[

Technische Universitat Miinchen

Department of Mathematics

Chair of Mathematical Modeling of Biological Systems

A

Master's Thesis

Assessment of the integration based method
to calculate profile likelihoods for
mathematical models in biology

Franziska Frank

in cooperation with

HelmholtzZentrum miinchen

Deutsches Forschungszentrum fiir Gesundheit und Umwelt
ICB Institute of Computational Biology

Supervisor: Prof. Dr. Dr. Fabian J. Theis
Advisor: Sabrina Hock, Dr. Jan Hasenauer
Submission Date: 2013/11/28

I hereby declare that this Master’s thesis is my own work and that no other sources have
been used except those clearly indicated and referenced.

Garching,

Zusammenfassung

In der Biologie werden vermehrt mathematische Modelle verwendet, um komplexe Prozesse
zu analysieren. Damit diese Modelle die experimentellen Daten wiederspiegeln knnen, ist
die zuverlassige Parameterschatzung von groflem Interesse. Allerdings ergeben sich Her-
ausforderungen bei der Schatzung von nicht identifizierbaren Parametern, weshalb die
Analyse der Identifizierbarkeit von Parametern von groer Wichtigkeit ist. Diese Analyse
kann mit den sogenannten Likelihood Profilen durchgefiihrt werden, wobei das klassische
Vorgehen darin besteht, die Likelihood-Funktion schrittweise zu optimieren.

Diese Methode ist rechnerisch kostspielig, da die wiederholte Optimierung der Likelihood-
Funktion notwendig ist. In dieser Arbeit wird daher die potentiell schnellere integra-
tionbasierte Methode von Chen und Jennrich untersucht, welche sich die Optimierung
unter Nebenbedingung mit dem Lagrange Multiplikator zu Nutze macht. Diese Meth-
ode soll die Berechnung beschleunigen, da sie, im Gegensatz zu der klassischen Methode,
keine weiteren Optimierungen benotigt und die, aus der Optimierung unter Nebenbedin-
ung entstehenden, Differentialgleichung mit bereits bewahrten Algorithmen gelost werden
kann. Ein weiterer Vorteil ist, dass diese Methode auf eine einfache Art und Weise auch
fiir Profile verwendet werden kann, die fiir eine Kombination von Parametern berechnet
werden, ohne dabei das Modell zusatzlich reparametrisieren zu miissen.

Im Zuge dieser Masterarbeit wurde eine MATLAB Implementierung erstellt, die Like-
lihood Profile mit der integrationbasierten Methode berechnet. Diese Implementierung
beinhaltet auch Methoden um benétigte Ableitungen zu approximieren oder geeignet zu
ersetzen, falls diese nicht verfiibar sind. Auflerdem wurden verschiedene Moglichkeiten,
das Anfangswertproblem als gewohnliche oder algebraische Differentialgleichung zu 16sen,
implementiert und verglichen.

Zur Evaluierung der implementierten Funktion wurde diese auf eine Reihe von Beispielen
angewendet. Die berechneten Profile wurden, im Bezug auf Genauigkeit und Anzahl der
Evaluationen des Modells, mit den Ergebnissen der klassischen Methode verglichen. Das
Hauptaugenmerk lag dabei auf den Modellen, die nicht-identifizierbare Parameter beinhal-
teten und vorallem auf einem partiellen Differentialgleichungsmodell, da eine Reduzierung
der Auswertungen des Modells insbesonders bei solchen Problemen wiinschenswert ist.
Beobachtet wurde, dass die Implementierung die Auswertungen stark reduziert, wobei
die erreichte Genauigkeit vergleichbar ist mit der klassischen Methode, wenn die exak-
ten oder gute Approximationen der Ableitungen verfiighar sind. Auflerdem wurde die
Nebenbedingung des Optimierungsproblems in der logarithmischen Skala definiert, was
die Berechnung zusatzlich verbesserte. In diesem Fall kann die Hessematrix sogar mit der
Identitatsmatrix ersetzt werden, wenn die Implementierung einer genaueren Approxima-
tion umgangen werden soll.

Die Arbeit schliefit mit Vorschlagen zu weiteren Verbesserung der Implementierung und
zu potentiellen Anwendungsbereichen ab.

Abstract

Together with the advancing use of mathematical models in biology, the importance
ascribed to the reliable parameter estimation of the parameters in these models is signifi-
cantly increasing. But challenges of this estimation are for example, if the model contains
non-identifiable parameters. Therefore it is crucial to apply the identifiability analysis.
This analysis can be done using the so called profile likelihoods, where the classical method
to calculate these profiles is, to apply step-wise optimization.

However, the classical method is computational demanding, due to the repeated optimiza-
tion. This work will therefore focus on the potential faster integration based approach
from Chen and Jennrich [1], using constraint optimization with Lagrange multipliers.
This method accelerates the computation, as — in contrast to the classical method — it
does not need additional optimization algorithms for the calculation. Another advantage
of this method is that it can easily be applied to prediction profile likelihoods without the
additional application of a reparametrization.

In the course of this masters thesis a MATLAB implementation of the integration based
profile likelihood calculation is provided. This implementation also includes various meth-
ods to approximate or substitute the required derivatives, if these are not available. This
is especially important for this method, since the analytical calculation of the hessian
of the log-likelihood is often limited. Furthermore a selection of different ODE or DAE
solvers for the calculation is provided and evaluated concerning their performances for a
fast and accurate profile calculation. To evaluate the method, the function was applied
to a number of example models and the calculated profiles were then compared to the
classical method in terms of accuracy and the number of evaluations of the model.

One novel result is thereby that the profile calculation was successfully accomplished for
models with non-identifiable parameters, which was not yet investigated in [1]. Further-
more the method was in particular applied to a real data PDE model, where the reduction
of computation time for the profiles receives the biggest benefit.

It was found that the method reduces the evaluations of the model significantly without a
great increase of inaccuracy, given that exact derivatives or acceptable approximations are
available. Moreover one observation was, that defining the optimization constraint in the
logarithmic scale particularly improves the algorithm. It was found that in this case, the
hessian can also be substituted with the identity matrix to save the time implementing
an accurate approximation of the hessian.

Acknowledgement

At first I would like to thank Fabian J. Theis for the opportunity to write my masters
thesis at the ICB, where I was able to meet some excellent scientists, and I am grateful
for his counsel and suggestions.

I am also obliged to Sabrina Hock for her sublime guidance during my thesis. Her in-
structions, I will always keep in mind and appreciate her contribution very much, for that
it improved my work not only for academical reasons. Furthermore my sincere thanks go
to Dr. Jan Hasenauer for his highly respected advice and respond to every question.

Moreover I would like to express my thanks to all people, which supported me during my
studies. Especially I owe this thesis to my parents, which motivated and encouraged me
in my academic career as they did during my whole life. Not less important for me, was
the help and humour of my sisters.

Last but not least I would like to address my best counsellor in the way he likes it best:
Not mentioning it too much.

Contents

Introduction

Mathematical Background

2.1 Parameter estimation for biological processes
2.1.1 Maximum likelihood estimation
2.1.2 Parameter transformation
2.1.3 Confidence intervals L.

2.2 Identifiability analysis
2.2.1 Existing methods for profile likelihood calculation
2.2.2 Constrained optimization

2.3 Introduction of exampleso
2.3.1 Standard normal distribution 0000000
2.3.2 Crystal growth model L.
2.3.3 Chemical reaction model L.

2.4 Method of performance evaluation

Integration based profile likelihood calculation

3.1 Method derivation
3.2 Correction term
3.3 Optimization problem in the logarithmic scale
3.4 Non-linear parameter function

Method assessment

4.1 Implementation details

4.2 Solver evaluation
4.2.1 Concerning the singularity of the hessian
4.2.2 DAE based integration
4.2.3 ODE based integration L.
4.2.4 Solver performance evaluation

4.3 Approximation methods and substitutes of
derivatives L
4.3.1 Approximation methods of derivatives
4.3.2 Substitutes for the hessian

4.4 Assessment concerning the logarithmic scale

4.5 Presence of non-identifiable parameters
4.5.1 Solver performance evaluation
4.5.2 Performance evaluation concerning the derivatives

16
16
17
18
19

4.5.3 Influence of the correction term

4.5.4 Evaluation of the performance in the logarithmic scale

5 Evaluation of the method applied to a PDE model

5.1 The pomIp model
5.2 Evaluation concerning solvers and hessian
5.3 Influence of the logarithmic scale

6 Conclusion and Outlook

A Documentation of implemented functions

A.1 computeApproximatedProfilesm
A.2 approximatehessian.m
A.3 approximategradient.m
A.4 parameterFunction.m
A5 explicitEulerm oo

49
49
ol
52

60

Chapter 1

Introduction

The aim of mathematical modelling in biology is, to describe biological processes as ac-
curately as possible. This leads to complex models, which include a large number of free
parameters (reaction rates, scaling parameters, etc.). A major challenge is that direct
measurements of all model parameters are often unavailable or infeasible. Furthermore,
the measurements are noise corrupted or parameters can only be measured in combination
with other parameters. Some reaction rates, for instance, cannot directly be measured in
experiments. Taking these challenges of direct measurements into account, the reliable
estimation of parameters by using observable data, is an issue of great interest.
Additional to the impossibility of direct measurements, models can also include non-
identifiable parameters, which means they cannot precisely be estimated. That makes the
parameter fitting for these parameters impossible, since different parameter sets produce
the same output. This is the case, for example, if two parameters occur only proportional
to each other (e.g. 6 - 0y or Z—;). It is important to investigate the identifiability of the
model parameters and judge the results of the parameter fitting process accordingly. Fur-
thermore, if knowledge about practical non-identifiability is available (or easy to access)
it might be possible to resolve this with additional experiments [2].

A common method to describe identifiability is to use confidence intervals, which define a
region of parameter values being the most likely ones. These intervals are finite for iden-
tifiable parameters [2] and can be calculated using profile likelihoods. A profile likelihood
can be compared to a ridge walk on a mountain, i.e. moving along one parameter direction
one stays on the highest possible point of the likelihood surface. Considering the theory,
the calculation of profiles is quite similar to the calculation of the maximum likelihood
estimator (MLE), being the parameter set for which the likelihood attains its maximum,
but instead of optimizing over all parameters, one parameter is set constant and then the
function is optimized over all other parameters. In the next step the constant parameter
is changed slightly and the optimization is repeated.

Profiles have already been used frequently for detecting identifiability and calculating
confidence intervals [2, 3, 4, 5, 6], however, the classical calculation of the profiles is com-
putationally demanding due to the large amount of optimizations in the algorithm. The
effort increases especially for models which are non-trivial to solve, e.g. a system of partial
differential equations.

A fast and easy access to profiles and therefore to information about identifiability of
parameters is the goal of this thesis. The work will thereby be focused on the integra-

2 CHAPTER 1. INTRODUCTION

tion based method from [1], which has the potential to accelerate the profile likelihood
calculation compared to the classical approach. This method uses constraint optimiza-
tion instead of step wise repeated optimization, that means no additional optimization
is necessary. Moreover, to solve the differential equation, resulting from the constraint
optimization, approved and established methods can be used, which is hypothesized to
be additionally faster than the classical method, due to probable wider step sizes.

In this thesis the gain of the integration based method is investigated, by providing a
MATLAB implementation of the method, for further use. This implementation is tested
with various model examples, to investigate the gain of the new method compared to the
classical approach.

In contrast to [1] there are also models with non-identifiable parameters used and chal-
lenges for these cases are discussed. This is important, since non-identifiable parameters
appear in a wide range of models, but the profile calculation using the classical method
takes especially long for these parameters.

In this thesis variations of the integration based method will be compared to the optimiza-
tion based profile calculation method, concerning different solvers and approximations of
derivatives, to find the most favourable choice in terms of accuracy and speed. This ex-
ceeds the work in [1], since a larger variety of approximations and solvers are applied.
The differential equation, which results from the constraint optimization is also addressed
with differential algebraic equation (DAE) solvers.

Particularly, it will be investigated how parameter transformation, i.e. transformation to
the logarithmic scale, can be applied to the optimization problem and if it enhances the
calculation performance in contrast to the linear scale, like it appears in other applications
of the logarithmic scale. In this context it is found that the constraint of the optimization
can be defined in the logarithmic scale, which additionally reduces the evaluations of the
cost function significantly.

Additionally it will be discussed, if the correction term, introduced by [1], always im-
proves the profile computation in the practical application and specifically in the case of
non-identifiable parameters.

Furthermore it is suggested that the integration based approach is superior to the classi-
cal method concerning prediction profile likelihoods, which are similar to ordinary profile
likelihoods, defined for not only for one, but a combination of parameters. In this case
not just numerical computation time but applications of analytical methods can be saved,
since no reparametrization is necessary.

Finally, the method is applied to a parameter estimation problem in the context of partial
differential equations (PDEs), which is an example for a numerically costly model, where
also real measurement data will be considered. In other words, the case, where a reduc-
tion of evaluations would be most advantageously. A successfully application confirms a
possible improvement of the parameter estimation for higher complex models.

Chapter 2

Mathematical Background

This section introduces the mathematical background used in this thesis. It contains
definitions and propositions as well as notation, which will be used throughout this work.

2.1 Parameter estimation for biological processes

For parameter estimation a mathematical model to the experimentally observed data is
fitted. There are many different model types, but the concerned models in this thesis
are either based on ordinary differential equations (ODEs) or partial differential equation
(PDE)s.
For an introduction, the concentration of the species z(t,6) € R should be modelled,
depending on time ¢t € Rt and n unknown parameters § € R™ (containing for example
kinetic parameters of the model). The model describes the dynamics of the concentration
by an ODE:

F(t,x,2',0,20) =0 (2.1)
with 2/ := % and the initial conditions zg := x(to,) at the starting point .
The dynamics of the modelled process is optimally reflected with the so called true pa-
rameter set 6*.
The species can also be modelled with PDEs, then the concentration z(7,6) does not
depend on the time ¢, but on the vector variable 7 € R? consisting of d € N variables,
which can be time and/or location coordinates (e.g. 7 = (¢, 21, 20)7 with ¢ time and 21, 2o
being the coordinates on a 2-dimensional field).
Then the equation looks as follows:

oo e O O
’87'1"”78Td787'187'17”‘787'187'd7

...,6’,1‘0) =0

F(r,...,Ta,

with initial condition: zq = x(79, 0) at the starting point 7.

To be general, it is possible that x(t,0) or z(7,) respectively (In the following 7 will
be used as a generalization of t) are vectors describing not only one, but various species.
Then z(1,0) € R?, with ¢ be the number of species. In this case, potentially not all
species are directly observable and to map x onto the observable species y the observation

4 CHAPTER 2. MATHEMATICAL BACKGROUND

function 1 is used.
So it is:
y(r,0) = v(x(r,0),0) with y(r,0) € R and p < g

with y(7,0) being those species, which are directly measurable. Moreover the observation
function can also include a scaling factor (e.g. y(7,0) = s - z(7,0)), which is also part of
the parameter set ¢ if unknown. In the considered examples (see section 2.3) there is only
one observable, i.e. p = 1.

2.1.1 Maximum likelihood estimation

The experimental measurement at point 7, for k& = (0,...,m) is the observation data g
for the observable y(7x,6). In most cases the observation data is imperfect, because the
experiments incorporate measurement noise. In the examples later applied in this thesis
the measurements are supposed to be subject to additive normal distributed noise such
that:

gk = y(Tk,H) + €k

with e, ~ g = N'(0,0}) being the error at point 7.

In general the true set of parameters 6* is unknown and therefore the reliable derivation
of an estimate is necessary. For the parameter estimation, the parameters are fitted to the
observation data, that means an estimator ¢’ for parameter set is calculated, for which
the model reflects the data optimally.

One common estimator is the maximum likelihood estimator (MLE) ¢’ = 6, which is the
set of parameters for that the likelihood function attains its maximum.

The likelihood function L(0) is given by
- 2
- exp <(yk y(;m@)) >

O

|
L) =]

o1V 271'0,%

and the MLE by)
0 := argmax L(6)
0

Applications often show, that it is analytically favourable and numerically more efficient
to use the log-likelihood 1(6), because multiplications become sums, which may be easier
to evaluate and eventual exponential functions disappear.
The log-likelihood is defined as:

- 1 (U — y(7x,0))?
1(0) = log(L(0)) = lo - ex 2.2
) = loaLo) =3 g(@ (22)) 22

In the application examples the variance o7 is constant and parameter independent for
all k, so that e, ~ N(0,0%) Vk = {1,...,m}. Inserted in 1(#), this results in:

10) = —%i <log(27r02)+(Z]k_y(;k’e))2> (2.3)

g

2.1. PARAMETER ESTIMATION FOR BIOLOGICAL PROCESSES 5

For the applied method in this thesis, the first and second derivative of the log-likelihood
function is necessary. In general # is a multidimensional parameter in R" therefore the
first derivative of 1(d) with respect to all elements of € is a multidimensional vector of
length n, called the gradient and the second derivative is a m X n matrix, called the
hessian. The symbols used in this thesis for the operators of the gradient and the hessian
are Vy € R" and V2 € R™ " respectively and are defined as:

0
001
Vi 1= : vV oeR" (2.4)
0
00,
02 0?
001001 " 00106,
Vi = Do vV §eR" (2.5)
82 82
00,001 " 00,00,

Provided that the first and second derivative of the model y (7, #) with respect to 6 are
available, it is possible to compute the derivatives of the likelihood function, which look
as follows:

V() — §l§<gk—y<7k,e>>~v9y<w> (2.6)
Vil(0) = %kml(y?c —y(71,0)) - Voy(1i, 0) — Voy(7i,0) - Voy(7i,0)" (2.7)

The problem with most models is, that an analytical solution is very difficult or impossible
to calculate, hence the model needs to be solved numerically. A model, for example, which
consists of a system of ODEs can be solved by MATLAB built-in ODE solvers. But these
ODE solvers only return the numerical solution of the model at discrete time points,
whereas the derivatives have to be computed with additional methods, for example using
the sensitivity equations or finite differences (FD) approximations.

