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1. INTRODUCTION 
Optical imaging has proved a versatile and powerful tool for scientific investigation 

throughout modern history. In the biological sciences, it has been fundamental in the 

discovery of a number of microscopic entities and processes: from the first images of 

bacteria by A. van Leeuwenhoek in the 1600s [1], through the depiction of neuronal 

structure by S. Ramón y Cajal in the late 1800s , to the current swath of cellular and sub-

cellular imaging of both function and structure. These applications have relied mainly on the 

use of microscopy, not only due to the desire to understand biological tissue at the sub-
micrometer scale, but also due to the fundamental limitations of optical imaging at 

millimeter scales or larger [2]. In recent years, optoacoustic imaging is overcoming these 

limitations by offering a distinct approach to optical imaging [3]. This work aims to provide 

an understanding of the underlying physical processes that take place during optoacoustic 

imaging, and how this understanding can be used to provide accurate images of biological 
tissue at scales traditionally outside the optical domain. 

 In the following paragraphs, the previous concepts are described in more detail. 

First, the limitations of conventional optical imaging are explained, followed by a 

description of optoacoustic imaging and how it is able to go beyond the optical depths. 
Afterwards, the exposition will delve deeper into the general features of optoacoustic 

imaging, its applications, and the specific motivation and aim of this work within that 

context. At the end of the introduction, the outline of the dissertation is provided. 

Optical microscopy techniques are limited to the investigation of relatively thin or 

transparent samples. This is due to the interaction of light with tissue, which may scatter or 
absorb the propagating photons, up to the point where no structural information of the 

sample can be obtained. These diffusive interactions become significant after light has 
propagated a few tens to hundreds of micrometers in the tissue, depending on the 

wavelength of the light and the tissue properties. As a result, microscopy is limited to 

samples in which diffusion can be mostly neglected, either because they are very 

transparent or because they are few tens of micrometers thick [2]. Purely optical 

tomographic techniques have been developed in the past decades to cope with this 

limitation [4]. They rely on the measurement of the diffused light at several positions 

relative to the sample and the posterior reconstruction of the initial photon distribution. 

Combined with other imaging modalities and through the use of novel fluorescence agents, 

they have successfully provided quantitative molecular imaging at depths of a few 

centimeters in small animals (commonly mice) [3]. However, tomography in diffusive media 
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is in general a complex imaging problem, which has limited the resolution of these 

techniques to a few millimeters. 

Optoacoustic imaging, conversely, is a hybrid modality that avoids the use of 

diffused light for image formation. Instead, the tissue is excited with pulsed laser light, 

which generates broadband ultrasonic waves due to the thermoelastic effect [5]. The waves 
propagate outwards from the sample and can be measured with conventional ultrasound 

sensors. The amplitude and spectrum of the optoacoustic waves depend on the size of the 

absorbing structures and the locally deposited energy, which is in turn proportional to the 

tissue absorption [6]. In macroscopic applications, acoustic scattering and attenuation in 

tissue are in general weaker than their optical counterparts, and as a consequence 

optoacoustic waves propagate for longer distances than light does [7]. In this manner, 

optoacoustic imaging may be used for the visualization of optical tissue properties at 

greater depths than purely optical imaging. Additionally, the ultrasonic nature of the 

optoacoustic waves results in resolutions that range from 100 µm in whole-body small-

animal imaging to sub-micrometer resolution in superficial applications [8]. 

Optoacoustic imaging has seen a rapid development in the last two decades, where it 

has gone from simple investigations of the phenomenon in tissue-like media [5], to the 

application of the modality in a broad range of biological studies [9]. In particular, when 

combined with illumination at multiple wavelengths such in the Multispectral Optoacoustic 
Tomography (MSOT) technique, it has seen applications to the imaging of pharmacokinetics 

[10], in-vivo physiology [11], and cardiovascular dynamics [12]. In this manner, 
optoacoustic imaging has not only overcome the limitations of optical imaging, but has also 
inherited and enhanced its powerful features for molecular imaging applications. 

There exist several implementations of optoacoustic imaging, which are suited for 

different applications. Whole-body imagers work at ultrasonic frequencies up to 10 MHz 

and are typically arranged in a tomographic fashion, providing a cross-sectional or a three-

dimensional view of the animal [11, 13-15]. On the other hand, meso- and microscopic 

setups are in general based on the scanning of high-frequency (>20 MHz) sensors and are 

well suited for superficial vasculature imaging [16-19]. After measurement, image 

reconstruction methods aim to recover the initial distribution of optoacoustic pressure, 

which is proportional to the absorbed optical energy within the tissue [20, 21].  

Ultimately, it is the interplay between illumination, measurement geometry, sensor 
properties and reconstruction algorithm which determines the performance of an 
optoacoustic system. In a tomographic setup, for example, excitation and detection on the 
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same plane results in a better delimitation of the imaged cross-section of the sample [22]. In 

a scanning modality, confocal excitation and detection may be utilized to achieve optical 

resolution [18]. In both cases, it is important that the image reconstruction algorithm 

accurately describes the optoacoustic generation, propagation and detection processes in 

order to obtain an accurate image of the energy deposited in the sample. 

In particular, it has been shown both in theory and in experiment, that the 

properties of ultrasound transducers may distort the optoacoustic waves in a non-trivial 

manner, which in turn may result in image artifacts or degraded resolution [23, 24]. In spite 

of this, most image reconstruction algorithms work under the assumption that the 

ultrasound sensors are isotropic and have an infinite acoustic bandwidth, which are not 

valid assumptions in most cases. Only in recent years have there been attempts to take into 

account the properties of the detector during image formation, either in 2D [24] or 3D [25] 

detection geometries. However, these have been performed as proof-of-principle studies in 

simple phantoms –the application of these methods to biological tissue is yet to be 

demonstrated. 

The aim of this work is to provide optoacoustic image formation algorithms that take 

into account the properties of the ultrasound detectors and result in accurate image 

reconstructions of biological samples. 

A previous necessary step, of course, is to gain knowledge on the properties of 

ultrasound sensors and develop accurate descriptions of those properties. Due to 

conceptual and practical similarities between optoacoustic and ultrasound imaging, there 
exists a well-researched body of knowledge on the properties of ultrasound sensors that can 

be used as a starting point for this task [26, 27]. However, the differences between the two 

modalities make it necessary to review the calibration techniques and rethink the relevant 

properties of ultrasound sensors when used in an optoacoustic environment. 

The dissertation is structured along these lines, as follows. In the following chapter 

(Chapter 2), a detailed background of optoacoustic imaging and the relevant physical 
processes is provided. The chapter includes a general description of ultrasound sensors and 

a definition of their properties, as well as a section describing existing image reconstruction 

algorithms. In Chapter 3, the proposed optoacoustic methods for the characterization of 
ultrasound transducers are described, and different theoretical models for their description 

are assessed experimentally. In Chapter 4, the knowledge acquired in the previous chapter 
is applied to an optoacoustic scanning modality, microscanning. Reconstruction methods for 
point-like, large unfocused and focused transducers are reported and their performance 
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assessed with simulations and experiment. In Chapter 5, preliminary results on 3D 

reconstruction algorithms that include the properties of the detector are demonstrated 

numerically and experimentally. Finally, in Chapter 6 the results of the dissertation are 

reviewed and the consequences for future optoacoustic imaging applications are discussed. 
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2. THEORETICAL	
  AND	
  TECHNICAL	
  BACKGROUND 
In this chapter, a theoretical overview of the fundamental principles behind 

optoacoustic imaging is provided. The aim is to present key concepts about the nature of the 

optoacoustic signal, the properties of ultrasound transducers and the features of image 

reconstruction algorithms. The concepts presented herein are intended to provide the 

background needed to understand the theoretical discussions, experiments and numerical 

results presented in the following chapters. For a more thorough derivation of the subjects 

here discussed, the reader is invited to refer to the cited literature. 

The chapter is divided into four major parts. In Section 2.1, the general concept of 

optoacoustic imaging is presented, with an overview of the relevant physical processes in 

soft, tissue-like media: light propagation; the optoacoustic effect itself; ultrasound 

propagation and related phenomena, such as absorption, refraction and diffraction. In 

Section 2.2, the general properties of optoacoustic sources are presented, both in the time 

and the frequency domain. Section 2.3 deals with the measurement of optoacoustic waves 

and the properties of ultrasound sensors. Finally, in Section 2.4 the basics of optoacoustic 

image reconstruction are presented. 

2.1 Optoacoustic principles 
An optoacoustic imaging system is schematically represented in Fig. 1. The sample to 

be imaged is illuminated with a high-power light source, typically a laser at near infrared to 

visible wavelengths. The light is absorbed by the tissue, which results in transient localized 

heating followed by a pressure rise due to the thermoelastic effect [6]. Then, the tissue 

relaxes by emitting broadband ultrasonic waves that propagate outwards from the sample 

and are detected by sensors at different locations. Afterwards, image reconstruction 

algorithms aim to recover the initial distribution of optical energy deposited within the 
tissue from the detected signals. Such a distribution is therefore dependent on the optical 

properties of the object and the illumination. In this section, the different physical processes 
from illumination to wave propagation are detailed, in the order they take place during an 

optoacoustic measurement. 

2.1.1 Illumination and light propagation in tissue 

When light propagates inside tissue, it is absorbed and scattered as it delves deeper 

into the medium. Absorption occurs when light is taken up by the tissue and subsequently 

transformed into other forms of energy, such as heat, optoacoustic waves or fluorescence. 

Scattering represents the deflection of light from its original direction of propagation, but 
may occur without energy transfer. Light transport in tissue can be divided into two 
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propagation regimes, dependent on the optical properties of the tissue, the optical 

wavelength, and the distance over which the light propagates [2]. Ballistic transport of 
photons takes place over short distances (1 to 10 mm) or in low-scattering tissue. Light 

transport can be then described by the laws of geometrical optics. At greater depths or in 

highly scattering media, photons may undergo several scattering events as and information 

on the original direction of propagation is completely lost. At such depths, light transport is 

best described as a diffusion process. 

 Light propagation is therefore important in optoacoustics as it ultimately 
determines the imaging depth to scales ranging from several millimeter to a few centimeters 

depending on the light wavelength [3]. Moreover, light propagation models may be 
employed in optoacoustic imaging to discriminate between the features in the image that 

represent intrinsic tissue properties, extrinsic contrast agents, or light diffusion [8, 28]. 

However, such models typically require an initial estimate of the shape and optical 

properties of the sample, or operate as a post-processing step after preliminary image 

formation. Since the aim of the present work is to provide image reconstruction algorithms 

that incorporate detector properties, without prior knowledge of the sample, throughout 

this work light diffusion in tissue was not corrected during image formation, unless stated 

otherwise. 

2.1.2 Optoacoustic signal generation 

Upon illumination, the absorption of light by the tissue results in a slight 

temperature rise (in the order of millikelvin). The tissue then relaxes by heat diffusion and 

Figure 1: Sketch of a prototypic optoacoustic setup.  The laser illuminates the sample, and the 
absorbing structures within emit optoacoustic waves. These are detected by ultrasound sensors placed at 
several locations with respect to the sample. 
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through the generation of optoacoustic waves. The relative importance of both phenomena 

depends on the duration of the laser excitation. If the excitation is shorter than the time it 

takes for the heat to diffuse to neighboring tissue, the heating is localized and optoacoustic 

waves are generated. This condition is referred	
  to	
  as	
  “heat	
  confinement”.	
  Additionally,	
  if	
  the	
  

pulse duration is much shorter than the time it takes for the optoacoustic waves to 

propagate, the illumination can be assumed instantaneous and the optoacoustic emission is 

localized in time. The excitation	
   is	
   then	
  said	
   to	
  be	
  under	
  “stress	
  confinement”.	
   In	
  order	
   to	
  

achieve high signal amplitudes and good spatial resolution both confinement conditions 

should be fulfilled, and nanosecond pulsed lasers are therefore used for optoacoustic signal 
generation*. 

Under stress and heat confinement, the relationship between the initial induced 

pressure 𝑝଴ at a given point 𝑟 within tissue and the absorbed optical energy can be 

expressed as: 

 𝑝଴(𝑟) = 𝛤𝐻௥(𝑟) = 𝛤𝜇௔(𝑟)Φ(𝑟)  , (2.1) 

where 𝜇௔(𝑟) represents the absorption coefficient of the tissue (with units of 

reciprocal length, typically cm-1) and Φ(𝑟) represents the local optical fluence (energy per 

surface, typically J/cm2).  is the Grüneisen parameter (dimensionless) [5], which 

represents the amount of temperature converted to pressure and can be thus understood as 

the optoacoustic generation efficiency of the tissue. Once the optoacoustic effect has taken 

place, the extra pressure propagates then as a wave at ultrasonic frequencies. This takes us 

to the next section. 

