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Abstract

A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during
cell differentiation and is thought to act as a memory device, being able to choose and maintain cell fate
decisions. Commonly, this switch has been modeled in a deterministic framework where transcription and
translation are lumped together. In this description, bistability occurs for transcription factor cooperativity,
while autoactivation leads to a tristable system with an additional undecided state.

In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a
probabilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells.
We focus on low mRNA numbers, high protein abundance and monomeric transcription factor binding.
Contrary to the expectation from a deterministic description, this switch shows complex multi-attractor dy-
namics without autoactivation and cooperativity. Most importantly, the four attractors of the system, which
only emerge in a probabilistic two-stage description, can be identified with committed and primed states
in cell differentiation. We first study the dynamics of the system and infer the mechanisms that move the
system between attractors using both the quasi-potential and the probability flux of the system. Second, we
show that the residence times of the system in one of the committed attractors are geometrically distributed.
We derive an analytical expression for the parameter of the geometric distribution, therefore completely
describing the statistics of the switching process and elucidate the influence of the system parameters on
the residence time. Most importantly we find that the mean residence time increases linearly with the mean
protein level. This scaling also holds for a one-stage scenario and for auto-activation. Finally, we study
the implications of this distribution for the stability of a switch and discuss the influence of the stability
on a specific cell differentiation mechanism. Our model explains lineage priming and proposes the need
of either high protein numbers or long term modifications such as chromatin remodeling to achieve stable
cell fate decisions. Notably we present a system with high protein abundance that nevertheless requires a
probabilistic description to exhibit multistability, complex switching dynamics and lineage priming.

Key words: stochastic processes; stochastic simulation; multistability; cell differentiation; escape time;
potential landscape



1 Introduction

During differentiation, a cell and its progeny cascade through a number of lineage decisions from stem cells
over progenitor cells to mature functional cells. Many decisions are assumed to be binary and realized by a
toggle switch, a simple cellular memory device. This network module consists of two genes, inhibiting each
other via mutual promoter binding. In each differentiating cell, one gene will eventually win this biomolecular
battle, inhibiting the other gene and subsequently activating its lineage-determining downstream targets. In
hematopoiesis, the generation of blood cells, a series of gene switches has been found to determine the
differentiation path of hematopoietic stem cells and to direct the ratio of mature blood cells (1, 2). The most
prominent example in this context is the mutual inhibition of Gata-1 and Pu.1, two transcription factors
responsible for the development of erythroid and myeloid blood cells from common myeloid progenitors (3–5).

Due to its importance in development, toggle switches are subject to both experimental and theoretical
investigations (for a review, see (6)). Using a deterministic framework under the assumption of large molecule
numbers, Cherry and Adler (7) discussed criteria for working switches. More specifically Roeder and Glauche
(8), Huang et al. (9) and Chickarmane et al. (10) used a simple deterministic model of the toggle switch
based on ordinary differential equations in order to describe the Pu.1–Gata-1 switch in hematopoiesis. A
comprehensive overview and comparison of the different deterministic toggle switch models is provided by
Duff et al. (11).

All these studies focus on the steady states of the switch and the parameter dependent bifurcations in a
deterministic framework. However, protein variations of a differentiating cell influence the dynamics of the
decision making process and lead to stochastic transitions between the two steady states. This randomness
is induced by gene expression noise, which has been shown to be ubiquitous in biological systems due to low
molecule numbers (12). Thus, the probabilistic frameworks developed in order to account for gene expression
noise (see (13) for a review) have to be applied in order to understand fundamental aspects of toggle switch
properties.

Probabilistic models of the toggle switch account for low copy numbers and intrinsic fluctuations. In
(14), the dynamics of an exclusive switch, where two genes share the same promoter, is discussed within a
probabilistic framework. A comparison of simple switch circuitries is given in Warren and Ten Wolde (15).
Contrary to deterministic models, transitions between the two macroscopic regimes where one of the two
genes dominates are possible due to the inherently noisy gene transcription (16, 17), even without cooperative
binding of transcription factors (18). More recent contributions focused on analytic descriptions (19, 20), the
switching time between macroscopic regimes for different regulatory realizations (16, 21, 22) or parameter
regimes (17), boundaries for the switching time (23), or delay effects (24). Notably, all of these approaches
are based on a one-stage model of gene expression, where DNA is directly processed into functional proteins.
However, it has been shown that the characteristics of protein noise strongly depend on the underlying
expression model (25, 26).

In this contribution, we abstract the regulatory details of the prominent myeloid Pu.1-Gata-1 mutual
inhibition. Contrary to common belief, which advocates the lumping of the two stages of expression, we
show that the inclusion of both mRNA and protein leads to an interesting change in system dynamics. The
probabilistic two-stage description exhibits complex multi-attractor dynamics without autoactivation and
cooperativity. Remarkably, a recent study reported low numbers of mRNAs in single murine blood cells:
Warren et al. (27) found around 10 transcripts of the Pu.1 gene per cell in common myeloid progenitors.
Based on these findings we study a probabilistic description of a toggle switch with low mRNA numbers, high
protein abundance and in accordance with the known role of Pu.1, monomeric transcription factor binding.
We deliberately choose the simplest toggle switch model and neglect autoactivation due to our ignorance of
the logic of activation and inhibition at the promoter. However our results can easily be extended and are
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discussed for the case of dimeric regulation and exclusive autoactivation.

2 Results

2.1 A toggle switch based on a two-stage model of gene expression

We describe the mutual inhibition of two genes, further on called A and B, using a two-stage model
of gene expression (25, 26) with mutual inhibition being realized as DNA-protein binding (see Fig. 1).
This kind of switch has been implemented in vivo by Gardner et al. (28). The model can be repre-
sented as a set of biochemical reactions for A and B, respectively, and a set of reaction rates α, β, etc.:

DNAA
αA−−→ DNAA + mRNAA

mRNAA
γA−−→ ∅

mRNAA
βA−−→ mRNAA + ProteinA

ProteinA
δA−→ ∅

ProteinA + DNAB
τ+
A−−→ DNAbound

B

DNAbound
B

τ−A−−→ ProteinA + DNAB

DNAB
αB−−→ DNAB + mRNAB (1)

mRNAB
γB−−→ ∅ (2)

mRNAB
βB−−→ mRNAB + ProteinB (3)

ProteinB
δB−→ ∅ (4)

ProteinB + DNAA
τ+
B−−→ DNAbound

A (5)

DNAbound
A

τ−B−−→ ProteinB + DNAA (6)

Reactions 1 and 2 correspond to mRNA transcription from an unbound promoter and mRNA degradation,
respectively. Reactions 3 and 4 resemble protein translation and degradation. The last two reactions 5 and
6 describe the binding and unbinding of a protein to the antagonistic gene and thereby the transition from
an active to an inactive promoter and vice versa. Bound DNA lacks the ability to be transcribed. We
would like to emphasize that here τ+ and τ− are rates rather than times. Note that we assume monomeric
transcription factor binding as the simplest of regulatory interaction (which has recently been shown to be
able to induce bimodal gene expression (29)). Our system’s topology is symmetric with regard to the two
genes, and so are the two columns of reactions 1–6 upon the exchange of gene labels A and B.