But numerical methods as well as approximations generate numerical errors, due to limited
machine precision. It must be considered, that these deviations can influence the results,
when using approximated derivatives.

2.1.2 Parameter transformation

The transformation of parameters is used to apply different parameter scales in compu-
tations. The parameters are therefore mapped onto the new scale using a continuous and
strictly monotone function.

One scale, which is widely used in biological models, is the logarithmic scale, since the
parameters have often a wide range of values. Due to a better handling of very small
or quite big values the logarithmic scale is frequently favoured and is also applied to the
models in this thesis.

The idea of the logarithmic scale is to reparametrize the model such that:

§ = log(0) (2.8)
=exp(§) = 0 (2.9)

6 CHAPTER 2. MATHEMATICAL BACKGROUND

The logarithm and the exponential function is in this case point-wise applied to the pa-
rameter vectors 6 and £ respectively, which results in exp(£) € R™ being a vector, too.
The parameter 6 is substituted with the function exp(¢) and the algorithm is then run
in terms of £&. Applying the logarithmic scales often shows a faster and more accurate
computation.
However the calculating of the derivatives require the additional differentiation of the
parameter transformation function. This is for the first derivative accomplished by mul-
tiplying with exp(§), since

Ve (exp(§)) = exp(§)

The gradient of the log-likelihood function in the logarithmic scale changes to:

. a6 Y (Tky oxp(&1)) - exp(&1)
Vel(exp(§) Z Y — Y(Tk, exp(§))) - :
2y exp(6) - exp(6a)

The second differentiation to calculate the hessian is more complicated, but nonetheless
feasible, if one consequently follows the product and chain rule.

Vel(exp(§)) = 7 - S (i — y(7 exp(6)) (exp(&)" VEy(Tk, exp(§)) - exp(€) ...

k=1
%y(ﬂg, exp(§))1 - exp(&y) - - 0
0 . 0
+ .
0 . %y(m, exp(§))n - exp(&n)

— Vey(i, exp(€)) - exp(€) - (Vey(7i, exp(€)) - exp(€))"
(2.10)

Note, that the differentiation of the term exp(&;) is zero, except it is differentiated with
respect to &, so that the second term of the product rule can not be neglected.

In the following no difference will be made between # and £ in the linear or logarithmic
scale, since there is no restriction in renaming the parameters. The difference is only
indicated if necessary.

2.1.3 Confidence intervals

Confidence intervals to the confidence level o define intervals around the parameter esti-
mate 6; with i € (1,...n), in which the true value 0 lies with probability . They can be
defined as point-wise confidence intervals or for all n parameters together, which is then
called a simultaneous confidence interval.

One possible way to define likelihood-based confidence intervals is the finite sample con-
fidence interval [2].

Definition 1. Finite sample confidence interval)
Let L(6) and (@) be the likelihood and log-likelihood function respectively. 6 be the MLE,

2.2. IDENTIFIABILITY ANALYSIS 7

then a finite sample confidence interval is defined as:

{9 eR ‘1(9) —1(0) < Lo }

2
{QER

% > exp (—%) } (2.11)

where A, = x*(, df) being the a-th percentile of the x?-distribution.

or

The degree of freedom (df) is thereby the number of parameters for which the confidence
interval is calculated. In the case of point-wise confidence intervals only one parameter is
considered, therefore is df = 1, and for the simultaneous confidence intervals it is df = n.

2.2 Identifiability analysis

An important part of the parameter estimation is the identifiability analysis as shown by
[2, 3]. Only for identifiable parameters a unique parameter fitting is possible, since the
confidence intervals are boundless for non-identifiable parameters.

Identifiability can be divided into structural and practical identifiability. The structural
one is a data-free quantity and for big systems infeasible to analyse. It is defined for the
model observable y(7,6) with 8 € Q C R" following [7].

Definition 2. Structural Identifiability
A model is called global structural identifiable for parameter 0;, if there exists a T € R
s.t.:

y(r,0) =y(r,0) = 6=0

for 0 wvaries at 0;.
It is called local structural identifiable if for almost any 0 €) there exists an open
neighbourhood V (0) around 0, such that it is globally identifiable in V(0).

The structural identifiability is comparable to the injectivity of a mapping from the pa-
rameter set to the codomain of the likelihood. That means every input has a distinct
output.

Due to the implemented approach in this thesis the practical identifiability is of bigger in-
terest, for being the for modelling and prediction relevant one. Practical non-identifiability
is defined in [2] in terms of shapes of the confidence intervals.

Definition 3. Practical Non-Identifiability
A parameter estimate is called practically non-identifiable, if its confidence interval has
on at least one side, no finite bound.

In many cases is the region of the parameter value initially bounded, for example by
biological restrictions. Hence the confidence interval is finite, but the parameter still can
be non-identifiable. In this case the parameter is also treated as non-identifiable, if the
boundaries of the confidence interval coincide with the value restrictions.

It is of great interest to gain knowledge about the identifiability of parameters to detect
uncertainties of the predictions. Useful for the identifiability analysis are the profile
likelihoods [2, 3], which behave similar to ordinary likelihoods [8].

8 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 4. Profile Likelihood
Be L(0) the likelihood function of the parameter set 8 = {61,0,,...}, then the profile
likelihood for a single parameter PL(6;) is defined as

PL(#;) = max L(0)
Oji
The profile likelihood can also be defined for a combination of parameters and are then
called prediction profile likelihood [3]. A definition will be given later in section 3.4, where
prediction profile likelihood are addressed in detail.
Continuing, from likelihood profiles the confidence intervals can be directly computed
using the likelihood ratio.

Definition 5. Likelihood Ratio

~

Be L(0) the likelihood function at the MLE and PL(0;) the profile likelihood function, then
the likelihood ratio R; is defined as

PL(6;)
L(6)

i =

Since PL(6;) is nothing else than the likelihood for a specific value of #, the fraction in
the confidence interval definition (2.11) can be replaced by the likelihood ratio R;.

{9€R

where A, = x?(a, df) being the a-th percentile of the y*-distribution.
That means, the confidence interval contains all parameters for which the likelihood ratio
is bigger than the threshold of the confidence level a.

~

Using the log-likelihood 1(#) and profile log-likelihood pl(6;), the likelihood ratio becomes:

PL(@i)_ e _ﬁ
L(é) = R; > exp()}

2

_ PL(?i) _ exp(log(PL(AQi)))
L) exp(log(L(0)))
)

_ exp@l0:) _ e — 16
() p(pl(6;) —1(9))

Let =, in the following be defined as:

)

- A,
Sa = eXp(—T)

which is used throughout this thesis in the profile plots.

2.2.1 Existing methods for profile likelihood calculation

There are two main concepts to compute profile likelihoods. The first one is referred to as
the classical method in this thesis. The method is straight forward using the definition,

2.2. IDENTIFIABILITY ANALYSIS 9

i.e. optimizing at every step.

For a visual explanation of this concept consider Figure 2.1. In 2.1a the two dimen-
sional standard normal distribution is plotted. The starting point is the maximum of
the standard normal distribution, which is the MLE. After increasing 6; by one step the
log-likelihood will be optimized with #; being constant (see Figure 2.1¢). This maximum
is added to the profile and the next step will be done until the boundaries are reached.
Applying this to the forward and backward direction results in the profile of #; (see Figure
2.1b).

This method is computationally demanding, because the optimization requires also re-
peated evaluations of the model. In most cases the analytical solution of the model is not
available, therefore additionally to the optimization, a numerical solution of the model
needs to be calculated. The high complexity of biomathematical models makes the cal-
culation of numerical solutions as well as the repeated optimization a computationally
demanding task to undertake.

An implementation example of the classical method is the function computeProfiles
by Jan Hasenauer, which is for example used for the profile calculation in [4]. In contrast
to the naive approach with constant step sizes for the profile computation, this algorithm
is improved, among other things, due to an adaptive step size.

The function calculates the profiles of every single parameter of the model and requires
basically the log-likelihood function, the MLE and parameter intervals. These provided
intervals are determining boundaries of the parameter values, for example biological rel-
evant limits. The profiles are calculated within these intervals by mainly following the
definition of the profile likelihoods. Therefore the log-likelihood function is optimized at
every step, using the optimization toolbox provided by MATLAB.

The difference to the naive approach of the classical method is, that the step size is not
constant. The length of the step is calculated using a support function, which requires the
update direction, the parameter constraints, the log-likelihood function and a boundary
for the maximal allowed relative decrease of the likelihood ratio. The algorithm of the
function then decides how wide it is possible to choose the step, so that the decrease of
the likelihood ratio does not exceed this boundary.

In section 4 of this thesis this function is used to compute the benchmark for the as-
sessment of the new implementation, concerning the number of evaluations of the model
solution and the accuracy of the calculated profile.

The second method is, to treat the profile likelihood as an optimization with constraints
and is in this thesis referred to as the integration based method. This idea was introduced
by [1] and is the basis of the function implemented and tested in this Mastersthesis. The
method will be introduced later in more detail (see section 3). A proof that the solutions
of the classical method and this integration based approach are equivalent is given in [9].

2.2.2 Constrained optimization

The restriction to fix one parameter (or a combination of several parameters) in the profile
calculation can be seen as a constraint. Constraint optimization is generally treated in
the context of Lagrange multipliers.

10 CHAPTER 2. MATHEMATICAL BACKGROUND

(a) (b)
Standard normal distribution with profile for — Profile for parameter ¢, with thresh-
parameter 6; (solid line) and optimization old at 3% of the maximum

step at 6; = —0.1 (dashed line)

04 Maximum of optimization
' ¥
0.35f o,
§%
0.3 § %
0.25 Y
0.2} H %
0.15¢ H B
01 H
§ 2
0.05 $ %,
0 o 1t
-5 0 5
02
()

Optimization step at #; = —0.1

Figure 2.1: Profile calculation of two dimensional standard normal distribution with
parameters 0 = (61, 0,) for 6;: Starting from the MLE, 6; is increased stepwise then the
likelihood function is optimized with fixed #;. The maximum is then added to the profile
and the next step is applied.

Lagrange multiplier

The approximation method of the profile likelihood from [1] which is investigated in
this thesis is based on the Lagrange multiplier for optimization under constraints. The
following Proposition from [10] gives a necessary requirement for an extreme point 6.

Proposition 1. Lagrange multiplier
Be 1 differentiable and g = (91, ..., gx) continuous differentiable on the open set Q) € R™.
If 6 € Q2 be an_extreme point of 1 under the constraint g(0) = c with ¢ € R and be the

~

derivatives ¢1(0), ..., g,.(0) linearly independent, then

k
A1, Ak € R so that 1(6) =) " Nigi(0)
i=1

2.3. INTRODUCTION OF EXAMPLES 11

To visualize the meaning of proposition 1 in the one dimensional case, consider Figure
2.2, where the contour lines from 1(f) and ¢(f) are shown.

The solid lines are representing the contour lines of the function 1(f) and the dotted one
is the contour line of g(f) = ¢. The point 6 is an extreme point (to be more concrete:
maximal point) of 1(0) s.t. ¢(#) = ¢, therefore moving along ¢(#) = ¢ away from @ the
value of 1(d) is only decreasing. At the extreme point § the gradients of 1(0) and g(6) are
proportional to each other, since the contour lines are parallel.

2.3 Introduction of examples

Throughout this thesis the integration based as well as the classical method will be ap-
plied to three model examples to evaluate the performance and investigate the effect of
various input combinations. The examples are the standard normal distribution, as a
test function of the method, the crystal growth model, which was already used in [1] to
evaluate the integration based method, and a simple chemical reaction model, to verify
the method in the presence of non-identifiable parameters.

Figure 2.2: Sketch visualizes constraint optimization with Lagrange multipliers. The
solid lines are representing the contour lines of the function 1(#). The dotted line is the
contour line of g(f) = ¢. The point 6 is an extreme point of 1(d) s.t. ¢(6) = ¢, since
the value of 1(#) is only decreasing, if one is moving along ¢g(0) = ¢ away from 6. At 0
the gradients of 1(f) and ¢(6) are proportional to each other, since the contour lines are
parallel (idea of the sketch is taken from [10])

12 CHAPTER 2. MATHEMATICAL BACKGROUND

2.3.1 Standard normal distribution

For the first verification of the method, the implementation it is tested using the standard
normal distribution in two dimensions:

1 192
0) = ——e 219" with 9 € R?
901() \/%
The variable 6 represent here for the two dimensional parameter set 6 = (61, 602).
For this distribution the gradient and hessian can be computed analytically:

Vopi(0) = — (Z;) (2.12)

Vi (6) = - (-) (2.13)

This test function is a data free example for the profile computation. The function ¢;(6)
can directly be implemented representing the log-likelihood and its derivatives as the
exact gradient and hessian of the log-likelihood. Due to the negative parameters of the
standard normal distribution (SND) (the distribution is centred around the zero point),
the logarithmic scale is not applied to this example function.

2.3.2 Crystal growth model

The following model was fitted to data with additive normal noise. Therefore the log-
likelihood (2.3) and its derivatives (2.6) and (2.7) are used. The fitting of the data
was done using a multi start algorithm also provided by Jan Hasenauer. The algorithm
computes a candidate for the MLE by starting at various points in the parameter set and
optimizing the log-likelihood.

Model: The crystal growth model (CGM) is an example from the paper [1]. It describes
the growth of ice crystals with a non-linear regression model. The experimental data are
the crystal masses y; in nano grams after growing t; seconds. The variance of the normal
noise is 0% = 1.

©0a(t,0) = 6, -t* (2.14)

with the parameter set 6 = (64, 6s).
Differentiating with respect to 6 gives:

Vogalt,0) = (91. tefeflog(t)) (2.15)
02 o
it) = (g 1o psie?) .10

Inserting these functions into the log-likelihood function makes it possible to compute
the profile with the exact gradient and hessian of the log-likelihood function. This exact
solution can be compared to the profile, which is computed with approximations of the
gradient and/or hessian.

2.3. INTRODUCTION OF EXAMPLES 13

2.3.3 Chemical reaction model

A simple example for a model with non-identifiable parameters is this model of a chemical
reaction. The concentration x is produced with constant reaction rate k; and reduced
dependent on the current concentration x and the rate ko. Thereby is the concentration
x only observable with the scaling factor s.

Model:
g B oy 2.17)
r B oz (2.18)
ODE System:
T = k’l—k’g'l'
y = S$-x
=y = s-ki—ky-y (2.19)

with the parameter set 6 = {s, ki, ka}.

Analytical Solution: The inhomogeneous ODE (2.19) can analytically be solved up
to a constant c:

y(t,0) = e hlte) 4 =l (2.20)

There is no initial value problem given, but a reasonable initial point is: z(0) = 0 = s-y(0),
because the production is independent from the current concentration z(t,0).
Then the solution of the differential equation becomes:

y(t,0) =3k (1—ehh) (2.21)

The parameters in the parameter set 6 = (s, ki, ko) are treated in this example as
being not measurable directly and can only be found by parameter estimation with data.
However, for this model no experimental, but artificial data is used. The data is created
using the analytical solution (see (2.21)) and adding normal noise with variance o = 0.1%.

gk = y(tk,H*)—i—ek (222)
ex ~ N(0,0.1%) (2.23)

The true value 6* for the artificial data is thereby chosen freely in biological relevant
boundaries and is set to 0* = [0.1, 2, 1] for the simulations.

Considering equation (2.21) it is obvious that the parameters s and k; are non-identifiable
and the parameter ks is identifiable. The non-identifiability of s and k; is easy to see if
different values for these parameters are compared.

Be 01 = (01, 1,]{?2) and 92 = (]_, 0]_, kg) Then

0.1

y(t, 01) = T (L—e7™2") = y(t,6,)

14 CHAPTER 2. MATHEMATICAL BACKGROUND

The product s - k1 has for both parameter sets the same value. In other words: the func-
tion y(t,0) is not injective, which is necessary for identifiability. However this analytical
approach to identify the identifiability of parameters is not always applicable. Especially,
because the analytical solution y(¢,6) is rarely available.

