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Previously, we reported strong influencesofgeneticvariants onmetabolic phenotypes, some of themwithclinical
relevance. Here, we hypothesize that DNA methylation may have an important and potentially independent effect
on human metabolism. To test this hypothesis, we conducted what is to the best of our knowledge the first epigen-
ome-wide association study (EWAS) between DNA methylation and metabolic traits (metabotypes) in human
blood. We assess 649 blood metabolic traits from 1814 participants of the Kooperative Gesundheitsforschung
in der Region Augsburg (KORA) population study for association with methylation of 457 004 CpG sites, deter-
mined on the Infinium HumanMethylation450 BeadChip platform. Using the EWAS approach, we identified two
types of methylome–metabotype associations. One type is driven by an underlying genetic effect; the other
type is independentofgeneticvariationandpotentiallydrivenbycommonenvironmentaland life-style-dependent
factors.WereporteightCpGlociatgenome-widesignificancethathaveageneticvariantasconfounder (P 5 3.9 3
10220 to2.0 3 102108, r2 5 0.036to0.221).Seven locidisplayCpGsite-specificassociationstometabotypes,butdo
not exhibit any underlying genetic signals (P 5 9.2 3 10214 to 2.7 3 10227, r2 5 0.008 to 0.107). We further identify
several groups of CpG loci that associate with a same metabotype, such as 4-vinylphenol sulfate and
4-androsten-3-beta,17-beta-diol disulfate. In these cases, the association between CpG-methylation and metabo-
type is likely the result of a common external environmental factor, including smoking. Our study shows that
analysis of EWAS with large numbers of metabolic traits in large population cohorts are, in principle, feasible.
Taken together, our data suggest that DNA methylation plays an important role in regulating human metabolism.
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INTRODUCTION

Metabolomics aims at the holistic measurement of ideally all
small molecules (metabolites) in a biological sample. It has
been shown in many studies that the metabolic phenotype (meta-
botype), as it can be determined in a sample of human blood,
carries information on important biological processes and that
some metabolic traits represent intermediate phenotypes linking
genetic and environmental factors to endpoints of complex disor-
ders (1). However, in order to translate this knowledge into action-
able therapeutic evidence, the precise nature of the biological
processes that lead from genetic variances and environmental
factors to disease outcomes requires further elucidation. Epigenet-
ic regulation of metabolic processes via DNA methylation and
gene expression may play a major role in this system. The
recent availability of array-based whole-genome DNA methyla-
tion measurements now allows for epigenome-wide association
studies (EWAS) with disease-relevant phenotypes, which
address such questions in a basically non-biased manner.

Many blood serum metabolic traits represent intermediate
phenotypes that link genetic and environmental factors to
disease and often represent indicators of complex disorders
(2). Identification of key factors that determine disease-relevant
human metabolic traits is essential to our understanding of their
role in the etiology of complex disorders (3). In previous
genome-wide association studies (GWAS) with metabolic
traits, we identified many instances of single nucleotide poly-
morphism (SNP)–metabotype associations with large effect
sizes, the so-called genetically influenced metabotypes (GIMs)
(1). Some of these GIMs have already been shown to play a
role in complex disorders; others are presently under investiga-
tion. DNA methylation is an important gene-regulatory mechan-
ism (4,5) and is therefore expected to also play a role in
determining disease-relevant metabotypes (6). For instance,
Menni et al. reported three associations between DNA methyla-
tion and C-glycosyl tryptophan levels. This metabolite also asso-
ciated with bone mineral density and birth weight in their study
(7). DNA methylation is influenced by genetic and environmen-
tal factors, and many feedback mechanisms between DNA
methylation, gene expression and other biological processes
are known or suspected (5). However, in contrast to genetic vari-
ation, where it is clear that a genetic variant is causal for an asso-
ciation between a SNP and a phenotype, this is not so for
associations between variance in DNA methylation and meta-
bolic traits (see Fig. 1). The availability of whole-genome
methylation assays makes EWAS now possible and thereby
allows for a basically bias-free approach to these questions
(8,9). Here, we present the first EWAS with metabolic traits in
human blood (the study design is sketched in Fig. 2).

RESULTS

All data used here were obtained from the Kooperative Gesund-
heitsforschung in der Region Augsburg (KORA) F4 population
study and have been described previously in the publications
referenced below. Briefly, the Illumina Infinium HumanMethyla-
tion450 BeadChip platform was used to determine DNA methyla-
tion (10). This platform quantifies relative methylation of CpG
sites using the Illumina DNA bead array technology and DNA
bi-sulfite conversion (8). The percentage of methylation of a

givencytosine is reportedas abeta-value (b-value),which isacon-
tinuous variable between 0 and 1, corresponding to the ratio of the
methylated signal over the sum of the methylated and unmethy-
lated signals. After quality control, data on b-values for a total
of 457 004 CpG sites observed for 1805 individuals entered the
analysis.