This model of gene expression is a highly simplified abstraction of the complex processes in the cell.
Condensing transcription into a single biochemical reaction does not account for the various steps required to
transcribe a gene, e.g. the assembly of the transcription initiation complex, unwinding of DNA or transition of
the polymerase to elongation phase. Postprocessing and transport mechanisms are also neglected. However,
simplified models of gene expression have successfully been applied to experimental data, supporting the
validity of these simplifications (9, 30, 31).

Most commonly one will study the properties of the system in a deterministic framework using ordinary
differential equations (ODEs) that describe the time-evolution of species concentrations (7–10). The ODEs
can directly be inferred from reactions 1–6 assuming mass action kinetics:
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d

dt
dA = τ−B (1− dA)− τ+B dAnB

d

dt
mA = αAdA − γAmA

d

dt
nA = βAmA − δAnA

+ τ−A (1− dB)− τ+A dBnA

d

dt
dB = τ−A (1− dB)− τ+A dBnA (7)

d

dt
mB = αBdB − γBmB (8)

d

dt
nB = βBmB − δBnB (9)

+ τ−B (1− dA)− τ+B dAnB

where d∗ is the abundance of unbound DNA∗, m∗ is the abundance of mRNA∗ and n∗ is the abundance of
Protein∗ for ∗ ∈ {A,B}.

Bound DNA is expressed in terms of unbound DNA due to mass conservation. Solving Eq. 7, 8 and 9 at
steady state by setting all time derivatives to zero yields two solutions, one being biologically irrelevant due
to its negative species abundances. Given non-negative initial conditions the system will always converge
towards the positive steady state solution (32), given by (see Supporting Material for details)

mA
(ss) = mB

(ss) = − δτ−

2βτ+
(1− η) (10)

nA
(ss) = nB

(ss) = − τ−

2τ+
(1− η) (11)

dA
(ss) = dB

(ss) =
2

1 + η
(12)

with η =
√

4αβτ+

γδτ− + 1. All parameters are positive and for simplicity assumed to be symmetric for players

A and B (α = αA = αB, . . .).
We now assess the stability of the positive solution Eq. 10 - 12 using standard linear stability analysis.

To reduce the complexity of our system for the stability analysis, we apply a quasi steady state approxima-
tion to the DNA binding/dissociation process (ḋA = ḋB = 0), reducing the dimensionality of our system to
four equations. We evaluate the corresponding Jacobian at the single positive solution and use the Hurwitz
criterion to verify that all its eigenvalues have negative real part. We conclude that the system has one
stable positive fixed point but we cannot analytically exclude the existence of limit cycles. However, inspec-
tion of the system’s phase portrait (see Fig. S4 in the Supporting Material) indicates that no limit cycles
exist. Summarizing, we showed that the deterministic model has only one steady state solution and is thus
monostable.

However, since the deterministic approach is only valid in the limit of large numbers, small molecule
numbers of DNA, mRNA, and possibly proteins advocate a discrete probabilistic description of the toggle
switch. We define the state of the system at time t as a vector x(t), where xi(t) ∈ N0 is the abundance of
species i at time t. Note that the state space is discrete as opposed to the deterministic model. To emphasize
this difference we use the uppercase notation DA, DB, MA, MB, NA, NB for the number of molecules of the
respective species. We can describe how the probability P(x, t) of being in a certain state x changes over
time by using the master equation of the system (33)

Ṗ(x, t) =
∑

x′

[wxx′P(x′, t)− wx′xP(x, t)] .
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The first term considers transitions from states x′ with rate wxx′ to state x, while the second term accounts
for transitions from x to all other possible states x′ with transition rates wx′x. The transition rates, also
called propensities (34) are determined by the reaction rates and the number of reagents of the corresponding
reactions (see Supporting Material 2 for an explicit form of the master equation of the system).

Even though the master equation describes the dynamics of the system more accurately than ODEs (most
obviously for low particle numbers) it is still an approximation of cellular dynamics as it assumes spatial
homogeneity inside a cell and does not account for time delays. Still, the protein distribution predicted by
the master equation of a two-stage expression model was indeed observed experimentally (35), supporting
the stochastic two-stage model.

Since the master equation for the switch is analytically solvable only for a number of approximations
(see e.g. (36)) and not integrable for large molecule abundances, we simulate the system trajectories using
Gillespie’s algorithm (37). Each trajectory follows the master equation, and the set of infinite trajectories
constitutes the distribution that solves the master equation. To obtain appropriate parameters values for
stochastic simulation, we delineate upper bounds for synthesis parameters from biophysical arguments and
adapt degradation parameters to fit desired molecular levels. Table S1 in the Supporting Materials lists
all used parameter values. Additionally, the analysis below has been conducted for a second, differently
motivated, parameter set (see Fig. S3 in Supporting Material) and yields qualitatively identical results.

2.2 Dynamics and quasi-potential

In this section we discuss the main features of the switch dynamics. Contrary to the deterministic model,
time courses of the stochastic toggle switch model show multistable behavior (Fig. 2A). Given the parameters
in Table S1 our toggle switch can adopt different attractors: The two attractors where one player dominates
the other (called SA and SB depending on which player dominates) are clearly visible in Fig. 2A. A careful
inspection of the timecourse and the probability distribution in Fig. 2A shows that there also exist two
intermediate attractors where protein numbers are similar (NA − NB ≈ 0). These attractors are called S∗A
and S∗B from now on. In the timecourses of the system (Fig. 2A) one observes that the system frequently
switches between the dominating and the intermediate attractors.

To get a deeper understanding of the complex dynamics of the system the notion of a quasi-potential can
be used. The quasi-potential U of the system is calculated through the relation U(x) = − logP(ss)(x), where
P(ss)(x) is the steady state distribution of the system. The number of dimensions of the state space where
the quasi-potential is defined equals the number of species in the system. Here the probability P(ss)(x)
of a state x in steady state is estimated from 15000 stochastic simulation runs obtained by the Stochkit
software toolkit (38). In Fig. 2B the projection of the quasi-potential on the NA −NB, MA −MB plane is
shown. The four attractors SA, SB, S∗A and S∗B can be seen clearly in the quasi-potential of the system. The
two attractors SA and SB appear as basins at the lower left and upper right corner of Fig. 2 whereas the
intermediate attractors S∗A and S∗B are located at the center and are not well separated. The dominating
attractors can easily be distinguished from the intermediate attractors via parameter dependent thresholds
χA, χB in the protein dimension (see Supporting Material 4).

Importantly, one has to keep in mind that the system considered is out of equilibrium and that the
dynamics of a non-equilibrium system are not entirely determined by the gradient of the quasi-potential but
by an additional curl flux stemming from the non-integrability of the system (39). As a consequence barrier
heights in the quasi-potential do not necessarily correlate with the probability of crossing the barrier.

