5 · 1.37 bits
= 6.85 bits.

The reason for that is that entropy is a lower bound for the expected code length:
When considering the entropy of the sequence S1, there are 20 sequences which have a
length of five and the given probability distribution. A small share of these may be coded
in 6 bits and the remainder has to be coded in 7 bits. The expected code length for these
sequences is 6.85 bits. Since S is i.i.d., additionally H(S1) = H(S) holds, thus the expected
code length for all sequences with length five emitted by S is also 6.85 bits.

Figure 2: Arithmetic coding example of sequence S1 = (a, c, c, c, b). Blue letters indicate current
symbols in each iteration, orange intervals the sub-intervals selected in the corresponding step.

Example 2.4.37. Let all prerequisites be the same as in the previous example, but consider
the extension of S1 to S2 = (S1, c, b, b). Note that in this case the symbol probability
distributions of S2 and S are not identical. The resulting intervals are

I6 = [0.168896, 0.17498) , I7 = [0.1701128, 0.1761968) , I8 = [0.1713296, 0.1725464) ,

but since x ∈ I8, the result
x = 0.171875

remains unchanged. The expected code-length can be calculated as follows:

|S2| ·H(S) ≈ 10.97 bits.

Here the codeword is significantly shorter than suggested by the source entropy.

33

2.4 Introduction to information theory

The previous encoding examples raise a question regarding the decoding procedure: Both
examples only differ in the the size of the input sequence, yet the resulting codeword is the
same. With a suitable extension, the sequence S2 may even be extended to any arbitrary
length and still result in the same codeword.

• How is the decoder capable of calculating the correct output sequence?
There are two possible ways to resolve this issue:

– |S| is sent to the decoder before the encoded bit-stream, which is preferred in
general.

– A special end-of-sequence symbol is encoded in the bit-stream. Note that this
approach worsens the compression performance.

Algorithm 2 describes the decoding algorithm for a given real number x ∈ [0, 1), a sequence
length |S|, and a symbol probability distribution P .

Algorithm 2 Arithmetic coding: Decoder
1: Input: A = {a0, . . . an−1} , P (a0), . . . , P (an−1), |S| =: m ∈ N, x ∈ [0, 1)
2: Let a0 := 0, b0 := 1, I0 := [a0, b0) , S0 := ∅
3: for k = 1 to m do
4: Partition Ik−1 into n disjoint intervals I(k−1)0 , . . . , I(k−1)n−1 , s.t. I(k−1)i∩I(k−1)j = ∅
5: for i 6= j and

⋃n−1
i=0 I(k−1)i = Ik−1 according to given probabilities

6: Determine i ∈ {0, . . . , n− 1}, s.t. x ∈ I(k−1)i
7: sk−1 := ai

8: Sk := (Sk−1, sk−1)
9: Ik := I(k−1)i

10: end for
11: return Sk

The following example shows the decoding steps corresponding to the previously presented
encoding example 2.4.36:

Example 2.4.38. Let A and P be defined as in example 2.4.36. Let m = 5 and x =
0.171875.

• In step k = 1 the initial unit interval I0 := [0, 1) is split into the following partitions:

I00 = [0, 0.2) , I01 = [0.2, 0.4) , I02 = [0.4, 1) .

Now the index i satisfying x ∈ I0i is identified as i = 0, resulting in

S1 := (a),
I1 := I00 .

• For k = 2 the interval I1 is partitioned into the following sub-intervals:

I10 = [0, 0.04) , I11 = [0.04, 0.08) , I12 = [0.08, 0.2) .

34

2 Fundamentals

Now the index i satisfying x ∈ I1i is identified as i = 2, resulting in

S2 = (a, c),
I2 = I02 .

• The following steps are performed analogously, yielding

S5 = (a, c, c, c, b)

after k = 5 steps, where the decoding process is terminated with output sequence S5.

Again, figure 2 can be used as a visualization, if the blue letters are regarded as output
symbols determined by the assignment of x to the interval Iki .

After this introduction of the encoding and decoding mechanisms of arithmetic coding
we will now describe some of its characteristics and compare it to Huffman coding, which
was introduced in the last section.

Theorem 2.4.39. If the intervals Iki are disjoint for any arbitrary, but fixed k, an
arithmetic code is a prefix code.

Proof:
Cf. [Say00], chapter 4.4.

Remark 2.4.40 (Optimality of arithmetic coding for i.i.d. sources). Assume S is an
i.i.d. source with entropy rate H(S) and known probability distribution. It can be shown,
that the code-length of arithmetic codes asymptotically converges to H(S). If the source
alphabet A is small, arithmetic codes tend to produce shorter codes compared to Huffman
codes for fixed |S|. This is due to the capability of assigning fractional bit-lengths to
symbols.

Unfortunately the above results are not of practical use, because they also only apply
to i.i.d. sources. Analogous to the previous section, we will investigate practical properties
of arithmetic codes:

Remark 2.4.41 (Practical aspects of arithmetic coding).

• Up to now we have not considered implementational details of arithmetic coding.
But algorithms 1 and 2 cannot be implemented on a computer with limited memory
for sequences of arbitrary length, because it would have to handle real numbers with
infinite precision. In [Say00], chapter 4.4.3, a sample implementation using integer
arithmetic only is described. Essentially it uses the fact that if an interval Ik is
sufficiently small, all binary fractions yb ∈ Ik contain the same leading bits. Thus
these bits can be written to disk and are not kept in memory. This scheme leads to
another useful property: the sequence can be decoded partially.

35

2.4 Introduction to information theory

• Depending on the implementation a small loss of coding efficiency has to be accepted
to ensure unique decodability. Essentially, not the full interval range can be used
due to integer rounding. [Mah02] states, that the arithmetic coder of PAQ (which is
introduced in chapter 3.1), incurs δ < 0.0002 additional bits per symbol.

• As shown in [Say00], chapter 4.4.1, the length of an arithmetic code is always within
two bits of the source entropy, iff its probability distribution is known and used for
the coder.

2.4.5 Separation of modeling and encoding

The last remark yields a crucial result in particular: If we try to compress output from
an arbitrary source using an arithmetic coder, the most important component is the used
statistical model, which feeds probability estimates to the arithmetic coder. It is capable
of encoding any sequence with a code-length almost equal to the entropy of the model plus
a penalty, that can be quantified theoretically using the KL-divergence.

Remark 2.4.42 (Separation of modeling and coding). Note that opposed to many other
prefix codes the statistical modeling is independent of the coding in arithmetic coding.
Encoder and decoder have to use the same model, either by hard-coding it into both or by
a selection mechanism in the encoder and an incorporation of this choice into the resulting
bit-stream. Therefore, the disadvantages of Huffman coding are eliminated: An arithmetic
coder can react arbitrarily fast to changed probability distributions and therefore gives us
maximal flexibility in the model design while maintaining close-to-optimal compression
performance.

Definition 2.4.43 (Adaptive arithmetic coder). An arithmetic coder, which uses a variable
probability distribution, is called adaptive arithmetic coder .

Definition 2.4.44 (Context-based adaptive arithmetic coder). An arithmetic coder, which
uses conditional probabilities P (Sn | S1, . . . ,Sn−1) to model the source probability distri-
bution is called context-based adaptive arithmetic coder .

Recall that modeling a complex source may be a very difficult task. The description of
a source like the AT3D encoder with a single model is very likely to be impossible. Thus,
a technique called context mixing may yield better results. It generates a probability
estimate P̂ (X = x) for the symbol to be coded next by combining the estimates of multi-
ple models. Under certain conditions this combined estimate is better than each of the
individual estimates of P (X = x), which we will show in section 3.1.

Up to this point we were able to understand, that a lower bound for code lengths exists, but
we are not able to compute it in practical applications. We also know, that the problem of

36

2 Fundamentals

achieving the best possible code lengths is solely connected to the quality of the statistical
models employed to describe the output of the AT3D encoder, since tools like arithmetic
coding are readily available.

Remark 2.4.45 (Measuring model quality by compression performance). With the above
results we can draw a very important conclusion based on a theoretical foundation, that is
compliant with intuition:
We may measure the quality of an implemented model directly by its resulting compression
performance. The converse holds as well, if a model compresses input data well, it also
describes the data well. A theoretical approach to model design for various sources is far
beyond the scope of this thesis, therefore we refer the reader to e.g. [Fed92], which gives a
summary on universal source coding.

A theoretical classification of the characteristics of the AT3D encoder with regard to
information theory is a very delicate task due to its complexity. In the following chapter
we will describe this algorithm, which produces the data we later want to entropy-code.

2.4.6 Summary

In this chapter we provided an overview of the literature on information theory basics.
The most important aspects are:

• Theoretical expected lower bounds for any kind of data compression exist. For
stationary sources S it is the source entropy rate H(S), and for non-stationary sources
(as the AT3D encoder, cf. section 2.5.11) it is H(S0, . . . ,Sn−1) when considering a
sequence of length n.

• These bounds are not computable in practical applications in general.

• Compression is improved by finding a model probability distribution, that is close
(in the sense of KL-divergence) to the true distribution induced by S.

• If such a model is found, it may be efficiently implemented by using a context-based
arithmetic coder.

37

2.5 AT3D

2.5 AT3D

In this section we will introduce the compression scheme AT3D in detail. We follow
[Dem11] to the most part, but extend it with regard to the implementational details of the
described algorithms. Therefore, this section contains the most extensive investigation of
the current state of AT3D available so far.
The method AT3D is the generalization of the 2d image compression algorithm proposed
in [Dem06] to 3d video data compression. ”It combines a recursive pixel removal scheme,
adaptive thinning, with least squares approximation by tri-variate linear splines.” (Cf.
[Dem11]) After a pre-processing edge-detection procedure, which reduces the size of the
initial pixel grid, adaptive thinning is applied to obtain a sparse set of significant pixels.

The set of significant pixels yields a (unique) anisotropic Delaunay tetrahedraliza-
tion, where the vertices of the tetrahedralization are given by the significant pixels.
This in turn defines a linear approximation space of trivariate linear spline functions
over the so obtained anisotropic tetrahedralization. The approximation to the video
data is then given by the best approximating linear spline, in the sense of least squares
approximation. The overall aim of the resulting adaptive approximation algorithm is
to construct a suitable linear spline space of small dimension (being represented by a
sparse set of significant pixels), such that the distance between the best approximating
linear spline and the given video data is small, thus yielding a small reconstruction error.
The construction of the spline space can be viewed as a highly nonlinear approximation
process. (cf. [Dem11])

In each iteration a least significant pixel is determined by measuring the mean squared
interpolation error incurred by the removal of a pixel from the tetrahedralization. After
obtaining the sparse pixel set, a post-processing step called pixel exchange further
optimizes this pixel set according to local properties of the original video data. Finally,
the global best approximation on the exchanged pixel grid is calculated. In order to obtain
a compressed bit-stream, first the pixel-positions are entropy-coded and afterwards the
approximated grayscale values at the significant pixels are quantized and entropy-coded.
The used entropy coding method is an efficient context-based adaptive arithmetic
coder . One of the main goals of this thesis is the improvement of the entropy coding
compression performance.
AT3D is a lossy compression scheme in general, yet if a sufficiently low number of pixels is
removed, it remains lossless. The stages of AT3D are listed in table 1.

Pre-Processing Edge detection
Initial pixel grid Interpolation with trivariate linear

splines over a Delaunay tetrahedralization
Geometry Thinning of pixel grid Adaptive thinning 6

Post-Processing Pixel exchange
Best approximation

Entropy- Preparation of data Quantization
coding Bit-stream generation (Context-based) adaptive arithmetic coding

Table 1: Overview of AT3D stages.

38

2 Fundamentals

The very first step is to choose a suitable definition of video data for our intended use.
Recall that the chosen approach is mathematically different from the one used in the known
MPEG-standards. Here we consider video data to be a three-dimensional scalar field with
time being the third spatial dimension.
In the remainder of this thesis the sampling- and quantization process, which is essentially
the conversion from an analog to a digital signal, is not of interest. This is reflected in the
following simplified version of definition 2.2.8:

Definition 2.5.1 (Video domain). Let

X = W − 1×H − 1× T − 1 ⊂ R3, W,H, T ∈ Z∗+

With [X] denoting the convex hull of X, a video is a mapping

V : [X]→ 2ρ − 1, with |X| = N := WHT.

Usually we consider videos with ρ = 8, which results in a total of 256 colors.

Definition 2.5.2 (Samples). Let X ⊂ R3 be a given video domain.
Then we call the set

V |X := {V (x) | x ∈ X}

a set of video samples. Analogous to definition 2.2.8 we will refer to a pixel as the tuple
(xx, xy, xz) for any x ∈ [X] and to V (x) as the grayscale value at the pixel (position) x.

Remark 2.5.3. Note that in the remainder of this thesis we consider the values at
individual pixel positions as samples, opposed to the classical signal processing notion,
which would consider frames as samples. This is due to the different domain in our
definition of video data.

2.5.1 Delaunay tetrahedralizations

In this section we will introduce Delaunay tetrahedralizations and establish their most
important properties and describe their influence on the design of AT3D.
Note that in this thesis we choose a slightly different definition of tetrahedra compared to
[Dem11], due to the better suitability for chapter 4.

Definition 2.5.4 (Tetrahedron). Let Tp := {p0, p1, p2, p3} ⊂ R3. Then a tetrahedron T

is the convex hull [Tp] of those four points. Those points are called vertices of T .
A tetrahedron T is called regular , iff no three vertices of T are collinear. Otherwise, T is
said to be degenerated.

Definition 2.5.5 (Tetrahedralization). Let Y ⊂ R3 with |Y | = n ∈ N.
A tetrahedralization T of [Y] is a nonempty set of tetrahedra satisfying

39

2.5 AT3D

1.
⋃
T∈T T = [Y],

2. For all T1, T2 ∈ T with T1 6= T2 :
◦
T1 ∩

◦
T2= ∅.

A tetrahedralization T is called conformal, if it does not contain hanging edges, meaning
two tetrahedra T1, T2 ∈ T with T1 6= T2 only intersect in at most one common face, edge
or vertex. Then Y is called the vertex set of the tetrahedralization T .

Definition 2.5.6 (Cell). Let T be a tetrahedralization with vertex set Y . Then for any
vertex y ∈ Y the cell of y is denoted by Cy and defined as

Cy :=
⋃
y∈T

T.

Thus, the cell of a point y is the set of all those tetrahedra that y is a vertex of.

Definition 2.5.7 (Delaunay tetrahedralization). A conformal tetrahedralization DY with
vertex set Y is called a Delaunay tetrahedralization, iff for each tetrahedron T ∈ DY
the interior of its circumsphere only contains the vertices of T .

Theorem 2.5.8. Let Y ⊂ R3 be the vertex set of a Delaunay tetrahedralization DY . Then

• DY is determined uniquely, iff no five vertices from Y are co-spherical, which means
there may not exist a sphere with at least five vertices from Y being located on the
surface of it,

• the Delaunay tetrahedralization DY \{y} can be calculated from DY only by retetrahe-
dralizing the cell of y, which is equivalent to

DY \Cy = DY \{y}\Cy.

Proof:
The first part is proved in [deB08], chapter 9.
The second part follows immediately from the in-sphere-property of Delaunay tetrahedral-
izations, as the circumsphere of no tetrahedron outside Cy contains y, so that the removal
of y does not affect any tetrahedron outside the Cy.

For further information on Delaunay tetrahedralizations and their properties we refer
to [deB08]. Details concerning the efficient construction of Delaunay tetrahedralizations in
AT3D can be reviewed in [Kha11].

2.5.2 Linear splines over Delaunay tetrahedralizations

The main goal of AT3D is the space-efficient representation of given video data V with
domain X. In this section we will describe how to use the vertex set of a given Delaunay

40

2 Fundamentals

Figure 3: Exemplary Delaunay tetrahedralization of a video domain containing a moving box in
front of a solid background.

tetrahedralization to create a suitable approximation space to be able to approximate the
given video data V |X on a subset Y ⊂ X.
In addition to the unique Delaunay tetrahedralization of a given vertex set Y we will be
able to determine a unique linear spline interpolant, which can be constructed from Y and
a given set of grayscale values at each vertex of Y .

Definition 2.5.9 (Linear spline space). Let Π1 denote the set of trivariate polynomials
with degree at most one. Let DY be a fixed Delaunay tetrahedralization with vertex set Y .
When denoting the set of continuous functions on some set A by C0(A), the set of linear
splines over Y , SY , is defined as

SY :=
{
f ≡ f(x1, x2, x3) ∈ C0 ([Y])

∣∣∣ ∀ T ∈ DY : f |T ∈ Π1
}
.

The set SY is the linear space of all trivariate continuous functions that are linear on any
tetrahedron T ∈ DY if restricted to T . An element s ∈ SY is called a linear spline over
DY .

Theorem 2.5.10. Let V |Y := {V (y) | y ∈ Y } be the set of luminance values at the vertices
in Y . Then there is a unique spline interpolant L(Y, V) ∈ SY satisfying

L(Y, V)(y) = V (y) ∀y ∈ Y.

The spline interpolant can be represented in the following way:

L(Y, V) =
∑
y∈Y

V (y)ϕy,

41

2.5 AT3D

where ϕy are the unique Lagrangian basis functions in SY , called courant elements.
They satisfy

ϕy(x) =

0 for all x 6= y

1 for x = y
for all x ∈ Y. (2.1)

Proof:
Cf. [Che05], chapter 1.

For a given set Y and the corresponding Delaunay tetrahedralization DY we can now
choose SY as an approximation space. Even though we are interested in finding the best
approximation to V |X from SY , we will restrict ourselves to finding the unique interpolant
instead, because the calculation of the best approximation is a global operation after the
removal of each pixel from the set Y , therefore it is only calculated in a final post-processing
step. The interpolant may be updated locally in the cell of the removed pixel.

Remark 2.5.11. Note that an interpolant from SY is not well defined in [X] \ [Y], iff
[X] 6= [Y]. Therefore we require the set of significant pixels Y to contain the eight corner
pixels of X from now on, which ensures [X] = [Y].

2.5.3 Pre-processing

The most integral part of the adaptive thinning algorithm is the removal of least signif-
icant pixels. Despite the theoretical complexity bound O(N logN), where N denotes the
number of pixels to be removed from X, the thinning procedure requires many calculation
steps and therefore suffers from a relatively long running time.
Therefore, W. Khachabi introduced a pre-processing step to delete a large number of pixels
that would be thinned anyways. Since adaptive thinning tends to adapt to the geometry
of the underlying picture or video very well and thus produces large concentrations of
significant pixels at edges, it was a natural choice to use an efficient edge detection algorithm
for pre-processing.
A sobel edge detector was chosen for that task. Edges can be interpreted as discon-
tinuities in the luminosity function l of a video. These can be detected by calculating
an approximation of the gradient of l. The sobel edge detector approximates the partial
derivatives of l in all directions by convolution of the original data with so-called convolution
kernels, which in this case is a set of three 3x3-matrices. The sobel convolution kernel also
incorporates smoothing to avoid false positive detections.
The application of the sobel edge detector leads to the removal of 50− 80% of the initially
present pixels while introducing an additional error of 0.1dB, as stated in [Kha11].
These results have to be considered with care, because Khachabi used test sequences of a
very specific type. Brief experiments yielded, that the number of removed pixels with a
threshold setting of 32 may result in the removal of significantly less pixels than stated in

42

2 Fundamentals

[Kha11]. Further investigations are beyond the scope of this thesis, since we will not use
pre-processing algorithms in our numerical experiments.

2.5.4 Adaptive thinning

As noted before, the fundamental goal of AT3D is the approximation of given video data
V |X on a set of pixels from a video domain X, minimizing the (`2-)error. Since the unique
linear spline interpolant can be calculated from given X and V |X , the main task in AT3D
is to determine a sparse set Xn ⊂ X, which allows for this approximation by interpolation
of the given video data. The employed algorithm is called adaptive thinning and will be
introduced in this section.

Selecting a suitable sparse subset Xn is crucial to the quality of the approximation.
Unfortunately finding the optimal subset X̃n is a NP-hard problem. Hence there is no
algorithm that is capable of finding X̃n in a feasible amount of time for large n, if P 6= NP
holds. Therefore, adaptive thinning constructs a nested sequence of subsets of X,

Xn ⊂ Xn+1 ⊂ . . . ⊂ XN = X,

using a greedy approach. In each step it determines the least significant pixel in a set Xi

and removes it. The algorithm can be outlined as follows:

Algorithm 3 Adaptive thinning
1: XN := X

2: for k = 1, . . . , N − n do
3: Find least significant pixel x ∈ XN−k+1

4: XN−k := XN−k+1\ {x}
5: end for

Instantly, this raises the question of how to determine the least significant pixel. We
can answer this with the tools introduced before: interpolation with linear splines over
Delaunay tetrahedralizations.

Definition 2.5.12 (Pixel significance measure). Let Y ⊂ X be a subset of a video domain
X and let V |X be a given set of video samples. A pixel y∗ ∈ Y is a least significant
pixel in Y , if

e(y∗) = min
y∈Y

e(y),

where for y ∈ Y
e(y) := η(Y \ {y} , X),

and
η(Y,X) :=

∑
x∈X
|L(Y, V)(x)− V (x)|2,

where L(Y, V) is the unique linear spline-interpolant that satisfies

L(Y, V)(y) = V (y) ∀y ∈ Y.

43

2.5 AT3D

Remark 2.5.13. By choosing this measure AT3D minimizes the mean squared error of
the interpolant and maximizes the PSNR, which was defined in a more general context in
definition 2.2.14. The PSNR in the context of AT3D is defined as follows:

PSNR = 10 log10
2ρ2ρ

η̃2(Y,X) ,

with
η̃2(Y,X) := 1

|X|
∑
x∈X
|L(Y, V)(x)− V (x)|2.

Note that the pixel significance measure in the above form is not local. Thus after
each pixel removal the significances of all vertices of the tetrahedralization would have to
be recalculated and the computational complexity would increase significantly. Luckily a
slightly modified significance measure can be introduced, which indeed is local:
Recall the locality property of vertex removal from a Delaunay tetrahedralization from
theorem 2.5.8. It can be used to prove the following lemma, which defines an equivalent
local error measure:

Lemma 2.5.14. Let Y ⊂ X be a subset of significant pixels. A pixel y∗ is a least significant
pixel according to definition 2.5.12, iff

eδ(y∗) = min
y∈Y

eδ(y),

where
eδ(y) := e(y)− η(Y,X) = η(Y \ {y} , X)− η(Y,X).

Then eδ is a local significance measure that is only affected by pixels from the cell Cy.

Proof:
Let y∗ ∈ Y be a least significant pixel. Then obviously eδ(y∗) = miny∈Y eδ(y), since η(Y,X)
does not depend on the choice of y. With the same argument the converse holds as well.
In order to prove the locality of eδ, we recall that DY \Cy = D(Y \{y})\Cy , meaning that a
Delaunay tetrahedralization remains unchanged outside the cell of a removed pixel y. Thus

eδ(y) = e(y)− η(Y,X) = η(Y \ {y} , X)− η(Y,X) = η(Y \ {y} , X ∩ Cy)− η(Y,X ∩ Cy).

Hence only pixels from Cy affect eδ and the lemma is proven.

In more recent revisions of adaptive thinning and in particular in its implementation
in AT3D, it is not only possible to remove the least significant pixel from a set, but also
a set of two connected significant pixels. This modification improves the compression
performance of AT3D significantly.

44

2 Fundamentals

Definition 2.5.15. Let Y ⊂ X and Y e denote the set of pairs of neighboring vertices
in DY . A pair {y∗1, y∗2} ∈ Y e of neighboring vertices in DY is called a least significant
connected pixel pair in Y , if

η(y∗1, y∗2) = min
{y1,y2}∈Y e

η(y1, y2),

where for any pixel pair {y1, y2} ∈ Y e

η(y1, y2) := η(Y \ {y1, y2} , X).

Analogous to lemma 2.5.14 we can define a corresponding local error measure:

Lemma 2.5.16. Let Y ⊂ X be a subset of significant pixels and let Y e be defined as
above. A pixel pair of neighboring vertices in DY , denoted by {y∗1, y∗2} is a least significant
connected pixel pair according to definition 2.5.15, iff

eδ(y∗1, y∗2) = min
{y1,y2}∈Y e

eδ(y1, y2),

where
eδ(y1, y2) := e(y1, y2)− η(Y,X) = η(Y \ {y1, y2} , X)− η(Y,X).

Then eδ is a local significance measure that is only affected by pixels from the union of
the cells Cy1 ∪ Cy2.

Proof:
The proof is completely analogous to the proof of lemma 2.5.14. We only have to note that
the removal of {y∗1, y∗2} can be interpreted as the consecutive single removals of y∗1 and y∗2.
Thus the affected cells are Cy1 and Cy2 and hence eδ is only affected by pixels from their
union.

This leads to the updated adaptive thinning algorithm presented in algorithm listing 4.
The implementation of AT3D relies on priority queue implementations via heaps. There is
one heap for the individual pixel significances and another for storing the significances of
connected pixel pairs. It was shown in [Dem11] that this leads to a theoretical computational
complexity of adaptive thinning of order O(N logN).

2.5.5 Post-processing: Pixel exchange

As we stated before, the output set Xn of adaptive thinning will most likely not be
optimal, because it is a greedy scheme. Thus the approximation quality of the interpolant
may be further improved by modifying Xn by appropriate measures, which will be intro-
duced in this chapter.
The first post-processing step performs a local optimization by applying a pixel exchange
algorithm, which we will introduce now.

45

2.5 AT3D

Algorithm 4 Adaptive thinning 6
1: Let XN ⊂ X ⊂ R3 be a subset of a video domain
2: for k = 1, . . . , N − n do
3: Determine

y′ = arg min
y∈XN−k+1

η(y) and y′′ = arg min
y∈XN−k+1\{y′}

η(y)

4: Determine
{y∗1, y∗2} = arg min

{y1,y2}∈XN−k+1
η(y1, y2)

5: if η(y′) + η(y′′) > η(y1, y2) then
6: XN−k := XN−k+1\ {y∗1, y∗2}
7: else
8: XN−k := XN−k+1\ {y′}
9: end if

10: end for

Definition 2.5.17 (Exchangeable pixels). For any Y ⊂ X, let Z = X\Y . A pixel pair
(y, z) ∈ Y × Z satisfying η((Y ∪ {z})\ {y} ;X) < η(Y ;X) is called exchangeable. A
subset Y ⊂ X is called locally optimal in X, iff there is no exchangeable pixel pair
(y, z) ∈ Y × Z.

Therefore each exchange strictly reduces the approximation error. We may now define
the algorithm itself, it is listed as algorithm 5.

Algorithm 5 Significant pixel exchange
1: Let Y ⊂ X
2: while Y not locally optimal in X do
3: Locate an exchangeable pixel pair (y, z) ∈ Y × Z
4: Y := (Y \ {y}) ∪ {z} , Z := (Z \ {z}) ∪ {y}
5: end while
6: return Y ⊂ X locally optimal in X

When using the exchange algorithm in practice, it is necessary to keep |X| small for
the algorithm to remain local and keep its computational complexity low. Therefore in the
current AT3D implementation for each vertex in the tetrahedralization, X is defined as
the set of pixels surrounding it:

Definition 2.5.18. The set of pixels surrounding a significant pixel y, X̃y, is defined as

X̃y := {z ∈ X |max (|yx − zx| , |yy − zy| , |yz − zz|) = ‖y − z‖∞ < r ∈ Z} .

The set of optimizable pixels Ỹy ⊂ X̃y is defined as

Ỹy :=
{
z ∈ X̃y ∩Xn

}
.

46

2 Fundamentals

It contains all significant pixels in a box with radius r around a target pixel y. The
complement of Ỹy in X̃y is defined as:

Z̃y := X̃y \ Ỹy.

The currently implemented exchange algorithm is summarized in listing 6.

Algorithm 6 Implementation of significant pixel exchange
1: Let Q be a queue of all significant pixels from a given set Y ⊂ Xn

2: while Q 6= ∅ do
3: y = Head of queue Q (removed from Q)
4: ey := eδ(y), ∆max := 0, b := y, f = false
5: for all z ∈ Z̃y do
6: ez := η((Y \ {y}) ∪ {z} , X)− η(Y,X)
7: if (ez − ey) > ∆max then
8: ∆max := (ez − ey), b := z, f := true
9: end if

10: end for
11: Y := (Y \ {y}) ∪ {b}
12: if f = true then
13: Add all neighboring significant pixels of y and b to Q
14: end if
15: end while
16: return Set Y satisfying ∀y ∈ Y : Ỹy locally optimal in X̃y

Note that the current implementation does not perform a local exchange. An exchanged
pixel is re-inserted into the queue without saving the position it was switched from.
Therefore, the original pixel may get exchanged multiple times and finally by pixels, which
are outside the local box around the original pixel. Obviously, this algorithm results in
better compression, but at the cost of an increased of runtime.
The radius r may be chosen freely. A smaller radius decreases the computational time needed
to perform the exchange algorithm, a larger value increases the achieved improvement in
quality. As W. Khachabi showed in [Kha11], the current implementation yields an average
PSNR-improvement of 0.85dB when choosing r = 3. However we have to note that this
evaluation was performed on a test set with sequences of similar characteristics.

2.5.6 Post-processing: Best approximation

After fixing the set Y and its Delaunay tetrahedralization DY , it is possible to further
improve the approximation: Up to now we only interpolated the luminance values V |X of
a target function on the pixels in Y , but now we are able to calculate the (global) best
approximation L∗(Y, V) ∈ SY , which satisfies∑

x∈X
|L∗(Y, V)(x)− V (x)|2 = min

s∈SY

∑
x∈X
|s(x)− V (x)|2.

47

2.5 AT3D

The best approximation L∗(Y, V) exists and is unique, since SY is a finite dimensional
linear space and since Y ∈ X. The calculation of the best approximation is realized with
the preconditioned conjugate gradient method (PCG), which may not be optimal in terms
of runtime due to the size of the linear system to solve, but it can be shown that degenerate
cases with large condition numbers are very unlikely. Also the runtime of this calculation
is negligible compared to the runtime of the adaptive thinning algorithm. W. Khachabi
has shown in [Kha11] that the calculation of the best approximation improves the PSNR
by 0.48 dB on average.

2.5.7 Quantization

After calculating a thinned set of pixels Y and the corresponding Delaunay tetrahe-
dralization DY and a final approximation L∗(Y,X) ∈ SY the resulting data now has to be
saved in an efficient binary data format. This final step will be realized with an arithmetic
coder, but prior to that another lossy compression step is performed: quantization.

Remark 2.5.19. Quantization referred to in this section is different from the quantization
introduced in definition 2.2.3. We work with digital signals whose range is discrete by
definition. The quantization step to be introduced in this section is used to further reduce
the number of distinct luminance values, which may be encoded more efficiently. This is
due to the fact that naturally less bits are needed to encode smaller values and thus they
are encoded more efficiently by lossless entropy coding schemes.

Therefore in AT3D we may apply a quantizer of the following form to the set of
luminance values L∗Y := {L∗(Y, V)(y) | y ∈ Y } at the significant pixels y ∈ Y :

Definition 2.5.20 (Uniform quantizer for AT3D). We define the following quantizer Q:

Q : 2ρ − 1→ 2ξ − 1, with ξ < ρ,

x 7→ Q(x) =
⌊

x

2ρ−ξ
⌋
.

It assigns values from an interval
[
a2ρ−ξ, (a+ 1)2ρ−ξ − 1

]
with a ∈

{
0, 1, . . . , 2ξ − 1

}
to

a. A quantizer of this type is called a uniform quantizer with step-size 2ρ−ξ. The
maximal grayscale value is called Qmax := 2ξ−1.
A uniform quantizer is defined as a quantizer, which divides its domain into equally sized
intervals and assigns different values to each interval.

The result of all computations so far is the following set E, which is entropy-coded into an
output bit-stream by an algorithm described in the following section:

E := {(y, Q (L∗(Y, V)(y))) | y ∈ Y }

48

2 Fundamentals

2.5.8 Implementation of arithmetic coding

In chapter 2.4.4 we introduced an entropy coding algorithm, which is capable of
compressing arbitrary data with little additional redundancy with a size close to the
entropy rate of the used model of the data source plus a penalty term induced by the
incorrectness of the model. In this section we will describe the current implementation of
arithmetic coding in AT3D and the used models.
Note that AT3D is an essentially deterministic compression scheme, which produces a
unique output bit-stream for a given input data-stream and a given set of parameters. Yet
due to the internal complexity of the encoding algorithm, its output may be interpreted as
a random experiment, which may be described by statistical models.
The goal is the efficient entropy coding of a given set

E = {(y,Q (L∗(Y, V)(y))) | y ∈ Y } ,

where ’efficient’ only refers to the compression performance, not to compression speed. The
computational complexity of entropy coding is negligible compared to adaptive thinning.
AT3D uses an integer implementation of arithmetic coding, which is identical to the
implementation used in the image compression scheme based on adaptive thinning, which
is described in [Dem06]. The entropy coding stage is divided into several steps:

• Encoding of global information in a fixed number of bits,

• encoding of significant pixel positions,

• encoding of quantized grayscale values.