The metabolite data set has been described previously in a
number of GWAS with metabolic traits. It consists of measure-
ments obtained on three different metabolomics platforms:
(i) platform ‘Biocrates’ implements a kit-based-targeted quanti-
tative FIA-MS/MS method (151 traits), (ii) platform ‘Metabolon’
uses non-targeted, semi-quantitative liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) and
GC-MS methods (483 traits) and (iii) platform ‘Lipofit’ derives
lipid-related parameters from 1H NMR measurements (15
traits). Detailed descriptions of these data sets can be found in
the following papers: Jourdan et al. and Illig et al. (11,12) for
metabolites form the Biocrates platform, Suhre et al. (13) for
known metabolites from the Metabolon platform, Petersen
et al. (14) for lipoprotein classes from the Lipofit platform and
Krumsiek et al. (15) for non-annotated (unknown) metabolites
from the Metabolon platform. In total, 649 metabolic traits
were used in this study (see Supplementary Material, Table S1
for a full list). In the metabolomics data, depending on technology
and metabolic trait, some values are missing. However, in most
cases, data for .1700 subjects are available. The exact number
of observations used in any specific analysis is reported in the
tables. Based on prior experience, we tested log-transformed me-
tabolite concentrations (Biocrates and Lipofit platforms) or ion
counts (Metabolon platform) for association with DNA methyla-
tion (b-values), using age, gender, body mass index (BMI) and
white blood cell count (WBC) as covariates in a linear model.
The genome-wide level of significance at an alpha level of 0.05

Figure 1. Schematic view of processes that link genetic variance and CpG–
methylation to metabolic phenotypes. Possible feedback reactions are depicted
by dashed lines, such as transcription activity leaving traces on the DNA by
CpG–methylation, alosteric inactivation of enzymatic reactions or transcription
regulation by metabolite-mRNA binding. Other potential regulatory and feed-
back mechanisms, involving for instance microRNA silencing and histone mod-
ifications, may exist but are not depicted here.
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after the Bonferroni correction for 649 × 457 004 tests is pgw¼
1.69 × 10210. Note that due to biochemical interactions, the con-
centrations of some metabolic traits correlate with each other. Bon-
ferronicorrectionmay, therefore,beoverlyconservative.Wereport
association data below this level as Supplementary Material.

Genetic variance near or in CpG sites may influence DNA
methylation and thus may be an unidentified confounding
factor behind some of the associations. To explicitly account
for the effect of genetic variance and also to identify associations
that are driven by non-genetic factors, we conducted a second as-
sociation analysis where we included three SNPs from the vicin-
ity of the CpG site into the model. These three SNPs were
selected iteratively as follows: first we tested the association of
each b-value for linear additive dependence on every individual
genotyped SNP within a window of+5 Mb around the CpG site,
using age, gender, BMI and WBC as covariates. We then
selected the SNP that showed the strongest association with
CpG methylation (called SNP1). We then selected a second

SNP (SNP2) and then a third (SNP3) following the same proced-
ure, including the already selected SNP(s) as covariates.

Strong CpG–metabotype associations were found
at loci that harbor previously reported SNP–metabotype
associations

Manhattan plots for the associations of CpG–methylation with
metabolite concentrations (CpG–metabotype associations) are
presented in Figure 3. We identified 621 CpG–metabotype asso-
ciations at Bonferroni threshold (Supplementary Material,
Table S2). Manual inspection of the top ranking associations
revealed the presence of eight loci (ACADS, PYROXD2,
NAT8, ACADM, OPLAH, FADS1, UGT1A and SULT2A1)
that have been found previously in association between a
genetic variant and a same metabolic phenotype as the one iden-
tified here (12,13,15) (Table 1, Supplementary Material,
Fig. S1). At this stage of the analysis, we initially suspected

Figure 2. Study design.
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artificial associations: Microarray-based methylation chips are
susceptible to interference with SNPs in the CpG region. Such
SNPs may interfere with the oligo-based determination of CpG
methylation (16). To exclude such experimental artifacts, we
attempted the validation of the methylation measurements using
the Sequenom EpiTYPER system, which is an array-independent
method based on mass spectrometry (17). DNA samples from a
subset of 30–40 samples were analyzed using the EpiTYPER
system for five of the eight loci (see Section ‘Methods’ and Sup-
plementary Material, Table S3). Validation of the three remaining
sites was not attempted for lack of suitable amplicons. For all suc-
cessfully analyzed loci (ACADS, PYROXD2, ACADM, OPLAH
and FADS1) we observed strong correlation between DNA
methylation determined using the EpiTYPER system and the Infi-
nium HumanMethylation450 BeadChip (see r2 in Table 1).
However, the EpiTYPER system is also susceptible to the pres-
ence of SNPs in the DNA sequence that may potentially induce
a false methylation signal. The MassArray software (18) allows
for the detectionof thepresenceofsuchSNPs.Using thissoftware,
we did not observe a significant number of SNPs within the ana-
lyzed fragments (the number of samples with a SNP in the

fragment is reported in Table 1, output from MassArray is pro-
vided as Supplementary Material, Fig. S4). However, using the
UCSC Genome Browser, we further checked for the presence of
SNPs within the analyzed CpG sites. In the case of ACADS,
PYROXD2, NAT8 and SULT2A1 a frequent SNP were reported
in the C or G nucleotide of the CpG site. No SNPs were present in
the vicinity of the CpG sites of the ACADM,OPLAH,FADS1 and
UGT1A cases. In the first four cases, genetic variance in the CpG
site may thus be at the origin of the observed genotype-dependant
methylation, whereas in the latter four cases such an effect can be
clearly ruled out.

After elimination of potentially underlying genetic signals,
the majority of CpG–metabotype associations were driven
by a common, but yet unidentified external factor

In an effort to eliminate all underlying genetic signals from the
CpG–metabotype associations, we conducted a second associ-
ation study, explicitly accounting for a potential genetic effect by
including three SNPs from the vicinity of the CpG site into the
model. Using this approach, we expected to obtain an association

Figure 3. Manhattan plots of CpG–metabotype associations without (top) and including (bottom) three SNPs into the model to account confounding genetic factors.
Associations with P-values , 10213 are indicated by vertical lines. Associations with P-values , 10225 are indicated by red dots. Manhattan plots comparing these
CpG–metabotype associations to previously published SNP–metabotype associations are provided as Supplementary Material, Figure S1.

