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Abstract

This thesis treats different models for the growth of heterogeneous, avascular
cancer tumors. On the one hand we discuss and variate a model just for the
pure number of cancer cells. We especially detail to the treatments chemother-
apy and radiotherapy. We analyze the trivial equilibria of the models. In this
way it is possible to determine the dose of chemotherapy or ionizing radiation
necessary to dispose the tumor. The results of some of these models are tested
with the help of experimental data and MATLAB.
The second part dedicates to the creation and simplification of a model in-
cluding the spatial structure of an avascular cancer tumor. We analyze this
model in parts at its limits.

Zusammenfassung

Diese Bachelorarbeit behandelt verschiedene Modelle zur Darstellung des Wachs-
tums heterogener, avaskulärer Krebstumoren. Zum einen diskutiert und vari-
iert die Arbeit ein Modell über die reine Anzahl an Krebszellen. Hierbei wird
im Speziellen eingegangen auf die Behandlungsmöglichkeiten Chemotherapie
sowie Radiotherapie. Im Fokus steht auch die Analyse der trivialen Gleichge-
wichtspunkte der Modelle. Auf diese Art lässt sich bestimmen, welche Dosis an
Chemotherapeutika bzw. ionisierender Strahlung nötig sind, um den Tumor
abzutöten. Die Ergebnisse einzelner Modelle werden anhand von empirischen
Daten mit Hilfe von MATLAB überprüft.
Der zweite Teil widmet sich vollkommen der Aufstellung und Vereinfachung
eines Modelles über Krebszellen, welches sich auch mit der räumlichen Struk-
tur eine avaskulären Tumors beschäftigt. Dieses Modell wird im Anschluss in
Auszügen an deren Grenzen analysiert.
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1 Introduction

1 Introduction

Currently in Germany every fourth person’s dead can be traced back to cancer [9].
In this country the risk to develop cancer during your lifetime is about 40% [9].
Thus we tend to view cancer as a contemporary disease, caused by our unhealthy
way of life caused by smoking, drugs, lack of physical activity and pollution. how-
ever, already the physician Hippocrates (born 460 B.C.) [7] described a disease called
’carzinos’ (gr.: crab, as the veins surrounding an outer tumor look like the arms of
a crab), appearing, among others, on breast, stomach and uterus and corresponding
to today’s cancer [12]. Some scientists do actually think it can be traced back to
the early years of the human being, more than one million years ago [12].

1.1 Tumor Growth

Today the developing process of cancer is already quite well-known. We differentiate
three stages of solid tumor growth (the information for the following is provided by
[2, 14, 5, 15, 16]).
The tumor arises by a mutating cell, a cell which gentic material is defect, orig-
inating from bad DNA given over by the parents or changes in the DNA caused
by external effects (e.g. inhalation of toxic, as smoking). By the division of this
mutated cell the defect DNA is transfered and so the mass of cancer cells form a
tissue, called the avascular tumor.

In this stage the supply necessary for
growth is guaranteed by nutrients as
oxygen and glucose diffusing from the
surrounding vascular tissue to the
center of the tumor. Because of the
size the cells in the center suffer a
shortage of nutrients, they stop
growing and finally die. The
well-developed avascular tumor finally
consists of the so-called necrotic core,
an annulus of hypoxic (quiescent) and
an outer layer of proliferating cells.
The tumor stops growing when a
balance of cell death and cell
proliferation is reached. So avascular
tumors are still rather small and
harmless.

Figure 1: Avascular Tumor Lay-
ers [15]

In the next stage, angiogenesis, the tumor cells emit angiogenic growth factors acti-
vating blood vessels of the surrounding tissue to spread there. The vascular tumor
forms.
The good supply with nutrients through the blood vessels provides an exceeding
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1 Introduction

growth of the vascular tumor up to lifethreatening sizes in the last stage. Thus it
displaces the surrounding tissue, reducing its functioning, invades into blood vessels
or lymph nodes and so cancer cells can spread to the whole body. The tumor settles
down at other locations and develop metastases, further growth centers.
During the growth the cells continue mutating and so different subpopulations can
arise, so we normally have a heterogeneuos cell population in a tumor.

1.2 Cell Cycle

For the understanding of tumor growth it is important to have basic information
about the cell cycle.
During this cycle a proliferating cell undergoes four phases. The information about
the cell cycle stages is provided by [2, 5, 8, 15, 16].

Figure 2: Cell Cycle

In the first one, the gap phase
(G1), the cell grows up to a certain
size, then enters the next phase (S),

where it duplicates its DNA. The
following gap phase (G2) serves for
last preparations for the division in

the last phase (M): Mitosis and
cytokinesis occur, the divisions of
the nucleus and of the cell. So an

identical copy of the mother cell
arises.

During the stages (G1), (S) and (G2)occurs the synthesis of RNA and protein, which
is necessary for the mitosis phase. An additional stage has been introduced by the
scientists, the resting phase (G0), where the cells remain quiescent. It is possible for
a cell which is remaining in the (G0)-phase to return into the cycle, entering (G1).
The cell-cycle-control-system is responsible for the functioning of the whole cycle,
initiating the steps. Also, the cell has to pass several checkpoints. There the progress
can be stopped if some errors are identificated. If there is no ability to repair them,
apoptosis (organized cell death, by comparison with necrosis, the uncontrolled cell
death) is induced to avoid spreading of the damage. In the cycle of mutated cancer
cells apoptosis can e.g. be supressed by mutations, so the damaged cells divide re-
gardless, loosing control over cell division and proliferation.

In the following we will deal with models for avascular solid tumors, focusing on
homogeneous ones. Firstly we neglect the spatial structure of the tumor, only re-
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2 Structure-Neglecting Model for Homogeneous Tumors

garding the total number of cells. We variate the resulting model to illustrate the
influence of treatment with a chemotherapeutic drug or radiotherapy. Furthermore
we try to compare the models as our predictions to real data.
In the second part of the thesis we do mind the spatial arrangement inside the tu-
mor, which means we introduce layers of necrotic, hypoxic and proliferating cells.
The model includes the influence of a diffusing chemical on the tumor, which can
be nutrient or cell-growth limiting.

2 Structure-Neglecting Model for Homogeneous
Tumors

2.1 Growth Model

First, we want to develop a model for the growth of a homogeneous avscular tumor,
we assume the tumor only consists of one type of cells. We want to constitute
an equation presenting the number of cells N(t) at moment t. In this regard we
consider the following equation [3]

dN(t)
dt

= k
α
N(t)(1 − (N(t)

Θ
)
α

) (2.1)

N(t = 0) = N0

Remark. This is a generalized version of the logistic growth law (for α = 1 we get the
original logistic equation). The exponential growth is of the factor k/α > 0, which
describes the proliferation rate. Θ > 0 is the cell capacity of the tumor; we introduce
it to model the fact, that the expansion of the tumor is accompanied by a growing
competition for nutrient as the tumor is avascular. α > 0 is a parameter indicating
how fast the carrying capacity is reached, so it adjustes the point of inflection. The
smaller α, the steeper is the function. N0, the initial population size, can be figured
out through clinical observation.

The solution of the equation (2.1) is given through separation of variables. The
explicit solution is constructed as follows:

∫
N(t)

N0

1

N − Nα+1

Θα

dN = ∫
t

0

k

α
dt

Via partial fraction decomposition the left side of the expression can be rewritten:

∫
N(t)

N0

1

N − Nα+1

Θα

dN = ∫
N(t)

N0

1

N
− Nα−1

Nα −Θα
dN = [ln(N) − 1

α
ln(Θα −Nα)]

N(t)

N0

The absolute value bars in the ln-function can be neglected, we can assume the real
positivity of the values in the brackets (otherwise the solution will be N(t) ≡ 0 or
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2 Structure-Neglecting Model for Homogeneous Tumors

N(t) ≡ Θ). So we get

1

α
⋅ ln(N(t)α ⋅ (Θα −Nα

0 )
Nα

0 ⋅ (Θα −N(t)α)
) = t ⋅ k

α

⇒ N(t) = ΘN0

(Nα
0 + (Θα −Nα

0 )e−kt)1/α
(2.2)

The equation (2.1) possesses two steady states:

dN

dt
= 0⇔ N∗ = 0 and N∗ = Θ.