This separation enables us to use geometric properties of the tetrahedralization to
encode the grayscale values. This is only possible if the decoder has access to the same
information as the encoder, therefore the complete set of significant pixels has to be encoded
first, so that the decoder can reconstruct the tetrahedralization from it.

2.5.9 Entropy coding: Pixel positions

Let Y be a given set of significant pixels. Instead of coding the components px, py, pz
of a pixel p ∈ Y , a grid consisting of all pixels in X ⊇ Y is created, such that all positions
of significant pixels are marked with ones and all other positions are marked with zeros:

Definition 2.5.21 (Pixel grid). Let X be a given video domain and Y ⊂ X be a set of
significant pixels. We first define the (bijective) index mapping

I : X →WHT − 1, p 7→ I(px, py, pz) := WHpz +Wpy + px,

with inverse mapping

I−1 : WHT − 1→ X, i 7→ I−1(i) := (p̃x, p̃y, p̃z),

49

2.5 AT3D

with

p̃z :=
⌊

i

WH

⌋
, p̃y :=

⌊
i mod p̃zWH

W

⌋
, p̃x :=

⌊
i mod (p̃zWH + p̃yW)

H

⌋
.

For notational convenience we set the (undefined) a mod 0 := a for any a ∈ Z. Then we
define

G := (gi)0≤i≤WHT−1 , gi =

0, if p = I−1(i) ∈ X\Y,
1, if p = I−1(i) ∈ Y,

as the pixel grid of (X,Y).

In this set the number of nonzero entries is very small in general. Due to the properties
of adaptive thinning significant pixels tend to cumulate where the video data varies with
high frequency, which corresponds to edges within a frame or the inter-frame appearance
of new objects. The current model design is aimed at capturing this behavior. Before it
can be introduced, we need to define the necessary notions.

Definition 2.5.22 (2d context box). Let X be a given video domain with corresponding
pixel grid G and let p ∈ X be a pixel. Then the sets

Fi := {p = (px, py, pz) ∈ X | pz = i} , with 0 ≤ i < T,

are the pixels from individual frames. A 2d context box of p with radius r in frame
i is defined as

Cp,r,i := {q ∈ Fi | ‖q − p‖∞ < r} .

The corresponding restricted 2d context box is defined as

Ĉp,r,i := {q ∈ Fi | ‖q − p‖∞ < r ∧ I(q) < I(p)} .

We define the cardinality of any 2d context box as NCp,r,i := |Cp,r,i|. The set of all 2d
context boxes is denoted by C2d. The number of significant pixels in a 2d context box is
defined by the mapping

N2d : C2d → N0, Cp,r,i 7→ N2d(Cp,r,i) :=
∣∣∣{q ∈ Cp,r,i ∣∣∣ gI(q) = 1

}∣∣∣ .
A restricted 2d context box is visualized in figure 4.

Note that the restriction I(q) < I(p) is necessary to ensure the symmetry between
encoder and decoder. In the AT3D implementation, restricted 2d context boxes in the
currently encoded frame are not used, but they will be for the new implementation. Video
sequences may be divided into blocks of frames, which are processed separately. In general,
the separation is applied between strongly differing frames or after a fixed number of
frames. In both cases little motion in the block sequence may be assumed, which leads to
the following idea to design the contextual model:
Under the above assumption it is likely that most significant pixels are located in the first
and last frame of a sequence of frames, therefore the 2d context box of a pixel p in frame i

50

2 Fundamentals

Figure 4: Schematic display of a restricted 2d context box. The black pixel is being encoded, white
pixels are thinned and colored pixels are significant pixels.

with radius r is projected into the first and last frame, where the counts of significant pixels
are calculated. Therefore we change the formal frame ordering and denote these bound
frames by F0 and F1. They are encoded first by regular arithmetic coding, so that the
unrestricted context boxes become available. The underlying assumption is only justified
for certain sequence types, however. For the sake of a simplified notation, we will assume,
that the video sequence is a single block. The projection can then be formalized as follows:

Definition 2.5.23 (Projected context box). Let p ∈ X ∩ Fi be a pixel located in frame
i > 1. Then there are corresponding pixels p1 ∈ F0 and p2 ∈ F1, which satisfy

(p1)x = (p2)x = px ∧ (p1)y = (p2)y = py.

Then the projected context box is defined as

Cp,r := {q ∈ F0 ∪ F1 | ‖q − p1‖∞ < r ∨ ‖q − p2‖∞ < r} .

Now the combined projected pixel count Np is defined as

Np := N2d(Cp,r).

Now we can define the contexts that will be used in the probability estimation. These
are equivalence classes of pixels with projected context boxes containing the same number
of significant pixels Np:

Definition 2.5.24 (Pixel position contexts). Two pixels p and q are said to be in the
same context C∗i , iff Np = Nq. Then i = Np. Thus

C∗i := {p ∈ X |Np = i} .

The model now calculates a prediction as follows:

51

2.5 AT3D

First Frame

Last Frame

Current Frame

Figure 5: Schematic display of context box projection. Blue and orange pixels are significant pixels,
black pixel is the pixel position to be coded, orange pixels are in projected area and thus counted.

Definition 2.5.25 (Probability estimation for pixel positions). Let G be a source modeling
the generation of the sequence G, where gi ∈ {0, 1} is the outcome of the random variable
Gi. Now we can define a source G+, which emits random variables G+

i , whose outcomes are
the numbers of significant pixels in the projected context boxes of pi = I−1(i), denoted by
NI−1(i) ∈ Nmax.
Let p be the next pixel to be coded. In order to define the probability estimates, the
number of zeros and ones that were encountered in the same context C∗Np as p up to the
encoding of p are defined as follows:

N0,p =
∣∣∣{q ∈ X ∣∣∣ q ∈ C∗Np ∧ I(q) < I(p) ∧ gI(q) = 0

}∣∣∣ ,
and

N1,p =
∣∣∣{q ∈ X ∣∣∣ q ∈ C∗Np ∧ I(q) < I(p) ∧ gI(q) = 1

}∣∣∣ .
The following conditional probability estimates are used for the arithmetic coder:

P̂ (Gk = 0 | G+
k = NI−1(k)) =

N0,I−1(k)
N0,I−1(k) +N1,I−1(k)

,

P̂ (Gk = 1 | G+
k = NI−1(k)) =

N1,I−1(k)
N0,I−1(k) +N1,I−1(k)

.

Note that in this approach significant pixels in the restricted 2d context box of p are
ignored. Now we can describe the AT3D implementation of the arithmetic coding of the
pixel positions:

We can summarize the encoding of pixel positions as follows:

52

2 Fundamentals

Algorithm 7 Arithmetic coding of pixel positions in AT3D
1: Let G be the pixel grid defined in definition 2.5.21 for given sets X and Y
2: Sort frames, bound frames first, then remaining frames in original order
3: Write number of significant pixels ni in frame i to bit-stream for each frame
4: for i = 0 to 1 do
5: for each pixel p ∈ Fi do
6: Encode gI(p) with probability estimates P̂ (1) = ni

WH , P̂ (0) = 1− P̂ (1).
7: if gI(p) = 1 then
8: ni := ni − 1
9: end if

10: end for
11: end for
12: Calculate Np for all pixels p ∈ X
13: for each pixel p in remaining frames do
14: if (N0,p = 0 ∧N1,p = 0) then
15: N0,p := 1, N1,p := 1
16: end if
17: Encode gI(p) with probability estimates P̂ (GI(p) = 0 | G+

I(p) = Np) and
18: P̂ (GI(p) = 1 | G+

I(p) = Np), as defined in definition 2.5.25
19: Update NgI(p),p

20: end for

• Bound frames of frame blocks are encoded first with an adaptive scheme and based
on probabilities of pixels to be significant pixels in each frame.

• The only model information in the output bit-stream is the number of significant
pixels in each frame.

• The pixels p in the remaining frames are coded with a context-based adaptive
arithmetic coder, using conditional probabilities based on the number of appearances
of zeros and ones in the context C∗Np that were counted until the encoding of p.

• Only the number of significant pixels in the projected context box of a pixel p is used
to assign p to a context C∗Np .

• These conditional probabilities are not reset when a frame block is encoded completely.

2.5.10 Entropy coding: Grayscale values

Let Y ⊂ X be a given set of significant pixels and DY the unique tetrahedralization
with vertex set Y . The last encoding step in the AT3D implementation is the entropy
coding of the set of grayscale values

EV = {Q (L∗(Y, V)) (y) | y ∈ Y } .

53

2.5 AT3D

Analogous to the pixel positions the set EV has to be ordered to create an encoding order.
This is done by sorting the pixels y ∈ Y in the order of their addition to DY . This sorting
procedure induces the sequence

ẼV := (vi)0≤i≤|Y |−1.

The main idea that is used to calculate the probabilities of grayscale values is the assumption,
that the length of an edge of a tetrahedron is inversely proportional to the grayscale value-
difference along this edge. Before describing the grayscale value encoding in detail, we
have to introduce the following notions:

Definition 2.5.26. Let p ∈ Y be a significant pixel and DY be the unique Delaunay
tetrahedralization with vertex set Y . Then the set of neighbors of p, Np, is defined as
the set of vertices which are incident to p in DY .

Definition 2.5.27 (Set of encoded grayscale values). After encoding k values, the set of
previously encoded grayscale values is denoted by EkV ⊂ EV , k ∈ N0 and is defined as
follows:

EkV :=
{
vi ∈ ẼV

∣∣∣ i < k
}
.

The set of significant pixels, which correspond to the encoded grayscale values is called Yk
and is defined as

Yk := {y ∈ Y |Q(L∗(Y, V))(y) = vi, i < k} .

Definition 2.5.28 (Longest causal edge). Let p ∈ Y with neighbor set Np and a given
set Yk ⊂ Y . If Np ∩ Yk 6= ∅, the longest causal edge length emax of p is defined as

emax := max
{
l ∈ R+

∣∣∣ l = ‖p− q‖2 , q ∈ Np ∩ Yk
}
.

The pixel q, which together with p defines the edge of length emax is denoted by qp. The
grayscale difference of p and qp is denoted by

∆pqp := Q(L∗(Y, V))(p)−Q(L∗(Y, V))(qp).

If Np ∩ Yk = ∅, we define qp := p and

∆pqp := Q(L∗(Y, V))(p).

Definition 2.5.29. The set of grayscale differences is denoted by ∆ and defined as

∆ := {d ∈ Z | |d| ≤ Qmax} .

The number of times the grayscale difference d was encoded up to the encoding of the
grayscale value at pixel p, is denoted by Ñd,p. For the sake of notational simplicity we omit
the formal definition of Ñd,p here.

54

2 Fundamentals

Now we can define the probability estimates for the encoding of grayscale values:

Definition 2.5.30 (Probability estimation for grayscale values). Let H be a source
modeling the generation of grayscale differences, where the non-binary alphabet of Hi is ∆.
Then the following probability estimates are used as a model for the arithmetic coder to
code vk:

P̂ (Hk = d) =
max (1, Ñd,I−1(k))∑
x∈∆ (1 + Ñx,I−1(k))

, ∀d ∈ ∆.

Note that in order to enable the decoder to uniquely decode a value d, each value di ∈ ∆
has to have a positive probability. This is an instance of the so-called zero-frequency
problem, which deteriorates compression performance. Also note that this implementation
of arithmetic coding is not context-based, since no conditional probabilities are used.
We can summarize the entropy coding of grayscale values as follows:

Algorithm 8 Arithmetic coding of grayscale values in AT3D
1: Let Y ⊂ X be a set of sign. pixels with corresponding Delaunay tetrahedralization DY
2: Let EV be the given corresponding set of grayscale values
3: Sort EV and generate the sequence ẼV
4: for i = 1 to |Y | do
5: Let p ∈ Y be the pixel corresponding to the grayscale value vi
6: Calculate ∆pqp

7: Encode ∆pqp using the probability estimate P̂ (Hi = ∆pqp) given by definition 2.5.30
8: Update Ñ∆pqp ,p

9: end for

Concludingly we can describe the encoding of grayscale values as follows:

• An adaptive arithmetic coding scheme, which is not context-based, is used.

• For each pixel p the grayscale difference along the longest causal edge is encoded by
using the number of occurrences of all grayscale differences to calculate the probability
estimates.

• If no such edge exists, the grayscale value of p is encoded.

• All grayscale difference probability estimates are equal in the beginning of the
encoding process in order to avoid the zero-frequency problem.

• No model information is transmitted in the bit-stream.

• The counts Ñd,p are not reset after each frame block.

Remark 2.5.31. Note that the above description of the grayscale-value compression
scheme describes the effective implementation. The code allows the encoding of a value
in a context depending on the length of the used causal edge and then applying the

55

2.5 AT3D

above frequency counting mechanism for each encountered length. Yet, it is effectively not
used due to the code line len = (int)(maxLen/CODING_EDGE_LEN_SEG); in the function
Coding::initContextualFrequencies(), where CODING_EDGE_LEN_SEG=2000000.
Deleting this line yields a greatly diminished compression performance, because the number
of contexts is too large to profit from significant statistics in certain contexts.

2.5.11 Numerical results regarding stationarity

As we noted before it is important to know whether the AT3D output is stationary
or not. One important consequence is the weighting of previously gained statistics for
arithmetic coding. If the data is non-stationary, this data cannot be weighted equally. In
order to investigate the stationarity of the data, we employ the technique suggested in
[Mah02]:
We estimate the probability of matching a random n-gram to an identical n-gram for various
distances t. Recall, that stationarity is equivalent to all joint probability distributions of
random variables being part of a source being independent of t. We compare two samples
from one joint probability distribution to the shifted one. Thus, for a stationary source,
we expect the probability to be stable for various values of t.
Our results in tables 2 and 3 clearly show, that neither pixel positions nor grayscale values
are emitted by a stationary source. While pixel position matching probabilities show an
expected peak for t = 1 and the frame width t = 176, and its multiple t = 352 for both
test sequences, the frame-length t = 25344 shows a drop for Football and an additional
peak for Suzie-90, which is due to the high amount of motion contained in the former
sequence. The probabilities for matching n-grams of grayscale values drop as t grows. We
will make use of this information later in the implementation of AT3D_PAQ, which will
be introduced in the next chapter.

Suzie-90 pixel positions: p [%]
n t=1 t=10 t=100 t=176 t=352 t=1000 t=25344
1 86.66 85.64 85.28 85.84 86.59 85.15 87.14
3 66.70 65.99 63.94 67.21 66.84 63.84 69.41
5 53.35 52.30 48.84 53.78 53.50 48.84 57.64
7 43.26 42.12 37.58 44.13 43.95 37.85 48.29

Suzie-90 grayscale values: p [%]
n t=1 t=3 t=5 t=10 t=20 t=50
1 2.512 2.342 2.087 2.034 1.708 1.598
2 0.142 0.061 0.082 0.041 0.041 0.072
3 0.006 0.003 0.000 0.005 0.000 0.003

Table 2: Probabilities of matching 1M randomly chosen n-grams at distance t for Suzie-90 at
90957 significant pixels.

Football pixel positions: p [%]
n t=1 t=10 t=100 t=176 t=352 t=1000 t=25344
1 81.04 79.56 78.48 79.91 80.64 78.57 74.11
3 54.14 52.45 49.43 54.32 53.65 49.87 42.27
5 37.64 36.47 32.84 38.33 37.27 33.73 25.56
7 27.51 26.14 22.69 27.45 26.84 23.64 15.63

Football grayscale values: p [%]
n t=1 t=3 t=5 t=10 t=20 t=50
1 2.542 2.445 2.255 2.479 2.206 2.264
2 0.077 0.074 0.056 0.075 0.052 0.060
3 0.000 0.000 0.000 0.004 0.006 0.003

Table 3: Probabilities of matching 1M randomly chosen n-grams at distance t for Football at
120319 significant pixels.

56

3 Development of AT3D_PAQ

3 Development of AT3D_PAQ

In this section we will describe the new lossless coding stage incorporated into AT3D.
Research exposed the sub-optimality of the original modeling and prediction stage of
entropy coding in AT3D, due to its limitation to a single model. Instead of replacing the
single model predicting the probabilities used by the arithmetic coder, the complete lossless
coding stage of AT3D was replaced by a readily available scheme called PAQ, which was
adapted to the special cases of pixel position- and grayscale value-coding, allowing the
implementation of an arbitrary number of models. One of the main results of this thesis is
the resulting improved compression performance, which is documented by the numerical
results presented in section 3.4.
Originally PAQ was designed as a general-purpose lossless compression scheme for arbitrary
data, comparable to the commonly known zip-format. It yields significantly better com-
pression results at the cost of slower compression times and a higher memory consumption.
It features a sophisticated context mixing architecture, a successor of the well-known and
successful PPM (prediction by partial matching) allowing to choose well-predicting
models efficiently from an arbitrary set of models during the encoding process, thus ensuring
superior adaptivity compared to the original AT3D implementation. PAQ was introduced
by Mahoney in 2002 and has been improved continuously since then. In terms of compres-
sion performance, the evolution of PAQ climaxed in the development of PAQ8 , which
is the top-rated compression algorithm in many benchmarks up to today, e.g. in [Ber13]
and [Mah13]. It contains models for various kinds of data, including text, images, audio
and even executable files. It efficiently combines the individual model predictions with a
context mixer based on online convex programming and neural network techniques, and
contains so-called adaptive probability maps (APM) to further improve the final prediction.
This prediction is then used by an arithmetic encoder to code an input bit. Additionally,
it contains features for modeling stationary and non-stationary data efficiently.
We will begin with an overview of the structure of PAQ8kx-v7 , a variant of PAQ8 achiev-
ing the best compression ratios among all PAQ8-variants. Especially the context mixing
algorithm has developed in several stages, and we will briefly describe the motivation
and ideas that led to today’s implementation. Then recently published theoretic results
regarding the compression performance of PAQ will be presented.
An overview of PAQ in as much detail as in this thesis has not been presented before in
the literature. After this survey of the architecture of PAQ we will give a summary of our
integration of it into the AT3D implementation, including the introduction of our new
modeling approach. Finally the results of our numerical experiments will be presented,
where we will demonstrate the impact of the new entropy coding stage of AT3D and
compare it to the current state-of-the-art video compression scheme, H.264.

57

3.1 PAQ

3.1 PAQ

In this section we will describe the architecture of PAQ8kx, which is a derivative of
PAQ8, developed by Mahoney, Pettis, Ondrus, et al. All versions of PAQ are distributed
under the GNU Public License, allowing us to use and modify its code base for our purposes.
The most important building block of PAQ is its context mixing algorithm, which will be
presented here as well. In order to better understand today’s implementation, we will sum
up the development of context mixing from the first version of PAQ on.
The basic structure of PAQ8 is simple: It employs numerous models classesMi, each of
which calculates one or more estimates of the probability Pi(Xj = 1) of the j-th coded bit
to be a 1. Then a sophisticated context mixer merges all these predictions into one single
prediction P̂ (Xj = 1) by selecting a set of weights by a context and calculating their linear
combination in the logistic domain. This probability is finally filtered by so-called adaptive
probability maps (APM), which are also known as secondary symbol estimation, yielding a
final probability estimate P̂ ∗(Xj = 1). It is then fed into a range coder, which is essentially
equal to an integer implementation of an arithmetic coder. This outline is visualized in
figure 6 .

NN-mixer

SSE Arithmetic encoder
Compressed

Output

Uncompressed input data

Stage 1 Stage 2

Model class 1

Model 1.1

Model 1.r

Model class n

Model n.1

Model n.s

Figure 6: Schematic high-level description of the architecture of PAQ8.

Unfortunately despite the fact that PAQ was introduced more than a decade ago, it
is not well understood from a theoretical point of view. Its development was inspired
by progress in many connected fields, yielding outstanding compression performance in
practice. The program code itself contains bit- and byte-level manipulations, which often
make it very difficult to extract the underlying algorithms, if possible at all. Many tuning-
parameters were determined ad-hoc by trial-and-error and are now an uncommented
part of the implementation of PAQ. We will, however, present all published theoretical
investigations of the compression performance of PAQ, mainly [Mat12] and [Mat13] by
Mattern. Other publications mainly provide high-level descriptions of PAQ, as [Mah02]
and [Mah05] by Mahoney. Also, a different perspective on PAQ is presented in [Kno12],
where it is described from a machine learning point of view. The forum in [Enc13] is visited
by some of the developers regularly, and there are some discussions on PAQ available.

58

3 Development of AT3D_PAQ

We will begin with the detailed description of the architecture of PAQ. As in the previous
sections, our goal is a mathematically precise formulation of the underlying concepts to
extend the sometimes inaccurate description provided in the source code.

3.1.1 PAQ8 - Building blocks

In this section the tools for the calculation of a prediction by a model are described.

Definition 3.1.1 (Input and output bit-stream). The input bit-stream of PAQ is defined
by a sequence (x)i with i ∈ n− 1. We denote the source emitting the input bit-stream
by X , where each symbol is from the binary alphabet A = {0, 1}. The source consists of
random variables Xt, with 0 ≤ t < n, whose outcomes are the symbols xt. The coding
procedure results in an output bit-stream (y)i with i ∈ m− 1, where m is smaller than
n in general. After encoding k < n bits, the (k + 1)-th bit is predicted, thus we refer to
this step as the k-th encoding step or the (k+1)-th prediction step. We refer to the
sequence (x)k−1 as the encoded or processed input bit-stream and denote it by (x)k−1

from now on. Additionally, we define the following notational convention:

P (xk | xk−1) = P (Xk = xk | X0 = x0, . . . ,Xk−1 = xk−1).

Definition 3.1.2 (Context class). A context class C is a family of mappings Ci, where
i satisfying 0 ≤ i < k indicates the encoding step number. These mappings are defined as

Ci : Mi → Z,

where Mi is an arbitrary finite set, which may depend on the i bits encoded before. A
context is an element from the image of Ci. In the PAQ implementation, we let the
context range Z := 232 in general, which we will assume from now on. Based on the
image Ci(Mi) we may partition the encoded input bit-stream into equivalence classes.

The above definition describes what is only called ”context” in the PAQ documentation,
where it is used ambiguously: There are different types of context classes implemented in
PAQ, depending on the structure they are fed into:

Definition 3.1.3 (Context class implementations). Let C be a context class. It is called a

• mixer context class (mix-context class), if it is a context mixer input,

• context map context class (cm-context class), if it is an input of a context
map, which is a complex predefined modeling structure,

• general context class (g-context class), if it is used to calculate a context-
dependent probability, which is then fed into the context mixer.

59

3.1 PAQ

Remark 3.1.4. A context class C may be used as more than one of the above types at
the same time. Yet, due to the implementation the ranges of cm- and g-context classes are
significantly larger than the ranges of mix-context classes in general.

A central element in the prediction process of PAQ are so-called bit-histories, which
partition the sequence of encoded input bits xk−1 into sub-sequences according to the
encountered contexts in the encoding process. Note that bit histories are only used for cm-
and g-context classes. We formally define them as follows:

Definition 3.1.5 (Context class bit-history). Let C be a context class. Let B be the set of
all sub-sequences of the encoded input bit-stream (x)k−1, including the empty sub-sequence
∅. Then the bit histories of C, denoted by the mapping Bk

C , are defined as a partition
of (x)k−1 according to the results of Ci(mi) for 0 ≤ i < k and mi ∈Mi:

Bk
C : k − 1×Z → B,

Bk
C(0, z) =

∅, if C0(m0) 6= z,

x0, if C0(m0) = z,

and for i > 0

Bk
C(i, z) =


Bk
C(i− 1, z), if Ci(mi) 6= z,

xi, if Ci(mi) = z ∧Bk
C(i− 1, z) = ∅,

(Bk
C(i− 1, z), xi), if Ci(mi) = z ∧Bk

C(i− 1, z) 6= ∅.

Example 3.1.6. Let k = 10, (x)k−1 = (0, 0, 1, 1, 0, 1, 0, 1, 0, 1),Mi = {0, 1}, and Ci(xi−1) =
xi−1 for 0 < i < k and M0 = ∅ and C0 ≡ ∅. Here the context class C is defined by the
previously encoded bit. This yields the bit histories

B10
C (9, 0) = (0, 1, 1, 1, 1) and B10

C (9, 1) = (1, 0, 0, 0).

Note that since x−1 is not defined, the first bit x0 cannot be assigned to a context, thus
the resulting partition only contains the last nine bits of the sequence.

Bit histories are the basis for the calculation of model predictions. Formally a predictor is
defined as follows:

Definition 3.1.7 (Predictor). Let C be a context class. A predictor for the context-
class C is a mapping PkC , which maps a bit-history to the probability estimate P̂ (xk | xk−1)
for 0 < k < n:

PkC : B → [0, 1] , PkC(Bk
C(k − 1, z)) = P̂ (xk | xk−1) for z ∈ Z.

Remark 3.1.8. In a mathematical context, a predictor is comparable to an estimator ,
which outputs estimates based on previously occurred evidence. Yet we will stick to the

60

3 Development of AT3D_PAQ

denotation defined above to reflect, that often the implemented predictors are not based
on mathematical theory, but on experimental results instead.

Remark 3.1.9 (Stationary vs. non-stationary prediction). A central question in the
design of a predictor is whether the input data is stationary. In the case of general-purpose
entropy coding, this cannot be known in advance, therefore semi-stationary predictors were
implemented into PAQ from the first versions on, as pointed out in [Mah02] and [Mah05].
Stationary data requires equal weighting of all elements in a bit-history of a context in the
prediction, while non-stationary data requires higher weight on newer elements. Today,
most available predictors in PAQ assume stationary data for small bit histories and with
increasing bit history-lengths assume more non-stationarity, which yielded the best results
in practice. Despite our knowledge of the non-stationarity of data we consider, these highly
optimized predictors were not changed, but may be investigated in the future.

Definition 3.1.10 (Model class). A model-class M is a tuple of sets Mi, each consisting
of a (cm- or g-)context class Ci and corresponding predictors PkCi . A model prediction
is the output probability estimate P̂Mi(xk | xk−1), calculated from the bit history of the
current context:

P̂Mi(xk | xk−1) := PkCi(B
k
Ci(k − 1, Cik(mk))).

Remark 3.1.11 (Bit-history approximation). The accuracy of a predictor depends on its
input bit history. In general, a longer bit history yields better prediction results. Yet, with
a growing number of context classes the memory-requirements to save bit histories grows.
Therefore they may have to be approximated, which is implemented in PAQ efficiently.

Remark 3.1.12. In the documentation of PAQ, the notion ”model” refers to a class of
models defined above. Figure 7 visualizes the prediction process in a model class.

All of the above elements are part of the encoding process in PAQ and may be adjusted
to the source X generating the input bit-stream. Note that compared to other entropy
coding schemes, PAQ allows many degrees of freedom and scalability due to its effective
handling of large numbers of contexts (up to 232 for each context class), context classes (up
to several hundreds), models (up to several thousands), and even model classes (up to several
dozens). These numbers are bounded by memory- and compression time-requirements of
the application. We will now answer the question of how to efficiently combine several
model predictions into a single prediction.

Definition 3.1.13 (Context mixing). Let P̂0(xk | xk−1), . . . , P̂s−1(xk | xk−1) be estimates
of the unknown probability P (xk | xk−1). Then a context mixer of s predictions is a
mapping

g : [0, 1]s → [0, 1] , g
(
P̂0(xk | xk−1), . . . , P̂s−1(xk | xk−1)

)
7→ P̂ (xk | xk−1).

61

3.1 PAQ

0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 ?

0 1 1 0 1 0 1 0 1 1 0 1 1 0 1

Model 1

Contextual
bit histories

Bit history

Predictor

0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 ?

Bit history

0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 ?

0 1 0 0 0 0 1 1 0 1 1 1 1 1 1

Model r

Contextual
bit histories

Bit history

Predictor

Uncompressed input data

Model predictions

Figure 7: Schematic high-level description of r models in a model class.

Remark 3.1.14. Note that in practical applications a final prediction probability of 0 or
1 is undesirable, because in the case of a misprediction the arithmetic coder is not capable
of assigning a nonempty interval to the encoded bit. Thus, in the implementation of PAQ
probabilities of 0 and 1 are avoided.

Remark 3.1.15 (Internal representations of probabilities). Internally, probabilities and
estimates can only be saved with a certain accuracy. For probabilities in the logistical
domain the values are in the range from 0 to 4095. All other probabilities are represented
with a range from −2047 to 2047. We will not consider the resulting implementational
details in this thesis.

3.1.2 Context mixing in PAQ1-3

In order to understand the context mixing algorithm of PAQ8, we will investigate the
development of PAQ context mixing and its motivation in the following sections. Many
of the techniques incorporated into PAQ8 can be explained from a mathematical and
from a machine learning point of view. We will restrict ourselves to the mathematical
description of the algorithms and name references, which yield insight from a machine
learning perspective, where applicable.
We will start with the most natural approach to combining various probability predictions
into one output prediction: a linear context mixer with fixed weights.

Definition 3.1.16 ((Static) linear context mixer). Let g be a context mixer of s predictions.
It is called a linear context mixer , if

gLin
(
P̂0(xk | xk−1), . . . , P̂s−1(xk | xk−1)

)
=

s−1∑
i=0

wi,kP̂i(xk | xk−1),

62

3 Development of AT3D_PAQ

where the wi,k ∈ R+ are weights, which satisfy
s−1∑
i=0

wi,k = 1.

If the wi,k are independent of k, the mixer is called static, otherwise it is called adaptive.

The first three versions of PAQ use a combination of a static and an adaptive linear
mixer. This is not clearly stated in [Mah02], but from its source code we learn that
PAQ1 mixes its n-gram models with fixed weights of n2. Here n-grams refer to tuples
of previously encoded bytes with length n. The five different model classes are mixed
using adaptive weights, which depend on the bit-histories in the corresponding contexts
employed by the individual models. These bit-histories serve as a relative confidence of the
model in its prediction. More weight is given to models relying on a larger bit-history. It
can be shown, that the employed algorithm implements an adaptive linear mixer.

Remark 3.1.17 (Compression gains by context mixing). A natural question immediately
arising is how the mixed prediction compares to the individual input predictions. As
[Mat12] states, a linear mixture of predictions with weights chosen as prior probabilities of
choosing the corresponding model generates a code-length shorter or equal than encoding
the model index and the encoded data based on predictions of the best a-posteriori model-
choice. In other words a linear mixture prediction is at least as good as the best individual
prediction in this setting.

3.1.3 Context mixing in PAQ4-6: Online convex programming and cod-
ing cost minimization

The earlier versions of PAQ relied on probability estimates, which were essentially
weighted by the confidence of a model in its estimation. This approach yielded good results
in practice, but did not target the goal of a compression scheme: minimizing coding cost.
In order to take this into account, a new weight update approach was introduced with
PAQ4: The updates were computed by an implementation of an online gradient descent
algorithm in order to minimize coding cost, which is an algorithm from online convex
programming. It differs from classical offline convex programming in a key aspect: the
convex cost function, which is to be minimized, may change in each iteration.

Definition 3.1.18 (Coding cost error). Let xk−1 be the last encoded bit with a predicted
probability estimate of

P̂ (xk−1 | xk−2) =
s−1∑
i=0

wi,k−1P̂i(xk−1 | xk−2).

Let the (unknown) coding cost of xk−1 be − logP (xk−1 | xk−2). Then the coding cost
error for bit xk−1 as a function of the weights is

ek : Rs → R, ek(w0,k−1, . . . , ws−1,k−1) = − log P̂ (xk−1 | xk−2) + logP (xk−1 | xk−2).

63

3.1 PAQ

Obviously we are interested in minimizing the coding cost error by updating the weights
in a beneficial way. But in the above situation we can not apply classical optimization
algorithms, e.g. gradient descent: The objective function to be minimized changes in each
iteration, since both - the true unknown coding cost of the encoded bit, and the individual
probability estimates - change. Thus we are confronted with a different problem class,
whose solution is found in the field of machine learning and game theory: online gradient
descent. This algorithm was introduced in [Zin03] by Zinkevich and can be applied to a
sequence of (sub-)differentiable convex functions, which share a convex domain, which
has to be a subset of Rn. Then in each step a single classical gradient descent update is
performed, which is called greedy projection. In the following we will present the original
problem formulation from [Zin03] and the proposed optimization algorithm.

Definition 3.1.19 (Online convex programming). A convex programming problem
consists of a nonempty convex set F ⊂ Rn and a sequence of convex cost functions
ct : F → R with t ∈ N. In each step t, an online convex programming algorithm
calculates a vector xt ∈ F and then receives the cost function ct or its result for input xt.
Additionally, the following assumptions are made:

• The feasible set F is nonempty, bounded and closed.

• Each cost function ct is differentiable. Zinkevich states, that a modified version of
the algorithm also works, if ct is sub-differentiable.

• The gradient of each ct is bounded by some N ∈ R+:∥∥∥∇ct(x)
∥∥∥ ≤ N ∀x ∈ F.

• For all t there is an algorithm, which calculates ∇ct(x) for a given x ∈ F .

• For all y ∈ Rn the projection

Proj(y) = arg min
x∈F

d(x, y)

is well-defined, where d(x, y) denotes the distance between x and y.