2.1.3 Optoacoustic wave propagation in the time-domain 

The advantage of using the time-domain representation to describe wave 
propagation is that it relates directly to the actual measurement process of the optoacoustic 

wave, (presented in Section 2.3). Such representation arises from the optoacoustic wave 
equation, which describes the relationship between the laser excitation and the ultrasound 

propagation in a medium: 

 𝜕ଶ𝑝(𝑟, 𝑡)
𝜕𝑡ଶ − 𝑐ଶ∇ଶ𝑝(𝑟, 𝑡) = 𝛤  

𝜕𝐻(𝑟, 𝑡)
𝜕𝑡   , (2.2) 

                                                             
* Using chirp-modulated or continuous wave lasers violates these conditions, but gives rise to 

the so-called frequency-domain optoacoustic effect, which also can be used for imaging applications 
29. Fan, Y., et al., Development of a laser photothermoacoustic frequency-swept system for 
subsurface imaging: theory and experiment. J Acoust Soc Am, 2004. 116(6): p. 3523-33.. The 
discussion of this alternative was omitted for simplicity. 
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where c is the speed of sound in the medium and 𝐻(𝑟, 𝑡) is the amount of energy 

deposited in the medium per unit volume and unit time, and is called the heating function. 

𝑝(𝑟, 𝑡) is the optoacoustic pressure field. 

 Since the propagation of light can be assumed instantaneous at biomedical scales, 
the heating function is separable as 𝐻(𝑟, 𝑡) = 𝐻௥(𝑟)  𝐻௧(𝑡), where 𝐻௥(𝑟) is described as in Eq. 
(2.1) and 𝐻௧(𝑡) represents the temporal profile of the laser pulse. In the case of tissue-like 

media, if the duration of the laser pulse is of the order of a few nanoseconds, the heating can 
be assumed instantaneous and thus 𝐻௧(𝑡) ≈ 𝛿(𝑡), where 𝛿(𝑡) represents the Dirac-delta. 

The propagation of acoustic waves in tissue-like media (i.e., the solutions to Eq. (2.2)) can be 

therefore described either in terms of the time-domain	
   Green’s	
   function	
   of	
   the	
   wave	
  

equation, or in terms of the frequency-domain superposition of harmonic waves. 

Let us assume that an object  𝛺 is an optoacoustic source. We are interested in the 

optoacoustic pressure field generated by 𝛺 at point 𝑟 and given time t after excitation, as 

shown in Fig. 2a. The solution of the wave equation for object   𝛺 can be computed by 
assuming that each point 𝑟′ in the object is an emitter of optoacoustic waves, given by a 

Green’s	
  function	
  of	
  the	
  form	
  [5]: 

 𝐺(𝑟, 𝑟ᇱ, 𝑡) =
𝛿 ൬𝑡 − |𝑟 − 𝑟ᇱ|

𝑐 ൰

4𝜋|𝑟 − 𝑟ᇱ| . (2.3) 

Eq. (2.3) represents the elementary wave generated at 𝑟ᇱ at 𝑡 = 0, propagating 

outwards in a spherical shell of decaying amplitude. We can then write the solution to Eq. 
(2.2) at a given point in space  𝑟 as: 

 𝑝(𝑟, 𝑡) =
𝛤

4𝜋𝑐ଶ   
𝜕
𝜕𝑡 ൦න 𝐻௥(𝑟′)

ఆ

𝛿 ൬𝑡 − |𝑟 − 𝑟′|
𝑐 ൰

|𝑟 − 𝑟′| 𝑑𝑟′  ൪  , (2.4) 

where the integral spans the whole object. Eq. (2.4) is the optoacoustic statement of 

Huygens’	
  Principle, since it describes the wave at a measurement point   𝑟 as a superposition 

of elementary waves generated at points 𝑟′ on the source. It is important to note that, since 

all of the terms inside the brackets result in a compact, positive-defined function of time, the 

derivation over time implies that optoacoustic waves of closed sources are in general 

bipolar [5].  
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2.1.4 Optoacoustic wave propagation in the frequency-domain 

The frequency-domain description of optoacoustic propagation is practical to 

describe the diffractive nature of optoacoustic fields and some phenomena that occur during 

wave propagation (explained in the subsequent Section). The frequency-domain description 

of  follows by decomposing the optoacoustic pressure field in its harmonic components. A 

monochromatic acoustic wave of angular frequency 𝜔, propagating in a homogeneous 

medium, can be expressed as a summation over all possible wave directions 𝑘ሬ⃗  [30]: 

 𝑝ఠ(𝑟, 𝑡) =
1
2𝜋ම𝛼൫𝑘ሬ⃗ ൯

ାஶ

ିஶ

𝑒௜൫௞ሬ⃗ ∙௥⃗ିఠ௧൯𝑑𝑘ሬ⃗   , (2.5) 

where 𝑘ሬ⃗  is the three-dimensional propagation vector such that ห𝑘ሬ⃗ ห = 2𝜋 𝜆⁄ , with 𝜆 

the acoustic wavelength and 𝛼൫𝑘ሬ⃗ ൯ are the coefficients of the summation. In a similar manner 

to Eq. (2.4), the solution of the wave equation on the frequency domain for 𝑝ఠ(𝑟) (the 

Helmohltz	
  equation)	
  can	
  be	
  expressed	
  in	
  terms	
  of	
  Green’s	
  functions	
  of	
  the	
  form	
  [30]: 

 𝐺෠(𝑟, 𝑟ᇱ, 𝑘) =
𝑒௜௞ሬ⃗ ∙൫௥⃗ି௥⃗ᇲ൯

4𝜋|𝑟 − 𝑟ᇱ|. (2.6) 

 

 

2.1.5 Propagation-related phenomena 

There are four main processes that take place when an acoustic wave propagates 
through tissue: refractions and reflections at boundaries between media, attenuation and 

diffraction. 

 Refractions and reflections a)

Acoustic refractions and reflections take place at the interface between two media 

with different acoustical properties. Both phenomena are due to the conservation of wave 

momentum and energy across the interface. Refraction appears when the wave crosses the 

boundary at an angle, and results in a change of the direction of the wave after the interface. 

Reflection on the other hand, takes place for all incident angles and results in the 

appearance of a reflected wave in the first medium. 
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Refraction and reflection are related to the acoustic impedances of the media, 

defined as 𝑍 =   𝜌𝑐, where 𝜌 represents the density of the medium and c the speed of sound. 

Z is measured in Rayls (Pa·s·m-1) and is in the order of 106 Rayl for water and tissue. Fig. 2b 

shows the particular case of reflection for a normal incidence angle, where there is no 
refraction of the wave. The transmission and reflection coefficients as the wave crosses from 

medium 1 to medium 2 are thus defined as [31]: 

 𝑇௔ =
2𝑍ଶ

𝑍ଵ + 𝑍ଶ
 (2.7) 

and: 

 𝑅௔ =
𝑍ଶ − 𝑍ଵ
𝑍ଵ + 𝑍ଶ

. (2.8) 

 For an incident wave 𝑝ଵ, the amplitude of the reflected acoustic wave is 𝑝௥ = 𝑅௔𝑝ଵ 

and the amplitude of the transmitted wave is 𝑝௥ = 𝑇௔𝑝ଵ, where it holds that 𝑝ଵ = 𝑝௥ + 𝑝௥ . If 
the difference between the impedances is large, the relative amplitude of the wave 
transmitted to the second medium is very low. Due to the high acoustic mismatch between 

Figure 2 a) Coordinate definition for the forward computation of an optoacoustic field. The object 𝜴 is 
represented by the dotted line. Points of the object are located at   𝒓ሬ⃗ ′ and the optoacoustic field at   𝒓ሬ⃗  is calculated by 
Eq. (2.4). t represents the time of flight from   𝒓ሬ⃗ ′ to   𝒓ሬ⃗ . b) Illustration of the reflection and transmission processes 
between two media of different acoustic impedances. When the acoustic mismatch is low, part of the incident wave 
is reflected and another part is transmitted (top). When the acoustic mismatch is high, almost no wave is 
transmitted from one medium to the next (bottom). 
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tissue (𝑍 = 1.5 MRayl) and air (𝑍 = 416 Rayl), optoacoustic measurements have to be 

performed with the aid of a coupling medium between the tissue and the sensor; otherwise 

the acoustic waves would remain confined inside the tissue. 

In biological tissue there are three major loci of acoustic mismatch: the boundaries 

between the skin and the outside of the body, between soft tissue and bone, and between 
the lungs and the surrounding tissue. For other boundaries, reflected acoustic waves are 

much weaker than the incident wave and the angle of refraction is negligible. For example, 

the highest acoustic mismatch between any two types of tissue (excluding bone), takes place 

between fat (𝑍 = 1.327  MRayl) and muscle (𝑍 = 1.679  MRayl), which results in 𝑅௔ = 0.11 

[31], or 89% of transmitted amplitude. 

Echographic ultrasound imaging is based on the measurement of reflected waves 

inside the tissue. In this modality, the problem of weak reflections is circumvented by 

optimizing the amplitude, frequency and shape of the signal sent into the sample [31]. 

Additionally, visualization relies less on boundary detection and more on the texture 
variations between types of tissue (speckle), which is due to the different densities of sub-

resolution scatterers.  

Optoacoustic imaging, however, is based on the visualization of optical contrast, 

which is typically much higher than the amplitude difference between the incident and the 

reflected wave. Therefore, refractions and reflections can be typically neglected, except in 

the presence of very strong acoustic mismatch [32]. For this reason, throughout the course 

of this work, media with homogeneous acoustical properties are assumed, unless stated 
otherwise. 

 Attenuation b)

Another process that affects optoacoustic waves during propagation is attenuation, 
which is due to viscous losses in the medium. Attenuation is generally dependent on the 

frequency of the wave and the acoustic and thermodynamical properties of the medium 

[31]. In optoacoustic applications below frequencies of 20 to 30 MHz, diffusive optical losses 

limit the imaging depth to a higher degree than acoustical losses, [7]. Furthermore, at 

macroscopic scales, the signal distortion due to attenuation in the tissue is generally less 
important than the distortion due to the transducer properties [7]. Therefore, throughout 

the present work, acoustical attenuation in the tissue was considered negligible. 
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 Diffraction c)

Finally, wave propagation is also affected by diffraction, which is due to the mutual 

interference of the propagating wavefronts originating at neighboring points of the source 

or the detector [31, 33]. Diffraction has been studied in great detail in the context of optics, 

where it is described as the interaction between light and objects such as slits, apertures or 
lenses. In the context of optoacoustics, diffraction is important due to the finite extension of 

both optoacoustic sources and ultrasound detectors. The diffractive properties of 
ultrasound sensors are described in section 2.3.4 and investigated in Chapter 3. In the 

following paragraphs, the general similarities of acoustic and optical diffraction are 

described qualitatively. 

The analogy between optical and acoustic diffraction is illustrated in Fig. 3 for two 
particular cases. The top row shows a plane wave of light with wavelength 𝜆௢ being 

diffracted by a circular aperture of radius a, compared with a circular surface of the same 

radius vibrating back and forth with a wavelength 𝜆௔. Similarly, the bottom row shows a 

plane wave of light being focused by a convergent lens, compared to a vibrating concave 

surface. Optically, it is assumed that light is a plane wave propagating into the aperture (or 
the lens) and the diffracted waves propagate afterwards [33]. Acoustically, it is assumed 

that the surface vibrates as a whole and emits plane waves only onto the right-half medium 

Figure 3: Equivalent diffractive systems in optics and acoustics. Top row: the diffraction of a plane 
wave of light by a round aperture (left) is equivalent to the diffracted acoustic field emitted by a vibrating round 
ultrasound transducer (right). Bottom row: the diffraction of light by a convergent round lens (left) is equivalent 
to the diffracted acoustic field emitted by an spherically focused (or concave) transducer (right). Revolution 
symmetry around the dashed axis is implied in all cases. See text for details. 
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[31]. However, both processes are equivalent with respect to wave propagation, and result 

thus in analogous phenomena that are described formally with the same mathematical 

expressions.  