To understand the dynamics of the switch in more detail we therefore consider for each state x in the
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state space the outflux F (x) acting on the the system at this point (16). We calculate the outflux as:

F (x) = P(ss)(x)
∑

y

P(y|x)(y − x) ,

where the probability P(y|x) of state y succeeding state x and the probability P(ss)(x) are calculated
from stochastic simulations. Note that the outflux is different from the concept of field lines used in phase
portraits of ordinary differential equations. The outflux F (x) is plotted as small arrows in Fig. 2 (vectors
are normalized and circles correspond the origin of the vectors) for all states x with P(ss)(x) > 2.5 · 10−7.
This indicates where the system will move from the current state on average. Due to this outflux the system
enters and leaves the attractors SA and SB through different paths. This phenomenon has been described in
(40) and linked to the emergence of time directionality in non-equilibrium systems. In order to move from
high (SA or SB) to low (S0) protein numbers, at first the corresponding mRNA number has to drop. On the
contrary, moving from low to high protein numbers requires the rise of mRNA numbers first.

A different view on the system’s dynamics is provided by the quasi-potential landscape and outflux in the
N total

A , N total
B plane (Fig. 3), where N total

A = (1 −DB) + NA is the total number of ProteinA in the system,
bound to DNA (first term) or free (second term). Choosing N total

A and N total
B as projected dimensions shows

four distinct basins in the quasi-potential landscape. Two basins correspond to the attractors SA and SB.
These are characterized by high amounts of the dominating protein and zero proteins of the repressed species.
The attractors S∗A and S∗B are now clearly separated. In these two basins a single protein of one species is
present and only a moderate protein number of the other species. In the following we show why these basins
emerge and how the system moves between the attractors.

We explain the dynamics of the system with a typical trajectory of the system: Let us start with
the trajectory in the attractor SA (lower right) where ProteinA dominates ProteinB. Due to stochastic
fluctuations in the promoter status, eventually a burst of proteins of B will occur and inhibit the promoter
of A, whose protein numbers will drop (Fig. 3, trajectory I). While the formerly dominating ProteinA’s are
degraded, also the newly created ProteinB quickly decreases in numbers and only one bound ProteinB is
saved from degradation. This drives the system towards the origin in the quasi-potential of Fig. 3. However, a
single ProteinB cannot completely suppress the promoter of DNAA, leading to a small but constant synthesis
of ProteinA. The system settles into an intermediate state (S∗A) defined by the presence of one ProteinB and
an intermediate amount of ProteinA originating from the leaky inhibition of DNAA and bursting. In order
to leave this basin the system has two options: Either the single ProteinB is degraded when it momentarily
is not bound to the promoter. Consequently the levels of ProteinA rise again and the system reaches SA.
The system is moved to the lower border of the quasi-potential where a strong outflux pushes it towards SA

(Fig. 3, trajectory II). Alternatively, a burst of ProteinB displaces the system from S∗A into regions where
the vector field points strongly towards the diagonal NA

total = NB
total (Fig. 3, trajectory III). However this

burst is typically not strong enough to move the system onto the diagonal and it will fall back into the basin
S∗A. In order to enable a change from S∗A to S∗B the system has to reach the diagonal. This is accomplished
if, while the system is moving towards the diagonal after the burst, additional bursts of ProteinB move it
onto the diagonal (Fig. 3, trajectory IV). Once the system has hit the diagonal both protein levels will drop
to very low numbers since non of the players has any significant advantage. Here by chance the system will
move to any side of the diagonal and either towards S∗A or S∗B (Fig. 3, trajectories V, VI).

We find that leaving S∗A towards SA (Fig. 3, trajectory II) is much more probable than hitting the diagonal
from S∗A (Fig. 3, trajectory IV), which would provide the chance of switching. This is obvious from the
mechanism described above: Even though the events triggering the two alternatives (degradation of ProteinB

and an initial burst of ProteinB) have similar probabilities, the diagonal crossing requires additional events
and is therefore much less probable. This cannot be deduced from the quasi-potential landscape alone: From
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Fig. 3 it can visually be inferred that the barrier separating SA and S∗A is higher than the barrier separating
S∗A and S∗B. This wrongly suggests that moving between S∗A and S∗B occurs more frequently than moving
between SA and S∗A.

Comparing the system dynamics of our switch with other descriptions we find that (i) deterministic one-
stage and two-stage models show no bistability while (ii) a probabilistic one-stage model exhibits tristability
with only one intermediate attractor (see Fig. S2 in the Supporting Material and (29)). We speculate that
translational bursting destabilizes the intermediate attractor of the one-stage model, where none of the two
players can overwhelm the other. Bursting provides an easy mechanism to escape this deadlock situation:
It gives the player whichever bursts first a huge advantage over the other, giving rise not only to one
protein (as in the one-stage model) but several proteins. As a result, the two-stage system is always quickly
pushed away from the diagonal and stabilizes in the attractors S∗A or S∗B. Thus, only the combination of
a probabilistic description with a two-stage model of gene expression leads to the complex multi-attractor
dynamics described above.

2.3 Residence times

Genetic toggle switches are thought to be involved in the differentiation process of cells. A common idea is
that different cell fates correspond to the different attractors of the system (41). Therefore it is of interest
how long the system will stay in one of these attractors. In this contribution, we focus on the time the
system will stay in the attractors SA or SB. We assume that only in these two attractors the concentration
of either player is sufficiently high to carry out a downstream biological function which resembles the switch’s
decision.

In previous contributions, such quantities have been calculated or determined by stochastic simulation
for simpler switch models and were called spontaneous switching time (23), switch lifetime (15), mean first-
passage time (14), or switching time (22). Since the switch may flip from a dominating to an intermediate
attractor, we choose residence time as the appropriate term for the quantity calculated below. In the
following, we derive an analytical approximation for the time the switch stays in a dominating attractor, SA

or SB, called the residence time ts. A simulation study for S∗A/S∗B suggests qualitatively similar behavior
(see Fig. S5 in the Supporting Material).

Let us assume that the system is in attractor SA. Hence, the promoter of DNAB is bound by ProteinA

while the promoter of DNAA is unbound. We assume that the protein levels in this attractor can be
described with the simple two-stage model (25), resulting in a mean ProteinA level of N̄A = (αAβA)/(γAδA).
Consequently, the protein level of ProteinB is NB = 0 as it is inhibited by the high levels of ProteinA.
In order to leave SA it is crucial that one ProteinB is synthesized, which then can bind the promoter of
DNAA and shut down the synthesis of ProteinA, ultimately driving the system out of SA and into S∗A. This
trajectory (called trajectory I in Fig. 3) involves the following events: (i) unbinding of ProteinA from DNAB,
(ii) synthesis of ProteinB during the unbound phase, and (iii) binding of ProteinB to the promoter of DNAA

before ProteinB is degraded.
First we describe the unbinding of ProteinA from DNAB. While the system is in SA, ProteinA dissociates

various times, leaving the promoter of DNAB unbound. The average time the promoter remains unbound,
tu, is equal to the average time until a binding reaction occurs, which is

tu =
1

τ+A · N̄A

.

