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Abstract

Based on a question raised in [Girolami, Mira], this work investigates
if one can increase the efficiency of the copula-based Markov Chain Monte
Carlo sampler introduced in [Schmidl, Czado, Hug, Theis] by employing
deterministic posterior approximations or methods based on direct eval-
uations of the posterior on a grid (’grid methods’).
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1 Introduction

The problem of this work is located within the field of Bayesian parameter esti-
mation via Markov Chain Monte Carlo(MCMC) simulation. MCMC algorithms
can be used to sample from complicated distributions for which classical sam-
pling procedures break down. See [Brooks et al] for an introduction to the topic.
The downside is that they are computationally expensive and one has to put
effort into maximizing their efficiency.

This work investigates such an efficiency question for the vine-copula based
MCMC sampler introduced in [Schmidl, Czado, Hug, Theis]. This algorithm
has been developed for Bayesian parameter estimation in dynamical systems
modeling biological processes. It incorporates the dependence structure of the
underlying problem by means of a vine-copula in the sampling process. By
exploiting the problemspecific dependence structure this algorithm can outper-
form classical MCMC samplers (see [Schmidl, Czado, Hug, Theis]). It has been
succesfully applied in the inference of dynamical models for biological processes
in [Schmidl] and [Schmidl, Hug et al]. However, the algorithm requires several
computationally costly preperation steps, prior to the actual sampling, to esti-
mate the vine-copula encoding the dependence structure. So far this has been
done by means of a classical MCMC prerun. For high dimensional problems
this prerun and the subsequent copula estimation are very time-consuming and
in terms of efficiency one can argue in favor of less customized samplers: ’... in
high-dimensional systems, it is our experience that simpler sampling algorithms
are often more efficient.’ ([Hug, Raue et al]).
When the copula-based sampler was introduced, in a comment to the article,
it was suggested to circumvent the prerun by using deterministic posterior ap-
proximations for a rough estimate of the dependene structure to increase the
efficiency (see [Girolami, Mira]). The investigation of this question is the objec-
tive of this work. In the progress we use the biological examples for which the
sampler has been introduced for. They possess a rich and very non-standard
dependence structure and one can expect that, by exploiting the dependence,
one can get to a boost in efficiency when compared to a less customized sam-
pler. In addition we investigate the question for ’simpler’ examples, chosen to
highlight specifical features and problems.

The copula-based sampler in question has been developed for the inference
of biological dynamical systems. The distinctive feature of this algorithms is
that it brings together for the first time the two highly popular tools for depen-
dence modelling, copulas, and inference, MCMC samplers. On their own these
tools have been extensively used in the modelling and inference of multidimen-
sional systems. Copula models are applied in such diverse scientific disciplines
as Geostatistics, Ecology ,and Finance (see, e.g., [McNeil, Frey, Embrechts]).
MCMC samplers, on the other hand, can be found, e.g., in the fields of Compu-
tational Physics (see, e.g., [Stickler, Schachinger]) and Econometrics (see, e.g.,
[Greenberg]).

The structure of this thesis is as follows: The first goal is, to (heuristically)
present the original copula-based sampler and compare it to the sampler based
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on a deterministic posterior approximation or a grid method to illustrate the
problem. Afterwards we introduce the necessary notions and notations from
probability theory as well as the posterior approximations. This is followed up
by the introduction of the examples, we use to carry out the sampling. We
conclude with the results.

The problem

Before presenting the necessary mathematical background, we want to give a
brief account of the problem we are dealing with.
The objective of this work is to refine an algorithm which is used for Bayesian
parameter inference by Markov Chain Monte Carlo sampling. The sampler in
question exploits the dependence structure of the underlying problem by in-
corporating it in a problemspecific proposal function. Before starting into the
parameter estimation one needs to have an estimate of the underlying depen-
dence structure. So far, this has been accomplished by using a computationally
rather expensive MCMC prerun, a uniformization step using knowledge on the
type of priors, and a subsequent copula estimation.

The idea, formulated in [Girolami, Mira], is now to substitute the men-
tioned prerun by a presumably less costly deterministic procedure and proceed
as above by uniforization, estimation, and sampling. This deterministic poste-
rior approximations will give us a standardized distribution approximating the
posterior distribution in some ’optimal’ way, depending on the used type of ap-
proximation. With a standardized distribution and an assumption on the type
of marginals one now can either hope to find a formula giving us the dependence
structure directly or estimate the copula based on samples from the approxi-
mated distribution. The question we want to investigate is: By not having to
do the prerun and replacing it by a deterministic procedure we (presumably)
save some computational costs. However, by carrying out an approximation
and a subsequent estimation of the dependence structure one can assume that
one looses some information in the process and that the quality of the copula
estimated from the prerun will be better. This will (presumably) slow down the
main algorithm of the approximation based sampler. The question we want to
investigate is What is faster overall?
Since our investigation is based on a sampler specifically introduced to exploit
the dependence structure we have to monitor what the different approximations
do to this efficiency driver.

The copula based sampler has been introduced for the inference of param-
eters in dynamical systems. We will briefly touch upon this topic and recover
some results presented in [Schmidl, Czado, Hug, Theis] to prove that the sam-
pling results from the approximation based samplers can be used to make state-
ments on dynamical systems. The efficiency question, however, will be treated
seperately without a connection to the inference in dynamical systems. MCMC
samplers are used in a variety of scientific disciplines and the question of efficient
sampling procedures is not restricted to dynamical systems alone.
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2 Preliminaries

The aim of this chapter is to introduce the basic notions and notations from
probability theory, the theory of Markov Chains, Markov Chain Monte Carlo
algorithms and pair-copula decompositions we need to rigorously understand
the problem. It also contains an introduction to Bayesian inference, determin-
istic posterior approximations and profile likelihoods. The presentation follows
Chapter 2 in [Schmidl]. In addition, we give a brief summary of the copula-based
sampling algorithm.

2.1 Probability Theory

In this section basic definition and notations from probability theory will be
stated. A thorough exposition to the theory of probability can be found in
[Durret] or [Klenke].

Definition 2.1.1
A probability space is a triplet (Ω,A,P) consisting of a set Ω ̸= ∅, a σ-Algebra
A on Ω and a σ-additive measure P : A → [0, 1] with P(∅) = 0 and P(Ω) = 1,
called a probability measure.

Elements of A are called events. For A ∈ A with P(A) = 1 we say that ’A
occurs almost surely ’ often abbreviated as a.s..

Definition 2.1.2
Given a probability space (Ω,A,P) and a measurable space (E,E) we call a
map X : Ω → E a random variable if it is (A,E)-measurable, i.e. it fulfills the
property that

∀A ∈ E : X−1(A) ∈ A ,

where X−1(·) denotes the preimage.
We can identify a random variable by its preimage in the following way: For

A ∈ E write
P(X−1(A)) := P(X ∈ A) := PX(A) .

The function PX is called the distribution of X with respect to P. It is a
probability measure and we write X ≈ PX to denote that ’X is PX distributed’.

Definition 2.1.3
For a real-valued random variable X : Ω → Rn on (Ω,A,P) we call the function

FX : Rn → [0, 1], x ∈ Rn 7→ PX((−∞, x1]× ...× (−∞, xn])

the (cumulative) distribution function of X with respect to P.
Definition 2.1.4

If FX : Rn → [0, 1] can be represented in terms of a function fX : Rn → R+
0 by

means of the non-negative Lebesgue integral

FX(x1, ..., xn) =

∫ xn

−∞
...

∫ x1

−∞
fX(x1, ..., xn)dx1...dxn ,
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we call fX the density function of X with respect to P. If there is no ambiguity
we will repress the dependence on X and write f instead of fX and F instead
of FX .

If a distribution function F is sufficiently regular (allowing for the inter-
change of limit (or differenciation) and integral) at x = (x1, ..., xn) ∈ Rn, the
according probability density function f is given by

f(x1, ..., xn) =
∂n

∂x1...∂xn
F (x1, ..., xn) .

The next definitions are made, to acchieve control over partial information
within a multidimensional random variable. Hence, we are interested in defini-
tions of the notions introduced so far, for subvectors of random variables.

Definition 2.1.5
Consider a random variable X = (X1, ..., Xn) : Ω → Rn with density function
fX : Rn → R. Given a subset {n1, ..., nk} ⊂ {1, ..., n} and defining the random
variable Y := (Xn1 , .., Xnk

), and {n′

1, ..., n
′

n−k} := {1, ..., n} − {n1, ..., nk} the
associated distribution function FY is given by

FY (xn1 , ..., xnk
) =

∫ xn1

−∞
...

∫ xnk

−∞

∫ ∞

−∞
...

∫ ∞

−∞
fX(u1, .., un)dun

′
1
...dun

′
n−k

dunk
...dun1 .

FY is said to be the marginal distribution function of Y . Assuming w.l.o.g. that
{n1, ..., nk} = {1, ..., k} the associated density function fY is called marginal
density and is given by

fY (x1, ..., xk) =

∫ ∞

−∞
...

∫ ∞

−∞
fX(x1, ..., xk, uk+1.., un)duk+1...dun .

Definition 2.1.6
We now turn to the question of the distribution within a random variable X =
(Y, Z) given partial information.

More precisely, let Y = (X1, ..., Xk) and Z = (Xk+1, ..., Xn) be two ran-
dom variables. The conditional distribution of Y , given the realization Z =
(xk+1, ..., xn) for some xk+1, ..., xn ∈ R, is defined as

FY |Z(x1, ..., xk|xk+1, ..., xn) :=

∫ xk

−∞
...

∫ x1

−∞

fX(u1, ..., uk, xk+1, ..., xn)

fZ(xk+1, ..., xn)
du1...duk .

As before the corresponding conditional density function is given by

fY |Z(x1, ..., xk|xk+1, ..., xn) =
fX(x1, ..., xn)

fZ(xk+1, ..., xn)
.
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For conditional probability density functions we also introduce the following
result.
Bayes’ Theorem
Let (Ω,A,P) be a probability space and let X and Y be two random variables.
Then, the following equation holds

fX(x|Y = y) =
fY (y|X = x) · fX(x)

fY (y)
.

The next step is the introduction of ’stability results’, i.e. a notion of an
equilibrium state for a stochastic system. In this context we need the notions
of independence and expectation.

Definition 2.1.7
Given a finite sequence of random variables X1, ..., XN on some probability
space (Ω,A,P). Let FX1⊗...⊗XN (·) denote the distribution function, called joint
distribution function, corresponding to the random variable (X1, ..., XN ). The
random variables X1, ..., XN are said to be independent if the distribution func-
tion factorizes into the distribution functions of the individual random variables,
i.e. for xi ∈ Rd

FX1⊗...⊗XN (x1, ..., xN ) =
N∏
i=1

FXi(xi) .

Definition 2.1.8
Let X : Ω → Rn be an integrable random variable.

EPX [X] :=

∫
Rn

XdPX

is referred to as the expectation of X. If there is no ambiguity we write E[X].
Definition 2.1.9

A sequence of random variables X1, X2, ... is said to be identically distributed,
if PX1 = PXi for all i ∈ N.