Table 1. CpG–metabotype associations limited to loci that also show a strong association with a genetic variant

Locus name CpG Chr Pos Metabolic trait Beta′ r2 P-value N r2 (NEpi) Fragment # Samples
with SNP

ACADS cg24768164 12 121 163 261 Butyrylcarnitinea 20.998 0.221 2.0 × 102108 1744 0.907 (35) CpG_9 0
PYROXD2 cg26690318 10 100 167 465 X-12092b 2.171 0.138 2.2 × 10260 1725 0.904 (31) CpG_14 0
NAT8 cg13584399 2 73 907 327 N-acetylornithinea 20.950 0.120 8.9 × 10252 1731 Not analyzed —
ACADM cg10523679 1 76 189 770 Hexanoylcarnitinea 20.456 0.065 1.8 × 10230 1749 0.954 (31) CpG_4 2
OPLAH cg06239191 8 145 163 136 5-oxoprolinea 0.813 0.056 8.0 × 10225 1737 0.872 (32) CpG_1 0
FADS1 cg11250194 11 61 601 937 PC aa C38:4c 11.41 0.054 1.0 × 10224 1781 0.653 (35) CpG_5 0
UGT1A cg26799339 2 234 664 336 bilirubin (Z,Z)a 20.973 0.054 2.9 × 10224 1706 Not analyzed —
SULT2A1 cg00365481 19 48 362 237 X-11440b 1.358 0.0363 3.9 × 10220 1742 Not analyzed —

CpG id (cg-numbers), chromosome (Chr) and chromosome position (Pos, human genome build 37), metabolic trait, the effect size (beta’), variance of metabolic trait
explained by CpG methylation (r2), P-value of the linear model, and number of samples (N); for the EpiTYPER validation, the correlation coefficient (Pearson r2)
between the Infinium HumanMethylation450 BeadChip derived b-values and the EpiTYPER methylation is reported for the EpiTYPER fragment corresponding to
associated CpG site; NEpi is the number of samples used in the EpiTYPER replication; the number (#) of samples that contain a SNP in the quantified amplicon
[identified using MassArray (18)] are given; scatterplots between Infinium HumanMethylation450 BeadChip derived b-values and the EpiTYPER-based methylation
levels are provided in Supplementary Material, Figure S3; graphical output from the SNP detection analysis software for the individual amplicons is shown in
Supplementary Material, Figure S4. We initiated the EpiTYPER replication early-on in the project. Eventually, after adjusting for the covariates described in the
methods part, in two cases CpG sites that differ from those selected for replication (cg14631276 at OPLAH and cg19610905 at FADS1) exhibited stronger signals of
association. As these sites display only slightly stronger signals of association, we did not repeat the replication on these CpG sites.
aA genetic association at this locus with this metabolic trait was reported in Suhre et al., 2011 (13)
bKrumsiek et al., 2012 (15).
cIllig et al., 2010 (12).
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signal that can be clearly attributed to processes of DNA methyla-
tion that are not driven bya genetic variance near the CpG site.This
study identified 562 CpG–metabotype associations at the Bonfer-
roni threshold of significance, most of which were already present
in the initial study (Supplementary Material, Table S4). As
expected, all associations reported in Table 1 disappeared. To
group neighboring CpG sites that exhibit identical association
signals, we grouped CpG sites together that were no more than
1 000 000 bases apart. In this grouping process, we included all
CpG sites with association P-values , 1029 (1260 sites). This
process resulted in a total of 459 distinct loci. When inspecting
the associating metabolic traits at these 459 loci, we observed
that some metabolic traits were strongly over-represented. We,
therefore, grouped multiple loci that exhibit a common pattern of
CpG–metabotype associations into larger loci groups. This anno-
tation procedure led to the definition of six loci groups (named
VINYLPHENOL, STEROIDS, ‘PC ae C4 . . . ’, ‘PC aa . . . ’, ‘tyr/
trp’, ‘Lipofit traits’ by the predominant associating metabolic
traits; Table 2 and Supplementary Material, Table S4). We
furtherannotatedsevendistinct loci,whereametabolic trait specif-
ically associates with only a single locus (named UGT2B15,
TXNIP, DHCR24, MYO5C, ABCG1, SLC25A22, CPT1A by
neighboring genes). All but 14 of the 459 loci were thus annotated.
The remaining 14 loci,whichhad P-values . 2 × 10212, werenot
further investigated. The association at the seven loci and six loci
groups that we discuss below all had P-values , 10213 for at
least one of their CpG–metabotype associations.

We then noted that the majority of all loci (391) was covered
by only three of the loci groups (‘PC ae C4 . . . ’, ‘trp/tyr’ and
‘Lipofit’). Manual inspection of the associations related to
these groups revealed that the metabolic traits that associated
with the CpG sites at these loci had very similar patterns and
should thus be considered as one single loci group. In particular,
the phosphocholine PC ae C44:5 was found as a common leading
trait in 374 out of the 391 loci. Other metabolic traits that asso-
ciated with many CpG sites in these loci groups are the phospho-
lipids PC ae C42:4, PC ae C42:5, PC ae C44:4, PC aa C26:0, the
lipid traits Chylo-A, VLDL-A from the Lipofit platform and the
amino acids tyrosine and tryptophan (measured both on the Bio-
crates and on the Metabolon platform). The P-value distributions
of the individual associations for these traits were highly inflated
(see QQ-plots in Supplementary Material, Fig. S3). This infla-
tion indicates a correlation between these metabolic traits and
non-loci-specific DNA-methylation, which is likely driven by
a common external factor. However, after testing the numerous
phenotypes available in KORA (i.e. age, gender, BMI, blood
lipid parameters, smoking, alcohol consumption, diabetes, and
hypertension, and data from our previous metabolome-wide as-
sociation studies for association with these traits), we were
unable to identify a potential common external factor. Further re-
search is needed to elucidate this question.