In this model the analytical solution y(¢,#) is not only available, but continuous differen-
tiable with respect to 6 = {s, k1, k2}. The derivatives are:

Z—; (1 —ekety
Voy(t,0) = o (1—e) (2.24)
sky S okaty o sk | kot
—E-(l—e)—i-g'e -1
0 k—12 (1 — ekt
Viy(t,0) = o (L—e ™) 0 (2.25)
Z% (1 e—k’zt) 4 k1 e kat L ¢ _k_sg . (1 e—kgt) + 5. e kat . ¢
—Z—% (1 —e*2t) + Z—; ceket ¢
o (L—em™) 4 et ot (2.26)
2 Sk—gl (1 —ekty —2. % e ket ¢ % ekat . 42

The reparametrized chemical reaction model

In the previous section it became obvious by an analytical approach, that s and k; are
both non-identifiable parameters. Furthermore they appear in the analytical solution
y(t,0) only as the product s - ki, which might raise the question, if the product of these
parameters is identifiable even if the single parameters are not. To investigate this, the
ansatz of the classical method is, to reparametrize the model, such that the resulting
model contains a new parameter, which is equal to the desired parameter combination.
In this example define

(X17X2,X3) = (3 ki, ke, k/‘2)

Analytical solution: Inserting the new parameters into the model solution (2.21) re-
sults in a system with only two parameters present:

y(tx) =2 (1—)
X3

The reparametrization is now inverted. The result is a mapping from the new variables
on the old ones. Therefore it is still possible to use the initial model. The mapping looks
as follows:

ko = x3
k1 = x2
with 1 = sk and yo = ky
= s=x1/k1 = x1/x2
= (s, k1, k2) = (x1/X2, X2, X3)

2.4. METHOD OF PERFORMANCE EVALUATION 15

Because y, does not appear in the system any more, it is arbitrary and will be set to 1
for all model calculations. Hence (s, k1, k2) = x = (x1, 1, x3) will be used as the input for
the model.

2.4 Method of performance evaluation

The implementation of the integration based method is supposed to enhance the profile
calculation. To investigate this, the algorithm is evaluated concerning its performance
for the profile likelihood calculation and compared to the classical method. The most
important aspects of the evaluation are the accuracy and the computational demands.
The standard normal density (see 2.3.1), for example, is a simple function and easy
to evaluate, but profiles are often calculated for models, which consist of a system of
differential equations. The evaluation of those models is often a computational costly
procedure, due to the numerical solving of the models.

Although the integration based method is supposed to be faster than the classical method
and the actual time the algorithm needs for the whole profile calculation is finally the
value, which interests the user, the time is not measured and compared in this thesis.
That is because the length of time changes depending on the machine the algorithm is
running on and how long the evaluation of the model itself needs. Already the latter one
is various for the considered models in this thesis.

To gain a comparable quantity the number of evaluations (NoE) of the cost function is the
figure of merit of the profile computation. This value indicates how often the model system
needs to be evaluated. This value should be as little as possible to save computation time.
For the evaluation procedure the number of evaluations (NoE) is plotted against the error
to benchmark. This error reflects the variance of the results from the classical method,
which is the benchmark.

To calculate the error, the approximated profile as well as the benchmark profile were
interpolated on a grid of 1001 points, resulting in two vectors of dimension 1001: plypp:
and plpench for the approximated profile and the benchmark profile respectively.

Then the error is defined as:

€2bench :H plappr - plbench ||2
which is the difference of the elements in both vectors in the 12-norm.

In the examples it occurred for some inputs that the algorithm was not able to calculate
the profile and the resulting output was only one point. But for one point the interpola-
tion cannot be applied, so that in this case the error was set to an arbitrary but relatively
big value: espenen = 42.

Chapter 3

Integration based profile likelihood
calculation

In their integration based profile likelihood calculation, Chen and Jennrich [1] make use
of the Lagrange multiplier (see (2.2.2)) for the optimization. For this purpose, the real
valued parameter function g(0) € R is defined. This function determines the parameters
for which the profile should be computed of. For example, if g(f) = 6, then the profile
will be calculated along the parameter 6;.

3.1 Method derivation

Recalling the definition of profile likelihoods (see definition 4), the likelihood is optimized
for one constant parameter over all the other parameters. Therefore, the constraint for
the optimization is g(f) = 0; = ¢ with ¢ € R constant.

The parameter set optimizing 1(f) under constraint depends on the constant and can
therefore be treated as a function of ¢: 6(c). This function defines the likelihood pro-
file with respect to the parameter function. The same argument can be applied to the
Lagrange-multiplier: A(c). To save space these functions are written in the following
equations with the shorter index notation 6. := 6(c) and . := A(c).

Inserted into the Lagrange multiplier formula (see proposition 1), the constraint optimiza-
tion system looks as follows:

Vol(6.) + Ac - Vog(6:.) =0 (3.1)
s.t. g(0.) = ¢

with ¢ € R and A, be the Lagrange-multiplier.
Differentiating this system of equations with respect to ¢ gives then:

(V21(6,) - 6. + Ac-vjj(ge(jc? écéc + X - Vog(0,)) _ (?) (3.3)

The dot over 6, and). stands for the derivation with respect to ¢, which is a one-
dimensional differentiation only.

16

3.2. CORRECTION TERM 17

The resulting equation system is a DAE of index 1 in the semi-explicit form [11]. To solve
this differential equation numerically, it is useful to rewrite it into a matrix multiplication.

= (P) ()= (1) e

—~
=A(0c,A\e)

where A(6,, \.) is called the mass matriz of the DAE.
In this equation also the gradient and hessian of the parameter function are used. In the
simple case of ¢g(f) = 6, the derivatives read as follows:

Vog(0) = e 3.5)
V59(0) = Opxcn (3.6)
with e; being the i-th unit vector and 0,4, the n X n-zero matrix.
Now, (3.4) can be written in the compact form:
: 0 . 0. : e
AQ)- ¢ = 1 with (= \ and its derivative ¢ (3.7)

The solution of this DAE is {, which contains with 6. the parameters along the profile.
Inserting them into the log-likelihood results in the profile likelihood. Taking the profile
likelihoods into account statements about identifiability can be made.

Direction parameter s

The differential equation is solved starting from the MLE in the forward direction and in
the backward direction. For numerical reasons, the differential equation needs to be ad-
justed for solving the backward direction. This requires only to add a direction parameter
s to Vpg(6).

9(0.) = c
= Differentiating with respect to c:

Vog(0e) - 0. = ¢
For the negative direction is ¢ = —1, because for decreasing c the differentiation is inverted.

= Vyg(0,) - 0. = —1
—Vog(6.) - 0. =1
s-Vog(0e) - 0. =1 with s = —1

3.2 Correction term

Due to the fact that exact gradients and hessians of the considered functions may not
be available in all cases, Chen and Jennrich [1] introduced a correction term to reduce

18 CHAPTER 3. INTEGRATION BASED PROFILE LIKELIHOOD CALCULATION

the numerical error in the presence of approximations. The error is in [1] defined as the
difference of the profile calculated with approximated derivatives and the exact one.

| 620 — oot || < ¢ for € > 0

The introduced correction term is substituted as the right hand side of (3.4), which
becomes:

(M) (£)- () o

with the factor v € R% determining the influence of the correction term.
In [1] a proof is given that this correction term reduces the error in the calculation of
profile likelihoods in the presence of an approximated hessian. One assumption of the
proof is, that

Val(0) + A - Vig(0)

is negative definite. However, this is not always the case for systems with non-identifiable
parameters, since it occurs, that the MLE 0 is not even near the true value 6*. That is
because the MLE has to be found using optimization algorithms. But it appears that
the log-likelihood does not have a unique maximum, if non-identifiable parameters are
present. This results in arbitrary parameter values for the MLE.

Furthermore, increasing the factor v produces a stiff differential equation. This is shown
in section 4.2.3, by applying the Euler method, which is sensitive for stiff systems. This
stiffness enhances in some cases the computation time but not the accuracy. The correc-
tion term can moreover cause other undesired behaviours of the algorithm, as for example
a turning of the solving direction (see Figure 5.7).

Therefore, it is suggested to disable the correction term for a faster and reliable com-
putation and to use an accurate hessian approximation instead. Nevertheless will this
correction term from now on be part of the differential equation system of the integration
based method, since in (3.8) 7 can also be set to zero, which results again in (3.4).

3.3 Optimization problem in the logarithmic scale

There are two ways to apply the logarithmic scale to the optimization problem 3.2.

The first one is to define the constraint in terms of the initial problem and then apply the
logarithmic scale, that means that also the parameter function is changed in terms of &.
The optimization problem is then written as:

Vel(§) + A~ Veg(§) =0 (3.9)
s.t. g(§) = exp(&i) = ¢ (3.10)

where ¢ is the logarithmic parameter with: £ = log(6).

The other possibility is to use the logarithmic scale for the optimized function (i.e. the
log-likelihood) and then define the constraint in the log-parameters.
In this case the optimization problem reads as:

3.4. NON-LINEAR PARAMETER FUNCTION 19

Vel(€) + A+ Veg(§) =0 (3.11)
st.g&)=¢&=¢ (3.12)

with ¢ € R being constant.

It should be noted, that the parameter function is in this case a linear function.

These two possibilities will later in this thesis be referred to as the first and second ap-
proach of the logarithmic scale.

Both approaches are relevant, since they actually reflect a different scaling of the parame-
ters in the profile calculation regarding the optimization itself and not only the solving of
the resulting differential equation. In the first approach the optimization is done in terms
of the initial parameters, while the second approach is to optimize directly in terms of the
logarithmic parameters. Applications often show a better performance with logarithmic
parameters and it will be investigated if this behaviour also occurs with the connection
to profile likelihoods.

3.4 Non-linear parameter function

In [1] only cases with a linear parameter function g(6) were considered. This is the case
if the profile is computed for a single parameter (i.e. g(6) = 6;). The hessian of the
parameter function is then a zero matrix and the equation (3.8) reduces to:

V«‘)g(GC)T 0)\c 1 .
But this simplification cannot be used in general, because the parameter function is

g9(&) = exp(&;) using the first approach of the logarithmic scale (see 3.10). Then the
hessian VZg(&.) is no zero matrix:

Veg(§) = ei-exp(&) (3.14)
Vig(€) = Ai-exp(§) (3.15)

with A; being the matrix with entry w; = 1 and all other entries equal 0.

Since the log-scale is applied to the majority of the example models in this thesis the
simplification from [1] cannot be used here.

However it can still be applied for the second approach of the logarithmic scale (see 3.12).
In this case the parameter function is linear and the simplification can still be applied.

But there is another reason why non-linear parameter functions have to be considered. If
two or more parameters are non-identifiable it is also interesting to know if a combination
of parameters is identifiable. For the integration based method this is simply accomplished
by defining a new parameter function as this combination (e.g. ¢(f) = 6; - 6;). In this
case the definition of profile likelihoods is generalized to the prediction profile likelihood [3].

PPL(z) = L(o
= i MO

20 CHAPTER 3. INTEGRATION BASED PROFILE LIKELIHOOD CALCULATION

The prediction profile likelihood can also be calculated with the classical method using
stepwise optimization. In this case a reparametrization is necessary [9].

Concerning this, the method to optimize under constraints is favourable to the clas-
sical one, because in complex models it is a crucial advantage to avoid the elaborate
reparametrization to investigate identifiability of parameter combinations. The integra-
tion based method does not need a reparametrization and therefore relieves the user from
the sometimes complicated calculation and prevents thereby probably occurring mistakes.

Example calculation of prediction profile likelihoods

For example, in the model of chemical reactions (introduced in 2.3.3) the reparametriza-
tion was shown to investigate the profile likelihood for the combination of the non-
identifiable parameters s and k;. Using the integration based method the reparametriza-
tion can be neglected and the parameter function simply defined as:

g0):=x1=s5"k (3.16)

However, to use the parameter function in the integration based method, it has to be
differentiated with respect to 6 and reads as:

Vog(0) =

Vig(0) = (3.18)

OO oK T

) e
1
0
0

o O O

The profile likelihood can now be calculated with the integration based method and is
shown in Figure 3.1, where also the profiles of the reparametrization for y; = s- k; and
X3 = ko are shown. The profiles match each other nicely, with a considerably small error
and the profile calculated with the integration based method does additionally decrease
the NoE.

If the logarithmic scale is applied for the combination of parameters, the parameter
function changes in the first approach of the logarithmic scale (see 3.10), with & =

(log(s),log(ky).log(ks)) simply to:

9(&§) == exp(&1) - exp(&2) = s - by (3.19)

exp(§1) - exp(§2)

Veg(§) = | exp(&) - exp(&) (3.20)
0

exp(§1) - exp(§2) exp(&1) - exp(§z)

Vig(€) = | exp(&) - exp(&) exp(&r) - exp(é)
0 0

(3.21)

o O O

3.4. NON-LINEAR PARAMETER FUNCTION 21

Reparametrized parameter s - k; Identifiable parameter ko

likelihood-ratio
(e}
ot
T
|
likelihood-ratio
=}
ot
T

0 = o0l |
| Lol | Lol | Lol | L1l
1072 1071 10° 10! 102
parameter s - kq parameter ko
(a) (b)
W benchmark of reparametrized model
M integration based method of initial model
1071 1074
6 T n T

| 3 ™ |
£, :

£ | E 2 |
=] ey
o o
o o
2, |2

5 s ! |
5] 5]

0 | R 0 | R

| | | | | | | | | | | |
102.8 102,9 10.3 1031 103.2 103.3 102.7 10248 102.9 103 10341 103.2 103.3
number of evalutaions number of evaluations
(c) (d)

Figure 3.1: Profiles of the reparametrized chemical reaction model for the parameters
X1 = $- ki and y3 = ko, calculated with computeProfiles and the profiles calculated
with computeApproximatedProfiles using IDAS (default options) and the parameter
function ¢g(0) = s - k; for the left profile and g(0) = ko for the right one.

But for the second approach of the logarithmic scale (see 3.12) the constraint must be
rewritten in terms of the logarithmic parameters, therefore it becomes

g(&) :=log(s - k1) (3.22)
9(&) = log(s) + log(k1) (3.23)
=&+ & (3.24)

and the derivatives will be calculated accordingly with respect to &.

In the displayed case, the reparametrization was not very difficult, but if more complicated
models and combinations of parameters are to be considered, the set up of the parameter
function is a considerably simpler and more direct approach than using reparametrization,
because only the parameter function has to be changed to calculate the desired profile.

However, for non-linear g(f) there are cases where both methods are not appropriate
to compute profile likelihoods and confidence intervals. A possible alternative to find a
confidence interval, stated by [9], is then to optimizing ¢(f) and use its maximal and

22 CHAPTER 3. INTEGRATION BASED PROFILE LIKELIHOOD CALCULATION

minimal point respectively for the interval. But the considered examples in this thesis do
not fall within these cases and the used approaches are therefore sufficient.

Chapter 4

Method assessment

The algorithm to calculate profile likelihoods using the integration based method is imple-
mented in MATLAB. This implementation is used to assess the integration based method
concerning its performance for the profile likelihood calculation compared to the classical
method.

The implemented method is supposed to accelerate the calculation. Thus the most impor-
tant aspects of the evaluation are the accuracy and the number of evaluations (NoE). The
algorithm accepts various inputs, ranging from necessarily provided functions to options,
which adjust the algorithm according to preferences of the user. There are too many to
test every possible combination. Therefore, only the most interesting ones will be in focus
of the evaluation.

At first, the algorithm of the implementation is introduced, followed by the discussion of
the different solvers and the evaluation of various approximations of the derivatives.
The structure is thereby that the methods are introduced and subsequently assessed con-
sidering the two example models, which are standard normal distribution (SND) and
crystal growth model (CGM) (introduced in section 2.3). Finally the introduced methods
are evaluated using a model, which includes non-identifiable parameters.

4.1 Implementation details

Before assessing the implementation, the single steps of the algorithm will be explained
in more detail.

The illustration is done at a sketch of the implemented function in pseudo code and is
split into three parts for reasons of clarity and comprehensibility. The first part is the
initialization of the required derivatives and initial condition. The second one refers to
the solving of the differential equation and the third one concludes the algorithm with
the calculation of the output.

At first consider the algorithm 1, which visualizes the initialization part of the algorithm.
The function requires the MLE, for being the initial point of the differential equation,
and intervals to determine the maximum and minimum values of the parameters. The
log-likelihood function as well as the parameter function must be provided by the user,
with or without the derivatives. The user can moreover choose between the implemented
solver and decide, which approximation method should be applied for the derivatives.

23

24 CHAPTER 4. METHOD ASSESSMENT

// Initialization
Input: MLE 0,
parameter intervals,
log-likelihood function,
parameter function,
solver, approximation options,
// Approximations of derivatives
if gradient not provided then
‘ approximate gradient using approximation options for gradient;
end
if hessian not provided then
‘ approximate hessian using approximation options for hessian;
end
// Initial conditions
calculate A s.t. Vgl(0) + Ao - Vog(0) = 0;
set Co = (0, Xo)";
set

V2(0,) + A - Vig(0.) Vog(b.
A(C):(ol()Veg(QC)Tag() %())

Algorithm 1: Sketch of the implemented algorithm, Part I: Initialization of the
required inputs. The approximation of the derivatives is applied, if they are not
provided by the functions. The missing initial condition)y is calculated and the
mass matrix A(() set.

The MLE 6 is the upper part of the initial condition (o of the differential equation. The
missing initial condition)\ is calculated using the formula of Lagrange multiplier and
then inserted into ¢y = (6, A\)”. The mass matrix A(¢) is set with the provided or
approximated derivatives.

In the next part (consider algorithm 2) the solving of the ODE or the DAE system is
applied, depending on the chosen solver. Additional to the initial conditions it is necessary
for the IDAS solver to calculate the initial value of the derivative ¢. The differential
equation is then solved within the parameter interval of the parameter concerned in the
profile calculation.

At the end of the function (consider algorithm 3) the log-likelihood function is evaluated
at the parameter values of the profile. The likelihood ratio is also calculated at every
point of the profile and returned by the function together with the parameter values and
the log-likelihood evaluations.