Diffraction is studied typically in two regimes. The far field regime is reached at a 

distance R to the diffractive object 𝑅 ≫ 𝑎ଶ 𝜆⁄ , i.e., for long wavelengths with respect to the 

aperture size or conversely for points located far from the diffractive object. Conversely the 

near-field is located at 𝑅 ≪ 𝑎ଶ 𝜆⁄ . Due to the very different wavelengths and propagation 

speed of the waves, the main difference between optical and acoustical diffraction is 

therefore the distance at which the near-field and far-field regimes may be considered. 

In practical terms, the optical diffraction pattern of an object is visualized as the light 

intensity distribution on a screen placed along the path of the diffracted wave. Such a 
pattern is proportional to the square of the wave amplitude (i.e., the irradiance). On the 

other hand, the relatively low frequencies of acoustic waves with respect to light make it 
possible to measure the wave amplitude and phase simultaneously. Therefore, the acoustic 

diffraction pattern of an object is typically described in terms of the wave amplitude (i.e., the 

pressure). 

For example, let us consider the far-field diffraction for a circular aperture (or 

surface). We are interested in the diffraction pattern at points located at a distance R from 

the center of the aperture. The points are assumed to lie in a plane located at a distance d 

from the aperture and at a radial distance q from the median axis (see Fig. 3). The amplitude 

of the acoustic diffraction pattern at a distance 𝑅 ≫ 𝑎ଶ 𝜆⁄  is described by [27]: 

 𝑝(𝑅, 𝑘) =
𝐴
𝑅
𝐽ଵ(𝑘𝑎𝑞/𝑅)
𝑘𝑎𝑞/𝑅 . (2.9) 

where 𝑘 = 2𝜋/𝜆. 𝐽ଵ represents a first order Bessel-function, A represents a constant 

dependent on the amplitude of vibration, the properties of the medium and the size of the 

aperture, and 𝑝(𝑅, 𝑘) has units of pressure. 

Conversely, the optical diffraction pattern under the same conditions is expressed as 

[33]: 

 𝐼(𝑅, 𝑘) =
𝐵
𝑅ଶ ቈ

𝐽ଵ(𝑘𝑎𝑞/𝑅)
𝑘𝑎𝑞/𝑅 ቉

ଶ

. (2.10) 

where in this case B depends on the intensity of the electromagnetic field at the 
aperture and the size of the aperture. The units of   𝐼(𝑅, 𝑘) are of energy per unit area and 
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time. While the exact measured quantities differ in the case of optics with respect to 

acoustics, the functional dependence of the diffraction patterns with respect to the 

wavelength, distance and aperture size are equivalent. Moreover, the relation between Eqs. 

(2.9) and (2.10) is also equivalent in the case of the lens and concave surface when the 

points R lie in a plane located at the center of curvature F, i.e., at the focal plane of either the 

optical lens or the vibrating surface. 

In conclusion, diffraction arises naturally in optoacoustics as a consequence of the 

propagation of acoustic waves. Diffractive effects and their implications to optoacoustic 

imaging were therefore investigated in this work, as they ultimately define the properties of 

optoacoustic sources and detectors [31]. This dissertation may be thus considered a study of 

the time-domain diffraction of broadband optoacoustic waves, with applications to image 

reconstruction. Diffraction is further explored when defining sensor properties in section 

2.3.5 and experimentally in Chapter 3. 

Having an overview of the different physical effects that may affect the propagation 
of an optoacoustic wave, we proceed to outline several important characteristics of 

optoacoustic sources both in the time and frequency domain. 

2.2 Optoacoustic sources 
Under the conditions of uniform illumination and constant light fluence within the 

object, Eq. (2.4) can be solved exactly both in the frequency and the time domain for some 

simple source geometries [5]. These geometries include the sphere, the infinite cylinder and 

the infinite semi-space. While such conditions and sources are indeed highly idealized, the 

analytical solutions provide nevertheless useful insights into the nature and characteristics 

of optoacoustic signals and their spectra. 

In particular, the analytical solution for the uniformly illuminated sphere sheds light 

upon several of the most important features of optoacoustic signals, such as the mutual 

interdependence of size, emission frequencies and signal amplitude. More importantly, this 

analytical solution has been shown to accurately describe the experimentally measured 

optoacoustic signals generated by uniformly illuminated absorbing spheres [5]. The 

solutions provide therefore a realistic model to study the characteristics of optoacoustic 

signals. 

2.2.1 Time-domain characteristics 

Let us assume an absorbing sphere of radius a and absorption coefficient 𝜇௔, 
uniformly  illuminated by a laser beam which results in fluence 𝛷. The acoustic properties of 
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the sphere are assumed to be the same as those of the surrounding medium (water), so that 

there are no reflections of the optoacoustic wave at the sphere boundaries. The time-

domain solution of Eq. (2.4) under these conditions yields the time-dependent optoacoustic 

field at a point r from the center of the sphere [5]: 

 𝑝(𝑟, 𝑡) =
𝑎𝜇௔𝛤Φ
2r

(1 − 𝜏̂)Θ଴,ଶ(𝜏̂)    , (2.11) 

where 𝜏̂ is a dimensionless retarded time expressed as: 

 𝜏̂ =
𝑐
a ቀ𝑡 −

𝑟 − 𝑎
𝑐 ቁ    , (2.12) 

and Θ଴,ଶ(𝜏̂)    is a boxcar function such that Θ଴,ଶ(𝜏̂) = 1 if 𝜏̂ ∈ [0,2] and 0 otherwise. From Eq. 

(2.11), two important features of the optoacoustic signal can be observed. First, the 

amplitude of the signal is directly proportional to the size of the object, which is to be 

expected owing to the volume integral in Eq. (2.4). Second, the signal amplitude decays 

linearly with distance due to the spherical spreading of the optoacoustic wave. 

Fig. 4 shows the signals resulting from Eq. (2.11) for several spheres of different 

radii, at a distance of 𝑟 = 12 mm (from their centers). The speed of sound was set to 

𝑐 = 1500 m/s and the factor 𝜇௔𝛤Φ/2 = 1 , as in this section we are interested only on the 
signal properties as a function of the object size. 

Figure 4: a) Relative location of the spheres and the point where the optoacoustic signal is calculated.   
b) Optoacoustic signals of the four microspheres at 12 mm, as per Eq. (2.8). 
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We observe signal durations of 2𝑎 and the linearly dependent amplitude on the size. 

From these features, two consequences that are valid for all optoacoustic sources can be 

extracted. First, small objects emit characteristically weaker signals than larger objects, 

which may present a challenge in terms of resolving small absorbers close to larger 

absorbing structures. Second, small objects emit short signals, which require the use of high-

frequency sensors in order to resolve them. The size and shape of the sources determine 

thus the spectrum of the optoacoustic signal, which leads us to the next section. 

2.2.2 Frequency-domain characteristics 

The emission frequency spectrum of absorbing spheres under uniform illumination 

can be found either from an analytical derivation or, more conveniently, by calculating the 

Fourier-transform of Eq. (2.11). The result is a somewhat complex expression [5], but 

interestingly it can be expressed as a function of a dimensionless frequency  𝑞ො defined as 
𝑞ො = 2𝜋𝑓𝑎/𝑐. As a consequence, it can be shown that the spectra for spheres of different sizes 

have always the same shape: a peak frequency at 𝑞ො~2.5 followed by harmonics of decaying 

amplitude. The peak frequency in physical units (Hz) is therefore determined by the size of 
the sphere. 

Figs. 5a, 5b, 5d and 5e show the emission spectra for four absorbing spheres of 
diameters 400 µm, 200 µm, 100 µm and 50 µm respectively. The spectra are represented 
between 0 and 20 MHz and normalized to the amplitude at the peak frequency 𝑓௖ of the 

largest sphere. As the spheres become smaller, there is a net shift of the spectra to higher 

frequencies and the amplitude at the peak frequency becomes lower.  

Fig. 5c shows the dependence of the peak frequency with the size, which is 
approximately 𝑓௖~0.8𝑐/2𝑎. It is worth noting that the peak frequency is therefore lower 

than the frequency corresponding to a wavelength 2𝑎. As a result, to assume that 𝑓௖ = 𝑐/2𝑎 

is an overestimation of the optoacoustic peak frequency. This is of importance when 

assessing the sizes of absorbers present on a sample based on the measured optoacoustic 

spectrum.  

Fig. 5f shows the dependency of the bandwidth 𝐵௪ with the sphere size. The 

bandwidth is defined as the full-width at half-maximum (FWHM) around 𝑓௖. The figure 

shows that objects of small sizes emit not only signals at high frequencies but also with a 
broad spectrum. It can be also seen that the relative bandwidth, defined as 𝑏௪௥ = 𝐵௪/𝑓௖, is 

independent of the sphere size, or 𝑏௪௥~140% for all sizes. 
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In conclusion, the amplitude of optoacoustic waves scales linearly with the size of 

the source and their spectra are broadband, with peak emission frequency and bandwidth 

inversely proportional to the source size. As a consequence, due to the continuum of 
absorber sizes within tissue, optoacoustic imaging is an inherently wideband modality, 

especially when compared with echographic ultrasound. This fact has consequences on the 
understanding of the optoacoustic measurement process and the relevant sensor 
properties, which are described in the following section and are the subject of Chapter 3. 

2.3 Optoacoustic detection 
There are several physical processes that can be exploited to measure a propagating 

ultrasonic wave [9], such as light interference and piezoelectricity. In the context of 

ultrasonic biomedical imaging in general and optoacoustics in particular, the most 

commonly used ultrasound sensors are piezoelectric transducers*. In this section, the 

piezoelectric effect is presented, followed by a general discussion on the properties of 

several piezoelectric materials. Afterwards, a description of the general characteristics of 
ultrasound sensors is provided. 

                                                             
* Throughout this work, the terms transducer, sensor and detector are used interchangeably. 

The term hydrophone is however reserved for calibrated, broadband ultrasound sensors used for the 
characterization of optoacoustic sources and ultrasound transducers, rather than for imaging 
applications. 

Figure 5: Size dependence of the frequency spectra of optoacoustic signals of absorbing spheres. a)-b), 
d)-e), spectra of absorbing spheres with diameters 400, 200, 100 and 50 µm respectively. c) Peak emission 
frequency vs. object size. f) Emission bandwidth vs. object size. See text for details. 
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2.3.1 The piezoelectric effect and relevant sensor materials 

The direct piezoelectric effect arises in some nonmetallic materials as a deformation 

of their shape produces a net electric field inside the material [34]. The electric field 

originates a voltage difference that is proportional to the deformation of the material and 

that can be easily measured. Conversely, a voltage difference applied to a piezoelectric 

material results in a change of its shape that is proportional to the voltage, which is called 

reverse piezoelectric effect. The reverse piezoelectric effect is used for acoustic wave 

generation in conventional echographic ultrasound, whereas the direct piezoelectric effect 

is used for the measurement of acoustic waves both in ultrasound and optoacoustics. 

There exist a large number of piezoelectric materials used for an equivalent variety 

of purposes. For ultrasonic applications, the materials can be divided into three major 

categories: ceramics, polymers, and piezo-composite materials, which consist on 
piezoelectric ceramics inside an electrically isolating polymer matrix [31]. 

Ceramics, of which Lead Zirconate Titanate (or PZT) is the most commonly used, 

offer in general a very good sensitivity but relatively narrow bandwidths, due to their 

stiffness [35]. They have densities of about 7.8 Kg/m3 and a speed of sound of 4400 m/s, 

very different from those of water (1 Kg/m3 and approximately 1500 m/s), which result in 
strong acoustic mismatch and therefore highly resonating modes of vibration. Therefore 

they need to be fitted with acoustic matching layers, which further reduce their attainable 

bandwidth. PZT-based transducers are widespread and relatively cheap, so that they prove 

versatile sensors for proof-of-principle studies [36] and have been successfully employed in 

first-generation optoacoustic setups [14]. 

Polyvinylidene Fluoride (or PVDF) is the most common of piezoelectric polymers. It 

exhibits acoustical properties close to those of water, with a density of 1.8 Kg/m3 and speed 
of sound 2200 m/s. As a consequence, PVDF sensors do not need acoustic matching layers 

to operate in water and can be tuned to have a very wide frequency response. PVDF sensors 

are thus typically used as hydrophones for the characterization of the acoustic field 

generated by ultrasound transducers [35] and, in the context of optoacoustics, for the 

characterization of optoacoustic sources (cf. Chapter 3). 