For N0 = 0 we never have cancer cells. For N0 > Θ it is dN
dt < 0 and thus the cells

die until N(t) = Θ, as there is not enough space/ too much competition for so many
tumor cells. If we start in a point different to zero and ≤ Θ, it holds N(t) → Θ
for t→∞ as dN

dt > 0.
We call the steady state N∗ = Θ asymptotically stable, N∗ = 0 is unstable.

2.2 Data Comparison

Now we want to evaluate the model, using the data [19].
The source measures and registers the growing number of cell units of different cells
2,3,4,5 and 6 days after a sowing of 0.1 cell units.
The experiment is performed twelve times parallel for each cell line to get more
suitable results. For our needs we calculate the mean value of the conductions of
one cell type at the current timepoint, meaning we sum up the values of the dif-
ferent implementations at a certain day and divide by 12. We plot this average
values Ndata(t) of the data in MATLAB and, for comparison, also chart the number
Nmodel(t) of cell units according to our model (2.2) at the given timepoints. We min-
imize ∑iNmodel(i) −Ndata(i) at day i = 0,2,3,4,5,6 and search for the best-fitting
parameter values for k,Θ and α.

As an example, we now present the results applied to two cell lines. Firstly,
we introduce the plot for the MOS 62 cells (fig. 3). Following the experiment,
we have N0 = 0.1. The capacity Θ is evaluated to 3.9. Simplifying, for the
first step we assume Ndata(i) = e

k
α
iN0 and using Ndata(2) ≈ 2.587 ⋅ N0 we choose

k/alpha = 0.5 ⋅ ln(2.587) ≈ 0.5 as a first guess. We see the point of inflection is
shifted to the right in comparison to the traditional logistic equation and thus we
know α > 1. Starting from this, we vary k and α to fit them even better to the data.
This way we receive k = 13.5 and α = 19, thus we have a total growth factor (=
proliferation rate = k

α ) of 0.7105.
The fitting of the model to the data is already quite good, as the sum of the differ-
ences as above described is 0.6543.

But for the MOS 1189 cells we obtain an even better matching of the cell number.
Using the same methods as above we use parameter values N0 = 0.1,Θ = 1.34, k = 2
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2 Structure-Neglecting Model for Homogeneous Tumors

Figure 3: Growth Curves of MOS 62 cells (Data vs. Model, using MATLAB [21])

and α = 3.9, see fig. 4. This means an overall growth factor of 0.5128. The sum of
the differences only is 0.0449, just 3.35% of the biggest value that is nearly Θ.

Figure 4: Growth Curves of MOS 1189 cells (Data vs. Model, using MATLAB [21])

Additionally we can observe in both of the cases that for almost every value of
N0 < Θ the number of cells converges to the carrying capacity Θ. The solitary ex-
ception is for N0 = 0, because if there are no cancer cells in the beginning, there will
never be such cells and thus Nmodel(t) = 0 ∀t ≥ 0.
This confirms the results of the stability analysis above.

It is easy to show that if we had chosen exponential growth (dN(t)
dt = kN(t)), the

model would fit much worse to the data. We try to fit this model for exponential
growing cells (and with an infinite carrying capacity) to the data and see immediately
(compare fig. 5) it doesn’t work as well as the generalized logistic growth. It is that
the cells compete for nutrient and space and thus there is a maximum limit for the
cell number in a tumor.
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2 Structure-Neglecting Model for Homogeneous Tumors

Figure 5: Growth Curves of MOS 1189 cells (Data vs. Model, using MATLAB [21])

2.3 Chemotherapeutic Treatment

There are several therapies to treat cancer [14]. The intuitive one is to remove
the tumor by surgery, but e.g. when the tumor is too big or metastases already
settled down it is very difficult to eliminate the whole tumor. Chemotherapy can
also be used, here the cancer patient gets injections of a special drug. We consider
substances which attack the cells and cause their death, called cytotoxic. Unfor-
tunately they do not just attack tumor cells, also healthy cells can be injured, so
it is important not to overdose the drug. Furthermore, the cytotoxins also have a
cancer-causing effect and the mutating cancer cells generate resistence against them
[14].
In this section we want to develop a model which describes the influence of a
chemotherapeutic drug on the growth of our tumor. We consider a non-cycle-specific
drug which causes the cells to die instantly. A view of a model for phase-specific
drugs can be seen in [10].
We assume logisic growth of N , so the above model (2.1) with the parameter α = 1.
The model we include for the number of cells N(t) and the concentration of the
cytotoxic drug in the tumor A(t) is the following [3]:

dN

dt
= kN (1 − N

Θ
) − µAN = f1(N,A)

dA

dt
= a(t) − λ1A − λ2AN = f2(N,A)

(2.3)

N(t = 0) = N0, A(t = 0) = A0

Remark. k,Θ as above; µ > 0 signifies how much the drug damages the cells, thus
how many cells are killed. a(t) ≥ 0 is the infusion quantity of the chemotherapeutic
at moment t. The parameters λ1 > 0 and λ2 > 0 decribe the decline of the drug as
λ1 is the rate of decay, whilst λ2 is the rate of consumption at contact of cell and
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2 Structure-Neglecting Model for Homogeneous Tumors

chemotherapeutic substance.

It makes sense to look for the equilibria, more specifically the points for which the
concentration of the drug and the number of cells are balanced. This means the
number of cells or the concentration input to the system equals the number of cells
dying or the decline of the drug.
In mathematical language: We request

dN

dt
= 0,

dA

dt
= 0

The obvious solution is

(N∗,A∗) = (0,
a(t)
λ1

)

and for the second equilibrium we need

0 = (N∗)2 +N∗ (Θ − λ1

λ2

) + Θ

λ2

(a(t)µ
k
− λ1)

⇒N∗

1,2 =
1

2

⎛
⎜
⎝

Θ − λ1

λ2

±

¿
ÁÁÀ(Θ − λ1

λ2

)
2

− 4
Θ

λ2

(µ
k
a(t) − λ1)

⎞
⎟
⎠
,

A∗ = k
µ

(1 − N
∗

Θ
) .

Now we want to figure out the drug dose we have to inject to stop the growth of a
tumor or even to eradicate it. So we fix the parameters k,Θ, µ, λ1 und λ2, as the
tumor is given and we already decided which drug to take, and vary the injection
a(t).
Sure, we only take the real (positive) solution for N. This is the case if the discrim-
inant is nonnegative, so for

a(t) ≤ amax ∶=
kλ1

4µ
(2 + 1

Θλ2

+ Θλ2

λ1

) .

For a(t) > amax the only realistic equilibrium is the case N(t) = 0, which means
that no tumor exists. Depending on the parameters we obtain up to three sensible
solutions for 0 ≤ a(t) ≤ amax.

Case 1: Θλ2
λ1

> 1
We obtain at least one nontrivial steady state. If

� a∗ < λ1k
µ ∶ N∗

2 < 0, we only have two steady states,

� amax ≥ a∗ > λ1k
µ ∶ we obtain a third equilibrium.

Case 2: Θλ2
λ1

< 1
We have at most one nontrivial steady state. If

� a∗ < λ1k
µ ∶ N∗

1 < 0, we get two steady states,

� amax ≥ a∗ > λ1k
µ ∶ N∗

1 ,N
∗

2 < 0, we only have the trivial fixed point.
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2 Structure-Neglecting Model for Homogeneous Tumors

2.3.1 Continuous Injection

We first want to have a look at our model’s behaviour if we inject the drug contin-
iously in a constant dose to the patient. So we set (according to [3])

a(t) = a∗ ∀t ≥ 0.