4.2 Solver evaluation

As shown in algorithm 2, there are two basic approaches to solve (3.7). The solution can
directly be found using a numerical DAE Solver or it can be rearranged by multiplying

4.2. SOLVER EVALUATION 25

// Solve differential equation
if DAFE Solver then
if solver is IDAS then

// Initial condition for IDAS
calculate:
_ -1 _’va?l(ec)
end
solve:

within parameter interval;
Ise if ODE Solver then
solve:

[©)

E= ey (TV

within parameter interval;

end
Algorithm 2: Sketch of the implemented algorithm, Part II: Depending on the cho-
sen solver is the ordinary differential equation or the algebraic differential equation
solved in the provided parameter interval. For the solver IDAS, the initial condition
for ¢ must be calculated, too.

// Calculate output
for j={1,...,k} do

calculate value of log-likelihood 1(67);
_ 199,
e’

calculate likelihood ratio R;

end

return parameters along profile {01,0%, ..., 0%},
log-likelihood along profile 1(07) Vi € {1, ..., k},
likelihood ratio along profile R; Vj € {1,...,k}

Algorithm 3: Sketch of the implemented algorithm, Part III: At the end the log-
likelihood function is evaluated at the parameter values of the profile and the likeli-
hood ratio is calculated.

26 CHAPTER 4. METHOD ASSESSMENT

with the inverse matrix of A((), as it was done in [1].

¢ = a (V) (4.)

The result is a system of ODEs. Obviously this approach is only applicable if the mass
matrix A(() is non-singular.

The crystal growth model used in [1] (see 2.3.2) only included identifiable parameters and
the hessian was non-singular, so that there is no problem in inverting the mass matrix
A(({). But it can happen that the hessian becomes singular, since the hessian is dependent
on the parameter values. Furthermore the scale of the parameter values plays a decisive
role for the singularity of the hessian.

The question is, if this is also the case for the mass matrix A(¢) and if it is still possible
to compute the profiles. Furthermore it is if interest if then the ansatz with the DAEs
solver is superior to the method which requires the inversion of the mass matrix.

4.2.1 Concerning the singularity of the hessian

It was already noted that it is possible that the hessian of the log-likelihood is singular.
In the example of the chemical model (see 2.3.3) it will be shown that under certain
circumstances the hessian becomes singular and it will be investigated if this singularity
does interfere with the profile calculation.

In the following the hessian of the log-likelihood function in the logarithmic scale will be
considered, see (2.10). Recalling the logarithmic scale, the parameter set changes to:

(€1,62,83) = (log(s), log(k1), log(k2))

The parameter transformation exp(&;) will be substituted with 6; to shorten the equation,
but preserve the difference to the initial parameters (i.e. remember to apply the chain
rule for the parameter transformation).

(01,02,03) = (exp(&1), exp(&2), exp(&3))

Inserting the model solution into the formula for the hessian of the log-likelihood in the
logarithmic scale results in:

- 0 T —e 0, 01(F2 (1 — e) + e 't)0
V2(0) = EZT’“ £2(1 — e~%)6, 0 O (G (1 — e7%) + ghe™'t)0;
k=1
015 (1 — %) 0 0
+ 0 Or5-(1— e %) 0
0 0
02 _ _ _ — _ _
ﬁ(l —e 93t> %(1 —e 03t) g_z(l —e egt)(%92(1 —e 93t) 4 %e egtt)
_ %(1 o 67937&) Z_;(l . e—@gt) z_;(l . 670315)(799%92 (1 _ 6—037&) + %e—egtt)

(4.2)

4.2. SOLVER EVALUATION 27

with Ty, = g — y(7%, exp(§)), which is a scalar.

The last row of the matrices is not of interest here and therefore neglected for simplifica-
tion.

Summing all up, the hessian becomes:

1
ﬁ'...

(T 21— ety — 1 =) S (Tabaf (1 — el - BE(1)
k=1

(Tkel‘b(l—e—@?’t) %(1—6—@)) Z(Tkefl(l—e—@“)—%(1—(2““))

VA(0) =

~—

h=1 =1
kz::l (Tkel(g_(- 6_9375) + %e‘%ﬂf)eg — z—i(l — e‘%t)(%(l _ 6—6375) + %6_93%)>
k; (TngQ(g_e(]- — @*9375) + z—;e*tht)Qg - g—;(l — efest)(%lgﬁ'z@ _ 679315) + %6703%»

(4.3)

It depends — among others — on the parameters and the values of T, if the matrix (4.3)
is singular. But it is obvious that it is singular, if 8; = 65, because in this case the first
two rows of the matrix are equal and therefore linearly dependent.

Moreover in the numerical case the limited machine precision leads to singular matrices.
The following numerical example with inserted parameter values will show that even if
01 # 05 the hessian can be treated as singular. Subsequently it will be shown how the
singularity of the hessian can be resolved.

Let the MLE be
—0.8771

—0.7420
—0.0286

In this case is ¢; = —0.8771 # 6y = —0.7420.
The hessian of the log-likelihood function with insertet MLE is approximately:

D>
I

) —99.9630 —99.9630 80.4643
V2(0) ~ | —99.9630 —99.9630 80.4643
80.4643 80.4643 —69.9919

The hessian has a condition number cond(V21(f)) = 2.5341 x 10~'7, which is smaller than
10~'® and is therefore numerically treated as singular. This is obvious, since the first row
and the second row of the hessian are equal keeping the rounding error in mind. In other
words the hessian is numerical singular even if the parameters 6, and 65 are not equal.
As the next step, the hessian will be inserted into the mass matrices (recall equation (3.4))
with ¢ = (0, A\)T and)y be the solution of:

In the case of the profile calculation for s and ko these look as follows:

28 CHAPTER 4. METHOD ASSESSMENT

~

Mass matrix A(¢) for ky at the MLE:

—99.9630 —99.9630 80.4643 0

A(é) ~ —99.9630 —99.9630 80.4643 0
80.4643 80.4643 —69.9919 0.9718

0 0 0.9718 0

with condition number: cond(A(C)) = 2.5341 x 10717 < 1015

~

Mass matrix A(¢) for s at the MLE:

—99.9630 —99.9630 80.4643 0.4160
A(é) ~ —99.9630 —99.9630 80.4643 0
80.4643 80.4643 —69.9919 0
0.4160 0 0 0

with condition number: cond(A(C)) = 7.4068 x 1074 > 1015

It is interesting that the mass matrix for the identifiable parameter is singular, while it
is non-singular for the non-identifiable parameter. That is because, concerning the mass
matrix of s, the gradient of the parameter function adds a value in the row, which is dif-
ferentiated with respect to s. This results in a row that is no longer linearly dependent to
the second one and the matrix is invertible. The same applies of course for the parameter
k1 (not shown). For ko the gradient of the parameter function only adds a value in the
row which is already linearly independent from the other ones and therefore the mass
matrix is, like the hessian, singular.

However, to still be able to invert the mass matrix and use the ODE based integrations
one can add a term to the singular mass matrix like:

~

A()=A() + € Iy (4.4)

with € > 0, but relatively small (for example ¢ = 107%) and I,,;; being the identity matrix
of dimension n + 1.

This resolves the singularity of the mass matrix without being too imprecise in the cal-
culation of the profiles, because it is only a comparably small change of the matrix.

For the example with ks this results in a new mass matrix:

—99.9629 —99.9630 80.4643 0

A’(é‘) ~ —99.9630 —99.9629 80.4643 0
80.4643 80.4643 —69.9918 0.9718
0 0 0.9718 0.0001

with condition number: cond(4’(C)) = 9.1664 x 10~7 > 1075, which is no longer treated
as singular and therefore the profile calculation can also be applied using the ODE based
solver.

4.2.2 DAE based integration

As mentioned before, the system (3.7) can be solved directly using DAE solvers. That
means the solver searches for a solution to the DAE system. This system does not

4.2. SOLVER EVALUATION 29

odelbs computes whole interval
DAE
. sundials toolbox
Solver stops within interval for R; < o
ODE

Figure 4.1: Possible DAE solvers to be used in computeApproximatedProfiles to
calculate the profile likelihood. The ode15s solver provided by MATLAB is computing
the profile on the whole parameter interval, while the IDAS solver provided by sundials
stops as soon as the likelihood ratio drops under a certain threshold.

necessarily be of index one.

There are two DAE solvers included in the implemented function (see Figure 4.1), one of
them is the MATLAB built-in solver ode15s, which solves ODEs but also DAEs with a
— potentially singular — mass matrix M (y) of the form:

M(y) -y = f(y) (4.5)

This form is exactly the same as (3.7) if y is substituted with ¢ and M(y) with A(().
The algorithm of the solver is based on numerical differentiation formulas and is a multi-
step solver [12]. Unfortunately, this DAE solver can not solve DAEs of index greater than
one. But since the considered DAE is of index equal one, this solver suffices for the profile
calculation.

The other solver is the IDAS solver of the sundials [13] toolbox. For this solver it is
necessary to rearrange the equation, such that there are only zeros on the left hand side.

0= A(C) ¢ - (~7Vslll)) (4.6)

IDAS has moreover the option to change the applied linear solver. In the applications
only two of them are used frequently: GMRES and Dense.

The inversion of the matrix is not necessary for the solver itself, but the IDAS solver
requires a suggestion for éo at the initial point. If there is no sufficient information of
the derivative at this point the computation of the inverse at the initial point cannot be
avoided.

A(Co) 'éo = < —”yVlgl(HC)) (4.7)
o= A(G) ™ < _wac)) (4.8)

If A(¢) is singular and if this can not be avoided using the adjustments of the section
before (see 4.4), it is not possible to calculate ¢y, properly. In the implementation the
singularity of A(() results in NaN or Inf (if the matrix is only badly scaled) as entries of

30 CHAPTER 4. METHOD ASSESSMENT

éo. In this case it occurs that the solver does not converge in its first step and to prevent
this, a contrived solution has to replace these entries with finite — but favourable big —
values.

The implementation sets these entries to £100, depending on whether they are positive
or negative infinite. For NaN always the positive value is chosen.

4.2.3 ODE based integration

To solve (3.7) the standard ODE solver always requires the inversion of the matrix A(()
as in (4.1). If the matrix is singular, which for example happens in systems with non-
identifiable parameters, the numerical inversion of the matrix leads to entries, which are
set to NaN or Inf.

However, it is shown in section 4.2.1 with reference to an example that this integration
method is still possible, if certain adjustments are applied to the matrix.

For the numerical solving of ODEs many numerical methods exists. The used ones are
summarized in Figure 4.2. MATLAB already provides a wide range of ODE solvers for
various problems. Apparently the considered system of ODEs can become stiff, which is
the reason for choosing odel15s and ode23s as examples from the MATLAB built-ins,
for being able to solve stiff ODEs.

In the subsection before the ode15s was introduced as a DAE solver, but can also applied
to ODEs. The solver ode23s is based on the Rosenbrock formula and is a one-step method
[12]. This solver was already used in [1] and it will be investigated if this solver also suffices
for the examples considered in this thesis.

Furthermore these two solvers will be compared to the Euler method — a quite simple
approach to solve ODE systems, introduced subsequently — and the toolbox CVODE
also provided by sundials. CVODE does — like IDAS — allow different inputs for the
linear solver, which additionally can be compared in terms of accuracy and number of
evaluations (NoE).

DAE

Solver

ode23s computing whole interval

ODE

_ sundials toolbox
- stops within interval for R; < «

Figure 4.2: Possible ODE solvers to be used in computeApproximatedProfiles to
calculate the profile likelihood. ode15s and ode23s provided by MATLAB as well as the
Euler solver are computing the profile on the whole parameter interval, while the CVODE
solver provided by sundials stops as soon as the likelihood ratio drops under a certain

threshold.

4.2. SOLVER EVALUATION 31

Euler method
The explicit Euler method is used to solve ODEs [11]. Given an ODE of the form:

y=f(yt,0) (4.9)

where ¢ being the first derivative of y(t, 6).
Moving along the path of y is like adding the value of its derivative in an infinitely small
step 0 to the value of y at the point before. This results in the iterative function:

Ynt1 = Yn +0 - f(Yn,tn)

where ¢ is the step size.
This is nothing else than the rearranged FD:

g = 2L — o (4.10)

This solution is exact for an infinitely small step size. However for the applied computa-
tion a finite step size has to be set, which causes a numerical error. In the implementation,
the default step size of the Euler method is set to: § = 1073.

The considered Euler method is an explicit method and therefore sensitive for stiff prob-
lems [11]. Adding the correction term to the profile approximation with a high factor -,
results in a stiff problem and in these cases it is not appropriate to solve the ODE with
the Euler method.

This is displayed by Figure 4.3. For v = 1 the Euler method with step size § = 1073
calculates the likelihood profile of the parameter ks quite well (the corresponding model
can be found in 2.3.3). However, increasing the factor v to 100 results in such a stiff
system that the Euler method is not able to sufficiently calculate the profile. Only by
decreasing the step size of the method to 6 = 10~* results again in an accurate profile.

4.2.4 Solver performance evaluation

After the introduction of the solvers it will be evaluated how they perform on the profile
calculation. Therefore, the implemented function is applied to the standard normal dis-
tribution (SND) and the crystal growth model (CGM).

At first consider the profiles for the SND calculated with various solvers shown in Figure
4. 4a.

All in all, the approximated profiles fit quite well on the benchmark, which is computed
by the classical method. This is confirmed by the evaluation figures (Figure 4.4c), where
the error to the benchmark is equal zero for all computation variations. Attention should
also be given to the NoE.

The benchmark needs around 4 x 10? evaluations of the cost function, which is undercut
by all solvers except the Euler method. Why the Euler needs so much more NoE is easy
to explain, due to the fact that this method — in contrast to the others — uses a fixed step
size. Moreover the profile with the CVODE seems inaccurate, but this is only because it

32 CHAPTER 4. METHOD ASSESSMENT

mbenchmark +Euler v =100 § = 1073
mall exact evaluated with IDAS4Euler 4 = 100 § = 10~*
®FEulery =16 =107

Identifiable parameter ks

1} 1 =<
2 g 20 |
L] =
0 e
e)
g 05 i 2 1L .
< @]
£ =
= e
0f = S —] S 0 m | ° A
1071 10° 102 103 10* 10°
parameter ks number of evalutaions

Figure 4.3: Profiles of the chemical reaction model for the parameters ks, calculated
by computeProfiles and by computeApproximatedProfiles. The latter one uses
IDAS (orange squares matching the benchmark nearly exactly) and the Euler method.
The Euler method calculates for v = 1 the profile (blue circles) but fails for a high factor
v = 100 and step size 6 = 1072 (light blue diamonds), since it does not match the profile
but drops to zero. This can only be resolved by reducing the step size ¢ to 107* (the green
triangles match the benchmark), which shows the stiffness of the system in these cases.

uses partially quite big step sizes.

4.4b shows the profile for the crystal growth model (CGM) and the profiles are quite ac-
curate for all solvers, as it is in the other example with the SND. However, once more, the
CVODE uses large step sizes and is in this case producing an increased error, compared
to the other solvers. But considering the profiles in Figure 4.4b this error is not visible to
the naked eye.

It is interesting that ode15s for ODEs needs a similar NoE of the cost function as IDAS,
despite it is computing a wider interval, and much less than the ode23s. This one was
used in [1] for the computation of the profiles of the CGM and needs even more NoE than
the benchmark.

Additionally, there is one main difference between the two MATLAB built-in solvers as
well as the Euler method on the one hand and the ones provided by sundials on the
other. The latter ones are executed stepwise and therefore it is possible to evaluate the
likelihood-ratio in every step. This evaluation can be used as a stopping criterion of the
algorithm, when, for example, the ratio falls under the desired threshold.

The other solvers, however, are calculated in a fixed interval and do not stop even if the
ratio is zero. Furthermore the interval passed to the solvers does not exactly reflect the
boundaries of the concerned profile parameter, but defines the boundaries of ¢. Recalling
equation (3.2) ¢ is defined to be equal to the profile parameter, but is not assigned to
its value after the differentiation any more. The ODE solver changes the value of ¢ and
computes the solution for (. It appears that the values of ¢ do not correspond exactly to
the profile parameter.

Therefore it can happen that the calculated profile is too short or evaluated at unnec-
essary many points. That means the profile calculation with these solvers is dependent
on the passed interval, which is then actually independent of the considered parameter

4.2. SOLVER EVALUATION 33

interval. Although it is possible to assign odel15s with a stopping criterion, this does not
prevent the issue of the calculation of a too short interval.

Concluding, the best results are provided by the sundials solvers CVODE and IDAS.
The MATLAB built-in solver ode15s for DAEs and ODEs performs well, too, but the
disadvantage is crucial that the whole interval is computed or only parts of the desired
profile, which can lead to wrong assumptions about the confidence intervals. Therefore
the solvers with stopping criteria dependent on the actual parameter intervals should be
preferred.

