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ABSTRACT
Deteriorating beta-cell function is a common feature of type 2 diabetes. In this review, we briefly address the regulation of beta-cell function, and
discuss some of the main determinants of beta-cell failure. We will focus on the role of interactions between the genetic background and metabolic
environment (insulin resistance, fuel supply and flux as well as metabolic signaling). We present data on the function of the strongest common
diabetes risk variant, the single nucleotide polymorphism (SNP) rs7903146 in TCF7L2. As also mirrored by its interaction with glycemia on insulin
secretion, this SNP in large part confers resistance against the incretin effect. Genetic influence on insulin secretion also interacts with free fatty
acids, as evidenced by data on rs1573611 in FFAR1. Several medications marketed by now or currently under development for diabetes treatment
engage these pathways, and therapeutic implications from these findings are soon to be expected.

& 2014 The Authors. Published by Elsevier GmbH. All rights reserved.

Keywords Beta-cell function; Beta-cell failure; TCF7L2; FFAR1; Gene� environment interaction; Pharmacogenetics; Incretin resistance
1. INTRODUCTION

Diabetes is a heterogeneous disease with the obvious lowest common
denominator of hyperglycemia as its main manifestation. The comprehen-
sive disease phenotypes can be very different, especially when considering
the dissimilarities of classical Type 1 and Type 2 diabetes. It is generally
acknowledged today that one of the most common chronic diseases of the
21st century type 2 diabetes, is a mixture of pathogenetically diverse
structures [1]. However, there is one common feature in all the pathological
processes that yield abnormally elevated blood glucose: dysfunction of beta-
cells resulting in the decline of insulin production and secretion. Even if
most type 2 diabetes phenotypes are related to phenomena such as obesity
and insulin resistance, restoration of the full potential of insulin secretion
would lead to a remission of diabetes. In turn, as the relatively high rate of
diabetes relapse after bariatric surgery [2] suggests, deteriorating beta-cell
function would often prevail despite an improved metabolic milieu.
Therefore, understanding the decline of beta-cells and finding ways to
improve their function are essential in combating the disease. This review
will examine examples for the impact of interactions between metabolic and
genetic alterations in insulin secretion to envision a more efficient diabetes
therapy on our way from conventional to personalized medicine. It will focus
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on genetic and metabolic interactions on incretin and free fatty acid (FFA)
induced insulin secretion.
2. REGULATION OF INSULIN SECRETION

The regulation of insulin secretion in the beta-cell is primarily deter-
mined by plasma glucose concentration, which triggers the process
generally known as glucose-stimulated insulin secretion (GSIS) [3].
However, other fuels such as FFAs and amino acids are also able to
act as potent enhancers of insulin secretion. Beside fuels, specific
hormones are capable of modulating insulin secretion in the beta-cell.
The most important stimulators are incretins, namely glucagon-like
peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide,
formerly also known as gastric inhibitory polypeptide (GIP). They are
secreted upon food stimuli by L- and K-cells of the gastrointestinal tract,
respectively, contribute to as much as 70% of insulin secretion after a
meal [4] and are widely used as medical treatment of diabetes.
The central event eliciting insulin secretion is the production of ATP
which leads to the inhibition of ATP-sensitive inwardly-rectifying Kþ
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opening of voltage-dependent Ca2þ channels and Ca2þ influx into the
beta-cell. However, in addition to glucose itself, insulin secretion is highly
regulated by metabolites. While amino acids can also activate insulin
secretion, incretins and fatty acids enhance GSIS. The potentiatory effects
on insulin secretion are mediated through G-protein coupled receptors.
Incretins stimulate GLP-1R and GIPR and act through cAMP-dependent
signaling pathways involving the stimulation of PKA and EPAC2. This
amplifying pathway strongly depends on glucose-induced increase of
cytosolic Ca2þ . The mechanism by which fatty acids potentiate insulin
secretion probably involves both metabolites and receptor activation [5].
The complex interplay of fuel metabolites and coupling factors of
3 intracellular metabolic networks, the (i) tricarboxylic-acid (Krebs/Szent-
Györgyi) cycle, (ii) pyruvate cycle and (iii) glycerolipid/FFA cycle has been
sophisticatedly modeled by Nolan and Prentki in 2008 [6]. In 2003, when
the role of a cell-membrane receptor, the orphan G-protein coupled
receptor 40 (GPR40) was established [7], it was renamed free fatty acid
receptor 1 (FFAR1) and is now considered as an important mediator of
FFA-induced insulin secretion [3]. This receptor, in contrast to incretin
receptors which couple to adenylyl cyclase through Gs-proteins, is linked to
Gq-protein-dependent stimulation of Phospholipase C and activates protein
kinase D1 [8].
3. PATHOMECHANISMS OF DECREASED INSULIN SECRETION
IN TYPE 2 DIABETES