Let xi denote a realization of Xi.
Theorem - Strong law of large numbers

Let X,X1, X2, ..., be a sequence of identically distributed, independent random
variables. Then

E[X] = lim
N→∞

1

N

N∑
i=1

xi (a.s.).

This theorem is at the heart of every Monte Carlo method. If one is able to
draw independent, identically distributed samples from a distribution PX this
theorem ensures that one can approximate the integral∫

Ω

f(X)dPX = E [f(X)]

as the limit of

lim
N→∞

1

N

n∑
i=1

f(xi) .
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However, to apply this result we have to be able to sample from the distribution
PX in an efficient way. Since inference problems ask questions on the expec-
tation of certain random quantities this result is extremely useful and applied
extensively (see, e.g., [Glasserman]). In the models we have in mind, however,
we only know the distribution up to an (incomputable) constant. Therefore we
have to rely on more evolved sampling techniques (here: Markov Chain Monte
Carlo sampling) violating the assumptions of the theorem above. We have to
ensure that we have an analogue of this theorem in the more general setup.
To introduce this (so called ’ergodic theory’) result is the motivation of the
presentation of Markov Chains in the next subsection.

We furthermore define the following statistical quantities:
Definition 2.1.10

The variance is a measure of how much a random variable scatters. If X
is square-integrable it is defined as

V(X) := E
[
(X − E [X])2

]
The covariance of two random variables is a weak measure of dependence,
i.e how two random variables act together. For one dimensional random
variables X,Y it is defined as

Cov(X,Y ) := E [(X − E[X])(Y − E[Y ])] .

Note, that there are several examples of uncorrelated but dependent ran-
dom variables.

For one dimensional random variables X,Y the Pearson correlation is
defined as

ρ(X,Y ) :=
Cov(X,Y )√
V[X]

√
V[Y ]

.

It is a normalized version of the covariance.

For n-dimensional random variablesX = (X1, ..., Xn) and Y = (Y1, ..., Yn)
the according notions are defined via the following matrices

Cov(X,Y ) := (Cov(Xi, Yj))i,j=1,...,n ,

ρ(X,Y ) := (ρ(Xi, Yj))i,j=1,...,n .

2.2 Markov Chains

This section has the objective of introducing Markov Chains (in discrete time).
This important subclass of stochastic processes has the distinctive feature of
a ’limited memory’. The stochastic properties of an increment of the process
is only dependent on the current state of the process. The technical goal of
this section is, to introduce easy criterions that will give us valid Markov Chain
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Monte Carlo samplers in the sense that the conditions are sufficient for the
’stability result’ mentioned above.

Markov Chains are of great importance, because their structure allows the
introduction of a so called kernel comprising their stochastic properties. The
presentation follows Chapter 2 in [Schmidl] and, starting from the general con-
cept of a stochastic process, only introduces the concepts necessary for applica-
tions in MCMC algorithms. For a thorough introduction to the topic see, e.g.,
[Meyn, Tweedie].

Definition 2.2.1 (Stochastic Process)
Let (Ω,A,P) be a probability space and (E,E) a measurable space. A stochastic
process (Xt)i∈I on some index set I ⊂ N is a function

X : Ω× I → E

(ω, t) 7→ Xt(ω)

such that the functions Xt are random variables (i.e., they are assumed to be
(A,E) measurable).

For a fixed ω ∈ Ω we call the map t 7→ Xt(ω) a trajectory (or sample path
or realization) of (Xt)t∈I .

Definition 2.2.2 (Markov Chain)
Let (Ω, F,P) be a probability space and (E,E) a measurable space. A stochastic
process with values in E is called a Markov Chain, if for any measurable set
A ∈ E , any T ∈ N, T ≥ 2, and any realization (x0, ..., xT ) of (Xt)t∈{0,...,T} the
random variable XT+1 is depending only on xT , i.e.

PXT+1|X0⊗...⊗XT
(XT+1 ∈ A|x0, ..., xT ) = PXT+1|XT

(XT+1 ∈ A|xT ) .

Definition 2.2.3 (Stationary Process)
A stochastic process (Xt)t∈I is said to be stationary, if for all {t1, ..., tk} ⊂ I
and τ ∈ I the joint distributions of

Xt1+τ , ..., Xtk+τ and Xt1 , ..., Xtk

are equal, i.e.

PXt1+τ⊗...⊗Xtk+τ (Xt1+τ , ..., Xtk+τ ) = PXt1⊗...⊗Xtk
(Xt1 , ..., Xtk)

Assumption! From now on we will restrict ourselve to stationary (or ho-
mogeneous) Markov Chains!
Definition 2.2.4 (Kernel)
For a Markov Chain (Xt)t∈I on a probability space (Ω,A,P) with values in E
and a set A ∈ E the distribution

k(A|x) := PXt+1|Xt
(Xt+1 ∈ A|Xt = x) =

∫
A

PXt+1|Xt
(dy|x)

is called the (transition) kernel from x to A.
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Proposition 2.2.1
For the class of Markov Chains we can recover the joint distribution from the
transition kernel, i.e. the transition kernel fully determines the stochastic prop-
erties of the respective Markov Chain, given the chain starts in x0 ∈ E.

Proof A proof of this result can be found in [Schmidl, Prop 2.3].

Properties of Markov Chains
Definition 2.2.5

We call a distribution π invariant (or stationary) for the transition kernel k, if
for any A ∈ E

π(A) =

∫
E

k(A|x)π(dx) .

Definition 2.2.6
A stationary Markov Chain is called reversible, if for A ∈ E

P(Xt+1 ∈ A|Xt+2 = x) = P(Xt+1 ∈ A|Xt = x) .

Definition 2.2.7
A stationary Markov Chain with transition kernel k(dy|x) = p(y|x)dy+r(x)χx(dy)
is said to satisfy the detailed balance condition, if there exists a probability den-
sity function πd, such that

p(x|y)πd(y) = p(y|x)πd(x) .

The next theorem states that the detailed balance condition is a sufficient coni-
dition for the existence of an invariant distribution and reversibility of the re-
spective Markov Chain.

Theorem 2.2.1
If the detailed balance condition holds for a Markov Chain (Xt)t∈I with transi-
tion kernel k, then

1) the associated distribution π is invariant with respect to k

2) the Markov Chain is reversible.

Proof The proof of this result is given in [Schmidl, Thm 2.4].

Since we are interested in the inference of a distribution independent from
the starting value we have to impose further conditions to ensure that the in-
variant distribution is unique. This gives raise to the notion of an equilibrium
distribution.

Definition 2.2.8
If every Markov Chain governed by the transition kernel k is converging to the
same invariant distribution π, independent of the starting value x0 ∈ E, we call
π an equilibrium distribution.
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Further properties of Markov Chains we need to ensure the existence of an
equilibrium distribution are the following

Definitions 2.2.9

AMarkov Chain (Xt)t∈I with transition kernel k is said to be π-irreducible
for a σ-finite measure π, if for any x ∈ E and A ∈ E with π(A) > 0 there
exists an m ∈ N such that the m-step transition kernel

km(A|x) :=
∫
E

km−1(A|y)k(dy|x)

is positive, i.e,
km(A|x) > 0 .

If m = 1 we call a Markov Chain strongly π-irreducible.

Interpretation: An irreducible Markov Chain can reach any point in the
state space in a finite number of steps with a positive probability.

A π-irreducible Markov Chain with transition kernel k is periodic, if for
some integer n ≥ 2 there exists a sequence (E0, E1, ..., Es−1) of pairwise
disjoint non-empty sets Ei ∈ E such that for all i = 0, ..., s − 1 and all
x ∈ Ei

k(Ej |x) = 1 forj = i+ 1 mod s .

A π-irreducible Markov Chain is aperiodic if it is not periodic. Interpre-
tation: An aperiodic Markov Chain does not allow deterministic circles.

Let Px(A) be the probability that, starting at x ∈ E we obtain for the
number ct(A) := |xs ∈ A|0 ≤ t| of visits to some subset A ∈ E that
ct(A) → ∞ for t → ∞.

A Markov Chain is Harris recurrent, if there exists an invariant distribu-
tion π such that for every A ∈ E with π(A) > 0

Px(A) = 1 ∀x ∈ E .

Interpretation: The probability that the Markov Chain visits every point
of the state space infinitely often is 1.

Given the definitions above we can formulate a theorem providing us with the
existence of the (unique) equilibrium distribution.

Theorem 2.2.2
Let (Xt)t∈I be a π-irreducible, aperiodic and Harris recurrent Markov Chain
with transition kernel k and invariant distribution π. Then

1) k is positive Harris recurrent

2) π is the equilibrium distribution
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3) k is ergodic for π, i.e. (Xt)t∈I converges regardless of its starting value
x0 ∈ E.

This theorem states the conditions we have to check, in order ensure that a
given MCMC method is ’valid’.
The following result (Theorem 2.6 in [Schmidl]) is the corresponding stability
result for Markov Chains mentioned in context of the Law of large numbers.

Theorem 2.2.3
Suppose (Xt)t∈I is a positive Harris recurrent and aperiodic Markov Chain with
invariant distribution π. Suppose furthermore that f : E → R is π-integrable,
i.e.

∫
E
|f(x)|π(dx) < ∞. Then for a realization (xt)t∈I we have

1

m+ 1

m∑
t=0

f(xt) →
∫
E

f(x)π(dx) = Eπ [f(E)] ,

where f(E) denotes the image of E under f .

2.3 Vine - Copulas

The notion of a copula is used to factorize a continous n-variate distribution
function F (·) into a part containing information only on the marginals of the
distribution and a second part containing the dependence structure.

Definition 2.3.1
A function C : [0, 1]n → [0, 1] is called n-dimensional copula, if it fulfills the
following properties

1.) C(u) = 0 for all u ∈ [0, 1]n with ui = 0 for some i

2.) C(u) = ui for all u ∈ [0, 1]n with uj = 1 for j ̸= i.

3.) C(u) satisfies the rectangle inequality, i.e. for each hyperrectangle B =∏d
i=1[xi, yi] ⊂ [0, 1]d the volume of B measured by C is non-negative, i.e.∫

B

dC(u) =
∑

z∈×d
i=1{xi,yi}

(−1)|k:zk=xk|C(z) ≥ 0 .

The following theorem shows that the class of copulas is sufficiently rich to
describe joint distributions. It states that for any joint distribution with given
marginals there exists a copula and vice versa, i.e. any set of marginals together
with a copula will give a well-defined joint distribution.

Although we will use Sklar’s theorem repeatedly in the construction of pair
copula decompositions, we will not give a proof here. (see, e.g., [McNeil, Frey,
Embrechts] or [Nelsen]).

Theorem (Sklar)
Suppose F is an n-dimensional distribution function with continous univariate
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marginals F1, ..., Fn. Then there exists a unique copula C, such that for all
x = (x1, ..., xn)

′ ∈ Rn

F (x) = C(F1(x1), ..., Fn(xn)) .

Conversely, for any copula C and univariate distributions F1, ..., Fn the func-
tion F defined by F (x) = C(F1(x1), ..., Fn(xn)) is a multivariate distribution
function with margins F1, ..., Fn.