The time the promoter stays unbound is a random variable itself, but for simplicity we approximate it with
its mean value. Note that tu depends, somewhat counterintuitively, on τ+ and not on τ−, with τ+A N̄A being
the propensity for a binding reaction. Again we emphasize that τ+ and τ− are rates (rather than times).
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To ultimately synthesize a ProteinB, at least one mRNAB has to be transcribed during tu and translated
before degradation. The probability of k transcription reactions to happen during tu is

PPoisson(K = k) =
(αB · tu)k

k!
· exp(−αB · tu) ,

as the number of transcription reactions K during tu is Poisson-distributed with mean αB · tu. Thus, the
probability of at least one transcription during the unbound phase is

qs = 1− P (K = 0) = 1− exp

(
− αB

τ+A · N̄A

)
.

The probability of translation during an average mRNA lifetime 1/γB is accordingly qt = 1− exp (−βB/γB).
Finally the probability for a binding reaction during average protein lifetime 1/δB is qb = 1−exp

(
−τ+B /δB

)
.

However, not only one but several unbound phases may occur before ProteinB is successfully synthesized.
The number L of unbound phases until and including successful synthesis follows a geometric distribution,
P (L = l) = (1− q)l−1q with parameter q = qs · qt · qb. The average number of unbound phases during a time
interval ∆t is τ−A ·∆t. Thus, we can convert the random variable L into T = L/τ−A via a linear transformation
of a random variable, giving the actual time until successful synthesis of ProteinB. Notably, the derivation of
the distribution for residence times goes beyond previous mean-field approximations. Using the properties
of the geometric distribution for the random variable T , we end up with the mean and the variance of the
residence time:

ts =
1

τ−A · qsqtqb
and σ2

ts =
1

(τ−A )2
· 1− qsqtqb

(qsqtqb)2
. (13)

An important approximation for the residence time can be derived under the assumption of rapid trans-
lation and slow mRNA degradation, β � γ, leading to qt ≈ 1. This implies that it is quite certain that
an mRNA will be translated at least once before degradation. In the regime of rapid transcription factor
binding (τ+ � δ, α) the probability for a binding reaction is close to one, qb ≈ 1, while the probability for
at least one transcription can be approximated with qs ≈ αB/(τ

+
A N̄A). Taken together, this leads to a linear

dependence of the residence time on the protein number,

ts ≈ (τ+A /τ
−
A ) · (N̄A/αB) . (14)

We want to compare our analytical approximation with the residence time derived from simulations. To
that end, we have to infer the dominating attractors from the simulated time courses. Recall that we can
identify the dominating attractors via thresholds χA, χB at protein levels. The residence time of attractor
SA (SB) is estimated as the consecutive time in a trajectory where NA > χA (NB > χB). We compare the
analytically derived geometric distribution for the residence times (see Eq. 13) with numerical results by
simulating the switch with a given parameter set and estimating the residence times from 10000 stochastic
simulations. Fig. 4A shows excellent agreement between the geometric distributed residence time and the
simulations for a protein degradation rate of δ = 8 · 10−4s−1. This legitimates the approximations and
assumptions made above for the parameter regime of rapid transcription factor binding. From the analysis
of the mean residence time for different protein half-lives, we find again a good agreement between the
simulation and the approximation (see Fig. 4B). Moreover, the slope of the log-log curve of the simulation
is 1 – confirming a linear dependence of the residence time from the mean protein level.

With the result from Eq. 13 we can compare the mean residence time of different switch models. First
we consider a gene expression model where transcription and translation are condensed into a single protein

7



synthesis reaction. In analogy to the two-stage model of gene expression (26), this can be called a one-
stage model of gene expression. To achieve the same amount of proteins at similar degradation rates, the
synthesis rate in the one-stage model needs to be larger compared to the transcription and translation rates
in the two-stage model. The probability qt which accounts for translation during mRNA lifetime can be
set to 1, since there is no mRNA stage and proteins are produced immediately. The binding probability qb
remains unchanged. However, because of the increased synthesis rate, the probability qs of synthesis during
the unbound phase will be larger than in the two-stage model. Therefore, the mean residence time will be
decreased in the one-stage model as compared to the two-stage model, leading to more frequent attractor
changes. This finding is in accordance with the previously reported stabilizing effect of bursts in an exclusive
switch (16).

A second modification of the switch includes not only mutual inhibition but also autoactivation of both
genes. If the promoter of the gene is unbound it will be transcribed with a small basal rate κ. If the promoter
is bound by its own protein product the gene will be transcribed with full rate α � κ. Repressor bound
promoters are inactive. For simplicity we assume that either activators or repressors are bound but not both
at the same time. Note that in this case also the deterministic ODE model is bistable (42). Considering
the mean residence time in a two-stage switch with autoactivation, we find that the probability qs of mRNA
synthesis during the unbound phase is smaller than in the ordinary two-stage model. Since no activator is
present in this attractor, mRNA has to be transcribed with the small basal rate κ, making the transcription
more improbable. The probability qt for translation remains unchanged. However, the probability qb of
protein binding to the antagonistic promoter is also decreased since this promoter is occupied by the abundant
activator most of the time. Therefore, repressor binding to this promoter requires an additional dissociation
reaction of the activator during repressor lifetime. As both qs and qb are decreased the mean residence time
in switch models with autoactivation will be strongly increased compared to the ordinary two-stage model.

Summarizing, we find that the residence time is (i) geometrically distributed, (ii) the mean of the distribu-
tion grows linearly with the number of proteins for slow mRNA degradation, and (iii) both the intermediate
step of mRNA production and the autoactivation of transcription factors increase the residence time.

3 Discussion

3.1 Lineage priming

We now discuss the implications of our findings in the context of cell differentiation driven by the toggle
switch. In previous studies (8, 9, 40), attractors where either one or the other player is dominating, thereby
repressing the antagonist (SA, SB) corresponded to committed cells. We also find analogs for the intermediate
states S∗A and S∗B. In these attractors the system has a strong preference towards one specific dominating
attractor, but is not fully committed yet. A similar behavior is known as lineage priming in stem cell biology
(43). Two different studies (44, 45) showed that a population of stem and progenitor cells, respectively, can
be divided into subpopulations that mainly give rise to only one of two possible cell types. In our simple
model this would correspond to stem cells that reside either in S∗A or S∗B. These stem cells can still give rise
to both cell fates but have a strong tendency towards one of them.

Remarkably only a two-stage probabilistic model of the toggle switch shows dynamics reminiscent of
lineage priming. Although a progenitor state exists in one-stage models of the toggle switch, cells in this
state will move to either the one or the other committed state with equal probability.
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3.2 Residence time

We find that the residence time in SA and SB, a key property of the system, is geometrically distributed.
Previous contributions (22, 23, 46) focused only on the mean residence time and did not consider its under-
lying distribution. What does a geometric distribution for the residence time imply for the differentiation
process dependent on the state of a genetic switch? To discuss this question, let us first reason on how a
differentiation decision could be established with the toggle switch lined out in the previous sections.