Profile of standard normal distribution Profile of crystal growth model
Comparison of solver types Comparison of solver types
1 1 ‘

o

= 0

< ©

< :

S 0.5 205

< £

] £

0
| | | |
—6 10-215 10-21 10—205 102 10-1-95
parameter 6 parameter 6;
(a) (b)

mbenchmark ¢IDAS vodelbs for ODEs W benchmark @) odel5s for ODEs 4 IDAS

m Euler Solver a ode23s@odelbs for DAEs W Euler v odelbs for DAEs « ode23s

» CVODE A CVODE

1073
¢ e 2
= X
E 051 1 E
S S 9l v
e c
g 0f ev @s =m B S
-8 9 1
§ —0.5 n E
B | Ll Ll L (UO’ A‘ O o | ¥ -‘ U
10? 10° 10* 102 103 10*
number of evalutaions number of evalutaions
(c) (d)

Figure 4.4: Profiles calculated with the classical method (benchmark) and the integra-
tion based method using different solvers: Euler method, ode15s for ODEs, ode15s for
DAEs, ode23s, IDAS and CVODE. (a) & (b) show the profiles and (c) & (d) the eval-
uation plots, with NoE plotted against the error to the benchmark. (a) & (c): Profiles
for the standard normal distribution for parameter 6,. (b) & (d): Profiles of the crystal-
growth model for the parameter ¢;. (d): The unfilled markers determine the calculation
if the parameter function is defined in terms of the logarithmic parameters and therefore
linear. Omitted in (b), since there is no difference visible.

34 CHAPTER 4. METHOD ASSESSMENT

must be prov.

hessian prov. -by user

graident prov. FIM

log-likelihood or \ .
parameter function hessian appr.

FinDif

gradient appr.

erivest

toolbox erivest

toolbox

Figure 4.5: Possible combination of log-likelihood and parameter function derivatives,
either provided (prov.) by the function or approximated (appr.). The possible approxi-
mation methods have a oval frame. If the fisher information matrix (FIM) is chosen to
be the approximation method for the hessian, it must be provided by the user, because
the calculation of the FIM requires the gradient of the underlying model.

4.3 Approximation methods and substitutes of
derivatives

To obtain the profile likelihood, the DAE (3.4) must be solved. First of all this requires
that the derivatives of the log-likelihood function and the parameter function are avail-
able.

For ¢(0) it is not very difficult to calculate the gradient and hessian, since it is a linear
function. But circumstances are different for the log-likelihood function, for there is often
no analytical differentiation possible and no exact solution of the profile can be calculated.
This section introduces methods to approximate the derivatives and will moreover show
possibilities to substitute the log-likelihood derivatives.

The function computeApproximatedProfiles accepts various combinations of the deriva-
tives and their approximations (summary shown in Figure 4.5). Some of these combina-
tions will be evaluated at the end of this section.

4.3.1 Approximation methods of derivatives

As long as the analytical solutions of the gradient and hessian of the log-likelihood are not
available they have to be replaced by appropriate approximations. The following section
introduces methods used for the numerical approximation in the application examples
and evaluates their accuracy.

Finite Differences

One simple and common method to approximate derivatives are the FD, defined as follows:

di(f) 10+ h) —1(6)

o - h

4.3. APPROXIMATION METHODS AND SUBSTITUTES OF DERIVATIVES 35

where the accuracy depends on the step size h. This step size is comparable to the step
size of the Euler method 4, but a different notation is used to distinguish between the
two.

For h being infinitely small, the F'D is similar to the definition of the differentiation. For
a practical application a numerical error of the approximation must be accepted, since
step size h can not be set infinitesimally small.

In the case of the hessian the FD is applied two times. This increases the numerical
error as well as the computation time and is therefore not the favourable approximation
method for the hessian.

Sensitivity equations

Using the sensitivity equations is a common method to derive the gradient of the solution
of differential equation systems with respect to the parameters . This method is based
on the sensitivity equations, which can numerically be solved simultaneously with the
corresponding system of differential equations.

Consider for example the explicit ODE:

y=f(y,t,0)

with 6 € R™.
Let Z be the new sensitivity variable, which is defined as:

Z = ng

Now continue point wise with Z; = % Vie(l,..,n).

The derivative of Z; with respect to t is:

82_883;_0834

4= 5% = 5 98, = 06, ot (4.12)
where % =y= f(y,t,0).
Applying the chain rule to f(y,t,0) i.e.:
.0 _of of 0Oy
——
Z;
. of Of
Z - 95 .z 4.14
= 4= 90 T oy (4.14)

The resulting n ODEs (for Z, ..., Z,,)) can be solved together with the initial ODE, using
common integration solvers to calculate the solution of the differential equation and the
gradient of y(¢,0) at once [14].

The previous derivation was done for an explicit ODE, but sensitivity equations can also
be calculated to systems of ODEs [14] and under certain conditions to DAEs and PDEs
[15].

However, this approach needs further knowledge about the underlying model and is there-
fore not part of the implemented gradient approximation.

36 CHAPTER 4. METHOD ASSESSMENT

Toolboxes for Matlab

Rather than approximate the derivatives by hand’ one can use already implemented
toolboxes for a numerical approximation. There are various types of toolboxes available.
The one used in the implementation part of this thesis is the Derivest toolbox [16]. It
calculates the gradient and hessian, requiring only the considered function. Although this
MATLAB function does approximate the gradient and particularly the hessian quite well,
it needs more evaluation of the differentiated function than the FD.

Assessment

The question is, which method to approximate the derivatives is the best choice for the
profile calculation. To answer this questions the different methods are applied in the
function and compared in the following.

For the profiles in Figure 4.6 only the IDAS solver from sundials is used with different
inputs for the derivatives.

In the case of the SND (Figure 4.6a and 4.6¢) the approximation of the hessian with FD
increases the NoE, while being nearly independent of the gradient approximation. The
increase of the NoE is enormous when the toolbox Derivest is applied. This is already
the case, even if only the hessian is calculated with the toolbox and this approximation
is furthermore not reducing the error.

All in all, in the case of the SND no reduction of the NoE is achieved, if derivatives are
approximated. But the better performance of the benchmark can be explained by the
fact that the computeProfiles function uses an adaptive step size which is based on the
standard normal distribution and is therefore producing the best results when applied to
it.

However, in the example of the CGM (see 4.6b and 4.6d), only the approximation with
Derivest does increase the NoE compared to the benchmark. The recurrence of the bad
performance with the Derivest toolbox suggests that more accurate approximations are
not improving the calculation compared to more simple approaches like the FD and is
more likely to increase the NoE.

Despite the results of the SND the application of FD decreases the NoE for the CGM.
This result is important, since the exact derivatives are often not available and the profile
calculation is more likely be done relying solely on approximations.

4.3.2 Substitutes for the hessian

Instead of a numerical approximation it is also possible to substitute the hessian with
surrogate matrices. The difference to an approximation is that the substitute does not
intended to be near the exact value of the hessian but is chosen to show the same behaviour
as the hessian.

There are two possibilities suggested in [1], which are applied to the example models. The
first one is the identity matrix and the second one the FIM.

4.3. APPROXIMATION METHODS AND SUBSTITUTES OF DERIVATIVES 37

Comparison of approximation types Comparison of approximation types
T T I I I I
o ! o ‘
5 .Q
i 2
! I
° <
g 05 3
< <
] £
= ok
| | |
—6 10-2-15 10-2-1 10-2.05 10-2 10-1-95
parameter 6 parameter 0;
(a) (b)
® benchmark agradient exact / hess Derivest M benchmark 4 grad exact / hess Derivest
gradient & hessian exact ~ ®gradient FD / hessian FD Migrad & hess exact @grad FD / hess FD
@¢gradient exact / hessian FD ® grad exact / hess FD
1075 107°
{ T T T ‘A « I o)
[t]
€15 m i<} = O A |
= =
S [S]
c c
[} 1 - [}
s} a A
[e] -8 2 -
8
5] .
o 0 . ‘I—‘—‘—‘.‘ . i . . OO,“DH‘ ! \\\\\\.\\ |)
102 103 10 10° 10 10°
number of evaluations number of evaluations
(c) (d)

Figure 4.6: Profiles calculated with the classical method (benchmark) and the integra-
tion based method using the solver IDAS with default options and v = 0. The comparison
concerns the various combinations of true and approximated derivatives. (a) & (b) show
the profiles and (c) & (d) the evaluation plots, with NoE plotted against the error to the
benchmark. (a) & (c): Profiles for the standard normal distribution for parameter 6.
(b) & (d): Profiles of the crystal-growth model for the parameter ;. (d): The unfilled
markers determine the calculation if the parameter function is defined in terms of the
logarithmic parameters and therefore linear. Omitted in (b), since there is no difference
visible.

38 CHAPTER 4. METHOD ASSESSMENT

Identity

To completely avoid the calculation of the hessian or an approximation of it, the authors
of [1] suggested to use the negative identity matrix of the same dimension as the hessian.
In their paper and selected examples this choice works quite well.

However, their examples contained only identifiable parameters and it was necessary to
use the correction term. Later in this chapter (see section 4.5) it will be shown that this
is not appropriate for non-identifiable parameters, even with a high value of ~.

The advantage of using the identity is, of course, that the cost function does not need to
be evaluated at all, which reduces the necessary NoE.

Fisher information matrix

The second substitute is the FIM and is defined as the matrix with entries:

0 0
) log 0p(X) - 0, log 0p(X)

where X is a random variable distributed with the density g, following [17].

It is for example used in the information inequality [17] and its inverse is a common vari-
ance estimator [18].

But this definition is far from the practical approach in this thesis. For the data-based
parameter estimation the FIM can be used as an approximation for the hessian of the
log-likelihood, as it was used in [1].

If the variance is independent of the parameters — hence known — the FIM is the inverse
of the covariance. In this case it is defined following [19]:

7(0) = S~ Vay(ri, 0)Vay(ri, 0)7 (4.15)

o
=1k

This definition of the FIM requires the derivative of the model solution (7, #) with respect
to the parameter §. If this is not available, because there is for example no analytical
solution, also an approximated gradient can be used.

Since the FIM needs the gradient of the underlying model, this substitute can not auto-
matically be generated by the implemented function, but has to be provided by the user
with the log-likelihood function.

Assessment

Profiles are calculated using the previously introduced substitutes and compared in Figure
4.7. The Subfigures 4.7a and 4.7c show again the profiles of the SND.

The substitution with the negative identity reduces the NoE significantly and needs even
less evaluations than the calculation with the exact derivatives. That is because the
hessian of the SND is exactly the negative identity matrix. Therefore the substitution of
the hessian with it, does not increase the error. But it takes lesser evaluations because the
log-likelihood function and therefore the model is not evaluated for the hessian, because
the hessian is substituted with a constant matrix.

4.4. ASSESSMENT CONCERNING THE LOGARITHMIC SCALE 39

This stands in contrast to the CGM, where it is obvious from Figure 4.7b that the identity
matrix is inadvisable to use, as long as the correction term is not present.

The substitution with the FIM for the CGM are well enough. Solely if the gradient is
approximated with FD, the calculation has a visible error considering the profile plot (see
Figure 4.7a), but is still reflecting the identifiability of the parameter.

The substitution with the FIM is not applied for the SND, because it is only a test function
for the algorithm without an underlying model. To calculate the FIM it is necessary to
have access to the gradient of the model solution.

To conclude, the assessment of the method confirms the hypothesis that the implemented
method does compute the right profiles and can reduce the NoE significantly, without
being more inaccurate. It should be noted that the NoE are reduced compared to the
benchmark even if approximations of the derivatives are used. Although, it is possible
that approximations of the derivatives, especially FD, increase the NoE. But for the CGM
example, this value is still less than that of the benchmark.

4.4 Assessment concerning the logarithmic scale

The logarithmic scale is only applied to the CGM, since the SND has negative parameter
values.

Both approaches of the logarithmic scale work in the considered example. The results of
the calculation with the second approach are added to the evaluation plots of the profiles
in Figure 4.4d, 4.6d and 4.7d in the form of unfilled markers. The profiles are neglected
in the profile plot, because there is no difference visible to the other profiles.

Defining the constraint in terms of the logarithmic parameters leads to an additional re-
duction of the NoE and the error to the benchmark in most cases (see 4.4d, 4.6d and
4.7d). There is only one exception in Figure 4.7d, where in the calculation with exact
gradient and hessian approximated with FD the second approach of the logarithmic scale
takes more NoE than the first one.

These reductions are positively noted, but are not yet very significantly in the example
with the CGM. Defining the optimization constraint in terms of the logarithmic param-
eters has a much higher influence in the presence of non-identifiable parameters, as the
next section will show.

40

Comparison of approximation types

CHAPTER 4. METHOD ASSESSMENT

likelihood-ratio

o 1 |
= |-
i
)
S 0.5 = .
__g Sa=3%
£

O = | | | | | mll

—6 —4 -2 0 2 4 6

parameter 6
(a)
mbenchmark agradient FD / hessian Id

gradient & hessian exactagradient exact / hessian Id

1

X
&
E 05Ff |
Q
c
2 of “ . |
2
. =05} =
<]

10* 102 103

number of evaluations
(c)

error to benchmark

Comparison of approximation types

l l l l
1072,15 10721 107205 1072 107195
parameter 6

(b)

B benchmark @ grad exact / hess Id
[Mgrad & hess exact A grad exact / hess FIM
@ ¢grad exact / hess Id A grad exact / hess FIM

1073

- \owwomu

A A
- A -
[! ! \DHM ! ! \A\\H.M
10? 103 10*
number of evaluations
(d)

Figure 4.7: Profiles calculated with the classical method (benchmark) and the integra-
tion based method using the solver IDAS with default options and v = 0 to investigate
the influence of the various combinations of exact and substituted derivatives. (a) & (b)
show the profiles and (c¢) & (d) the evaluation plots, with NoE plotted against the error
to the benchmark. (a) & (c): Profiles for the standard normal distribution for parameter
0. (b) & (d): Profiles of the crystal-growth model for the parameter 6;. (d): The unfilled
markers determine the calculation if the parameter function is defined in terms of the
logarithmic parameters and therefore linear. Omitted in (b), since there is no difference

visible.

4.5. PRESENCE OF NON-IDENTIFIABLE PARAMETERS 41

4.5 Presence of non-identifiable parameters

Previously, the implementation was assessed with models, which included only identifiable
parameters. In this section the profile calculation will be applied to the chemical reaction
model (introduced in 2.3.3), where the parameters s and k; have already been detected
to be non-identifiable.

The profiles of the chemical-reaction model are computed for the parameters s and ko,
but there are no profiles shown for the parameter k; since its profile is basically the
same as for the parameter s. As before the different solvers will be evaluated as well as
various approximation methods. Furthermore the influence of the correction term will be
investigated.

4.5.1 Solver performance evaluation

The Figure 4.8 shows the approximation of the profiles using different solvers.

For the parameter s (profile 4.8a) all solvers of the approximation method are as accurate
as the benchmark. Only the CVODE solver seems like an outlier, but the error of 1.5-1071°
is still too small to be noteworthy.

The profile in Figure 4.8 shows two difficulties in the calculation. The first one concerns
the MATLAB built in solvers, which calculate far more than the desired interval on the
lower side of Figure 4.8b. The profile, where the ratio is zero is of no interest. They are
also stopping before the threshold is reached at approximately ks = 3 x 10°.

The second one is that, IDAS with the linear solver Dense as well as the odel5s for
DAEs does not compute the whole profile. After a couple of iterations the solvers do not
converge any more and stop. For the IDAS Solver this can be resolved by changing the
linear solver to GMRES. For this reason the linear solver GMRES is used as the default value
in the implementation.

All in all the CVODE and ode15s for ODEs show again the best performance, which
suggests that the ODE solvers are superior to the DAE solver, even if the inversion of the
mass matrix is necessary in every step.

However IDAS showed a bit higher accuracy if approximations are used and is therefore
used for the following profile calculations in this section.

4.5.2 Performance evaluation concerning the derivatives

There are various possibilities to substitute the exact hessian of the log-likelihood. Figure
4.9 shows four of them.

Instantly, the inaccuracy of the identity matrix, especially for the non-identifiable param-
eter, leaps to the eye. In absence of the correction term, the identity matrix is not even
a good choice for the identifiable parameter k.

The toolbox Derivest for calculating derivatives holds the accuracy, but increases the
NoE substantially. Also the FD needs more evaluations than the benchmark. However
using the FIM for the hessian results in nearly as many or only a little more NoE as if
all derivatives are exact. This corresponds to earlier results with the FIM and allows a
preliminary recommendation for the substitute of the hessian.

The next evaluation regards the influence of the gradient approximation. As long as the

42 CHAPTER 4. METHOD ASSESSMENT

Non-identifiable parameter s Identifiable parameter k-
TCTUTTES TTTTE Y : 1
] ! o 1
& &
S S
o 0.5 p— 1 2 0.5 = B
;S Za=3% f_—j Za=3%
© ¥
= =
07 Ll 1 Lol 1 Lol 1 \7 0 | | | L1l I I I \\\\7
1072 107! 10° 1071 10° 10!
parameter s parameter ko
(a) (b)
mbenchmark @o0de23s e Euler
mIDAS 'GMRES' vodelbs for ODEs ¢ IDAS 'Dense’
1010 +odelbs for DAEsa CVODE
_%15* A 1< 102F & A A —
E (o]
5 E . o
1r 10 <
E E 10-5 - AV A [D'o 5 |
2 05) 18
o A V. O © S
5] = [
0 ”10—12 | | iR
10? 10 10* 10° 102 10° 10*
number of evaluations number of evaluations
(c) (d)

Figure 4.8: Profiles of the parameters s and k5 in the chemical-reaction model calculated
with the classical method (benchmark) and the integration based method with exact
derivatives and v = 0 to investigate the different performances of the solvers: KEuler
method, ode15s for ODEs, odel15s for DAEs, ode23s, IDAS and CVODE. (a) & (b)
show the profiles and (c) & (d) the evaluation plots, with NoE plotted against the error
to the benchmark. (b): odel5s for DAEs and IDAS with linear solver Dense fail to
compute the profile for parameter ks (cyan and purple diamond). (¢) & (d): The unfilled
markers determine the calculation if the parameter function is defined in terms of the
logarithmic parameters. Omitted in (a) & (b), since there is no difference visible.

correction term is ’disabled’ (i.e. v = 0) it would make no difference, because the gradient
does not directly appear in the profile calculation. Therefore the correction term is now
included by setting v = 1. For comparison the gradient is either exact or approximated
via FD with the step size h = 10~*. The hessian is approximated with the FIM or with
the identity.