Under these assumptions the optimization algorithm calculates the following updates:

Definition 3.1.20. Consider a given online convex programming problem. Initially choose
x0 ∈ F and a sequence (η)t arbitrarily, where each ηi ∈ R+. After the reception of ct, the
update is calculated by

xt+1 = Proj
(
xt − ηt∇ct(xt)

)
.

This immediately raises two questions:

1. Which quantity is optimized by the above algorithm?

2. How is the sequence of step sizes (η)t to be chosen?

64

3 Development of AT3D_PAQ

Obviously, the optimization goal is different from offline gradient descent. Since the future
cost functions cu with u > t are unknown, it is impossible to determine their minimum
in advance. Instead, Zinkevich shows that the greedy projection minimizes regret. It
quantifies the sum of the cost differences between the greedy projection output until time T
and an algorithm, which knows all cost functions until T in advance, but may only choose
one static minimizer x ∈ F . This is formalized as follows:

Definition 3.1.21 (Regret). Let OCP be a given online convex programming algorithm
to a problem (F, (ci)i∈N0). Let (xi)i∈N0 be the sequence of output vectors of OCP, then
the cost of OCP until time T is defined as

COCP(T) =
T−1∑
t=0

ct(xt).

The cost of a static feasible solution x ∈ F is

Cx(T) =
T−1∑
t=0

ct(x).

Then the regret of OCP until time T is defined as

ROCP(T) = COCP(T)−min
x∈F

Cx(T).

Therefore if ROCP(T) = 0, the online algorithm OCP performs as well as the offline
convex optimization problem of minimizing Cx(T) with a-priori knowledge of (ct)0≤t<T .
Zinkevich showed, that the average regret per time-step approaches 0 as T grows towards
infinity, if ηt = (t+ 1)−

1
2 for all 0 ≤ t < T :

Theorem 3.1.22. Let (F, (ci)i∈N0) be a given online convex programming problem. Then
the regret of the greedy projection is

RProj(T) ≤ ‖F‖
2√T
2 +

(√
T − 1

2

)
‖∇c‖2 ,

where ‖F‖ denotes the (bounded) diameter of F and ‖∇c‖ = maxx∈F,t∈N
∥∥ct(x)

∥∥.
Hence

lim sup
T→∞

RProj(T)
T

≤ 0.

Additionally it is shown, that if a small amount of change is allowed in the formerly
static offline optimization, the average regret approaches a constant bound as T → ∞,
which depends on the (arbitrary, but fixed) choice of a step-size η and on ‖∇c‖.

We can now return to the initial problem of finding a beneficial weight update algo-
rithm for PAQ versions 4-6, which minimizes the coding cost error. The update formula
given in [Mah05] can be shown to be an instance of online gradient descent. We will omit
the formula here due to its notational overhead. Unfortunately, there was no theoretical

65

3.1 PAQ

foundation for the performance of the update formula: It was not shown whether the coding
cost error is a convex function of the weights and the step size was chosen independently
of the encoding step number k, so the results from [Zin03] cannot be applied.

Remark 3.1.23. Note that for compression with PAQ in practice, the result in theorem
3.1.22 is not relevant. A static minimizer of all coding cost functions in the encoding
process is only desirable, if the compressed data is stationary. This is not true in general,
thus comparing the update formula to such a static minimizer would not yield results of
practical relevance.

In summary, the weight update formula of PAQ4-6 yielded satisfactory results in
practice, but there is no theoretical foundation available, which explains these results. Yet,
due to the close connections to machine learning, there may be a link to algorithms from
this field, which may explain the performance of the context mixing algorithms described
above. We will not pursue this investigation, since the algorithm was further modified and
we have theoretical evidence for the performance results of this modification.

Remark 3.1.24 (Weight selection). Besides context mixing, PAQ supports a second
important mechanism to improve compression: Tuples of model weights wi,k for all i are
partitioned into sets according to mix-context classes. Therefore an update of a weight
wi,k is performed based on a weight wi,j with j ≤ (k − 1). In PAQ versions 4 through 6,
the number of mix-context classes is considerably smaller than 100.

3.1.4 Context mixing in PAQ7-8: Logistic/geometric mixing

We will now describe the final step in the evolution of the context mixing algorithm in
PAQ, the neural network mixer introduced by PAQ7. This mixer is also used in PAQ8 and
thus in the implementation of AT3D_PAQ. We will refer to this context mixing algorithm
as NN-mixer from now on. A schematic display of it is given in figure 8.
Artificial neural networks refer to data structures, which resemble the function of biological
neurons in the brains of animals. Essentially, an artificial neural network combines input
data in a large number of processing units (neurons) according to weights into one or
more outputs. These processing units are organized into layers, and only processing units
of different layers are connected. A large theory has developed around neural networks,
which is far beyond the scope of this thesis. A good introduction can be found in [Roj96].
For the reader familiar with artificial neural networks [Kno12] provides an analysis of the
architecture of PAQ8 from a machine learning perspective.
From a mathematical point of view, the changes applied to the structure of previous mixers
are to two major ones: The domain of context mixing was changed to the logistic domain
by the application of a transform function before mixing, and the number of mix-context
classes was raised by a large factor.

66

3 Development of AT3D_PAQ

Model class 1 Model class n

NN-mixer

Predictions

weight
tuples

Final prediction

Uncompressed
input data

Stage 1 Stage 2

Prediction Weight Scalar product

{mix-context
class

weight tuple
in

mix-context

Active
mix-context

Figure 8: Schematic display of the NN-mixer. Predictions in the logistic domain are marked in italics.

Before we can describe the NN-mixer, we have to introduce the transform functions, which
we will name following the PAQ-documentation:

Definition 3.1.25 (Stretch and squash-function). The squash-function is defined as

sq : R→ (0, 1) , sq(x) = 1
1 + e−x

.

The stretch-function, which is the inverse of squash, is defined as

st : (0, 1)→ R, st(x) = ln x

1− x.

Squash is also known as the logistic function, stretch as the logit-function in the
literature. All arithmetic operations performed using output of the stretch-function, are
said to take place in the logistic domain.

Definition 3.1.26 (Logistic mixer). Let g be a context mixer of s predictions. It is called
a logistic context mixer, if

gLog
(
P̂0(xk | xk−1), . . . , P̂s−1(xk | xk−1)

)
= sq

(
s−1∑
i=0

wi,k st
(
P̂i(xk | xk−1)

))
,

with weights wi,k ∈ R. Thus a logistic mixer calculates a linear combination of transformed
probabilities in the logistic domain.

67

3.1 PAQ

The weight update is computed according to the following formula:

wi,k+1 := wi,k + α
(
xk − gLog

(
P̂0(1 | xk−1), . . . , P̂s−1(1 | xk−1)

))
st
(
P̂i(1 | xk−1)

)
, (3.1)

where α is a small step-size or learning rate, which is chosen manually. Again, this
update formula is an instance of online gradient descent. In [Mat12] Mattern shows, that
indeed logistic mixing is optimal in a sense. We will clarify this now, following Mattern’s
paper, adapted to our notation.

Consider a symbol x from an alphabet A being the realization of a random variable
X, which is distributed according to the true probabilities P (X = x′) for all x′ ∈ A, and
given probability estimates P̂ (X = x′) for all x′ ∈ A yielding a probability distribution PY

for a random variable Y. Then the expected coding cost E(u(x)) is (with the assumption
of δ = 0 due to the use of an arithmetic coder) given by

E(u(x)) = H(X) +D(PX || PY).

Thus the expected coding cost is minimized, if the KL-divergence of PX and PY is minimized.
Consider s given models and random variables Yi distributed according to the probability
distributions induced by the estimates of the models. Then with

U :=
{
Q : A → (0, 1)

∣∣∣∣∣ ∑
x∈A

Q(x) = 1
}
,

V :=
{
Q : A → [0, 1]

∣∣∣∣∣ ∑
x∈A

Q(x) = 1
}

we are looking for a random variable Y with probability distribution PY ∈ U ∩V , such that

PY = arg min
Q∈U

s−1∑
i=0

wiD(Q || PYi).

Mattern shows, that the minimizer PY is a geometric mixture. It is also shown, that the
logistic mixer with the weight update formula 3.1 is an instance of a geometric mixture with
a weight update implementing online gradient descent. In [Mat13], Mattern additionally
provided the first theoretical guarantees for code lengths of data compression with PAQ7
or later.

Remark 3.1.27 (Weight selection). The second major change in the NN-mixer is the
possibility of selecting a weight set from a very large number of available sets in each
encoding step. In comparison to earlier versions, where essentially each mix-context class
constitutes one equivalence class of weights, in the NN-mixer weights are partitioned
into equivalence classes of mix-contexts. Effectively, this raised the number of weight
equivalence classes by a factor of 103. However, no theoretical investigation of weight
selection mechanisms for PAQ has taken place up to today, all progress was made by
manual optimization.

We will now turn our attention to implementational aspects of PAQ and its integration
into the existing AT3D implementation.

68

3 Development of AT3D_PAQ

3.1.5 PAQ8 - Modeling tools

The source code of PAQ is very modular, which allowed us to implement a modified
version, tailored to the requirements of AT3D. PAQ provides numerous highly optimized
modeling tools, which we will introduce now. Unfortunately, some of these tools are
specialized to byte-wise encoding of values, which means they are not suitable for the use
in AT3D entropy coding. This is due to the fact, that pixel position encoding is performed
bit-wise and grayscale values use 8 bits at most, depending on the applied quantization.
Thus, we will only describe these tools very shortly and remark their incompatibility, where
it applies. The available tools can be divided into three classes:

• State maps, which map a bit history state to a probability, thus serve as a predictor.

• Context maps, which serve as very complex models, as defined in 3.1.10. Their input
is at least one context from one or more context classes, and they calculate at least
one prediction depending on the context, the accumulated bit history in this context,
and the context map type.

• Adaptive probability maps (APMs), which are the modeling tools for SSE.

In the following, we will translate implementational details from the source code to our
mathematical framework, which we have developed so far. These formulas have not been
presented in any publication regarding PAQ yet. Note that probabilities are internally
represented by a 12-bit integer number, which causes many factors to be powers of two.

Definition 3.1.28 (State table). A state table is a structure, which essentially maps bit
histories to a state. A state is an approximation of the number n0 of zeros and the number
n1 of ones in a (context-dependent) bit history and is represented by a number s ∈ 255.
The state is updated incrementally with processed bits from the input bit-stream (according
to encountered contexts). The bit counts n0 and n1 are exact for n0 + n1 ≤ 4 and for
n0 + n1 > 4 both are approximated. If one of the counts ni is large and an opposite bit is
processed, a non-stationary state-update is applied, which implicitly discards i-valued bits
from the bit history by reducing ni significantly. The exact update rule may be reviewed
in the source code of PAQ8.

Definition 3.1.29 (State map). A state map is a structure, which maps a state s ∈ 255
from a state table to a probability estimate, thus it is a predictor. In the implementation,
it only predicts a 1-bit, the opposing estimate is easily derived.
Let n0(s) be the number of zeros in the approximated bit history corresponding to s and
let n1(s) the analogous number of ones. Initially, the following estimates are predicted:
If ni(s) = 0, then nj(s) is multiplied by 2−10 for i, j ∈ {0, 1} and i 6= j. Then

SM0 : 255→ [0, 1] , SM0(s) = n1(s) + 1
n0(s) + n1(s) + 2 .

This corresponds to the Laplace estimator. After the k-th prediction step, the state map is

69

3.1 PAQ

updated as follows:

SMk(s) = SMk−1(s) + 2−12(xk−1 − SMk−1(s)) + 2−5.

We will now investigate context maps. These structures are complex, predefined models,
where only the contexts have to be customized. There are three implemented types with
different characteristics. Unfortunately, all context map types are highly customized to byte-
wise prediction, which makes them unsuitable for AT3D in their original implementation.
Yet an adaption for variable-length predictions may be helpful for grayscale value-encoding
in AT3D. We will only provide brief summaries of their properties.

Definition 3.1.30 (Run context map). A run context map bases its predictions only
on the length of a consecutive count of a bit value i in a context. A new context may only
be set on byte boundaries.

Definition 3.1.31 (Small stationary context map). A small stationary context map
supports a single context class. In contrast to the other context maps it only keeps
an implicit bit history per context by updating probabilities directly, based on the last
prediction error.

Definition 3.1.32 (Context map). Context maps are the most complex predefined
structure in the implementation of PAQ. They allow predictions in multiple context classes.
A run context map is included in each context map. Each context is set at byte boundaries.
Context maps provide a sophisticated prediction mechanism and put out five predictions
per context class in a single encoding step.

3.1.6 PAQ8 - Adaptive probability maps

The tools included in PAQ to implement secondary symbol estimation (SSE) are called
adaptive probability maps (APM). These map a probability estimate computed by the
NN-mixer and a context from a single context class to a new probability estimate, which is
then fed into the arithmetic encoder. It is possible to use cascades of APMs or to combine
the output of several APMs linearly. Yet, optimization of the SSE-stage is purely based on
manual adjustments. APMs compute their probability output by linear interpolation as
defined below:

Definition 3.1.33 (Adaptive probability map). An adaptive probability map (APM)
is defined as the following mapping:

APMi : [0, 1]×Z → [0, 1] , for 0 ≤ i ≤ k.

The function APM0 is the linear spline interpolant, which satisfies

sq(pj) = APM0(pj), for pj = −2048 + 16j ∧ 0 ≤ j < 33.

70

3 Development of AT3D_PAQ

Let λ ∈ {2a | 1 ≤ a < 32} be the learning rate of the APM. After calculating APMi(pi, z),
with pj ≤ pi ≤ pj+1, the APM is updated, such that it is the linear spline interpolant
satisfying

APMi+1(pl, z) =

APMi(pl, z), for l ∈ 33 \ {j, j + 1} ,
APMi(pl, z) + (1+2−16−λ)xi−2−15−APMi(xp,z)

2λ , for l ∈ {j, j + 1} .

3.2 Integration of PAQ into AT3D

AT3D and PAQ were developed by different programmers for differing purposes. There-
fore the software architectures of both programs are dissimilar, creating some challenges
when merging both into one program, which we will call AT3D_PAQ for the remainder of
this thesis. In this section we will give a brief overview of the new entropy coding stage in
AT3D_PAQ from a purely technical point of view, and describe necessary changes applied
to the original software architecture of PAQ. Note that structures in the figures of this
section are named by their class names in the implementation, they do not necessarily
correspond to notions and definitions from this thesis.

PAQ contains code, which is necessary for handling input files, detecting special file
types, and writing the compressed output to an archive. Since this is not necessary in
AT3D_PAQ, this code was removed first. An overview of the software architecture of the
encoding unit of PAQ in its original implementation is given in figure 9.

Uncompressed input data

Encoder Mixer Models
Data

Probability

Data
Predictor

SSE Probability

Data

Predictions

Compressed output data

Figure 9: Schematic display of the original software architecture in PAQ. Class names from the
implementation are displayed with boldfaced letters.

Two major architectural issues had to be solved:

1. PAQ was designed to either encode or decode data during one program execution.
Thus an option to reset all models and structures was missing.

2. It was additionally designed to only rely on already processed data for prediction
purposes. The input data feed level was strictly separated from the modeling level,
as displayed in figure 9. Especially for grayscale value coding in AT3D such a link
between input data level and modeling level is desirable in order to be able to access
geometry information from the tetrahedralization.

71

3.3 Modifications of PAQ after the integration

The first problem was solved by implementing a reset()-function in the encoder-class,
which calls a reset()-function in the predictor and is passed further down the structural
chain of PAQ. These calls finally reach the lowest structures in the call-chain where again
reset()-functions were implemented, allowing a full reset of all structures inside PAQ.
This is the only solution to this problem without major architectural changes, because many
functions use static variables, which can not be accessed from outside these functions.

The second issue was resolved by a similar idea: By using set()-functions, which are called
by AT3D, the models inside PAQ gain access to the information via pointers to the video
dimensions and the tetrahedralization. These pointers are member variables of Encoder
and Predictor. This is visualized in figure 10.

Uncompressed input data

Encoder Mixer Models
Predictor

SSE

Compressed output data

TetrahedralizationPixel cube dimensions

AT3D - Coding

set()
set()

PAQ

Figure 10: Schematic display of the merged software architecture in AT3D_PAQ. Class names
from the implementation are displayed with boldfaced letters.

The interface between AT3D and PAQ is simple: Instead of calling the old entropy
coding functions, new ones were created: they are named encodePositionsPAQ() and
encodeValuesPAQ(). These create an Encoder object, whose code()-function is called for
each bit to code. Between pixel position and grayscale value encoding, all PAQ-internal
structures are reset. The decoding functions are named and work analogously.

3.3 Modifications of PAQ after the integration

After merging AT3D and PAQ, the remaining code of PAQ was cleaned up, so that it
is divided into several code- and header-files in AT3D_PAQ instead of being contained in a
single file. In addition to the already removed code, some unnecessary models (.exe, .jpeg,
8bit-bitmap, 24bit-bitmap, text) were deleted from the code base. As a result, the number
of additional code lines added by PAQ was reduced from about 3700 to about 2100.

72

3 Development of AT3D_PAQ

The next and most important step was to make use of the modular structure of the
PAQ source code and to replace the original models by code tailored to the requirements
of AT3D. This included the following measures:

• Removal of all models, which were irrelevant to compression performance,

• separation of pixel position encoding and grayscale value encoding,

• reordering of grayscale value encoding,

• design and implementation of customized models and mix-context classes for pixel
position encoding and grayscale value encoding,

• tweaked weight initialization,

• custom SSE-stages for pixel position encoding and grayscale value encoding.

In the following sections we will describe the above modifications in more detail.

3.3.1 Modeling pixel positions

In this section we will describe which models we implemented into AT3D_PAQ for
efficient pixel position encoding. When comparing the approaches to modeling in AT3D
and AT3D_PAQ, we have to take their different architectures into account. AT3D only
supports one model with a single context class and a small number of contexts. In particular,
it only generates a single prediction. As a consequence the context class has to be chosen
very carefully, and it is likely, that the context class is not capable of effectively modeling
all video sequences. Our numerical experiments in section 3.4 will demonstrate, that this
is exactly the case. A special sequence type is encoded very efficiently, while many others
are not. Our goal is to achieve improvements for all types of sequences, and our numerical
experiments will show, that we were successful.

Remark 3.3.1 (Importance of pixel position coding). This thesis is equally focused on
pixel position encoding and grayscale value encoding, despite the fact, that the latter is
vastly more complicated. This is justified by the ratio of sizes of encoded pixel positions to
the total compressed file size: With quantization setting q1 this ratio is about 1/2, yet
for the more practical q16 it is close to 2/3 or even 3/4. Thus even significantly larger
improvements on grayscale value encoding yield a smaller overall improvement, which is
one of the aims of this thesis.

AT3D_PAQ relies on a large number of models and context classes. It is not necessary
that all models provide precise predictions at all times. Instead, we may design models
which only fit into particular situations and rely on the NN-mixer to give more weight to
these models when they predict well. First we have to consider the following questions:

• Which is the most efficient pixel scanning order?

• Which dependencies arise from a scanning order?

73

3.3 Modifications of PAQ after the integration

Our goal is to group structural similarities between the pixel positions closely together on
the one hand, and to make as much use of previously gained information as possible on the
other hand. We then want to design contexts and models to exploit these dependencies
and pieces of information. A starting point for a scanning order producing such a grouping
is the AT3D implementation: Recall that there frames were scanned row-by-row and the
first and last frame were encoded first, followed by the remaining frames in order. We will
call the first and the last frames of blocks (or sequences in our case) bound frames.
The test sequences presented later show a variety of significant pixel distributions across
frames. Still sequences contain most significant pixels in bound frames, structured images
have a mostly even distribution and for moving sequences the distribution is entirely
dependent on the motion. Based on these observations, we propose three frame ordering
schemes:

1. Natural order,

2. order by number of contained significant pixels,

3. bound frames first order.

The examples indicate, that the intra-frame scanning-order may be chosen arbitrarily, so we
will keep it in a row-by-row order. To determine the most efficient frame order, we tested
the above suggestions (after modeling) and obtained best results by the bound frames
first ordering. Low-entropy sequences benefited in particular, but all other sequences
also showed equal or slightly better results compared to alternative frame orderings. We
also tried an ordering, where the frames containing most significant pixels were encoded
first, but this approach did not yield satisfying results.

Now we will describe our modeling approach: Again the examples suggest, that the
projected context box-approach of the original implementation is very promising for still
sequences, since most significant pixels in non-bound frames appear to be randomly dis-
tributed in the area ”shadowed” by the projected context boxes. The approach effectively
reduces the area, in which significant pixels are predicted. For these reasons we implemented
projected context box models into AT3D_PAQ.
As noted before, the performance of this approach is very likely to deteriorate for other
sequence types. The test sequences suggest two further types of dependencies that may be
exploitable: intra- and inter-frame structure. The former refers to clustering of significant
pixels in structured areas of a frame, the latter to a similar clustering for objects with little
translational motion or with changing textures, e.g. a structured rotating object, where
the structure changes between frames. In order to exploit the former dependencies, we
implemented restricted 2d context boxes. The latter are captured by 3d context boxes,
which are restricted 2d context boxes extended by full projected 2d context boxes in
previous frames.
One type of sequence is not ideally captured by the models described above: Highway2
show a zooming-characteristic in the motion of its significant pixels with distinct groups of
pixels following the same translational motion. This behavior clearly suggests the need
for models, which capture this translational motion. To this end, we implemented a first

74

3 Development of AT3D_PAQ

version of a significant pixel grouping detection in combination with a motion estimator.
However, the numerical results yielded minimal advantages for Highway2 and severely
deteriorated performance for other sequence types, indicating that the above models are
already capturing some of the existing dependencies (e.g. due to small translation between
frames and largely overlapping pixel groups). We also considered global measures, such as
(remaining) significant pixel counts in frames or the whole sequence, but these appeared to
be inferior to local models.

We will now describe the implementation of our models. It employs state tables and
state maps as follows:

Algorithm 9 Bit-wise model predictions using state tables
1: Let S be a state table, SM be a state map, and let xk−1 be the last encoded bit
2: Let c ∈ A = 232 represent a context from the prediction of xk−1

3: Let tc ∈ 255 represent a bit-history state
4: Update bit history state tc according to last encoded bit xk−1 and S
5: Calculate current context c
6: Obtain bit history state tc from S

7: return P̂ (xk | xk−1) = stretch(SM(tc))

All models described below use the predictor from algorithm 9. The context box types
were implemented as position-specific context boxes, where each individual bit of the
number c represents a pixel position surrounding the currently predicted position, cf. figure
11. Essentially a bitmask is applied to the surrounding pixels using a bit-wise AND-operation
to generate the number c. We implemented 11 different models in this class, which use the
current, the last, the last but one, the first, and the last frame of a block and consider pixel
positions q satisfying ‖p− q‖∞ ≤ 3 when encoding p. The total number of these contexts
is 8936352. For the detailed model implementations we refer to our source code.
Additionally we use the significant pixel count within the context box types corresponding
to the five frame positions mentioned above as contexts c. This makes up five more models
with a total of 75 contexts, because the largest considered number of significant pixels
within a context box is capped at 15. Our mix-context classes are set as follows:

• Four classes are exact context boxes, making up 2056 contexts.

• Five classes are significant pixel counts in the five frame types mentioned above,
yielding 75 contexts.

• Three classes are sums of significant pixel counts, making up 105 contexts.

• The total number of mix-contexts is 2236 in 13 classes.

Numerical experiments also yielded that pixel position encoding benefits from SSE signifi-
cantly. Therefore we also implemented an exact context box model with radius 1 around
the currently encoded position and use the significant pixel counts from several context
box types into an SSE-stage modifying the context mixing prediction of the NN-mixer of
AT3D_PAQ as shown in figure 12.

75

3.3 Modifications of PAQ after the integration

Frame f

Frame f-1

0
0
0

0 0

0 0
0 0 0 0 0

000
00001

1
1

1
1

0
0 0

0

0 0 1
1

1

0100001|0001000|0100000|100|001|100|010 = 2218920034 = c

Figure 11: Visualization of position-specific context box model. From the context box a binary
number c is generated, which is then used as a context.

Position-specific 3x3x2 context

NN-mixer prediction

APM (8)

Sig. pixel count current frame

APM (8) APM (8)

Sig. pixel count first/last frame

Sig. pixel count last two frames

APM (8)

Final prediction

Figure 12: Visualization of cascaded SSE-stage of pixel position modeling. Numbers in brackets
denote the experimentally determined optimal learning rates λ.

76

3 Development of AT3D_PAQ

The details regarding context box sizes and SSE-design were developed by numerical
experiments and show the best results across all tested sequences.

Remark 3.3.2. Before removing the original models of PAQ from AT3D_PAQ, their
impact on compression performance was tested. None of the test video sequences benefited
from those anymore. This is a clear indication, that the employed models capture existing
redundancies very well and no remaining ’arbitrary’ redundancies exist in the pixel positions.

3.3.2 Modeling grayscale values

In this section we will describe our approach to grayscale value modeling. We will start
with some important remarks regarding the differences to pixel position encoding and then
proceed with a presentation of our models.
An implementation of models for grayscale values is fundamentally different from the
modeling introduced in the previous chapter. Grayscale values have a fixed length of
ρ bits, where 2ρ is the number of colors used in a sequence. Note that opposed to the
arithmetic coder employed in AT3D, the arithmetic encoder implementation of PAQ only
allows encoding single bits per encoding step. As a consequence, each bit in the grayscale
value is modeled separately, but not independently of the others.
The first choice to be made before any model can be developed regards the values to
be encoded: The natural approach is plain grayscale value encoding, where ρ bits have
to be encoded per value. On the other hand the two-dimensional adaptive thinning
implementations (e.g. in [Hin10]) rely on coding of value differences along edges. The latter
choice was based on numerical results, which indicated that grayscale value differences
between two vertices as a function of the edge length of the edge connecting these vertices
is a decreasing function.

Remark 3.3.3. Note that when encoding grayscale value differences, ρ+ 1 bits have to
be encoded per value, because the difference d ∈ {−(2ρ − 1), . . . , 2ρ − 1}. Thus the sign
bit has to be coded additionally. The entropy of this additional sign bit is likely to be close
to 1 bit, since for a large range of values either sign is equiprobable.

First numerical tests indicated, that encoding grayscale value differences in an order
governed by the longest available edge length yielded acceptable results for very few ex-
amples and produced significantly worse results than AT3D for most sequences. Further
investigations showed, that the number of relatively short edges with large grayscale value
difference averages µ ≈ 35 and standard deviations σ ≈ 40 make up a large portion of the
overall value numbers. Therefore due to the additional sign bit and the large deviations of
the difference values an efficient coding is not possible. Instead, investigations indicated
that a different approach was more promising: relying on neighborhood information.
Our new approach for AT3D_PAQ predicts grayscale values (not differences) in an order
based on the number of already encoded neighbor values. Recall the notion EkV ⊂ EV ,

77

3.3 Modifications of PAQ after the integration

which is the set of vertices, whose grayscale values have already been encoded. In each
iteration, the value at vertex y ∈ EV \EkV with the largest number of neighbors yk ∈ EkV is
chosen to be encoded next. If yk is not unique, the vertex with the largest average edge
length of all its connecting edges is chosen. This approach was compared to the one from
[Hin10] based on several test sequences using simple models adapted to either approach
and proved to be significantly more efficient.
We introduced an algorithm allowing a very efficient selection of the significant pixel
with most encoded neighbors. It keeps one linked list Ni for each number i of computed
neighbors of non-computed significant pixels and save i for each of these. After encoding a
grayscale value at a pixel position, all of its non-computed neighbors pj are removed from
the list Ni they were in and added to Ni+1. The computed pixel is then removed from the
list it was in. The following value to be encoded is then selected from the list imax. It
contains the pixels yk with most computed neighbors and selects the next grayscale value by
calculating the average edge length of the edges each yk is a vertex of and selecting the pixel
with the largest average. While the addition to a list is a constant time operation, runtimes
for removal and next pixel selection are dependent on the average list size M � N2. The
quantity M is hard to estimate, because it is geometry-dependent. Due to our satisfying
numerical results regarding compression time, we will settle with noting, that the selection
algorithm has sub-quadratic complexity.

We will now describe our modeling approach for grayscale value encoding. We use two
main ideas: All models predict an estimate of the encoded grayscale value v, which is
then encoded bit-wise. The probabilities for all individual bit predictions are set manually,
reflecting that the first bits are more likely to be predicted correctly than the last ones.
The employed models can be divided into several classes:

• Single value predictions,

• predictions based on incidental tetrahedra,

• context-based predictions,

• unmodified DMC- and chart-model from PAQ8kx.

The first two types develop a ρ-bit grayscale value prediction ṽ before encoding the first
bit of the true grayscale value v. Each individual bit prediction ṽi of ṽ is then generated
by the formula

ṽi = ±fi,

with
300 ≤ fi ≤ fj ≤ 1500, for 0 ≤ j < i ≤ ρ.

The values fi were chosen based on manual optimization and denote predictions in the
logistic domain, the sign is negative, if a 0 is predicted and positive, if a 1 is predicted.
The single value predictions are simply

• the grayscale value at the pixel with the longest edge connected to the current pixel,

• the average of already encoded neighboring grayscale values.

78

3 Development of AT3D_PAQ

The second model-class calculates predictions based on previously encoded grayscale values
in tetrahedra incidental to the currently encoded pixel. This is motivated by observations,
which suggested that tetrahedra with several closely grouped grayscale values tend to
have a similar grayscale value at the currently encoded position. These predictions are
calculated as presented in algorithm 10.

Algorithm 10 Grayscale value prediction in AT3D_PAQ: Cell-based prediction generation
1: Let v be the grayscale value at pixel position p to be encoded
2: ∆v := 15
3: for each tetrahedron Tj ∈ Cp do
4: Determine number nj of already encoded grayscale values wk in Tj
5: Sort wk for 0 ≤ k < nj

6: Determine largest count ñj of wk satisfying |wk − wl| < 2∆v for k 6= l and choose
7: v̂j as the average value of this largest group
8: if i-th bit of v̂j is 1 then
9: sgnj := 1

10: else
11: sgnj := −1
12: end if
13: if (nj = 3 and ñj ≥ 2) or (nj = 2 and ñj = 2) then
14: p̂j := 1500 sgnj
15: else if (nj = 2 and ñj = 1) or (nj = 1) then
16: p̂j := 800 sgnj
17: else
18: p̂j := 300 sgnj
19: end if
20: end for
21: return Sequences (p̂)j of probability estimates and (v̂)j of corresponding predicted

average values with j ∈ |Cp| − 1

In algorithm 10 the probability estimates p̂j indirectly represent the confidence in the
prediction of a bit, and are then further modified depending on nj and v̂j , cf. algorithm 11.
Again the modification factors were found by manual optimization. For the first bit, we
reduce the estimate p̂j , if v̂j is close to 2ρ−1, since in this case the first bit of v̂j cannot be
predicted safely. Additionally, we check for 0 < i < 3, if the previous bit was predicted
correctly. If it was not, we still assume our prediction was close and consequently invert
the following bit-prediction, which improves compression of predictions v̂j ≈ m2ρ−i−1 for
m ∈ N. One of the disadvantages of this algorithm is, that the number of predictions varies
with |Cp|, which means that weights for the last predictions in the NN-mixer are inaccurate.
This motivated the final sorting procedure. Yet, this type of prediction improves compres-
sion on several sequences despite its shortcomings. This is most likely due to the fact, that
the NN-mixer either uses the full model class, or no predictions from it, depending on the
sequence.

79

3.3 Modifications of PAQ after the integration

Algorithm 11 Grayscale value prediction in AT3D_PAQ: Bit-wise cell-based predictions
1: Let v be the grayscale value at pixel p to be encoded, N = |Cp|, and
{p̂j ∈ N | 0 ≤ j < N} and {v̂j ∈ 2ρ − 1 | 0 ≤ j < N} be sets of probability estimates
in the logistic domain and corresponding average values computed by algorithm 10

2: Let 0 ≤ i < ρ be the number of the currently encoded bit
3: if previously encoded bit was predicted correctly then
4: oj−1 := 1
5: else
6: oj−1 := −1
7: end if
8: for 0 ≤ j < N do
9: if (i = 0 and

∣∣v̂j − 2ρ−1∣∣ < 2ρ
5) then

10: p̂j := p̂j
4

11: else if (i = 0 and
∣∣aj − 2ρ−1∣∣ ≥ 2ρ

5) then
12: p̂j := 1.2p̂j
13: else if i = 1 then
14: p̂j := 1.2p̂joj−1

15: else if i = 2 then
16: p̂j := 1.4p̂joj−1

17: else if i > 2 and i < 6 then
18: p̂j := p̂j

5
19: else
20: p̂j := p̂j

7
21: end if
22: end for
23: Sort p̂j descending in the corresponding nj and predict them to the NN-mixer, i.e.

predictions based on a larger number nj are predicted first

The context-based predictions employ algorithm 9, analogous to the pixel position contexts.
We implemented the following context classes:

• The last encoded bit xk−1,

• the grayscale value vemax , whose pixel position is connected to the currently encoded
pixel p along the longest edge incidental to p with length emax - each bit position
has its own context value,

• same as above, but vemax is bit-shifted to the right with at most 5 bits remaining,

• edge length emax divided by 10 and capped at 200.