Only few highly significant loci- and two loci group-specific
CpG–metabotype associations remain after removal of the
confounding genetic effects

After exclusion of the inflated association signals and confound-
ing genetic effects, only seven distinct loci (UGT2B15, TXNIP,
DHCR24, MYO5C, ABCG1, SLC25A22 and CPT1A) and two
loci groups (named STEROIDS—comprising five loci—and

VINYLPHENOL—comprising eight loci—by reference to the
associated traits) remain (Table 2). Validation of CpG methyla-
tion was attempted for all loci using the EpiTYPER system and is
reported in Table 2. Although this validation was generally suc-
cessful, some of the methylation measurements could not be
fully validated. These cases should thus be interpreted with care.

DISCUSSION

This is the first EWAS with metabolic traits. We identified two
types of methylome–metabotype associations. One type is
driven by an underlying genetic effect (eight loci, Table 1); the
other type is independent of genetic variation and potentially
driven by common environmental and life-style-dependent
factors (seven loci and two loci groups, Table 2). Given the
early state of this field of research and the associated computa-
tional complexity, some choices had to be made early-on in
the study, which may be improved in future work. In this light,
we discuss here the main results of our study, mentioning poten-
tial caveats as we go. First of all, it needs to be noted that the Infi-
nium HumanMethylation450 BeadChip as an array-based
technique only queries a subset of all potentially methylated
sites in the genome. Future studies using full sequencing may
thus alter some of the results presented here. It has further been
suggested that the standard pipeline for Infinium HumanMethy-
lation450 BeadChip data processing using the GenomeStudio
software is suboptimal (19). The Infinium HumanMethyla-
tion450 BeadChip combines two distinct probe types, Infinium
I and II, which may cause a bias in the analysis if all signals
are merged as a unique source of methylation measurement. Infi-
nium I considers two bead types (methylated and unmethylated)
for the same CpG locus, both sharing the same color channel,
whereas Infinium II utilizes a single bead type and two color
channels (19). There have been several efforts to develop new
methodologies and pipelines to overcome the shift between Infi-
nium I and II, such as subset-quantile within array normalization
(20) and beta mixture quantile dilation (21). Although those
methods have been compared using different criteria, the
method of choice is still subject of discussion (22). These alter-
native methods are potentially preferable in future studies and
may lead to higher statistical power, however, we believe that
these caveats do not put our observed associations into question.
To further test this point, we obtained preliminary methylation
data for the CpG sites reported in Tables 1 and 2, which have
been normalized using the pipeline described in Touleimat and
Tost (19). We find that all associations reported in this paper
are robust with respect to these changes in the normalization of
the HumanMethylation450 BeadChip data (data not shown).

Another limitation of this study is the fact that we determine
DNA methylation in cells obtained from whole blood. However,
blood metabolite levels are largely determined by metabolic trans-
formations that occur in the liver, kidney, muscle and adipose
tissue. Furthermore, in this study, we only have DNA available
from unsorted cells that were extracted from the whole blood.
The DNA methylation reported here is, therefore, a readout
from a mixture of different types of blood cells (23). The CpG–
metabotype associations we report here are thus likely limited to
processes of DNA methylation that are not cell-type specific.
This is in particular reflected in the CpG–metabotype associations

538 Human Molecular Genetics, 2014, Vol. 23, No. 2

 at G
SF Forschungszentrum

 on A
pril 28, 2014

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt430/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt430/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt430/-/DC1
http://hmg.oxfordjournals.org/


Table 2. CpG–metabotype associations after correction for genetic effects and exclusion of inflated loci

Locus name CpG Chr Pos Metabolic trait Beta’ r2 P-value N r2 (NEpi) Fragment # samples
with SNP

UGT2B15 cg09189601 4 69 514 031 X-11491 20.865 0.087 2.69 × 10227 1283 Not analyzed –
TXNIP cg19693031 1 145 441 552 Chylo-A 20.996 0.038 1.11 × 10221 1771 0.842 (41) CpG_5 0
DHCR24 cg17901584 1 55 353 706 PC ae C36:5 4.001 0.036 3.65 × 10218 1780 0.744 (41) CpG_5 0
MYO5C cg06192883 15 52 554 171 Glycine 20.659 0.030 1.61 × 10215 1744 0.257 (41, n.s.) CpG_4 31
ABCG1 cg06500161 21 43 656 587 SM C16:0 20.817 0.008 1.04 × 10214 1781 0.507 (33) CpG_2.3 21
SLC25A22 cg09441501 11 798 350 Arg 21.000 0.035 1.66 × 10214 1780 Not analyzed –
CPT1A cg00574958 11 68 607 622 VLDL-A 21.000 0.025 9.23 × 10214 1773 0.332 (41) CpG_5 1
SLC7A11 (STEROIDS) cg06690548 4 139 162 808 A-diol 20.980 0.071 6.83 × 10239 1746 0.123 (40, n.s.) CpG_2 0
PHGDH (STEROIDS) cg14476101 1 120 255 992 A-diol 20.929 0.035 6.50 × 10221 1742 0.205 (41, n.s.) CpG_2 4
LOC100132354 (STEROIDS) cg18120259 6 43 894 639 A-diol 20.932 0.023 1.10 × 10214 1747 0.667 (41) CpG_3 0
SLC1A5 (STEROIDS) cg22304262 19 47 287 778 A-diol 20.954 0.022 6.49 × 10214 1744 0.608 (41) CpG_11 13
cg13526915 (STEROIDS) cg13526915 14 24 164 078 A-diol 20.924 0.020 3.15 × 10213 1746 0.181 (31, n.s.) CpG_3 15
AHRR (VINYLPHENOL) cg05575921