Piezo-composites combine the desirable characteristics of both PZT and PVDF. The 

polymer matrix (typically epoxy) provides some flexibility to the material, which results in 

an easier production of different sensor shapes in comparison to pure ceramics. Their bulk 
acoustic properties are strongly dependent on the ceramic-to-matrix ratio, but are in 

general closer to that of water, with densities of e.g. 4.8 Kg/m3 and speed of sound 3780 m/s 
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[31]. On the other hand, the PZT component provides good sensitivity. Piezo-composite 

sensors can be also tuned to wider bandwidths than PZT-only transducers of similar 

geometry [31, 35] due to their better matching to water. 

The exact details on design and construction of ultrasound sensors based on these 

materials are beyond the scope of the present work. Herein, a more phenomenological 
description of the transducer properties is used, based on their effect on optoacoustic 

signals rather than in terms of its components and design. This approach is justified because 

ultrasound transducers can be accurately described as linear systems. As such, the 

transducer effect on any optoacoustic signal can be deduced in terms of the sensor impulse 

response, without considering each transducer component individually [26, 31]. 

Furthermore, the impulse response can be obtained experimentally with minimal 

information on the underlying design parameters and provides all the transducer 

characteristics needed for imaging applications. 

2.3.2 Definition of transducer characteristics 

It has been shown that detection of an ultrasound wave can be described as a linear 

process occurring in two steps [26]: a spatially-dependent process, determined by the shape 

of the transducer, and a spatially independent one, determined by piezoelectric 
transduction. First, the wavefront of the propagating optoacoustic field may reach different 

points	
  on	
   the	
  detector’s	
   surface	
  at	
  different	
   time	
   instants.	
  As	
  a	
   result,	
   the	
  duration	
  of	
   the	
  

measured signal is longer than the duration of the original wave. This effect is modeled by 

the spatial impulse response (SIR) of the sensor and depends on its shape and the location 

where the signal is generated [26]. In the second step, the signal distorted by the SIR excites 

the piezoelectric material, which acts as a band-pass filter around its resonant frequency. 
This effect is modeled by the electrical impulse response (EIR) of the transducer and 

depends on the piezoelectric material characteristics, the acoustic matching layers and the 
electric channel behind the sensor [27].  

The response of the transducer to any signal can be therefore described as a 

convolution, in time, of the signal waveform, the SIR and the EIR. This approach is 

demonstrated in Chapter 3 whereas a conceptual description of the EIR and the SIR 

independently is provided in the following. 

2.3.3 The Electrical Impulse Response 

The EIR describes the response of the sensor to an impulse excitation (i.e., a source 
with a constant frequency spectrum of infinite bandwidth), and is independent of the source 

location. It results from the properties of the piezoelectric material and the electronics 
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behind it. Some insight can be gained into the characteristics of the EIR by studying a 
simplified model of the detector and the corresponding electrical circuit. 

Fig. 6a shows a sketch of a single-element ultrasound sensor: the piezoelectric 

element of thickness d, the electrodes, the acoustic backing, the cabling and the data 

acquisition system. For simplicity we have assumed that there is no acoustic matching layer, 

so that the medium to the left of the active element is water. The electrodes are considered 

infinitely thin, which is a valid assumption for most sensors; as a result, their effect on the 

acoustic wave can be neglected. We deal therefore with two acoustic interfaces: one 

between the medium and the piezoelectric element and another one between the latter and 

the acoustic backing. The backing provides acoustic matching at the other end of the 
piezoelectric and its thickness and material can be adjusted for damping the vibrations of 

the piezoelectric.  

The arrangement shown in Fig. 6a can be described by a three-port network such as 

the Krimholtz, Leedom and Matthaei model, or KLM, where two ports describe the acoustic 

interfaces and the third port is comprised by the electrodes [34]. The KLM model is widely 

used for transducer design, as it provides a thorough description of the interdependence of 
the acoustic and electrical parameters.  

Fig. 6b shows the electrical network describing the ultrasound transducer of Fig. 6a. 
The piezoelectric element is connected to the backing and the receiver electronics, 

represented as loads in terms of their electrical impedances 𝑍஻ and  𝑍ோ respectively, and to 
the medium which is represented as a voltage source   𝑉ௐ in series with an impedance   𝑍ௐ. 

Figure 6: a) Schematic of a single-element piezoelectric transducer. b) Equivalent electromechanical 
circuit, based on the KLM model. See text for details 
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The piezoelectric element has a speed of sound 𝑐௣௭ and can be understood as a resonator 

with a first harmonic given by the natural vibration frequency 𝑓௥ = 𝑐௣௭/2𝑑. By tuning the 

receiver circuit and backing to operate at the transducer resonance, sensitivity at 𝑓௥ is 

optimized at the expense of bandwidth. This can be achieved with the use of a highly 

mismatched backing, which enhances resonance. On the other hand, by using a matched 

absorbing backing, the piezoelectric is tuned far from resonance and a broader bandwidth 
can be achieved at the expense of reduced peak sensitivity [34]. 

As discussed in 2.2.2, optoacoustics is an inherently broadband imaging modality, 

and therefore wideband transducers are desirable. On the other hand, as the amplitude of 

optoacoustic sources scales with their size, transducers with extremely large bandwidths 

but low sensitivity are not practical. Therefore, a balance between the two has to be found. 

 In terms of characterization, the EIR can be obtained by exciting the transducer with 
a broadband source with known spectrum, which is subsequently corrected from the 

measured signal to yield the EIR. This method is further discussed in Chapter 3. 

2.3.4 The Spatial Impulse Response 

When the optoacoustic signal is detected by a single-element sensor of finite size, 
different points 𝑟ௗ on the surface S of the detector will intercept the optoacoustic field 

𝑝(𝑟ௗ, 𝑡) at different times. This is expressed mathematically as a spatial averaging of the 

optoacoustic field over the surface of the detector: 

 𝑝ௗ(𝑡) = න   
ௌ

𝑝(𝑟ௗ, 𝑡)  𝑑𝑆  , (2.11) 

The effect of the sensor surface on the propagating optoacoustic wave can be better 
understood by substituting Eq. (2.11) into Eq. (2.4) and rearranging the terms: 

 𝑝ௗ(𝑡) =
𝛤

4𝜋𝑐ଶ
𝜕
𝜕𝑡 ൞න   𝐻௥(𝑟′)

ఆ
൦න

𝛿 ൬𝑡 − |𝑟ௗ − 𝑟′|
𝑐 ൰

|𝑟ௗ − 𝑟′|   𝑑𝑟ௗ
ௌ

  ൪ 𝑑𝑟′ൢ  . (2.12) 

Eq. (2.14) describes the optoacoustic detection process as a sum of the optoacoustic 

signals arriving from different points 𝑟′ of the object 𝛺, weighted and delayed by a factor 

(shown in square brackets) dependent on the relative geometry of sensor and source. Thus, 

for a point emitter located at 𝑟, (see Fig. 7a) the detector yields a temporal response only 

dependent on its geometry: 
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 ℎ(𝑟, 𝑡) = න
𝛿 ൬𝑡 − |𝑟ௗ − 𝑟|

𝑐 ൰

|𝑟ௗ − 𝑟| 𝑑𝑟ௗ    .
ௌ

 (2.13) 

Except for a constant scaling factor, Eq. (2.13) is known as the spatial impulse 

response (SIR) of the sensor, and is equivalent to a spatially-averaged Green’s function of 

the optoacoustic field. It can be shown [26] that the SIR distortion on any propagating 

ultrasound wave can be modeled as a linear process. Such distortion can be thus 

represented as a temporal convolution of the waveform and the SIR. 

Fig. 7b shows a side view of 7a, to illustrate the example of the distortion of an 

optoacoustic wave produced by the SIR of a sensor, assuming a flat EIR. The effect of the SIR 

Figure 7 a) Geometry for the SIR definition. b) Illustration of the time broadening of ultrasound signals 
due to the surface of the transducers.  𝒕𝟏 represents the shortest time-of-flight between the surface of the sensor 
and source, and marks the starting time of the SIR and therefore the measured signal. 𝒕𝟐 represents the longest 
time-of-flight from	
  the	
  source	
  to	
  the	
  sensor’s	
  surface and the time instant where the SIR ends. c) Simulated 
optoacoustic signal (blue/solid) and the distorted signal (red/dashed) that results after convolution with the SIR 
at a point out of focus. Inset: SIR used for convolution. d) Frequency spectra of the simulated signal (blue/solid) 
and of the signal convolved with the SIR (red/dashed). Inset: spectrum of the SIR. See text for details. 
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on the signal is shown in Fig. 7c. The effects on the signal spectrum are depicted in Fig. 7d. 

The signal is given by the analytical solution for a paraboloidal absorber [21] of 400 m in 

diameter. The SIR (Eq. 2.13) is calculated with the software package FIELD II [37] for a 

cylindrically focused transducer. We can observe the general features of SIR distortion: the 

optoacoustic signal is no longer antisymmetric and it is stretched, changing notably its 
frequency spectrum as well. The SIR represents thus a spatially dependent low-pass filter on 

the optoacoustic signal. 

Recalling	
  the	
  Green’s	
  function	
  for	
  the	
  frequency-domain, shown in Eq. (2.6), the SIR 

definition may be rewritten for a monochromatic wave of angular frequency 𝜔 as [27]: 

 ℎ෠ఠ(𝑟) = න
𝑒௜௞ሬ⃗ ∙(௥⃗೏ି௥⃗)

|𝑟ௗ − 𝑟| 𝑑𝑟ௗ    .ௌ
 (2.14) 

From Eq. (2.14) the diffractive formulation of the acoustic field can be obtained by 

assuming that the detector behaves like a piston, i.e., that the acoustic waves displace the 

sensor only in a direction normal to S. This approximation is valid at MHz frequencies and 

for the materials and shapes of almost all ultrasound transducers used for nondestructive 

testing and ultrasound imaging [27]. Under the piston approximation, Eq. (2.14) is called the 

Rayleigh-Sommerfeld integral. It is also worth noting that, due to the reciprocity theorem, 
both Eqs. (2.13) and (2.14) describe not only how the acoustic wave intercepts the surface S, 

but also the wave that would be emitted by S if all its points were excited in phase. From the 

Rayleigh-Sommerfeld equation, the far-field and near-field regimes of diffraction can be 

obtained. 

For some optoacoustic imaging applications, detection in the far-field can be 
assumed and the spatial properties of the transducer response do not distort the 

optoacoustic waves strongly. However, in some imaging scenarios it is desirable to use 
focused transducers located close to the object, as this optimizes signal-to-noise ratio and 

resolution. Conversely, operation at high acoustic frequencies with elements much smaller 

than the corresponding wavelength may not be possible, due to current limitations in 

transducer fabrication techniques. In both cases, the transducer may be considered to 

operate in the near-field and the distortions on the signal due to its spatial response may not 
be negligible. 

In principle, the SIR of a sensor can be determined through Eqs. (2.13) or (2.14), 

either numerically or analytically. Experimentally, however, an direct determination of the 
SIR independently of the EIR is evidently impossible. Furthermore, the SIR represents the 
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response	
   of	
   the	
   sensor’s	
   surface	
   to	
   an	
   impulse	
   excitation,	
   i.e.	
   to	
   a	
   source	
   with	
   infinite	
  

bandwidth. As a result, the EIR effectively determines the frequency band of the SIR which is 

relevant for the sensor spatial properties. For this reason, the SIR of a transducer is often 

described in terms of the sensitivity field at the central frequency of the sensor [31]. 

2.3.5 Sensitivity fields 

The sensitivity field of a transducer represents the spatial variation in measured 

signal amplitude that is due only to the sensor characteristics and the position of the source 
with respect to the sensor. Due to the diffractive nature of acoustic waves, flat unfocused 

transducers	
   are	
   sensitive	
   to	
   signals	
   originating	
   mainly	
   “in	
   front”	
   of	
   them,	
   as	
   long	
   as	
   the	
  

sources are in the near field. Conversely, focused sensors are sensitive mainly to signals 

originating within a region around the geometrical focal point, which is called the focal zone. 

The dimensions of the focal zone are in general given by the transducer shape and the wave 
frequency. 