Additionally, there are two more model classes which predict the same values as the single
value prediction models, but use state maps as described in algorithm 9. These only yield
minimal additional improvements, therefore we refer to the source code for details regarding
their implementation.

80

3 Development of AT3D_PAQ

In order to make use of the weight selection mechanisms of the NN-mixer, we furthermore
implemented the following mix-context classes:

• Last encoded byte (independent of ρ),

• number of already computed neighbors,

• current bit position,

• number of predictions with nj = 3,

• quantized cell average edge length, average value and their standard deviations,

• first bits of vemax with individual contexts for each bit position.

• Total number of mix-contexts is 2135 in 10 classes.

Our SSE-stage is very simple, it contains a single APM with an update rate of 9, which
uses the current bit-position as a context and yields improvements of about 1-1.5%.

3.4 Numerical results: AT3D_PAQ vs. AT3D

In this section we will present the central results of this thesis, the compression results of
AT3D_PAQ. We obtained improved overall compression results in all considered examples.
In 0.24% of the conducted tests the pixel position size grew by at most 1.54%, all other
examples showed an improvement. The improvements depend strongly on the number
and the distribution of significant pixels for pixel position coding and on the geometric
properties of the resulting tetrahedralization and the quantization setting for grayscale
value coding. We will show which example classes benefited most, and which ones did not.
The considered test video sequences are of different characteristics, ranging from sequences
with little structure and motion to high-entropy sequences containing complex structures
and a large amount of motion. Some of these are real sequences, others are cartoon
sequences from the movie Sita sings the blues by Nina Paley. It is published under the
Creative Commons license (CC0), which allows us to use it as we wish. Additionally we
considered geometric sequences, generated by a self-developed sequence generator, allowing
us to investigate improvements on simple affine transformations of objects like polygons
and ellipses. A complete list of the employed test sequences is presented in appendix B.
After describing the test environment, we will begin this chapter with a summary of the
overall results, continue with some observations regarding the pixel position and grayscale
value encoding results, and then present a detailed view on selected examples. The majority
of the compression results are listed in appendix C, for the full table containing all results
we refer to the disc which is supplied with this thesis.

Remark 3.4.1 (Sequence naming conventions). Most sequences we considered are in qcif-
resolution and 30 frames long. These are simply denoted by their name in verbatim letters.
A different video length is denoted by appending -[NumOfFrames] to the sequence name,

81

3.4 Numerical results: AT3D_PAQ vs. AT3D

a different resolution by appending _[Res] to it. The various resolution abbreviations are
listed in appendix B. Sequences from the cartoon movie Sita sings the blues are named
with the prefix SSTB directly followed by the number of its first frame in the full movie.

The test settings can be summarized as follows:

• A total of 44 test sequences was considered. These include natural, cartoon, and
artificial sequences, frame sizes vary from 50 × 50 pixels to 704 × 576, and frame
numbers from 6 to 120.

• The sequences were chosen such that they contain various types and amounts of
content, structure, and motion. A rough summary of these properties is also listed
for each sequence in appendix B.

• Each sequence was encoded in 6 to 8 steps to achieve PSNR-values ranging from
above 40 dB to below 30 dB, which ranges from very good to very poor visual quality.
The number of removed pixels in each step was chosen manually depending on the
sequence. In each step the significant pixel distribution from the previous encoding
step was used as the starting point for adaptive thinning.

• In each step, 3 different quantization settings were used, q1, q4, and q16.

• The total number of results is 864. These were generated by using batch scripts
and then extracting the resulting numbers by a tool developed by the author of this
thesis. All employed tools are included on the appended disc.

• All sequences were encoded in a single block of frames. All results refer to plain
adaptive thinning output without any pre- or post-processing except for calculating
the best approximation.

• The following set of parameters was used to generate the results:
at3d.exe -co -c%numOfThinnedPx% -a6 -o1 -g-1 -p -m -l -f600 -%quantSetting%
%inputFile.pgmv% %nodesFile.nodes3d%

The overall average results are summarized in the following table. For the remainder of
this section all improvements are relative to the AT3D results, positive numbers indicate
that AT3D_PAQ yielded an improvement, negative numbers indicate a deterioration.

Encoding stage
Improvement [%]

Average Minimal Maximal
Pixel positions 14.95 -1.54 55.48
Grayscale values 16.66 5.61 60.46

Total 15.24 1.58 56.06

Table 4: Overall average compression improvements of AT3D_PAQ over AT3D, split into pixel
position, grayscale value, and total encoding improvement.

A closer analysis of these results is necessary, and we will present it later. First we
begin with partitioning the grayscale value encoding results into the different quantization
setting results:

82

3 Development of AT3D_PAQ

Quantization setting Avg. improvement [%]
q1 14.40
q4 13.66
q16 21.93

Table 5: Average grayscale value encoding improvements, split into three tested quantization values.

Clearly the encoding of values quantized with q16, resulting in 4-bit values benefited
most from our optimizations. This is a satisfying result, since for low bit-rate encodings
setting quantization to q16 still only results in negligible deteriorations of the PSNR-values.

3.4.1 Pixel position encoding results

As our results in table 4 showed, the improvement varies greatly depending on the indi-
vidual sequences. In this section we will present pixel position encoding results for selected
sequences, which suggest pixel position distribution characteristics that are compressed
more efficiently by AT3D_PAQ. We will begin with an analysis of the problematic results
we obtained compressing the Suzie-sequences and MissAmerica.
In this setting the bound frames of a block contain significantly more information than
the remaining frames (cf. figure 14), and pixels in these are very likely to be within the
same area of a frame, that contained significant pixels in the bound frames. Yet, within
this area, their distribution appears to be random, resulting in minimal improvements or
even a small deterioration by AT3D_PAQ over AT3D, when considering pixel position
encoding. This is the only situation among all test cases, where this may be observed.
An example showing the same pixel distribution, but significantly more improvement, is
SSTB94115. This is due to the distribution of significant pixels within the frames. For
all non-bound frames in the former cases the pixel distribution appears to be random,
while in SSTB94115 clusters of significant pixels are formed within the frames due to the
existing texture. Example frames are displayed in table 6. This indicates, that we achieved
major improvements for sequences of frames containing complex texture. Another indicator
for that is the fact, that removing all models aimed at capturing local structures from
AT3D_PAQ has a minimal impact on the compression results on Suzie and MissAmerica.
We will further substantiate this claim with more numerical evidence later.

Figure 13: First frames of Suzie, MissAmerica, and SSTB94115.

83

3.4 Numerical results: AT3D_PAQ vs. AT3D

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

50

100

150

200

250

Frame number
0 10 20 30

Figure 14: Significant pixel distribution in Suzie
with 1020 significant pixels.

P
ix

el
 p

os
iti

on

en
co

di
ng

 im
pr

ov
em

en
t [

%
]

0

5

10

Remaining pixels
0 20000 40000 60000

 Suzie

Figure 15: Pixel position encoding improvement
of AT3D_PAQ vs. AT3D on Suzie.

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

200

400

600

800

Frame number
0 10 20 30

Figure 16: Significant pixel distribution in
SSTB94115 with 5319 significant pixels.

P
ix

el
 p

os
iti

on

en
co

di
ng

 im
pr

ov
em

en
t [

%
]

0

10

20

30

40

Remaining pixels
0 20000 40000 60000 80000 100000

 SSTB94115

Figure 17: Pixel position encoding improvement
of AT3D_PAQ vs. AT3D on SSTB94115.

Table 6: Significant pixels in frames 0, 9 and 19 from Suzie (top) and SSTB94115 (bottom).

84

3 Development of AT3D_PAQ

Remark 3.4.2 (Improvements decreasing in the number of removed pixels). In 82% of
the tested sequences the improvement of pixel position coding decreases, as more pixels
are removed from the tetrahedralization. In general, this is caused by pixel clusters getting
thinned. The other examples are in general very high entropy sequences, which still contain
a large number of significant pixels for low quality output, which allow improvements by
the local pixel position models of AT3D_PAQ.

The above observations may also be applied to the most improved test sequence,
TranslEll_100x100. Note that no motion estimation was implemented in AT3D_PAQ,
yet the existing projected context boxes captured some inter-frame dependencies. One of
the reasons is the slow translational speed of the ellipse. Another one is, that the motion
only induces false predictions and the left boundary of the ellipse (which moves towards
the right), since in all other positions significant pixels remain within the context boxes
projected onto previous frames.

Figure 18: First frame and significant pixels in frames 0, 9 and 19 in TranslEll_100x100.

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

50

100

Frame number
0 10 20 30

Figure 19: Significant pixel distribution in
TranslEll_100x100 with 2000 sign. pixels.

P
ix

el
 p

os
iti

on

en
co

di
ng

 im
pr

ov
em

en
t [

%
]

0

20

40

60

Remaining pixels
0 2000 4000 6000 8000 10000

 TranslEll_100x100

Figure 20: Pixel pos. encoding improvement of
AT3D_PAQ vs. AT3D on TranslEll_100x100.

On the next page we will present a qualitative comparison of pixel position coding cost
for three different sequences. It visualizes the characteristics of both implementations, yet
it is hard to deduct consequences for compression performance optimization from it.

85

3.4 Numerical results: AT3D_PAQ vs. AT3D

Table 7: Qualitative pixel position coding cost visualization for Suzie with 1820 sign. pixels. Top:
AT3D, bottom: AT3D_PAQ. Darker colors indicate higher coding cost, scale is nonlinear.

Table 8: Qualitative pixel position coding cost visualization for RotEll_100x100 with 5000 sign.
pixels. Top: AT3D, bottom: AT3D_PAQ. Darker colors indicate higher coding cost, scale is

nonlinear.

Table 9: Qualitative pixel position coding cost visualization for Football with 120319 sign. pixels.
Top: AT3D, bottom: AT3D_PAQ. Darker colors indicate higher coding cost, scale is nonlinear.

86

3 Development of AT3D_PAQ

We can summarize the observations from this section as follows:

• Pixel position encoding with AT3D_PAQ captures local dependencies caused by
texture in frames significantly better than AT3D.

• Sequences, which have close to random significant pixel distributions and little
structure rarely benefit from AT3D_PAQ.

• Motion is captured significantly better by AT3D_PAQ due to its 3d context boxes.

• For low-entropy sequences with a small number of remaining significant pixels,
improvements diminish.

• In general, higher resolution sequences benefit more than their corresponding low
resolution counterparts.

• Improvements remain stable, when changing the number of frames of a sequence
by a factor of at most 2. For a larger factor, e.g. for Suzie-90, results are slightly
improved compared to the shorter versions.

3.4.2 Grayscale value encoding results

The analysis of the grayscale value encoding results is significantly more difficult than
the previous one. Similar to pixel position encoding, the minimal and maximal improvement
varies immensely, depending on the sequence and quantization setting used.

• A connection between improvements and visible characteristics of sequences cannot
be made, yet artificial sequences benefit most.

• The worst improvement is 5.61%, which is still a considerable gain.

• Improvements decrease only for 13% of the test sequences, as the number of significant
pixels decreases. In the remaining cases they mostly remain stable.

• Video size and length have a negligible effect on improvements. The 90-frame
sequences tend to improve slightly more than their shorter counterparts.

Instead of presenting the worst- and best-case sequences here, we will continue with an
overview of total compression for selected sequences and present our summary regarding
grayscale value encoding in the overall result summary.

3.4.3 Total compression results for selected sequences

On the following pages we will present test sequence results, which show interesting
characteristics. The results include a comparison of AT3D and AT3D_PAQ at different
thinning stages per sequence and a representative distribution of significant pixels at one
thinning stage. Additionally the geometry of significant pixels is visualized in combination
with the compressed frame output for selected frames of the sequence. Finally we present
rate distortion graphs and a comparison of improvements of AT3D_PAQ over PAQ for
different quantization settings and pixel position encoding at the various thinning stages.

87

3.4 Numerical results: AT3D_PAQ vs. AT3D

Highway2
Sign. pixels 120320 60320 35320 20320 12320 7320

Px. pos. old [b] 56807 36667 25041 16559 11203 7375
Px. pos. new [b] 44647 28497 19811 13401 9344 6412

% 21.41 22.28 20.89 19.07 16.59 13.06
Val. q1 old [b] 102835 54737 32903 19283 11760 6970
Val. q1 new [b] 88198 46935 28096 16272 9774 5733

% 14.23 14.25 14.61 15.61 16.89 17.75
Val. q4 old [b] 72952 39608 23971 14088 8560 5044
Val. q4 new [b] 61148 33371 20157 11683 6998 4104

% 16.18 15.75 15.91 17.07 18.25 18.64
Val. q16 old [b] 44007 24844 15285 9063 5478 3196
Val. q16 new [b] 32015 18708 11578 6732 3975 2302

% 27.25 24.70 24.25 25.72 27.44 27.97

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

100

200

300

400

Frame number
0 10 20 30

Table 10: Compression results and sign. pixel distribution for Highway2 at 7320 pixels.

Table 11: 35320 sign. pixels, q4, PSNR 35.1 dB. Top: Reconstructed frames 0, 9, 19, 29. Bottom: Sign. pixels.

P
S

N
R

 [d
B

]

26

28

30

32

34

36

38

40

42

44

bpp
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

AT3D
AT3D_PAQ

Figure 21: Comparison of bits per pixel vs.
PSNR of old and new implementation at q4.

Im
pr

ov
e

m
en

t [
%

]

0

20

40

Remaining pixels
0 50,000 100,000

Pixel positions
Values q1
Values q4
Values q16

Figure 22: Improvement of AT3D_PAQ vs.
AT3D on Highway2.

88

3 Development of AT3D_PAQ

SSTB1450
Sign. pixels 80320 55320 35320 20320 10320 5320

Px. pos. old [b] 45958 35631 25662 16767 9769 5666
Px. pos. new [b] 39984 32600 24455 16347 9600 5624

% 13.00 8.51 4.70 2.50 1.73 0.74
Val. q1 old [b] 58435 40668 26525 16265 8965 4837
Val. q1 new [b] 47218 33154 22160 13997 7825 4238

% 19.20 18.48 16.46 13.94 12.72 12.38
Val. q4 old [b] 38970 27152 17785 11114 6248 3386
Val. q4 new [b] 29757 21120 14484 9580 5530 3001

% 23.64 22.22 18.56 13.80 11.49 11.37
Val. q16 old [b] 22810 16075 10709 6762 3806 2054
Val. q16 new [b] 14050 10112 7208 4916 2991 1668

% 38.40 37.09 32.69 27.30 21.41 18.79

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

200

400

Frame number
0 10 20 30

Table 12: Compression results and sign. pixel distribution at 5320 pixels.

Table 13: 5320 sign. pixels, q4, PSNR 28.15 dB. Top: Reconstructed frames 0, 9, 19, 29. Bottom: Sign. pixels.

P
S

N
R

 [d
B

]

28

30

32

34

36

38

40

42

bpp
0.00 0.20 0.40 0.60 0.80

AT3D
AT3D_PAQ

Figure 23: Comparison of bits per pixel vs.
PSNR of old and new implementation at q4.

Im
pr

ov
em

en
t [

%
]

0

10

20

30

40

50

Remaining pixels
0 50000

Pixel positions
Values q1
Values q4
Values q16

Figure 24: Improvement of AT3D_PAQ vs.
AT3D on SSTB1450.

89

3.4 Numerical results: AT3D_PAQ vs. AT3D

RotGrowBox-120_50x50
Sign. pixels 50000 35000 25000 17000 10000 6000

Px. pos. old [b] 23964 19280 15425 11760 7917 5321
Px. pos. new [b] 11578 11374 9192 5578 4328 3538

% 51.69 41.01 40.41 52.57 45.33 33.51
Val. q1 old [b] 16008 12365 11982 9318 6165 4734
Val. q1 new [b] 7549 5193 5132 3684 2606 2743

% 52.84 58.00 57.17 60.46 57.73 42.06
Val. q4 old [b] 13803 10690 9410 7453 4629 3232
Val. q4 new [b] 7418 5415 4656 3362 2076 1773

% 46.26 49.35 50.52 54.89 55.15 45.14
Val. q16 old [b] 11096 8538 6937 5390 3326 2100
Val. q16 new [b] 5495 4172 3280 2319 1391 953

% 50.48 51.14 52.72 56.98 58.18 54.62

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

50

100

Frame number
0 50 100

Table 14: Compression results and significant pixel distribution at 6000 pixels.

Table 15: 6000 sign. pixels, q4, PSNR 26.33 dB. Top: Reconstructed frames 0, 14, 29, 44, 59, 74, 89, 104, 119.
Bottom: Significant pixels.

P
S

N
R

 [d
B

]

24

26

28

30

32

34

36

38

40

42

44

46

48

bpp
0.00 0.20 0.40 0.60 0.80 1.00

AT3D
AT3D_PAQ

Figure 25: Comparison of bits per pixel vs.
PSNR of old and new implementation at q4.

Im
pr

ov
em

en
t [

%
]

0

20

40

60

80

Remaining pixels
0 20000 40000

Pixel positions
Values q1
Values q4
Values q16

Figure 26: Improvement of AT3D_PAQ vs.
AT3D on RotGrowBox-120_50x50.

90

3 Development of AT3D_PAQ

Tennis-20_sif
Sign. pixels 399600 324600 249599 149598 99597 64597

Px. pos. old [b] 161467 143542 121260 84694 62987 45956
Px. pos. new [b] 131057 112879 90659 57948 41580 31166

% 18.83 21.36 25.24 31.58 33.99 32.18
Val. q1 old [b] 356282 296269 234612 147832 101153 66624
Val. q1 new [b] 313917 261469 207625 130551 87996 56730

% 11.89 11.75 11.50 11.69 13.01 14.85
Val. q4 old [b] 256416 215083 172106 110287 76105 50327
Val. q4 new [b] 220163 185837 149890 96552 65637 42550

% 14.14 13.60 12.91 12.45 13.75 15.45
Val. q16 old [b] 160419 136520 111210 73344 51430 34321
Val. q16 new [b] 121538 105058 87191 58596 40492 26264

% 24.24 23.05 21.60 20.11 21.27 23.48

N
um

be
r

of
 s

ig
ni

fic
an

t p
ix

el
s

0

2000

4000

Frame number
0 5 10 15 20

Table 16: Compression results and sign. pixel distribution at 64597 pixels.

Table 17: 64597 sign. pixels, q4, PSNR 28.33 dB. Top: Reconstructed frames 0, 7, 13, 19. Bottom: Sign. pixels.

P
S

N
R

 [d
B

]

26

28

30

32

34

36

38

40

bpp
0.00 0.50 1.00 1.50 2.00

AT3D
AT3D_PAQ

Figure 27: Comparison of bits per pixel vs.
PSNR of old and new implementation at q4.

Im
pr

ov
em

en
t [

%
]

0

20

40

60

Remaining pixels
0 100000 200000 300000 400000

Pixel positions
Values q1
Values q4
Values q16

Figure 28: Improvement of AT3D_PAQ vs.
AT3D on Tennis-20_sif.

91

3.4 Numerical results: AT3D_PAQ vs. AT3D

3.4.4 Summary and analysis of overall results

The examples presented above represent a variety of result classes. These are not
necessarily related to visible properties of a sequence. A sequence showing results similar
to Suzie and MissAmerica is SSTB1450. They share the same distribution of significant
pixels among frames with apparently random distributions in intermediate frames, which
explains the decaying improvements, as more pixels are removed. Yet grayscale value
encoding benefited more, which may be related to the recurring small contrasts within the
wave-structures moving in the background. The PSNR-value difference is only significant
when using high-quality settings, reaching more than 1.5 dB from 38 dB upwards.
A sequence with consistently high improvements is Tennis-20_sif. Significant pixels are
clustered closely at all tested quality settings and the number of significant pixels is almost
constant throughout the frames. Due to the higher sif-resolution the clusters remain large
at low quality settings, resulting in a better improvement. Additionally due to camera
zoom and player motion, the projected context boxes of AT3D are not a suitable model.
Combined with the constant grayscale value encoding improvement, a constant gain of
1.6-2 dB is achieved.
A sequence with similar properties for the first 23 frames is Highway2. Yet in the last
frames the number of significant pixels drops due to the disappearing bridge at the top of
the sequence. Their distribution appears more random in the cloud-areas, explaining the
slightly worse improvement values in pixel position encoding. The PSNR-value difference
is between 0.8 dB for low quality output and up to 1.8 dB for higher quality output.
All artificially generated sequences containing simple affine transformations applied to
basic geometric objects showed a huge improvement. One representative of this result
class is RotGrowBox-120_100x100. Pixel position encoding improvements can be explained
with the same reasons as for Tennis-20_sif. The significant pixel distribution results
in either very large or very small contrasts between neighboring pixels, which may be a
cause for the vast improvement in grayscale value encoding. Other artificial sequences show
similar significant pixel distributions and significantly smaller grayscale value encoding
improvements, while not containing as many very large or very small contrasts. Again we
have to note, that grayscale value encoding in particular requires a more detailed analysis,
which we suggest for future work.

3.4.5 Compression time comparison: AT3D_PAQ vs. AT3D

The starting point for our development, PAQ8kx, is a slow general-purpose compressing
scheme. Due to the smaller number of used models the lossless compression stage of
AT3D_PAQ is faster than the original PAQ implementation, but still slower than the
one from AT3D. Yet, the increased amount of time is negligible compared to the time
needed for adaptive thinning. By removing the DMC- and chart-model from the grayscale
value encoding, AT3D_PAQ may be accelerated at the cost of decreasing its compression
performance. In table 18 we listed some compression time evaluations.

92

3 Development of AT3D_PAQ

Sequence Sign. pixels [M]
Time [s]

AT3D AT3D_PAQ

Tempete-20_cif
0.458 193.8 212.6
0.208 43.6 72.5
0.038 3.5 14.4

Soccer

0.760 80.4 187.2
0.230 46.6 89.6
0.090 8.9 25.1
0.025 1.5 7.8

Table 18: Comparison of compression times for two sequences at different thinning stages with
quantization setting q1.

3.5 Numerical results: AT3D_PAQ vs. H.264

In this section we will compare the performances of AT3D_PAQ and H.264 on a variety
of test sequences. After describing the test environment, we will present detailed results of
several test sequences, then continue with some additional results of more sequences and
finally analyze and summarize these.

Remark 3.5.1 (H.264 settings). As noted in appendix A, we used the newest version
of FFmpeg with its included free H.264-encoder libx264. It provides numerous settings,
which influence the encoding performance. In this comparison we will therefore use two
sets of parameters for H.264:

1. ffmpeg.exe -s %size% -pix_fmt gray -i %inputFilename%.yuv -s %size% -vcodec
libx264 -b:v %bit-rate% -preset medium -psnr %outputFile%.h264

2. ffmpeg.exe -s %size% -pix_fmt gray -i %inputFilename%.yuv -s %size% -vcodec
libx264 -b:v %bit-rate% -preset placebo -tune psnr -psnr %outputFile%.h264

The first setting describes the standard settings of H.264. It optimizes the output for visual
quality, which in general reduces the PSNR. Thus when comparing the PSNR-value of a
sequence, FFmpeg suggests using the -tune psnr-switch, which even optimizes the output
towards a better PSNR-value. In order to get the best possible output, we additionally
set the preset to placebo, which increases time needed for compression. In summary, we
have a regular H.264-setting and a best-case-setting. Our primary goal is the comparison
of AT3D_PAQ and the regular H.264 setting.

On the following pages, we will present detailed comparisons showing the filesizes
of compressed output of AT3D, AT3D_PAQ, H.264 Regular, and H.264 Best and the
improvement or deterioration of AT3D_PAQ compared to both H.264 settings. Additionally
we will provide the original and reconstructed frames of AT3D_PAQ and H.264 Regular
and rate-distortion diagrams comparing all four schemes.
All AT3D-results were obtained by enabling the pixel exchange with radius r = 3. H.264
output at a fixed PSNR-value was generated by manually adjusting the bit-rate parameter,
until a suitable PSNR-value was achieved.

93

3.5 Numerical results: AT3D_PAQ vs. H.264

Suzie-10

PSNR [dB]
Filesize [bytes]

AT3D AT3D_PAQ H.264 Reg. % H.264 Best %
42.2 20657 18717 9590 -95.17 7949 -135.46
39.6 10877 10083 5966 -69.01 4795 -110.28
36.8 5089 4775 3524 -35.50 3010 -58.64
35.2 3079 2915 2653 -9.88 2321 -25.59
33.8 1930 1824 2150 15.16 1889 3.44
31.4 1002 947 1591 40.48 1402 32.45

Table 19: Compression results, %-columns show improvement/deterioration of AT3D_PAQ over
H.264 results. Best result per row is marked by boldface letters.

Table 20: PSNR 31.4 dB, 540 sign. pixels. Top: Original frame (0,3,6,9), middle: reconstructed
AT3D_PAQ frame, bottom: reconstructed H.264 Regular frame.

P
S

N
R

r[d
B

]

30

32

34

36

38

40

42

44

bpp
0.00 0.10 0.20 0.30 0.40 0.50 0.60

AT3D
AT3D_PAQ
H.264rRegular
H.264rBest

Figure 29: Rate-distortion diagram of AT3D-
implementations at q4 vs. both H.264-settings.

Im
pr

ov
e

m
en

tl[
%

]

-150

-100

-50

0

50

100

PSNRl[dB]
35 40

H.264lRegular
H.264lBest

Figure 30: Improvement/deterioration of
AT3D_PAQ vs. H.264 Regular and H.264 Best.

94

3 Development of AT3D_PAQ

City-10

PSNR [dB]
Filesize [bytes]

AT3D AT3D_PAQ H.264 Reg. % H.264 Best %
42.6 83025 75438 28146 -168.02 25335 -197.76
38.3 55086 51070 14601 -249.77 12694 -302.32
35.5 38016 35774 9154 -290.80 8286 -331.74
32.9 23424 22238 6190 -259.26 5450 -308.04
30.8 14490 13862 4301 -222.30 3892 -256.17
29.5 9570 9214 3487 -164.24 3120 -195.32

Table 21: Compression results, %-columns show improvement/deterioration of AT3D_PAQ over
H.264 results. Best result per row is marked by boldface letters.

Table 22: PSNR 29.5 dB, 6440 sign. pixels. Top: Original frame (0,3,6,9), middle: reconstructed
AT3D_PAQ frame, bottom: reconstructed H.264 Regular frame.

P
S

N
R

s[d
B

]

28

30

32

34

36

38

40

42

44

bpp
0.00 1.00 2.00

AT3D
AT3D_PAQ
H.264sRegular
H.264sBest

Figure 31: Rate-distortion diagram of AT3D-
implementations at q4 vs. both H.264-settings.

Im
pr

ov
e

m
en

tl[
%

]

-300

-200

-100

0

100

PSNRl[dB]
30 35 40

H.264lRegular
H.264lBest

Figure 32: Improvement/deterioration of
AT3D_PAQ vs. H.264 Regular and H.264 Best.

95

3.5 Numerical results: AT3D_PAQ vs. H.264

SSTB6355

PSNR [dB]
Filesize [bytes]

AT3D AT3D_PAQ H.264 Reg. % H.264 Best %
41.2 110803 90837 84042 -8.09 67384 -34.80
39.1 83147 69656 66444 -4.83 53254 -30.80
36.4 57785 49217 47125 -4.44 36984 -33.08
34.1 41033 35411 33469 -5.80 25229 -40.36
32.1 29233 25145 23281 -8.01 16894 -48.84
30.0 19057 16506 14463 -14.13 9919 -66.41

Table 23: Compression results, %-columns show improvement/deterioration of AT3D_PAQ over
H.264 results. Best result per row is marked by boldface letters.

Table 24: PSNR 30 dB, 12320 sign. pixels. Top: Original frame (0,9,19,29), middle: reconstructed
AT3D_PAQ frame, bottom: reconstructed H.264 Regular frame.

P
S

N
R

s[d
B

]

30

32

34

36

38

40

42

bpp
0.00 0.20 0.40 0.60 0.80 1.00 1.20

AT3D
AT3D_PAQ
H.264sRegular
H.264sBest

Figure 33: Rate-distortion diagram of AT3D-
implementations at q4 vs. both H.264-settings.

Im
pr

ov
e

m
en

tu[
%

]

-50

0

50

100

PSNRu[dB]
28 30 32 34 36 38 40 42

H.264uRegular
H.264uBest

Figure 34: Improvement/deterioration of
AT3D_PAQ vs. H.264 Regular and H.264 Best.

96

3 Development of AT3D_PAQ

SSTB101980

PSNR [db]
Filesize [bytes]

AT3D AT3D_PAQ H.264 Reg. % H.264 Best %
42.9 14379 12270 10193 -20.38 7189 -70.68
40.4 8128 7324 7904 7.34 5648 -29.67
38.1 4657 4375 6264 30.16 4560 4.06
36.0 2871 2760 5056 45.41 3710 25.61
34.0 1765 1698 4202 59.59 3093 45.10
32.0 1093 1040 3435 69.72 2600 60.00

Table 25: Compression results, %-columns show improvement/deterioration of AT3D_PAQ over
H.264 results. Best result per row is marked by boldface letters.

Table 26: PSNR 32 dB, 520 sign. pixels. Top: Original frame (0,9,19,29), middle: reconstructed
AT3D_PAQ frame, bottom: reconstructed H.264 Regular frame.

P
S

N
R

r[d
B

]

32

34

36

38

40

42

44

bpp
0.00 0.05 0.10 0.15

rAT3D
rAT3D_PAQ
rH.264rRegular
rH.264rBest

Figure 35: Rate-distortion diagram of AT3D-
implementations at q4 vs. both H.264-settings.

Im
pr

ov
e

m
en

tl[
%

]

-50

0

50

100

PSNRl[dB]
35 40

lH.264lRegular
lH.264lBest

Figure 36: Improvement/deterioration of
AT3D_PAQ vs. H.264 Regular and H.264 Best.

97

3.5 Numerical results: AT3D_PAQ vs. H.264

RotGrowEllipse_100x100

PSNR [dB]
Filesize [bytes]

AT3D AT3D_PAQ H.264 Reg. % H.264 Best %
48.4 13735 8421 10643 20.88 8480 0.70
44.2 7468 4897 8027 38.99 6442 23.98
38.1 3297 2414 5145 53.08 4003 39.70
33.3 1844 1456 3293 55.78 2800 48.00
30.2 1027 858 2570 66.61 2272 62.24
27.2 568 493 1997 75.31 1926 74.40

Table 27: Compression results, %-columns show improvement/deterioration of AT3D_PAQ over
H.264 results. Best result per row is marked by boldface letters.

Table 28: PSNR 27.3 dB, 250 sign. pixels. Top: Original frame (0,9,19,29), middle: reconstructed
AT3D_PAQ frame, bottom: reconstructed H.264 Regular frame.

P
S

N
R

r[d
B

]

26

28

30

32

34

36

38

40

42

44

46

48

50

bpp
0.00 0.10 0.20 0.30 0.40

AT3D
AT3D_PAQ
H.264rRegular
H.264rBest

Figure 37: Rate-distortion diagram of AT3D-
implementations at q4 vs. both H.264-settings.

Im
pr

ov
e

m
en

tl[
%

]

-100

-50

0

50

100

PSNRl[dB]
30 40

lH.264lRegular
lH.264lBest

Figure 38: Improvement/deterioration of
AT3D_PAQ vs. H.264 Regular and H.264 Best.

98

3 Development of AT3D_PAQ

On this page we will present further comparison results between H.264 Regular and
AT3D_PAQ, but without pixel exchange due to its computational complexity. These
results are between 0.5 and 2 dB worse compared to the exchanged results.

P
S

N
R

r[d
B

]

28

30

32

34

36

38

40

42

bpp
0.00 0.50 1.00 1.50

AT3D_PAQ
H.264rRegular

Figure 39: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on WashDC.

P
S

N
R

 [d
B

]

28

30

32

34

36

38

40

42

44

bpp
0.00 0.20 0.40 0.60 0.80

AT3D_PAQ
H.264 Regular

Figure 40: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on SSTB88250.

P
S

N
R

r[d
B

]

32

34

36

38

40

42

44

bpp
0.00 0.05 0.10 0.15 0.20 0.25

AT3D_PAQ
H.264rRegular

Figure 41: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on MissAmerica.

P
S

N
R

l[d
B

]

34

35

36

37

38

39

40

bpp
0.00 0.05 0.10 0.15 0.20

AT3D_PAQ
H.264lRegular

Figure 42: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on SSTB111130.

P
S

N
R

r[d
B

]

26

28

30

32

34

36

38

40

42

bpp
0.00 0.50 1.00 1.50

AT3D_PAQ
H.264rRegular

Figure 43: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on

Tempete-20_cif.

P
S

N
R

r[d
B

]

34

36

38

40

42

44

46

48

50

bpp
0.00 0.05 0.10 0.15

AT3D_PAQ
H.264rRegular

Figure 44: Rate-distortion diagram of AT3D_PAQ
at q4 and H.264 Regular on

TranslRotEll_100x100.