To perform the stability analysis for this case we first have to linearize about the
steady states (N∗,A∗) (for justification see [11] and especially Hartmann-Grobmann
theorem). We develop the Taylor polynomial after a transformation

( f1(N,A)
f2(N,A) ) = 0 + (

∂f1
∂N (N∗,A∗) ∂f1

∂A (N∗,A∗)
∂f2
∂N (N∗,A∗) ∂f2

∂A (N∗,A∗) ) ⋅ ( N(t) −N∗

A(t) −A∗
) (2.4)

including

( f1(N,A)
f2(N,A) ) = ( Ṅ

Ȧ
) = (

˙N(t) −N∗

˙A(t) −A∗
) .

2.3.1.1 Trivial Equilibrium For N̄ = N(t) − N∗, Ā = A(t) − A∗ and the trivial
steady state (N∗,A∗) = (0, a∗/λ1) we obtain the differential equations

(
˙̄N
˙̄A

) = ( (k − µa∗

λ1
)N̄

−λ1Ā − λ2a
∗

λ1
N̄

) .

Their unique solution is

N̄(t) = N̄(0)e(k−µa∗/λ1)t

and (via the variation of constants method)

Ā(t) = (Ā(0) + λ2a∗N̄(0)
λ2

1 + kλ1 − µa∗
) e−λ1t − λ2a∗N̄(0)

λ2
1 + kλ1 − µa∗

e(k−µa
∗
/λ1)t.

We know that the steady state is asymptotically stable if all the eigenvalues of the
Hessian in (2.4) have negative real parts and unstable for real eigenvalues and at
least one positive real part [RL]. As they are (k − µa∗λ1 ) and (−λ1) in this case, we

have asymptotic stability for a∗ > kλ1
µ and instability for a∗ < kλ1

µ .

This means for a∗ > kλ1
µ ∶

A(t) → a∗

λ1

, N(t) → 0,

so the tumor dies.
As the stability properties change for a∗, we call it bifurcation parameter and a∗ = kλ1

µ

bifurcation point.
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2 Structure-Neglecting Model for Homogeneous Tumors

2.3.1.2 Nontrivial Equilibrium For the nontrivial equilibrium (N∗,A∗) we pro-
ceed analogically. So we obtain the following system of differential equations.

(
˙̄N
˙̄A

) = ( (k − 2kN∗

Θ − µa∗) −µN∗

−λ2A∗ −(λ1 + λ2N∗) )( N̄
Ā

) =∶D ⋅ ( N̄
Ā

)

Its unique solution is (N̄ , Ā)T = (N̄(0), Ā(0))eDt which can be computed via the
Jordan canonical form of D [11].

We again obtain asymptotic stability if the eigenvalues ε1,2 of D satisfy Re(ε1,2) < 0
and instability for Re(εi) > 0, i = 1 or 2. It is

ε1,2 =
1

2

⎡⎢⎢⎢⎢⎣
(∂f1

∂N
+ ∂f2

∂A
) (N∗,A∗) ±

¿
ÁÁÀ((∂f1

∂N
+ ∂f2

∂N
)

2

− 4(∂f1

∂N

∂f2

∂A
+ ∂f1

∂A

∂f2

∂N
)) (N∗,A∗)

⎤⎥⎥⎥⎥⎦
.

Thus, for

(∂f1

∂N
+ ∂f2

∂A
) (N∗,A∗) < 0 < (∂f1

∂N

∂f2

∂A
− ∂f1

∂A

∂f2

∂N
) (N∗,A∗) (2.5)

the fixed point (N∗,A∗) is asymptotically stable.

Remark. For (∂f1
∂N + ∂f2

∂A
) (N∗,A∗) > 0 or (∂f1

∂N
∂f2
∂A − ∂f1

∂A
∂f2
∂N

) (N∗,A∗) < 0 we have at
least one real positive eigenvalue.
If (∂f1

∂N
∂f2
∂A − ∂f1

∂A
∂f2
∂N

) (N∗,A∗) = 0 one eigenvalue equals zero, thus we cannot make
any declaration.
If (∂f1

∂N + ∂f2
∂A

) (N∗,A∗) = 0 we obtain either one positive or one complex eigenvalue,
which means the real part is zero and we do not know the behaviour.
Further analysis of the last two cases is topic of the Center Manifold Theory (see
[18]) as the Theorem of Hartman-Grobman cannot be applied for non-hyperbolic
steady states.

The equation (2.5) holds if and only if

(∂f1

∂N
+ ∂f2

∂A
) (N∗,A∗) < 0

⇔ N∗(2k

Θ
+ λ2) + µA∗ + λ1 − k > 0

⇔ N∗( k
Θ
+ λ2) + λ1 > 0

which is always satisfied, and

(∂f1

∂N

∂f2

∂A
− ∂f1

∂A

∂f2

∂N
) (N∗,A∗) > 0

⇔ (−k + 2kN∗

Θ
+ µA∗) (λ1 + λ2N

∗) > µN∗λ2A
∗

⇔ N∗ > 1

2
(Θ − λ1

λ2

).
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2 Structure-Neglecting Model for Homogeneous Tumors

If there is at most one nontrivial steady state, also the latter requirement is fulfilled,
which means that the equilibrium is asymptotically stable. If we have two nontrivial
ones, the bigger one is stable as it fulfills the condition above, whilst the smaller one
is unstable.

Summing Up For a∗ < λ1k
µ we always have an unstable trivial fixed point and one

asymptotically stable nontrivial steady state.
This means the dose of the chemotherapeutic is too small and the tumor goes on
growing up to the size in the nontrivial fixed point.
For a∗ > λ1k

µ we have an asymptotically stable trivial fixed point. If Θλ2
λ1

< 1 or

a∗ > amax we only have this equilibrium. For Θλ2
λ1

> 1, a∗ ≤ amax (we obtain 2
nontrivial equilibria), the bigger nontrivial steady state is stable, the smaller one
unstable and separatrix (separating the points converging to the trivial and to the
nontrivial stable node).
That is if the dose exceeds the value above (meaning, the growth rate k and the
decay rate λ1 of the chemotherapeutic are big enough and the killing rate µ small),
the tumor dies. For the case Θλ2

λ1
> 1 this only works if the extent of the tumor is

not too big yet, more precisely smaller than the separatrix.

2.3.2 Periodic Infusion

As also normal cells are attacked by the infusion of a chemotherapeutic drug, it
makes sense to consider periodic injection, as the cells get the posibility to recover
(unfortunately this is also the case for tumor cells). This proceeding of injecting a
drug periodically is the type of chemotherapy used most in practice.
According to [3]

a(t) = { a∗, n < t < n + τ
0, n + τ < t < n + 1

Remark. 0 < τ < 1 corresponds to the proportional duration of the infusion, n is the
number of injections.

Applying the same techniques as above, we again consider the linearized system for
the trivial equilibrium (N∗,A∗) = (0, a(t)λ1

)

(
˙̄N
˙̄A

) = ( (k − µa(t)
λ1

)N̄
−λ1Ā − λ2a(t)

λ1
N̄

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( k 0
0 −λ1

)( N̄
Ā

) , n < t < n + τ

( (k − µa∗

λ1
) 0

−λ2a∗λ1
−λ1

)( N̄
Ā

) , n + τ < t < n + 1

The intuitive way is to make stabilty analysis as above.

Case 1: n < t < n + τ
This case was already dealt with in chapter 2.2.1, so we know (0, a∗λ1 ) is asymptoti-

cally stable in this case if a∗ > kλ1
µ and unstable for a∗ < kλ1

µ .

10



2 Structure-Neglecting Model for Homogeneous Tumors

Case 2: n + τ < t < n + 1
As the eigenvalues of the representing matrix of the linearized system are ε1 = −λ1 < 0
and ε2 = k > 0 we know that (0,0) is a unstable saddle point. This corresponds to
the fact that while the number of cell increases (because there is no injection), the
concentration of the drug in the tumor falls as the chemotherapeutic still underlies
decay and consumption by the cells.