In order to illustrate this important concept, the sensitivity field for a spherically 

focused transducer was calculated as per Eq. (2.16) with the method described in [27]*. The 

sensor was defined to have a focal distance of 𝐹 = 12 mm and a diameter of 𝐷 = 12 mm, as 

shown in Fig. 8a. Two fields were calculated, at 10 and 5 MHz, and they are shown in Figs. 
8b and 8c respectively. The sensitivity fields exhibit a diffraction pattern similar to that of a 

convex optical lens, which have basically the same shape for both frequencies, except for a 

scaling factor.  

The size of the focal zone along the y axis determines beam width at the relevant 

frequency, whereas the size along the x direction determines the depth of field. Fig. 8d 
shows the contour plot of the sensitivity field at 5 MHz, with the delimitation of the focal 

zone. Fig. 8e shows the cut of the fields along the y axis for both transducers, and Fig. 8f 
shows the cut along the x axis, clearly showing the frequency dependence of the size of the 

focal zone. 

From the laws of diffraction, the beam-width can be expressed as: 

 𝛿 ≈
𝐹𝑐
𝐷𝑓 = 𝜆

𝐹
𝐷  , (2.15) 

and the length of the focal zone is 𝜁~7𝛿(𝐹/𝐷)ଶ [31]. This results in 𝛿 ≈ 300 µm at 5 

MHz, and 𝛿 ≈ 150 µm at 10 MHz, which coincide approximately with the values in the 
simulation. 

                                                             
* More details on the computation method can be found in Chapter 3. 
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While useful as a rough estimate of the sensor properties, the sensitivity field at the 

central frequency is however a rather incomplete description of the sensor distortion of 

optoacoustic waves, as it completely ignores the phase and the broadband features of 

optoacoustic signals. This is further explored in Chapters 3 and 4. 

2.3.6 Common transducer shapes 

In order to understand the rationale behind the different detection geometries 

employed in optoacoustics, which are described in the next section, it is first necessary to 

have an overview of the most common transducer shapes. The SIRs and sensitivity fields 

resulting from the geometry of the sensor’s	
  surface	
  determine	
  the	
  imaging	
  performance and 

the range of applications of an optoacoustic setup with a set illumination. Although there 

exists a large variety of transducer shapes, the most common are: flat round, cylindrically 

focused and spherically focused sensor surfaces. All three transducer geometries were 

employed in the course of this work and are described briefly in the following. 

a) Flat round transducers 

This shape is mostly used in calibrated hydrophones, with diameters ranging from 1 
mm (Fig. 9a) down to 85 µm. The small size is a desirable characteristic intended to 

Figure 8: a) Sketch of the transducer used for the illustration of the sensitivity fields.. The sensor is a 
concave (spherically focused) transducers with the dimensions specified. b) Numerically calculated sensitivity 
field at 10 MHz. c) Numerically calculated sensitivity field at 5 MHz. d) Contour lines of the 5 MHz sensitivity field 
at 0.5, 0.25 and 0.05 amplitude. The blue arrows delimit the beam width, the red arrows the length of the focal 
zone. e) Cut through the sensitivity field at the focus along y for both fields (5 MHz dashed, 10 MHz solid). f) Cut 
through the sensitivity field at the focus along x for both fields (5 MHz dashed, 10 MHz solid).  
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minimize SIR distortions on the measurement of an acoustic field, as can be understood by 

examining the sensitivity field of a flat round sensor at two different frequencies (Figs. 9b 

and 9c). It is observed that, while the sensors are completely unfocused, the diffractive 

propagation of the acoustic waves produces a “natural	
  focusing”	
  of	
  the	
  acoustic	
  field,	
  with a 

local maximum at a distance from the sensor surface 𝑧ோ = 𝑎ଶ 𝜆⁄ = 𝑎ଶ𝑓 𝑐⁄ , where a is the 

sensor radius. In order to measure an acoustic field in the far-field regime of the sensor, 

either the distance between source and sensor them has to be greater than 𝑧ோ or the sensor 

ought to have a small diameter. Since acoustic attenuation may also distort the propagating 

wave, it is thus necessary to minimize the distance between source and sensor and only a 

small sensor diameter can ensure (ideally) minimal SIR distortion. 

Sensors of relatively large diameter (>1 mm) and low frequencies (<5 MHz) are used 

in non-destructive testing of materials, where a large penetration of the acoustic wave is 
desirable. In optoacoustics, they can be mounted in a translation stage to emulate a sensor 

array (cf. Chapter 3) and several of them in parallel have been used in some system 
prototypes  that emphasize acquisition and display in real-time rather than image quality 

[38, 39]. 

b) Cylindrically focused transducers 

As a first approximation, this sensor shape (Fig. 9d) enhances the amplitude of 

signals measured within a plane perpendicular to the focusing direction (Fig. 9e and 9f). 

However, diffraction effects result in a focal plane whose thickness is given by Eq. (2.15). In 
the axial direction, the length of the focal zone is also dependent on the frequency of the 
acoustic wave, in a manner similar to that of a spherically focused transducer (as shown in 

Fig. 8). 

The contour of the sensor surface can be a flat stripe or a round surface. Focusing 

can then be achieved by two different methods. Bending the detection surface, as shown by 

the PVDF sensor in Fig. 9d (golden), is possible only with polymer and piezo-composite 

sensors, as ceramics are usually too brittle to allow reshape after fabrication. Alternatively 
an acoustic lens can be used, as shown by the PZT sensor in Fig. 9d (black surface). Acoustic 

lenses are made from a material with different acoustic properties than the propagating 

medium and the sensor surface. In practical terms, the materials for acoustic lenses are 

highly absorbing and provide an additional acoustic interface between medium and sensor, 

which in the case of polymer and piezo-composite surfaces is detrimental to the acoustic 

matching of the materials to water. For these reasons, pre-formed polymers and piezo-
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composite materials are preferred over PZT in second-generation optoacoustic systems that 
use cylindrically focused sensors or arrays thereof [11].  

c) Spherically focused transducers 

These sensors have a concave shape (Fig. 9g) that enhances sensitivity within a 

given region centered on the geometrical focal spot. As discussed in section 2.3.5 and shown 

in Fig. 8, the size of the focal zone is determined by diffraction laws, with the relevant 
parameters being the acoustic wavelength and the ratio of focal distance F to diameter D 

Figure 9: a) Two round, flat transducers: a Ø1mm PVDF hydrophone (right) and a Ø6mm PZT 
transducer (left). b) and c) sensitivity fields of a Ø13mm round flat transducer at the indicated frequencies. The 
vertical axis represents the lateral distance x normalized by the transducer radius a. The horizontal axis 
represents the axial distance to the transducer surface in terms of the near-field distance. The sensitivity field 
maximum finds itself thus at 2.8 mm for a 1 MHz frequency and at 28.3 mm for a 10 MHz frequency. d) Two 
cylindrically focused transducers: a Ø13mm, F = 25.4 mm round PZT transducer (right) and a PVDF sensor 
shaped as a bent stripe (left) with dimensions 1 mm x 13 mm, F = 40 mm. e) Side view of the sensitivity field of a 
round, cylindrically focused transducer (Ø13mm, F = 25.4 mm) at 10 MHz. f) Top view of the former. In both field 
depictions, the horizontal axis is normalized to the focal distance F and the vertical axis is normalized to the 
transducer radius a. g) Two round, spherically focused transducers: a Ø12mm, F = 12 mm, piezo-composite 
sensor (right) and a Ø13mm, F = 25.4 mm, PZT transducer (left). h) Sensitivity field of a Ø13mm, F = 25.4 mm, 
round spherically focused transducer at 10 MHz. i) Sensitivity field of a Ø13mm, F = 13 mm, round spherically 
focused transducer at 10 MHz. In both field depictions, the horizontal axis is normalized to the focal distance F 
and the vertical axis is normalized to the transducer radius a. 
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(Eq. 2.15). The dependence of the focal zone characteristics as a function of the acoustic 

wavelength (or frequency) was illustrated in Fig. 8. Conversely, Figs. 9h and 9i show 

examples of the sensitivity fields for sensors of different F/D parameters (also called f-

number) at the same frequency. These simulations further illustrate the tradeoff between 

lateral resolution and axial depth-of-field inherent to spherically focused transducers. These 

sensors are typically used in raster-scanning setups, as they provide good lateral resolution 

with a limited depth-of-field. 

2.3.7 Review of optoacoustic imaging systems 

In this section, the state-of-the-art in optoacoustic imaging systems is provided, to 

give the reader an overview of the most common image acquisition paradigms and 

modalities. The review is by no means exhaustive and it is rather intended to illuminate the 

various parameters to be considered in the design an optoacoustic system, such as the 
sensors’ characteristics, their placement with respect to the sample (which we refer to as 

“measurement geometry”)	
   and	
   the	
   arrangement	
   of	
   the	
   illumination. A more detailed 

overview of the different modalities can be found in the literature [8, 9, 40]. 

A common criterion to classify the range of optoacoustic imaging systems is the scale 

at which they operate: from whole-body, macroscopic imagers of small animals [11] (with a 
resolution >150 µm) down to microscopy of, e.g., subcutaneous vasculature (resolution <50 

µm) [18]. An alternative classification can be done in terms of the measurement geometry: 

tomographic systems surround the sample with sensors, either by mechanically translating 

a sensor or by the use of transducer arrays, whereas scanned systems consist typically of a 

single, spherically focused sensor scanned in the two directions perpendicular to the sensor 

axis. On occasion, tomographic geometries are directly associated with macroscopic imaging 
modalities and scanned systems are considered as purely microscopic. However, there exist 

several examples in the literature where scanned systems have been operated at 
macroscopic scales [41, 42], and tomographic systems are under development for 

resolutions <100 µm, which rather qualifies as mesoscopic [43]. Therefore, the systems are 
described here in terms of the measurement geometries, as it represents a more general 

criterion than scale (or resolution). 

a) Two-dimensional tomography 

Early systems for two-dimensional optoacoustic tomography consisted of a single, 

cylindrically focused transducer which was rotated around the sample [13] (or viceversa 
[14]). The imaging plane is delimited by the focusing properties of the sensor. Translation 

along the axis perpendicular to the imaging plane is capable of producing a stack of images 
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that enable quasi three-dimensional visualization[44]. By the use of selective-plane 

illumination, whereby the laser beam is processed to a sheet of light coplanar with the focal 

plane of the transducer, sources can be considered to be generated within a limited region 

of the sample, which resulted in a more accurate delimitation of the imaging plane [22]. 

Second-generation systems have used an array of ultrasound sensors to avoid 
movement of either the sensor or the sample [11]. This in turn has accelerated the rate at 

which images can be acquired, opening the possibility of multispectral imaging within a 

reasonable timeframe [12] and the visualization of fast physiological processes [11]. Some 

systems	
  also	
  employ	
  a	
  “limited-view”,	
   i.e.	
   less	
  than	
  a	
   full	
  ring	
  of	
  sensors	
  (typically	
  180° or 

240°) to allow a faster placement of the sample [11]. 

Both first- and second-generation systems were mainly developed for pre-clinical 

applications, i.e. the imaging of small animals. In the lower spectrum of acoustic frequencies 

(1 to 7 MHz), two-dimensional tomographic systems have achieved resolutions in the order 

of 200 µm in-plane and 800 µm in the vertical direction, in samples such as adult mice [45]. 
Therein, the sensors are typically focused at a distance between 40 mm up to 50 mm, and 

the radius of curvature of the tomographic surface corresponds to the focal distance. In the 

higher end of the spectrum (7 to 20 MHz), there have been reports of systems with 

mesoscopic imaging capabilities, with in-plane resolutions of 40 µm and 150 µm vertical 

resolution, in samples such as zebrafish [14] and baby mice [44]. In these cases, the radius 
of curvature of the detection surface and the focal distance of the sensors are typically at 25 

mm or less. 

While these systems have offered an excellent performance in applications such as 

functional imaging of the mouse brain [13] and pharmacokinetics [10], their capability as 

truly three-dimensional imagers through image stacking is contested. This is because the 

actual thickness of the imaging plane is fundamentally undefined for objects highly 

scattering to light, owing to the diffractive properties of the acoustic focusing and the 

inherently wideband spectrum of the optoacoustic signals (cf. Eq. 2.15). For this reason, 

several three-dimensional imaging systems have been developed. 

b) Three-dimensional tomography 

These systems aim to surround the sample spatially with a high number of sensors 

(in the order of several thousands). However, parallel acquisition of more than 1024 sensors 

results in high hardware expenses, and these systems either use a relatively low number of 
sensors (<103) or make use of a sensor array that is scanned (rotated) around the sample to 
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effectively form an enclosing surface, serializing the acquisition at each scanning (rotation) 

step. 