99

3.6 Conclusion

3.5.1 Summary and analysis of results

The above comparison of AT3D_PAQ and H.264 showed, that the results are highly
dependent on the type of the tested sequence. H.264 shows significantly better performance
in about 73% of the considered cases, in particular for high-entropy sequences, which contain
motion. The biggest difference is seen in sequences, which contain little motion and show
objects with fine texture. Here H.264 with regular settings outperforms AT3D_PAQ by as
much as 300%. However, for low-entropy sequences, which allow reasonable PSNR-values
with a small number of significant pixels (below 0.002% of the original number of pixels),
AT3D_PAQ shows improvements over H.264 Regular and Best by as much as 40%. For
higher quality output, H.264 is still superior.
We were able to identify one class of test sequences, where AT3D_PAQ outperforms
both H.264 settings by far: artificially generated test sequences showing low-complexity
scenes with affine transformations applied to simple geometric objects. Due to the large
improvements of AT3D_PAQ compared to AT3D for these sequence types, the former is now
competitive to even H.264 Best for all quality ranges. Note, that the geometric test sequences
were chosen in a resolution of 100x100 pixels, which leads to decreased H.264 performance
due to its block sizes. This shows another advantage of AT3D(_PAQ), whose performance
is independent of the video resolution. A brief investigation for RotEllipse_qcif yielded,
that even at qcif-resolution AT3D_PAQ yields better compression performance than the
best H.264 quality settings, but results are closer for lower quality output.

3.6 Conclusion

Our numerical investigations have shown, that AT3D_PAQ yields significant improve-
ments for all tested sequences, which included a wide variety of different standard sequences,
as well as cartoon-sequences from the movie Sita sings the blues, and artificially generated
geometric sequences. Scenes containing fine texture or large amounts of motion are now
compressed significantly better due to more efficient pixel position encoding, while all
sequences benefited from improved grayscale sequence coding. Most notably the geometric
sequences stand out with consistently high improvements.
The comparison of H.264 and AT3D_PAQ showed, that both schemes have very different
compression characteristics. H.264 produces dramatically smaller output for high-entropy
sequences and scenes containing textured elements, while for low-entropy sequences it is
only superior at high-quality settings. For geometric sequences and low-quality output of
low-entropy sequences AT3D_PAQ beats H.264 by as much as 75%. Geometric sequences
in particular benefited from the new lossless encoding stage in AT3D_PAQ and contributed
significantly to the superiority over H.264.

100

3 Development of AT3D_PAQ

3.7 Outlook

Despite all improvements achieved as a result of this thesis, there are many starting
points for further investigations.

• Pixel position encoding is unlikely to be improvable significantly. However, a more
sophisticated motion estimation algorithm than the one tested may yield small
improvements for sequences containing translational motion of significant pixels.

• An in-depth analysis of grayscale value encoding with AT3D_PAQ is necessary.
Results indicate, that the introduced models work very well for certain sequences,
while improving other sequences less. After understanding the involved structural
characteristics further compression improvements may be possible.

• The architecture of AT3D_PAQ now allows for additional models, which do not
deteriorate the existing compression performance, but only enhance it. Thus the
implementation of additional models is likely to further improve the compression
performance.

• It may be possible to modify adaptive thinning, such that it produces lower entropy
output by e.g. not removing the more predictable of two pixels, if their significance
is (almost) equal. If one pixel is located within a group of significant pixels, and the
other is not, the latter should be removed.

• When comparing AT3D_PAQ and H.264, there are many starting points for opti-
mization of the former. The adaptive thinning algorithm has to be further optimized
for motion and high-entropy input to be competitive.

• AT3D_PAQ introduces moving artifacts in parts of sequences, which do not contain
motion. It may be possible to remove these by further modifying adaptive thinning.

• It may be possible to improve the compression performance, if the uniqueness of the
Delaunay tetrahedralization is not required during the encoding process, and instead in
the end an index resulting from a canonical numbering of possible tetrahedralizations
of a cell is saved. Alternatively it would be possible to only enforce the uniqueness
in the last encoding step and still benefit from improved compression during the
encoding process.

101

4 Runtime optimization

Independent of all previously presented results we will now begin investigating a different
aspect of the improvement of AT3D: the runtime of adaptive thinning.
It was shown in [Dem11], that the theoretical complexity of AT3D and the pixel exchange
is O(N log(N)), where N is the number of removed pixels. Unfortunately, the implicitly
contained constant is very large, resulting in slow runtimes. There are several reasons for
the computational complexity of the algorithm in each removal iteration:

• Large amount of memory allocations and deallocations,

• calculation of cell-tetrahedralizations,

• evaluation of linear splines at thinned pixel positions.

The second central result of this thesis is a reorganization of some of the code, which reduced
runtimes considerably without changing the used core algorithms, adaptive thinning and
pixel exchange, themselves. In this section the changes applied to the old implementation
will be explained in detail, a theoretical investigation will yield the inefficiency of the
AT3D implementation when evaluating linear splines, and numerical evidence from the
computation of a set of examples will be presented. We will also analyze the impact of those
changes in different stages of the compression scheme: Some speed up the tetrahedralization-
heavy beginning of the adaptive thinning procedure, others improve the efficiency of the
assignment of thinned pixels to tetrahedra, which speeds up later stages of adaptive
thinning when many pixels are thinned already. We will provide numerical evidence, that
the last thinning stage benefits from the improvements remarkably more than the others.
Since the AT3D code base may be compiled for several platforms and processors, we
additionally provide some runtime results with different processor-specific optimization
levels and compare the performance of compilations in 32- and 64-bit.
The next section contains the description of the new implementation and some theoretical
evidence for its advantages. We will then select two test environments based on brief
numerical investigations, which constitute a worst-case and a best-case setting for runtime
improvements. Afterwards the numerical results will be presented, starting with summarized
tables and illustrating graphs. The individual results are listed in appendix E.

102

4 Runtime optimization

4.1 Improvements of the AT3D implementation

In this section we will list all implemented changes, that had an impact on computational
time needed for compression. Changes with greater impact will be listed first.

4.1.1 Assignment of pixels to tetrahedra

One of the core functionalities needed in the adaptive thinning algorithm is the calcu-
lation of the significance of a vertex of the tetrahedralization that has not been thinned
yet. In order to do this, the vertex is removed from its cell, the cell is re-tetrahedralized
and the interpolation error arising from this procedure is calculated. In order to evaluate
the grayscale value at a thinned pixel it is necessary to evaluate the correct piece of the
trivariate linear spline interpolant, which requires the assignment of each thinned pixel to
a tetrahedron of the re-tetrahedralization of the cell.

In this section we will describe the new implementation of assigning a query point q ∈ R3

to a tetrahedron T ∈ Cp or to decide that q /∈ Cp, where p ∈ Y is a significant pixel and Cp
is its cell. In particular all lemmas, theorems, and proofs in this section are a result of this
thesis, unless denoted otherwise.
We start with establishing some geometric properties of planes and tetrahedra:

Definition 4.1.1 (Orientation). Let p0, p1, p2 ∈ R3. Then the tuple (p0, p1, p2) is called
right-hand oriented, iff their box product satisfies 〈(p0 × p1), p2〉 > 0. It is called
left-hand oriented, iff 〈(p0 × p1), p2〉 < 0. It is called coplanar , if 〈(p0 × p1), p2〉 = 0.

Remark 4.1.2. Note that the box product is not commutative. If the order of the tuple
(p0, p1, p2) is permuted once and only once, the orientation of the tuple is switched.

Let us first sum up how the query point assignment procedure was realized in the
original implementation. The following definition of a bounding box is a generalization of
what is used in the original implementation of AT3D.

p
j0

Tj
= b

j0
p
j1= bj1

p
j2= bj5

p
j3= bj7

b
j4

b
j2

b
j6

b
j3

Figure 45: Minimal bounding box BTj of a single tetrahedron Tj .

103

4.1 Improvements of the AT3D implementation

Definition 4.1.3. Let T :=
⋃
j∈N Tj be a finite set of regular tetrahedra Tj , which are

spanned by the vertices pji ∈ R3. We can then define BT, the minimal bounding box
containing T, as follows:

BT := conv({bi | i ∈ 7}),

with

b0 =
(

min
i,j

(pji)x,min
i,j

(pji)y,min
i,j

(pji)z
)
, b1 =

(
max
i,j

(pji)x,min
i,j

(pji)y,min
i,j

(pji)z
)

b2 =
(

min
i,j

(pji)x,max
i,j

(pji)y,min
i,j

(pji)z
)
, b3 =

(
max
i,j

(pji)x,max
i,j

(pji)y,min
i,j

(pji)z
)

b4 =
(

min
i,j

(pji)x,min
i,j

(pji)y,max
i,j

(pji)z
)
, b5 =

(
max
i,j

(pji)x,min
i,j

(pji)y,max
i,j

(pji)z
)

b6 =
(

min
i,j

(pji)x,max
i,j

(pji)y,max
i,j

(pji)z
)
, b7 =

(
max
i,j

(pji)x,max
i,j

(pji)y,max
i,j

(pji)z
)
.

A visualization for a single tetrahedron is shown in figure 45, and for a set of tetrahedra in
figure 47. For convenience, we will denote the bounding box by BT , if the set only contains
one tetrahedron.

Note that in the implementation of AT3D only bounding boxes for single tetrahedra
were considered. Before we can summarize the old evaluation implementation, we need the
following definition:

Definition 4.1.4. In thinning step m the set of all thinned pixels in the minimal bounding
box containing Tj , denoted by QTj , is defined as

QTj :=
{
qi ∈ ((X\XN−m) ∩BTj)

}
.

In the implementation of AT3D an ordered sequence Q̃Tj is calculated instead of the
set QTj . This sequence is ordered with respect to the indices I(q) for q ∈ QTj . We may
now summarize the old evaluation algorithm as follows:

Algorithm 12 AT3D implementation of query point evaluation
1: Let p ∈ Y ⊂ X be a significant pixel with cell Cp
2: for each tetrahedron Tj ∈ Cp do
3: Calculate Q̃Tj
4: for each q ∈ Q̃Tj do
5: if q is not marked and q ∈ Tj then
6: Evaluate linear spline interpolant at q
7: Mark q
8: end if
9: end for

10: end for

In this algorithm, checking if q ∈ Tj is the most complex part. The above implementation
made a large number of these geometric tests necessary, and our goal is a significant

104

4 Runtime optimization

reduction of these. This approach suffers from several problems, which we will now
investigate. For example the order, in which the tetrahedra were checked was fixed and
was not adapted to geometric information gained in the assignment process. To be able to
give some theoretical evidence we need the following lemmas:

Lemma 4.1.5. Let d0, d1, d2 ∈ R2, such that they span a regular triangle D and the
minimum bounding rectangle containing D, called R. The area of D is denoted by AD,
while AR denotes the area of R. Then

∀AR > 0 : ∀ε > 0 : ∃d0, d1, d2 ∈ R2 : AD
AR

< ε.

In other words: The area of the triangle D can be arbitrarily small compared to the area of
its minimum bounding rectangle R, if R is any fixed regular rectangle.

Proof:
Let ε > 0. Let AR > 0 and R be spanned by two edges with nonzero lengths a and b, such
that AR = ab. Let the vertices of R have positive components w.l.o.g. with one vertex
being (0, 0). Choose d0 := (0, 0), d1 := (a, b). Now the minimum bounding rectangle of the
triangle D, that is spanned by d0, d1, d2, is the rectangle R, iff d2 ∈ R:

R := conv {d0, c0, c1, d1} and c0 = (0, b) ∈ R2, c1 = (a, 0) ∈ R2.

Hence d2 can be chosen such that it minimizes the area of D, as visualized in figure 46. Let

m := 1
2 (d1 − d0) =

(
a

2 ,
b

2

)
∈ R2,

d2 :=
(
a

2 −
ab2ε

a2 + b2
,
b

2 + a2bε

a2 + b2

)
.

In this definition d2 is not necessarily located inside R. W.l.o.g. we can continue our proof,
as shown in the end. Then, due to the orthogonality of d0d1 and md2, which can be verified
easily, we have

AD = 1
2d0d1 md2 = 1

2
√
a2 + b2

√
a2b4ε2 + a4b2ε2

(a2 + b2)2 = 1
2
√
a2 + b2

√
a2 + b2

(a2 + b2)2abε = 1
2abε.

a

b
m

d
0

d
1

c
0

c
1

d
2

R

D

Figure 46: Visualization of proof idea of lemma 4.1.5.

105

4.1 Improvements of the AT3D implementation

With AR = ab we get
AD
AR

= 1
2
abε

ab
< ε.

Note that d2 is not necessarily inside R. In this case R is not the bounding rectangle of D,
so if it is outside, the vector

t :=
(
− ab2ε

a2 + b2
,
a2bε

a2 + b2

)

has to be compressed by a factor δ < 1, such that d̃2 := m + δt is inside R and D is
spanned by d0, d1, d̃2. Hence the height of D is smaller than the height used in the above
calculation, so the area of D must be even smaller than the calculated area, while AR
remains unchanged. So the assertion must be true as well.

Now we can consider the three-dimensional case, which is relevant for AT3D:

Lemma 4.1.6. Let p0, p1, p2, p3 ∈ R3, such that they span a regular tetrahedron T and the
minimum bounding box containing T , called BT . Their respective volumes are denoted by
VT and VBT . Then

∀VBT > 0 : ∀ε > 0 : ∃p0, p1, p2, p3 ∈ R3 : VT
VBT

< ε.

In other words, the area of the tetrahedron T can be arbitrarily small compared to the area
of the minimal bounding box BT , if BT is fixed.

Proof:
First we note that from a geometric perspective, a tetrahedron T is a special cone. Therefore
its volume is given by

VT = 1
3Ah,

where A denotes its base area and h its height, the Euclidean distance between base area
and the fourth vertex of T . Our goal is to show for a given bounding box BT spanned by
the vertices p0, p1, p2, p3 of T that there exists a distribution of these vertices that results
in an arbitrarily small volume of T compared to BT .
Let ε > 0 and BT be fixed and hence VBT > 0. We assume w.l.o.g. that p0, p1, p2 span
the triangular base area of T , which we call D. Again w.l.o.g. the plane spanned by those
vertices is the plane E defined by z = 0 (if it is not it can be transformed into it by applying
a suitable linear mapping). This plane contains w.l.o.g. one of the faces of BT .
Let p3 be located on the opposite face of BT . If the orthogonal projection of p3 into E is
inside D, the minimal bounding box of T is defined by the minimum bounding rectangle
R of the triangle D spanned by p0, p1, p2, and by p3, whose z-component we call (p3)z.
Hence the total volume of the minimal bounding box, VBT , is given by

VBT = AR(p3)z.

106

4 Runtime optimization

On the other hand, the volume of T is

VT = 1
3AD(p3)z.

Thus
VT
VBT

=
1
3AD
AR

.

Since p0, p1, p2 are located in a two-dimensional plane, we can apply lemma 4.1.5 with
R given by the above construction and with AR = (VBT /(p3)z) > 0 and obtain suitable
p0, p1, p2, such that

0 < AD
AR

< ε.

Now let p3 be located in the plane defined by z = (p3)z and let the orthogonal projection
of p3 into E be inside D, which is possible, since AD > 0. Then we get

VT
VBT

=
1
3AD
AR

<
1
3ε < ε.

Corollary 4.1.7. Let T be a given regular tetrahedron with minimal bounding box BT .
Then the ratio of corresponding volumes satisfies

0 < VT
VBT

,

and cannot be bounded away from 0.

This result yields that arbitrary few thinned pixels may be located inside a tetrahedron
T . If this tetrahedron is always checked first, all performed geometry tests on it will fail.
This is obviously not desirable. We can extend the above corollary to determine the largest
possible ratio of volumes:

Lemma 4.1.8. A given tetrahedron T with minimal bounding box BT satisfies

VT
VBT

≤ 1
3 .

The largest possible ratio of the tetrahedral volume divided by its bounding box volume is 1
3 .

Proof:
Consider a fixed cuboid BT with one vertex being (0, 0, 0), positive vertex coordinates and
(positive) edge lengths xmax =: xm, ymax =: ym, zmax =: zm. Thus

VBT = xm · ym · zm.

We will first prove, that
VT
VBT

≤ 1
3

107

4.1 Improvements of the AT3D implementation

holds under weaker conditions than posed by demanding BT to be the bounding box of T ,
and afterwards showing that the inequality is sharp.
To show the first part, let T be a tetrahedron with a vertex a = (0, 0, 0) and with vertices
b, c, d distributed such that BT is the minimal bounding box of T . The volume of T is
given by

VT =
∣∣∣∣(b− a) ((c− a)× (d− a))

6

∣∣∣∣
= |b(c× d)|

6

= |bx(cydz − czdy) + by(czdx − cxdz) + bz(cxdy − cydx)|
6 (4.1)

The volume of T is maximized, if a, c, b, d ∈ ∂BT : If there is w.l.o.g. vertex d /∈ ∂BT ,
the volume of T is calculated by multiplying the base area of the tetrahedron, which we
consider to be spanned by the remaining vertices of T , with the height of T , which is the
Euclidean distance between the plane defined by the base area and d. By projecting d
along the height onto ∂BT , the base area remains unchanged, while the height increases,
hence the volume increases.
Thus the components x, y, z of the vertices have to satisfy

x ∈ {0, xm} ∧ y ∈ {0, ym} ∧ z ∈ {0, zm} . (4.2)

We can maximize 4.1 by maximizing its numerator:

6VT =

∣∣∣∣∣∣∣bx(cydz − czdy)︸ ︷︷ ︸
:=V1

+ by(czdx − cxdz)︸ ︷︷ ︸
:=V2

+ bz(cxdy − cydx)︸ ︷︷ ︸
:=V3

∣∣∣∣∣∣∣ != max. (4.3)

We only cover the maximization of a positive argument of the absolute value above,
the converse is handled analogously. We can now show that under the constraints 4.2 the
maximum value of 4.3 is 6VT = 2xmymzm. Note that these constraints are weaker than
the constraints induced by the bounding box property of BT , therefore possibly leading to
an upper bound, which is larger than the one resulting from the true constraints.

1. We first maximize V1, which is obviously achieved by choosing bx := xm, cy := ym,
dz := zm and (cz = 0 ∨ dy = 0), due to the positivity of the vertex components.
Maximizing V2 is then achieved by choosing by := ym, dx := xm and cz := zm,
necessarily resulting in dy := 0, and cx := 0. Thus in V3 we have cydx = xmym, so
V1 + V2 + V3 is maximized by choosing bz := 0. Hence

V1 + V2 + V3 = 2xmymzm.

2. After maximizing V1 as in the above case, we can maximize V3 next: This is achieved
by choosing bz := zm, cx := xm, dy := ym, resulting in cz := 0 and dx := 0. Then
in V2 we get czdx = 0 and cxdz = xmzm, so the sum V1 + V2 + V3 is maximized by
choosing by = 0, resulting in

V1 + V2 + V3 = 2xmymzm.

108

4 Runtime optimization

3. We start by maximizing V2 by choosing by := ym, cz := zm, dx := xm and (cx =
0 ∨ dz = 0). We continue with maximizing V3, by choosing bz := zm, cx := xm,
resulting in dz := 0 and dy := ym. Then in V1 we get cydz = 0 and czdy = ymzm,
thus V1 is maximized by choosing bx := 0, resulting in

V1 + V2 + V3 = 2xmymzm.

Switching the maximization orders of the first two Vi in the above cases leads to identical
results. Thus all cases, which maximize V1 + V2 + V3 and hence 4.3, are handled.
Therefore we have

VT
VBT

= |V1 + V2 + V3|
6

1
xmymzm

≤ 2xmymzm
6

1
xmymzm

= 1
3 .

Now, since the above inequality was derived based on too weak constraints on the vertex
components, we have to show that the inequality is sharp. This is achieved by choosing
the vertices of T as follows:

a = (0, 0, 0), b = (xm, 0, zm), c = (xm, ym, 0), d = (0, ym, zm).

It is verified easily, that BT is the bounding box of this tetrahedron T and that

VT = 1
3xmymzm.

Now we can extend corollary 4.1.7:

Corollary 4.1.9. Let T be a given regular tetrahedron with minimal bounding box BT .
Then the ratio of corresponding volumes satisfies

0 < VT
VBT

≤ 1
3 .

and cannot be bounded away from 0.

In our practical application the lower bound can actually be bounded away from 0,
because we are working with an integer grid:

Lemma 4.1.10. Let p0, p1, p2, p3 ∈ Z3 span a regular tetrahedron T with minimal bounding
box BT . Then

∀ VBT > 1 : ∃c > 0 : ∃p0, p1, p2, p3 ∈ Z3 : 0 < c ≤ VT
VBT

.

This means the volume of VT cannot be arbitrarily small compared to VBT when considering
regular tetrahedra on an integer grid for a fixed bounding box BT .

109

4.1 Improvements of the AT3D implementation

Proof:
W.l.o.g. we will only consider positive integer coordinates in this proof. Let BT be a given
bounding box with vertices in N3

0 and with volume VBT > 1. Then 0 <
∣∣N3

0 ∩BT

∣∣ < ∞.
Let M be the set of all regular tetrahedra with bounding box BT with vertices in N3

0. Since
VBT > 0 holds, BT is a regular cuboid and M 6= ∅. Then an optimal choice of vertices
p̃0, p̃1, p̃2, p̃3, spanning the tetrahedron T̃ with corresponding bounding box BT resulting
in a minimal volume c := minT∈M VT > 0 must exist. This concludes the proof.

Yet, as VBT →∞, it follows that c→ 0:

Lemma 4.1.11. Let all prerequisites be the same as in lemma 4.1.10. Then

∀c > 0 : ∃VBT > 0 : ∃p0, p1, p2, p3 ∈ Z3 : VT
VBT

< c.

Proof:
We may prove the corresponding statement for triangles, since then the above statement
results from applying the argument from lemma 4.1.6. W.l.o.g. we can prove the statement
for a positive integer grid. Thus we have to show

∀c > 0 : ∃AR > 0 : ∃p0, p, p1 ∈ N2
0 : AD

AR
< c.

Let c > 0 and w.l.o.g. p0 = (0, 0). Let p ∈ N2
0 be fixed with p 6= p0. Now our goal is the

construction of a rectangle R whose upper right vertex is p1 := (xmax, ymax) = (xm, ym)
with xm, ym ∈ N2

0 and which is the bounding rectangle of D, defined by p0, p, p1. p1 has to
be chosen such that p is close enough to the diagonal of R, which is defined by p0p1.
The area of D is given by

AD = 1
2 · p0p1 · h, with h := mp and m ∈ p0p1.

We now have to determine the intersection of the height of D and p0p1, denoted by m ∈ R2.
A simple calculation yields

m =
(
px

py

)
+ pxym − pyxm

x2
m + y2

m

(
−ym
xm

)
.

Hence

AD =
∣∣∣∣∣12
(
px

py

)
·
((

px

py

)
−
(
pxym − pyxm
x2
m + y2

m

(
−ym
xm

))
+
(
px

py

))∣∣∣∣∣
=
∣∣∣∣∣12
(
px

py

)
· pxym − pyxm

x2
m + y2

m

(
ym

−xm

)∣∣∣∣∣
=
∣∣∣∣12
√
x2
m + y2

m

pxym − pyxm
x2
m + y2

m

√
x2
m + y2

m

∣∣∣∣
=
∣∣∣∣12 (pxym − pyxm)

∣∣∣∣ .
110

4 Runtime optimization

Now we want to derive constraints on xm and ym, such that
AD
AR

< c ∧ 0 < px < xm ∧ 0 < py < ym (4.4)

are satisfied. This yields
xmymc >

∣∣∣∣12 (pxym − pyxm)
∣∣∣∣ . (4.5)

For the following calculations we assume

pxym > pyxm ⇐⇒ xm <
pxym
py

. (4.6)

Then (pxym − pyxm) > 0 and we may omit the modulus for following calculations. Solving
the above inequality for xm and combining the result with the above assumption we get

pxym
py

> xm >
pxym

py + 2cym
. (4.7)

Now we want to determine conditions on ym, such that xm ∈ N may be chosen such that
it satisfies the above inequality. To ensure this, we need

pxym
py
− 1 > pxym

py + 2cym

⇔ y2
m −

py
px
ym −

p2
y

2cpx
> 0.

The calculation of the zeros (ym)1,2 of the above convex polynomial yields

(ym)1,2 = py
2px
±

√
cp2
y + 2pxp2

y

4cp2
x

.

Obviously (ym)1 < 0, so we can derive the following condition on ym:

ym >
py
2px

+
√
cp2
y + 2pxp2

y

4cp2
x

> py.

Now we have to ensure, that choosing ym according to 4.8 allows a choice of xm according
to 4.7, such that xm > px. Analysis shows, that the lower bound in 4.7 is not necessarily
greater than px and in this case we can derive a different lower bound on xm by demanding

px
py
ym − 1 > px,

which transforms to
ym > py + py

px
.

Hence we may choose ym as

ym > max

py + py
px
,
py
2px

+
√
cp2
y + 2pxp2

y

4cp2
x

 > py. (4.8)

Thus if ym is chosen such that it satisfies 4.8, we can choose xm ∈ N according to 4.7,
which then implies xm > px. Therefore the pair (xm, ym) satisfies 4.5 and 4.4, which finally
proves the initial claim. An analogous construction of a pair (xm, ym) may be derived, if
instead of assuming 4.6 the relation is switched. Then all following calculations yield the
same result except for a switch of px and py and xm and ym, so xm is chosen first.

111

4.1 Improvements of the AT3D implementation

Remark 4.1.12. Note that using the construction in the above proof, relatively small
triangles and bounding boxes may be calculated by choosing px and py to be small numbers.
This suggests, that despite the existence of a lower bound on the volume ratio in practical
applications arbitrarily small ratios may occur, leading to an inefficient assignment process.

Finally we are able to formulate the reason for the poor performance of the assignment
algorithm in the original AT3D-implementation:

1. Due to the large number of considered tetrahedra, the calculation of all the individual
sets QTj is relatively expensive.

2. Corollary 4.1.9 shows that even in the very best case 2
3 of the points checked in one

iteration do not belong to the current tetrahedron and will therefore necessarily be
considered again in at least one of the following iterations. For a significant pixel p
with cell size |Cp| and k thinned pixels to be assigned to the tetrahedra in Cp in the
worst case for each of the |Cp| tetrahedra up to k points are checked before they are
eventually assigned successfully. Despite the result from lemma 4.1.10 it is possible
that no thinned point is located inside a tetrahedron, especially in early adaptive
thinning stages.

3. While in the beginning of the thinning process usually |Cp| > k holds, soon the
number of thinned pixels grows while the average cell size remains constant, resulting
in |Cp| � k. This explains a further deterioration of performance in combination
with the previous statement.

4. The assignment of points to tetrahedra follows a trial-and-error scheme, there is no
geometric information used and each assignment is independent of the one before.
Tetrahedra are checked in the same order for each considered point. This can result in
a very inefficient assignment procedure, if many of the points are located in tetrahedra
checked at the end.

All of those issues were improved or solved in the new implementation. We will now present
a short outline of the new assignment scheme and then work out the details:

1. The minimal bounding box of the cell is calculated in one step and all thinned pixels,
which will be the query points of the location procedure are determined.

2. In this process the query points are collected in a special order to greatly reduce the
Euclidean distance between all pairs of two consecutive query points.

3. For each query point a procedure called Lawson’s oriented walk is used to efficiently
use the geometric information obtained in the location procedure. This is an iterative
algorithm that ’walks’ through a tetrahedralization to locate a query point by using
a geometric criterion to be defined.

4. After a successful assignment the final tetrahedron is remembered and set as a new
starting point for the next query point. Thus the proximity of consecutive query
points is used.

112

4 Runtime optimization

p
00

T0
= b

0
p
01
= p

10

p
02= p12

p
03
= p

13

b
4

b
2

b
6

b
1

T
1

p
11

b
5

b
7

= b
3

Figure 47: Minimal bounding box BT of a set T of two tetrahedra.

Recall the definition of a bounding box of a set of tetrahedra, 4.1.3. In order to improve
the computational efficiency of the assignment algorithm, we will consider the bounding
boxes of sets of tetrahedra. That way we may exploit neighborhood relations within cells
of tetrahedra for the walking algorithm.

Lemma 4.1.13. Consider a finite set T :=
⋃
j∈N Tj of tetrahedra, where all Tj belong to

the cell Cp of a significant pixel p ∈ T. Then the minimal bounding box containing T, BT,
is well defined and satisfies ⋃

j

BTj ⊂ BT.

Proof:
The bounding box BT is well defined due to the finiteness of T. The statement follows
directly from the fact that finite sets A,B ⊂ R with A ⊂ B satisfy

minB ≤ minA and maxB ≥ maxA.

Remark 4.1.14. Note that |BT| >
∣∣∣⋃j BTj

∣∣∣ may hold, in other words, the total number of
pixels to be assigned to tetrahedra may increase in the new implementation. Our numerical
experiments will show, that this is only measurable in few cases, and it will not affect the
performance (cf. number of geometry tests performed in appendix E).

Given a set T as defined in Lemma 4.1.13, we first calculate its minimum bounding
box BT. Let m be a fixed thinning step. Then we calculate the set of thinned pixels
in the current bounding box QT := {qi ∈ ((X\XN−m) ∩BT)}. By lemma 4.1.13 this set
satisfies

⋃
j∈NQTj ⊂ QT, so all pixels checked in the old implementation will be considered

in the new one as well. The sequences Q̃Tj were generated by adding the pixels of BTj

in a frame-by-frame order and in the frames following a row-by-row scheme, cf. figure 48.
This corresponds to an ordering based on the pixel index I(q). This scheme created large
Euclidean distances between consecutive pixels in Q̃Tj at the end of each row and at the

113

4.1 Improvements of the AT3D implementation

end of each frame, thus rendering the information gained by the successful assignment of
pixel useless.

Figure 48: Schematic representation of old pixel scan implementation. Colored circles represent
significant pixels, white circles represent thinned pixels.

The new implementation is visualized in figure 49. It eliminates these unnecessary
jumps at the end of rows and frames by alternating the order, in which rows and frames
are scanned to add pixels to the sequence of pixels, denoted by Q̃T, after each row and
each frame. The corresponding set of pixels is denoted by QT. We will take advantage of
this scheme later.

Figure 49: Schematic representation of new pixel scan implementation. Colored circles represent
significant pixels, white circles represent thinned pixels.

From a theoretical point of view the calculation of one sequence Q̃T instead of several
sequences Q̃Tj does not improve the amount of failed assignments. The reason for that
is, that it may still be necessary to check the position of each pixel in Q̃T relative to each
tetrahedron in T. In fact, as Lemma 4.1.13 suggests, there are even more pixels considered
than before, suggesting a higher computational complexity.
Yet, in the practical implementation, just switching to iterating over the points in Q̃T

yielded a small performance gain, most likely because only one sequence Q̃T had to be
calculated per cell instead of one for each tetrahedron in a cell.
However, the switched iteration order permits the efficient use of geometric information
gained by failed assignments. The following definitions and results are necessary to further
specify our novel approach:

Definition 4.1.15. Let T be a regular tetrahedron, spanned by its vertices p0, p1, p2, p3 ∈
R3. Then each face fi(T), for i ∈ 3, of the tetrahedron is defined by three vertices pk, pl, pm,
where k, l,m ∈ 3 are pairwise distinct. The fourth vertex is pn, with n ∈ 3 \ {k, l,m}, and
is called the vertex opposing fn. Analogously, fn(T) is called the face opposing pn.

Definition 4.1.16. Consider a Delaunay tetrahedralization DY of a set [X] ⊂ R3 with
Y ⊂ X. If there is a tetrahedron Tj ∈ DY with a face fi(Tj) satisfying (fi(Tj))◦∩∂ [X] = ∅

114

4 Runtime optimization

and if Tj is spanned by the points p0, p1, p2, p3 ∈ R3, we can define the tetrahedron
opposing pi as the tetrahedron that shares the face fi(Tj) opposing pi with Tj and denote
it by Tj,fi,pi .

Remark 4.1.17. For a tetrahedron Tj ∈ DY satisfying the above condition, the tetrahe-
dron opposing a vertex pi is well defined: Consider the tetrahedron Tj with a face fi(Tj)
opposing pi. Its interior is located in the interior of the convex hull of X. Since the union of
all tetrahedra

⋃
j Tj equals [X], there must be a uniquely determined tetrahedron Tl ∈ DY

with Tl ∩ Tj = fi.

Before we can define the walking-algorithm, we have to establish a result concerning
the position of a pixel p ∈ R3 with respect to a plane e ⊂ R3, which is used to determine
the tetrahedron investigated in the next iteration of the walking-algorithm:

Definition 4.1.18. Let p ∈ R3 and p0, p1, p2 ∈ R3 be right-hand oriented points defining
a plane e ⊂ R3. Let all q ∈ e satisfy the Hesse normal form qn0 − d = 0. Here the unit
normal vector of e is denoted by n0 and the distance between e and the origin by d.
We call (R3)e+ the positive half-space of R3 with respect to e and define it as

(R3)e+ :=
{
x ∈ R3

∣∣∣ xn0 − d ≥ 0
}
.