In our MCMC application we will use special classes of density functions.
From this perspective it is desirable to immediately draw a connection between
a distribution function, its marginals and the role of the copula therein.

Suppose C and F are sufficiently regular. Then, by the chain rule, we get

f(x) =
∂C(F1(x1), ..., Fn(xn))

∂F1(x1)...∂Fn(xn)

n∏
i=1

fi(xi)

at some point x = (x1, .., xn) ∈ Rn. This factorization suggests

c(F1(x1), ..., Fn(xn)) :=
∂C(F1(x1), ..., Fn(xn))

∂F1(x1)...∂Fn(xn)
.

Hence, every probability density function f can be decomposed as a product

f(x) = c(F1(x1), ..., Fn(xn))
n∏

i=1

fi(xi) .

As mentioned before, the copula part models the dependence structure be-
tween the components of a random vector. Classically (as in the case of Archi-
median or Elliptical copulas - see [McNeil, Frey, Embrechts]), one only had the
possibility to choose one model of dependence for all the relationships between
the components of a random vector.

The class of useful copula models has been considerably extended by the
usage of pair copula decompositions introduced in [Bedford,Cooke 1,2] allowing
for much more flexibility in the dependence model. ’Useful’ here refers to effi-
cient sampling and estimation procedures one needs for practical applications
(see [Mai, Scherer]). We follow [Aas et al] for the introduction of these pair
copula decompositions.

Suppose X = (X1, ..., Xn)
′ is a random vector with distribution function

F (x1, ..., xn) and a probability density function f(x1, ..., xn). Then, given the
definitions from the section on probability theory, we can write

f(x1, ..., xn) = f(xn) · f(xn−1|xn) · f(xn−2|xn−1, xn) · ... · f(x1|x2, ..., xn) . (1)

By using Sklars Theorem repeatedly we derive a pair copula decomposition
iteratively in the following way.

n = 2 By Sklars theorem we know that we can represent the joint distribution
f(x1, x2) as

f(x1, x2) = c12(F1(x1), F2(x2)) · f1(x1) · f2(x2) . (2)
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In addition we know that we can represent f(x1, x2) as

f(x1, x2) = f(x2) · f(x1|x2) . (3)

This yields
f(x1|x2) = c12(F1(x1), F2(x2)) · f1(x1) . (4)

n = 3 We consider the conditional joint distribution f(x1, x3|x2) and the two
representations

f(x1, x3|x2) = c13|2(F1(x1|x2), F3(x3|x2)) · f(x1|x2) · f(x3|x2) (5)

and
f(x1, x2|x3) = f(x3|x2) · f(x1|x2, x3) , (6)

i.e.
f(x1|x2, x3) = c13|2(F1(x1|x2), F3(x3|x2)) · f(x1|x2) . (7)

By using the case n = 2 we can continue to

f(x1|x2, x3) = c13|2(F1(x1|x2), F3(x3|x2))·c12(F1(x1), F2(x2))·f1(x1) (8)

implying

f(x1, x2, x3) = f3(x3) · c23(F1(x1), F2(x2))f2(x2)

· c13|2(F1(x1|x2), F3(x3|x2))c12(F1(x1), F2(x2))f1(x1) (9)

for the decomposition of the joint distribution.

general n For general n ∈ N we get that the decomposition of the conditional density
function f(xt|xt+1, ..., xn) is given by

f(x|v) = cxvj |v−j
(F (x|v−j), F (vj |v−j)) · f(x|v−j), (10)

where v = (v1, ..., vn) is an n-dimensional vector and vj is its j’th compo-
nent and v−j = (v1, ..., vj−1, vj+1, ..., vn) is the n − 1 dimensional vector
missing the jth-component of v.

Note that in general this conditional pair copula densities depend on the
conditional values v−j . We will assume that this is not the case, i.e. that
the dependence on the conditioning values is captured by the values of
F (xt|v−j) and F (vj |v−j). [Hoebaek Haff et al] argue that this is not a
severe assumption.

Hence we can iteratively decompose an n-dimensional joint distribution
into its components.

The decomposition given above is by no means unique. For example, in the
case n = 3 one could have used a similar argument to decompose for f(x1, x2|x3)
instead of f(x1, x3|x2). To develop efficient estimation and sampling algorithms,
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it is advisable to introduce some kind of ’standardized layout’ for the decom-
position. This gives raise to the notion of ’vines’ and their associated ’vine
copulas’. For a thorough introduction to vine copulas see [Kurowicka, Joe].
The decomposition given above for n = 3 corresponds to the so called D-vines.
To formally introduce this notion we need some definitions from graph theory

Definition 2.3.2

A graph is a pair G = (V,E) of sets V and E ⊂ V × V , where for k, l ∈ N
V = {v1, ..., vk} is a set of vertices and E ⊂ (V × V ) = {e1, ..., el} is a
set of edges. In the following we equip E with an equivalence relation by
identifying (vi, vj) and (vj , vi) for all i, j ∈ {1, ..., k}. This corresponds to
the notion of an undirected graph.

We call P = (V ∗, E∗) a path if for a pairwise disjoint set of vertices
{v∗1 , ..., v∗m−1} and an additional vertex v∗m it holds that V ∗ = {v∗1 , ..., v∗m} ⊂
V , and E∗ = {(v∗1 , v∗2), (v∗2 , v∗3), ..., (v∗m−1, v

∗
m)} ⊂ V × V . P is said to be

cyclic, if v∗m = v∗1 .

A graph is called acyclic if it does not contain any cyclic paths. An acyclic
graph T = (V,E) is called a tree. For more notions on graph theory, see
[Diestel].

With these definitions we can follow up by introducing ’vines’:

Definition 2.3.3
A regular vine on n ∈ N vertices is a collection of (n−1) trees V = (T1, ..., Tn−1)
such that:

1.) T1 = (V1, E1) has the set of vertices V1 = {v1, ..., vn}.

2.) For i = 2, ..., n− 1 the set of vertices Ti = (Vi, Ei) is given by Vi = Ei−1.

3.) For i = 2, ..., n − 1 every element (vi, v
′

i) ∈ Ei consists of two elements

(vi−1, v
′

i−1) and (wi−1, w
′

i−1) ∈ Ei−1 where exactly one of the v’s coincides
with one the w’s.

Definition 2.3.4: A regular vine is called D-vine, if the degree of each
vertex v in T1 is at most two, i.e. v is contained in at most two edges of E1.

An illustration of a D-vine copula can be found in Figure 1.
Now we want to illustrate a situation in which we can identify the pair-

copula decomposition of a jointly normally distributed random variable under
the assumption of standard-normal marginals. For more general situations,
similar results seem not to be known.

2.3.1 Analytic solutions

Under the assumption that the marginals of our model are standard-normal and
the posterior is a joint normal distribution the corresponding copula is a gaussian
copula. This copula can be (analytically) indentified with the corresponding
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Figure 1: D-Vine structure for 5 random variables The nodes of each
of the five trees are enumerated by conditioned and conditioning set of the
copula assigned to it. For an n-dimensional model the number of copulas to be

estimated is n∗(n−1)
2 .

pair copulas by choosing the pair copulas to be also gaussian copulas with
coefficients according to the partial correlation. The following 3-dimensional
example is taken from [Aas et al] (Section 2.6): Given a multidimensional normal
distribution with correlation matrix

Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1


, and standard normal marginal distributions, the pair copula decomposition
of f is given by: c12 Gaussian copula with parameter ρ12, c23 Gaussian copula
with parameter ρ23 and c13|2 Gaussian copula with parameter

ρ13|2 =
ρ13√

1− ρ212
√
1− ρ223 + ρ12 · ρ23

,

the so called partial correlation. Similar results (i.e. a clear analytic identifi-
cation of the copula) for non-normal joint distributions or normal-distributions
with non-normal marginals seem not to be known. In addition this result seems
not useful in the context of simulation, since there exist several streamlined al-
gorithms to sample from multivariate normal distributions (see, e.g., [McNeil,
Frey, Embrechts] or [Glasserman]). In terms of efficiency it is not feasible to
sample from a mutlivariate normal distribution by an MCMC sampler.

2.4 Bayesian inference

In this section we want to give a brief account of Bayesian Inference. The
presentation follows Chapter 3 of [Schmidl] and is occasionally supported by
comments from [Lawrence et al].

The main advantages of employing Bayesian techniques are the following:

16



Since we can expect our data to contain a considerable amount of noise
we are not just interested in some ’optimal’ value for the parameters of
our system but also in the stability of those parameters with respect to
the noise. In addition one might not have access to a sufficient amount
of data. The Bayesian approach allows for a control of the uncertainties
caused by those effects.

The Bayesian framework will allow us to incorporate opinions we might
have on the distribution of parameters into the statistical procedure. This
allows us to incorporate more information on the problem than classical
statistical procedures, like e.g. Maximum Likelihood Estimation, leading
- presumably - to better results.

The metholodical difference of classical, or ’frequentistic’, approaches in con-
trast to the Bayesian ones lies in the interpretation of the parameters of the
underlying system. Classically one views observations y = {y1, ..., yn} as real-
izations of a model given a parameter vector ξ = (ξ1, ..., ξm), i.e. samples from
the random variable X ≈ f(y|ξ) for some density function f . In the Bayesian
approach, however, we will view the parameter vector ξ = (ξ1, ..., ξm) as a re-
alization of the observations y = {y1, ..., yn}, i.e. we want a distribution of
the type π(ξ|y). This distribution is called the posterior distribution and the
introduction of the object π(ξ|y) is the goal of this section.

Given the density function f(·|ξ) we define the likelihood function or simply
likelihood for y = (y1, ..., yn) by

L(y|ξ) = L(y1, ..., yn|ξ) :=
n∏

i=1

f(yi|ξ) .

The likelihood contains the information on how well a given set of observations
is explained by the model, given the model is parametrized by ξ = (ξ1, ..., ξn). In
addition we introduce the prior density π(ξ), a function containing information
on the distribution of the paramters before the observation of y. We can now
define the posterior distribution π(ξ|y) by

π(ξ|y) := L(y|ξ) · π(ξ)
p(y)

,

where p(y) is the so called model evidence (or marginal likelihood) and is defined
by

p(y) :=

∫
Rn

L(y|ξ) · π(ξ)dξ .

The posterior distribution π(ξ|y) is well defined by Bayes’ theorem. The model
evidence is needed to ensure that π is indeed a probability distribution. Note
that for a fixed vector of observations y the model evidence is just a constant.

In general, the model evidence is analytically and numerically intractable.
However, it plays a crucial role in the field of model selection and hence there
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are methods that deal with its approximation (see, e.g., [Schmidl, Hug et al] or
[Schmidl, Ch. 3.4]).

However, in the following we will introduce a set of algorithms that does not
depend on the knowledge of the model evidence. Hence, we assume that the
constant is unknown.

2.5 Markov Chain Monte Carlo samplers

In this section we want to adress the question of constructing a Markov Chain
with a given equilibrium distribution π. If one is able to construct such a Markov
Chain this will provide us with a method to sample from the target distribution
π.