The corresponding profiles can be seen in Figure 4.10. In this figure it is obvious that
the substitution of the hessian with the identity works better with the correction term.
There is still a serious error for s (although the forward direction of the calculation almost
matches the benchmark), but for ks the profile is nearly exactly approximated.

It is important, that the approximation of the gradient does not influence the profile at
all (Figure 4.10a: both lines — gradient approximated and exact — with hessian be the
identity, matching each other).

In the other case, where the FIM is the substitute for the hessian, the profile is fine

4.5. PRESENCE OF NON-IDENTIFIABLE PARAMETERS 43

Non-identifiable parameter s Identifiable parameter ko

likelihood-ratio
o
ot
T
Il
likelihood-ratio
(e
Ut

1072 101 10° 107! 100 10

parameter s parameter ks

(a) (b)
mbenchmark v hess Id

mall exact ehess FIM
®hess FD ¢ hess Derivest

1072 1072

error to benchmark
I <« ;
error to benchmark

07\ \@\\\\E\ L \o\\.uu\. L \\0\ \‘\\T L L |

102 10° 10* 10° 102 103 10% 10°
number of evaluations number of evaluations

(c) (d)

Figure 4.9: Profiles of the parameters s and ko calculated with the classical method
(benchmark) and the integration based method using IDAS with default options and
v = 0 to investigate the influence of the different hessian substitutes in the chemical-
reaction model with gradient exact and various approximations for the hessian (hess.).
(a) & (b) show the profiles and (c) & (d) the evaluation plots, with NoE plotted against
the error to the benchmark. (a): The identity matrix as substitute for the hessian does
not reflect the non-identifiability of parameter s (green triangle). (c¢) & (d): The unfilled
markers determine the calculation if the parameter function is defined in terms of the
logarithmic parameters. Omitted in (a) & (b) for there is no difference visible.

O CEe ®mO O e |

44 CHAPTER 4. METHOD ASSESSMENT

Non-identifiable parameter s Identifiable parameter &,

likelihood-ratio

likelihood-ratio
(e
Ut

1072 1071 10° 1071 10° 10*
parameter s parameter ko

(a) (b)
mbenchmark vgrad exact / hess Id
mall exact +grad appr. / hess FIM
®grad exact / hess FIM ¢ grad appr. / hess Id

1072 1074

4, -

0] <>
g v o ¢

op o \o v I < Q\ el 0L ! ° ! ! I \. |

102.5 103 103.5 10246 102.8 103 1032 1034

number of evaluations number of evaluations
(c) (d)

Figure 4.10: Profiles of the parameters s and ky calculated with the classical method
(benchmark) and the integration based method using IDAS with default options and
~v = 1 to investigate the influence of approximated gradient (grad appr.) in the chemical-
reaction model: gradient exact or FD, hessian FIM or Identity (Id). (a) & (b) show the
profiles and (c) & (d) the evaluation plots, with NoE plotted against the error to the
benchmark. (c¢) & (d): The unfilled markers determine the calculation if the parameter
function is defined in terms of the logarithmic parameters. Omitted in (a) & (b) for there
is no difference visible.

error to benchmark
[
T
|

error to benchmark

4.5. PRESENCE OF NON-IDENTIFIABLE PARAMETERS 45

for the non-identifiable parameter, but the method needs more NoE if the gradient is
approximated. The same applies for the identifiable parameter, but here the increase of
NoE and of the error is significant, if the gradient is approximated.

Following these results it is investigated how the accuracy of the gradient approximation
influences the profile calculation with the FIM. For calculating the FIM only the gradient
of the model is necessary. If this gradient is not available it needs to be approximated,
too, even if the gradient of the likelihood does not appear in the differential equation.
Considering Figure 4.11a and 4.11c, it is obvious that the use of an approximated gradient
does increase the NoE but an improvement of the approximation with smaller step size
does not change anything.

This stands in contrast to Figure 4.11b and 4.11d, where the computation works well for
FIM with the gradient approximated with step size h = 1072, but takes more NoE than
the benchmark for step size h = 1074, and fails completely for step size h = 1075, That
is because, if the tolerance of the solver is bigger than the accuracy of the approximation,
the solver only ’sees’ its own numerical error, which causes wrong results and the profiling
fails.

4.5.3 Influence of the correction term

In Figure 4.10 an improvement is shown, if the correction term is present, regarding the
calculation with the identity matrix as the hessian. To visualize the influence of the
correction term, its impact is further increased in Figure 4.12 by changing the magnitude
of the factor v. In the figure ~ is set to 0, 1 and 100 and again the bad performance for
~v = 0 is obvious for the non-identifiable parameter.

In the Figure 4.12b, setting v = 1 is sufficient that the profile for the identifiable parameter
is relatively precise. For the non-identifiable parameter, though, it is necessary to further
increase 7 to calculate a profile that at least reflects the non-identifiability (see Figure
4.12a). But there is still a drop visible at the lower end. The application in chapter 5 will
show that an increasing v alone does not always produces valid results.

It also should be noted that the increase of the factor significantly increases the NokE,
since the stiffness of the resulting system makes the computation more difficult for the
applied solvers.

However, if the optimization constraint is applied in terms of the logarithmic parameters
the performance of the method changes significantly (see Figure 4.12¢ and 4.12d). Already
with the correction term factor v = 1, the non-identifiability of the parameter s is visible
and by further increasing the factor, this approach even leads to an accurate profile, which
needs even less evaluations than with v = 1.

This is a crucial advantage in models where the hessian is not available and the FIM is
initially not implemented or can not be used as an approximation for the hessian (e.g. if
the variance is not known).

4.5.4 Evaluation of the performance in the logarithmic scale

In this example with non-identifiable parameters there is a significantly gain, when using
the second approach of the logarithmic scale. The NoE can be reduced by at least one
magnitude in comparison to the benchmark. To visualize this with numbers, consider the

46 CHAPTER 4. METHOD ASSESSMENT

Non-identifiable parameter s Identifiable parameter k.

—_
T

Ea:3%

likelihood-ratio
o
ot
T
Il
likelihood-ratio
o
ot

o
T
|
o
T

10° 10!

Ll L L] L L
102 1071 10° 10
parameter s parameter ko
(a) (b)
B benchmark ®grad FD / hess FIM h = 1072
Mall exact vgrad FD / hess FIM h = 10~*
< grad exact / hess FIM ¢ grad FD / hess FIM h = 10~¢
1073
E = o
g 0.5 1 E4l 1
(8]
c
8 o <o B ® = |34 |
2 2
s 09 152 |
5 | | | 0 oM @ gem 00v |
10245 103 103.5 103 104
number of evaluations number of evaluations
(c) (d)

Figure 4.11: (a) & (b): Profiles of the parameters s and ky calculated with the classical
method (benchmark) and the integration based method using IDAS with default options
and v = 0 to investigate the influence of the approximation step size h for the gradient
(grad) of the model, if the hessian (hess) is substituted with the FIM in the chemical-
reaction model: gradient exact or FD, hessian FIM. (a) & (b) show the profiles and (c)
& (d) the evaluation plots, with NoE plotted against the error to the benchmark. (c¢) &
(d): The unfilled markers determine the calculation if the parameter function is defined
in terms of the logarithmic parameters. Omitted in (a) & (b) for there is no difference
visible.

case where all derivatives are exact. The solver CVODE needs then only 30 evaluations
in contrast to the benchmark, which needs over 5000.

This is remarkable, since the benchmark takes for non-identifiable parameters always
longer than for identifiable ones. That is because the benchmark is in the case of non-
identifiable parameters computing the whole interval, whereas the algorithm can stop in
the case of identifiable parameters, if the ratio drops under the threshold. That means
the computing time of the classical method is for non-identifiable parameters dependent
on the interval length. The same disadvantage does, of course, occur for the integration
based method, but is resolved by immense huge step sizes.

Therefore is the performance of the integration based method reversed compared to the
classical method. The NoE for non-identifiable parameters is mostly less than the NoE
for identifiable parameters, because a wider step size can be applied.

Moreover the example, where the hessian is substituted with the identity matrix shows

4.5. PRESENCE OF NON-IDENTIFIABLE PARAMETERS 47

an additional advantage of the constraint in logarithmic parameters. In the first approach
of the logarithmic scale the identity matrix is not a favourable substitute for the hessian,
since the method is then not able to sufficiently reflect the non-identifiability of the pa-
rameters and an increase of the factor leads to a stiff problem. This however is not the
case for the second approach, where the non-identifiability is already visible for a small
factor and a higher factor even improves the calculation in terms of NoE.

Concluding, defining the constraint in the logarithmic scale is favourable for the profile
calculation, not only considering the NoE, but also in terms of accuracy. It is especially
advantageous for non-identifiable parameters.

48

Non-identifiable parameter s

Sa=3%

likelihood-ratio
o
ot
T

107t 10°

parameter s

(a)

Non-identifiable parameter s

1072

TTT T T T T TTT T T T T T T T
L K3 vZ§ =94 4o 0% <ol +
1 —.—.—(.—.(.'Q)‘.(l“‘l‘vlft((((('ﬁ\m\\\“ 0 \V\n«‘(((((«(v('."f‘.‘.

likelihood-ratio
o
ot
T
Il

CHAPTER 4. METHOD ASSESSMENT

Identifiable parameter k-

1 .
.0
&
-
o) |
o]
=
£
= —a®]

107! 100 10*

parameter ko
(b)
Identifiable parameter k,
1

likelihood-ratio
(e
Ut

—a=3%
0 L L] Ll ‘J; Q\\ Ll 7 O
1072 107! 100 107!
parameter s parameter ks
(c) (d)
mbenchmark vgrad exact / hess Id v = 100
mall exact agrad FD / hess Id v =0
egrad exact / hess Id v = 0egrad FD / hess Id v =1
®grad exact / hess Id v = 1o grad FD / hess Id v = 100
102 1077
— —_— —
_,Eu 3 ® 1 x S e
€ g 6l |
S of o e 15
c a <
2 g 4f 1
g1y 122}]
e e
s 0L o w0 Yo o'm |5 | Ogey — coem |
102 103 102 10
number of evaluations number of evaluations
(e) (f)

Figure 4.12: Profiles of the parameters s and ky calculated with the classical method
(benchmark) and the integration based method using IDAS with default options to in-
vestigate the influence of the correction term with an improper hessian substitute in the
chemical-reaction model: gradient is exact or FD, hessian is the identity matrix and
v € (0,1,100). (a), (b), (¢) & (d) show the profiles (e) & (f) the evaluation plots, with
NoE plotted against the error to the benchmark. (a) & (b): optimization constraint in

terms of initial parameters (see 3.10). (c) & (d):
logarithmic parameters (see 3.12). (e) & (d):

optimization constraint in terms of
Evaluation figure compares error with NoE.

The unfilled markers correspond to (c¢) & (d).

Chapter 5

Evaluation of the integration based
method applied to a PDE model

In most cases PDE based models are computational more costly to simulate than ODE
systems. Therefore a reduction of the NoE in the profile computation is in this context
particularly desirable. As an application example of a real data PDE, the pomIp model
from [20] is used. Additionally it contains with five, the highest number of parameters of
the considered models.

5.1 The pomi1p model

The model describes concentration gradients of the protein pom1p. Within cells, concen-
tration gradients are responsible for many biological processes. In the yeast cell Schizosac-
charomyces pombe, the pomIp protein — together with two landmark proteins — regulates,
among other things, the bipolar growth of the cell and the cell mitosis. PomIp forms a
gradient at both ends of the rod-shaped cell and produces negative signals for the division,
while in the middle of the cell positive signals are produced to divide the cell at that point
[21].

To observe the protein in a living cell fluroscence microscope images were made (see Fig-
ure 5.1). Pomlp is visible with a higher fluorescence in the pictures and one can see, that
it is congregating at the cell tips.

PDE system

Considered is a source-diffusion-disassociation (SDD) model for the concentration of the
pomIp protein [20]. Tt describes the emerging of the protein at the membrane (source),
the diffusion on it and the unbinding (disassociating) from the membrane.

The PDE for the concentration p(t,z) of pomlIp at the time ¢t on the singular spatial
dimension, denoted by the variable d, is:

atp:D.V?lp_u.p_l_(].edz/?wtzea

with D being the diffusion parameter, ;1 the unbinding rate and J the maximum amplitude
2
in #2~ with which the pomIp molecules are emerging at the membrane. The parameter

49

50 CHAPTER 5. EVALUATION OF THE METHOD APPLIED TO A PDE MODEL

Figure 5.1: Fluorescence microscope images of the yeast cell Schizosaccharomyces pombe.
The protein pom1p has a higher fluorescence and congregate at the cell tips. Image taken
from [21]

Wyeq denotes the width of the associated region and the observable of the concentration p
is scaled with an additional parameter s:

y(t,d,0) = s-p(t,d,0)

with 6 being the set of all parameters together: 0 = (D, J, i, Wyeq, S)-
To obtain the solution of the model, the PDE is solved by a FD approach on a spatial
grid with 1401 points.

Fitting of the model parameters

The model was fitted to data, which was obtained by fluorescence microscope images.
The concentration was measured over one spatial axis by the intensity of the fluorescence
including a possible variance of the measurement.

A fit of the model parameters is shown in Figure 5.2. For the optimization of the log-
likelihood the multi start algorithm by Jan Hasenauer was executed 20 times with the
initial guess visualized in Figure 5.2a. The result is a candidate for the MLE. The simula-
tion of the model using the fitted parameter set is shown in Figure 5.2b and it is obvious
that the results fit to the experimental data quite well.

What does not become obvious with these results is, that in this model all parameters are
non-identifiable except the scaling parameter s. Even if the profile of the parameter wye,
has a unique maximum (see for example Figure 5.3b) it is a practically non-identifiable
parameter, because the definition only requires one infinite bound and the likelihood
ratio of this parameter does not drop under the threshold at its lower end, which is there-
fore treated as infinite. But it depends on the significance level «, if wy., is treated as
identifiable or not, therefore this parameter will in the following be referred to as quasi-
identifiable.

5.2. EVALUATION CONCERNING SOLVERS AND HESSIAN 51

Parameter values Fit of the model

)
T T T 3 15 T T T
g ol -
E S
S 2)]
5 Q
-+ Y
g 5| 1°
o o 0.5 :
2 g
= =
_10 | | | | | § 0 L | | | | | | | i
D 143 J Wtea S 8 —6 —4 -2 0 2 4 6
parameters spatial grid
—e—initial parameter guess —e—experimental data with variance
—=—MLE —=—model simulation with fitted parameters
(a) (b)

Figure 5.2: Model fitting of the pomip PDE model to experimental data from fluo-
rescence microscope images using a multi start algorithm. (a) shows the initial guess of
the parameter values compared to the MLE. (b) shows the experimental data with its
variance and a simulation of the model using the MLE for the parameter set.

In this application example the implemented log-likelihood function provides both deriva-
tives. The gradient is evaluated using sensitivity equations and the hessian is substituted
with the FIM, whereas the exact derivatives are not available.

5.2 Evaluation concerning solvers and hessian

The previous example with chemical reactions and non-identifiable parameters shows that
defining the optimization constraint in the logarithmic scale does improve the integration
based method significantly. Therefore this approach is used for the calculation of the
profiles in the PDE model to gain the maximal possible reduction of NoE.

Solver performance evaluation

The corresponding profiles calculated with different solver are shown in Figure 5.3 for the
parameters D, wye,, J and s (u is neglected because it does not show new dynamics).
Most solvers are calculating the profiles correctly and with less evaluations than the bench-
mark. Only the Euler method (and ode23s in one case) needs more NoE. But this is
again explained by the static step size.

However the DAE solver IDAS shows in this case some sensitivities concerning the iden-
tifiable parameters, because it does not calculate the whole profile of the identifiable
parameters. In this case the step size of the solver converges to zero until it stops due
to a too small step size. In the figure it seems as if only one point is calculated. These
convergence issues of the IDAS solver might be explained by an inconsistent initialization
of ¢y due to the resolving of the occurrence of NaN and/or Inf (see subsection 4.2.2).
This stands in contrast to the suggestion that the DAFE solvers are superior to the ODE

52 CHAPTER 5. EVALUATION OF THE METHOD APPLIED TO A PDE MODEL

solvers, because the inversion of the matrix is only necessary once and not in every step.
Interesting is, that again the ODE solver CVODE and ode15s for ODEs show the best
performance. They moreover seem stable despite the singularity of the mass matrix.
Significant is the reduction of the NoE which is achieved in the case of the non-identifiable
parameters. The benchmark needs 10,000 evaluations to calculate the profile of the pa-
rameter D. For the same parameter the CVODE only needs 27, which is an immense
saving of computational resources, especially in PDEs.