We discriminate two scenarios for the differentiation of a cell: In the first scenario, the state of the switch
completely determines the cell fate. Starting in the progenitor attractors S∗A or S∗B, after a certain amount
of time, the switch will move to a committed attractor. We assume that the high numbers of proteins of the
dominating player will trigger the differentiation program of the associated lineage and establish the mature
cell type. However due to stochasticity, the switch will drop out of the committed attractors and the cell
will not only lose the current lineage decision, but possibly even switch to the opposing cell fate. In order
to establish stable lineages in this scenario, the cell has to assure that the residence time of the switch is
much longer than all relevant biological processes of the cell, especially cell lifetime. This guarantees that
the cell will keep a lineage decision once it has obtained one. Yet the geometric distribution of the residence
time imposes difficulties in this scenario: Even if the mean residence time is high, short residence times
will always be more probable than longer residence times. The toggle switch could either be stabilized with
the aforementioned autoactivation of the players, or with very high protein numbers so that the geometric
distribution flattens and transforms to an almost uniform distribution. Both means would assure that only
a very small percentage of a population of cells forgets its lineage decision during lifetime.

In the second scenario we assume that the cell gets locked in one fate by changing the shape of the
underlying potential so that further transitions between attractors become less possible. Such a change of
the potential could for example be facilitated by chromatin changes, as proposed by Akashi et al. (47). In the
following, we assume that only if one state dominates the other for a long enough fixation time td, downstream
genes necessary for the decision process are activated (e.g. leading to chromatin remodeling), and the cell
differentiates. Such a time depending property could be implemented with low-pass filters (see (48) for
an example in hematopoietic stem cells) and would allow for an integration of external signals (see (49)
for the instructive power of hematopoietic cytokines). In this scenario, the residence time determines when
differentiation will occur: The switch will constantly move into and out of the dominating attractors, until the
residence time is finally long enough so that the dominating player can activate the downstream differentiation
machinery. Ignoring the time the system spends in the intermediate attractors and just summing up the
residence times in SA and SB until a long enough residence time for differentiation occurs, we find that this
time follows a geometric-like distribution (see Supporting Material 5). Under this differentiation mechanism,
most cells will differentiate very fast and only few cells will need longer. Experiments that measure the time
for single cells needed to go from the primed to the committed state (as an extension to the 2-day threshold
reported by Heyworth et al. (50) for GM-CTC cells) in order to support or reject these hypotheses remain
to be done.

3.3 Comparison to previous models

Finally we discuss how our findings relate to previous studies on the toggle switch. We found that the
mean of the residence time distribution scales linearly with the number of proteins in the system. The more
proteins are present, the longer the average residence time in SA or SB. However, shorter residence times
are still most probable due to the geometric distribution. This holds for the one-stage, the two-stage, and
the auto-activating scenario.

This linear scaling differs from the exponential (23) or near exponential (46) scaling described previously
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in the one-stage scenario. In contrast to our model, the model of Warren and ten Wolde (46) considers
dimerization of the transcription factors, motivated by the fact that cooperative binding is necessary to
achieve bistability in a deterministic framework (10). We showed that, as soon as stochastic fluctuations are
introduced, a system with multiple attractors is achieved that can act as a proper switch with additional
states of low co-expression. Including dimerization as a prerequisite for inhibition in a one-stage model will
strongly increase the stability of the attractors SA/B (46). This is consistent with our findings: Instead of
requiring translation of one protein of the suppressed species, we now require this rare event to happen twice
during a short time frame, which is much less probable. However, the inclusion of dimerization will have less
effect on the two-stage switch: Since proteins are typically synthesized in bursts (in our model the average
burst size is β/γ = 10) and dimerization is a fast process (46), as soon as one burst occurs almost certainly
a dimer is formed and can inhibit the currently dominating player. Therefore the probability of leaving the
attractors SA/B is similar to a non-dimeric inhibition.

Contrary to our results, Warren and ten Wolde (46) report that introduction of mRNAs reduces the
stability of the switch. This discrepancy can be understood in the light of dimerization. In their one-stage
model dimerization is a key ingredient of stability, which is lost when introducing translational bursts (”shot
noise”). As we considered monomeric transcription factor binding, stability does not rely on dimerization.
Therefore mRNAs increase the stability of the system, because they introduce additional conditions required
for switching.

Due to these differences in the model it is hard to resolve the discrepancy between our linear and the
exponential scaling of residence time found by Bialek (23) and Warren and ten Wolde (46). However we
want to emphasize that the theoretical results shown in (46) only consider protein numbers up to 30. In this
region our simulation results show slight deviations from the analytical linear dependence (Fig. 4). At such
low protein numbers the system does not only leave the dominating attractor according to the mechanism
described in our results. It is also likely that just due to fluctuations in the gene expression (not fluctuations
in the promoter) the dominating attractor is left. This mechanism operates only at very small protein
numbers and its probability rapidly decreases with rising protein numbers. Therefore our results do not
contradict the findings of Warren and ten Wolde (46), but consider a different parameter regime with higher
protein numbers. Interestingly, the noise-driven attractor changes are also described by Kashiwagi et al.
(51) where the authors link this mechanism to the selection of a favorable, less noisy attractor in E. Coli
populations.

In another contribution, Morelli et al. (52) use the forward flux sampling algorithm to assess the stability
of a one-stage genetic toggle switch with dimeric transcription factor binding. They find a similar mechanism
of attractor flipping which is based on the synthesis of the suppressed species due to promoter fluctuations.
Using the forward flux sampling, they obtain estimates of the switching rate (the inverse of the mean
residence time) for different amounts of fluctuations in DNA-protein interaction and dimerization. Morelli
et al. (52) modulate the size of fluctuations at the promoter by varying the ratio of binding rate and
synthesis rate, the adiabaticity parameter ω = τ+/α (τ− is adjusted to keep τ+/τ− constant). Small ω
leads to strong fluctuations, whereas large ω reduces fluctuations. They find that increasing ω decreases the
average switching rate and therefore stabilizes the switch. This dependency vanishes for ω > 5, where the
average switching rate remains constant. The latter is in accordance with our results in Eq. 14, where the
mean residence time depends only on the ratio of τ+ and τ−, not on the absolute values and is therefore
independent of ω. The dependency of the average switching rate for ω < 5 is not predicted by Eq. 13 and
14. It is also not visible in the stochastic simulations, where mean residence times of systems with ω = 1 and
ω = 20 coincide (Fig. 4). The results of Morelli et al. (52) were simulated for an average number of proteins
N̄A = N̄B = 27. As mentioned above, in regions of very small protein numbers the system might leave the
dominating attractor by a mechanism not captured by Eq. 13 and 14, probably causing the difference of the
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results of Morelli et al. (52) and our results for small ω.
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Figure 1: Scheme of the two-stage switch. Species associated with gene A are shown in white, species
associated with B are shown in gray. Solid arrows indicate synthesis and binding, jagged arrows indicate
degradation. mRNAA is transcribed from DNAA with rate αA. It decays with rate γA and is translated
into ProteinA with rate βA. ProteinA decays with rate δA and can bind (unbind) DNAB with rate τ+A (τ−A ).
Protein-bound DNA leads to transcriptional arrest. The topology is symmetric with respect to the genes A
and B, thus, the same reactions exist for B.
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Figure 2: Dynamics and quasi-potential of the switch showing the different attractors of the system. (A)
The timecourse of NA(t) −NB(t) clearly shows the dominating attractors, which can be separated in state
space via the thresholds χA and χB. Either A dominates (attractor SA), or B dominates (attractor SB),
or the system is temporarily locked by two bound promoters with only marginal protein expression of A or
B (attractors S∗A and S∗B). A histogram of NA(t) − NB(t) is shown on the right. (B) The quasi-potential,
defined as U(x) = −logP(ss)(x), includes the mRNA dimension of the system. It shows the four possible
attractors as basins in a probability landscape. SA and SB are visible as basins at the lower left and upper
right corners, whereas S∗A and S∗B are located around the origin ( NA−NB = MA−MB = 0) of the landscape.
Additionally, the outflux F (x) acting on the system at the state x in state space are indicated as lines (circles
correspond the the origin of the vector). Note that the outflux is different from concept of deterministic field
lines. These vectors show that there are different paths for entering and leaving the dominating attractors.
Parameters for the simulation are given in Table S1.
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Figure 3: Quasi-potential of the system projected onto the N total
A and N total