This section is entirely devoted to the discussion of one particular MCMC
sampler, called the ’Metropolis-Hastings algorithm’. This type of sampler allows
us, in addition to sampling from the distribution π, to circumvent the problem
of an incomputable ’model evidence’, i.e. to sample from π by only having access
to 1

cπ for an unknown constant c. In addition this allows for more general prior
choices, since they do not have to be normalized.

The presentation of this chapter is based on [Liang et al] and [Del Moral]
with occasional supplementary comments from [Lawrence et al].

For a historic overview, see [Brooks et al].

Construction of the Markov Chain

Given a target distribution π with density function πd, we want to construct
a Markov Chain X with equilibrium distribution π. As pointed out earlier
(Proposition 2.2.1), it is sufficient to construct the kernel of the Markov Chain.
For our goal we need to be able to express the kernel K in terms of the target
distribution π (or its density function πd). To do this, we use precisely the
properties of Markov Chains defined in section 2.2. From this point of view we
note that the detailed balance condition already provides a connection between
a part of the kernel k(x, y) = p(x, y) + r(x) and πd:

p(x|y)πd(y) = p(y|x)πd(x) .

The following scheme, called the Metropolis-Hastings algorithm provides us with
a solution to our problem:

1.) Given that the Markov Chain (X)n∈N is in state Xn, draw a proposal
y from a proposal function q(y|Xn).

2.) Compute the acceptance ratio

α(Xn, y) = min

{
1,

πd(y)q(Xn|y)
πd(Xn)q(y|Xn)

}
.

and set Xn+1 = y with probability α(x, y) or Xn+1 = Xn.
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For one run of this scheme we note the following facts:

1.) Although there is a dependence on the density function πd (containing
the incomputable constant) there is no dependence on the ’model evidence’
since it factors out.

2.) For one run of this scheme we only need to know the current state
of the process Xn and a proposal function q(·, ·) of our choice. I.e. the
stochastic transition fromXn toXn+1 fulfills the Markov Chain definition.

3.) The α(·, ·) in step 2 is chosen such that the detailed balance condition
holds:

πd(x)q(y, x)α(x, y) = πd(y)q(x, y)α(y, x) .

If α(x, y) = 1, then α(y, x) = πd(x)q(y,x)
πd(y)q(x,y)

, implying the detailed balance

condition. The other case follows similar.

To be more precise, the scheme provides us with the following kernel

k(x, y) = q(x, y) · α(x, y) + δx · (1− α(x, y)) .

We already saw that the kernel fulfills the detailed balance condition. By The-
orem 2.2.1 this implies that there exists an invariant distribution, independent
of the choice of the proposal function q(·). However, the performance of this
scheme is highly dependent on the choice of the proposal function! In their
paper, [Schmidl, Czado, Hug, Theis] made this algorithm problem specific in
the sense that they incorporated the dependence structure of the parameters.
To obtain a valid sampling procedure one has to check the existence of an equi-
librium distribution. To apply the respective theorem one has to check the
properties π-irreducibility, aperiodicity and Harris recurrence. Those properties
are dependent on the choice of q. For the problemspecific copula-based proposal
function this has been done in [Schmidl].

Problems of the Metropolis-Hastings sampler

Although Metropolis-Hastings samplers allow to sample from a large set of dis-
tributions we conclude this section by some remarks on their drawbacks. Es-
sentially they are related to the question of efficiency. We want to mention the
following three problems

1.) Correlation within the chain: Although in the long run the samples from
a Metropolis-Hastings sampler follow the equilibrium distribution π, sam-
ples that are close to each other in the Markov Chain are dependent on
each other. This means that if one wants to have a set of independent
samples from the posterior distribution, one has to discard a number of
samples from the chain to achieve this goal. If the dependence, e.g. mea-
sured by the autocorrelation, within the samples is high this can make the
Metropolis-Hastings sampler very slow.
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2.) Convergence to the equilibrium distribution: When one starts to draw
samples via a Metroplis-Hastings algorithm one has to wait until the
Markov Chain converges to its stationary distribution π. This might
take a significant amount of time. Classical estimates on this conver-
gence topic can be found in [Meyn, Tweedie]. More general results (for
so called Feynman-Kac semigroups) can be found in Chapters 4 and 5 of
[Del Moral]. Note that this more general setup still allows for Metropolis-
Hastings type algorithms extensively used in various scientific disciplines.

3.) Getting stuck: If the Markov Chain is in a local optimum of the posterior
distribution, the corresponding α might be very low. Consequently it is
possible that the Markov Chains stays in the local optimum for a very
long time.

Copula based MCMC sampling

We can now give a short summary of the copula based sampling procedure based
on a prerun. This section follows Section 4 in [Schmidl, Czado, Hug, Theis].
The sampling scheme consists of 4 steps:

1.) A prerun: Via any given Markov Chain sampler an initial Markov Chain
(Xi)i∈{1,...,T} for some T > 1 is sampled. We can view (Xi)i∈{1,...,T} as a
matrix in Rn×T where n denotes the dimension of the state space, i.e. for
every i ∈ {1, ..., T} we have Xi = (Xi,1, ..., Xi,n)

′.

2.) A uniformization step of the prerun samples: Since copulas are defined on
[0, 1]n we have to transform the samples of step 1 to the copula domain.
This is done by fitting the samples in the respective dimension by the class
of distribution given by the prior, i.e. (Xi,1)i∈{1,...,T} are used to fit a dis-
tribution function Gθ1,1(·) of the type the first prior has, and similarly for
the other dimensions. By using the fitted marginals (Gθ̂j ,j

(·))j∈{1,...,n} we

can transformXi = (Xi,1, ..., Xi,n)
′ to Yi = (Gθ̂1,1

(Xi,1), ..., Gθ̂n,n
(Xi,n)) ∈

[0, 1]n in the copula domain.

3.) A D-vine copula estimation based on the prerun samples: Using (Yi)i∈{1,...,T}
an η-parametrized D-vine copula density

c1...n(Y |η) =
n−1∏
j=1

n−j∏
i=1

cj,j+i|j+1...j+i−1(F (yj+1...j+i−1, η), F (yj+i|yj+1...j+i−1, η)|η)

is fitted by the AIC approach from section 3 in [Schmidl, Czado, Hug,
Theis]. The vector η = (ηi|j+i|(j+1)...(j−1+i))j∈{1,...,n−1},i∈{1,...,n−j} con-
tains the types and parameters of the copulas.

4.) The copula-based Markov Chain Monte Carlo sampling: First, a sam-
ple Ỹ = (Ỹ1, ..., Ỹn) ≈ c1...n(y|η̂) is drawn from the estimated copula
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c1...n(y|η̂). By the marginals from step 2) the sample is transformed to
X̃ = (G−1

θ̂1,1
(Ỹi,1), ...., G

−1

θ̂1,n
(Ỹn). This yields a proposal from the density

q1(X|θ̂, η̂) := c1...n(Gθ̂1,1
(X1), ..., Gθ̂n,n

(Xn)|η̂) ·
n∏

i=1

gθ̂i,i(Xi) .

To ensure convergence of the proposed sampling scheme, a heavy tailed
distribution is added to make the proposal function uniformly heavier in
the tails than the posterior distribution. With this, the strong Doeblin
condition is satisfied (see [Holden et al]). In addition, the Metropolis
Hastings acceptance probability satisfies the detailed balance condition.
In [Holden] it was shown that these two conditions imply the convergence
of the respective Markov Chain.

In addition, a third density function is added to allow for regular Ran-
dom Walk Metropolis Hastings steps. Concluding, the proposal density
function looks as follows

qcop(Xn+1|Xn, θ̂, η̂) := r1q1(Xn+1|θ̂, η̂)+r2q2(Xn+1|Xn)+(1−r1−r2)q3(θ),
(11)

where r1, r2 ∈ [0, 1) are constants with r1 + r2 < 1.

The problem revisited

We see that substituting the prerun in step 1) of the sampling procedure above
has no logical implication on the sampling scheme. Any other way, to come
up with samples from the posterior can be used to start the sampling scheme.
Below we will investigate if the efficiency of the copula-based sampler can be
increased, by using samples generated by other means than a MCMC prerun.
To this end deterministic posterior approximations and profile likelihoods are
introduced.

2.6 Deterministic posterior approximations

As pointed out in the section on Bayesian inference one main obstacle for
Bayesian methods is the computation of the ’model evidence’ resulting in an
unknown scaling factor of the posterior distribution. This section introduces
techniques to find standard distributions that approximate the posterior by
means of properties that do not require knowledge on the model evidence con-
stant.

In context of our problem the idea is the following: Given these techniques
we approximate the posterior by a structurally easier distribution preserving
as much weight of the true distribution as possible. Since the approximated
distributions are structurally easier one can hope to find deterministic estimators
for the parameters of the copula or at least draw samples from them, which one
can use to fit the copula to. One question we have to monitor is whether the
concept ’inclusion of the dependence structure in the sampling process’ for which
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the given sampler has been developed for in the first place is compatible with
the assumptions and construction principle of the posterior approximations. We
claim that this will not be the case for methods relying on variational inference.
The calculations below do not rely on access to the model evidence.

2.6.1 Laplace Approximation

The posterior is approximated by a normal distribution identified by the Maxi-
mum Posterior Estimate and the curvature at this point. Note that the location
of the Maximum Posterior Estimate is not influenced by monotone transforma-
tions (i.e. in particular one does not have to know the model evidence constant
and one can transform the posterior (modulo constant) by monotone transfor-
mation like the logarithm to make it analytically more tractable).

For reasons of readability we will give the derivation of Laplaces method only
in the 1-dimensional case. Higher dimensions follow analogously by substitution
of one-time derivatives by gradients and second-order derivatives by Hessians.

Derivation

Initially, the Laplace approximation was introduced, to give approximations for
integrals of the form ∫

eS(x)dx .

To this end, the function we will use in the derivation will be the logarithm of
the posterior, i.e. ∫

eS(x)dx =

∫
eln p(x)dx =

∫
p(x)dx ,

where one identifies the integral on the right as the model evidence.

Let p(x) := f(x)
α be the posterior with the unknown model evidence α.

The Taylor serios expansion of ln f(x) is

ln f(x) = ln f(x0)+
∂ ln f(x)

∂x
(x0)·(x−x0)+

1

2

∂2 ln f(x)

∂x2
(x0)·(x−x0)

2+higher terms .

Consider the first order term

∂ ln f(x)

∂x
(x0) · (x− x0) =

1

f(x)

∂f(x)

∂x
(x0) · (x− x0) .

This term is zero in a maximum (local or global) xmax of f(x).
This means that at a maximum the Taylor expansion simplifies to

ln f(x) = ln f(xmax) +
1

2

∂2lnf(x)

∂x2
(xmax) · (x− xmax)

2 + higher terms .

After an exponentiation and assuming that the higher order terms are negligable
we reach

exp(ln f(x)) = exp

[
ln(f(xmax)) +

1

2

∂2 ln f(x)

∂x2
(xmax) · (x− xmax)

2

]
.
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which corresponds to a gaussian density with mean xmax and volatility− 1
f ′′ (xmax)

.