Even if the profiles for the parameters w;., and s do not show such a big step size, they
match the benchmark nicely and reduce the NoE at least by one magnitude. The gain
is not as significant as for the non-identifiable parameters, because the classical method
already does not need as many evaluations as for the non-identifiable parameters.

Substituting the identity for the hessian

As it is already shown in 4.5.3, if the optimization constraint is defined with logarithmic
parameters, the hessian can be substituted with the identity and the integration based
method is still producing accurate results.

This is again proven by the profiles in Figure 5.4. However there is no actual gain in
comparison to the case, where the profile is calculated with the provided hessian, which
is the FIM. Especial in the non-identifiable case does the calculation with the FIM need
less NoE than with the identity matrix as the substitute.

Although the calculation with the FIM is in this case better, the identity matrix should
not be neglected. Because it can be applied in the cases where the FIM can not be used or
if an investigation of the profiles is wanted instantly, without the previous implementation
of the FIM as the hessian of the log-likelihood.

5.3 Influence of the logarithmic scale

Defining the optimization constraint directly in the logarithmic scale was previously shown
to be faster and more accurate. However there is another reason, which speaks for this
approach.

In the case of the pomIp model the calculation actually fails, if the first approach of the
logarithmic scale is applied.

Figure 5.5-5.6 show the profiles of the pomIp model, evaluated with various solver types
and the constraint defined in the initial parameters. At first consider the Euler method
(in Figure 5.5 for example). In this model the Euler method does compute the profile with
step size = 1072 with a reasonable error, but needs more evaluations than the benchmark.
But the step size of this solver can be increased to 1072 without a great increase in the
error, which results in a smaller number of evaluations than the benchmark.

However, the Euler method is the only one of the implemented solver types, which calcu-
lates the profile complete and correctly. The performance of the other solvers is various
considering the different parameters.

So it seems that in Figure 5.5a the solvers odel5s for DAEs, ode15s for ODEs and
ode23s all reflect the non-identifiability of the parameters D, but in the negative direc-
tion they all stop before they were reaching the interval end approximately at the same

5.3. INFLUENCE OF THE LOGARITHMIC SCALE 53
Non-identifiable parameter D Non-identifiable parameter wie,
0 o I |
© &
S S
o 0.5 — 2 o 05F~= =
E Za=3% -<E> 0.5 Za=3%
e 2
- 07 el L el L bbbl L | T - 07 [L \\Hi
104 1073 1072 107! 10° 102 107! 10° 10!
parameter D parameter Wi,
(a) (b)
Wbenchmark vode23s
CEuler with § = 10730 IDAS
<odelbs for DAEs ¢ CVODE
Oodelbs for ODEs
'10_2 .10—2
X 2 | ' T ' 6‘ i 1 T u
5 o o
g g 15| :
S <
g 1 s 1f .
21 12
g 2 05) , v |
[o
50L o o v o o o |5 o ° ° w7
102 10° 104 10° 104
number of evaluations number of evaluations
Non-id ((12) bl J (d)
on-identifiable parameter Identifiable parameter s
kel o 1
© =
S n
o 0.5 = 1 73 B
._g Za=3% _§ 0.5
2 e
0 7”””‘ L o L L N = OI s :H(((((((((((((((((W [J |
1074 1073 1072 1071 100 102 107! 10° 10!
parameter J parameter s
(e) ()
Mmbenchmark vode23s
CEuler with 6 = 10~30IDAS
<odelbs for DAEs ¢ CVODE
Oodelbs for ODEs
-3
1072 1077
g E 6| .
= 11 ‘S
e o v S 4 v
L =)
.8 05 B <> 8 2 | N
- = <
S = o o O
a 07\°\ i et i IR i | OL) 07 ‘0\\\\\ L L L L \\\! L L L L \7
102 103 10* 103 10*
number of evaluations number of evaluations
(g) (h)

Figure 5.3: Profiles of the pomIp model for the parameters D, wy.,, J and s, calculated
with the classical method (benchmark) and the integration based method with v = 0
using various solvers to investigate their performance. The optimization constraint is in
terms of logarithmic parameters (see 3.12).

54 CHAPTER 5. EVALUATION OF THE METHOD APPLIED TO A PDE MODEL

likelihood-ratio

error to benchmark

likelihood-ratio

error to benchmark

O N ke O
T

o

0.

Non-identifiable parameter D

Non-identifiable parameter wy,,

1
.Q
©
S
di Sa=3% | _§
:;
0 i | | | | | |] -
0% 107% 107* 1072 10° 102
parameter D parameter Wye,
(a) (b)
Ebenchmark OCVODE ~ =100
CCVODE default<IDAS v =1
¢ CVODE v =1 ¢oIDAS ~ =100
1073 5 -10™
i ¢ © | -f;\, ¢ o
O
S 2 O o .
B 1 <
2
B | e 1 :
o)
o o _° B | 50 | | | R
102 103 10? 1028 103 1032 1034 1036 1038
number of evaluations number of evaluations
(c) (d)
Non-identifiable parameter J Identifiable parameter s
Lr g
©
<
di S
E
0 | TR RTTT| SR AR RTTT| B AR TTT B R TATT S SR TTTT| S A R RTIT| S AR RTIT S AR TiT M- \HHT B
10761075 10~* 103 1072 10~ 10° 10' 10%> 10°
parameter J parameter s
(e) (f)
Wbenchmark oCVODE v =100
COCVODE default<IDAS v =1
¢ CVODE v =1 ¢olIDAS v =100
1073 107
6] -(E“ o ©
i |1 g 1} :
S
L o0 o 1 5
< 05} :
B 1 8 O
S o o
i \D | | | | | | | | . \7 qL" O | L L L e, L L L L L - \- |
0 02 04 06 08 1 12 14 16 1.8 103 10%
number of evaluations 104 number of evaluations
(g) (h)

Figure 5.4: Profiles of the pomIp model for the parameters D, wy.,, J and s, calculated
with the classical method (benchmark) and the integration based method with v = 0 using
CVODE (options: default) and IDAS (options: default). The calculation is done with
the provided gradient, the identity matrix as the hessian and v = 100. The optimization
constraint is in terms of logarithmic parameters (see 3.12).

5.3. INFLUENCE OF THE LOGARITHMIC SCALE 55

point. The same behaviour occurs at certain points for the other non-identifiable param-
eters (see Figure 5.5¢) as well as for the quasi- and identifiable parameter (5.5b and 5.5f).
Also the profiles calculated with the CVODE at the same points do not converge (see
Figure 5.6a, 5.6b, 5.6e and 5.6f).

Only IDAS with tolerances set to 107!° and the linear solver Dense is calculating the
profile for the non-identifiable parameters D, J and u, however it fails completely for
the parameters s and w.,. IDAS with the default options only calculates the profile for
Wieq, but stops at the same point as the CVODE. Using another linear solver or different
tolerances only results in the general non convergence of the solver.

Concerning the point, where the MATLAB built-in solvers fail, it happens, that the con-
straint optimization reaches a set of parameters which does not suffice for the model, since
it is producing NaN or Inf as the output at that point.

For the CVODE it does not happen that NaN or Inf occur, but it seems as if the calcu-
lation reaches an invisible bound. That means the step-wise calculation of the CVODE
jumps back and forth, not stopping and not continuing either. This suggests that the
calculation does not have a definite direction.

The question is, where does these convergence issues come from.

Recalling section 3.1 the gradient of the parameter function defines the direction of the
calculation. Now, this gradient is at the particular point quite small, so that the direction
pointer is compared to the other entries in the mass matrix not of big influence any more
(e.g. || Vag(0) ||< 107* in the case of the parameter D).

However, that the gradient of the parameter function does have such a small value is
only because the parameter function was rewritten in the logarithmic scale (see 3.14) and
therefore the gradient is dependent on the parameter values.

This suggests that this approach of the logarithmic scale is not recommendable in the
integration based calculation of the profile likelihood and the other method, where the
constraint is defined in the logarithmic scale with a linear parameter function should be
used.

Influence of the correction term

It was already shown with the comparison of various solvers that the second approach of
the logarithmic scale is favourable, but it was additional tested how the profile calculation
of the pom1p model performs with the first approach of the logarithmic scale, if the hessian
is substituted with the identity matrix.

The results in chapter 4 and in [1] suggested, that the factor v only has to be increased
to a certain extent to gain an accurate profile.

However, in this case the model pomIp shows that this approach is not always advisable.
The corresponding results are shown in Figure 5.7 and suggest that the identity with a high
correction factor « is only usable for identifiable or at least quasi-identifiable parameters,
because the calculation produces quite different results for the parameters D, J and p (p
not shown). For the parameters D and J (in Figure 5.7a and 5.7e) the calculation even
turns and runs backwards.

All in all the substitution of the hessian with the identity does in this case not improve

o6

Non-identifiable parameter D

CHAPTER 5. EVALUATION OF THE METHOD APPLIED TO A PDE MODEL

Non-identifiable parameter w;.,

.0 k)
[&
8 05f _ 1 3
< Za=3% _g
2 2
N 07 Ll Ll Ll Ll T N Ll Ll L1l
104 1073 1072 107! 10° 1072 107! 10° 10!
parameter D parameter Weeq
(a) (b)
mbenchmark @ odelbs for DAEs
m Euler with § = 1072 v odel5s for ODEs
« Euler with § = 1073 @ 0ode23s
1072 1073
o« ———rr —— — ‘ ‘ — ‘ —
— [—] L 4
rEu 2+ . g 30 v [) L
= [] =
(] (]
o O g 20 il
a 1+ 4
3 v g1l .
S S
5 0 L (| [N 5 0 7\ | TR |
103 10% 103 10%
number of evaluations number of evaluations
(c) (d)
Non-identifiable parameter J Identifiable parameter s
7]
1

likelihood-ratio
o
t
T

Ea:S%
07\\\\\\\ Lol Lol Lol Lol]
1074 1073 1072 107t 10°
parameter J
(e)
1072
~ PR '
= []
g 150 v M
6 ¢ B
g 1 f
o)
205} :
S
5 07\\\\\ 1 1 T N N R R B | .\]
103 104
number of evaluations
(8)

likelihood-ratio

error to benchmark

1072 1071 10° 10!
parameter s
()
® benchmark —v—odelbs for ODEs
—#- Euler with 6 = 1072 ——o0de23s
—o— Euler with § = 1072 -@—odel5s for DAEs
.
1,000 |- 4
500 - -
Op em . b]
103 10 10°
number of evaluations
(h)

Figure 5.5: Profiles of the pomIp model for the parameters D, wy.,, J and s, calculated
with the classical method (benchmark) and the integration based method with v = 0 using
the solvers: Euler method (step sizes § = 1072 and 1073), ode15s for DAEs, odel5s for
ODEs and ode23s. The optimization constraint is in terms of initial parameters (see

3.10).

5.3. INFLUENCE OF THE LOGARITHMIC SCALE

Non-identifiable parameter D

57
Non-identifiable parameter w;.,
1 T T T TTTy T T Al T ““‘L
.0
S
e
<5
8 0.5 :
=
2
0 | | C
1072 107t 100 10*
parameter Weeq
(b)

B benchmark —v—IDAS with default options
-m- CVODE with default options —4—|DAS: Tol = 10~ GMRES
—+— CVODE: Tol = 1071 GMRSE ——IDAS: Tol = 10~'° Dense
—-e- CVODE: Tol = 107!° Dense

wof * .
e
&
€
=
[S]
c
82 .
2
S
)
OF = ® o+ =H P
L L L1l L L L L L1l L L L L
10% 10*
number of evaluations
(d)
Identifiable parameter s
o 1 |
S
e
2
8 0.5 - :
< —a=3%
2
0 | Ll ol Ll
1072 1071 100 10t 102
parameter s
()

B benchmark —v—IDAS with default options
~m- CVODE with default options —4—|DAS: Tol = 101 GMRES
—+ CVODE: Tol = 107! GMRES ——IDAS: Tol = 107'° Dense
—-e- CVODE: Tol = 107!° Dense

.0
[
S
° 0.5 _ :
é Za=3%
2
B 07\\\\\\\\ Ll Ll Ll ! \\\\HT
1074 1073 1072 1071 100
parameter D
(a)

——r ——r
B |
S
=
(®)

f
220 :
8
S
b 07 Lo \.\‘\\\\\\. ‘\7
103 10*
number of evaluations
(9
Non-identifiable parameter J
1 TTTTTT] T T T T TTTT T ““““ T T T TTTTT T T T T TTT
.0
[
S
o 0.5 _ :
__g Za=3%
2
07\\\\\\\ Lol Lol Lol Lol]
107 1073 1072 107¢ 10°
parameter J
(e)
——— ——rr ——r
T a0 Av |
S
=
=
22 :
8
S
s 0 =& AT L R A
103 104 10°
number of evaluations
(8)

1073
T T
v ¢
5o f
IS
=
[}
40 A
0
2
S 2r] ° -)
5]
0 |
Il Il Il Il Il
103.2 103,4 1036 1038 104
number of evaluations
(h)

Figure 5.6: Profiles of the pomIp model for the parameters D, wy.,, J and s, calculated
with the classical method (benchmark) and the integration based method with v = 0
using the solvers: IDAS and CVODE with default options and the absolute and relative
tolerances set to 10710 either with the linear solver GMRES and Dense. The optimization
constraint is in terms of initial parameters (see 3.10).

58 CHAPTER 5. EVALUATION OF THE METHOD APPLIED TO A PDE MODEL

the calculation significantly even with a high correction term and that this correction
term can also badly corrupt the calculation. Therefore this is no alternative to the second
approach of the logarithmic scale, which calculates the profile likelihood in a vastly more
accurate and faster way.

Hence, the pom1p model confirms the earlier recommendation of the second approach of
the logarithmic scale, due to the sensitivities in the profile calculation, which can occur
if the first one is applied.

error to benchmark

5.3. INFLUENCE OF THE LOGARITHMIC SCALE

Non-identifiable parameter D

99

Non-identifiable parameter wye,

o ! o !
5 e
5 °
_§ 0.5 é 0.5
h 0 Lol Lol Lol Lol Lo B 0 [T
1074 1073 1072 107! 10° 102 1071 10°
parameter D parameter Wi,
(a) (b)
mbenchmark vIDAS v =100
mCVODE v =1+ CVODE v = 100
oIDAS vy =1
10~ 10 .
<3 B o | o<]
g ° 5 15 ™ 2
5 2| | £
S g 1p [22 i
3 r 2
8 1r 128 05] 1
5 5 v
3 0 L | | | o il GL-) 0 L | \. | | |
0 0.2 0.4 0.6 0.8 1 0 02 04 06 08 1 1.2
number of evalutaions 104 number of evaluations 104
(c) (d)
Non-identifiable parameter J Identifiable parameter s
.9 Ke)
© ©
- -
s} s}
s g
Ll IEEENI] L Ll L Ll L Ll 0 L [L [
104 1073 1072 1071 10° 102 1071 10°
parameter J parameter s
(e) (f)
mbenchmark vIDAS v = 100
mCVODE v =1+ CVODE v =100
eIDAS v =1
10~
“ —\667“” T T T TT L
©
0.1} | £
£
(]
el
5- 10_2 [B -8 2+ ° .
u ° v .
S
OTH\ (| (| I N 507\\\\ (| v\ (|
102 103 104 102 103 104
number of evaluations number of evaluations
(8) (h)

Figure 5.7: Profiles of the pomIp model for the parameters D, wy.,, J and s, calculated
with the classical method (benchmark) and the integration based method with v = 0
using the solvers: CVODE or IDAS (linear solver Dense and tolerances set to 1071%) with
the hessian substituted by the identity and v = [0,1,100]. The optimization constraint

is in terms of initial parameters (see 3.10). In

(a) CVODE and v = 100 (cyan diamonds)

turns at about 1072 and runs backwards. In (¢) CVODE and v = 1 (orange squares)
turns at about 1073 and runs backwards.

Chapter 6

Conclusion and Outlook

The focus of this thesis is the assessment of the integration based method suggested by [1],
which was proposed to improve the profile calculation compared to the classical method
in terms of computation time. One main part was thereby to implement the algorithm
with various solvers for the differential equation and different approximations methods
or substitute candidates for the derivatives. The implementation was then tested with
various models with different number of parameters and especially models, which included
non-identifiable parameters. The considered models were incorporating additive normal
noise, but the method is independent on the actual derivation of the log-likelihood func-
tion, which was shown by using the SND as a test function completely independent of an
underlying model. Moreover the advantage just to change the parameter function in the
case of prediction profile likelihoods was exposed, which can reduce the risk of analytical
mistakes during the reparametrization.

The goal of the thesis, to provide a function, which calculates the profile likelihoods for
the identifiability analysis faster than the classical method, is fully achieved. The im-
plemented method needs significantly less NoE in the shown examples and calculates
the profiles as accurate as the classical method, given that sufficient substitutes for the
derivatives were available. Thereby is a realization, that an accurate approximation of
the gradient is not as important as the approximation of the hessian. Applications show
good results with the use of the FIM and a rough approximation for the gradient of the
model.

The most significantly reduction of the NoE is achieved in the case, when the optimization
constraint is defined with the logarithmic parameters (the second approach of the loga-
rithmic scale). Particularly noteworthy is the gain for non-identifiable parameters, where
the classical method needs the most NoE. In some cases the NoE can even be reduced to
as few as 1% of the evaluations of the benchmark.