∗
5 373 378 4-vs 20.953 0.107 3.52 × 10249 1709 0.977 (41) CpG_3 0

ALPPL2 (VINYLPHENOL) cg21566642
∗

2 233 284 661 4-vs 20.945 0.079 7.03 × 10237 1706 Not analyzed –
F2RL3 (VINYLPHENOL) cg03636183

∗
19 17 000 585 4-vs 20.977 0.063 5.63 × 10230 1708 Not analyzed –

cg06126421 (VINYLPHENOL) cg06126421
∗

6 30 720 080 4-vs 20.952 0.048 4.12 × 10225 1709 0.951 (41) CpG_4 0
RARA (VINYLPHENOL) cg19572487

∗
17 38 476 024 4-vs 20.887 0.034 6.12 × 10216 1707 0.822 (40) CpG_2 0

GFI1 (VINYLPHENOL) cg09935388
∗

1 92 947 588 4-vs 20.899 0.030 3.01 × 10215 1709 0.816 (42) CpG_4.5.6 0
TPM1 (VINYLPHENOL) cg10403394 15 63 349 192 4-vs 6.198 0.013 4.63 × 10213 1709 0.934 (41) CpG_5.6 0
cg23079012 (VINYLPHENOL) cg23079012 2 8 343 710 4-vs 20.996 0.026 9.07 × 10213 1709 0.870 (35) CpG_5.6 14

Legend as in Table 1; 4-androsten-3beta, 17beta-diol disulfate (A-diol); 4-vinylphenol sulfate (4-vs); cases where no statistically significant correlation between the methylation readouts from the Infinium
HumanMethylation450 BeadChip and the EpiTYPER system was observed are marked as ‘n.s.’. Loci in the VINYLPHENOL group that are marked by a ‘∗’ were reported by Zeilinger et al. (10) in association with
smoking.

H
u

m
a

n
M

o
lecu

la
r

G
en

etics,
2

0
1

4
,
V

o
l.

2
3

,
N

o
.
2

5
3

9

 at GSF Forschungszentrum on April 28, 2014 http://hmg.oxfordjournals.org/ Downloaded from 

http://hmg.oxfordjournals.org/


that have an underlying genetic variant, since all cells carry the
samegenetic variants. It also suggests that most (if not all) associa-
tions without anunderlyinggeneticeffect aredriven byan external
environmental factor that affects the organism as a whole.

For instance, using the same population study and DNA
methylation data that is used in this study, Zeilinger et al. (10)
show that tobacco smoking leads to extensive genome-wide
changes in DNA methylation, identifying the CpG sites of the
VINYLPHENOL loci group we report here. Here, we find an as-
sociation of the VINYLPHENOL loci group with 4-vinylphenol
sulfate (4-vs) . Interestingly, Manini et al. (24) showed that
4-vinylphenol associates with smoking, and these authors
provide a biochemical explanation for this association: they
found urinary 4-vinylphenol to be significantly correlated with
airborne styrene, but also found a measurable background excre-
tion of 4-vinylphenol in all urine samples from controls not oc-
cupationally exposed to styrene. This background appeared to
be highly correlated to smoking (P , 0.001), which can be
explained by the fact that styrene is one of many chemicals
found in cigarettes. Therefore, it is likely that the association
between CpG–methylation and 4-vinylphenol sulfate for the
sites of the VINYLPHENOL loci group is driven by the
common environmental factor smoking.

Similarly, we suspect a common external environmental factor
that may be driving the associations observed in the STEROIDS
case. We note that there is a mutual theme between the
biological function of some of the genes at these loci. The
steroid 4-androsten-3-beta,17-beta-diol (A-diol) belongs to the
class of androgenic anabolic steroids (androstenedione) and is an
intermediate in the biochemical pathway that produces the andro-
gen testosterone and the estrogens estrone and estradiol. The gene
product of the SLC7A11 (solute carrier family 7) gene is involved
in metabolism and transport systems induced by estrogen and
thereforean estrogen-responsive gene (25). PHGDH (phosphogly-
cerate dehydrogenase) catalyses the first and rate-limiting step in
the phosphorylated pathway of serine biosynthesis (note that
genetic variance in PHGDH also associates with serine (12,13),
but that the CpG–serine association is robust to the inclusion of
the relevant SNPs into the model). PHGDH is part of a key meta-
bolic pathway that is essential in estrogen receptor (ER)-negative
breast cancer (26). SLC1A5 [solute carrier family 1 (neutral amino
acid transporter), member 5] also known as ASCT2 (ASC stands
for ‘alanine-serine-cysteine–preferring’) is a Na+ (and K+)-
dependent glutamate transporter, accepting as substrates all
neutral amino acids, including glutamine, asparagine and
branched-chain and aromatic amino acids, and excludes methy-
lated amino acids, anionic amino acids and cationic amino acids.
Tumor cells are known for their high requirement of glutamine
that serves multiple functions within the cells, including nutritional
and energy source and ASCT2 mediates net uptake of glutamine
(6,7). Tamoxifen and raloxifene, which are selective ER modula-
tors, suppress the proliferation of ER-negative cells through inhib-
ition of glutamine uptake in a dose-dependent manner through
inhibition of ASCT2 (27). The common theme of these three asso-
ciations is thus related to steroid metabolism. One may speculate
that differences in steroid metabolism may impact on the specific
methylation of the genes of the STEROID locus-group. However,
the external factor that leads to differences in steroid metabolism
remains to be identified.