We call (R3)e− the negative half-space of R3 with respect to e, it is defined as

(R3)e− :=
{
x ∈ R3

∣∣∣ xn0 − d < 0
}
.

Remark 4.1.19. The two subsets (R3)e+ and (R3)e− obviously satisfy (R3)e+∩(R3)e− = e

and (R3)e+ ∪ (R3)e− = R3.

Remark 4.1.20. Note that all of the following procedures also work, if the points are
left-hand oriented and the signs are switched where necessary. However the choice of
the orientation has to be consistent. Positive and negative half-space of R3 w.r.t. e are
swapped, if the orientation of the points defining e is switched. We will only use right-hand
oriented points.

Now we can specify a criterion to locate a query point q ∈ R3 in a tetrahedron:

Definition 4.1.21. Let T be a regular tetrahedron with faces fi(T) with i ∈ 3. Let the
vertices defining the faces fi(T) be ordered such that they are right-hand oriented. Let
q ∈ R3, then q ∈ T , iff q is in the positive half-space of R3 with respect to all fi(T), i.e.

q ∈ T ⇔ q ∈ (R3)fi(T)+ for all i ∈ 3.

Remark 4.1.22. Note that the orientation of a tetrahedral face depends on the order
of the vertices that define the face. In the current AT3D implementation the vertices

115

4.1 Improvements of the AT3D implementation

of a tetrahedron are ordered such that the right-hand oriented vertices p0, p1, p2 span a
plane e and p3 is in the positive half-space with respect to e. From this order it can be
concluded how to order the tuples defining the tetrahedral faces to satisfy the conditions
in the previous theorem:

f0 : (p1, p3, p2), f1 : (p0, p2, p3), f2 : (p0, p3, p1), f3 : (p0, p1, p2).

Remark 4.1.23 (Computational cost of geometry test). The algorithm, which determines
the location of a point p ∈ R3 relative to a plane e requires about 24 multiply- and
add-operations, some of them applied to 8-byte integers. When considering, that the
number of these geometry tests is in the billions when compressing a typical sequence at
qcif-resolution, we can clearly see that a significant reduction is likely to have an impact
on the overall runtime. Our numerical results support this claim.

Now we can define the walking-algorithm, which is used to find the tetrahedron
containing a query point q ∈ R3. Note that there are several walking techniques available,
Lawson’s oriented walk being the most well-known one. It is easy to implement, offers
good theoretical and practical performance and all necessary data structures were available
in the AT3D implementation, because the same walking technique was used in some other
part of the algorithm before.
The central idea of Lawson’s oriented walk can be summarized as follows: After starting
in an arbitrarily chosen tetrahedron Tj , a face fi(Tj) is determined, which separates q
from Tj . Then the tetrahedron for the following iteration is the one sharing fi(Tj) with Tj .
This procedure is continued, until no such face exists and the algorithm terminates in a
tetrahedron Uk containing q.

Remark 4.1.24. Other walking techniques include the straight walk, which defines
a straight line between starting point p and query point q and walks along all those
tetrahedra, that are intersected by this line. As [Dev02] notes, the implementation of the
three-dimensional version of this algorithm is a delicate task due to the need for handling
degenerate cases. Also, [Dev02] includes numerical results on the speed of different query
point location algorithms which are of the same order for all tested algorithms. While
the straight walk performs best in terms of the numbers of visited tetrahedra, the most
orientation tests per tetrahedron have to be performed, while the orthogonal walk visits
far more tetrahedra with a smaller number of tests to be performed per tetrahedron. The
orthogonal walk divides the straight walk into walks parallel to the coordinate axes, which
simplifies the necessary geometric orientation tests drastically. Its biggest drawback is the
possibility of leaving the tetrahedralization during the procedure, which has to be handled
by the implementation.

Yet several studies indicate that implementations of the orthogonal walk or improved
versions of it need less computational time than Lawson’s oriented walk, cf. [Sou11]. We
chose not to implement an orthogonal walk algorithm for the following reasons:

116

4 Runtime optimization

• The coding effort would be relatively high compared to the expected performance
gain.

• Investigations indicated, that a large portion of the point locations only take 1− 2
walking steps, which would not be performed quicker by an orthogonal walk, because
its last location steps are very similar to the ones performed by Lawson’s oriented
walk.

Now we can specify Lawson’s oriented walk algorithm.

Theorem 4.1.25 (Lawson’s oriented walk). Let DY be a unique Delaunay tetrahedraliza-
tion containing j ∈ N tetrahedra Ti, whose union equals [X] ⊂ R3. Let q ∈ R3 ∩ [X] . Then
the tetrahedron Uk with q ∈ Uk can be located in finitely many iterations with algorithm 13.

Algorithm 13 Lawson’s oriented walk
1: Let DY =

⋃
0≤i<j Ti = [X] be a unique Delaunay tetrahedralization

2: Let q ∈ [X] be a query point
3: U0 := T0, k := 1, o := false
4: while true do
5: for i = 0 to 3 do
6: if q ∈ (R3)fi(Uk−1)− then
7: Uk := Uk−1,fi,pi , o := true, k := k + 1
8: break
9: end if

10: end for
11: if o = false then
12: break
13: end if
14: end while
15: return Uk

Proof:
First we prove the correctness of the above algorithm: Since DY is a Delaunay tetrahe-
dralization of [X], a tetrahedron Ti with q ∈ Ti must exist in DY . The definition of the
tetrahedron Uk is well-defined according to Remark 4.1.17. The algorithm only terminates,
if q ∈ (R3)fi(Uk)+ for all i. This is equivalent to q ∈ Uk. Therefore the algorithm yields a
correct result.
As stated in [Wel98], Lawson’s oriented walk terminates in finitely many iterations, iff DY
is a unique Delaunay Tetrahedralization.

We will use a slightly more efficient modified version of Lawson’s oriented walk, which
we will call Lawson’s remembering oriented walk: When the algorithm walks to a
tetrahedron Ui we can skip one orientation test in the following iteration, namely the one

117

4.1 Improvements of the AT3D implementation

of the tetrahedral face that Ui shares with Ui−1. We can not only save the sign of this
test, but also the value itself and only have to invert its sign to eventually use it for the
evaluation at the query point if the orientation tests with respect to the remaining faces
yield that q is inside Ui.
Unfortunately, introducing Lawson’s oriented walk for query point location introduces a
new problem: Given a significant pixel p and its cell Cp = T, a query point q ∈ QT \ T
may get assigned to a tetrahedron T̃ /∈ T. This behavior is not desirable, since then q /∈ T
and no spline evaluation is necessary. It is not possible to limit the considered tetrahedra
to the ones in Cp, because if p is removed from its cell and this area is re-tetrahedralized,
the walking algorithm may fail and yield invalid results. Up to now only the location of a
tetrahedron containing a query point q ∈ T ⊂ DY was considered. Therefore it also has to
be determined, if Uk ∈ Cp holds. For that reason we modify the algorithm suggested so far
to perform the additional check, if Uk ∈ T holds:

Algorithm 14 Check, if Uk ∈ T holds
1: Let T = Cp ⊂ DY = [X] be a given subset of a unique Delaunay tetrahedralization
2: Let q ∈ [X] be a query point
3: Determine Uk with q ∈ Uk with algorithm 13
4: if Uk ∈ T then
5: return true
6: else
7: if q /∈ ∂Uk then
8: return false
9: else

10: if q is located on edge pipj of Uk then
11: Fill queue Q with all tetrahedra Ui incidental to pi and pj and with Ui ∈ T
12: else
13: Fill queue Q with tetrahedron Ui with q ∈ Ui ∩ Uk and Ui ∈ T
14: end if
15: for each tetrahedron Ui in Q do
16: if q ∈ Ui then
17: return true
18: end if
19: end for
20: return false
21: end if
22: end if

Note that this algorithm may use the results of the geometric tests performed to
determine Uk, which makes it very efficient. More than one additional tetrahedron is only
checked in the rare case of q being located on an edge of Uk and additionally only in this
case the expensive calculation of tetrahedra incidental to vertices of Uk has to be performed.
The superior efficiency of the combination of algorithms 13 and 14 compared to the old
implementation is shown in figures 52 and 54, and in tables 36 and 37.

118

4 Runtime optimization

Remark 4.1.26. Also note that in some places of the adaptive thinning algorithm, the
assignment of query points q ∈ Cp from a cell of a significant pixel p to tetrahedra in Cp
is performed twice in a row: Then only in the first pass algorithm 14 has to be used to
determine, if q ∈ Cp holds, and each pixel can be marked accordingly. In the second pass
(which is necessary after the re-tetrahedralization of the cell) only the marked pixels are
assigned, further diminishing the disadvantage of the additional pixel count induced by
calculating Q̃T instead of the individual Q̃Tj .

Now we have all ingredients needed to describe the new assignment scheme:

Algorithm 15 Evaluation of thinned pixels in a cell Cp in AT3D_PAQ
1: Let p ∈ Y be a significant pixel
2: Let T = Cp ⊂ DY = [X] be a given subset of a unique Delaunay tetrahedralization
3: Calculate Q̃T according to the pixel scanning scheme in figure 49
4: for each q ∈ (Q̃T ∩ (X\Y)) do
5: Determine Uk with q ∈ Uk using algorithm 13
6: If necessary, check with algorithm 14 if q ∈ T holds, and if so, mark and evaluate it
7: end for

Finally, we can sum up the advantages of the new implementation:

• Geometric information is used efficiently to locate each query point,

• after a successful assignment, the following assignment process very likely starts
within close proximity of the query point,

• the sequence of checked pixels is generated faster.

• The number of geometric tests performed during adaptive thinning is thus reduced
drastically, as indicated by the overall result tables 36 and 37 and the individual result
tables in appendix E. Additionally figures 51 and 53 clearly indicate a significant
reduction of computational time needed for adaptive thinning and the pixel exchange,
especially in the latest stages.

Remark 4.1.27. In order to implement the above algorithm, in the class Thinning3D the
function at6() was modified and most of the calculate*Significance*() functions and
subroutines called from there were rewritten.

4.1.2 Custom queue implementation

The original AT3D implementation made heavy use of queues from the C++ standard
library. A queue is a data structure containing elements of a certain type (pointers to
tetrahedra and to vertices in the case of AT3D). They follow the so-called FIFO-principle
(First In - First Out). The standard library implementation of queues is not well-suited for
AT3D, because often the memory for elements pushed into the queue has to be allocated

119

4.1 Improvements of the AT3D implementation

when a new element is added, and has to be freed again when the queue is destroyed. Due
to the large number of operations performed using queues the number of slow memory
allocations and deallocations is very large.
Therefore the new implementation was designed to reduce this number as much as possible:
Since the maximum queue size is bounded above by some c � 1000 in most cases, the
memory for c := 200 elements is allocated at the construction of the queue Q in the new
implementation. The queue is implemented as a ring buffer, which means there is a

• write index w,

• read index r,

• counter n for the number of elements already in the queue,

• queue size limit c.

In the unlikely case of a queue needing more space than allocated before hand, its size
is increased exponentially and all existing elements are copied into the newly allocated
memory. Obviously the number of these re-allocations has to be kept small to avoid this
slow procedure. }

Used indices

}Unused indices

Write index

Read index

Figure 50: Schematic display of a ring buffer.

The main queue operations are adding new elements (push), getting the element at
the head of the queue (front) and removing the element from the head of the queue (pop).
The ring buffer implementation works as follows:

Definition 4.1.28 (Queue implementation via ring buffer). A push is performed by
writing the new element into the already allocated memory at index w, incrementing n
and then incrementing w. If then w = c, then w has to be set to 0 again, which marks
the beginning of the allocated memory. If additionally the queue size limit is reached, i.e.
if n = c, the whole queue is moved to a new memory location, where exponentially more
memory is allocated before populating it with the existing elements.
A front-operation is performed by returning the data at the read index.
A pop is performed by incrementing r and if the end of the allocated memory was reached,
i.e. if r = c, then r is reset to 0, which marks the beginning of the allocated memory. Then
n is decremented.

Additionally the number of created queues was reduced in the new implementation:
All used queues have to be empty when exiting a function, so they are in the same state at

120

4 Runtime optimization

the start and at the end of this function. Therefore they can be declared as static queues,
so that they are only constructed once, namely at the beginning of the program execution
and destroyed only at the end of the program execution.

While our new implementation is twice as fast as the original when considering non-
optimized code, it is still about 20% faster with the full set of compiler optimizations
turned on. Those changes had a measurable effect on the tetrahedralization process which
takes place in all stages of AT3D, thus leading to a significant decrease in total runtime.

Iterations[M] 0.1 0.2 0.5 1
Standard [ms] 488 1773 9996 39212
Custom [ms] 429 1409 7493 29371

% 12.1 20.6 25.1 25.1

Table 29: Comparison of standard queue implementation vs. custom implementation. In each
iteration i about i/100 elements were written to the queue and about i/10 were read.

4.1.3 Further improvements

In this section we will sum up all other improvements that were implemented into
AT3D. Most of them are minor improvements, in total they contribute about 5− 10% of
the performance improvements.

1. In some heavily used functions the number of addition- and multiplication-operations
was significantly reduced: In inSphereDet() the number was reduced from 71 to 65
and in reconstructPointValue() it was reduced from at most 123 to at most 103.

2. Additionally, inSphereDet() and product() were modified, such that some of the cal-
culations, which only need a 32-bit range, are performed using 32-bit integers instead
of 64-bit integers. A manual assembler implementation using SSE2-instructions was
considered, but did not yield an improvement. Yet the investigation of CPU-specific
optimization switches in the following section suggests, that a highly optimized
SSE2-implementation may yield further improvements.

3. In early thinning stages, in which no error is induced by the removal of edges and
points, in general the removal of an edge is favored over the removal of a point in the
original implementation. To further improve removal efficiency in this setting, now
the number of neighbors of the first two edges from the heap is compared and the
one with less neighbors is removed, which is equivalent to the reduction of the size of
the re-tetrahedralized cell.

4. The simulation of simplicity algorithm sorts a set of five points frequently. In the old
implementation a slow bubble sort algorithm was used. The fastest solution in this
case is hard-coding a tree of decisions to determine the correct order, which is now
implemented and which is about twice as fast as the old sorting function.

121

4.2 Numerical results

5. Queues were allocated and deallocated on each call and return of functions defining
them. These were saved by declaring them as static, since they had to be empty
by then.

6. In several functions vectors from the C++ standard library are filled with points with
specific properties. It is very likely, that these vectors become large, especially in later
stages of adaptive thinning. Therefore the memory needed for them is pre-allocated,
reducing the time needed for memory allocation.

4.2 Numerical results

In this section we will present the overall results of the conducted runtime tests. First
an introduction to the technical background of compiler optimizations is given in order
to explain the different settings that are presented later. We will then continue with
selecting two test environments in which we generated the majority of the results. These
are summarized later, while the detailed outcomes are listed in appendix E.

Remark 4.2.1 (Compiler-specific results). A compiler is a computer program, which
translates source code written in a specific programming language into binary code, which
is executable by a computer. Thus, the compiler is specific to the hardware and the
operating system being used. As specified in appendix A, the native Windows version
of the GNU Compiler Suite was used in the development process of this thesis. Since
this suite is not only free and distributed under the GNU license, it is also available for
Linux and Mac OS. Therefore it is very likely to achieve similar results when using these
operation systems. Yet there might be some more room for compiler-based optimizations
when using non-free compilers like the Intel compiler suite.

Remark 4.2.2 (Compiler-optimized code). The conversion of source code into binary
code is not unique. Therefore different binary codes may be produced yielding the same
computational results, but possibly in different running times. This is the goal of code
optimizations performed by a compiler. This process may be compared to entropy coding:
Without any specific knowledge of the task performed by the code the compiler minimizes
the number of instructions of binary code to be performed at runtime, analogous to entropy
coding, which minimizes the number of bits of an encoded bit-stream without specific
knowledge of its contents.
Compilers generally offer different optimization levels. Due to the vast runtime improve-
ments by compiler optimizations we will only consider code that was generated by using
the maximal level of global optimization switches. Non-optimized code is about two to
three times slower, thus it is not of practical relevance. Another set of optimizations is
applied, when hardware-specific optimization switches are activated. These make use
of processor instruction sets, which may only be executed on certain processor architectures,
e.g. MMX, which is supported by Pentium MMX and newer processors.

122

4 Runtime optimization

Definition 4.2.3. From now on we will consider optimized code to be code generated
by the GNU C++ compiler with the option -O3.

All tests were conducted on two different hardware configurations (cf. appendix E),
which we will call configuration A and configuration B. Due to the different CPU
micro-architectures, we also considered three different architecture-specific optimization
settings of the GCC-compiler and conduct experiments to find the best combination for
further experiments:

• -march=barcelona -mtune=barcelona for the AMD configuration, abbreviated by
Ba,

• -march=core-avx-i -mtune=core-avx-i for the Intel configuration, abbreviated
by Co,

• -march=i686 -mtune=i686 for both configurations, abbreviated by i686 . This
corresponds to the GCC standard settings.

Remark 4.2.4 (32- and 64-bit versions). The x86 hardware architecture, which has been
the standard for office and home computers for the last two decades, supports a word length
of 32 bit. Thus CPU-registers and memory addresses may assume 232 different values, and
due to additional restrictions imposed by the operating system a memory address space
of 231 bits = 2.048 GB is available to a 32-bit program. The same limit applies to 32-bit
programs executed in a 64-bit operating system. Depending on the input video size, AT3D
may need to allocate more memory, therefore a 64-bit compilation was considered. Modern
micro-architectures and operating systems support 64-bit word lengths, which removes the
limitation on the maximum amount of allocated memory. In return, performing identical
operations as the corresponding 32-bit version of a program, more memory is needed, since
all pointers are 64-bit values. The memory requirements for AT3D grow by approximately
40%. The size of a sequence to be compressed by AT3D is only limited by the computer’s
memory when using a 64-bit compilation.

Since a detailed performance analysis of all eight combinations of configuration, opti-
mization and architecture with a sufficient amount of examples is out of the scope of this
thesis, we will first select two main combinations by investigating the impact of each choice
on a small set of examples. We start by checking the impact of CPU-specific optimizations
on a fixed architecture for both, the old and the new implementation.

Remark 4.2.5 (AT3D runtime characteristics and resulting testing methodology). Due
to its implementation, AT3D has the properties of producing non-deterministic thinning
results, if more than one element in one of the employed heaps has significance 0. This is
caused by non-deterministic memory allocation behavior: the minimal element of the heap
is not unique. It then depends on internal memory allocation processes, which element is
returned as the minimum, resulting in a different thinning process and thus in a different

123

4.2 Numerical results

tetrahedralization. Multiple runs of the same thinning process showed, that if a fixed
amount of pixels is removed, thinning-runtimes vary below 0.5%. For that reason we
refrained from conducting each test multiple times.
Additionally old and new implementation cause slightly varying thinning and exchange
results. This is caused by the summation of floating point values: The significance of a
current point or edge is calculated by summing the interpolation-induced errors at each
pixel inside a tetrahedron, before and after re-tetrahedralizating the cell of the current
point or edge. Since the order of the additions was changed in the new implementation, the
employed floating-point arithmetic causes differences in the significance calculation. This
may change the point- or edge-order in the corresponding heaps, resulting in a different
thinning and exchange process when comparing old and new implementation.
Again, the effect on thinning runtimes is negligible. Yet, the exchange algorithm behavior
may vary significantly. In order to minimize the effect of different starting sets of significant
pixels, exchange runtime tests were performed in continuation mode of AT3D, based on
identical pixel sets for old and new implementation.
Unfortunately, there is no way of measuring the exact runtime improvement on a single
test sequence due to the above reasons. Thus individual exchange improvement results
have to be considered with care, instead of focusing on minimal and maximal gain, we will
only focus on the average performance improvement of the exchange algorithm.

Definition 4.2.6 (Command-line arguments for adaptive thinning runtime tests). Adap-
tive thinning runtime tests were performed with the following command-line arguments:

at3d.exe -c%nbPoints% -a6 -g-1 -f500 -p -l -m -q1 -d %inputFilename%

• %nbPoints% is the number of removed pixels, chosen manually for each sequence.

• %inputFilename% is the sequence to be coded in .pgmv-format.

• Sequence is encoded in a single block of frames.

• No edge-detection algorithm is applied.

• Adaptive thinning is used in version 6, cf. algorithm 4.

• Each test was conducted once.

On the next page we will present the results used to determine a test environment based
on a small test set.

124

4 Runtime optimization

Sequence
Ba-32 Configuration A i686-32 Configuration A

Old [s] New [s] Gain [%] Old [s] New [s] Gain [%]
City 28639 14131 50.66 28420 13841 50.99

Galleon 28397 13744 51.60 27737 13573 51.07
Highway2 35004 16106 53.99 34013 15796 53.56

Table 30: Comparison of thinning performance of removal of 0.75M pixels with 32-bit compilations
and Barcelona-optimizations versus standard optimizations on configuration A. Boldfaced

numbers mark faster result compared to other optimization setting.

Sequence
Ba-64 Configuration A i686-64 Configuration A

Old [s] New [s] Gain [%] Old [s] New [s] Gain [%]
City 20876 12558 39.84 19943 12455 37.55

Galleon 20888 12671 39.34 21243 12463 41.33
Highway2 26285 14009 46.70 26342 14257 45.88

Table 31: Comparison of thinning performance of removal of 0.75M pixels with 64-bit compilations
and Barcelona-optimizations versus standard optimizations on configuration A. Boldfaced

numbers mark faster result compared to other optimization setting.

Sequence
Co-32 Configuration B i686-32 Configuration B

Old [s] New [s] Gain [%] Old [s] New [s] Gain [%]
City 15138 8472 44.03 14819 8192 44.72

Galleon 14948 8259 44.75 14628 8002 45.30
Highway2 17954 9396 47.67 17410 9292 46.63

Table 32: Comparison of thinning performance of removal of 0.75M pixels with 32-bit compilations
and core-avx-i-optimizations versus standard optimizations on configuration B. Boldfaced

numbers mark faster result compared to other optimization setting.

Sequence
Co-64 Configuration B i686-64 Configuration B

Old [s] New [s] Gain [%] Old [s] New [s] Gain [%]
City 10979 6881 37.33 10853 6891 36.51

Galleon 10799 6686 38.09 10660 6704 37.11
Highway2 12911 7574 41.34 12886 7584 41.15

Table 33: Comparison of thinning performance of removal of 0.75M pixels with 64-bit compilations
and core-avx-i-optimizations versus standard optimizations on configuration B. Boldfaced

numbers mark faster result compared to other optimization setting.

Configuration A
i686-32 Ba-32 i686-64 Ba-64
100% 101.78% 90.66% 90.81%

Table 34: Relation of runtimes between 32-
and 64-bit-compilations with both

optimization settings.

Configuration B
i686-32 Co-32 i686-64 Co-64
100% 102.51% 83.10% 82.95%

Table 35: Relation of runtimes between 32-
and 64-bit-compilations with both

optimization settings.

125

4.2 Numerical results

Some of the results are highly unexpected, and we can draw the following first conclusions:

• The impact of CPU-specific optimizations and architecture on old and new imple-
mentation varies greatly, not only in absolute, but also in the performance relative
to each other.

• 64-bit compilations perform significantly better than 32-bit compilations.

• CPU-specific optimizations tend to deteriorate overall performance, especially for
32-bit compilations. This indicates, that processor-specific instruction sets like MMX,
SSE or AVX are not applied to AT3D compilations by the compiler. A further
performance gain may be achieved by an effective assembler-implementation of the
inner-loop functions product() and insphereDet().

• There is a best-case-improvement scenario, in which the performance-improvement of
the new implementation is at 50% or above, and a worst-case-improvement scenario,
where the improvement is at 37% and above, the improvement differences between
best- and worst-case scenario amount to 12-15%.

• Equal sized sequences get compressed in similar amounts of time. High-entropy
scenes increase compression-times by about 10%.

The goal of this section is to determine two suitable combinations of compilation settings
for the two computer configurations used. Thus, we choose a best-case-improvement setting
with best performance of the new implementation and the worst-case-improvement setting:

Definition 4.2.7 (Best-case-improvement setting, CfgA-32). We will denote the 32-bit
compilation, which is run on configuration A with the following optimization switches by
CfgA-32 :

-O3 -march=i686 -mtune=i686.

Definition 4.2.8 (Worst-case-improvement setting, CfgB-64). We will denote the 64-bit
compilation, which is run on configuration B with the following optimization switches by
CfgB-64 :

-O3 -march=i686 -mtune=i686.

Before presenting the final results, we fix the settings for our exchange runtime tests:

Definition 4.2.9 (Command-line arguments for exchange runtime tests). Pixel exchange
runtime tests were performed with the following command-line arguments:

at3d.exe -co -r3 -c0 -a6 -g-1 -f500 -p -l

-m -q1 -d %inputFilename% %nodeInputFilename%

• %inputFilename% is the sequence to be coded in .pgmv-format.

126

4 Runtime optimization

• %nodeInputFilename% is the .nodes3d-file which was put out by an earlier (adaptive
thinning) run with n iterations and defines the set of significant pixels Xn.

• Sequence is encoded in a single block of frames.

• The exchange radius is set to 3.

• The sizes of the sets Xn vary, depending on the sequence. Thus |Xn| is additionally
denoted in the result tables for each test.

• Each test was conducted once.

With these settings, we produced the results presented in appendix E. They are
summarized in the following tables. The notion of failed geometry tests refers to the
calculation, which assigns a query point q ∈ R3 to a half-space with respect to a plane
e ⊂ R3 spanned by a tetrahedral face. Each test requires several dozens of multiplications
and additions, so reducing the number of failed geometry tests is expected to directly
influence runtime results. Our following numerical investigations clearly support this claim.

CfgA-32
AT3D stage Avg. improvement [%]

Initial heap construction 44.01
AT6 52.66

Exchange 43.41
Total (Heap, AT6, exchange) 48.88

Number failed geometry tests AT6 71.81
Number failed geometry tests exchange 73.44

Table 36: Average best-case improvements, sorted by AT3D stage.

Note that on configuration B we were able to conduct tests on larger sequences. These
may be reviewed in appendix B. The following average results consider all tested sequences
on this configuration.

CfgB-64
AT3D stage Avg. improvement [%]

Initial heap construction 25.47
AT6 39.83

Exchange 36.93
Total (Heap, AT6, exchange) 38.46

Number failed geometry tests AT6 71.52
Number failed geometry tests exchange 72.07

Table 37: Average worst-case improvements, sorted by AT3D stage.

127

4.2 Numerical results

T
im

e
[s

]

0

10000

20000

30000

Thinned pixels

0 200000 400000 600000 800000

 CfgA-32 Old
 CfgA-32 New
 CfgB-64 Old
 CfgB-64 New
 CfgA-32 Old lin. extrapolation

Figure 51: Progression of compression time for
AT6 applied to City.

F
ai

le
d

ge
om

et
ry

 te
st

s
[B

ill
io

ns
]

0

20

40

60

80

Thinned pixels

0 200000 400000 600000 800000

 Old
 New

Figure 52: Progression of failed geometry tests
in AT6 applied to City.

T
im

e
[s

]

0

10000

20000

30000

Thinned pixels

0 200000 400000 600000 800000

 CfgA-32 Old
 CfgA-32 New
 CfgB-64 Old
 CfgB-64 New
 CfgA-32 Old lin. extrapolation

Figure 53: Progression of compression time for
AT6 applied to Highway2.

F
ai

le
d

ge
om

et
ry

 te
st

s
[B

ill
io

ns
]

0

20

40

60

80

Thinned pixels

0 200000 400000 600000 800000

 Old
 New

Figure 54: Progression of failed geometry tests
in AT6 applied to Highway2.

After this complete overview, we additionally investigated the progression of compression
times and failed geometry tests during the encoding process of two test sequences. Figures
52 and 54 clearly show that the number of failed geometry tests in the new implementation
is significantly lower during the last thinning stages in particular. Additionally, with the
help of the linear extrapolation in figures 51 and 53 we see a similar characteristic in the
increase of runtime and the increase of the number of failed geometry tests. This clearly
indicates, that a major reason for slowdowns of AT6 towards the end of the thinning
process are eliminated in the new implementation.

128

4 Runtime optimization

4.3 Conclusion

In this section we described the changes applied to the AT3D implementation in order
to improve its runtime. The most significant impact was achieved by introducing a more
efficient pixel-to-tetrahedron assignment algorithm and by reducing the number of memory
allocations. We proved some theoretical results, which underlined the inefficiency of the
old implementation. From these investigations it was unclear, if the number of considered
pixels for an assignment would grow measurably, but our numerical results clearly show,
that this is not the case. On the contrary, the number of failed geometry tests, in which
the position of a pixel with respect to a plane spanned by a tetrahedral face is calculated,
was reduced by 72% on average. The numerical results also yielded, that the drastically
reduced number of failed geometry tests also affected runtimes noticeably, in particular in
the last thinning stage.
As a final result, our work resulted in an overall performance improvement of at least
38.5% and at most 49%. Adaptive thinning performance benefited the most, which is
the most important part of the investigated runtimes. Despite all improvements further
optimizations are needed, but these are left to future research.

4.4 Outlook

Despite all implemented improvements the overall time consumption to compress a
video sequence is still too large. For that reason, further optimization of the implementation
is an important issue. During the work on this thesis some more ideas on how to accelerate
the algorithm were developed:

• Instead of calculating each tetrahedralization by using the modified flip-algorithm
suggested by [Kha11], it would be possible to create a large database of tetrahedral-
izations that are pre-computed and just match the pixel configuration in each step
to the database. This approach is feasible due to the use of an integer grid, thus the
number of possible tetrahedralizations is limited, yet large. This would additionally
introduce the need for a scaling mechanism, where point configurations are assigned
to equivalence classes based on their relative distances and an efficient look-up scheme
for the database. Analysis with a profiling application indicates that 50 − 60% of
the computational time is currently used by Tetrahedralization::insertPoint(),
which adds a point to a tetrahedralization, indicating huge potential for further
optimizations.

• When the significance of a pixel p is calculated, the resulting temporary tetrahe-
dralization of Cp is deleted at the end of the calculation. When p becomes the least
significant pixel and is removed from the tetrahedralization, the new tetrahedraliza-
tion of Cp is calculated again. Saving it after the first calculation and then using it
would further increase the performance of AT3D, but at the cost of increased memory
requirements.

129

4.5 Further code improvements

4.5 Further code improvements

In the development process of this thesis many minor improvements and additions were
applied to the code base of the AT3D implementation. Therefore we briefly summarize
the new options, which are now available. For usage information and a current list of
parameters for AT3D_PAQ, we refer to the appended disc.

• Many bugs in the program code were fixed, yet it is likely, that at some point still a
memory corruption happens, leading to a crash in rare cases.

• In the original AT3D implementation it was not possible to continue an adaptive
thinning run, e.g. by removing n pixels in the first run and remove m additional pixels
starting from the first run. This is now possible with the so-called continuation
mode, which needs the original video data and the geometry output of the first run.

• Instead of having to fix the number of pixels to be removed, a target PSNR feature
has been implemented. The program then determines when to stop adaptive thinning
by estimating the current PSNR in each iteration. Yet, the varying improvements by
post-processing may only be estimated, thus it is not exact.

130

A List of used hard- and software

Appendices

A List of used hard- and software

Remark A.0.1 (Hardware). The following configurations were used for computations:

1. Configuration A:

(a) AMD Phenom II X3 720, 2.8 Ghz, 3 CPU cores (AMD K10 architecture),

(b) 4 GB DDR2-RAM,

(c) OCZ Vertex 2 SSD,

(d) Windows 7 Professional 64-bit.

2. Configuration B:

(a) Intel Core i5-3570k, 4.3 Ghz, 4 CPU cores (Ivy Bridge architecture),

(b) 8 GB DDR3-RAM,

(c) Samsung SSD 840,

(d) Windows 7 Professional 64-bit.

Remark A.0.2 (Software). In the development process several different versions of the
following programs were used, here we will only list the latest versions used to generate
the final results:

• Development-IDE: Eclipse IDE for C/C++ Developers, Version: Kepler Release,
Build id: 20130614-0229.

• Compiler-Suite: MinGW-w64 with GCC compiler version 4.8.1, parallel installations
for

1. 32-bit target systems (i686-w64-mingw32),

2. 64-bit target systems (x86_64-w64-mingw32).

• FFMpeg version N-55066-gc96b3ae, built on Jul 29, 2013.

• YUV conversion: viEWYUV 0.62.

• YUV to PGMV-conversion: AT3D.

• Profiling: Very Sleepy, Version 0.82.