3.1. Glucolipotoxicity
As we briefly reviewed above, glucose and FFAs are natural activators of
insulin secretion. Paradoxically, both of these fuels seem to contribute to
beta-cell failure under certain circumstances. Unfortunately, the precise
steps of the development of glucolipotoxicity are not fully known and
results of human studies on glucolipotoxicity are heterogeneous.
Observational data showed that chronically elevated FFA predict a
deterioration of beta-cell function in subjects with impaired glucose
tolerance, while no such association was observed in subjects with
normal glucose tolerance [9]. In an interventional study from our
laboratory, a 24-h lipid infusion during a hyperglycemic clamp altered
only insulin sensitivity, but did not change insulin secretion [10].
However, a lipid infusion over 4 days enhanced insulin secretion in
subjects without a family history of diabetes, but reduced it in those who
had a family history of diabetes [11]. Long-term consequences of
elevated FFA levels were unequivocally shown only in animals. There is
evidence that fatty acids, especially saturated fatty acids, lead to beta-
cell apoptosis [12]. The activation and translocation of protein kinase C δ
which stimulates the proapoptotic transcription factor FOXO1, was
shown to be one of the key steps of FFA-induced beta-cells apoptosis
[13,14]. The proposed complex pathomechanistic background of
glucolipotoxicity has been excellently reviewed by Poitout and Robertson
in 2008. They postulated that part of the genetic predisposition to
diabetes might be related to the ability or inability of beta-cells to
adequately respond to hyperglycemia and hyperlipidemia [15]. This
notion fits to the main concept of type 2 diabetes etiology, namely that
an ill-constellation of genetic predisposition and environmental factors
such as fuel surplus lead to the metabolic derangements determining
the disease.

3.2. Genetic background
Type 2 diabetes has long been recognized as a disease caused by the
complex relationship of genetic predisposition and lifestyle factors. There
is substantial evidence for a relevant genetic determination of beta-cell
262 MOLECULAR METABOLISM 3 (2014) 261–267
failure. In a family study examining diabetes-related quantitative traits,
postprandial FFAs and insulin secretion showed the highest heritability,
with 40–50% of the variance explained by genetic factors [16].
Furthermore, most genetic loci found to be associated with diabetes
in hypothesis-free genome-wide association studies (GWAS) are thought
to influence insulin secretion but not insulin sensitivity [17]. For some of
the genes discovered by GWAS, such as TCF7L2, CDKAL1, SLC30A8,
MADD and ADCY5, examination of quantitative glycemic traits revealed
associations with insulin processing [18–20]. However, it was only
possible for a handful of the discovered genes to experimentally detect
precise modes of action. Cellular function still remains obscure in
most cases. A further reason for the disappointment in GWAS was that
their results could not hitherto be translated to a better prediction of
diabetes [21]. The more than 60 discovered diabetes genes notwith-
standing, only a fraction of the heritability (�15%) of type 2 diabetes
can be actually statistically explained. This is primarily due to the low
effect size of discovered diabetes related genetic variants of which
the largest, the single nucleotide polymorphism (SNP) rs7903146 in
TCF7L2, only amounts to an odds ratio (OR) of 1.37 per effect allele [22].
4. GENETIC AND METABOLIC INTERACTIONS ON INSULIN
SECRETION