PROBLEM: We know now that if a∗ < kλ1
µ the number of cells increases both during

injection and also after, which means the tumor keeps growing up. For the case that
a∗ > kλ1

µ the number of cells decreases during the infusion and in the regeneration
time it increases. So, we have to figure out for which values of a∗ the decline of cell
number in the injection-phase overbalances the growth of the tumor in the regener-
ation period.
In the following we are only interested in the stability analysis of the cell number N
and the steady state N∗ = 0 as it is the important one.

The solution of the linearized system for n < t < n + τ is

N̄(t) = N̄(n)e(k−µ
a∗

λ1
)(t−n)

, (2.6)

here again we see the decline of N̄ for a∗ > kλ1
µ .

The solution of the linearized system for n + τ < t < n + 1 is

N̄(t) = N̄(n + τ)ek(t−n−τ).

Now we can express N̄(n + τ) through (2.6) on the assumption that N̄ is continous
at time t = n + τ . We get

N̄(n + τ) = N̄(n)e(k−µ
a∗

λ1
)τ

and thus in the regeneration phase we have

N̄(t) = N̄(n)ek(t−n)−µ
a∗

λ1
τ
.

Obviously for a∗ > kλ1
µ

1
τ >

kλ1
µ and t∗ → n + 1 it holds that

N̄(t∗) < N̄(n) ∀n

and thus the tumor is steadily declining, which means the state for which N∗ = 0 is
stable and the tumor vanishes.
For a∗ < kλ1

µ
1
τ , t∗ → n + 1 it is N̄(t∗) > N̄(n) ∀n, so the equilibrium with N∗ = 0

is unstable; the tumor remains alive.

11



2 Structure-Neglecting Model for Homogeneous Tumors

Summing Up For the extinction of a cancer tumor through periodic infusion we
need a dose exceeding a value depending, as in the case of continuous infusion, of
growth rate k, drug decay rate λ1 and death rate µ, but additionally of the factor
τ , which represents the duration of one injection. This value is kλ1

µ
1
τ . This means

the bigger the injection rate τ , the smaller the dose we need (for τ = 1 we get the
continuous case). Thus, periodic infusion requires a bigger injection dose than con-
tinuous one, as the cancer cells get the posibility to regenerate.

2.3.3 Discussion

To show the functioning and thus the relation to practice of the performed analysis
we again use MATLAB ([21]).

Continuous Injection For testing the analysis of the continuous infusion we in-
clude the equation (2.3) with a(t) = a∗ into MATLAB and plot the solution of the
ODE at time period [0,500].

We choose the parameter values k = 0.5,Θ = 1, µ = 0.5, λ1 = 0.5, λ2 = 0.3,N0 = 0.01.
So we know Θλ2

λ1
= 0.6 < 1 and thus either one asymptotically stable trivial equilib-

rium for big a∗ > λ1k
µ = 0.5 or a stable nontrivial steady state for a∗ < 0.5.

For a∗ = 0.49 (fig. 6) we here see a growing tumor. We observe, the number of
cells at the left plot and the drug concentration at the right one converge to the
nontrivial equilibrium (0.047,0.953). The drug concentration converges top down
as it decreases also because of the existing (and thus consuming) cells, but the cell
number is too low during the first time span to affect the drug.
For a∗ = 0.51 (fig. 7) we see a tumor that becomes extinct. This is because of the
convergence towards the trivial equilibrium (0,1.020).

Figure 6: Model results: The tumor grows (via MATLAB [21], a∗ = 0.49)

12



2 Structure-Neglecting Model for Homogeneous Tumors

Figure 7: Model results: The tumor dies (via MATLAB [21], a∗ = 0.51)

We now use the parameters k = 0.5,Θ = 1, µ = 0.5, λ1 = 0.3, λ2 = 0.5,N0 = 0.01. So
we know Θλ2

λ1
= 1.667 > 1 and thus we have for small a∗ < λ1k

µ = 0.3 (e.g. a∗ = 0.29,

fig. 8) one asymptotically stable nontrivial fixed point (0.445,0.555).

Figure 8: Model results: The tumor remains (via MATLAB [21], a∗ = 0.29)

If a∗ = 0.31 we have an asymptotically stable trivial steady state (0,1.033) and an
asymptotically stable nontrivial equilibrium (0.341,0.659). We converge to one of
the two, depending of our initial value (if it is bigger or smaller than the second
nontrivial fixed point (0.059,0.941)).
So, for N0 = 0.01 (fig. 9) we have convergence to (0,1.033) and for N0 = 0.06 (fig.
10) we have convergence to (0.341,0.659).

MATLAB only displays a numerical solution, therefore the plots are not always pre-
cise for values a∗ very close to λ1k

µ . However, this allows to confirm our analysis. As
the stabiliy analysis is not globally, we have to choose N0 close to zero if we want
to show the trivial equilibrium is asymptotically stable.

13
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Figure 9: Model results: The tumor dies off (via MATLAB [21], a∗ = 0.31, N0 = 0.01)

Figure 10: Model results: The tumor remains (via MATLAB [21], a∗ = 0.31, N0 =
0.06)

Periodic Injection For the periodic infusion we once again solve the equation (2.3)
with MATLAB, this time with a(t) = a∗ for n < t < n+τ and a(t) = 0 for n+τ < t < n.
Again we plot its numerical solution for the time period [0,500].

As in the case of continuous infusion we choose k = 0.5,Θ = 1, µ = 0.5, λ1 = 0.5, λ2 =
0.3 and N0 = 0.01. For simulating a steady change between the phase of exposure to
the chemotherapeutic and the phase of regeneration, we further define τ = 0.5. For
this parameters the bifurcation point for the injection a∗ is kλ1

µ
1
τ = 1.

Therefore, for a∗ = 0.9 (fig. 11) the tumor remains alive as too much cells recover
during the regenartion phase. But as Θλ2

λ1
< 1 and λ1k

µ = 0.5 < 0.9 = a∗ we have no
steady state during the infusion (n < t < n + τ) except of the trivial one. During
the recovering phase (n + τ < t < n + 1, a(t) = 0) we have a nontrivial fixed point
N(t) = 1.
We do not have a more precise declaration for the nontrivial equilibrium.
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Figure 11: Model results: The tumor remains (via MATLAB [21], a∗ = 0.9)

For a∗ = 1.1 (fig. 12) not enough cancer cells regenerate for balancing the big num-
ber of dying cells and thus the tumor dies off.
For the drug concentration A we have no exact information in both of the cases.
But we know the drug concentration converges to A∗ = a(t)

λ1
for a∗ = 1.1 > kλ1

µ
1
τ , and

as a(t) switches between zero and a∗ we get an oscillation for A(t).

Figure 12: Model results: The tumor dies off (via MATLAB [21], a∗ = 1.1)

Also in the case of periodic infusion we have some inaccuracies because of solving
the ode numerically. But we can see well how the cells and the drug behave in
general.

2.4 Radiotherapeutic Treatment

Another posibility for medical treatment of cancer tumors is radiotherapy, also called
radiation therapy and often applied post-operative (meaning after surgery). Here,
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the tumor gets penetrated with high-energy radiation, damaging the DNA of the
cancer cells. This radiation can i.e. consist of γ-, electron- or proton-rays ([4]).
This rays have an ionizing effect, meaning they break up the chemical compounds of
the energetic neutral tumor cells. The positively charged restovers of them remain,
while free radicals are split off. Radicals are atoms or molecules with at least one
unpaired electron and thus they are very reactive.
The ionization directly damages the cancer cells. Furthermore, the free radicals at-
tack amongst others the genetic material of surrounding, nearby cancer cells leading
(if there is no possibility to repair or if they are misrepaired) to their death. Induced
through this secondary damage, a chain reaction starts(compare [13]).
The unit of measurement for the energy dose which is released while irradiation is
one Gray (1Gy = 1Joulekg ).
Radiation, as chemotherapy, damages also normal cells, in addition the cancer cells
mutate and develop resistence against the rays. So the aim again is to minimize the
deaths of the normal cells and to maximize the ones of the cancer cells, as to avoid
too large doses.
For this reason, in the following we do only consider models for fractioning of the
radiation dose, giving the cells time to recover (again, unfortunately also for the
cancer cells).