131

B Test video sequences

Name Content Motion Cam. motion Texture
City View down on New York City from a helicopter flying

around the Empire State building
- + +

Deadline Man talking in front of bookshelf - - +
Football Dynamic scene showing an American football play + + o
Galleon Still view on a complex textured ship anchoring at a pier - - +
Harbor Sailing boats cross the scene, partially occluded by

anchoring boats in the front
+ - +

Highway View from hood-mounted camera on a car driving down
a highway

+ - -

Highway View from hood-mounted camera on a car driving down
a highway, crossing below a bridge, with changing

contrast afterwards

+ - o

Ice People crossing the scene skating on ice + - o
MissAmerica Woman talking in front of dark solid background - - -

Soccer Dynamic scene at a soccer practice game, includes very
fast camera scrolling

+ + o

Stefan Closeup of tennis player in motion running to get a ball
and hitting it

+ + o

Suzie Blond woman on the phone in front of solid colored
background

- - -

Tempete Plant shown from close range and zooming out while
leaves fly around

o o o

Tennis Table tennis player shown from close range while serving
and camera zooming out

+ + o

Trevor Several people shown while getting up at end of a
conference in six separate boxes

o - o

WashDC Hand drawing on a map of Washington D.C. - - +
RotGrowBox Small video of a rotating and growing box with gradient

content on black background
+ - -

RotEll Centered rotating white ellipse on gradient background + - -
RotGrowEll Centered rotating and growing white ellipse on gradient

background
+ - -

TranslEll White ellipse moving from left to right with constant
velocity on gradient background

+ - -

TranslRotEll White ellipse moving from left to right with constant
velocity while rotating on gradient background

+ - -

Table 38: Test sequence overview - sequences in this table were downloaded from [Der13], except for the bottom
five, which were generated by a sequence generator developed in this thesis. Symbols in the rightmost columns

indicate sequences containing a high (+), medium (o), or low (-) amount of a characteristic.

132

B Test video sequences

Name Content Motion Cam. motion Texture
SSTB1450 Playfully drawn record player emerging from moving sea + - +
SSTB2710 Chaotic expanding blurry mass + - +
SSTB6355 Space background with several small objects moving

downwards and a central element changing in every
frame

+ - +

SSTB7351 Low contrast rotating and shaking earth + + -
SSTB9485 Cartoon scene showing a living room with several people,

contains shaking object boundaries
o o +

SSTB28053 Butterfly moving towards the right on scrolling
background with flowers and a window

+ + +

SSTB46536 Complex structured stylized person in front of unicolor
background

o - +

SSTB88250 Woman sitting by a river next to some bushes, rest of
scene almost unicolored

- - o

SSTB94115 Two persons upper bodies shown while talking in front of
slightly structured background

- - o

SSTB94910 Three people sitting around a fire - o o
SSTB101980 Sun changing into the moon, illuminated scene fading to

darkness
o - -

SSTB111130 Comet flying by on a dark space background with a few
small stars

o - -

SSTB113530 Credits of the movie, many textlines scrolling on mostly
black background

- - +

Table 39: Test sequences from the movie Sita sings the blues, which is available at [Pal08]. Symbols in the
rightmost columns indicate sequences containing a high (+), medium (o), or low (-) amount of a characteristic.

Name qcif cif qsif sif 4sif
Resolution [px×px] 176x144 352x288 176x120 352x240 704x480
Pixels per frame 25344 101376 21120 84480 337920

Table 40: Overview of video resolutions employed in this thesis.

133

Name-#Frames_resolution Frames from orig. sequence
City-10_cif 1-10
City-10_qcif 1-10
City-20_qcif 1-20
City-30_qcif 1-30

Deadline-30_qcif 700-729
Football-30_qcif 90-119
Galleon-30_qcif 1-30
Harbor-30_qcif 1-30
Highway-30_qcif 1-30
Highway2-10_qcif 1250-1259
Highway2-20_qcif 1250-1269
Highway2-30_qcif 1250-1279

Ice-30_qcif 1-30
Miss America-30_qcif 1-30

Soccer-30_qcif 50-79
RotGrowBox-120_50x50 -

RotEll-30_100x100 -
RotGrowEll-30_100x100 -

SSTB1450-30_qcif 1450-1479
SSTB2710-30_qcif 2710-2739
SSTB6355-30_qcif 6355-6384
SSTB7351-30_qcif 7351-7380
SSTB9485-30_qcif 9485-9514
SSTB28053-7_4sif 28053-28059
SSTB46536-30_qcif 46536-46565
SSTB88250-30_qcif 88250-88279
SSTB94115-30_qcif 94115-94144
SSTB94910-30_qcif 94910-94939
SSTB101980-30_qcif 101980-102009
SSTB111130-30_qcif 111130-111159
SSTB113530-30_qcif 113530-113559

Suzie-10_qcif 1-10
Suzie-20_qcif 1-20
Suzie-30_qcif 1-30
Suzie-90_qcif 1-90
Stefan-30_qsif 165-194
Tempete-20_cif 10-29
Tempete-30_qcif 10-39
Tennis-20_sif 70-89
Tennis-30_qsif 60-89

TranslEll-30_100x100 -
TranslRotEll-30_100x100 -

Trevor-30_qcif 10-39
WashingtonDC-30_qcif 220-249

Table 41: Overview of test sequences. Note that in the rest of this thesis sequences with 30 frames
and qcif-resolution are just denoted by their sequence name.

134

C Detailed compression results

C Detailed compression results

Compression results
Sequence |Xn|

Improvement/deterioration [%] Total size @ q4 [kb]
Pixel pos. Val q1 Val q4 Val q16 Total q1 Total q4 Total q16 Old New PSNR [dB]

City10_cif

313760 11.17 8.94 10.43 20.49 9.59 10.71 15.82 293.238 261.842 40.45
213759 10.51 8.30 9.23 18.37 9.03 9.75 14.13 219.603 198.182 37.43
138759 8.86 7.84 8.22 16.63 8.21 8.50 12.17 156.109 142.833 34.75
88759 6.70 7.37 7.26 15.04 7.10 6.99 10.00 108.337 100.764 32.63
58759 5.39 7.22 6.82 13.83 6.44 6.09 8.53 76.714 72.040 31.04
33759 4.27 7.08 6.45 13.11 5.80 5.28 7.34 47.724 45.205 29.35
25759 3.92 7.04 6.22 12.42 5.58 4.95 6.78 37.708 35.842 28.61

City10_qcif

93440 8.78 8.59 9.66 19.56 8.64 9.34 14.27 83.041 75.282 42.17
53440 7.14 7.66 8.03 16.16 7.48 7.65 11.17 55.080 50.864 37.57
33440 5.58 7.08 7.15 14.20 6.51 6.42 9.12 38.096 35.649 34.7
18440 4.10 7.23 6.50 12.68 5.92 5.29 7.31 23.398 22.161 31.92
10440 2.83 7.55 6.49 11.90 5.43 4.53 5.99 14.494 13.837 29.84
6440 2.00 7.92 6.24 10.72 5.13 3.88 4.86 9.567 9.196 28.46

City20_qcif

156880 9.97 8.18 9.54 19.00 8.72 9.70 14.34 147.058 132.792 40.59
86880 8.56 7.29 7.88 15.84 7.74 8.19 11.67 94.006 86.311 36.15
46880 6.48 6.87 6.99 13.82 6.71 6.74 9.30 57.147 53.297 32.86
26880 4.78 6.90 6.71 12.80 5.96 5.69 7.63 35.914 33.869 30.62
16880 3.79 6.71 6.21 11.50 5.35 4.88 6.36 24.115 22.939 29.19
11880 2.87 7.18 6.30 10.91 5.11 4.36 5.45 17.793 17.017 28.28

City30_qcif

250320 10.57 8.26 9.85 19.53 8.94 10.12 14.95 230.062 206.777 41.28
170320 9.53 7.75 8.96 17.70 8.35 9.20 13.20 173.250 157.313 38.16
110320 8.39 7.10 7.75 15.64 7.58 8.05 11.38 123.338 113.414 35.35
70320 6.85 6.80 7.12 14.17 6.82 6.99 9.65 85.560 79.582 33.06
40320 4.76 6.80 6.86 13.14 5.90 5.75 7.72 53.817 50.720 30.86
25320 3.51 6.86 6.57 12.54 5.29 4.88 6.51 36.163 34.399 29.42

Deadline_qcif

150320 24.26 18.59 19.63 31.18 20.35 21.40 27.75 162.861 128.008 40.97
110320 22.07 17.76 18.32 29.60 19.19 19.84 25.71 127.342 102.075 37.88
70319 18.93 15.78 15.72 26.66 16.93 17.13 22.43 87.941 72.876 34.19
40319 14.61 13.03 12.55 22.38 13.67 13.54 17.84 55.130 47.668 31.01
20319 10.60 10.90 10.12 18.07 10.77 10.37 13.43 30.640 27.464 28.06
10319 7.44 10.73 10.20 17.37 9.17 8.69 10.95 16.879 15.412 25.71

Football_qcif

200320 13.80 8.79 10.95 18.59 10.29 12.01 16.26 209.017 183.916 39.11
160320 14.39 8.37 10.28 17.23 10.30 11.90 15.80 176.909 155.865 37.13
120319 15.37 7.83 9.40 15.67 10.42 11.88 15.51 141.537 124.720 34.95
80317 17.07 6.97 8.03 13.34 10.71 12.04 15.39 102.209 89.899 32.33
50317 18.26 6.24 6.89 11.20 11.03 12.25 15.26 69.414 60.909 29.75
30316 16.58 6.23 6.62 10.60 10.63 11.58 14.18 45.160 39.930 27.31

Galleon_qcif

150320 31.70 16.07 17.43 28.08 20.40 22.31 29.69 160.642 124.798 40.81
120320 28.15 15.00 15.99 26.02 18.86 20.36 27.00 134.652 107.242 38.14
90319 24.50 13.61 14.15 23.37 17.04 18.10 23.92 106.786 87.457 35.23
60317 20.23 11.83 12.01 20.10 14.73 15.41 20.17 76.355 64.590 32.02
40317 16.56 11.06 10.96 18.37 13.11 13.43 17.39 54.369 47.065 29.53
20316 10.55 10.12 10.03 16.67 10.30 10.28 13.11 30.193 27.089 26.28

Harbor_qcif

250320 12.24 9.71 11.45 20.68 10.40 11.72 16.84 250.975 221.563 39.23
175320 12.03 9.27 10.59 19.18 10.12 11.14 15.65 191.630 170.290 35.96
125320 11.51 8.87 9.85 17.95 9.77 10.54 14.58 146.880 131.404 33.44
85320 10.13 8.38 8.95 16.40 9.03 9.47 12.93 107.153 97.007 31.19
45319 7.16 7.96 8.05 14.67 7.63 7.62 10.23 62.879 58.088 28.4
15318 3.52 7.89 7.72 13.04 5.86 5.46 6.95 24.437 23.103 25.06

Highway_qcif

40320 8.14 11.22 11.50 24.15 9.94 9.80 13.88 45.868 41.374 41.28
15320 7.94 11.86 11.05 22.49 10.05 9.34 12.72 20.586 18.663 38.26
7320 5.34 13.47 12.13 23.28 9.47 8.18 10.78 10.923 10.029 35.98
4320 2.96 14.46 12.15 23.71 8.55 6.60 8.85 6.874 6.420 34.49
2320 1.33 15.72 13.28 22.89 7.99 5.79 6.96 3.958 3.729 32.86
1320 1.72 17.20 14.09 23.38 8.58 6.10 7.03 2.428 2.280 31.59
620 2.14 17.98 14.42 18.43 8.87 6.28 5.92 1.273 1.193 29.93

Table 42: Compression result comparison between AT3D and AT3D_PAQ. Total results and PSNR are only given
for quantization q4. For more detailed results see appended disc. Parameters set as described in section 3.4.

135

Compression results
Sequence |Xn|

Improvement/deterioration [%] Total size @ q4 [kb]
Pixel pos. Val q1 Val q4 Val q16 Total q1 Total q4 Total q16 Old New PSNR [dB]

45440 22.42 12.16 13.03 22.31 15.66 16.98 22.37 49.764 41.316 41.89
27440 22.41 11.69 12.21 20.14 15.72 16.83 21.42 33.859 28.159 38.39

Highway2- 20440 21.51 11.86 12.14 19.67 15.66 16.56 20.74 26.683 22.265 36.23
10_qcif 15440 20.95 11.89 12.00 19.46 15.62 16.37 20.35 21.203 17.732 34.3

10439 18.10 12.27 12.23 19.82 14.79 15.22 18.76 15.251 12.930 31.77
7439 15.42 12.50 12.65 19.64 13.81 14.11 16.97 11.396 9.788 29.94
5439 13.60 12.34 12.45 19.27 12.92 13.08 15.64 8.706 7.567 28.49

81880 22.17 13.49 15.04 25.19 16.56 18.14 23.51 89.078 72.920 41.99
41879 23.30 13.44 14.38 22.78 17.36 18.63 23.09 53.334 43.400 37.76

Highway2- 31879 22.79 13.15 13.85 22.01 17.14 18.25 22.49 42.652 34.869 35.96
20_qcif 21879 21.62 13.60 14.13 22.01 17.08 17.96 21.77 31.195 25.592 33.7

13879 19.27 14.13 14.54 22.92 16.48 17.06 20.60 21.179 17.565 31.26
9879 17.33 14.09 14.45 22.54 15.62 16.03 19.14 15.750 13.225 29.62
6879 15.76 14.92 15.31 23.30 15.33 15.56 18.26 11.495 9.706 28.13

120320 21.41 14.23 16.18 27.25 16.79 18.47 23.96 129.759 105.796 42.35
60320 22.28 14.25 15.75 24.70 17.47 18.89 23.26 76.275 61.868 38.44

Highway2- 35320 20.89 14.61 15.91 24.25 17.32 18.45 22.16 49.012 39.969 35.1
30_qcif 20320 19.07 15.61 17.07 25.72 17.21 18.15 21.42 30.647 25.084 31.96

12320 16.59 16.89 18.25 27.44 16.74 17.31 20.15 19.763 16.343 29.53
7320 13.06 17.75 18.64 27.97 15.34 15.32 17.57 12.419 10.516 27.48

Ice_qcif

65320 30.73 12.25 12.73 23.53 19.66 21.41 27.79 81.030 63.684 40.93
40320 26.63 12.14 11.91 22.38 18.45 19.53 25.03 53.827 43.312 37.3
25320 23.42 12.61 12.23 22.60 17.65 18.38 23.14 36.009 29.389 34
17320 19.72 13.20 12.64 23.31 16.38 16.69 20.90 25.860 21.544 31.36
11320 14.93 13.66 12.90 23.67 14.30 14.10 17.66 17.878 15.358 28.86
8320 11.51 13.61 12.53 23.83 12.52 11.92 15.26 13.702 12.069 27.36

MsAmerica_qcif

20020 4.91 14.25 15.56 26.90 10.14 9.87 12.30 24.198 21.809 43.57
8020 2.49 12.68 10.97 20.41 7.76 6.09 7.95 11.261 10.575 40.93
4020 1.41 12.60 9.65 17.15 6.91 4.71 5.93 6.260 5.965 38.78
2020 0.37 13.44 8.95 15.43 6.50 3.66 4.50 3.497 3.369 36.54
1220 -0.49 13.78 8.90 14.00 5.97 2.94 3.22 2.248 2.182 34.96
620 0.12 16.05 10.21 13.31 6.96 3.57 3.30 1.259 1.214 33

50000 51.69 52.84 46.26 50.48 52.15 49.70 51.30 37.767 18.996 43.09
35000 41.01 58.00 49.35 51.14 47.65 43.98 44.12 29.970 16.789 41.61

RotGrowBox- 25000 40.41 57.17 50.52 52.72 47.74 44.24 44.22 24.835 13.849 40.28
120_50x50 17000 52.57 60.46 54.89 56.98 56.06 53.47 53.95 19.213 8.940 39.17

10000 45.33 57.73 55.15 58.18 50.76 48.96 49.13 12.546 6.404 31.07
6000 33.51 42.06 45.14 54.62 37.53 37.90 39.48 8.553 5.311 26.33

10000 34.86 34.67 29.77 38.27 34.77 32.73 35.87 12.810 8.617 48.05
5000 51.09 26.00 20.28 27.21 38.77 38.25 43.77 6.949 4.291 48.24

RotEll_ 2000 38.29 27.50 23.16 31.11 33.32 32.60 36.36 3.095 2.086 42.85
100x100 1000 26.18 28.39 22.49 34.18 27.14 24.85 28.05 1.682 1.264 39.21

500 17.17 27.97 21.56 31.25 21.84 18.69 20.79 0.963 0.783 33.61
250 12.82 27.48 22.40 31.75 19.09 16.21 17.82 0.543 0.455 29.7

10000 51.05 25.90 22.06 30.30 38.62 38.69 44.41 13.733 8.420 48.27
5000 40.54 27.79 23.67 31.61 34.63 33.96 37.99 7.442 4.915 43.16

RotGrowEll_ 2000 24.99 31.20 25.42 36.18 27.66 25.14 27.73 3.306 2.475 35.33
100x100 1000 16.17 27.54 23.86 34.05 21.08 18.92 20.76 1.876 1.521 29.95

500 10.15 24.80 22.07 27.92 16.36 14.33 14.78 1.047 0.897 26.33
250 7.18 25.56 22.44 29.20 14.86 12.56 13.06 0.581 0.508 23.66

Soccer_qcif

230320 19.13 12.06 13.83 25.78 14.15 15.80 22.54 225.602 189.968 43.39
150320 20.39 12.27 13.60 24.92 14.96 16.36 22.58 166.387 139.174 39.78
90320 23.34 12.01 12.58 23.15 16.15 17.32 23.26 111.334 92.051 35.59
55320 24.16 12.51 12.63 23.34 17.13 18.06 23.81 74.187 60.789 31.67
35320 23.07 12.68 12.59 23.16 17.07 17.80 23.11 50.879 41.825 28.43
25320 21.46 12.48 12.21 22.30 16.42 16.95 21.79 38.344 31.845 26.38
80320 13.00 19.20 23.64 38.40 16.47 17.88 21.43 84.928 69.741 41.81
55320 8.51 18.48 22.22 37.09 13.82 14.44 17.39 62.783 53.719 39.47

SSTB 35320 4.70 16.46 18.56 32.69 10.68 10.37 12.94 43.447 38.940 36.9
1450_qcif 20320 2.50 13.94 13.80 27.30 8.14 7.01 9.63 27.881 25.927 33.71

10320 1.73 12.72 11.49 21.41 6.99 5.54 7.25 16.017 15.130 30.35
5320 0.74 12.38 11.37 18.79 6.10 4.72 5.53 9.052 8.625 28.15

400320 8.06 6.87 7.93 14.15 7.11 7.97 12.04 363.877 334.893 41.08
350320 8.00 6.70 7.65 13.66 6.98 7.75 11.54 332.442 306.693 39.02

SSTB 300319 8.12 6.51 7.31 13.00 6.90 7.55 11.05 298.295 275.764 36.87
2710_qcif 250317 8.36 6.42 7.12 12.56 6.93 7.52 10.77 261.114 241.477 34.7

200314 8.54 6.37 6.94 12.22 6.99 7.50 10.55 220.606 204.065 32.46
150310 8.72 6.35 6.75 11.88 7.09 7.50 10.36 176.058 162.859 30.07
100320 23.69 12.78 13.88 20.09 16.86 18.34 22.11 110.872 90.542 40.73
70320 20.41 12.21 13.15 19.29 15.47 16.62 19.94 83.463 69.592 38.22

SSTB 45320 17.75 12.09 12.68 19.58 14.49 15.25 18.47 58.137 49.274 35.15
6355_qcif 30320 16.39 12.19 12.61 19.77 14.07 14.61 17.65 41.359 35.317 32.68

20320 16.00 12.74 12.58 20.21 14.26 14.45 17.50 29.443 25.188 30.7
12320 15.31 13.31 12.27 20.45 14.29 14.00 17.03 19.171 16.487 28.73

Table 43: Compression result comparison between AT3D and AT3D_PAQ. Total results and PSNR are only given
for quantization q4. For more detailed results see appended disc.

136

C Detailed compression results

Compression results
Sequence |Xn|

Improvement/deterioration [%] Total size @ q4 [kb]
Pixel pos. Val q1 Val q4 Val q16 Total q1 Total q4 Total q16 Old New PSNR [dB]

15320 17.90 22.45 24.28 33.60 19.96 20.16 21.63 20.885 16.675 41.88
25320 22.98 23.35 18.51 31.78 23.16 15.86 18.47 11.320 9.525 38.87

SSTB 15319 17.84 22.60 17.68 31.18 20.00 14.75 17.35 7.252 6.182 37.22
7351_qcif 2320 12.24 20.11 15.36 28.33 15.54 13.27 15.86 4.251 3.687 35.41

1520 13.93 19.55 13.21 25.77 16.28 13.70 16.59 2.957 2.552 34.28
920 14.12 19.49 13.72 23.83 16.34 13.99 16.36 1.916 1.648 33.04

160320 9.93 13.38 14.94 27.45 12.30 12.98 18.46 160.034 139.254 41.8
110320 7.65 12.30 13.26 24.91 10.71 10.90 15.58 119.434 106.413 39.06

SSTB 75320 5.63 11.36 11.76 22.44 9.26 9.03 12.96 87.555 79.653 36.59
9485_qcif 50320 4.27 10.23 10.10 19.78 7.89 7.34 10.65 62.608 58.011 34.36

30320 3.06 9.82 9.09 18.08 6.98 6.07 8.87 40.669 38.200 32.06
15320 1.71 9.37 8.03 15.64 5.88 4.64 6.66 22.642 21.591 29.51

320440 23.14 24.71 24.70 30.40 24.14 24.00 26.38 346.897 263.639 41.61
250440 20.51 24.40 24.48 30.27 22.91 22.63 24.71 284.590 220.183 39.17

SSTB 190440 18.36 24.21 24.32 30.41 21.87 21.45 23.34 227.616 178.793 36.86
28053-6_4sif 140440 16.45 23.65 24.14 30.66 20.64 20.30 22.09 177.182 141.214 34.49

100440 14.62 22.48 23.11 30.53 19.05 18.72 20.67 134.030 108.946 32.09
60439 11.66 20.49 20.94 29.67 16.40 15.90 18.10 87.504 73.587 28.98
90320 41.90 19.89 16.33 23.86 26.44 25.77 32.51 94.499 70.142 42.53
60320 31.88 16.62 14.10 21.92 21.76 21.41 27.11 68.787 54.061 37.04

SSTB 40320 25.17 15.53 13.57 21.67 19.11 18.76 23.62 49.513 40.225 33.65
46536_qcif 25320 19.65 14.92 13.38 22.03 16.84 16.42 20.62 33.602 28.086 31.12

10320 11.55 14.46 12.58 22.13 13.10 12.02 15.25 15.605 13.729 28.26
5320 7.34 14.05 11.78 20.75 10.68 9.18 11.52 8.706 7.907 27.01

100320 29.23 15.53 17.17 28.82 19.86 21.93 29.03 102.133 79.740 42.9
65320 22.47 13.65 14.41 24.89 16.71 17.84 23.58 72.711 59.740 39.06

SSTB 45320 18.49 12.54 12.45 22.37 14.76 15.18 20.16 53.966 45.773 36.41
88250_qcif 30320 15.06 11.61 11.08 20.21 12.99 12.99 17.15 38.628 33.611 34.13

20320 12.24 11.07 9.87 18.78 11.56 11.07 14.77 27.588 24.535 32.32
10319 8.50 10.63 8.95 16.09 9.66 8.71 11.19 15.444 14.099 30.12
6319 5.86 9.80 7.54 13.42 7.89 6.59 8.33 10.074 9.410 28.92

100320 37.11 28.89 27.04 40.00 31.67 31.24 38.46 105.852 72.780 43.22
70320 35.04 26.01 23.45 35.90 29.13 28.35 35.44 78.771 56.438 41.23

SSTB 40319 30.15 25.81 19.66 30.96 27.39 24.29 30.51 48.922 37.041 37.95
94115_qcif 20319 22.45 20.03 14.36 25.81 21.01 18.28 23.82 27.135 22.175 34.38

10319 13.54 14.79 11.28 21.47 14.23 12.47 16.43 15.232 13.332 31.07
5319 8.28 13.34 10.55 19.97 10.89 9.28 12.22 8.663 7.859 28.18

100320 23.40 14.20 15.95 27.06 17.20 18.95 25.15 106.787 86.551 41.92
70320 18.81 13.15 14.36 24.46 15.14 16.27 21.37 80.734 67.597 38.96

SSTB 40319 13.30 11.44 11.79 20.50 12.17 12.50 16.30 51.040 44.660 35.41
94910_qcif 20319 8.76 10.87 10.65 18.51 9.95 9.67 12.43 28.676 25.902 32.02

10319 5.60 9.95 9.14 16.03 7.88 7.17 9.14 16.047 14.896 29.24
5319 3.12 10.37 9.67 15.34 6.74 5.86 7.00 8.989 8.462 27.13

10320 19.87 11.16 9.32 20.44 15.22 15.17 20.06 14.361 12.183 41.57
5320 11.98 10.42 7.28 16.87 11.20 10.04 13.43 8.090 7.278 38.88

SSTB 2820 6.97 11.05 6.75 14.35 8.91 6.86 9.02 4.693 4.371 36.43
101980_qcif 1620 4.71 11.57 5.61 12.52 7.83 5.04 6.73 2.878 2.733 34.3

920 2.25 12.93 7.42 12.01 6.92 4.00 4.61 1.776 1.705 32.37
520 2.71 13.85 10.03 13.10 7.35 5.15 5.17 1.107 1.050 30.37

15320 19.03 14.93 14.41 21.99 17.14 17.33 19.85 20.433 16.892 39.69
8320 21.15 14.73 13.22 21.02 18.32 18.38 21.13 12.124 9.896 38.03

SSTB 4320 16.00 17.23 14.53 24.08 16.51 15.53 17.94 6.761 5.711 36.07
113530_qcif 2320 14.58 18.65 15.04 23.17 16.17 14.74 16.47 3.975 3.389 34.49

620 20.09 18.21 8.76 12.56 19.39 16.96 18.63 1.285 1.067 32.87
370 17.92 19.53 13.45 13.43 18.51 16.59 16.96 0.820 0.684 32.44

Stefan_qsif

233600 16.74 7.73 8.84 15.30 9.76 11.08 15.85 223.305 198.555 41.52
153600 13.13 7.43 8.29 14.27 9.01 9.94 13.76 164.380 148.042 35.44
123600 11.90 7.35 8.12 13.88 8.71 9.50 12.95 138.994 125.787 33.04
98600 10.80 7.25 7.92 13.54 8.39 9.04 12.20 116.279 105.766 31.04
78600 9.95 7.14 7.76 13.21 8.10 8.66 11.54 96.861 88.477 29.32
63600 9.12 7.05 7.59 12.92 7.79 8.24 10.91 81.362 74.658 27.97
18440 9.10 10.97 11.06 23.14 10.21 10.07 14.16 20.717 18.630 41.54
8440 6.36 10.66 9.78 18.86 8.75 7.94 10.54 10.893 10.028 38.69

Suzie- 3440 4.62 11.67 9.60 17.22 8.30 6.77 8.58 5.108 4.762 35.85
10_qcif 1940 4.52 11.24 8.67 13.38 7.94 6.26 7.23 3.098 2.904 34.12

1140 3.59 12.50 9.32 11.27 8.05 5.95 5.91 1.948 1.832 32.48
540 2.69 12.46 9.09 10.08 7.47 5.29 4.93 1.001 0.948 30.22

40880 7.03 11.12 12.04 25.41 9.48 9.56 13.76 44.933 40.637 41.84
15880 3.87 9.82 9.55 19.95 7.11 6.45 9.14 20.729 19.392 38.45

Suzie- 5880 1.25 10.95 9.82 17.42 6.16 4.84 6.15 8.970 8.536 35.46
20_qcif 2880 -0.38 11.48 9.50 15.85 5.38 3.58 4.34 4.866 4.692 33.43

880 -0.85 12.06 9.15 12.95 5.13 2.98 3.05 1.712 1.661 30.24
480 0.80 12.23 9.38 10.46 5.97 4.01 3.48 0.997 0.957 28.45

Table 44: Compression result comparison between AT3D and AT3D_PAQ. Total results and PSNR are only given
for quantization q4. For more detailed results see appended disc.

137

Compression results
Sequence |Xn|

Improvement/deterioration [%] Total size @ q4 [kb]
Pixel pos. Val q1 Val q4 Val q16 Total q1 Total q4 Total q16 Old New PSNR [dB]

70320 8.22 11.22 12.87 26.94 10.02 10.58 15.06 75.126 67.178 42.53
25320 4.45 10.22 10.38 21.81 7.58 7.13 10.10 32.805 30.466 38.77

Suzie- 13320 2.38 10.30 9.98 19.82 6.45 5.61 7.72 19.180 18.104 36.81
30_qcif 6320 0.20 10.44 9.46 17.52 5.19 3.90 5.18 10.129 9.734 34.75

1820 -1.40 10.96 7.82 11.76 4.24 2.05 2.14 3.417 3.347 31.52
1020 -1.54 11.25 8.00 10.08 4.18 1.96 1.58 2.045 2.005 29.89

150960 13.95 9.99 11.60 23.62 11.70 12.83 17.33 181.486 158.207 40.75
120959 13.08 9.84 11.28 22.67 11.28 12.24 16.35 151.701 133.137 39.85

Suzie- 90957 11.81 9.64 10.85 21.64 10.63 11.37 15.06 120.025 106.378 38.78
90_qcif 60954 10.07 9.44 10.27 20.33 9.74 10.16 13.35 86.042 77.300 37.39

30950 7.09 9.10 9.29 18.18 8.08 7.99 10.42 48.320 44.457 35.26
10950 2.47 8.97 7.84 15.22 5.45 4.51 6.04 19.668 18.781 32.36

Tempete-20_cif

457520 9.98 10.40 12.45 21.21 10.28 11.55 15.86 473.417 418.737 40.18
382520 9.02 9.95 11.71 20.11 9.66 10.68 14.62 412.498 368.439 38.66
257518 7.57 9.33 10.67 18.44 8.73 9.38 12.71 301.661 273.366 35.63
207518 6.98 8.87 9.93 17.32 8.19 8.65 11.70 253.087 231.196 34.22
157517 6.38 8.52 9.29 16.34 7.71 7.97 10.74 201.607 185.531 32.62
107517 5.59 8.10 8.48 15.19 7.09 7.09 9.57 146.338 135.956 30.76
67517 4.68 7.72 7.72 14.03 6.40 6.17 8.31 98.334 92.262 28.82

Tempete_qcif

200320 13.74 10.17 12.01 20.82 11.21 12.64 17.41 201.107 175.686 41.2
150320 10.93 9.65 11.16 19.40 10.06 11.07 15.10 161.732 143.832 38.36
110320 8.83 9.08 10.18 17.92 8.99 9.62 13.09 126.724 114.539 35.78
80320 7.33 8.49 9.04 16.35 8.07 8.28 11.34 98.061 89.941 33.62
55320 5.74 8.09 8.27 14.92 7.16 7.08 9.60 72.056 66.956 31.53
30319 3.87 7.74 7.11 13.34 6.08 5.47 7.54 43.354 40.984 28.89

Tennis_qsif

203600 18.18 11.73 13.87 25.76 13.62 15.48 21.98 187.071 158.121 43.91
123600 23.66 10.47 11.36 21.41 14.83 16.38 22.60 131.692 110.116 40.65
73600 27.62 9.66 9.61 18.32 16.09 17.41 23.38 88.252 72.884 37.28
43600 24.28 9.79 9.67 17.72 15.37 16.38 21.43 57.581 48.148 33.9
23600 19.76 10.12 9.58 17.68 14.18 14.62 18.92 34.245 29.238 30.47
13600 15.53 10.89 10.12 18.01 12.99 12.97 16.47 21.398 18.623 27.98

Tennis-20_sif

399600 18.83 11.89 14.14 24.24 14.06 15.95 21.53 417.883 351.221 39.02
324600 21.36 11.75 13.60 23.05 14.88 16.71 22.18 358.625 298.715 37.5
249599 25.24 11.50 12.91 21.60 16.18 18.00 23.50 293.366 240.549 35.88
199598 28.44 11.57 12.68 20.85 17.49 19.34 24.85 246.087 198.501 34.6
149598 31.58 11.69 12.45 20.11 18.93 20.76 26.26 194.981 154.500 33
99597 33.99 13.01 13.75 21.27 21.06 22.92 28.27 139.092 107.216 30.91
64597 32.18 14.85 15.45 23.48 21.93 23.44 28.46 96.283 73.717 28.33
44597 28.95 15.79 16.31 24.63 21.45 22.62 27.20 69.934 54.115 26.32
10000 33.72 37.77 32.39 45.51 35.62 33.21 36.72 12.699 8.482 47.97
5000 48.19 29.81 26.57 35.67 39.64 39.76 44.76 7.254 4.370 48.18

TranslEll_ 2000 55.48 23.55 22.59 31.06 40.69 42.63 48.45 3.401 1.951 47.62
100x100 1000 39.25 22.85 21.36 29.17 32.04 32.66 36.51 1.828 1.231 44.15

500 25.68 24.01 22.46 31.75 25.00 24.62 27.16 0.983 0.741 42.22
250 14.79 24.56 17.72 26.85 18.55 15.68 17.55 0.523 0.441 39.47

10000 36.61 34.35 30.52 41.08 35.53 34.16 37.87 13.152 8.659 48.03
5000 54.44 22.95 19.56 26.79 39.93 40.84 46.64 7.434 4.398 48.1

TranslRotEll_ 2000 47.93 23.34 22.01 30.16 37.33 38.52 43.15 3.367 2.070 44.19
100x100 1000 34.91 25.29 23.45 30.60 30.87 30.97 33.83 1.834 1.266 42.13

500 23.37 29.14 28.97 37.21 25.69 25.18 26.71 0.997 0.746 39.81
250 16.71 34.80 33.15 38.84 23.92 21.98 22.09 0.555 0.433 34.98

Trevor_qcif

55320 9.96 11.13 12.15 22.12 10.67 11.11 14.85 67.280 59.808 38.86
45320 8.69 10.68 11.41 20.69 9.87 10.08 13.38 57.046 51.298 37.92
35319 7.33 9.66 9.94 18.33 8.67 8.62 11.48 46.205 42.221 36.8
27819 5.97 9.55 9.68 17.58 7.98 7.75 10.21 37.777 34.850 35.75
20318 4.79 9.08 8.99 15.80 7.13 6.74 8.66 28.993 27.039 34.46
15318 3.88 8.65 8.11 14.42 6.42 5.79 7.47 22.776 21.458 33.37
10317 2.63 8.22 7.29 12.81 5.51 4.65 5.95 16.180 15.428 31.86
5315 0.78 8.28 7.10 11.47 4.45 3.37 4.07 9.104 8.797 29.42

WashDC_qcif

150320 19.60 13.61 15.45 27.92 15.54 17.12 23.55 154.089 127.711 40.92
120320 16.98 12.93 14.24 26.26 14.32 15.39 21.21 129.333 109.424 38.88
100320 15.55 12.48 13.45 25.05 13.57 14.37 19.74 111.706 95.656 37.24
80320 13.98 11.91 12.47 23.79 12.68 13.16 18.14 93.203 80.938 35.46
60320 11.91 11.29 11.30 22.17 11.53 11.59 16.06 73.702 65.162 33.45
40320 9.49 10.52 9.94 20.34 10.09 9.71 13.62 52.622 47.511 31.18
25320 7.18 9.66 8.32 17.91 8.55 7.72 11.00 35.390 32.659 29.26
15320 5.13 9.13 7.38 16.24 7.25 6.13 8.84 22.807 21.408 27.72

Table 45: Compression result comparison between AT3D and AT3D_PAQ. Total results and PSNR are only given
for quantization q4. For more detailed results see appended disc.