In conclusion: The steps we need to do in order to apply the Laplace Ap-
proximation on a posterior distribution p(·) are

1.) Find the Maximum Posterior estimate θ̂.

2.) Calculate the Hessian at θ̂: Hln(p(·))(θ̂).

3.) The Laplace Approximation of p is given by N (θ̂,−Hln(p(·))(θ̂)
−1).

Discussion: Based on the steps of the approximation one immediately sees
that this approximation is very sensitive with respect to the local shape of
the posterior at the mode and in addition requires the posterior to be a C2-
function, at least for the point at which the Hessian is calculated. This last
point will turn out to be a problem for an example with a triangle distributed
prior. At the maximum of a triangle distribution the Hessian is not defined. In
addition, since the dependence structure is a very non-local property, and this
approximation only considers the curvature at one point, we cannot expect this
approximation to work very well. In fact, given a fixed set of marginals, every
type of dependence structure in the original posterior distribution is simply
substituted to the dependence structure compatible with the priors and a joint
normal distribution.

By Sklar’s Theorem, and given a fixed set of marginals, we can decom-
pose the posterior distribution p(θ) into a copula and a set of marginals
(fi(·))i∈{1,...,n}

p(θ) = cp(·)f1(θ1) · ... · fn(θn) .

If we now approximate the left hand side by a normal distribution and
stay with the same marginals the copula is (on the basis of the evaluation
of the curvature of one point of the true posterior) substituted by the
one that is compatible with the marginals and the approximated posterior
distribution

papp(θ) = cpapp(·)f1(θ1) · ... · fn(θn) .

The existence of this copula is again guaranteed by Sklar’s Theorem.

For standard-normal priors, for example, this would correspond to the gaussian
copula. However, the dependence structure after the approximation is solely
based on this compatibility and is, in general, chosen out of very limited infor-
mation on the original problem.

In context of the copula-based sampler, situation is slightly different. We
only have an opinion on the type of marginals. The estimation of the marginals,
used for the uniformization und subsequent copula estimation, is carried out af-
ter the approximation (in step 2 of the sampling scheme). Hence, the marginals
we will estimate from the (normally distributed) approximated posterior are
those distribution that explain best the given marginal of this posterior, i.e. a
normal distribution, or a truncated normal distribution in case the priors are
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not defined in all of R. This corresponds to fitting, if we assume that the prior
is student distributed, a student distribution to normally distributed data. For
the case of a log-normal prior we would fit the marginal to data from a trun-
cated normal distribution. This allows for more flexibility than for a fixed set
of marginals.

Coming back to the fitting properties of the laplace approximation, we note
that for multimodal distribution it might not conserve much probability weight
of the original distribution. This however, can be limited to some extend by
localizing local minima and perform laplace approximations for each of the
modes. Those laplace approximation can be merged into a gaussian mixture
model weighted with the value of the posterior at the mode. We will call this
approximation gaussian mixture laplace approximation. Futhermore, one en-
counters some computational obstacles in the process of the implementation:
For the application of the original, unimodal Laplace Approxmation one has to
note that the posteriors of applications are not necessarily unimodal, i.e. one
has to ensure that the maximum one uses in the approximation is the global
one and not only a local one. For unknown posteriors this might turn out to be
computationally expensive. In the implementation this is carried out via latin
hyper cube sampling. In terms of efficiency this question would highly benefit
from a parallel implementation (e.g. by means of Nvidias CUDA-architecture).
Esspecially when minimizing the loss of information in the approximation pro-
cess by using the multimodal gaussian mixture laplace approximation, one has
to calculate the Hessian at the respective modes. Esspecially in higher dimen-
sions this task is computationally challenging. In the implementation we use
’Adaptive Robust Numerical Differentiation’. A pack of MATLAB-functions
made available by John D’Errico. MATLABs own Hessian-computations pro-
vided by fmincon and fminunc do not show satisfactory results. One also has
to note that the posterior has to be sufficiently regular to calculate the Hessian,
i.e. a C2-function.

On the other hand it is very easy to generate samples from this normally
distributed approximation (see, e.g., [McNeil, Frey, Embrechts]) or the respec-
tive gaussian mixture model that one can use for the estimation of the copula.
Under very restrictive assumptions on both, joint distribution and marginals,
one can also write down the pair-copula decomposition directly, as noted in the
section on pair-copula decomposition (see also [Aas et al], Section 2.6).

2.6.2 Variational Inference

In the introduction to this chapter it was claimed that copula structures are
incompatible with Variational Methods: The variation argument relies on the
assumption that the joint distribution factors over a subset of the marginal
distributions (see, e.g., [Lawrence et al])

f(x) =
∏
i∈I

fi(xi) (12)
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and minimizes, e.g. the Kullback-Leibler divergence (a distance measure be-
tween distributions - see, e.g., [Lawrence et al]) of the object above to the true
posterior by an argument based on methods from the calculus of variation. Since
the Bayesian framework and the copula estimation procedure rely on prior in-
formation and a uniformization in every component, the only option is to use
the factorization

n∏
i=1

fi(xi) , (13)

where we can assume that fi is in the class of the priors. Although it is very
simple to sample from this distribution, from a probability perspective this
factorization corresponds exactly to the definition of independence. If we would
continue from step 2.) in the copula estimation procedure we would, naturally,
recover the independence copula, i.e. a complete negligation of the dependence
of the parameters. To challenge the assumption on the decomposition makes the
corresponding calculus of variation problem inapproachable: Given a variational
problem of the type

p(x) = inf
c∈Cop,fi

c(x)
n∏

i=1

fi(xi) (14)

one has to define a distance measure on the copula space Cop (i.e. the set of
objects whose existence one gets by Sklar’s theorem projected on the span of
the copulas that are representable via vine copulas) that is either compatible
with the distance measure one uses to optimize the fi’s (in case of a simultane-
ous optimization) or orthogonal to the optimzation procedure over the fi’s (in
case of an iterative scheme). Considering one has knowledge on the posterior
p(·) and knowledge on the type of the marginals fi, one could argue that one
can find a set of ’suitable’ copulas (by Sklar’s theorem one for every possible
parametrization of the marginals). Now one could try to find the best combi-
nation of the marginals and the copula explaining the posterior. If there is an
analytical method to approach this problem we consider it beyond the scope of
this thesis.

[Lawrence et al] note that there are situations where variational inference
’leads to poor approximations because it does not capture important statistical
relationships between parameters in the posterior distribution.’.

2.7 Profile Likelihoods

The last two subsections showed that one cannot expect a deterministic poste-
rior approximation to work very well. One therefore can ask whether one can
synthesize a manageable but representative amount of data from the posterior
based on direct evaluations of the posterior and perform the copula estimation
based on those samples. The first guess here is to set up a set of hyperplanes
and use the intersection of the planes as points in the grid (an option dicussed
later). However, since the pratical problems we will be dealing with are highdi-
mensional this approach is unfeasible and we instead have to rely on a method
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taking into account the shape of the posterior in all of space and giving out a
limited amount of representative data. To this end we introduce profile likeli-
hoods, a tool initially designed to answer questions concerning the identifiability
of parameters (see [Raue et al]).

Definition Given a parameter space Ω ⊂ Rd and a likelihood function
L : Ω → R the profile likelihood function Li

PL : R ⊃ A → R for the parameter
θi ∈ A is defined as

Li
PL(θi) = sup

θ∈Ωθi

{L(θ)} ,

where Ωθi ⊂ Ω denotes the set

{θ = (θ1, ..., θn) ∈ Ω : θi fixed }.

For more information see [Murphy, van der Vaart] and [Venzon, Moolgavkar].
Figure 2 depicts information on profile likelihoods for a two dimensional normal
distribution with correlation parameter 0.7.

Since our goal is to infer a dependence structure out of the samples we draw
from this profile likelihood we have to ask if the shape of the profile likelihood
is representative for the underlying copula. Figure 3 shows that this can be a
problematic question: Given the same profile likelihoods, the underlying distri-
butions can have different shapes, i.e. there is variety of relevant information
in the posterior that is not represented in the profile likelihood. The picture on
the left shows the niveau sets and profile likelihoods of a two-dimensional nor-
mal distribution. For the normal distribution the profile likelihoods follow the
principal axis and if we consider a singular niveau set the points in the profile
likelihood are given by the vertices of the ellipse (as depicted in the plot on the
bottom right of the figure on normal distributions). If we consider the normal
distribution and assume standard normally distributed marginals we know from
the section on pair copulas that the corresponding dependence structure for this
model is given by a gaussian copula. Let us focus on one niveau set. For an un-
correlated (i.e. independent) joint normal distribution, the points of the niveau
set that are in the profile likelihood are the ones where the ellipse intersects
with the axis. If we fix those points and consider the definition of the profile
likelihood we see that we can change the niveau-set within the boundaries of
the hyperplanes running through the vertices of the ellipse. For a fixed set of
given marginals this correponds to very different choices of copulas having, e.g.,
different symmetry properties (Figure 3). As long as we do this same kind of
change for every niveauset without changing the area of the niveauset we know
by that we still have a probability distribution (Cavalierie’s principle). However,
the respective copulas of all the three examples have to be different and are not
elliptic anymore, i.e. belong to a different copula family. Although the profile
likelihoods will turn out to be very useful in the sampling process this argument
shows that one cannot expect them to work for every example.
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Figure 2: Profile likelihoods for a two dimensional normal distribution
with correlation of 0.7 On the top left the profiles are shown. The figure on
the top right shows the location of the profiles. The figure at the bottom right
shows the niveau sets of the normal distribution. The horizontal and vertical
line represent a fixed value for either x or y. Along this line the point with the
highest value, i.e. the point in the profile likelihood, is the single intersection
between the niveau set and the line.
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Figure 3: Variability of the posterior for fixed profile likelihoods We
considered a niveau set and asked how much of the weight in this set is fixed
by the location of the points in the profile likelihood. The figure depicts one
possibility to ’push around’ the weight in the distribution without changing
the profile likelihoods. The green areas (top left and bottom right) are added
whereas the red area (bottom left) is taken away to reach a distribution with the
same profile likelihoods but different symmetry properties. Since the marginals
are fixed ex ante this would correspond to a different copula by Sklar’s theorem.
The corners were chosen arbitrarily. Hence, we can construct a variety of distri-
butions with the same profile likelihoods but different dependence structures.
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3 The examples

This section is devoted to a brief presentation of the models for which the
efficiency analysis of the sampler is carried out later

3.1 A highly correlated normal distribution

In the first example we draw samples from a 3-dimensional normal distribution
N (0,Σ) with covariance matrix

Σ =

 1 0.95 ∗
√
3 0

0.95 ∗
√
3 3 0

0 0 2

 .

This example is chosen to illustrate that the Laplace Approximation works and
can give good results. The example has been chosen to be three dimensional to
fulfill the input assumptions of the copula estimation procedure. The marginals
for this model are assumed to be normally distributed. In addition, we note
that the high correlation was chosen to show difficulties for profile likelihoods
applied to normal distributions.