4.1. TCF7L2 and incretin action
By its discovery as the strongest genetic signal associated with type 2
diabetes, TCF7L2 was catapulted into focus of interest in diabetes
research. Previously known as a transcription factor of the WNT-
signaling pathway, its link to diabetes was initially established tracing a
linkage signal on chromosome 10q [23], and then replicated in a GWAS
[24]. Data from oral glucose tolerance tests (OGTTs) soon revealed an
effect on insulin secretion rather than insulin sensitivity [25,26].
Pursuing a hypothesis based on the role of WNT-signaling in the
transcription of proglucagon which serves as precursor for GLP-1, we
conducted a study to test the effect of SNPs in TCF7L2 on incretin
secretion and action. While confirming a robust effect of the risk allele of
SNP rs7903146 on lowering insulin secretion, we also showed that the
risk variant was not associated with altered incretin levels after oral
glucose load, but with a lower incretin-induced insulin secretion. In this
experiment, a GLP-1 infusion was started at minute 120 of a
hyperglycemic clamp with a glucose target of 10 mmol/l [27]. Carriers
of the risk allele had by 30 and 37% lower insulin levels in the first and
second phases of GLP-1-induced insulin secretion, respectively [28].
This finding was corroborated by Lyssenko et al. who demonstrated that
the SNP rs7903146 significantly deflected the regression line's slope
between area under the curve (AUC) of insulin during OGTT and AUC
insulin during intravenous glucose tolerance test in �400 participants
of the Botnia cohort. The incretin effect, characterized by the relative
difference of these AUCs, was even more strikingly lower when the
analysis was restricted to participants with fasting hyperglycemia
45.4 mmol/l [29]. Additional support of the concept came from a
study by Pilgaard et al. who demonstrated reduced insulin secretion in
healthy TCF7L2 risk carriers during a hyperglycemic clamp not only after
GLP-1 infusion, but also after the administration of GIP [30]. A smaller
study with OGTT and isoglycemic intravenous glucose infusions similarly
suggested an impaired insulinotropic effect of incretins in TCF7L2 risk
allele carriers [31]. Only one published study that utilized an 8.5 mmol/l
target glucose and a lower initial GLP-1 dose during the hyperglycemic
clamp failed to detect an altered insulinotropic effect for TCF7L2 risk
allele carriers [32]. In summary, a substantial body of evidence has
& 2014 The Authors. Published by Elsevier GmbH. All rights reserved. www.molecularmetabolism.com
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determination of incretin action
accumulated from mechanistic studies suggesting that at least a major
part, if not all, of the effect of TCF7L2 is mediated by incretin resistance.
Given that the incretin effect, at least in the case of GLP-1, gets
physiologically more powerful with rising glucose [33], we hypothesized
that insulin secretion in TCF7L2 risk allele carriers would become more
compromised when plasma glucose is elevated. To test this hypothesis,
we examined the interaction of plasma glucose with TCF7L2 genotypes
in �1600 subjects of the Tübingen Family Study. Indeed, AUC glucose
interacted with the SNP rs7903146 in TCF7L2 on several OGTT-derived
insulin secretion parameters. A nominally significant interaction was also
observed between the SNP and glycated hemoglobin (HbA1c) [34]. By
linking this glucose-dependent secretion impairment in TCF7L2 risk
allele carriers and the known glucose-dependency of incretin-induced
insulinotropism, we gained additional support for the gene's mode of
action. That being said, precise details on TCF7L2's effect on the
molecular level are still obscure. Potential mechanisms have been
discussed by us and others in reviews on incretins [35,36]. A recent
paper of our group demonstrated that Nor-1, a novel glucose and
incretin-dependent molecular regulator of insulin gene expression
interacts with the TCF7L2 pathway, as also evidenced by a gene� gene
interaction [37].
Nevertheless, even the direction of association between TCF7L2
expression and diabetes is elusive. Initial data showed that risk allele
carriers have increased transcript levels and higher TCF7L2 mRNA
expression associates with decreased insulin secretion [29]. In contrast,
other studies suggested that lower TCF7L2 expression leads to
decreased insulin secretion [38] and overexpression could support
beta-cell regeneration [39]. The results of a recent study using
transgenic mice with beta-cell specific dominant negative expression
of TCF7L2 seem to be in agreement with these findings [40].
There is still more confusion in regard of TCF7L2's main site of action.
Boj and associates reported that beta-cell specific deletion of TCF7L2
does not alter beta-cell function, but knock-out of TCF7L2 in the liver of
adult mice reduces hepatic glucose production [41]. Differentiation of
“acute” effects of TCF7L2 manipulation and ontogenetically “chronic”
effects of the transcription factor in these experiments could perhaps lift
some of these controversies. Emerging data on the role of alternative
splicing of the TCF7L2 transcript [42] which is regulated by metabolic
factors [43] will potentially contribute to a better understanding of the
gene's function in the future.
FFAR1
risk variantnon-risk variant

hi
gh

 fr
ee

 fa
tty

 a
ci

d 
le

ve
ls

 (i
ns

ul
in

 
re

si
st

an
ce

?,
 n

ut
rit

io
n?

) 

moderate 
risk of beta-cell

failure

moderate 
risk of beta-cell

failure

high
risk of beta-cell

failure

low
risk of beta-cell

failure

Figure. 1: Role of gene� environment interactions in the case of TCF7L2 (A) and FFAR1
(B, hypothesized) on diabetes and beta-cell failure.
4.2. Other genetic variants involved in incretin action
Beside TCF7L2, we identified other gene loci involved in impaired
incretin action on insulin secretion using the hyperglycemic clamp
technique. Genetic variation in WFS1, a diabetes risk gene identified by
GWAS, impairs GLP-1-induced insulin secretion [44]. Furthermore, using
the Metabochip, we identified three novel genetic loci (TMEM114;
CHST3 and CTRB1/2) with significant effects (30–40%) on GLP-1-
stimulated insulin secretion during hyperglycemic clamps [45]. The SNP
rs7202877 near CTRB1/2 is a known diabetes risk locus.