In our group, a three-dimensional optoacoustic system with 256 sensors placed on 

the surface of an incomplete sphere has recently been reported to exhibit an isotropic 

resolution 800 µm at 4 MHz central frequency [46, 47]. In this case, the illumination is 
driven through the equator of the sphere (where no sensors are located) with the use of 

optical fibre-bundles. However, due to the relatively big size of the individual sensors 

(squares of 4 mm by 4 mm) and the relatively low curvature radius of the sphere (50 mm), 

diffraction effects limit the effective imaging volume to a cube of ~10 mm on the side. 

An alternative includes using a sensor array in the shape of a sphere sector placed 

vertically, which is subsequently rotated to generate a sphere open only at the caps [15, 48]. 

These systems have been demonstrated for angiographic mammography applications [49] 

and whole-body small-animal imaging [15], with excellent contrast and isotropic resolutions 

in the order of 150 µm. The sensors operate typically at 4 MHz and have a size of 2 mm by 2 
mm, and are placed at 50 mm of the center of rotation.  

c) Scanned systems 

In these systems, the sensors are raster-scanned in a plane outside the sample and 

do not offer a tomographic view, but rather a depth-resolved on-face view of the sample. 
There exist two major measurement paradigms in such systems: purely optical detection 

through interferometry and scanning of a piezoelectric, spherically focused sensor.  

The purely optical systems consist of an interferometer, which is made of parallel 

transparent plates through which the illumination to generate the optoacoustic waves is 
passed onto the sample [50]. A second laser beam interrogates the optoacoustic field at the 

plates, one point at a time. By raster-scanning the interrogation beam, a virtual array of 
several thousand point-like (40 µm in diameter) sensors is generated over a surface ~1 cm 

on the side. The bandwidth of these sensors goes from several kHz up to tens of MHz. This 

system has been used for the imaging of angiogenesis in mouse models [51] and unborn 

mice embryos [52], with resolutions of 50 µm up to 5 mm deep in-tissue. The size of the 

interferometer plates defines the maximum scanning range and hence defines the angle 
subtended by the detection surface for a given depth (cf. Chapter 5), which results in a 

depth-dependent lateral resolution [50]. 

The piezoelectric systems typically make use of spherically focused sensors to define 

the lateral resolution via acoustic diffraction. Large area scans of internal organs have been 
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made at frequencies as low as 5 MHz for depths of up to 5 mm (up to 3 cm in 

phantoms)[42]. At high-frequencies (typically 50 MHz), dark-field-like illumination has 

made it possible to achieve resolutions in the order of 10 µm, at the expense of a very 

limited penetration depth, typically sufficient to image subcutaneous vasculature [18]. In 

Chapter 4, reconstruction methods that aim to expand the imaging depth of this imaging 

modalities are discussed. 

2.4 Reconstruction algorithms in optoacoustic imaging 
The aim of optoacoustic image reconstruction is to provide a visualization of the 

absorber distribution within the tissue. In practical terms, as was discussed in sections 2.1.1 
and 2.1.2, optoacoustic sources generate signals proportional to the product of their 

absorption with the local optical fluence, which in turn determine the initial pressure 

amplitude as per 𝑝଴(𝑟′) = 𝛤𝜇௔(𝑟′)Φ(𝑟′). Therefore, the different image reconstruction 

algorithms used in optoacoustic imaging are developed to provide a solution to the 
following problem: given a set of optoacoustic signals 𝑝(𝑟௜, 𝑡) measured at sensor positions 

𝑟௜, what was the initial pressure distribution 𝑝଴(𝑟′) in the object? 

There exist two main categories of image reconstruction methods in optoacoustic 

imaging: analytical and algebraic algorithms, which are discussed in detail in sections 2.4.1 

and 2.4.2 respectively. A brief overview of the two is given here as an introduction. 

Briefly, analytical algorithms express the solution to the optoacoustic inverse 

problem as approximate formulas related to the spherical Radon transform. These 

algorithms can be either applied in the time or the frequency domain. Throughout this work, 

from all of the analytical methods in the literature, only the Back-projection method in the 

time-domain was considered [20], as it provides a first approximation to image formation 
without being computationally demanding. In Chapter 4 it will be shown that delay-and-sum 

algorithms, which are commonplace in conventional ultrasound [31], are closely related to 
the back-projection method, and they are therefore only briefly discussed within the context 

of their application. 

On the other hand, algebraic algorithms express the forward problem as a linear 

operator acting on the sources within the image, which generates the optoacoustic signals. 

By providing the measured signals, the inverse problem is expressed as a linear system of 

equations with the initial pressure values as the unknowns. The system can be then solved 

with direct or iterative methods. In the present work, the Interpolated Model-Matrix 
Inversion (IMMI) in 2D and 3D were considered [21, 53], as they can be modified to include 
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the effect of the sensor response to achieve superior imaging performance over analytical 

methods. 

It has to be noted that, since actual optoacoustic imaging takes place in real three-

dimensional	
   space,	
   herein	
   the	
   expression	
   “2D”	
   is	
   used	
   in	
   a	
   loose	
   sense.	
  Whenever	
   a	
   “2D	
  

detection	
  geometry”	
   is	
  discussed,	
   the	
   two-dimensionality implies that the sensors and the 
sources can be assumed to lie in the same plane, whereas the propagation of the wave takes 

always place in 3D. It is important to make such a distinction, because the solutions for the 

N-dimensional wave equation are in general functions with very different properties, 

depending N. As such, both the Back-projection and the IMMI methods discussed herein are 

based	
  on	
  a	
  wave	
  propagation	
  described	
  by	
   the	
  3D	
  Green’s	
   functions	
  presented in section 

2.1.3,	
  even	
  when	
  dealing	
  with	
  “2D	
  geometries”. 

2.4.1 Back-projection 

The Back-projection method proposes an analytical solution of the optoacoustic 

inverse problem by back-propagating the measured signals to the imaging region of interest 

(ROI), which can be a plane or a volume [9]. The derivation of the solution assumes a ROI 

perfectly enclosed by the detection surface  𝑆, which is typically assumed to be a sphere, an 

infinite cylinder or an infinite plane for simplicity, but can have in general an arbitrary 
shape. The final form of the method can be expressed as: 

 𝑝଴(𝑟′) = න   
ஊ

ቈ2𝑝(𝑟௜, 𝑡̅) − 2𝑡̅
𝜕𝑝(𝑟௜, 𝑡̅)

𝜕𝑡̅ ቉ቤ
௧̅ୀ|௥⃗ᇱି௥⃗೔|

𝑑Σ௜
Σ௜

. (2.16) 

 where  𝑑Σ௜ Σ௜⁄  represents an effective angle weighting: 

 
𝑑Σ௜
Σ௜

=
𝑑S௜

|𝑟′ − 𝑟௜|ଶ
𝑛ො௜௦ ∙ (𝑟′ − 𝑟௜)
|𝑟′ − 𝑟௜|

. (2.17) 

 Algorithmically, Eq. (2.16) can be understood with the aid of Fig. 10a. For each 

sensor position 𝑟௜ an individual sub-image (or sub-volume) is generated. Pixels (voxels) that 

are located at a distance |𝑟′ − 𝑟௜| of the sensor are assigned a value that is equal to the signal 

measured at 𝑡 = |𝑟′ − 𝑟௜|/𝑐 minus its derivative. The sub-image is then weighted by the 

factor   𝑑Σ௜ Σ௜⁄  which represents the solid angle subtended by the point 𝑟′at sensor position 

𝑟௜. The sub-images for every 𝑟௜ are then added to produce the final image. 

 The Back-projection method has been extensively used in optoacoustic imaging [13, 

14], and its performance has been assessed in a variety of geometries and against algebraic 
methods. Therefore, several interesting features and drawbacks are worth discussing.  
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First, it should be noted that in general 𝑝(𝑟௜, 𝑡̅) ≪ 𝑡̅ 𝜕𝑝(𝑟௜, 𝑡̅) 𝜕𝑡̅⁄ , and it is therefore a 

good approximation to reconstruct only with the time-derivative term. Since a derivative 

with respect to time implies a ramp filter in frequency-domain, Back-projection images 

typically show enhanced boundaries. As a consequence, low-frequency information in the 

signal, such as light diffusion, is not translated to the images. Additionally, image artifacts 

without physical meaning such as negative absorption values may appear, which limits the 

applicability of the method for quantitative imaging. 

Second, since the solution is provided in closed form, there is no direct way of 

modifying the existing formula to take into account effects such as the response of the 

transducer or differences in speed of sound propagation within the ROI. In particular, the 

assumption that each sensor is a point-like detector with an infinite bandwidth results in 

degraded image quality, as will be explored in the following chapters. 

2.4.2 Model-based 2D and 3D 

The Interpolated-Model Matrix Inversion (IMMI) method in 2D and 3D has been 

developed in our group in the recent years as an alternative to analytic methods, with the 

aim of providing images faithful to the actual distribution of light deposition in tissue. The 

complete derivation of the model can be found in the works by A. Dima [54] and A. 
Rosenthal [21] for the 2D case and X.-L Déan-Ben for the 3D case [46]. While the exact 

calculation of the models is different for the 2D and 3D cases, their general structure and 

meaning are similar. Therefore, the following description is applicable to both cases, and 

they	
  are	
  referred	
  to	
  as	
  “the	
  model”	
  in	
  this	
  section.	
  Computationally,	
  however,	
  the	
  hardware	
  

requirements are very different due to the size of the datasets involved, as is detailed in 

Chapters 4 and 5. 

The model expresses the optoacoustic signals detected at each sensor position as a 
linear combination of the elementary absorbers (defined by the voxels) within the ROI, as 

follows: 

 𝑝 = 𝑀𝑢  .   (2.18) 

p is a row-vector representing the elementary optoacoustic signals measured by 

point-like detectors located at different positions. The signals originate at the voxels within 

the ROI, whose absorption values are given as the column-vector u.  

The complete derivation of the model and its theoretical foundations can be found in 
the literature. However, in future chapters the IMMI algorithm will be modified and adapted 

to include the properties of the detector. Since that work is based on the properties and 
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symmetries of the model-matrix M, a more detailed overview of its structure is provided in 

the following.  

The model-matrix M depends on the relative position between the sensors and the 

voxels. As a result, it has N columns corresponding to the total number of voxels, which we 

define as n by n in-plane, (and by nz out-of-plane in the 3D case). The rows of the model-

matrix have a total of P · T entries, where P is the number of sensor positions and T the 

number of samples of each signal.  

Fig. 10b shows a top-view of the relative arrangement of the ROI and one sensor, to 

help describe the meaning of the matrix elements. The sensor i is located at 𝑟௜ with respect 
to the center of the ROI. The voxels k are located at 𝑟௞ and have an absorption value uk. With 

these definitions, 𝑀௟௞𝑢௞ is the optoacoustic amplitude generated by voxel k, detected at 
position 𝑟௜ at time j, where it holds that 𝑙 = 𝑗 + (𝑖 − 1) ∙ 𝑇 for 𝑗 ∈ [1, 𝑇]. 

A vector 𝑀௟௞𝑢௞ can be generated with the amplitudes at different times j for one 
sensor position i. Such a vector can be understood as a time-dependent signal 𝑝௜௞(𝑡) and can 

be expressed as [21]:  

 𝑝௜௞(𝑡) = 𝑀௟௞𝑢௞ ≈ 𝑢௞ ቈ𝑚௟௞
𝛿(𝑐𝑡 − |𝑟௜ − 𝑟௞|)

|𝑟௜ − 𝑟௞|
቉  . (2.19) 

Figure 10: a) Geometry for the Back-projection method. b) Geometry for model-based methods. 
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Thus, the matrix elements  𝑀௟௞,	
  shown	
  in	
  brackets,	
  are	
  equal	
  to	
  the	
  Green’s	
  function	
  

𝐺(𝑟௞, 𝑟௜; 𝑡) between the sensor i and the source k, multiplied by a factor 𝑚௟௞ that depends on 

the underlying optoacoustic forward solution*. 