2.4.1 Classical Model

The most widely used model for radiotherapy is the linear-quadratic (LQ) model.We
define the surviving fraction NSF , the fraction of cells surviving one dose D[Gy] of
radiation. It holds (see [1, 6, 17])

NSF =
Nbefore

Nafter

= e−αD−βD2

.

Remark. α [ 1
Gy], β [ 1

Gy2 ] are radio-biological parameters. Simplified, αD represents

the cell kill due to double strand breaks of the cell’s double helix while βD2 arises
from cell kill through single strand breaks of the helix that require an encounter of
two cells.
α
β [Gy] is called the sensivity- or α-β-ratio. This is the dose for which the contri-
bution to NSF from the two terms is equal. It indicates how fast the cancer cells
reproduce themselves between treatments (the higher, the faster the reproduce).
That also means α is big if the effect of the radiation arises early and β is relatively
big if the effect occurs late.
It is also possible to include the growth of the tumor between the radiation doses.

Although the model seems to correnspond well with reality, it is quite difficult to
determine the parameters α and β. So we try another model in the following chapter.
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2.4.2 Adapted Model

A big difference between chemotherapy and radiotherapy from the mathematical
point of view is, that many of the cells do not die instantly. The checkpoints realize
the cell is damaged and try to repair it. Only if the cell cannot be repaired, it is
eliminated. Sometimes cells are misrepaired but not separated, so this ones again
divide and pass over their damage to the daughter cells. Thus, the effect of the
rays on the cell number is not just linear, but also depends on how fast the cells
proliferate.
Another difference is that the cells do not consume radiation, meaning the only
thing conteracting the growth of the radiation concentration is decay at a constant
rate.
For the growth of the cells in the radiation model we use the generalized logistic law
(2.1).
So we obtain a model similar but not identical to the model for chemotherapeutic
treatment.

dN

dt
(t) = k

α
N(t)(1 − (N(t)

Θ
)
α

) −N(t)A(t)(µ1 + µ2
k

α
N(t)(1 − (N(t)

Θ
)
α

))

dA

dt
(t) = a(t) − λA(t)

(2.7)

N(t = 0) = N0, A(t = 0) = A0

As we want to analyze periodic infusion, we use again

a(t) = { a∗, n < t < n + τ
0, n + τ < t < n + 1

Remark. µ1 > is the linear part of the rate of cells kills when the tumor is hit by
radiation. µ2 is the rate weighting the influence of the cell growth on the cell deaths.
The parameters Θ, k and α are as above and thus indicate the carrying capacity,
the proliferation rate and how fast the capacity is reached, whilst λ is the decay rate
of the radiation. a(t) accordingly is the administered radiation at time t, 0 < τ < 1
is the duration of the irratiation and n the number of doses that have already been
given.

Again we are only interested in the stability of the trivial equilibrium. Therefore we
linearize around the fixed point (N∗,A∗) = (0, a(t)λ ).

(
˙̄N
˙̄A

) = ( (k − µa(t)
λ1

)N̄
−λ1Ā − λ2a(t)

λ1
N̄

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
k
α 0
0 −λ )( N̄

Ā
) , n < t < n + τ

( ( kα −
µ1a

∗

λ ) 0
0 −λ )( N̄

Ā
) , n + τ < t < n + 1

The solution of this linearized system is

N(t) = N(n)e kα (t−n)−a
∗

λ
(t−n) for n < t < n − τ,

N(t) = N(n + τ)e kα for n + τ < t < n + 1.
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As above we want N(n + τ) which is, as N(t) again is supposed to be stable,

N(n + τ) = N(n)e kα τ−a
∗

λ
µ1τ .

It follows N(t) = N(n)e kα (t−n)−a
∗

λ
µ1τ for n + τ < t < n + 1, and therefore

N(n + 1) = N(n)e kα−a
∗

λ
µ1τ .

So we have N(n + 1) < N(n)∀n and thus stability of the trivial fixed point for
a∗ > kλ

αµ1
1
τ and N(n + 1) > N(n)∀n, meaning instability, for a∗ < kλ

αµ1
1
τ .

The biological interpretation again is: For big radiation doses a∗ we achieve the
necrosis of the tumor, but if the dose is too small, the tumor stays alive.

2.4.3 Discussion

As we have the data provided by [20], we want to use it for the verification of the
established model.
The experiment that revealed the information about the cell number in a tumor is
performed the following way (according to [13]).
Cells of a certain line are placed on a plate and consecutively put into and taken out
of a γ-radiation field (thus τ ∶= 0.5). In the field prevails a constant γ-irradiation.
The cellular response is measured in Cell Index values with the xCELLigence Sys-
tem, a real-time cell analyzer monitoring cell proliferation and cytotoxic effects. The
Cell Index is a designed unit, which is zero if no cells do exist. If the number of cells
expand, the CI grows accordingly.

We choose the data series for T47D cells (human ductal breast epithelial tumor
cells). The Cell Index is measured and registered, one after another, for radiation
doses of 0, 2.5, 5 and 7.5 Gy, each time over a time period of nearly 142 hours.
We again use MATLAB [21] to plot numerically the solution of the equation (2.7)
for suitable parameters, setting a∗ = 0,2.5,5 or a∗ = 7.5 and compare the resulting
charts to the four data graphs.
We equate the parameters of (2.7) to α = 0.05, k = 0.001,Θ = 4.8, µ1 = 0.000007, µ2 =
0.05, λ = 1 and N0 = 0.01.
This way, we receive the presented plots, every one of them showing the model for
one given a∗ in comparison to the data.
We see also this model fits well. The only bigger error already arises in the growth
curve without radiation (ca. between hour 10 and 40) and thus is maintained
throughout the calculation. It arises because of the experimental equipment.

For both of the treatments it holds: The models (2.3) and (2.7) are quite simplified.
This is their biggest benefit but also their biggest disadvantage. They are easy to
handle, so also the professional categories working on the models in the end (such
as biologists or physicians) can understand it well. On the other hand, not all of
the assumptions are realistic. So it is problematic to apply the models generally.
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Figure 13: Cell Growth: Model vs.
Data, using MATLAB
[21], a∗ = 0

Figure 14: Cell Growth: Model vs.
Data, using MATLAB
[21], a∗ = 2.5

Figure 15: Cell Growth: Model vs.
Data, using MATLAB
[21], a∗ = 7.5

Figure 16: Cell Growth: Model vs.
Data, using MATLAB
[21], a∗ = 5

3 Structure-Regarding Model of Avascular Tumors

As we know, the well-developed avascular tumor has three layers: the inner necrotic
core, a ring of quiescent cells and an outer tier of proliferating cells. We want to
introduce a model which includes this statement.

3.1 The Model

Again we assume that the avascular tumor consists of only one type of cells, so we
have a homogeneous tumor (it is possible to vary the model to have a model for
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heterogeneous tumors; the three layers are layers of cells with different proliferation
rates which react differently to environmental influences, so they can be interpreted
correspondingly as layers of different cells).

Additionally we assume the
avascular tumor and its
extension is radially-symmetric
and furthermore the growth is
one-dimensional. We observe the
volume of the tumor under the
influence of a diffusible chemical,
entering the tumor from the
surrounding tissue. Assume this
chemical is nutrient for the cells
(e.g. oxygen), but this model
(after variation) serves also for
growth-repressing chemicals.

Figure 17: Three Layers of the
Tumor

We consider the following model for the concentration c(r, t) of the observed chem-
ical at distance r from the core and time t, and the volume of the tumor if it has an
outer radius R(t) > 0. As R changes in time, this is a moving boundary problem.
We took the model from [3], but it was firstly introduced by Greenspan.