4.3. TCF7L2 interacts with environmental factors
Data on TCF7L2-action demonstrate a genetically determined mechan-
ism of action for glucotoxicity, thereby providing the first evidence for
Poitout's aforementioned postulation. It is possible that genetic variation
in TCF7L2 relevantly contributes to the decline in beta-cell function,
once the “first hit” through adverse lifestyle factors is committed.
Epidemiological studies show that an interaction between fiber intake
and genetic variation in TCF7L2 influences the risk of type 2 diabetes
MOLECULAR METABOLISM 3 (2014) 261–267 & 2014 The Authors. Published by Elsevier GmbH. All
[46–48] and the amount of weight loss during life style intervention
[49,50]. Moreover, data from a large randomized controlled trial also
suggested that metformin and lifestyle-intervention weakens the genetic
risk conferred by TCF7L2 [26]. Recent data from a large diet-
intervention study demonstrated that high adherence to Mediterranean
diet could protect rs7903146 risk allele carriers from elevated fasting
glucose and even cardiovascular complications [51]. Glucose-raising
medications are adverse environmental factors, whose effects can be
magnified by genetic risk variants. This was impressively shown by an
interaction between three TCF7L2 risk variants and hydrochlorothiazide-
intake [52]. The efficacy of sulfonylureas was also implicated in an
interaction with TCF7L2 risk variants [53–55]. This might derive from a
lately discovered effector pathway of sulfonylureas, which is cAMP-
dependent and shared with the incretin pathway [56].
4.4. Potential therapeutic implications of TCF7L2 risk genotypes
As summarized above, convincing evidence demonstrates that incretin
resistance is the major mode of action for the strongest diabetes-related
genetic variant. Involved pathways are potential substrates of gluco-
toxicity. Although the variant's distinct effect on diabetes in large
rights reserved. www.molecularmetabolism.com 263
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meta-analyses was minor, its actual relevance probably exceeds the
statistically shown odds ratio in specific adverse environmental contexts.
Given the mounting use of medications which target increased incretin
action (GLP-1 analogs and dipeptidyl-peptidase 4 (DPP4) inhibitors)
further research is needed to test their pharmacogenetic interactions
with TCF7L2. A proof-of-concept has been established for an interaction
of the above mentioned SNP rs7202877 near CTRB1/2 with a decreased
therapeutic efficacy of DPP4 inhibitors [45]. Early data from a phase IV
study of a DPP4 inhibitor also suggest the presence of such an effect for
SNP rs7903146 and a DPP4-inhibitor (personal communication). Reli-
able information is scant, but expert opinion estimates that 30% of
patients are incretin non-responders [57]. We postulate that, at least in
individuals with homozygous TCF7L2 risk variants, a tailored approach
to diabetes therapy right at the manifestation of the disease would lead
to a longer compensation of beta-cell function. Alternative strategies
could involve earlier administration of insulin or the use of novel drug
regimens such as sodium-dependent glucose transporter 2 (SGLT-2)
inhibitors.

4.5. Genetic variation in FFAR1, free fatty acids and insulin secretion
As we briefly summarized above, FFAs are Janus-faced players in the
regulation of insulin secretion and one of their effector pathways
involves FFAR1. Expression of FFAR1 was shown to be reduced in
diabetes [58]. Mounting evidence indicates that FFAR1 mediates
exclusively insulinotropic effects, and does not negatively influence
insulin secretion [59,60]. We recently showed this in experiments
employing an FFAR1 agonist and antagonist in the setting of INS-1E
cells, human islets and mouse islets from control and FFAR1-knockout
animals. While the natural FFAR1-ligand palmitate augmented insulin
secretion, but also stimulated beta-cell apoptosis, the specific agonist
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Figure. 2: Factors determining the influence of genetic variation (symbolized by a funnel) on insul
(B) Proposed effects of genetic variation in FFAR1.
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increased insulin secretion without contributing to apoptosis. In addition,
the FFAR1-agonist exhibited protection against apoptosis when applied
together with palmitate. Concordant with this, use of an FFAR1-
antagonist alone also led to increased apoptosis in INS1E-cells [61].
In humans, a reduced lipid-induced insulin secretion was demonstrated
earlier in carriers of a loss-of-function mutation in FFAR1 [62]. In our
translational study, we showed in �2100 subjects of the Tübingen
Family Study that a variant with a minor allele frequency of 27% in a
non-coding region near the FFAR1 exon interacted with fasting FFA
levels. The interaction between the SNP rs1573611 and fasting FFA was
significantly associated with two independent insulin secretion para-
meters [61]. The result suggested that a common FFAR1 variant could
contribute to compromised insulin secretion in a high fat environment,
thereby, providing additional proof-of-concept to Poitout's aforemen-
tioned postulation that part of the genetic predisposition to diabetes
might be related to the inability of beta-cells to adequately increase
insulin secretion in response to elevated fatty acid levels [15]. Moreover,
differential FFA-induced insulin secretion for a variant in FFAR1 could
also implicate an altered therapeutic efficacy for a receptor agonist. Of
note, several FFAR1 receptor agonists are under development, one of
them is presently undergoing phase III clinical trials. Data on FFAR1 as a
pharmacologic target, and its mode of action have recently been
reviewed [63].