For a sensor i the amplitude of the elementary optoacoustic signal generated by the 
highlighted voxels in Fig. 10b and measured at a time  𝑡௝, can be expressed as: 

 𝑝௜൫𝑡௝൯ =෍𝑀௟௞
௞

𝑢௞  ,   (2.20) 

where the summation takes place over the voxels intersected by the isochrone  𝑡௝ and 

𝑙 = 𝑗 + (𝑖 − 1) ∙ 𝑇. It is clear from this definition that  𝑝௜൫𝑡௝൯ for all j between 1 and T is a 

vector representing the signal generated by all the voxels in the ROI, detected at sensor 

position 𝑟௜. Eq. (2.20) expressed for all sensor positions i and all times j results therefore in 

Eq. (2.18). 

Once the model-matrix has been computed, the image reconstruction is performed 

with a square error minimization such that: 

 u௦௢௟ = argmin
௨
‖𝑝 −𝑀𝑢‖ଶ. (2.21) 

where ‖∙‖ଶ represents the ℓ𝓁ଶ norm. The inversion can be performed with several 

methods such as the Moore-Penrose pseudo-inverse or the LSQR algorithm [21]. Herein, the 

LSQR algorithm was chosen, as it can be easily modified to include regularization 

procedures. The LSQR method is also less memory-intensive than other alternatives as the 

Singular Value Decomposition (SVD) or pseudo-inverse methods, since the most 

computationally demanding operation that it entails is a matrix-vector multiplication [55]. 

Model-based algorithms show superior performance over analytical techniques with 

respect to several measures. First, model-based methods do not enhance artificially high-

frequencies, as opposed to the Back-projection method, and therefore model-based images 

can represent accurately slow-varying phenomena such as light diffusion [28]. Second, 
under optimal measurement conditions, model-based methods provide images without 

nonphysical artifacts such as negative absorption values [44]. Third and foremost, the 

characteristics of ultrasound transducers, and other linear phenomena such as acoustic 
                                                             
* The elements of the matrix are actually elementary optoacoustic signals and therefore 

bipolar. This fact was omitted for simplicity, but can be assumed to be included in the factor 
𝑚௟௞without loss of generality. This representation was chosen to better illustrate the combination of 
the	
  model	
  with	
  the	
  sensors’	
  SIR	
  in	
  Chapters	
  4	
  and	
  5. The functional form of the matrix elements can 
be found in the cited literature. 
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mismatch [53], can be seamlessly implemented in the model, paving the way towards 

quantification. 

Previously however, the characteristics of ultrasound transducers and their 

response to optoacoustic signals have to be assessed. This will enable us to provide an 

accurate description of the optoacoustic detection process that can be accounted for during 
image formation. The characterization and modeling of ultrasound sensors with 

optoacoustic methods is presented in the next chapter. 
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3. CHARACTERIZATION	
  OF	
  TRANSDUCERS 
3.1 Motivation and objectives 

It was discussed in the Introduction that, as a first approximation, most image 

reconstruction algorithms assume point detectors with infinite bandwidth, which may 

result in image artifacts and degraded reconstruction accuracy. In order to formulate more 

realistic reconstruction algorithms, the properties of ultrasound transducers need first to be 

studied and characterized in terms of their effect on optoacoustic signals. However, the 

existing calibration and characterization methods for ultrasound transducers are for the 

most part based on techniques used in conventional ultrasound, which may not be directly 

applicable to a sensor when used in optoacoustic imaging. 

In ultrasound imaging and nondestructive testing, transducer properties are 

typically characterized with a pulse-echo technique, whereby the same sensor is used for 
both emission and reception of the acoustic field [27, 31]. Such a methodology is perfectly 

compatible with actual applications, which are for the most part based on the measurement 

of acoustic reflections. The pulse-echo technique results in signal amplitudes that are 
negligible outside the high sensitivity regions of the transducer field-of-view, as well as 

outside the detector bandwidth. In optoacoustic imaging, however, ultrasound sensors are 

used as passive detectors and the intrinsic amplitude of optoacoustic signals is determined 

by the illumination and the object properties. As a result, signals generated in the low 

sensitivity regions of the sensor field-of-view are typically strong enough to be measured 

and affect image formation. Furthermore, as discussed in the previous chapter, the 
amplitude and peak frequency of optoacoustic signals are inversely proportional to the 

source size. Therefore, signals with lower frequencies than the central frequency may also 

be detected. 

The aim of this chapter is thus to provide an optoacoustic methodology for the 

characterization of ultrasound transducers. However, the methods proposed herein shall 
result in descriptions of the sensor properties that can be applied to image reconstruction 

for enhanced imaging performance. The purpose of the characterization methods is 

therefore different whether the electrical impulse response (EIR) or the spatial impulse 

response (SIR) are concerned. For one part, it will be shown that the EIR of the transducer 

can be measured accurately and with good signal-to-noise ratio (SNR) in most situations. As 
a result, the measured responses can be readily applied to image reconstruction without 

degrading the imaging performance. On the other part, an experimental determination of 
the spatial properties of the sensor with optimal SNR is difficult to achieve, for reasons that 
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are explored in the following sections. Therefore, in the context of the spatial response the 

goal is to provide experimentally validated numerical models of the sensor properties.  

This chapter is structured in three self-contained parts. First, the measurement of 

the EIR with optoacoustic methods is discussed, building upon the work by A. Rosenthal et 

al. [36]. Afterwards, the modeling of the sensitivity fields at single frequencies is presented. 
Finally, the total impulse response of the transducer, which combines the EIR and SIR for all 

frequencies, is introduced and its capability to describe de optoacoustic detection process is 

assessed. 

3.2 Characterization of the Electrical Impulse Response 
The EIR of a transducer arises from the properties of the piezoelectric, the passive 

acoustic components (i.e., the matching layers and the backing), the tuning circuits and the 
electric transmission channel up to and including the acquisition system [27]. Thus, as a 

linear system, the EIR of the sensor can be obtained as the response to a wideband source, 

ideally a Dirac-delta in the time domain. One possible method for the EIR characterization is 

the generation of a short monopolar optoacoustic	
  source,	
  which	
  is	
  referred	
  herein	
  as	
  “direct	
  

method”, as it yields the EIR directly. An alternative is to excite the transducer with a signal 

of known frequency spectrum, which is then corrected for. This method is referred to as 

“indirect”.	
  Both	
  methods were cross-validated in [36], yielding equivalent and reproducible 

results. However, the methods make use of optoacoustic sources generated in agar-ink 

phantoms, which are fragile and whose optical properties typically degrade after a few days. 
As a result, every time a transducer is to be characterized, a new set of phantoms has to be 

built, which is unpractical.  

The objectives of this section are: first, to provide and characterize robust sources 
for the reproducible calibration of ultrasound sensors. Second, to assess the performance 

and limitations of the indirect method with the source selected. Finally, to present a solution 
for said limitations and discuss the applicability of the method for the calibration of 

arbitrary sensors. 

3.2.1 The indirect method 

The complete derivation of the indirect method can be found in the cited literature 

[36], but a short overview of the basic principle is provided herein. 

The indirect method uses the signal of a point-like absorber as a reference. By 
substituting 𝐻௥(𝑟′) =   𝛿(𝑟′) in the optoacoustic forward solution (Eq. (2.4)), it follows that 

the signal of a point-like absorber is equivalent to the derivative of a Dirac-delta in the time 
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domain. If the acoustic wave excites the surface of the sensor simultaneously, the measured 

signal  𝑠(𝑡) can be expressed as: 

 𝑠(𝑡) ≈
𝜕𝑖௥(𝑡)
𝜕𝑡   , (3.1) 

where 𝑖௥(𝑡) represents the EIR of the sensor. Thus, in order to correct for the 

spectrum of the source, the measured signal is numerically integrated over time: 

 𝑖௥(𝑡) =   න 𝑠(𝑡′)𝑑𝑡′
௧

଴
  . (3.2) 

The principle is illustrated in Fig. 11. The signal from a small optoacoustic source of 

10 µm in diameter is shown in Fig. 11a, after Eq. (2.9). Fig. 11b shows the corresponding 

frequency spectrum, which can be approximately considered as a straight line for 

frequencies lower than the peak emission frequency of the source (100 MHz in this case). 

Fig. 11c shows the resulting signal after integration, which is monopolar. Fig. 11d shows the 

corresponding frequency spectrum, which is effectively flat within the frequency band 

shown. From this description it follows that any source whose spectrum can be considered 

linear up to a given frequency can be used for EIR determination. 

The question is therefore how to generate such an optoacoustic source. 

Figure 11: The indirect method for the EIR determination. a) Signal of a sphere 10 µm in diameter. b) 
Corresponding frequency spectrum 0 and 20 MHz, normalized to the amplitude at the peak emission frequency 
(100 MHz). c) Integrated signal as per Eq. (3.2). d) Corresponding frequency spectrum. See text for details. 
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3.2.2 Source generation 
It was shown in [3] that absorbing microspheres emit with a frequency spectrum 

that is in principle linear up to relatively high frequencies. However, due to difficulties in 

achieving completely uniform illumination and to their intrinsically weak signals, it was 

demonstrated that microspheres do not provide repeatable sources for EIR calibration.  

In [3], the source for the indirect method was generated by illuminating the surface 

of an absorbing agar block,	
  which	
  we	
  refer	
  to	
  as	
  “the	
  target”.	
  Fig. 12a shows a sketch of the 

relative arrangement between target, illumination and detector. For focused transducers, 

the source was placed at the focal point in order to achieve uniform acoustic excitation on 

the transducer surface. Laterally, a small source was achieved by limiting the laser beam to a 
size smaller than the focal width of the transducer. In the direction normal to the target, the 

high optical absorption of the phantom ensures a very localized absorption, and thus a 

point-like source.  

Herein it is proposed that point-like optoacoustic sources can be generated with 

targets other than an agar block, by slightly modifying the illumination setup, as shown in 
Fig. 12b. Specifically, it is proposed that with alternative targets and illumination, sources 

with small lateral sizes and a broad frequency spectrum can be generated.  

A substitute for the agar phantoms must fulfill several criteria. First, it should be as 

acoustically matched to water as possible, in order to avoid strong reflections at the 

object/water boundary where the signal is generated. Second, it should be stable enough so 

that its properties, optical or otherwise, do not change when submersed in water or 

illuminated with a strong laser beam, and can be therefore reused in several measurement 

sessions. Third, it should be highly absorbing –black to all effects, in order to provide strong 

acoustic signals even at low frequencies. 

Herein, three candidates where considered: neutral density filters, black plastic foil 

and a spray-painted PMMA plate. They are discussed in the following section. 

Figure 12: a) Generation of point-like sources for EIR measurement with thick, highly absorbing 
targets. b) Alternative setup with thin absorbing targets. 
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3.2.3 Experimental techniques 

The three candidates and the agar block were used as targets for signal generation 
and compared to one another. Herein, a description of the targets, the measurement setup 

and the sensors used for characterization is provided.  

A sketch and a picture of the experimental setup can be seen in Fig. 13. The setup 
consisted on three main parts: the optical bench, the target for signal generation and the 

detector plus acquisition system. The measurements were taken inside a tank filled with 

deionized water. 

 Illumination a)

The excitation was provided by a tunable optical parametric oscillator laser (Opotek 

Inc., Carlsbad, California), with a pulse width of 6 ns and a repetition rate of 10 Hz. The 

illumination was coupled through a fiber bundle (CeramOptec GmbH, Bonn, Germany) at a 

wavelength of 700 nm. Only one of the four bundle arms was used. 

A sketch and picture of the underwater optical bench can be seen in Fig. 13. The 

output of the fiber was coupled to a custom-made semi-convex lens to produce an beam 

slightly less divergent than at the fiber output. The beam width was limited by an iris 

aperture and subsequently coupled to a second lens with the same characteristics of the 

first one, which then focused the light to the target. 

Figure 13: Setup for the characterization of the target candidates for EIR 
measurements. See text for details. 
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 Targets for signal generation b)

The neutral density filters (custom cut, NG-9 glass type, Schott AG, Mainz, Germany) 

were chosen for their low optical transmission coefficient 𝜏 = 2.5% and acoustical 

properties close to water (when compared to similar filters): 𝜌 = 2.45 Kg/m3 and 𝑐 = 3900 

m/s. They are mechanically resistant and specifically designed to withstand illumination 
with laser beams. 

The black plastic foil (from a garbage bag, Swirl, Melitta Haushaltsprodukte GmbH & 

Co. KG, Minden, Germany) was chosen for its opacity. Additionally, such foils are 

manufactured with controlled thickness on the tenths of micrometers, which avoids internal 

reflections that could corrupt the signal of interest. Their acoustical properties are thus not 

relevant. The foils resisted the illumination with the laser used in experiments. 