∂c

∂t
=D 1

r2
⋅ ∂
∂r

(r2 ∂c

∂r
) − Γ(c,R,RH ,RN) (3.1)

d

dt
(1

3
R3) = ∫

R

0
P (c,R,RH ,RN) ⋅ r2dr − ∫

R

0
N(c,R,RH ,RN) ⋅ r2dr (3.2)

for

Γ(c,R,RH ,RN) = γH(r −RH),
P (c,R,RH ,RN) = pcH(r −RH),
N(c,R,RH ,RN) = pδA + pδNH(RN − r)

and Heaviside-function

H(r) = { 1, r > 0
0, r ≤ 0

Remark. RH is the distance from the core (radius) the proliferating and hypoxic
cells are separated at, and RN the distance of isolation of hypoxic and quiescent
cells. Both radii can be obtained through observation.
Equation (3.1) describes the change of the concentration of the chemical, this is
raised by the flux caused by diffusion under constant diffusion D (according to
Fick’s law), and lowered by the consumption of the nutrient by the cells. The latter
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is described through the function Γ, we assume the proliferating just as the quiescent
cells consume oxygen at a constant rate γ. Necrotic cells do not consume oxygen
any more.
(3.2) is an equation identifying the change of the tumor volume with the difference
of cell proliferation rate P (c,R,RH ,RN) and cell deaths N(c,R,RH ,RN). Prolifer-
ation occurs only for r > RH , depending of the nutrient concentration c(r, t), so we
have the growth rate p ⋅ c(r, t). All cells die due to apoptosis at constant rate p ⋅ δA
and the inner cells additionally because of necrosis also at constant rate p ⋅ δN (for
p, δA, δN ≥ 0 constants), but only if r < RN .

Inserting the equations for P and N into (3.2) we obtain

d

dt
(1

3
R3) = p∫

R

RH
c(r, t)r2dr − p1

3
(δAR3 + δNR3

N). (3.3)

We add following initial and boundary conditions to close our problem (3.1),(3.3)

∂c

∂r
(0, t) = 0

c(R(t), t) = c∗

c(r,0) = c0(r)
R(0) = R0,

and assume that c(r, t), ∂c
∂r(r, t) are continuous.

Further we define cH = c(RH(t), t) as the nutrient concentration which is necessary
for proliferation and cN = c(RN(t), t), the concentration for which necrosis occurs.
So our problem is the following: We vary the nutrient inflow c∗ and observe the
effect on the concentration in the tumor and the radius.

3.1.1 Nondimensionalization

For further analysis we want to simplificate our model. Thus we perform nondimen-
sionalization.
So we firstly set ([3])

C:=typical unit for nutrient concentrations

T :=typical unit for time

X:=typical unit for length

and accordingly define

c̄ = c

C
, t̄ = t

T
, r̄ = r

X
, R̄ = R

X
, R̄H = RH

X
, R̄N = RN

X
.
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For our calculations it is not necessary to specify the units more precisely.
We insert this variables, which hence are dimensionless, into (3.1) and (3.2).

d

dt̄
(1

3
R̄3) = R̄2∂R̄

∂t̄
= R̄2 T

X

∂R

∂t

= R̄2 ⋅ T
X ⋅ R̄2X2

[∫
R̄X

0
sCc̄H(r̄ − R̄H)r̄2X2 − ∫

R̄X

0
sλA + sλNH(R̄N − r̄)r̄2X2]

and via substitution we receive

d

dt̄
(1

3
R̄3) = ∫

R̄

0
[sCT c̄H(r̄ − R̄H) − sTλA − sTλNH(R̄N − r̄)] r̄2dr̄. (3.4)

Further:

∂c̄

∂t̄
= ∂

∂t̄

c(t̄ ⋅ T )
C

= TD
X2

1

r̄2
⋅ ∂
∂r̄

(r̄2 ∂c̄

∂r̄
) − γ

C
TH(r̄ − R̄N). (3.5)

There are three parameter sets including the timescale in this equations: TD
X2 , γ

CT
and sCT . We want to set T s.t. at least one parameter vanishes. We choose T = 1

sC .

Furthermore, experiments revealed that X2

D << 1
sC and we assume O(γ) = O ( D

X2 ) >>
O ( 1

T
).

Multiplying (3.5) by X2

TD and defining γ̄ ∶= γX2

CD , λ̄A ∶= sTλA λ̄N ∶= sTλN we get our
nondimensionalized problem

0 = 1

r̄2
⋅ ∂
∂r̄

(r̄2 ∂c̄

∂r̄
) − γ̄H(r̄ − R̄N) (3.6)

d

dt̄
(1

3
R̄3) = ∫

R̄

0
[c̄H(r̄ − R̄H) − λ̄A − λ̄NH(R̄N − r̄)] r̄2dr̄. (3.7)

The boundary and initial conditions change accordingly

∂c̄

∂r̄
(0, t̄) = 0

c̄(R̄(t̄), t̄) = c̄∗

c̄(r̄,0) = c̄0(r)
R̄(0) = R̄0

c̄(R̄H , t̄) = c̄H , c̄ > c̄H ∀r ∈ (0, R̄) ⇒ ¯RH = RN = 0

c̄(R̄N , t̄) = c̄N , c̄ > c̄N ∀r ∈ (0, R̄) ⇒ ¯RN = 0,

where c̄∗ = c
∗

C
, c̄H = cH

C
, c̄N = cN

C
.

We also still want the continuity of c̄(r, t) and ∂c̄
∂r(r, t).
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3.1.2 Further Simplification

Starting from now we neglect the bars and work directly on the nondimensionalized
model (3.6), (3.7).
The goal is to express the nutrient concentration c(r, t) in terms of R,RH ,RN and
to find equations for RH and RN in terms of R ([3]).

We solve equation (3.6) directly and for this purpose differentiate two cases.

Case 1: r ≤ RN (within the necrotic core)
The equation we want to solve is ∂

∂r
(r2 ∂c

∂r
) = 0, which general solution is c(r, t) =

v1 − v2
r .

We use following conditions to specify the (at the moment unknown) v1 and v2:

� c(RN , t) = cN ⇒ v1 = cN

�
∂c
∂r(0, t) = 0 ⇒ v2 = 0, so we get

c(r, t) ≡ cN ,

which means the necrotic cells suffer a constant nutrient concentration equal to the
boundary limit cN .

Case 2: r > RN (within the outer rims)
We search for solutions of ∂

∂r
(r2 ∂c

∂r
) = γr2, which are of the type c(r, t) = 1

6γr
2+v1− v2

r .
Additionally we want

� c(R, t) = c∗ ⇒ v1 = c∗ − 1
6γR

2 + v2
R

� limr→RN c(r, t) = cN ⇒ v1 = cN − 1
6γR

2
N + v2

RN
.

We finally get the solution

c(r, t) = cN + γ

6r
[r3 +R2

N(R − r) +RRN(R − r) −R2r] + R
r

cN − c∗
RN −R

(r −RN).

As we’ll see that for different sizes of R we get different equations for c,R,RH and
RN , we distinguish three cases.

a)0 <R2 < 6
γ
(c∗ − cH) For all RN < r < R and 0 < R < 6

γ (c∗ − cH) we want c ≥ cN ,

which means that cells in the hypoxic or proliferating rim require more nutrient than
the ones in the necrotic core. More precisely:

r3 +R2
NR −R2

Nr +R2RN −RRNr −R2r + 6R

γ

r −RN

R −RN

(c∗ − cN) ≥ 0.
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This is now fulfilled for RN = 0, and consequently we get

c(r, t) = c∗ + γ
6
(r2 −R2).