138

D Detailed H.264 results

D Detailed H.264 results

Compression results

Sequence PSNR [dB] Total size [kb] / Bits per pixel AT3D_PAQ vs. H.264 [%]
AT3D AT3D_PAQ H.264 Regular H.264 Best Regular Best

42.60 83.025 2.621 75.438 2.381 28.146 0.888 25.335 0.800 -168.02 -197.76
38.30 55.086 1.739 51.070 1.612 14.601 0.461 12.694 0.401 -249.77 -302.32

City-10
35.50 38.016 1.200 35.774 1.129 9.154 0.289 8.286 0.262 -290.80 -331.74
32.90 23.424 0.739 22.238 0.702 6.190 0.195 5.450 0.172 -259.26 -308.04
30.80 14.490 0.457 13.862 0.438 4.301 0.136 3.892 0.123 -222.30 -256.17
29.50 9.570 0.302 9.214 0.291 3.487 0.110 3.120 0.098 -164.24 -195.32
48.40 13.735 0.366 8.421 0.225 10.643 0.284 8.480 0.226 20.88 0.70
44.20 7.468 0.199 4.897 0.131 8.027 0.214 6.442 0.172 38.99 23.98

RotGrowEll_ 38.10 3.297 0.088 2.414 0.064 5.145 0.137 4.003 0.107 53.08 39.70
100x100 33.30 1.844 0.049 1.456 0.039 3.293 0.088 2.800 0.075 55.78 48.00

30.20 1.027 0.027 0.858 0.023 2.570 0.069 2.272 0.061 66.61 62.24
27.20 0.568 0.015 0.493 0.013 1.997 0.053 1.926 0.051 75.31 74.40
41.20 110.803 1.166 90.837 0.956 84.042 0.884 67.384 0.709 -8.09 -34.80
39.10 83.147 0.875 69.656 0.733 66.444 0.699 53.254 0.560 -4.83 -30.80

SSTB 36.40 57.785 0.608 49.217 0.518 47.125 0.496 36.984 0.389 -4.44 -33.08
6355 34.10 41.033 0.432 35.411 0.373 33.469 0.352 25.229 0.265 -5.80 -40.36

32.10 29.233 0.308 25.145 0.265 23.281 0.245 16.894 0.178 -8.01 -48.84
30.00 19.057 0.201 16.506 0.174 14.463 0.152 9.919 0.104 -14.13 -66.41
42.9 14.379 0.151 12.270 0.129 10.193 0.107 7.189 0.076 -20.38 -70.68
40.4 8.128 0.086 7.324 0.077 7.904 0.083 5.648 0.059 7.34 -29.67

SSTB 38.1 4.657 0.049 4.375 0.046 6.264 0.066 4.560 0.048 30.16 4.06
101980 36 2.871 0.030 2.760 0.029 5.056 0.053 3.710 0.039 45.41 25.61

34 1.765 0.019 1.698 0.018 4.202 0.044 3.093 0.033 59.59 45.10
32 1.093 0.012 1.040 0.011 3.435 0.036 2.600 0.027 69.72 60.00

42.20 20.657 0.652 18.717 0.591 9.590 0.303 7.949 0.251 -95.17 -135.46
39.60 10.877 0.343 10.083 0.318 5.966 0.188 4.795 0.151 -69.01 -110.28

Suzie-10
36.80 5.089 0.161 4.775 0.151 3.524 0.111 3.010 0.095 -35.50 -58.64
35.20 3.079 0.097 2.915 0.092 2.653 0.084 2.321 0.073 -9.88 -25.59
33.80 1.930 0.061 1.824 0.058 2.150 0.068 1.889 0.060 15.16 3.44
31.40 1.002 0.032 0.947 0.030 1.591 0.050 1.402 0.044 40.48 32.45

Table 46: Detailed H.264 results of full comparison.

139

Compression results

Sequence PSNR [dB] Total size [kb] / Bits per pixel Improvement/
AT3D_PAQ H.264 Regular deterioration [%]

43.57 21.809 0.229 12.217 0.129 -78.51
40.93 10.575 0.111 6.198 0.065 -70.62

MissAmerica
38.78 5.965 0.063 3.921 0.041 -52.13
36.54 3.369 0.035 2.727 0.029 -23.54
34.96 2.182 0.023 2.263 0.024 3.58
33.00 1.214 0.013 1.961 0.021 38.09
39.69 20.433 0.215 14.532 0.153 -40.61
38.03 12.124 0.128 10.097 0.106 -20.08

SSTB 36.07 6.761 0.071 6.595 0.069 -2.52
111130 34.49 3.975 0.042 4.438 0.047 10.43

33.79 2.756 0.029 3.487 0.037 20.96
33.00 1.214 0.013 1.961 0.021 38.09
42.90 79.740 0.839 15.605 0.164 -410.99
39.06 59.740 0.629 9.310 0.098 -541.68

SSTB 36.41 45.773 0.482 6.823 0.072 -570.86
34.13 33.611 0.354 5.295 0.056 -534.77

88250 32.32 24.535 0.258 4.367 0.046 -461.83
30.12 14.099 0.148 3.052 0.032 -361.96
28.92 9.410 0.099 2.706 0.028 -247.75
40.88 418.737 1.652 237.960 0.939 -75.97
39.12 368.439 1.454 186.115 0.734 -97.96
37.24 313.144 1.236 139.933 0.552 -123.78

Tempete- 35.85 273.366 1.079 112.152 0.443 -143.75
20_cif 34.37 231.196 0.912 84.683 0.334 -173.01

32.72 185.531 0.732 59.639 0.235 -211.09
30.82 135.956 0.536 39.336 0.155 -245.63
28.86 92.262 0.364 25.241 0.100 -265.52
48.10 4.398 0.117 5.137 0.137 14.39

TranslRotEll_ 44.19 2.070 0.055 3.880 0.103 46.65
42.13 1.266 0.034 3.347 0.089 62.18

100x100 39.81 0.746 0.020 2.862 0.076 73.93
34.98 0.433 0.012 1.965 0.052 77.96
40.90 127.711 1.344 26.825 0.282 -376.09
38.90 109.424 1.151 20.710 0.218 -428.36
37.20 95.656 1.006 16.286 0.171 -487.35

WashDC 35.50 80.938 0.852 12.945 0.136 -525.25
33.50 65.162 0.686 9.817 0.103 -563.77
31.20 47.511 0.500 7.041 0.074 -574.78
29.30 32.659 0.344 5.157 0.054 -533.29

Table 47: Detailed H.264 results of short comparison.

140

E Detailed runtime results

E Detailed runtime results
C
fg
A
-3
2
ad

ap
ti
ve

th
in
ni
ng

Se
qu

en
ce

H
ea
p
co
ns
tr
uc
ti
on

ti
m
e

A
T
6
ti
m
e

Fa
ile

d
ge
om

et
ry

te
st
s

O
ld

[s
]

N
ew

[s
]

G
ai
n
[%

]
T
hi
nn

ed
px

[M
]

O
ld

[s
]

N
ew

[s
]

G
ai
n
[%

]
O
ld

[B
il]

N
ew

[B
il]

R
ed
uc
ti
on

[%
]

Ci
ty

-1
0

23
7

13
0

45
.1
5

0.
25

79
26

39
84

49
.7
4

15
.8
4

5.
41

65
.8
7

Ci
ty

-2
0

52
0

28
0

46
.1
5

0.
50

17
70
8

90
83

48
.7
1

35
.9
6

12
.2
1

66
.0
6

Ci
ty

78
0

43
2

44
.6
2

0.
75

28
24
0

13
84
1

50
.9
9

55
.7
8

19
.1
2

65
.7
2

Fo
ot

ba
ll

77
4

43
9

43
.2
8

0.
75

32
48
9

14
81
4

54
.4
0

76
.6
0

20
.3
4

74
.6
7

Ga
ll

eo
n

76
7

43
2

43
.6
8

0.
75

27
73
7

13
57
3

51
.0
7

63
.1
5

19
.2
6

69
.5
0

Hi
gh

wa
y2

-1
0

23
6

12
9

45
.3
4

0.
25

10
35
7

45
57

56
.0
0

29
.5
3

6.
17

79
.1
0

Hi
gh

wa
y2

-2
0

50
6

28
9

42
.8
9

0.
50

24
99
8

10
58
2

57
.6
7

82
.2
5

14
.8
1

82
.0
0

Hi
gh

wa
y2

76
8

43
5

43
.3
6

0.
75

34
01
3

15
79
6

53
.5
6

89
.1
5

22
.5
8

74
.6
7

Mi
ss

Am
er

ic
a

76
6

43
8

42
.8
2

0.
75

28
40
7

14
00
5

50
.7
0

64
.1
0

19
.4
1

69
.7
2

So
cc

er
76

9
44

0
42
.7
8

0.
75

30
59
7

14
13
3

53
.8
1

70
.1
4

19
.6
5

71
.9
8

Av
er
ag

e
ga

in
44

.0
1

Av
er
ag
e
ga
in

52
.6

6
Av

er
ag
e
ga
in

71
.8

1

Ta
bl
e
48

:
A
da

pt
iv
e
th
in
ni
ng

ru
nt
im

e
an

d
effi

ci
en
cy

co
m
pa

ri
so
n
of

ol
d
an

d
ne
w

im
pl
em

en
ta
ti
on

.

C
fg
A
-3
2
ex
ch
an

ge

Se
qu

en
ce

E
xc
ha

ng
ed

pi
xe
ls

E
xc
ha

ng
e
ti
m
e

Fa
ile

d
ge
om

et
ry

te
st
s

|X
n
|

O
ld

N
ew

O
ld

[s
]

N
ew

[s
]

G
ai
n
[%

]
O
ld

[B
il]

N
ew

[B
il]

R
ed
uc
ti
on

[%
]

Ci
ty

-1
0

34
40

43
04

41
16

42
16

24
89

40
.9
6

48
.2
6

13
.6
3

71
.7
5

Ci
ty

-2
0

68
80

82
13

79
33

10
87
5

66
03

39
.2
8

11
8.
79

36
.8
8

68
.9
6

Ci
ty

10
32

0
12

11
4

11
89
7

17
42
3

10
75
0

38
.3
0

19
1.
70

60
.1
6

68
.6
2

Fo
ot

ba
ll

10
32

0
98
44

95
27

25
04
3

13
93
4

44
.3
6

25
8.
68

70
.5
7

72
.7
2

Ga
ll

eo
n

10
32

0
90
15

85
91

17
42
3

10
39
7

40
.3
3

18
9.
26

51
.9
6

72
.5
5

Hi
gh

wa
y2

-1
0

34
40

30
26

30
22

79
69

41
02

48
.5
3

88
.6
2

17
.6
2

80
.1
1

Hi
gh

wa
y2

-2
0

68
80

51
73

54
74

18
99
8

97
13

48
.8
7

19
8.
15

43
.9
2

77
.8
3

Hi
gh

wa
y2

10
32

0
86
20

83
42

28
04
4

13
93
5

50
.3
1

29
4.
45

68
.4
5

76
.7
6

Mi
ss

Am
er

ic
a

10
32

0
75
85

77
22

16
51
0

93
33

43
.4
7

16
3.
97

46
.7
6

71
.4
8

So
cc

er
10

32
0

93
83

92
18

22
82
5

13
75
6

39
.7
3

22
8,
00

60
.1
4

73
.6
2

Av
er
ag
e
ga
in

43
.4

1
Av

er
ag
e
ga
in

73
.4

4

Ta
bl
e
49

:
E
xc
ha

ng
e
ru
nt
im

e
an

d
effi

ci
en
cy

co
m
pa

ri
so
n
of

ol
d
an

d
ne
w

im
pl
em

en
ta
ti
on

.
|X
n
|i
nd

ic
at
es

th
e
am

ou
nt

of
si
gn

ifi
ca
nt

pi
xe
ls

in
th
e
gr
id
.

141

C
fgB

-64
adaptive

thinning

Sequence
H
eap

construction
tim

e
A
T
6
tim

e
Failed

geom
etry

tests
O
ld

[s]
N
ew

[s]
G
ain

[%
]

T
hinned

px
[M

]
O
ld

[s]
N
ew

[s]
G
ain

[%
]

O
ld

[B
il]

N
ew

[B
il]

R
eduction

[%
]

City-10
92

69
25.00

0.25
3081

1956
36.51

15.62
5.40

65.34
City-20

201
148

26.37
0.50

6977
4413

36.75
35.56

12.23
65.61

City
302

227
24.83

0.75
10853

6891
36.51

55.78
19.10

65.76
Football

304
228

25.00
0.75

12019
7197

40.12
76.40

20.29
73.44

Galleon
302

228
24.50

0.75
10660

6704
37.11

63.42
19.23

69.68
Highway2-10

92
68

26.09
0.25

3914
2202

43.74
28.27

6.16
78.22

Highway2-20
198

147
25.76

0.50
9001

4928
45.25

76.50
14.82

80.63
Highway2

303
227

25.08
0.75

12886
7584

41.15
90.76

22.47
73.44

MissAmerica
307

228
25.73

0.75
10922

6761
38.10

63.94
19.46

69.57
Soccer

307
228

25.73
0.75

11434
6848

40.11
70.05

19.66
71.94

City-10_cif
373

277
25.74

1.00
12556

7907
37.03

64.69
21.82

66.26
Suzie-90

∗
966

725
24.95

2.25
34552

21230
38.56

195.18
61.03

68.73
Tempete-20_cif

802
598

25.44
1.975

27361
17474

36.14
133.55

46.89
64.89

Tennis-20_sif
667

495
25.79

1.65
27643

15654
43.47

187.41
46.11

75.40
SSTB28053-6_4sif

816
604

25.98
2.30

40582
21513

46.99
310.01

55.69
82.04

Average
gain

25.47
Average

gain
39.83

Average
gain

71.52

Table
50:

A
daptive

thinning
runtim

e
and

effi
ciency

com
parison

ofold
and

new
im

plem
entation.

∗:
D
ue

to
a
crash

this
sequence

w
as

encoded
w
ith

random
ized

point
insertion,w

hich
increases

absolute
com

pression
tim

es,but
relative

results
rem

ain
valid.

C
fgB

-64
exchange

Sequence
E
xchanged

pixels
E
xchange

tim
e

Failed
geom

etry
tests

|X
n |

O
ld

N
ew

O
ld

[s]
N
ew

[s]
G
ain

[%
]

O
ld

[B
il]

N
ew

[B
il]

R
eduction

[%
]

City-10
3440

4096
3979

1301
835

35.82
41.77

12.83
69.29

City-20
6880

8207
8134

3577
2377

33.55
118.02

39.00
66.95

City
10320

12327
12100

6019
3868

35.74
190.56

64.04
66.39

Football
10320

9484
9828

7271
5220

28.21
230.31

73.50
68.09

Galleon
10320

8962
8685

5768
3665

36.46
175.94

50.59
71.25

Highway2-10
3440

2971
2917

2868
1480

48.40
82.34

18.41
77.64

Highway2-20
6880

5616
5636

6787
3908

42.42
226.59

45.20
80.05

Highway2
10320

8398
8314

8550
5375

37.13
295.54

71.89
75.66

MissAmerica
10320

7610
7517

5285
3200

39.45
166.56

44.78
73.11

Soccer
10320

9396
9185

7557
4627

38.77
234.04

55.94
76.1

City-10_cif
13760

15120
14805

5341
3455

35.31
185.70

55.34
70.20

Suzie-90
30960

28260
28914

18898
12578

33.44
592.23

194.04
67.24

Tempete-20_cif
52520

41458
40536

18863
12489

33.79
472.24

166.48
64.75

Tennis-20_sif
39600

19797
19809

22370
14723

34.18
675.28

170.35
74.77

SSTB-28053-6_4sif
65440

44822
44372

40056
23498

41.34
1170.43

239.40
79.55

Average
gain

36.93
Average

gain
72.07

Table
51:

E
xchange

runtim
e
and

effi
ciency

com
parison

ofold
and

new
im

plem
entation.

|X
n |indicates

the
am

ount
ofsignificant

pixels
in

the
grid.

142

References

References

[Ahm74] N. Ahmed, T. Natarajan, K.R. Rao. Discrete Cosine Transform. IEEE Transactions
on Computers C-23 (1): 90-93, 1974.

[Ber13] W. Bergmans. Data compression benchmarks,
http://www.maximumcompression.com/index.html. Accessed 2013.

[Bla02] C. Blatter. Wavelets: a Primer. A K Peters Ltd., 2002.

[Che05] Z. Chen. Finite element methods and their applications. Springer, 2005.

[Cov91] T. M. Cover, J.A. Thomas, J. Kieffer. Elements of Information Theory. Wiley, New
York, 1991.

[deB08] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2008.

[Dem06] L. Demaret,A. Iske. Adaptive Image Approximation by Linear Splines over Lo-
cally Optimal Delaunay Triangulations. IEEE Signal Processing Letters 13(5), 2006,
281-284.

[Dem11] L. Demaret, A. Iske, W. Khachabi. Sparse Representation of Video Data by Adap-
tive Tetrahedralizations. 2011.

[Der13] Test video sequences, http://media.xiph.org/video/derf/ , viewed 2013.

[Dev02] O. Devillers, S. Pion, M. Teillaud. Walking in a triangulation. International Journal
on Foundations of Computer Science, 13:181-199, 2002.

[Enc13] Encoding forum, http://encode.ru/forum.php, viewed 2013.

[Fed92] M. Feder, N. Merhav, M. Gutman. Universal prediction of individual sequences.
Information Theory, IEEE Transactions on 38.4: 1258-1270, 1992.

[GCC13] GCC-Team. Options that control optimization,
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. 2013.

[Hin10] M. Hinnenthal. Erweiterung der kontextuellen Kompressionsmethoden mit
Hilfe von Delaunay Triangulierungen. Diploma thesis at TU Muenchen, 2010.

[ITU11] International Telecommunications Union. ITU-R Recommendation BT.601,
http://www.itu.int/rec/R-REC-BT.601-7-201103-I/en. 2011.

[ITU02] International Telecommunications Union. ITU-R Recommendation BT.709,
http://www.itu.int/rec/R-REC-BT.709/en. 2002.

143

References

[Kha11] W. Khachabi. Introducing a novel approach in compression of digital video
sequences. Preprint, Uni Hamburg, 2011.

[Kno12] B. Knoll, N. de Freitas. A machine learning perspective on predictive coding with
PAQ8. Data Compression Conference, pages 377-386, 2012.

[Mah02] M. V. Mahoney, The PAQ1 data compression program,
http://mattmahoney.net/dc/paq1.pdf. Draft, 2002.

[Mah05] M. V. Mahoney. Adaptive weighing of context models for lossless data compres-
sion. Florida Tech., Melbourne, USA, Tech. Rep, 2005.

[Mah13] M. V. Mahoney. Data compression benchmarks.
http://mattmahoney.net/dc/#benchmarks. Accessed 2013.

[Mat12] C. Mattern. Mixing Strategies in Data Compression. Proc. of the 22nd Data
Compression Conference (DCC), pp. 337-346, 2012.

[Mat13] C. Mattern. Linear and Geometric Mixtures - Analysis. DCC: 301-310, 2013.

[Pal08] N. Paley. Sita sings the blues, 480p uncompressed.
http://media.xiph.org/video/derf/y4m/sita_sings_the_blues_480p24.y4m.xz, 2008,
viewed 2013. Author’s page available at http://www.sitasingstheblues.com.

[Pur04] Puri, Atul, X. Chen, A. Luthra. Video coding using the H. 264/MPEG-4 AVC
compression standard. Signal processing: Image communication 19.9, 793-849, 2004.

[Roj96] R. Rojas. Neutral Networks: A Systematic Introduction. Springer, 1996.

[Say00] K. Sayood. Introduction to Data Compression. Academic Press, 2nd Edition, San
Diego, CA, 2000.

[Sou11] R. Soukal, et al.Hybrid Walking Point Location Algorithm., ADVCOMP 2011, The
Fifth International Conference on Advanced Engineering Computing and Applications in
Sciences, 2011.

[Sul05] Sullivan, Gary J., and Thomas Wiegand. Video compression-from concepts to the
H. 264/AVC standard. Proceedings of the IEEE 93.1, 18-31, 2005.

[Wan03] Z. Wang, H. R. Sheikh, A. C. Bovic. Objective Video Quality Assessment. Chapter
41 in The Handbook of Video Databases: Design and Applications, B. Furht and O.
Marqure, ed., CRC Press, pp. 1041-1078, September 2003.

[Wel98] F. Weller. On the Total Correctness of Lawson’s Oriented Walk Algorithm. The
10th International Canadian Conference on Computational Geometry, Montral, Quebec,
1998.

[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal gradi-
ent ascent. In ICML, pages 928-936, 2003.

144

List of Figures

List of Figures

1 Overview of the H264 encoding process. 15
2 Arithmetic coding example. 31
3 Exemplary Delaunay tetrahedralization. 39
4 Schematic display of a restricted 2d context box. 49
5 Schematic display of context box projection. 50
6 Schematic high-level description of the architecture of PAQ8. 56
7 Schematic high-level description of r models in a model class. 60
8 Schematic display of the NN-mixer. 65
9 Schematic display of the original software architecture in PAQ. 69
10 Schematic display of the merged software architecture in AT3D_PAQ. . . . 70
11 Visualization of position-specific context box model. 74
12 Visualization of cascaded SSE-stage of pixel position modeling. 74
13 First frames of Suzie, MissAmerica, and SSTB94115. 81
14 Typical distribution of significant pixels among frames for low-entropy

sequences. 82
15 Pixel position encoding improvement of AT3D_PAQ vs. AT3D on Suzie. . 82
16 Significant pixel distribution in SSTB94115 with 5319 significant pixels. . . . 82
17 Pixel position encoding improvement of AT3D_PAQ vs. AT3D on SSTB94115. 82
18 First frame and significant pixels in frames 0, 9 and 19 in TranslEll_100x100. 83
19 Significant pixel distribution in TranslEll_100x100 with 2000 sign. pixels. 83
20 Pixel position encoding improvement of AT3D_PAQ vs. AT3D at

TranslEll_100x100. 83
21 Comparison of bits per pixel vs. PSNR of old and new implementation at q4. 86
22 Improvement of AT3D_PAQ vs. AT3D on Highway2. 86
23 Comparison of bits per pixel vs. PSNR of old and new implementation at q4. 87
24 Improvement of AT3D_PAQ vs. AT3D on SSTB1450. 87
25 Comparison of bits per pixel vs. PSNR of old and new implementation at q4. 88
26 Improvement of AT3D_PAQ vs. AT3D on RotGrowBox-120_50x50. 88
27 Comparison of bits per pixel vs. PSNR of old and new implementation at q4. 89
28 Improvement of AT3D_PAQ vs. AT3D on Tennis-20_sif. 89
29 bpp vs. PSNR of AT3D, AT3D_PAQ vs. H.264 on Suzie-10. 92
30 Improvement/deterioration comparison of AT3D_PAQ and H.264 at

Suzie-10. 92
31 bpp vs. PSNR of AT3D, AT3D_PAQ vs. H.264 on City-10. 93

145

List of Figures

32 Improvement/deterioration comparison of AT3D_PAQ and H.264 at
City-10. 93

33 bpp vs. PSNR of AT3D, AT3D_PAQ vs. H.264 on SSTB6355. 94
34 Improvement/deterioration comparison of AT3D_PAQ and H.264 at

SSTB6355. 94
35 bpp vs. PSNR of AT3D, AT3D_PAQ vs. H.264 on SSTB101980. 95
36 Improvement/deterioration comparison of AT3D_PAQ and H.264 at

SSTB101980. 95
37 bpp vs. PSNR of AT3D, AT3D_PAQ vs. H.264 on RotGrowEll_100x100. 96
38 Improvement/deterioration comparison of AT3D_PAQ and H.264 at

RotGrowEll_100x100. 96
39 bpp vs. PSNR of AT3D_PAQ vs. H.264 on WashDC. 97
40 bpp vs. PSNR of AT3D_PAQ vs. H.264 on SSTB88250. 97
41 bpp vs. PSNR of AT3D_PAQ vs. H.264 on MissAmerica. 97
42 bpp vs. PSNR of AT3D_PAQ vs. H.264 on SSTB111130. 97
43 bpp vs. PSNR of AT3D_PAQ vs. H.264 on Tempete-20_cif. 97
44 bpp vs. PSNR of AT3D_PAQ vs. H.264 on TranslRotEll_100x100. . . . 97
45 Minimal bounding box BTj of a single tetrahedron Tj 101
46 Visualization of proof idea of lemma 4.1.5. 103
47 Minimal bounding box BT of a set T of two tetrahedra. 111
48 Schematic representation of old pixel scan implementation. 112
49 Schematic representation of new pixel scan implementation. 112
50 Schematic display of a ring buffer. 118
51 Progression of compression time for AT6 applied to City. 126
52 Progression of failed geometry tests in AT6 applied to City. 126
53 Progression of compression time for AT6 applied to Highway2. 126
54 Progression of failed geometry tests in AT6 applied to Highway2. 126

146

List of Tables

List of Tables

1 Overview of AT3D stages. 36
2 Stationarity investigation: Matching n-grams in Suzie-90. 54
3 Stationarity investigation: Matching n-grams in Football. 54
4 Compression results: Overall average grayscale value encoding sorted by

encoding stage. 80
5 Compression results: Overall average grayscale value encoding sorted by

quantization setting. 81
6 Significant pixels in Suzie and SST94115. 82
7 Pixel position coding cost visualization: Suzie. 84
8 Pixel position coding cost visualization: RotEll_100x100. 84
9 Pixel position coding cost visualization: Football. 84
10 Compression result comparison: AT3D vs. AT3D_PAQ, Highway2. 86
11 Frame comparison: Highway2. 86
12 Compression result comparison: AT3D vs. AT3D_PAQ, SSTB1450. 87
13 Frames and significant pixels: SSTB1450. 87
14 Compression result comparison: AT3D vs. AT3D_PAQ, RotGrowBox-120. . 88
15 Frame comparison: RotGrowBox-120_50x50. 88
16 Compression result comparison: AT3D vs. AT3D_PAQ, Tennis-20_sif. . 89
17 Frames and significant pixels: Tennis-20_sif. 89
18 Compression time comparison: AT3D vs. AT3D_PAQ. 91
19 Compression result comparison: AT3D_PAQ vs. H.264, Suzie-10. 92
20 Frame comparison: Suzie-10. 92
21 Compression result comparison: AT3D_PAQ vs. H.264, City-10. 93
22 Frame comparison: City-10. 93
23 Compression result comparison: AT3D_PAQ vs. H.264, SSTB6355. 94
24 Frame comparison: SSTB6355. 94
25 Compression result comparison: AT3D_PAQ vs. H.264, SSTB101980. . . . 95
26 Frame comparison: SSTB101980. 95
27 Compression result comparison: AT3D_PAQ vs. H.264, RotGrowEll. . . . 96
28 Frame comparison: RotGrowEll_100x100. 96
29 Run-time comparison: Standard vs. custom queue implementation. 119
30 Run-time comparison: Configuration A, Ba-32 vs. i686-32. 123
31 Run-time comparison: Configuration A, Ba-64 vs. i686-64. 123
32 Run-time comparison: Configuration B, Co-32 vs. i686-32. 123
33 Run-time comparison: Configuration B, Co-64 vs. i686-64. 123

147

List of Tables

34 Relative run-time comparison of different compiler-optimizations and envi-
ronments on configuration A. 123

35 Relative run-time comparison of different compiler-optimizations and envi-
ronments on configuration B. 123

36 Run-time results: Average best-case improvements. 125
37 Run-time results: Average worst-case improvements. 125
38 Overview: Test sequences from natural and artifical sequences. 130
39 Overview: Test sequences from Sita sings the blues. 131
40 Overview of video resolutions employed in this thesis. 131
41 Overview of test sequences . 132
42 Detailed compression result comparison of AT3D and AT3D_PAQ: A-H. . . 133
43 Detailed compression result comparison of AT3D and AT3D_PAQ: H-SSTB.134
44 Detailed compression result comparison of AT3D and AT3D_PAQ: SSTB-Su.135
45 Detailed compression result comparison of AT3D and AT3D_PAQ: Su-Z. . 136
46 Detailed H.264 results of full comparison. 137
47 Detailed H.264 results of short comparison. 138
48 Configuration A: Adaptive thinning runtime and efficiency comparison of

old and new implementation. 139
49 Configuration A: Exchange runtime and efficiency comparison of old and

new implementation. 139
50 Configuration B: Adaptive thinning runtime and efficiency comparison of

old and new implementation. 140
51 Configuration B: Exchange runtime and efficiency comparison of old and

new implementation. 140

148

	Introduction
	Thesis organization and contributions

	Fundamentals
	Notational conventions
	A brief introduction to video compression
	Summary and outlook

	MPEG4-AVC/H.264
	Overview
	Coding units
	Intra- and inter-frame prediction
	Transform coding
	Scan, quantization and entropy coding
	In-loop deblocking filter
	Rate control
	Summary

	Introduction to information theory
	Basic definitions
	Entropy
	Linking entropy to data compression
	Arithmetic coding
	Separation of modeling and encoding
	Summary

	AT3D
	Delaunay tetrahedralizations
	Linear splines over Delaunay tetrahedralizations
	Pre-processing
	Adaptive thinning
	Post-processing: Pixel exchange
	Post-processing: Best approximation
	Quantization
	Implementation of arithmetic coding
	Entropy coding: Pixel positions
	Entropy coding: Grayscale values
	Numerical results regarding stationarity

	Development of AT3D_PAQ
	PAQ
	PAQ8 - Building blocks
	Context mixing in PAQ1-3
	Context mixing in PAQ4-6
	Context mixing in PAQ7-8: Logistic/geometric mixing
	PAQ8 - Modeling tools
	PAQ8 - Adaptive probability maps

	Integration of PAQ into AT3D
	Modifications of PAQ after the integration
	Modeling pixel positions
	Modeling grayscale values

	Numerical results: AT3D_PAQ vs. AT3D
	Pixel position encoding results
	Grayscale value encoding results
	Total compression results for selected sequences
	Summary and analysis of overall results
	Compression time comparison: AT3D_PAQ vs. AT3D

	Numerical results: AT3D_PAQ vs. H.264
	Summary and analysis of results

	Conclusion
	Outlook

	Runtime optimization
	Improvements of the AT3D implementation
	Assignment of pixels to tetrahedra
	Custom queue implementation
	Further improvements

	Numerical results
	Conclusion
	Outlook
	Further code improvements

	Appendices
	List of used hard- and software
	Test video sequences
	Detailed compression results
	Detailed H.264 results
	Detailed runtime results