Even if the actual time of the computation was not part of the method assessment, an
example considering the runtime of the algorithm should visualize the benefit of the inte-
gration based method:

Using the classical method (i.e. computeProfiles by Jan Hasenauer) the computation
of the likelihood profiles for all parameters in the pomip model takes on a certain ma-
chine around 25 minutes. That is on average 5 minutes per parameter, in contrast to
the implemented integration based method, which needs less than half a minute for all
parameters together using the best setting.

60

61

The second approach of the logarithmic scale does also improve the accuracy of the al-
gorithm in a way, that the identity as the substitute of the hessian is useful, too. The
correction factor v still needs to be adjusted to a high value, but the logarithmic scale
resolves the challenges of the resulting stiff system and is then calculating the profile like-
lihood comparable fast and accurate.

Even if a wide range of different solvers and optional inputs were applied to the system,
the optimal choice, is difficult to state, since there are infinitely many combinations of
solver, derivation approximations, and other options, e.g. solver tolerances. For future
users a recommendation is, to apply the second approach of the logarithmic scale for the
parameter function and use the CVODE with the default options, because this combi-
nation performed best in the applied examples. If convergence issues occur IDAS or an
other DAE solver can be applied.

The identity as the hessian, should only be used, with the second approach of the loga-
rithmic scale and a high factor v for the correction term. For a faster computation it is,
however, favourable to neglect the correction term completely and give more attention to
an accurately approximation of the hessian.

A decision guidance to choose the inputs to apply the algorithm is shown in Figure 6.1,
however it depends on the model, which solver options do work the best and the guidance
does not reflect all possible variations.

The documentary of the implemented function can be found in the appendix and the
complete MATLAB code is appended on a CD for further use.

In conclusion, the implemented function computeApproximatedProfiles can be used
as a replacement for the classical method, because it saves evaluations of the cost func-
tion. Moreover it can be used to investigate the confidence intervals for a combination of
parameters, without requiring the reparametrization.

What still needs to be done is, to investigate why the ODE solvers show a better perfor-
mance, than the DAE solvers, especially in the case of a singular mass matrix and even
if for the DAE approach the matrix does not need to be inverted in every step.
Additionally there are infinitely many possible input variations, due to the mere fact that
the tolerances of the solvers can be set freely and there might be combinations for which
the algorithm is optimal, but this search would exceed this masters thesis. Especially an
automatic generated decision for the solver and its tolerances would be a further improve-
ment of the algorithm.

Furthermore, the considered models with a maximum of 5 parameters were still of a small
dimension. It would be interesting to know, how the performance of the algorithm changes
for higher dimensional models.

62 CHAPTER 6. CONCLUSION AND OUTLOOK

Y

Yes Is gr.a'di‘ent or No
sensitivity equations
available?
Yes Y - No Y '
Is hessian Appr. gradient
available? with FD
Y Yes
No/unknown {Tg parameter o] set v =1
identifiable?
r alternative
Appr. hessian . ~set v > 10
with FIM for an instant
calculation
' .
> Use the parameter function B Appr. hessian
in terms of the log-parameters with identity
Y
»|Use ODE solvers
e.g. CVODE
Y Yes
Converge?
Change tolerances N
. 0
and /or linear solver Y
\ Use DAE solvers
e.g. IDAS profile
A
No Y Yes

Converge?

Figure 6.1: Guidance to choose inputs and solvers of the implemented function
computeApproximatedProfiles

Bibliography

1]

2]

[10]
[11]

[12]

J.-S. Chen and R. I. Jennrich, “Simple accurate approximation of likelihood profiles,”
Journal of Computational and Graphical Statistics, vol. 11, no. 3, pp. 714-732, 2002.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmiiller, and
J. Timmer, “Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood,” Bioinformatics, vol. 25, no. 15,
pp. 1923 — 1929, 2009.

A. Raue, C. Kreutz, F. J. Theis, and J. Timmer, “Joining forces of bayersian and
frequentist methodology: A study for inference in the presence of non-identifiability,”
Article to appear in Philosophical Transactions of the Royal Society A, 2013.

S. Hock, J. Hasenauer, and F. J. Theis, “Modeling of 2d diffusion processes based on
microscopy data: Parameter estimation and practical identifiability analysis,” BMC
Bioinformatics, vol. 14(Suppl 10), p. S7, 2013.

C. Kreutz, A. Raue, D. Kaschek, and J. Timmer, “Profile likelihood in systems
biology,” FEBS Journal, vol. 280, pp. 25642571, 2013.

P. Weber, J. Hasenauer, F. Allgower, and N. Radde, “Parameter estimation and
identifiability of biological networks using relative data,” Proceedings IFAC World
Congress, vol. 18(1), pp. 11648-11653, 2011.

L. Ljung and T. Glad, “On global identifiability for arbitrary model parametriza-
tions,” Automatica, vol. 30, no. 2, pp. 265276, 1994.

S. A. Murphy and A. W. van der Vaart, “On profile likelihood,” Journal of the
American Statistical Association, vol. 95, no. 450, pp. 449-465, 2000.

S. L. Quinn, D. W. Bacon, and T. J. Harris, “Notes on likelihood intervals and
profiling,” Communications in Statistics - Theory and Methods, vol. 29, no. 1, pp. 109
— 129, 2000.

K. Konigsberger, Analysis 2. Springer-Verlag, 1993.

U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equa-
tions and Differential-Algebraic Equations. Society for Industrial and Applied Math-
ematics, 1998.

The MathWorks, Inc., 3 Apple Hill Drive; Natick, MA 01760-2098, MATLAB Docu-
mentation Mathematics.

63

64

[13]

[14]

[15]

BIBLIOGRAPHY

C. Woodward, A. Hindmarsh, and R. Serban, “sundials: Suite of nonlinear and
differential algebraic equation solver.” Web, March 2012. Nonlinear Solvers and
Differential Equations Project.

R. P. Dickinson and R. J. Gelinas, “Sensitivity analysis of ordinary differential equa-
tion systems — a direct method,” Journal of Computational Physics, vol. 21, pp. 123~
143, 1976.

M. Caracotsios and W. E. Stewart, “Sensitivity analysis of initial-boundary-value
problems with mixed pdes and algebraic equations: Applications to chemical and
biochemical systems,” Computers & Chemical Engineering, vol. 19, pp. 1019-1030,
1995.

J. D’Errico, “Derivestsuite: Adaptive robus numerical differentiation.” Web, June
2011.

E. L. Lehmann, Theory of Point Estimation. Wadsworth & Books/Cole, 1991.

B. Efron and D. V. Hinkley, “Assessing the accuracy of the maximum likelihood
estimator: Observed versus expected fisher information,” Biometrika, vol. 65, no. 3,
pp. 457487, 1978.

D. Faller, U. Klingmiiller, and J. Timmer, “Simulation methods for optimal experi-
mental design in systems biology,” Simulation, vol. 79, pp. 717-725, 2003.

T. E. Saunder, K. Z. Pan, A. Angel, Y. Guan, J. V. Shah, M. Howard, and F. Chang,
“Noise reduction in the intracellular Pom1p gradient by a dynamic clustering mech-
anism,” Developmental Cell, vol. 22, pp. 558-572, 2012.

O. Hachet, M. Berthelot-Grosjean, K. Kokkoris, V. Vincenzetti, and J. Moosbrugger,
“A phosphorylation cycle shapes gradients of the dyrk family kinase poml at the
plasma membrane,” Cell, vol. 145, pp. 11161128, 2011.

Appendix A

Documentation of implemented
functions

Library of the implemented functions to calculate the profile likelihood using the integra-
tion based method.

A.1 computeApproximatedProfiles.m

Documentation of the function computeApproximatedProfiles.

Syntax

parameters = computeApproximatedProfiles (parameters, logPosterior,
parameterFunction)

parameters = computeApproximatedProfiles (parameters, logPosterior,
parameterFunction, options)

[parameters, fh] = computeApproximatedProfiles(...)

Description

computeApproximatedProfiles is calculating the profile likelihood of a parameter or
a combination of parameters starting at the MLE.

Usage:

parameters = computeApproximatedProfiles (parameters, logPosterior,
parameterFunction)

The function starts at the MLE and calculates the profile likelihood within the interval
given by the minimal and maximal values of the parameters using the default options. It
returns the updated parameters struct.

parameters = computeApproximatedProfiles (parameters, logPosterior,
parameterFunction, options)

65

66 APPENDIX A. DOCUMENTATION OF IMPLEMENTED FUNCTIONS

The function starts at the MLE and calculates the profile likelihood within the interval
given by the minimal and maximal values of the parameters using the specified optional
arguments. It returns the updated parameters struct.

[parameters, fh] = computeApproximatedProfiles(...)

The function returns additional to the parameters struct the figure handle fh

Input Arguments

The input arguments describes the arguments passed to computeApproximatedProfiles
except the options values, see A.1 for these.

parameters Struct containing parameter values.

Must consist of parameters.MS.MAP.par,
parameters.min and parameters.max
logPosterior Positive log-posterior of model as function of the pa-
rameters. Returns additionally if possible the gradient
or the gradient and hessian. Allows for a second input
which determines sign and scale of the log-posterior.
If gradient and hessian of the log-posterior can also
be provided by the logPosterior function, it needs
to be provided like: [y, dy,ddy]=@logPosterior
parameterFunction Parameter function as function of the parameters. It
allows for a second input optionsPF, which defines
scale and other options of the parameter function. It
determines the desired parameter or function of pa-
rameters for which the profile is to be calculated.

Output Arguments

parameters Updated parameter object, containing:
.profile.par Parameters along profile; the first entry is the profiled
parameter, for a non-linear parameter function this
the combination of parameters).
.profile.ratio Likelihood ratio along the profile.
.profile.logPost | Maximum log-posterior along profile.
fh Figure handle of figure where the profile was plotted

A.1. COMPUTEAPPROXIMATEDPROFILES.M 67

Options
options Options struct containing the options:
.solver Defines the used solver:
.type 'ode23s’ |'odel5s’ |'odel15s0DE’ |[{’IDAS’} |'CVODE’
.options Sets options of the solver (optional)
.gm Defines the influence of the correction term, can be set to
any real number, 1
.plot Determines if a plot during the computation is made
'false’ [{'true’}
.fh Figure handle. If no figure handle is provided, a new figure
is created
.P.min Lower bound for profiling parameters, having same dimen-
sion as the parameter vector (default = parameters.min)
.P.max Upper bound for profiling parameters, having same dimen-
sion as the parameter vector (default = parameters.max)
.Rmin Minimal ration down to which the profile is calculated (de-
fault = 0.03).
.stepMin Minimal step size of the DAE Solver, stops if smaller (de-
fault = 0)

.opt_logPosterior

Options for the log-posterior (log-likelihood) function

.sign Determines whether the value of the positive (.sign =
‘positive’) or the negative (.sign = ’negative’) log-
posterior is provided. (default = 'positive’)

.scale Determines scale of the computation (default = '1in’)

.grad Determines if gradient is provided by the log-posterior
(log-likelihood) function false |{'true’}

.grad_appr Provides approximation details of the gradient if it is not
provided.

.type Determines how the gradient is approximated: {’FinDif’}
|'Derivest’
.stepsize Approximation step size in the case of FD (default = 1074)

.hess Determines if hessian is provided by the log-posterior (log-

likelihood) function false |[{true}

.hess_appr

Provides approximation details of the hessian if it is not
provided.

.type Determines how the hessian is approximated {’FinDif’}
|'Tdentity’ |'Derivest’
.stepsize Approximation step size in the case of FD (default = 1074)

68 APPENDIX A.

DOCUMENTATION OF IMPLEMENTED FUNCTIONS

.opt_paramFunc

Options for the parameter function

.optionsPF

Determines the options of the parameter function; if the
standard parameter function is used optionsPF.number
defines the number of parameters, optionsPF.index the
parameter the profile is calculated of and optionsPF .scale
determines if the function is linear '1in’ or logarithmic
"log’ (if the parameter function is directly defined in the
logarithmic parameters it is a linear function = ’1in’)

.grad

Determines if gradient is provided by the log-posterior
(log-likelihood) function 'false’ |{’true’}

.grad_appr

Provides approximation details of the gradient if it is not
provided.

.type

Determines how the gradient is approximated: {’"FinDif’}

|'Derivest’

.stepsize

approximation step size in the case of FD (default = 1074)

.hess

Determines if hessian is provided by the log-posterior (log-
likelihood) function 'false’ [{’true’}

.hess_appr

Provides approximation details of the hessian if it is not
provided.

.type Determines how the hessian is approximated {’FinDif’}
|'Identity’ |'Derivest’
.stepsize Approximation step size in the case of FD (default = 10~4)

A.2 approximatehessian.m

Documentation of the function approximatehessian.

Syntax

ddy = approximatehessian (theta, logPosterior)

ddy = approximatehessian(theta, logPosterior,
options)

Description

approximatehessian is approximating the hessian at the point theta using different

approximations.

Usage:

ddy = approximatehessian(theta, logPosterior)

The function approximates the hessian ddy of the function logPosterior at the point
theta and is using the default options.

A.3. APPROXIMATEGRADIENT.M 69

ddy = approximatehessian (theta, logPosterior, options)

The function approximates the hessian ddy of the function logPosterior at the point
theta and is using the user supplied options.

Input Arguments

The input arguments describes the arguments passed to approximatehessian except
the options values, see A.2 for these.

theta Parameter vector; point where the hessian is evaluated.

logPosterior Log-posterior of model as function of the parameters. Re-
turns additionally if possible the gradient. Allows for a
second input which determines sign and scale of the log-
posterior.

Output Arguments

ddy Square matrix with dimension equal the length of theta
Approximated hessian of the function logPosterior

Options
options Options struct to determine additional options
.type Defines the type of the approximation: ’Identity’
|'Derivest’ |{’FinDif’}
.stepsize Sets the step size for the approximation with FD, {1e—2}

A.3 approximategradient.m

Documentation of the function approximategradient.

Syntax

dy = approximategradient (theta, logPosterior)

dy = approximategradient (theta, logPosterior, options)
Description

approximategradient is approximating the gradient at the point theta using different
approximations.

Usage:

dy = approximategradient (theta, logPosterior)

70 APPENDIX A. DOCUMENTATION OF IMPLEMENTED FUNCTIONS

The function approximates the gradient dy of the function logPosterior at the point
theta and is using the default options.
dy = approximategradient (theta, logPosterior, options)

The function approximates the gradient dy of the function logPosterior at the point
theta and is using the user supplied options.

Input Arguments

The input arguments describes the arguments passed to approximategradient except
the options values, see A.3 for these.

theta Parameter vector; point where the gradient is evaluated.
logPosterior Log-posterior of model as function of the parameters. Re-
turns additionally if possible the gradient. Allows for a
second input which determines sign and scale of the log
Posterior.

Output Arguments

dy Vector of the length of theta. Approximated gradient
of the function logPosterior

Options
options Options struct to determine additional options
.type Defines the type of the approximation: ’Derivest’
[{’FinDif’}
.stepsize Sets the step size for the approximation with FD, {1e—2}

A.4 parameterFunction.m

Documentation of the function parameterFunction.

Syntax

= parameterFunction (theta, index)
parameterFunction (theta, index, options)
, dg] = parameterFunction(...)

, dg, ddg] = parameterFunction(...)

g
g
g
lg

A.4. PARAMETERFUNCTION.M 71

Description

parameterFunction is determining the parameter, for which the profile is computed
using the function computeApproximatedProfile.

Usage:

g = parameterFunction (theta, index)

The function determines the parameter, for which the profile is computed, using default
options.

dy = parameterFunction (theta, index, options)

The function determines the parameter, for which the profile is computed, using the user
supplied options.

Input Arguments

The input arguments describes the arguments passed to parameterFunction except the
options values, see A.4 for these.

theta Parameter vector; point where the parameter function is
evaluated.
index Index of parameter, of which the profile is computed.

Output Arguments

g One-dimensional output, equal the parameter value of pro-
filed parameter.

dg Gradient vector of parameter function, is of same dimen-
sion as theta.

ddg Hessian matrix of parameter function, square matrix is of
same dimension as theta.

Options
options Options struct to determine additional options
.number Defines the number of parameters and therefore the di-
mension of the derivatives, {length (theta) }
.scale Sets the scale of the parameter function, allowed
to be different to the logPosterior scale in
computeApproximatedProfile, {'1in’}

72 APPENDIX A. DOCUMENTATION OF IMPLEMENTED FUNCTIONS

A.5 explicitEuler.m

Documentation of the function explicitEuler.

Syntax

[t,x] = explicitEuler (fun, int, x_.0, lam)
Description

explicitEuler is applying the explicit Euler method to solve an explicit ODE system.

Usage:

g = explicitEuler (fun, [t_.0, t_end], x_.0, lam)

The function calculates in the interval int and with the step size 1am, the solution of the
initial value problem consisting of the explicit ODE system fun and the initial point x_0.

Input Arguments

The input arguments describes the arguments passed to explicitEuler.

fun explicit ODE system of the form: x_dot = fun(t, x)

int Interval where the solution is calculated of the form
[t.0, t_end] with t_0 be the initial point and t_end the
end point.

x_0 Initial condition vector of the initial value problem at t_0

lam Step size of the Euler method

Output Arguments

t Column vector of time point .

Solution array. Each row of x corresponds to the solution
at the corresponding row in t.