B dimensions. Note that both
axis are on logarithmic scale and are shifted by 1 in order to include N total

A = 0 and N total
B = 0. Therefore

the lowest row in the plot corresponds to the case N total
B = 0. The quasi-potential U(x) = − logP(ss)(x)

is color coded where red areas reflect minima of the landscape. Visible are four minima corresponding to
SA (lower right), SB (upper left), S∗A (lower middle) and S∗B (middle left). The vectors of the outflux at
each point in state space are drawn as lines (circles correspond the the origin of the vector). Note that the
outflux is different from concept of deterministic field lines. In contrast to Fig. 2 the vectors are normalized
and therefore show only the direction, not the magnitude of the field. Bold arrows reflect typical trajectories
(I-VI) of the system. For a discussion, see the main text.
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Figure 4: Residence time ts in the two-stage toggle switch. (A) The distribution for ts obtained by stochastic
simulation is in good agreement with the geometric distribution derived from our mean-field approximation.
The mean of the distribution is indicated by a dashed line. The protein decay rate was set to δ = 8 ·10−4s−1.
(B) Mean residence time ts versus mean protein level N̄ derived from stochastic simulation (symbols) and
our analytical approximation (lines) for four different parameter settings. Note that the analytical approxi-
mations as well as the simulation results of the first and fourth parameter set coincide. The exponent in the
relation ts ∝ (N̄A)ν is ν = 1, in accordance with equation 14.
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1 Steady state solution of the deterministic two-stage
toggle switch

Using symmetric parameters α = αA = αB, β = βA = βB, γ = γA = γB, δ = δA = δB, τ+ = τ+A = τ+B and
τ− = τ−A = τ−B results in two following steady state solutions of equations (7), (8) and (9) in the main text:

mA
(1) = mB

(1) = − δτ−

2βτ+
(1− η) (S1)

nA
(1) = nB

(1) = − τ−

2τ+
(1− η) (S2)

dA
(1) = dB

(1) =
2

1 + η
(S3)

mA
(2) = mB

(2) = − δτ−

2βτ+
(1 + η) (S4)

nA
(2) = nB

(2) = − τ−

2τ+
(1 + η) (S5)

dA
(2) = dB

(2) =
2

1− η (S6)

with η =
√

4αβτ+

γδτ− + 1. The first solution is positive, the second is negative (given all parameters are positive).

Only the positive solution is of interest in biological systems. The monostability of this system is due to
the monomeric protein binding. As soon as dimeric binding is introduced, the system becomes multistable,
similar to the existing one-stage deterministic models (1–3).

Note that for small τ+ equations (S1) and (S2) reduce to the steady state solution of a simple two stage
expression model

nA
(1) = nB

(1) =
αβ

γδ

mA
(1) = mB

(1) =
α

γ
,

because

η ≈ 1 +
2αβτ+

γδτ−

for small τ+ through the Taylor approximation

(1 + x)n ≈ 1 + nx for |x| � 1 .

This is expected since setting τ+ to 0 removes the interaction between both players, which will then evolve
independently according to a two-stage expression model.

For decreasing τ− the solution of the system approaches the origin

nA
(1) = nB

(1) = 0

mA
(1) = mB

(1) = 0

1



because η ≈ const√
τ− and therefore the right hand sides of equations (S1) and (S2) reduce to const · τ−

√
τ− . For

decreasing τ− this term will approach 0. Hence, if proteins never unbind the promoter, the system will be
locked forever yielding 0 protein and mRNA levels in steady state.

We now assess the stability of the positive solution (S1) - (S3) using standard linear stability analysis. To
reduce the complexity of our system for the stability analysis, we apply a quasi steady state approximation
to the DNA binding/dissociation process (ḋA = ḋB = 0), reducing the dimensionality of our system to four
equations:

d

dt
mA = αψ(nB)− γmA

d

dt
mB = αψ(nA)− γmB

d

dt
nA = βmA − δnA + τ−(1− ψ(nA))− τ+ψ(nA)nA

d

dt
nB = βmB − δnB + τ−(1− ψ(nB))− τ+ψ(nB)nB ,

with ψ(x) = τ−

τ−+x·τ+ . The reduced system has the positive steady state solution

mA
(ss) = mB

(ss) = − δτ−

2βτ+
(1− η) (S7)

nA
(ss) = nB

(ss) = − τ−

2τ+
(1− η) (S8)

with η =
√

4αβτ+

γδτ− + 1. Notice that this is the same as the solution for mRNA and protein of the full system

(Eq. (S1) and Eq. (S2)). We calculate the Jacobian matrix of the reduced system as

J =




−γ 0 0 ατ+

τ− · ψ2(nB)

0 −γ ατ+

τ− · ψ2(nA) 0
β 0 −δ + τ+ψ2(nA)[1 + τ+nA − ψ−1(nA)] 0
0 β 0 −δ + τ+ψ2(nB)[1 + τ+nB − ψ−1(nB)]


 .

We evaluate the Jacobian at the steady state solution of the reduced system (Eq. (S7)-(S8)) and use the
Hurwitz criterion to verify that all its eigenvalues have negative real part. We conclude that the system has
one stable positive fixed point but we cannot analytically exclude the existence of limit cycles. However,
inspection of the system’s phase portrait (see Fig. S4) indicates that no limit cycles exist.