3.2 Banana shaped distribution

This problem has been chosen to illustrate that we can not expect that the
approximation methods we use can be applied to every kind of distribution.
In fact, we will see that the copula estimation procedure does not cover the
dependence between the parameters of this distribution very well and therefore
the acceptance rates are relatively low, considering that it is a two dimensional
example. In addition, we immediately see that the likelihoods introduced before
are not well defined for this example. For every negative for x there are two
points (x, y1) and (x, y2) with p(x, y1) = p(x, y2) = L1

PL(x).
All those problems are caused by the symmetry properties of this distribu-

tion. Instead of being symmetric with respect to a point, it is symmetric with
respect to an axis. This already excludes the well-understood elliptical copulas.
In addition, the weight is mainly distributed in the vicinity of a parabola; a
shape which seems to be difficult to capture by the pair copula decomposition.
In other words, we observed that the dependence structure for this model can, in
general, be not covered very well by the vine copula decomposition. If we assume
this hypothesis we can expect that the samplers based on an approximation or
grid method perform reasonably well against the prerun based sampler because
the copula estimation is not able to utilize the (presumably) better information
in the prerun. We encountered this distribution in [Girolami, Calderhead]. The
marginals for this model are assumed to be normally distributed.
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Figure 4: Scatterplot for a prerunbased copula MCMC run of length
25000 for the bananashaped distribution
We note that for most of the runs we did not see a symmetric exploration of
the upper and the lower tail of this distribution. This could be one of the
reasons that the copula for this model is estimated rather badly and only yields
acceptance rates between 0.2 and 0.3.
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3.3 A biokinetic model for the processing of Zirconium in
the Human Body

This subsection introduces a biologically motivated dynamical system. We start
with a brief discussion of biokinetic (or compartment) models and give an illus-
tration for parameter estimation for such systems. In addition we introduce a
model for the processing of zirconium in the human body. This section summa-
rizes several ideas presented in [Schmidl] and [Schmidl, Hug et al].

A compartment model is a collection of mutually exclusive compartments
together with a set of transition equations. In the context of biology the com-
partments can, e.g., correspond to different major parts of an eco system or, as
in the model we will be interested in, major organs and tissues in the human
body. Compartment models are, e.g., used to describe the density of a chem-
ical element within different organs. The transition equations determine the
relations between the compartments and are frequently modelled by Ordinary
Differential Equations. Hence, compartment models can be seen as dynamical
systems. We will assume that the compartments are homogeneous, i.e. that
the density of ,e.g. the chemical element, is constant within a compartment. In
addition it is assumed that the volume of the compartment is constant over time
so that one can identify the amount of the chemical element in the compartment
by its density.

In the context of radiation protection biokinetic models are frequently used
to model the processing of radioactive substances with the objective of, e.g.,
providing limiting values for detrimental effects. The application of the pos-
terior approximations and grid methods will be carried out for a model build
to understand the processing of Zirconium in the human body. Radioactive
Zirconium isotopes are produced in large amounts in nuclear fission reactors.
The model discussed here has been introduced in [Greiter et al] based on hu-
man measurement data. In [Schmidl, Hug et al] the model was compared by
model selection procedures to a different compartment model that is used by
the International Commission on Radiological Protection and is based on an-
imal data. The model build upon human measurement data proved superior.
As indicated, in those models the human body, or better, its major organs and
tissues are viewed as a set of different compartments representing kinetically
homogeneous amounts of radionuclides. The connections between the compart-
ments are described by transfer rates which in itself are governed by the law
of mass balance. Mathematically, the dynamics of the model is described by
a system of linear, coupled first-order Ordinary Differential Equations one can
easily deduct from the connections of the compartments (see Figure 5)

d

dt
yj =

∑
α∈A

+
yj

xαy[xα](t)−
∑

β∈A
−
yj

xβyj(t) , (15)

where A+
yj

denote the indices of rates flowing into yj and A−
yj

denotes the indices
flowing out of yj . If we, e.g., consider the bone-compartment y2, we see that
we only have connections to the transfer compartment y7 (x1 incoming and x11
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Figure 5: Model for the biokinetic processing of zirconium The model
consists of 10 compartments y1, ..., y10 and twelve transfer rates x1, ..., x12. The
zirconium enters the body in the stomach compartment y9. The transfer com-
partment y1 and the urine compartment y7 have been measured directly during
the study.

outgoing) and the corresponding differential equation for y2 is given by

d

dt
y2 = x1y1(t)− x11y2(t) .

The model parameters here are the rates of the transition equations x1, ..., x12.
They contain a rich variety of non-standard dependence structures (see supple-
mentary material to [Schmidl, Hug et al]). In contrast to the other examples,
where the standardized dependence structures we can estimate after the ap-
proximation might still contain enough information of the original one, this
example is chosen to assess what happens for a model with a rich dependence
structure. The priors for this model are lognormal distributions for the rates
x1, x2, x7, ..., x12 and triangle distributions for the rates x3, ..., x6. We are only
interested in the type of the prior to set up the copula estimation. The full
prior information can be found in the supplementary material to [Schmidl, Hug
et al].

Parameter estimation in biological systems

Here we want to give a brief account of how to estimate the rate constants in
the model introduced above by means of frequentistic approaches. Given the
transition equations

d

dt
yj =

∑
α∈A

+
yj

xαy[xα](t)−
∑

β∈A
−
yj

xβyj(t) ,
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we are interested in the inference of the vector x = (x1, ..., x12). This vector
holds the parameters defining the system of equations for (yj)j=1,...,10. In addi-
tion it is assumed that the whole radioactive nuclides enter the body over the
stomach-compartment y9. The goal is to infer the parameters in x from a set
of given observations {z1, ..., zm}, where zi = (z1,i, ..., zli,i) corresponds to the
data measured at time ti ∈ [0, T ]. Since we can assume that the data contains
measurement errors we model the measurement as

zi,j = hi,j
x (y(ti)) + ϵi,j ,

where ϵi,j are independent normally distributed random variables. The mea-
surements for this model have been carried out in a stable tracer study executed
at the Helmholtz Zentrum. 12 healthy humans were ingested an investigation-
specific amount of isotopically enriched stable zirconium with subsequent mea-
surements and analysis of blood plasma and urine (see [Greiter et al 1] and
[Greiter et al 2] for the details).

An estimator for x is now, e.g., given by minimizing the squared loss function

χ2(x) =
m∑
i=1

li∑
j=1

(
zi,j − hi,j

x (y(ti))
)2

σ2
i,j

over x. For the numerical background to solving this ODE system see [Schmidl,
Hug et al - supplementary material].

3.4 A small compartment model

Since we will see that we encounter a variety of computational problems with
the biokinetic model introduced above, we carry out our analysis with a very
simplified version of it to reduce the complexity. However, we assume that
the dependence between the parameters still remains ’non-standard’ to some
extend. This will allow us to assess whether the approximation can capture the
dependence reasonably well.

The small compartment model is described via the following set of coupled
first-linear ODEs

dc1(t)

dt
= −k2c1(t)− k3c1(t)

dc2(t)

dt
= k2c1(t)− k1c2(t)

Figure 2 visualizes this system.
This toy model has been used in the comparison of classical samplers with the
copula-based Metropolis-Hastings algorithm in [Schmidl, Czado, Hug, Theis].
It assumes that the ’small intestine’ compartment is unobservable. The data
which is used to infer the rates is given by the concentration in the ’transfer
compartment’ at eleven time points ti = i · 0.1, i = 0, ..., 10 perturbed by a
standard normally distributed error, i.e.

yi = c2(ti) + ϵi ,
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Figure 6: Small compartment model The model consists of two compart-
ments c1 and c2. The Zirconium enters the system via the compartment c1
and leaves the system either directly or via the transfer compartment c2. The
measurements are given by the concentrations in the transfer compartment c2
perturbed with a normally distributed measurement error.

where ϵi ≈ N (0, 1). The priors for this model were set to k1, k2 ≈ N[0,1000](1, 1)
and k3 ≈ N[0,1000](20, 400), where N[0,1000] denotes the [0, 1000]-truncated nor-
mal distribution.

Inference of dynamical systems

The two dynamical systems above have been developed to understand how high
the concentration of a radioactive substance in a given organ is. Given that the
model parameters of this system are the rate constants, we have to draw a con-
nection between them and the actual concentration. To find the concentration
within a single compartment, we have to find the solution to the correspond-
ing ODE-system given by the transition equations and an estimator for the
rates. We saw that we can construct a classical estimator via minimizing the
loss function. A different approach is to sample from the joint distribution of
x1, ..., x12 and use the samples to solve the ODE system. In figure 7 we show a
discretization of the corresponding posterior median solutions, i.e. the function
given by the pointwise median of the solutions (see [Schmidl, Czado, Hug, Theis]
for more details), for the two models based on rate samples from the laplace
approximation-based and the profile likelihood-based sampler. Note that the
posterior median solution is not a solution to the equation system since it is a
pointwise median value.
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Figure 7: Posterior Median solutions for the small compartment and
the zirconium model The figures depict a pointwise boxplot of the solutions
to one of the equations for the small compartment model and the zirconium
model based on samples from the laplace approximation based sampler for the
compartment model and for samples from the adaptive profile likelihood based
sampler for the zirconium model. The x axis depicts the time from 0 to 1,
whereas the y axis depicts the concentration of the compartment c2 (small
intestine) for the small compartment model (left) and the compartment y10
(small intestine) for the zirconium model (right). The black line in the middle
corresponds to the posterior median solution, whereas the white shaded part
around corresponds to the 25 and 75 percent percentiles. Note that the posterior
median solutions is not a solution to the equation system! The shape of the
posterior median solution for the small compartment model in [Schmidl, Czado,
Hug, Theis] is nicely recovered.
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4 Results - Laplace Approximation

The following two sections are devoted to the comparison of the different sam-
plers. To this end, we first have to find criteria that assess the quality of an
MCMC sampler. Since we are interested in a question of efficiency we have
to assess how much independent samples we get per time interval. For MCMC
samplers this means that we also have to take into account the dependence (here
measured via the autocorrelation) within the Markov Chain. This leaves us with
the criterion of ’Effective Sampling Size per second’ indicating that one discards
’ineffective’, i.e. correlated, samples. The following definitions are made to get
to the desired benchmark

The estimated effective sampling size (ESS) is given by the fraction of
samples in the Markov Chain and the highest autocorrelation within its
components. It is defined as

ESS := max
i∈{1,...,d}

 K + 1

1 + 2
∑Ki

c
τ=1

(
1− τ

K+1

)
ρ̂i(τ)


for the MCMC sampling length K and the estimated autocorrelation func-
tions

ρ̂i =
1

σ̂2(K + 1− τ)

K∑
j=τ

(X
(j)
i − µ̂i)(X

j−τ
i − µ̂i)

of lag τ and dimension i of a Markov Chain Xt, where K is chosen so that
K = argminτ ρ̂(τ) < 0.05.

The run times naturally include the times of the prerun or data synthesis.

We end up with the following benchmarks

For x ∈ {{ds}, {ls}, {ps}, {as}} we define the effective sampling size per
second for the data-based sampler (ds), laplace-approximation based sam-
pler (ls), prerun-based sampler (ps) and adaptive sampler (as)

ESSpsx :=
ESSx

tx
.