Additionally we require c > cH ∀RH < r < R,0 < R < 6
γ (c∗ − cH). For r < RN we

want c(r, t) = cN ≤ cH .
We choose R smaller but close to 6

γ (c∗ − cH): c(r, t) ↘ c∗ + γ
6r

2 − c∗ + cH ,

so c(r, t) ↘ cH for r ↘ 0 = RN ; therefore it is

RH = RN = 0.

We receive following equation for R(t).

dR

dt
= 1

R2 ∫
R

0
c∗r2 + 1

6
γr4 − 1

6
γR2r2dr − 1

3
R3λA − 0

= R
3

(c∗ − λA −
γR2

15
) (3.8)

Summarizing, for small tumor radii we have neither necrotic nor hypoxic cells but
only proliferating ones.

b) 6
γ
(c∗ − cH) <R2 < 6

γ
(c∗ − cN) Analogously to case a) we get for c(r, t)

c(r, t) = c∗ + γ
6
(r2 −R2), RN = 0.

Now picking R close to 6
γ (c∗ − cN) we have: c(r, t) ↘ c∗ + γ

6r
2 − c∗ + cN ,

so c(r, t) ↘ cN for r ↘ 0 = RN

and c(r, t) ↘ cN + γ
6R

2
H for r ↘ RH .

This means ∃r ∈ [RN ,RH] ∶ cN < c(r, t) ≤ cH

⇒ 0 = RN < RH .

We hence want to determine the equation for RH .

c(RH , t) = cH ⇔−(c∗ − cH)6

γ
+R2 = R2

H

⇒RH =
√
R2 − 6

γ
c∗ + 6

γ
cH (3.9)

For R(t) we operate the following way.

dR

dt
= 1

R2 ∫
R

RH
c∗r2 + 1

6
γr4 − 1

6
γR2r2dr − 1

3
R3λA − 0

= R
3

[(c∗ − γR
2

6
)(1 −

R3
H

R3
) + γR

2

10
(1 −

R5
H

R5
) − λA] (3.10)

This means for a radius in this range of values the tumor contains not only prolif-
erating but already hypoxic cells. Once again there exists no necrotic core.
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3 Structure-Regarding Model of Avascular Tumors

c) 6
γ
(c∗ − cN) <R2 If the radius of the tumor exceeds the value

√
6
γ (c∗ − cN) the

tumor possesses a necrotic core, and of course also a hypoxic and a proliferating
layer. Therefore it is fully developed.
This is because under the assumption RN = 0 it holds
c = c∗ + γ

6(r2 −R2) < cN , which stands in contradiction to the above supposition and
thus RN ≠ 0.

The boundary values c(RN , t) = cN , c(R, t) = c∗ are satisfied without further require-
ments.
Also, we want c(RH , t) = cH to be valid. For this we need additional conditions, so
we firstly inlude

6

γR2
(c∗ − cN) = (1 − RN

R
)

2

(1 + 2RN

R
) (3.11)

and rewrite c(RH , t) into
c(RH , t) = cN + γ

6R
2
H + γ

6RH
[R2

N(R −RH) +R2(RN −RH) −RRNRH

+ (RN −R)(RN −RH)(R + 2RN)] to get a second one:

6

γR2
H

(cH − cN) = (1 − RN

RH

)
2

(1 + 2RN

RH

) .

Under this two conditions the wanted requirement c(RH , t) = cH is fulfilled.

Including them into the equation for c(r, t), r > RN we receive

c(r, t) = { cN , 0 ≤ r ≤ RN

cN + γ
6r(r −RN)2(r + 2RN), RN < r ≤ R.

For R(t) we proceed accordingly:

dR

dt
= 1

R2 ∫
R

RH
c(r, t)r2dr − 1

3
R3λA −

1

3
R3
NλN

=R
3

[cN (1 −
R3
H

R3
) − λA − λN

R3
N

R3
]

+ γ
6
R3 [1

5
(1 −

R5
H

R5
) −

R2
N

R2
(1 −

R3
H

R3
) +

R3
N

R3
(1 −

R2
H

R2
)] (3.12)

3.2 Model Behaviour

Finally, we obtained a model we can work with. We have three different cases:
Small tumors, which only contain proliferating cells. The larger ones, where some
of the cells have not enough nutrient to grow further. And tumors so big, including
quiescents and where the inner cells die of hunger. For the different sizes we have
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3 Structure-Regarding Model of Avascular Tumors

got different equations for c(r, t),R(t),RH(t) and RN(t).
As a complete analysis of the model would exceed the dimension of the thesis and
often requires an complex numerical analysis, we confine ourselves to three special
cases.

3.2.1 Small Tumor: 0 <R < 6
γ
(c∗ − cH)

For small tumors (case a)) we do have two steady states R∗

1,2 of the outer tumor
radius (3.8), as
R∗

3 (c∗ − λA − γR∗2

15 ) = 0⇔ R∗2
1 = 15

γ (c∗ − λA) or R∗2
2 = 0.

Further we know

�
dR
dt < 0⇔ R2 > R∗2

1

�
dR
dt > 0⇔ R2 < R∗2

1

R∗

1 is a valid solution (R∗2
1 < 6

γ (c∗ − cH)) if and only if

5

2
(c∗ − λA) < c∗ − cH (⇔ c > cH ∀r) (3.13)

Under this condition the tumor stays in the state of just having proliferating cells. If
(3.13) does not hold, the tumor grows up into the next stage, developing a quiescent
rim, as dR

dt (t) > 0 ∀t then.
We can conclude, that if the nontrivial steady state R∗

1 exists (c∗ > λA) and (3.13)
holds it is asymptotically stable and R∗

2 is unstable. For the case c∗ < λA, the non-
trivial fixed point does not exist in a biologically sensible way as it is negative, so
the only equilibrium we consider is R∗

1 = 0 and this one now is asymptotically stable.
Descriptively, this means if the external nutrient concentration is small enough
(c∗ < λA), the tumor dies as the nutrient supply is too bad. But if c∗ > λA the
tumor levels out at radius R∗

2 < 6
γ (c∗ − cH) or, if (3.13) is not valid (so if the outer

nutrient c∗ falls below a value depending on the apoptosis rate λA and on the nutrient
concentration necessary for proliferation cH ,) , exceeds to the next stage (existence
of hypoxic rim).

We also can show an equivalence to the model in section 2.1. If we use equation
(3.8) and substitute V (t) = 4

3πR(t)3 we obtain such an equilvalent version, showing
how the pure cell number is connected to the tumor volume:

dV

dt
(t) = V (t)(c∗ − λA − ( γ

15

3

4π
V (t))

3
2

)

= 2/3(c∗ − λA)
2/3

V (t)
⎛
⎝

1 − ( V

4π/3 ⋅ [15/γ ⋅ (c∗ − λA)]3/2
)

2/3⎞
⎠

=∶ k
α
V (t)(1 − (V (t)

Θ
)
α

)
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3.2.2 Tumor With Quiescent Region: 6
γ
(c∗ − cH) <R2 < 6

γ
(c∗ − cN)

We consider a tumor (case b)) with a quiescent rim but without necrotic core, there-
for RN = 0. We already know (3.9) and conclude dRH

dt = R
RH

dR
dt .

As R > RH it follows dRH
dt > dR

dt ,([3])
which means that when the tumor grows so does the radius of the hypoxic region,
and even faster than the radius of the entire tumor.

3.2.3 Tumor With Small Necrotic Core: 0 <RN =RH <<R ∼ O(1)

The tumor we want to work on now is a big one wich possesses a necrotic core
(case c))([3]). We further assume the shift from quiescence to necrosis is very quick
and smooth, meaning RN = RH , cN = cH . The intention is to analyse the behaviour
around that moment when the necrotic nucleus arises. For that, suppose

R(t) ∼ R0(t) + εR1(t) + ε2R2(t), RN(t) ∼ εRN1(t) for ε small.

Inserting this polynomial into (3.11) and making comparison of coefficients of O(ε)
implies

R0 =
√

6

γ
(c∗ − cN), R1 = 0, R2(t) =

3R2
N1(t)

2R0

.