A detailed discussion of the potential biological background of
the seven associations that involve only single loci is beyond the
scope of the present paper. These loci require further in-depth ana-
lysis before we can get a clearer picture of their biological import-
ance. We only briefly highlight the TXNIP case as an example:
this case is well validated using EpiTYPER (r2 ¼ 0.842). In add-
ition to the association of cg19693031 with chylomicrons (size
class A of the Lipofit platform, P ¼ 3.65 × 10218), this site also
associates with known metabolic markers of diabetes, such as a
number of other lipid parameters, hexose (P ¼ 4.35 × 10212),
and alpha-hydroxybutyrate (P ¼ 7.24 × 1028) (see Supplemen-
tary Material, Table S5 for a full list). TXNIP is functionally
involved in glucose regulation. In a recent study with 4450 indivi-
duals, TXNIP expression was consistently elevated in the muscle
of pre-diabetic and diabetic participants. However, the authors
found no evidence for association between common genetic vari-
ation in the TXNIP gene and type 2 diabetes (28). Our data suggest
that DNA methylation may play a regulatory role in this case.

Regarding the influence of genetic variance on methylation, the
situation is quite complex. We identified eight loci at which the as-
sociation of CpG–methylationwith metabotype isconfounded by
a frequent SNP in the gene region. The CpG–metabotype associ-
ation disappears when genetic variance is included into the model.
Since array-based methylation assays are susceptible to artifacts
that may be induced by SNPs within the probe region, we
attempted to validate the methylation measurements using the
mass spectrometry-based EpiTYPER system. Although we
observed strong correlation between methylation measured on
both systems in the five cases that were successfully analyzed,
due to the presence of SNPs in the CpG sites, we cannot totally
rule out interference of frequent SNPs with the Infinium Human-
Methylation450 BeadChip in two of the cases (ACADS and
PYROXD2). However, genetic variants in the CpG sites them-
selves can also explain the data (see below).

Nevertheless, some cases are clear: For instance in the case of
ACADM (Fig. 4), no SNPs have been reported in any database
in the vicinity of the cg10523679 site, and DNA methylation has
been well validated using the EpiTYPER system (r2 ¼ 0.954).
Moreover, two other assayed CpG sites in close vicinity of
cg10523679 also show a strong association signal (cg22875332,
P¼ 1.1 × 10229; cg03433033,P ¼ 3.3 × 10230;Supplementary
Material, Table S2). This suggests that DNA methylation at this
locus is not limited to a single CpG-pair. A genetic variant in the
observed CpG site itself can be ruled out. Alternative scenarios
are that genetic variants in a gene regulatory element at the
ACADM locus influence gene expression or that a variant in a
coding region modifies the enzymatic reaction efficacy of
ACADM. Both scenarios can explain the observed changes in
the metabolite concentrations. A feedback mechanism would
then be required in order to explain the changes in DNA methyla-
tion (see possibilities suggested in Fig. 1). Potentially, epistasis
may also play a role. However, it is also possible that the genetic
variant is merely a confounding factor, and that no functional rela-
tion exists between variance in DNA methylation and variation in
metabolic traits.

Taken together, our data suggest that some of the here
observed associations between CpG methylation and metabolite
concentrations may be explained by genetic confounders or by
non-genetic external factors. Four possible scenarios are
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sketched in Figure 5: First, a genetic variant in linkage disequi-
librium (LD) with a SNP that influences metabolite concentra-
tions may result in the loss of a CpG site that is observed by
the Illumina platform. For four of the eight cases with a possible
genetic confounding factor (ACADS, PYROXD2, NAT8 and
SULT2A1) frequent variants in the CpG site are reported in
dbSNP and are thus likely candidates for such a confounding
factor (Fig. 5a). Second, a genetic variant may result in the
loss of a CpG site that is not queried by the Illumina platform.
Maintenance of DNA methylation (e.g. during mitosis) may
then lead to a spill-over of methylation of that site to neighbor-
ing CpG sites, including the one observed on the Infinium

HumanMethylation450 BeadChip platform. No frequent SNP
was found in dbSNP and data from the 1000 Genomes Project
for the other four cases with a genetic background (ACADM,
FADS1, UGT1A and OPLAH; Fig. 5b). Potentially, a SNP
within the CpG probe, but not resulting in the loss of a CpG
site may result in an artificial association signal (16) (Fig. 5c).
However, for the eight cases with a potential genetic effect, we
exclude such an effect since no other frequent SNPs were
detected in the vicinity of these CpGs using the EpiTYPER plat-
form. By accounting for three SNPs in our second model, we also
ruled out this possibility for the associations reported in Table 2
and Supplementary Material, Table S4. In these cases, the

Figure 4. Association between genotype, CpG–methylation and metabolic phenotype at the ACADM locus. (A) Scatterplot of b-values at cg10523679 and hexa-
noylcarnitine, colored by the genotype of SNP rs12134854; (B) correlation between methylation of cg10523679 determined by EpiTYPER and by the Infinium
HumanMethylation450 BeadChip for selected samples (r2 ¼ 0.954); (C) as in (A), but for cg10523679 methylation determined on a subset of samples using the Epi-
TYPER system (fragment 4, which contains cg10523679); (D) boxplots of hexanoylcarnitine concentrations as a function of rs12134854 genotype; (E) methylation of
cg10523679 determined using the Infinium HumanMethylation450 BeadChip as a function of the rs12134854 genotype. This figure shows that there is a strong three-
way association between genotype, CpG methylation, and hexanoylcarnitine concentrations at the ACADM locus. Note that hexanoylcarnitine is essentially a sub-
strate of the ACADM enzyme, rs12134854 is in linkage equilibrium of the ACADM gene, and cg10523679 is located in the promoter region of the ACADM gene.
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scenario depicted in Figure 5d appears to be the most parsimoni-
ous. For the VINYLPHENOL, case we have shown that smoking
is the common external factor (10). For the STEROID case, we
have shown that there is a common theme between some of the
differentially methylated gene loci, but we were not able to iden-
tify the nature of the external factor. Regarding the ‘inflated loci’,
we also suspect a common environmental factor, which still
needs to be identified. This could be a factor that is presently
not captured in the KORA phenotype data set, such as sleep de-
privation, general fatigue or exposure to a common environmen-
tal agent.