This gives us a benchmark that measures the samplers against each other.
In addition, we need a benchmark to measure the ’quality of information’

contained in the samples from the preperation steps. To this end, we propose to
use the acceptance rate of the corresponding copula sampler. For an indepen-
dence sampler the acceptance rate is close to one for a proposal function that
coincides with the posterior. Hence we can see the difference in the acceptance
rate for a proposal function as a distance measure and a benchmark for the
loss of information with respect to the true posterior. One could argue to start
the samplers from ’equal ground’, i.e. use either the time to acchieve a certain
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’quality of information’ as a benchmark (by, e.g., cutting down the prerun so
that the acceptance rate of the approximation based sampler and the prerun
sampler are similar) or use the information extracted in a given time frame. We
feel that both results will favor the approximation based sampler. The copula
sampler has been introduced to outperform other samplers based on more re-
fined information. Therefore we will try to acchieve the best possible results for
both samplers and compare those, i.e. tune the parameters for optimal results.

Note that this procedure is targeted at the question of ’Given ’optimal’
parameters, which sampler is more efficient?’, not the question to propose a
more efficient sampler for an unknown problem. For an answer to this problem
we would have to have access to procedures giving us the optimal parameters
ex ante.

In addition, note that the initialization for different seeds might turn out to
be significantly different. Since we use a variety of ’toy models’ whose obser-
vations are based on pseudo-random numbers already the initialization of the
posterior is highly influenced by the underlying random numbers. To illustrate
this fact, we show the Maximum Posterior Estimates, located by latin hyper
cube sampling, of the compartment model for 5 different initializations of the
posterior. The true parameters of (1, 1, 20) are siginificantly perturbed. In the
sampling process we fix the seeds of the random number generator so that we
will work with a fixed posterior function for one example. For the compart-
ment model our seeds will initialize the posterior with the Maximum Posterior
Estimate (1.0766, 1.26066, 22.8445).

Initialization x1 x2 x3

1 1.0766 1.2606 22.8445
2 1.2015 0.8611 13.6689
3 1.3855 1.0212 14.5556
4 1.0558 1.3366 22.3901
5 1.4358 0.9824 16.2223

We also note that for the adaptive version the information cut out by the use
of the approximation is recovered to some extend by the copula-based prerun.
Hence we can assume that the acceptance rate of the adaptive approximation
based sampler is better than the one based on the approximation alone. How-
ever, we also note that the approximation cuts down the information. Hence
we can also assume that the convergence to the equilibrium distribution takes
longer for the approximation based samplers than for the prerun based sampler.

For the different approximations we always show 4 figures presenting the
ESSps, the acceptance rate, the thinning values and the overall computational
time of the different samplers. The computational times correspond to the run
time on either, one node of a 24-core 1.8 GHz Intel Xeon cluster, or one node
of 24-core 2.27 GHz Intel Xeon cluster, or one node of a 4-core 2.9 Ghz Intel
i5 Workstation depending on available ressources. Occasionally the runs had to
be stopped and continued later. We put attention to run one comparison on
the same machine.
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Convergence

In this section we want to adress the question of ’How much samples are needed
to represent the approximated posterior?’. We experienced that one does not
need many samples from the approximated posterior to recover the information
left after the approximation and, by default, use 100 samples to keep the time for
the copula estimation low. This seems to be a very low number. However, even
for the high dimensional models we experienced no increase in the acceptance
rate by using more samples.

Prerun

Here we adress the question of how long a prerun should be. This question is of
high importance since the estimation of the copula is based on this prerun and
can take extremely long if the prerun is to long. Hence we are interested in a
limited number of samples containing as much information on the dependence
structure as possible. Below we show how the acceptance rate behaves with an
increasing size of samples from the prerun. We assume that a burn-in of 2000
samples for the low dimensional examples is enough to limit the information
on the starting distribution. The figures below show the acceptance rate of the
copula based sampler for an increasing number of samples. Length 1 corresponds
to the samples 2000 to 2500. Length 2 uses the samples 2000 to 3000. We use
5 different preruns of length 10000 and evaluate the acceptance rates.

Normal distribution

The figure below depicts the acceptance rate of the copula based sampler based
on the prerun samples 2000 to 2500 (length 1), 2000 to 3000 (length 2), ..., 2000
to 10000 (length 16). We see that the acceptance rate reaches the level of 0.8
relatively fast and stabilizes at approximately 0.84. We will use a prerunsize of
2500, i.e. the samples 2000 to 4500, to reach a compromise between the stability
of the results and a short prerun.
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Bananashaped distribution

In the figure below we see that the accpetance rate for the bananashaped dis-
tribution stables approximately at the level of 0.21. We will use the prerun
samples 2000 to 7000.
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Small compartment model

Based on the results depicted in the figure below we use the prerun samples
2000 to 5000.
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We note that one of the runs showed an ’odd’ behaviour, a decreasing accep-
tance rate with increasing samples used to infer the vine copula. Reproducing
the results showed a similar behaviour depicted in the figure below. The reason
is that the sampler got stuck in one location.
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Zirconium model

For this model we chose to use a prerun of 15000 samples and discard 5000
’burn-in’ samples. Shorter preruns made the copula estimation very unstable.
Longer preruns, on the other hand, took very much time and the results in
terms of acceptance rate and ESSps were not better.

4.1 Results - Laplace Approximation

We compare

1.) The original prerun based sampler. In the figures below the corresponding
sampler is denoted by ’MCMC prerun’.

2.) The sampler based on Laplace Approximation and subsequent sampling
of ’synthetical data’ and copula estimation. In the figures this sampler is
abbreviated by ’data’ and referred to as approximation-based sampler.

3.) The sampler based on 2.) as a prerun (adaptive version). In the figures
below this sampler is abbreviated as ’data-CIMH’.

for the examples introduced in Chapter 4. If not states otherwise, the figures are
based on data from 10 sampling runs of 50000 samples each. The autocorrela-
tions are calculated from the last 40000 samples of those runs by comparison to
the estimated mean and variance from a long (500000 samples) Random Walk
Metropolis-Hastings run made before starting the copula runs. The fraction
of random walk and heavy tailed samples are both set to 0.02. For the ba-
nanashaped distribution we can not include random walk samples due to an
incompatibility with the vine structure. Hence, the respective parameter is set
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to 0. For the heavy tailed distribution we used the default, i.e., a uniform dis-
tribution on [0, 109]n, where n is the dimension of the respective sampling space
and changed it for the examples with support in Rn. For an implementation a
uniform distribution on this domain seems feasible.

Note that, although we set seeds for the sake of reproducibility, the results
for the autocorrelation and acceptance rates for the prerun based sampler in dif-
ferent sections are not expected to be equal due to different amounts of random
numbers used by the approximations. The posteriors are identical.

4.1.1 Normal distribution

Naturally, we expect that we can recover a normal distribution when applying
the Laplace Approximation. Indeed, the Covariance structure is covered per-
fectly (up to the fifth post comma digit for every entry of covariance matrix).
The time for the latin hyper cube sampling, laplace approximation and sam-
pling took 0.82 seconds, compared to the 2.65 seconds it took to sample the
prerun. Since the prerun also consists of more samples the copula estimation
takes longer. In addition, the autocorellation in the chain is slightly lower for
the data-based sampler (1.56 for the prerun based sampler compared to 1.48 for
the approximation-based sampler, and 1.28 for the adaptive version). In terms
of ESSps the approximation based sampler outperforms its contenders.
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4.1.2 Banana shaped distribution

In this example the time for the prerun was shorter than the time for the laplace
approximation (2.26 seconds compared to 4.46 seconds). The reason is that the
latin hyper cube sampling that locates the minima of the posterior got stuck in
one of its runs. The thinning values contain outliers for the runs of the adaptive
approximation based sampler. For the prerun-based sampler the median for the
number of samples to be discarded in order to acchieve independence is at 58.
For the approximation based sampler the values are at 35 for the non-adaptive
and 30 for the adpative approximation based sampler. Note, that the adaptive
sampler had an outlier at 73000. In terms of ESSps the approximation based
samplers outperform the prerun based sampler.

0

20

40

60

80

100

120

140

160

180

MCMC prerun data data−CIMH

ESS per second

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

MCMC prerun data data−CIMH

acceptance rate

0

500

1000

1500

2000

2500

MCMC prerun data data−CIMH

thin

15

20

25

30

35

40

45

50

MCMC prerun data data−CIMH

computational time

Compared to the other results for the autocorrelation of the prerun based sam-
pler the median thinning value of 58 is higher. In addition there were several
thinning values higher than 1000. Below we show another run based on a prerun
of 10000 samples of which the samples 2000 to 10000 were used for the copula
estimation. We again encounter outliers in the thinning values for the adpative
approximation based sampler. For the prerun based sampler 68 samples had to
be discarded in order to acchieve one independent sample from the posterior.
We also included this example to illustrate that the longer prerun raised the
time for the estimation of the copula by 5 seconds and the acceptance rate was,
in fact, slightly lower than for the first run.
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4.1.3 Compartment model

We oberserve a very high autocorrelation in the chain of the approximation
based sampler (median thinning value of 6932 - not shown). However, for the
adaptive sampler the autocorrelation is only slightly higher than for the prerun
based sampler (2.77 compared to 4.54). Rerunning the sampler showed similar
results. In addition to a higher acceptance rate, the adaptive approximation-
based sampler also outperforms the prerun-based sampler in terms of computa-
tional time. In terms of ESSps, however, the prerun-based sampler leads with
a median value of 494 to 413.
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4.1.4 Zirconium model

While simulating this example one encounters the problem of calculating a Hes-
sian for a high-dimensional problem. In addition this model has triangle priors,
i.e. from a mathematical perspective it is not well-defined to calculate the Hes-
sian since the posterior is not a global C2-function. Indeed, the Latin Hyper
Cube sampling with a subsequent application of MATLABs fminsearch always
gave back a value for which one of the triangle priors were on its maximum.
I.e. technically we were not allowed to take the Hessian at the mode. How-
ever, in some cases one was still able to calculate a symmetric and negatively
definite Hessian at the mode. To assess whether the Laplace Approximation
might still be useful with this violated assumption we continued with sample
generation from the approximated posterior and subsequent copula estimation.
For the laplace approximation we encountered unfeasibly high thinning values
and, for the approximation based sampler, very low acceptance rates of the or-
der 0.001. We note however, that the prerun for the adaptive sampler nicely
recovered some information and showed siginificantly better acceptance rates
(median 0.03).
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A possible explanation for the latin hyper cube sampling to stop at the vertex
of the triangle is that the minimzation procedure itself is based on a deriva-
tive based method and gets stuck at this location. One could argue in favor
of a derivative free method to find a minimum. We implemented a scheme
starting from latin hypercube sampling followed up by simulated annealing (see
[Kirkpatrick et al], a derivate free minimzation procedure) with a subsequent
construction of a gaussian mixture model. From this model we drew 500 samples
and proceded with the copula estimation and subsequent sampling. However,
since the Hessians for this model are badly conditioned and normal distributions
have support in all of R we discarded the samples incompatible with the priors,
i.e. negative samples for the log-normal priors and samples not contained in the
priors of the triangle. The results for this implementation are not satisfactory
either. In 2 of the 5 runs the copula estimation for the adaptive approximation
based sampler broke down. For the remaining 3 runs we note that, in contrast
to the run based on the derivatebased minimzation and a subsequent Laplace
Approximation (i.e. one normal distribution), the acceptance rate did only in-
crease by the factor 2 instead of the factor 30 as for the laplace approximation.
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Note: The Hessians for this model have been calculated by a set of functions
made publicly available by John D’Errico.