2 Master equation

The stochastic model of the two-stage switch is completely defined by the master equation. We define
Pij(MA,MB, NA, NB, t) as the probability at time t to have MA copies of mRNAA, MB copies of mRNAB,
NA copies of ProteinA, NB copies of ProteinB, and the corresponding promoter configuration ij where 0 (1)
means an unbound (bound) promoter. This results in the following master equation that is split up into four
coupled equations, corresponding to the four promoter states:
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d

dt
P00(MA,MB, NA, NB, t) = τ−AE

−
NA
P01(MA,MB, NA, NB, t) + τ−B E

−
NB
P10(MA,MB, NA, NB, t)

+ [−τ+BNB − τ+ANA + αA(E−MA
− 1) + αB(E−MB

− 1) + γA(E+
MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB + δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P00(MA,MB, NA, NB, t)

d

dt
P11(MA,MB, NA, NB, t) = τ+AE

+
NA
NAP10(MA,MB, NA, NB, t) + τ+BE

+
NB
NBP01(MA,MB, NA, NB, t)]

+ [−τ−A − τ−B + γA(E+
MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB + δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P11(MA,MB, NA, NB, t)

d

dt
P10(MA,MB, NA, NB, t) = τ−AE

−
NA
P11(MA,MB, NA, NB, t) + τ+BE

+
NB
NBP00(MA,MB, NA, NB, t)

+ [−τ−B − τ+ANA + αB(E−MB
− 1) + γA(E+

MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB + δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P10(MA,MB, NA, NB, t)

d

dt
P01(MA,MB, NA, NB, t) = τ+AE

+
NA
NAP00(MA,MB, NA, NB, t) + τ−B E

−
NB
P11(MA,MB, NA, NB, t)

+ [−τ+BNB − τ−A + αA(E−MA
− 1) + γA(E+

MA
− 1) ·MA + γB(E+

MB
− 1) ·MB

+ βA(E−NA
− 1) ·MA + βB(E−NB

− 1) ·MB + δA(E+
NA
− 1) ·NA + δB(E+

NB
− 1) ·NB]

· P01(MA,MB, NA, NB, t) .

The shift operators E+
x and E−x increase or decrease the function argument x by one, E±x f(x) = f(x ± 1).

To our knowledge no results have yet been published on the solution of stochastic two-stage switches.

Reaction Parameter value
Transcription α 0.05s−1

Translation β 0.05 s−1mRNA−1

mRNA degradation γ 0.005 s−1

Protein degradation δ 5 · 10−3 to 5 · 10−6s−1

DNA binding τ+ 1 s−1Protein−1

DNA dissociation τ− 0.1 s−1

Table S1: Parameters of the switch model used throughout this work. Protein degradation is chosen according
to the desired protein level n. If not mentioned otherwise, all simulations and plots are based on this set of
parameters.
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3 Rates

First we derive upper boundaries for the transcription and translation rates. Transcription of DNA into
mRNA is accomplished by the RNA-polymerase. One polymerase can process about 10-20 nucleotides (nt)
per second in eucaryotes (4–6). As described by Alberts et al. (4) the newly elongated RNA fragment is
immediately released from the DNA, which enables other polymerases to follow up even before the first
mRNA has been completed. The distance d between polymerases is estimated to be around 100 nt (7). The
rate of transcription is independent of the sequence length l, since the longer the gene, the more polymerases
can process it in parallel. Altogether we find the maximal transcription rate α by dividing the speed of
transcription v with the sequence length l, multiplied with the number of transcribing polymerases,

α =
v

l
· n
d
≈ 10 nt/s

l
· l

100 nt
= 0.1s−1

required that enough polymerases and nucleotides are present.
The maximal translation rate can be inferred in a similar way: Ribosomes, large complexes of proteins

and rRNAs that translate mRNA into polypeptides, proceed with a speed v of 2 codons (= 6 nt = 2 amino
acids) per second in eucaryotes (4). One mRNA can be processed by many ribosomes (polyribosomes) at the
same time (4). The average space between two ribosomes is 80 nt or ≈ 27 amino acids (AA). (4). Therefore
the overall translation rate for an mRNA of length n is

β ≈ 2AA/s

l

l

27AA
= 0.074s−1 ,

again independent of the mRNA length l. This corresponds to the maximally possible translation rate. The
actual rate will be smaller when not enough ribosomes or other involved molecules (tRNA, amino acids) are
present. We estimate the minimal translation time as 1/0.074s−1 = 13.5s, which is in good agreement with
literature, where the time needed for one translation is said to be between 20 seconds and several minutes
(4). Notably, these transcription and translation rates only provide rough estimates of the relevant timescale.
Throughout the manuscript, we use a transcription and translation rate of α = β = 0.05 s−1, corresponding
to an average time of 20 seconds per product, which seems to be reasonable in the context of the above
considerations. The fact that both rates are equal is not expected to have influences on the results.

Interactions between proteins and DNA are mediated by specific regions of the proteins, called DNA-
binding domains, which on the one hand can recognize specific DNA sequences and on the other hand
maintain the interaction between DNA and protein. Zinc Fingers, Leucine Zippers or Helix-Turn-Helix
motifs are prominent examples of DNA binding domains (4). The binding between DNA and protein is
maintained by hydrogen bonds, ionic bonds, and hydrophobic interactions. Single interactions are weak,
but as many bonds are formed, the binding between DNA and protein becomes stronger. The binding rates
are very fast compared to transcription and translation processes and according to Alon (8) in the range
of 1s−1Protein−1 in Eschericia coli. The unbinding rate depends on the strength of the interaction and is
assumed to be 10 times smaller (0.1s−1) in our model, leading to strong binding of the protein to the DNA.
All reaction rates of the models used in this work are summarized in Table S1.

As we showed above, the transcription and translation rates have upper bounds. The only way for a
cellular system to further increase the abundance of proteins is to modulate the degradation rates of mRNA
or proteins, giving longer lifetimes to mRNA and proteins. Thus, during this work we manipulate the
degradations rates to adjust the system’s protein level to a desired steady state. Notably, following the
report of Warren et al. (9), mRNA levels are set to 10 by adjusting the decay rate.

4



4 Attractor boundaries

In this section we assume symmetric parameters for both players (α = αA = αB, . . .) for simplicity.

4.1 SA and SB

We approximate the protein number distribution in the attractors SA and SB using results from Thattai and
van Oudenaarden (10), who showed that for a simple two-state expression model, the mean and variance of
protein numbers obey

N̄ =
αβ

γδ
and σ2 =

β2α

γ2δ + δ2γ
,

respectively. Thereby, we assume that in the dominating attractors, the presence of the antagonist can be
neglected due to its marginal transcription. We define the boundary χx of attractor Sx using a normal
approximation of the dominating protein’s distribution as

χx = N̄x − Zq · σx , (S9)

where Zq is the q% quantile of the standard normal distribution of the protein number with mean 〈n〉x and
standard deviation σx. Using q = 0.1 throughout our study assures that 99.9% percent probability mass
of the distribution lies beyond the lower boundary. Therefore we are certain to capture all relevant protein
numbers belonging to SA and SB. Using these boundaries, we can define the attractors SA, SB, and S0

accordingly:

SA = {s ∈ S|NA > χA ∧NB < χB}
SB = {s ∈ S|NA < χA ∧NB > χB}
S0 = {s ∈ S|NA < χA ∧NB < χB} .

4.2 S∗
A and S∗

B

In the S∗A/S∗B states, one protein of the ’repressed’ species is present, partially blocking the promoter of the
dominating player. Therefore the dominating player is not synthesized with full rate and its protein level
will be smaller:

The promoter of the dominating player A is free only 100 · τ−

τ++τ− % of the time. Therefore the average

number of mRNAA in this attractor is m = τ−

τ++τ− · αγ (compared to α
γ at full synthesis). Consequently the

average number of ProteinA in the state S∗A will be

N̄A = m · β
δ

=
τ−

τ− + τ+
· αβ
γδ

. (S10)

Based on this finding one can construct boundaries in a similar way to the SA/SB attractors.