Regarding future EWAS, a number of lessons can be learned
from our study. Concerning the numerical treatment of inflation
of some traits in the association, methods based on PCA have
been recently suggested to control for potential confounders in

data sets with large numbers of CpGs (29). Such techniques
may be used in the future to increase the statistical power of
EWAS. In terms of coping with potential artifacts due to inter-
action of the assay oligo-probes with genetic variants in the
region, we developed an approach that may help alleviate this
problem: By including three SNPs from the CpG region into
the model, we account for variance in the metabolic traits that
can be explained by genetic variance in the vicinity of the CpG
site, regardless of whether this is a true genetic effect or an arti-
fact induced by interaction between a SNP and the oligo-probe
on the methylation array. This approach may also be applied in
future EWAS with other phenotypes.

Cell-typemixtures may alsobea problem. For bloodsamples, it
is possible to use correlation structures in the methylation data to
determine the cell-type composition of the analyzed blood cells

Figure 5. Possible scenarios that may result in an observed CpG–metabotype association induced by a confounding genetic variant or by an external environmental
factor.
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(30).For instance,Liuetal. (31) successfullyused thisapproachto
adjust for cell-typeproportions inanEWASwithrheumatoidarth-
ritis. Studies with DNA methylation using DNA from human
tissue biopsies (e.g. muscle and adipose tissue) may reveal more
specific and potentially stronger CpG–metabotype associations.
However, such samples are generally not available on an epi-
demiological scale, so that such studies may in turn be limited
by their statistical power. In this context, it should be noted that
a study using tissue samples from six different tissues and indivi-
duals has been published (16), while other studies showed that
DNA methylation patterns were substantially different between
lymphocyte cell lines and whole blood (9) and also across a
large spectrum of samples, tissues and diseases (32).

In summary, we have shown that EWAS with large numbers
of metabolic traits in big population cohorts are in principal feas-
ible and can shed new light on the role of DNA methylation in
human metabolism. However, we did not observe similarly
strong effects of DNA methylation on metabotypes compared
to what we previously reported for associations of genotype
with metabotypes. We also found that results of associations
from EWAS with metabolic traits may be difficult to interpret
in terms of causality, and that it is hard to distinguish between
true functional association and mere correlation that is driven
by an unidentified common factor. Our data may now be used
in future studies where a role of DNA methylation in the etiology
of complex disorders is suspected.

MATERIAL AND METHODS

Study population and blood sampling

The KORA study is an independent population-based sample
from the general population living in the region of Augsburg,
southern Germany. KORA has been described in detail (33 and
references therein). Here, we use data from the KORA F4
survey, which was conducted between 2006 and 2008. A total
of 3080 subjects participated in the examination, comprising indi-
viduals who, at that time, were aged 32–81 years. Blood samples
for metabolic analysis and DNA extraction were collected at the
time of the KORA F4 visit. To avoid variation due to circadian
rhythm, blood was drawn in the morning between 08:00 and
10:30 after a period of at least 10 h overnight fasting. Material
was drawn into serum gel tubes, gently inverted twice and then
allowed to rest for 30 min at room temperature (18–258C) to
obtain complete coagulation. The material was then centrifuged
for 10 min (2750 g at 158C). Serum was divided into aliquots
and kept for a maximum of 6 h at 48C, after which it was frozen
at 2808C until analysis. Written informed consent has been
given by all participants and the studies have been approved by
the local ethics committee (Bayerische Landesärztekammer).

Metabolomics data set

The metabolite data used here consist of 649 measurements
of metabolic traits that were obtained on three different
metabolomics platforms: platform ‘Biocrates’ implements a
kit-based-targeted quantitative FIA-MS/MS method (151
traits), platform ‘Metabolon’uses non-targeted, semi-quantitative
LC-MS/MS and GC-MS methods (483 traits), and platform
‘Lipofit’ derives lipid-related parameters from 1H NMR

measurements (15 traits). The full metabolite set is provided as
Supplementary Material, Table S1. These data sets have been ex-
tensively described previously. Quality control and platform-
related details can be found in Jourdan et al. and Illig et al.
(11,12) (Biocrates platform), Suhre et al. (13) (known metabolites
from the Metabolon platform), Petersen et al. (14) (lipoprotein
classes from the Lipofit platform) and Krumsiek et al. (15) (non-
identified metabolic traits from the Metabolon platform).