Substituting with the equations for RN and R2 in (3.12) results in a differential
equation for R2. Addtitionally icluding τ = t

ε2 we receive

R2(τ) = R2(τ = 0) +R0(
1

5
(c∗ − cN) − 1

3
(λa − cN))τ.

Define τ∗, the time when necrosis initiates/ceases. It follows R2(τ∗) = 0, as then it
holds R2(τ∗) = 6

γ (c∗ − cN).
It is R2(τ∗) = 0 ⇔ τ∗ = − R2(τ=0)

R0[
1
5
(c∗−cN )−

1
3
(λA−cN )]

for c∗ < cN + 5
3(λA − cN) (otherwise

τ∗ < 0).
That is, if the outer nutrient concentration falls below this value, the tumor con-
tracts and the necrotic core vanishes.
If (and only if) c∗ > cN + 5

3(λA−cN) the necrotic core persists, R(t) > 6
γ (c∗−cN) ∀t.

Considering dR
dt = ε2

dR2

dt = 3RNR0

dRN
dt we see:

As RN << R it follows RN << R0 and thus dRN
dt > dR

dt ,
meaning that growth of the tumor always leads to an enlargement of the necrotic
core, as the growth of the radius of the inner nucleus is always bigger than the
growth of the entire tumor.

3.3 Discussion

So, as we see, we can use this model to determine the spatial structure and size
such as the stability of a tumor. We have seen that the spatial structure espe-
cially depends on the entire tumor Radius R(t), itself affected by the outer nutrient
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concentration c∗ (that we vary in this thesis), the minimal nutrient necessary for
proliferating cH and the maximum nutrient concentration necrosis can occur at (cN).
Furthermore, R(t) depends on the rate γ that indicates how much nutrient the cells
consume.
We got equations denoting the sizes of c,R,RH and RN . And we can figure out,
under which conditions for c∗ we obtain which spatial structure (e.g. see ’Small
Tumor Analysis’; the tumor remains small (or extinguishes) if (3.13) holds).

As the model is only one-dimensional it is not entirely realistic. Also the assumption
of radially-symmetric tumor expansion is not totally correct especially for vascular
tumors, but for avascular ones it is justifiable as the nutrient only diffuse from the
surrounding tissue.

4 Outlook

So, we have got two quite different basic models and worked on some modfications
of them. We received conditions for the eradication of a cancerous tumor through
different types of treatment such as conditions under which it attains a certain spa-
tial structure.
The above models can be extended and variated in many different ways, every re-
sulting model having some special cases it serves good at.

Modification of the Structure-Neglecting Model One possible modification of
the treatment-models is simply to change the growth model, e.g. to include α as in
the beginning of the thesis (see equation (2.1)). This could look like this (for the
continuos injection of a chemotherapeutic)

dN

dt
= k
α
N (1 − (N

Θ
)
α

) − µAN

dA

dt
= a∗ − λ1A − λ2AN.

We can e.g. show the stability of the trivial equilibrium is similar as above. It is,
for a∗ > kλ1

αµ the fixed point (0, a∗λ1 ) is stable, and for a∗ < kλ1
αµ unstable.

We also could change the equation for A(t), i.e. λ1, as the decay rate often de-
pends linearly from environmental factors such as temperature or pressure. Also
the consumption rate λ2 can be modified by including saturation. This might de-
scribe better reality. And of course it is possible to inject the drug e.g. linearly
or periodicallly but with different doses, meaning (2n =number of doses, 2τ + ε ≤ 1,
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τ, ε ≥ 0)

a(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a∗1, n < t < n + τ
0, n + τ < t < n + τ + ε
a∗2, n + τ + ε < t < n + 1 − τ
0, n + 1 − τ < t < n + 1

to see what is the better/best way to inject a chemotherapeuthic.
Also we could analyze a model prescribing the combination of radiotherapy and
chemotherapy, as this is done sometimes in practice. This is done quite precisely in
paper [1].

A good extension would be to treat on a tumor consisting of cells susceptible to
chemotherapeutica and additionally of those that are not. This corresponds to the
adding of another equation for the non-susceptibles (which just grow logistically).
The infusion of the drug is continuous, it is consumed also by the not susceptibles.

dN1

dt
= k1N1 (1 − (N1 +N2

Θ
)) − µAN1

dN2

dt
= k2N2 (1 − (N1 +N2

Θ
))

dA

dt
= a∗ − λ1A − λ2AN1N2

It is thus possible to determine for which relation of k1 and k2 and under which
conditions for a∗ the tumor extinguishes.

To model radiotherapy, the LQ-model often is a good choice. Additionally to the
surviving fraction, inclusion of growth between two doses is possible.
As the cells need time to react to the radiation therapy, it also makes sense to include
delay to the model. A possible way to do this is

dN

dt
(t) = k

α
N(t)(1 − (N(t)

Θ
)
α

) − µA(t − δ)N(t)

dA

dt
(t) = a(t) − λ1A(t) − λ2A(t)N(t)

for delay δ.

Modification of the Spatial Model One way to modificate the model for a radially
symmetric tumor and diffusion from the surrounding tissue is to replace the nutrient
by a chemotherapeutic. The biggest difference is, instead of being necessary für the
growth of cancer cells, the drug reduces their proliferation. So we can keep the
equation for the concentration of the diffusing chemical (3.1), just introduce a third
equation for the dose n(r,t) of the chemotherapeutic and change equation (3.2) for
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the outer tumor radius R(t). We describe the drug also according to Fick’s Law.

∂c

∂t
=Dc

1

r2
⋅ ∂
∂r

(r2 ∂c

∂r
) − Γc(c,R,RH ,RN)

∂n

∂t
=Dn

1

r2
⋅ ∂
∂r

(r2∂n

∂r
) − Γn(n,R,RH ,RN)

d

dt
(1

3
R3) = ∫

R

0
P (c,R,RH ,RN) ⋅ r2dr − ∫

R

0
N(n,R,RH ,RN) ⋅ r2dr

for

Γc(c,R,RH ,RN) = γcH(r −RH),
Γn(n,R,RH ,RN) = γnH(r −RN),

(the drug is consumed at a constant rate by the proliferating and hypoxic cells)

P (c,R,RH ,RN) = pc(r, t)H(r −RH),
N(n,R,RH ,RN) = pδA + pδNn(r, t),

(the necrosis rate now depends on the drug concentration

and occurs overall the tumor)

A varification to model radiotherapy for a radially-symmetric, one-dimensional tu-
mor is similar to the chemotherapetic. Let κ be the ionizing radiation. We assume
there is no consumption of the radiation, and it follows Fick’s Law.

∂c

∂t
=Dc

1

r2
⋅ ∂
∂r

(r2 ∂c

∂r
) − Γc(c,R,RH ,RN)

∂κ

∂t
=Dκ

1

r2
⋅ ∂
∂κ

(r2∂κ

∂r
)

d

dt
(1

3
R3) = ∫

R

0
P (c,R,RH ,RN) ⋅ r2dr − ∫

R

0
N(κ,R,RH ,RN) ⋅ r2dr

for

Γc(c,R,RH ,RN) = γcH(r −RH),
P (c,R,RH ,RN) = pc(r, t)H(r −RH),

N(c,R,RH ,RN) = pδA + pδN ∫
R

0
κ(r, t)dr.

The necrosis rate now depends on the radiation allover the tumor as the cells ionize
themselves and activate a chain reaction.

For all of the modifications it makes sense to do some stability analysis, depending
on a∗ as in this thesis. But furthermore, choosing other bifurcation parameters can
be of biological interest. For example, if we variate the proliferation rate k or the
dependence factor µ in equation (2.3), we can compare how a given drug influences
varying cells. In reverse, a shift of λ1 or λ2 (or again µ) corresponds to the injection
of different drugs into a given tumor. Accordingly we can change the bifurcation
parameter in equation (3.1), (3.2).
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