5 Implications for Differentiation

In the following, we assume that only if one player dominates the other one for a sufficiently long time td,
downstream genes necessary for the decision process are activated (e.g. leading to chromatin remodeling),
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and the cell differentiates. We are thus interested in the probability that the residence time T in a dominating
attractor is longer than td:

ω = P (T ≥ td) .
This can easily be evaluated using the previous results on the residence time. Each time the switch flips,
the system has the chance to settle in a sufficiently long residence time. What is the probability that
after switching m times the residence time is greater than td? We therefore define a random variable M
representing the number of switching events until the residence time is greater than td and find that it follows
a geometric distribution with parameter ω:

P (M = m) = ω(1− ω)m−1 .

This distribution tells us how likely it is to find a cell differentiated after m switching events. It is non-trivial
to directly relate m to the time until differentiation (further denoted by the random variable Tp) since this
time is composed of the actual realizations of the residence time and the time the system spends in the
intermediate attractors. As no analytic expression of the time in the intermediate attractors S∗A and S∗B is
available, we do not take into account the time spent in S∗A and S∗B but only the residence time of the system
in SA and SB.

Now the time until differentiation only depends on the m − 1 independent realizations of the residence
time (see Fig. S1A):

Tp =

m−1∑

i

Ti .

The system flips the attractors m − 1 times and resides here for a time given by Ti until it stays in one
dominating attractor for a time longer than td. Tp is a sum of random variables Ti but also the number of
summands varies according to the random variable M .

Another obstacle is the fact that the Ti are not exact geometric random variables, but truncated above
td. For simplicity we do not make this distinction here. This is justified for small ω, because ω determines
the fraction of probability mass that is truncated.

It can be shown that the sum Z of n geometric random variables Ti with common parameter p follows a
negative binomial distribution:

Z =
n∑

i=1

Ti ∼ NB(n, p)

P (Z = z) =

(
z + n− 1

z

)
(1− p)npz .

Since in our case n is drawn from a distribution itself, we have to consider the compound distribution (11) of
M and Z to ultimately obtain the probability density function for Tp, which is a combination of how many
switching events take place (represented by M) and the actual time the system spends in the dominating
attractors (represented by the Ti):
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P (Tp = t) =

∞∑

m=1

P (M = m)P (Tp = t|M = m)

=

∞∑

m=1

ω(1− ω)m−1
(
t+ (m− 1)− 1

t

)
(1− p)m−1pt

=

{
−(1− p)tp[1 + p(−1 + ω)]−1−t(−1 + ω)ω t > 0

ω
1+p(−1+ω) t = 0

.

(A special case has to be considered for m = 1, where the system immediately starts differentiating. Here
one has to define P (Tp = 0|M = 1) = ω and P (Tp > 0|M = 1) = 0, since the negative binomial distribution
NB(n, p) is meaningless for n = 0).

Fig. S1 B shows the distribution of Tp for a mean residence time ts = 1h and a threshold of td = 5h,
meaning that the system has to reside for more than 5h in the same attractor to promote differentiation.
Immediate differentiation is most probable (t = 0) and the probability for higher differentiation times
decreases quickly. Therefore the majority of cells will differentiate rapidly and only few cells will need
longer time to differentiate. This is somewhat counterintuitive, since one would expect that it takes a long
time until a sufficiently large residence time > td has been accomplished to promote differentiation (since
longer residence times are less likely than shorter ones). However, due to the ”odd” nature of the geometric
distribution – where the probability for success is always the highest on the first try – the system has the
highest chance to reach a sufficiently long residence time on the first try (reflected by the random variable
M). Even if the system has to change attractors more often, the differentiation time will be short since the
residence time in each attractor is most likely very small (since it is itself a geometric random variable),
contributing only little to the overall differentiation time.
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6 Supplementary Figures

T2

T1
> td

Figure S1: A: Scheme of the differentiation mechanism. The system changes the dominating attractor twice
before it settles into SA for a time greater than td, which induces differentiation. The residence times in
SA and SB follow a (truncated) geometric distribution. The overall time until differentiation is therefore
(neglecting the intermediate attractors) the sum of these geometric random variables. B: Distribution of the
differentiation time Tp for a residence time of 1h and td = 5h. Small differentiation times are more probable
than higher bigger differentiation times. Note the strong peak at t = 0 indicating that it is most probable
for a cell to differentiate immediately .
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Figure S2: Quasi-potential of a toggle switch based on a one-stage expression model projected onto the
N total

A and N total
B dimensions. Notice that both axis are on logarithmic scale and are shifted by 1 in order to

include N total
A = 0 and N total

B = 0. Therefore the lowest row in the plot corresponds to the case N total
B = 0.

The quasi-potential U(x) = − logP(ss)(x) is color coded where red areas reflect minima of the landscape.
Contrary to the two-stage toggle switch model only three attractors are present. The vectors of the outflux at
each point in state space are drawn as lines (circles correspond the the origin of the vector). Vectors are
normalized and therefore show only the direction, not the magnitude of the field. Parameters were set in
accordance to the two-stage switch: Protein synthesis α = 0.5 s−1, Protein degradation γ = 5 · 10−4 s−1,
DNA binding τ+ = 1 Protein−1s−1, DNA dissociation τ− = 0.1 s−1.
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Figure S3: Quasi-potential of a two-stage toggle switch projected onto the N total
A and N total

B dimensions
using a different parameter set: Motivated by Hensold et al. (12) we set the mRNA degradation rate to
γ = 3.6 · 10−5s−1 and adjust the transcription rate α = 3.6 · 10−4s−1 to obtain the desired 10 mRNAs per
cell (9). Furthermore we set the protein degradation rate δ = 3.6 · 10−6s−1 as proteins are though to be one
order of magnitude more stable than mRNAs (13). The translation rate was set to β = 0.0036 mRNA−1s−1

in accordance to (13). We observe the emergence of the same four attractors described in the main text and
Fig. 3 therein.
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Figure S4: Phase portrait of the deterministic two-stage toggle switch model projected onto the NA and
NB dimensions. The same parameters were used as in the probabilistic model of Fig. 2 and Fig. 3. The
ODE was solved for different initial protein concentrations nA, nB and the mRNA concentrations where set
to mA = 0.01 · nA and mB = 0.01 · nB, resembling the fact that for the given parameters each mRNA will
correspond to approximately 100 proteins. Trajectories are arbitrarily colored to improve readability. Note
that trajectories can intersect as this in only a projection of the full system. Inspection of the phase portrait
reveals the single steady state (red dot) as predicted by Eq. (S7) - (S8). No limit cycles are visible in the
phase portrait.
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Figure S5: Residence time of the system in the intermediate attractors (S∗A or S∗B). (A) The histogram
of the residence times in S∗A obtained from stochastic simulation suggests that the residence time in the
intermediate attractors follows a geometric distribution. (B) Similar to Fig. 4 one observes a linear scaling
of the mean residence time and the protein abundance.
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