Array-based DNA methylation analysis

DNA methylation was determined for 1814 samples using the
Infinium HumanMethylation450 BeadChip platform (8). A
total of 1000 ng genomic DNA from each sample was bisulfate-
converted using the EZ-96 DNA Methylation Kit (Zymo
Research, Orange, CA, USA) according to the manufacturer’s pro-
cedure, with the alternative incubation conditions recommended
when using the Infinium Methylation Assay. Genome-wide
DNA methylation was assessed using the Infinium Human-
Methylation450 BeadChip, following the Infinium HD Methyla-
tion protocol. This consists of a whole-genome amplification
step using 4 ml of each bisulfite-converted sample, followed by
enzymatic fragmentation and application of the samples to
BeadChips (Illumina). The arrays were fluorescently stained
and scanned with the Illumina HiScan SQ scanner. The percent-
age of methylation of a given cytosine is reported as a beta-value,
which is a continuous variable between 0 and 1, corresponding to
the ratio of the methylated signal over the sum of the methylated
and unmethylated signals. GenomeStudio (version 2010.3) with
methylation module (version 1.8.5) was used to process the raw
image data generated by BeadArray Reader. Initial quality as-
sessment of assay performance was conducted using the Geno-
meStudio software integrated controls dashboard and included
assessment of DNP and Biotin staining, extension, hybridiza-
tion, target removal, bisulfite conversion, specificity, negative
and non-polymorphic controls. Nine samples had to be excluded
because of deviations from optimal performance that also
remained when the complete Infinium HD Methylation protocol
was repeated, suggesting insufficient DNA quality. All 1805
approved samples were preprocessed with Genome Studio
(background subtraction and control normalization) and the cor-
rected beta-values were then extracted with the same software.
Since the average success rate was larger than 99% for all
samples, we did not exclude any samples. The beta-values
ranged from 4 × 1025 to 0.99881. After exclusion of non-
autosomal sites, a total of 457 004 CpG sites were used for
analysis. To control for reproducibility of methylation data, a
positive control was included per Illumina run, summing up to
a total of six replicates. As additional quality check, we calcu-
lated a CV (coefficient of variance) for all CpG site using these
six replicates. The maximum CV was 2.5%. Furthermore,
using control samples which were designed with 0, 20, 60 and
100% methylation, we checked for variation in the mean of the
beta-values over different categories of CpG sites (Exon,
UTR3, UTR5, Body, TSS1500, TSS200, Island, N_Shelf,
N_Shore, S_Shelf, S_Shore). The mean for each control
sample was comparable across the different categories. For all
of these individuals, genome-wide SNP data were already avail-
able. These data have been used and described extensively in the
past in the context of several GWAS [e.g. (12,13)].
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Experimental validation using EpiTYPER

We attempted experimental validation of most of the loci
reported in Tables 1 and 2 using the EpiTYPER system. EZ-96
DNA methylation kits (Zymo Research, CA, USA) were used
for bisulfite treatment of 500 ng of genomic DNA. Amplicons
were designed for each gene. The target regions were then amp-
lified to allow further in vitro transcription using the primer pairs
and annealing temperatures (Ta) described in Supplementary
Material, Table S3. PCR products were treated according to
the standard protocol (Sequenom EpiTyper Assay) including
SAP treatment and T-cleavage reaction as described previously
(17). Resin-cleaned samples were dispensed to a 384 Spectro-
CHIP preloaded with matrix (SEQUENOM, Inc., San Diego,
CA, USA) by Nanodispenser. Mass spectra were then collected
using a Sequenom MALDI-TOF MS Compact Unit mass spec-
trometer and analyzed using proprietary peak picking and
signal-to-noise calculations (Sequenom Epityper v1.2).

SNPs can hamper correct quantification of methylation status
at one or more CpG sites and thus may complicate interpretation
of results. Each novel peak among the MassArray spectrum can
be explained by any number of potential SNPs. By using an ex-
haustive string substitution approach as implemented in the R
package ‘MassArray’ (18), putative SNPs can be identified by
comparing expected and observed data. The putative nucleotide
sequences underlying novel peaks are identified by the EpiTY-
PER software and can be used for comparison with the original
input sequence. The applied algorithm substitutes each base pair
at a time in the original input sequence with the other three
remaining bases or a gap, i.e. a deletion, and then assesses the
ability of the altered input sequence to explain the observed frag-
mentation pattern due to new peaks. This is done by fragmenta-
tion of the altered input sequence and finding base compositional
matches to the putative base pair composition of the new peak.
Once these new peaks are mapped to the appropriate fragments,
the expected peaks corresponding to these fragments are ana-
lyzed in order to determine whether they are missing or if there
is a diminished signal-to-noise ratio (SNR), which is done by
comparison of the expected peak SNR to the average SNR of
the sample. The SNR of the novel peak is also compared with
the average SNR of the sample and granted more reliability if
it exceeds this average. Finally, the SNP’s quality is then calcu-
lated as function of new peak SNR and expected peak SNR. For
samples showing a putative high-confidence SNP that maps to a
fragment containing one or more CpGs, methylation data from
that site should be interpreted with caution. The numbers of
SNPs that were detected within the relevant fragments are
reported in Tables 1 and 2.

Statistical analysis

A linear model with covariates age, gender, BMI and white WBC
was used to test for association between DNA methylation
(b-values) and log-transformed metabolite concentrations (Bio-
crates and Lipofit platforms) or ion counts (Metabolon plat-
form). The genome-wide level of significance at an alpha level
of 0.05 after correction for the number of metabolic traits
(649) and DNA methylation sites (457 004) is pgw ¼ 1.69 ×
10210. To account for the effect of genetic variance, we con-
ducted a second association analysis where we included three

SNPs from the vicinity of the CpG site into the model. These
three SNPs were selected iteratively as follows: first we tested
the association of each b-value for linear additive dependence
on every individual genotyped SNP within a window of
+5 Mb around the CpG site, using age, gender, BMI and
WBC as covariates. We then selected the SNP that showed the
strongest association with CpG methylation (called SNP1).
We then selected a second SNP (SNP2) and then a third
(SNP3) following the same procedure, including the already
selected SNP(s) as covariates. The lm subroutine from the R
stats package (version 2.15; R Foundation for Statistical Compu-
tation) was used for statistical analysis and SPSS (version 20;
IBM) for graphical visualization.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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