4.6. The missing heritability of diabetes genes
We presented evidence on TCF7L2's role in incretin action. We also saw
data supporting a robust gene x environment interaction for the gene's
effect in modulation of insulin secretion which can at least partially be
derived from the mode of action as an effector of a glucose-dependent
insulin secretory pathway (Figure. 1a).
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FFAs are insulinotropic substrates acting through FFAR1. We described a
common genetic variant near FFAR1. In our models, the impact of this variant
on insulin secretion became only evident when testing interactions with FFAs
(Figure. 1b). Such genetic signals remain unrecognized by studies which do
not account for gene� environment interactions.
Whether a substantial part of the “missing heritability” of diabetes, i.e.
heritability not explained by previously discovered SNPs, is indeed masked by
a complex network of gene� environment, and perhaps also gene� gene
interactions is discussed controversially. Franks argues that the discovery of
gene� environment interactions will not account for the missing heritability,
because the used heritability estimates of type 2 diabetes are inherently clean
of interacting factors [64]. Using statistical simulations of environmental
interactions, Aschard and colleagues come to the conclusion that adding such
interactions to a diabetes prediction model based on genetic risk would not
relevantly increase predictive power [65]. In contrast, �25% of the heritability
of fasting insulin was explained by a gene� environment interaction between
carbohydrate intake and the whole genome in a recent study. In the same
study, �40% of the heritability of the HOMA-B index was accounted for by
an interaction of dietary n-6 polyunsaturated fatty acids with the genome [66].
The major problem with testing interaction effects is their “power
hunger”, i.e. much larger samples are required to detect them than with
marginal effects. This difficulty probably also underlies the notoriously
low replicability of interaction study results [67]. By attempting to depict
the complex relationships of living organisms closer and more
accurately, statistical models get more and more complicated. For
example, a crosstalk between two biological pathways could be mirrored
by a gene� gene interaction, which results in adding further variables
and interaction terms to the model. Selecting the right models and
combinations of variables without biological hypotheses gets, from a
certain point on, computationally unmanageable. An additional key
problem of gene� environment interaction testing is the low availability
of precise environmental variables. This is particularly difficult with
lifestyle or diet variables, but acquiring e.g. accurate measures of body
fat distribution can also be prohibitively expensive on a larger scale.
Homogenously phenotyped single-center populations probably have
MOLECULAR METABOLISM 3 (2014) 261–267 & 2014 The Authors. Published by Elsevier GmbH. All
advantages in this regard. Several new approaches has been introduced
to tackle the inherent problems of gene� environment interaction
testing [67], and some studies using innovative methods to overcome
the above mentioned difficulties have been published recently [68,69].
Nevertheless taking reasonable hypotheses from basic science, testing
them in precisely phenotyped human cohorts and using a careful sense
of proportion in judging the plausibility of results would still remain an
important way of discovering new concepts.

5. CONCLUSION

Using two examples, namely genetic variation in TCF7L2 and FFAR1, we have
shown that interaction of genetic and metabolic parameters has an impact on
beta-cell function. In both examples, this may influence the success of a
pharmacotherapy: existing ones like DPP-4 inhibitors and GLP-1 agonists in
the case of TCF7L2 and upcoming ones like FFAR1-agonist in the case of
FFAR1. There are several other interactive factors which influence the efficacy
of pharmacotherapy in the two examples of this review which are shown in
Figure. 2a and b. We propose a hypothetical example of a new therapeutic
strategy which incorporates these data on TCF7L2 in Figure. 3. Of course,
future clinical studies should support these concepts.
Taken together, knowledge of the interactive factors and integrating this
knowledge into therapeutic decisions will improve diabetes therapy in the
future.
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