5 Results - Grid methods

By ’Grid Methods’ we refer to methods exploring the posterior on a grid and
a subsequent generation of synthetic data which is used as input for the esti-
mation of the copula. First, we will investigate a grid consisting of the inter-
section of hyperplanes. In two dimensions this could, e.g., consist of the points
[i, j]i∈{1,...,N},j∈{1,...,M}. The problem here lies in the high dimensionality of the
problems we want our samplers to use for. We will see that for ’low dimensions’
this method might outperform the prerun-based sampler. In high dimensions,
however, it is not feasible to introduce a grid splitting up the space dimensions
in equidistant intervals and a subsequent evaluation of the posterior, data gen-
eration and copula estimation. For this reason the analysis in this section is
only carried out for the low dimensional models only. For higher dimensions we
use the grid given by the profile likelihoods introduced before. The results can
be found in the next subsection.

Discrete distribution

After a given procedure provided us with a set of points s1, ..., sm in the domain
of the posterior p(·) we can build a discrete distribution to sample from the
points s1, ..., sm according to the weight they are given in the posterior. The
corresponding random variable is defined as

X =

m∑
i=1

p̃(si)1si ,

where

p̃(si) :=
p(si)∑n
j=1 p(sj)

,
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and 1· is the indicator function. We now implemented a sampling procedure
based on the inversion method, i.e. we transformed a random number from a
uniform distribution on [0, 1] to the corresponding si via the inverse distribution
function (see [Glasserman]).

5.1 Cube

5.1.1 Normal distribution

For the normal distribution we again encounter the situation that the autocor-
relation within the Markov Chain is relatively low (with a median value of 1.24
compared to 11.81 for the approxiation based and 1.86 for the adaptive approx-
imation based sampler). Setting up the grid and subsequent sampling took 0.9
seconds compared to a prerun of 2.59 seconds. Due to the rather low acceptance
rate (with a median value of 0.41) and high autocorrelation the approximation
based sampler is outperformed by the prerun based sampler. The adaptive
sampler suffers from a long time to estimate the copula. The acceptance rate
on the other hand is essentially comparable to the one of the prerun sampler.

500

1000

1500

2000

MCMC prerun data data−CIMH

ESS per second

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

MCMC prerun data data−CIMH

acceptance rate

2

4

6

8

10

12

14

MCMC prerun data data−CIMH

thin

30

40

50

60

70

80

90

MCMC prerun data data−CIMH

computational time

48



5.1.2 Banana shaped distribution

For this example we see that the autocorrelation within the chains based on the
discrete distribution are lower than the ones for the prerun based sampler. The
median values are at 29 samples for the prerun based and 19 and 22 for the grid
based samplers. In terms of ESSps the prerun based sampler is outperformed
by the approximation based sampler. The acceptance rate of 0.15 for the grid
based sampler indicates that the dependence structure that is representable in
the context of the vine copula estimation procedure is already covered well by
the discrete distribution.
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5.1.3 Compartment model

For the compartment model we see that the autocorrelation within the Markov
Chains of the grid based samplers were unfeasibly high to yield acceptable re-
sults (median values of 11671 for the approximation based and 7881 for the
adaptive sampler compared to 2.54 for the prerun based sampler). In addition,
setting up a representative grid and sampling from it took significantly longer
then the prerun and the copula estimation. Consequently, the overall compu-
tational time was higher even for the approximation based sampler. We note
that the size of the prerun used for this run was at 10000 for the prerun based
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sampler. Hence, the overall computational time is longer when compared to the
results of the other sections.
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The results for this sample show

5.1.4 Zirconium model

The results for the compartment model shows that setting up a representative
grid is a daunting task. Even with a relatively fine structure we were not able
to recover more information than corresponding to a 4 percent acceptance rate.
Hence, we consider a twelve dimensional grid unfeasible for data generation.

5.2 Profile Likelihoods

In this section we want to investigate to use profile likelihoods for the synthetic
data generation.

5.2.1 Normal distribution

We see that the acceptance rate for the approximation based sampler is rather
low when compared to the results for the other normal distributions from the
previous sections and when compared against the prerun based sampler (0.39
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against 0.85 for the prerun based sampler). In addition, the autocorrelation
within the chain for the approximation based sampler is very high (at 12500).
For the adaptive sampler we note that the median value for thinning is at 5
samples. However, in 40 percent of the runs the thinning was at more than
3800. For the prerun based sampler was again very low at 1.25. In terms of
ESSps the prerun based sampler clearly outperforms the profile likelihood based
samplers.
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5.2.2 Banana shaped distribution

For this example we see that the adaptive approximation based sampler per-
forms similarly to the prerun based sampler. The approximation based sampler,
however, suffers from low acceptance rates and high thinning values (0.01 and
15720). From this point of view it is surprising that the adaptive version per-
forms almost similar to the prerun based sampler in terms of ESS (median
results: 36 ESSps for the prerun based sampler and 33 for the adaptive approx-
imation based sampler). We already pointed out structural weaknesses of the
profile likelihoods for the banana shaped distribution.
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For this example we also include a run based on the profile likelihood for just
one parameter. The reason for this is apparent when we consider the shape of
the density and the shape of the profile in the second parameter. The majority
of the mass is located around the profile of this parameter.
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The figure depicts the profile likelihood of the parameter on the y-axis. Based
on this profile we set up a discrete distribution and proceed with the sampling

procedure.

For the results we see that, when compared to the other runs of the prerun
based sampler, the thinning values are rather high at 58 samples. The auto-
correlation for the chains of the approximation based samplers were at 13 and
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21. In contrast to the very low acceptance rate of the profile likelihood based
sampler using two parameters, the acceptance rate of the approximation based
sampler nicely recovered to 0.18. For the adaptive version, the acceptance rate
are just slightly lower than the ones for the prerun based sampler. In terms
of ESSps the approximation based samplers outperform the prerun based with
261 for the approximation based and 59 for the adaptive version to 30 for the
prerun based sampler.
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5.2.3 Compartment model
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5.2.4 Zirconium model

For the zirconium model we first note that the profile for x11 depicted in the
figure below consists only of three points. This is due to a chosen minimal
stepsize of 10−4 in the profile likelihood calculation. Since the order of this
parameter is so small, we would have to choose a significantly lower stepsize to
get a reliable profile for this parameter. However, this would increase both the
data from which the discrete distribution is build as well as the time to compute
the likelihoods since the minimal step size would be used for all parameters. In
addition, the acceptance rates for the sampler with the smaller stepsize were
lower (results not shown).
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For the run depicted below the most surprising fact is that the acceptance
rate of the approximation based and the adaptive approximation based sampler
were at 0.45 and 0.57, respectively. This is more than for the prerun based
sampler and, in fact, better than the acceptance rate the profile likelihood-
based sampler acchieved for the normal distribution. The thinning values for
the approximation-based samplers were on average 4 times higher than for the
prerun-based sampler (with the prerun sampler at around 16000, the approx-
imation based sampler at 62000, and the adaptive sampler at 64000). The
calculations of the profiles and subsequent sampling took 217 seconds. The pre-
run took 32 seconds. In terms of ESS the prerun-based sampler outperforms
the profile likelihood-based samplers by 0.0037 ESSps to 0.0026 and 0.0016, re-
spectively. We note, however, that in contrast to the laplace approximation the
results are of the same order and we experienced runs in which the likelihood-
based samplers were more competetive.

We note that the results for this sampler have been acchieved by using 99.8
percent copula samples and 0.2 percent heavy tailed samples and the results
were comparable also for higher fractions of heavy tailed samples. Any inclu-
sion of random walk samples, however, drastically decreased the acceptance rate
to orders of 0.001! Since the argument in [Holden et al] and [Holden] relies en-
tirely on the strong Doeblin condition and, in addition, allows for the inclusion
of proposals depending on the current state of the process we still know that
the Markov Chain converges. We were not able to detect any kind of muster in
pairwise scatter plots or similar things that could explain why this behaviour
occurs. If one considers profile likelihood-based copula sampling a promising
sampling technique one should follow up this question.
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6 Conclusion

We investigated the question if one can increase the efficiency of a copula-based
sampling procedure by employing deterministic posterior approximations and
grid methods. In their paper [Schmidl, Czado, Hug, Theis] showed that the
inclusion of the dependence structure in the proposal function of a Metropolis-
Hastings sampler can lead to significant computional gains when compared to
classical samplers.

In principle, it is reasonable to question whether the preparation steps of
the copula-based sampler are necessary or can be skipped or circumvented to
some extend. However, the deterministic posterior approximations which are
available to circumvent those steps show incompatibility with the given question.
They ignore the dependence structure which made the copula sampler fast in
the first place and an adaption of the methods to allow for dependence seems not
immediately possible. For the complicated results even more refined methods
like the gaussian mixture laplace approximation did not show acceptable results.

To offer an alternative we used ’Grid Methods’: Direct evaluations of the
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posterior on a grid and subsequent sampling from the corresponding discrete
distribution. When setting up a grid on hyperplanes the problem lies in the
highdimensionality. Sampling from points in such a ’hyperplane grid’ and a
subsequent copula estimation becomes unfeasible fast with increasing dimen-
sion. Profile Likelihoods offer an opportunity to investigate the space on a grid
which covers weight in all parameters. For the inference of the zirconium model
the sampler based on profile likelihoods significantly outperformed the prerun
based sampler. However, the results for the normal distribution show that there
are examples in which the profile likelihoods can not be used to capture the de-
pendence structure of the posterior reasonably well. For the bananashaped
distribution we already started a further investigation by excluding parameters
to acchieve better results. In principle, we did the same for the zirconium model
when setting the step size so high that one parameter was, effectively, not part
of the calculation. One could follow up with the application to other examples
and try to find criteria for posteriors that might be covered sufficiently well.
Niveau set seem to be of use for this investigation.

Nevertheless, we saw that the data-based sampler might outperform the
original sampler for examples that do not show very complicated dependence
structures. Esspecially the correlated multivariate normal distribution can, nat-
urally, be covered very well by the Laplace Approximation and we saw an out-
performance of the data-based sampler for this example. The same holds for
the example were the copula cannot be estimated very well in general. Here
the better information on the dependence structure we can expect in the prerun
cannot be exploited by the prerun based sampler. Hence we saw similar low ac-
ceptance rates as well as an outperformance of the data based and adaptive data
based sampler due to less preperation steps. However, for the models with rich
dependence only the profile likelihood based sampler turned out to be useful.
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