The spray-painted PMMA plate (in stock at our institute) was used for the 
generation of reference acoustic signals in [7]. The signals thus generated were of high 

amplitude and wideband, but it remained to be tested if they are usable for EIR 

determination. PMMA has acoustical properties close to water: 𝜌 = 1.17 Kg/m3 and 

𝑐 = 2800 m/s, and is a durable material. The paint film was however very sensitive to the 
laser used for signal generation, being ablated even when the laser output was set to a 

fraction of its maximum power. To avoid ablation of the paint, a 6 OD neutral density filter 

was added to the optical bench, between the first lens and the iris. 

Finally, the black-agar phantom was fabricated by diluting 1 g of agar powder in 100 

mL of pure black India ink. The mixture was heated without letting it boil, poured in a 

phantom mold and left to harden. The resulting phantom was assumed to have acoustic 

properties close to those of water and an absorption coefficient of 100 mm-1. 

 Sensor and acquisition system c)

The sensor was a custom-made PVDF hydrophone, 1 mm in diameter and calibrated 

by the manufacturer from 1 to 20 MHz (Precision Acoustics, Dorset, United Kingdom). Its 

frequency response can be assumed flat to within 10% from 1 to 10 MHz. The sensor was 

mounted on a 3-axis translation system, to find the optimal measurement spot (Thorlabs 

GmbH, Karlsfeld, Germany). 

After all four candidates were tested in terms of their bandwidth, the lateral size and 

frequency content of the definitive source were measured by a high frequency transducer. 

The detector was a spherically focused transducer with F = 12 mm and D = 12 mm, specified 
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central frequency of 25 MHz and over 100% pulse-echo -6dB bandwidth (InSensor®, 

Kvistgaard, Denmark).  

The signals were acquired by a 14-bit, 250 MS/s data-acquisition board (Spectrum 

GmbH, Grosshansdorf, Germany) and high-pass filtered at 50 kHz for low-frequency noise 

removal. Electronic noise was minimized by averaging the signals for typically 2000 shots. 

3.2.4 Results 1: comparison of different sources 

The sources generated at the four different targets were measured and the resulting 

signals and spectra are shown in Fig 14. The results show that all sources emitted a 

broadband signal with a peak frequency at 10 MHz. Furthermore, the plate source emitted 

at higher frequencies than 20 MHz. However, due to the limited bandwidth of the detector, it 

Figure 14: Comparison of the signal (left column) and spectra (middle column) of the sources generated 
at the different target candidates. The right column shows the spectra between 0 and 10 MHz (blue) with the 
results to a linear fit (red) and the goodness-of-fit R2. The spectrum of an ideal point source (black dashed) is 
shown for reference. See text for details. 
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could not be determined whether the relatively low amplitude at high frequencies was due 
to the sensor response or to a property of the signals. 

For the determination of the EIR it is necessary that the source spectrum vanishes at 
0 MHz and that it is linear up to the peak emission frequency. In order to assess which 

source fulfilled such conditions, all spectra were fitted to a straight line of the form 
𝐴 = 𝑎𝑓 + 𝑏 from 0 to 10 MHz. The results are shown in the rightmost column of Fig. 14. The 

source on the spray-painted PMMA plate (first row) provided the best fit as well as the 

smallest DC component b, thus approximating a point source optimally. 

The source created on the spray-painted PMMA plate was therefore chosen as the 
source for EIR characterization up to frequencies of 10 MHz.  

3.2.5 Results 2: properties of the spray-painted PMMA source* 

The source was characterized with respect to three measures. First, it was assessed 

if the acoustic mismatch between PMMA and water may affect the measured signals. Second, 

the frequency spectrum of the source was analyzed for frequencies higher than 10 MHz with 

a different sensor. Finally, the lateral size of the source was determined with optoacoustic 

methods. 

                                                             
* The results in this section were obtained in cooperation with J. Gâteau. 

Figure 15: a) Raw signal from the source on the PMMA plate as measured with the hydrophone. The 
high amplitude signal, shown in b), is generated by the source and the weaker signal, detailed in c), corresponds 
to the reflection at the PMMA/water boundary. Note the inverted polarity of c) with respect to b). 
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Due to the acoustic mismatch between PMMA and water, the signal originated at the 

plate may be reflected inside the plate and measured by the sensor. This may pose a 
problem if the plate thickness is small compared with the axial resolution of the sensor. 

However, based on the dimensions of the plate (1.98 mm thick) and the speed of sound in 

PMMA (2800 m/s), the separation between signal and reflection corresponds to a frequency 

of 70 kHz. Therefore, the possibility the signal of interest being corrupted by the reflection is 

ruled out for the majority of the transducers used in optoacustics. An experimental 

confirmation of this hypothesis is shown in Fig. 15, which depicts the raw signal measured 

by the hydrophone, showing a clear separation between the signal and the reflection. 

In order to characterize the frequency content of the signal above 10 MHz, where the 
hydrophone response degrades, the plate signal was measured with the 25 MHz transducer. 

It has to be noted that, since a calibration of the 25 MHz transducer is not available, such a 

comparison is only meant to provide a qualitative description of the source spectrum. Fig. 

16a shows the signal measured by the transducer and the hydrophone and Fig. 16b shows 

the corresponding frequency spectra. The spectrum measured with the hydrophone had a 

peak response at 10 MHz, with a -6 dB bandwidth of 10 MHz. The spectrum measured by the 

transducer had a peak at 20 MHz and a -6 dB bandwidth of 30 MHz. The results demonstrate 

that the source has a broad frequency spectrum which is distorted by the hydrophone 

response at high frequencies. However, due to the lack of calibrated reference hydrophones 

Figure 16: a) Signal of the source created at the PMMA plate as measured by the hydrophone (blue) 
and the 25 MHz transducer (red) normalized to their respective maxima. b) Spectra of the measured signals. The 
hydrophone spectrum peaks at 10 MHz with a 10 MHz bandwidth, whereas the 25 MHz transducer signal peaks 
at 20 MHz with approximately 30 MHz bandwidth. See text for details. 
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above 20 MHz, it could not be decided whether the source is suited for the EIR 

characterization of transducers with center frequencies above 15 MHz. 

Finally, the lateral dimensions of the source were assessed by laterally scanning the 
25 MHz transducer as shown in Fig. 17a. The sensor was scanned in a grid of 200 µm by 200 

µm centered on the source, with a step size of 10 µm. By representing a maximum amplitude 

projection (MAP) of the scan from 5 to 45 MHz (Fig. 17b), an image of the source can be 

obtained. The size of the source can be estimated as the full-width at half-maximum of the 

MAP.   

However, since the transducer has a frequency-dependent lateral resolution 𝛿, given 

by Eq. (2.15), the actual source diameter 𝑎 may be overestimated. In order to assess the size 

of the source independently from the transducer resolution, it was assumed that the 

measured source size  𝑏 can be expressed as:  

 𝑏(𝑓) ≈ 𝛿(𝑓) + 𝑎 =
𝐹𝑐
𝐷𝑓 + 𝑎. (3.3) 

Therefore, by computing b for MAPs at different frequencies, a can be found as 
𝑎 = lim௙→ஶ 𝑏. In practical terms, however, the frequency responses of the transducer and 

the source are finite. As a result, in the limit of very high frequencies no shape can be 

recognized in the MAP due to noise. For this reason, the MAPs were calculated for 
frequencies up to 48 MHz.  

Fig. 18 shows four examples of the MAPs at different frequencies. While the change 
of the spot size from 15 to 25 MHz (Figs. 18a to 18b) is obvious, the images at 35 and 45 

Figure 17: a) Sketch of the scanning geometry for the characterization of the source size. b) Maximum 
intensity projection of the resulting scan. The color bar represents a linear amplitude scale. See text for details 
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MHz (Figs. 18c to 18d) are almost identical. The rate of change in the MAP shape shows that 
𝑏(𝑓) indeed reaches an asymptote at high frequencies. 

In order to provide an upper limit for 𝑎, the FWHM of the spots where calculated for 
both axis, as shown in Fig. 18e. In Fig. 18f, 𝑏(𝑓) is plotted versus the frequency for the 

FWHMs along the x direction, the y direction and the average of the two. The average 

reaches a plateau at around 70 µm which, considering that 𝛿(48  MHz) ≈ 31 µm results in a 

source size 𝑎 ≤ 40 µm. 

The source on the spray-painted PMMA plate was therefore assumed a point source 

for frequencies up to 15 MHz and for focused transducers with a beam width 𝛿 ≥ 2𝑎. The 

source was subsequently used for the EIR calibration of different transducers. 

Figure 18: a) –d) MAPs of the scanned plate source for the frequencies indicated. Each 
image its normalized to its maximum. e) Contours of the MAP at 35 MHz. The blue and red arrows 
indicate where the FWHMs are measured at each frequency. f) FWHM as a function of the 
frequency. See text for details. 
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3.2.6 Results 3: responses of ultrasound transducers* 

Several transducers were characterized for different purposes and setups at our 

institute. Herein, only three relevant examples are provided. 

First, the calibration of the 64-element transducer array used in [11, 12] is 

presented; a more thorough calibration is presented in Section 3.4. The transducer had a 

specified center frequency of 5 MHz and a pulse-echo bandwidth of 55 %. The signal 

generated at the PMMA plate as measured by this transducer is shown in Fig. 19a and the 

corresponding frequency spectrum in Fig. 19b. The results show that, even though the 

intrinsic source spectrum peaks at 10 MHz, the central frequency of the sensor is still the 
frequency with the highest amplitude. Fig. 19c shows the EIR of the sensor after the 

spectrum source has been corrected through integration. Fig. 19d shows the frequency 

response of the sensor, which has a peak at 4.7 MHz and a -6 dB bandwidth of 93 %.  

The values are comparable with the specifications given by the manufacturer. It has 

to be pointed out that the pulse-echo response provided by the manufacturer is the 

convolution of the send and receive spectra, which are approximately equal, i.e. 

𝑖௣ି௘ = 𝑖௦ ∗ 𝑖௥. The convolution of the impulse response with itself effectively squares the 

                                                             
* The measurements herein were performed in collaboration with S. Kellnberger and M. 

Omar for the characterization of their measurement setups. 

Figure 19: The indirect method for the determination of the EIR applied to a 5 MHz sensor. a) Signal 
from the spray painted plate. b) Frequency spectrum of the measured signal. c) EIR of the sensor obtained after 
applying Eq. (3.2) to the measured signal. d) Frequency response of the transducer. See text for details. 
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frequency response of the transducer. On the other hand, with our technique only the 

receive spectrum of the sensor is measured, which explains the ∼2 factor in the measured 

optoacoustic bandwidth with respect to the specified by the manufacturer. 

The second and third sensors that were characterized have been used previously in 

optoacoustic measurements at the mesoscopic scale [32, 44]. Both are cylindrically focused 

transducers. One has a central frequency of 7.5 MHz, with F = 25.4 mm and D = 13 mm 

(model V320, Panametrics-NDT, Waltam, MA). The other one (model V319, same 

manufacturer), has a center frequency of 15 MHz, with F = 19 mm and D = 13 mm. The 
definitive impulse and frequency responses, after the indirect method has been applied, can 

be seen in Fig. 20. In both cases, there is a clear bias towards lower frequencies, with the 
supposedly 7.5 and 15 MHz transducers showing 4.5 and 9.2 MHz peak frequencies 

respectively.  

The reason behind this bias can be understood with the help of Fig. 21a, which 

shows the same configuration as Fig. 12 but seen from the top of the sensor instead of from 

the side. If the lateral size of a sensor is large enough, a signal originating at the focal point 

of the transducer needs a non-negligible amount of time to excite the surface of the 

transducer. For sensors with a relatively small lateral size, the wave can be assumed to 
excite the whole surface of the transducer simultaneously, as seen in Fig. 21b.  

Figure 20: EIRs of ultrasound transducers determined with the indirect method, distorted by 
geometrical spreading of the wave. a) EIR of a 7.5 MHz transducer and b) its frequency response. c) EIR of a 15 
MHz transducer and d) its frequency response. See text for details. 
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Rigorously, the time interval  Δ𝑡 = 𝑡ଶ − 𝑡ଵ can be expressed as Δ𝑡 = −𝐹 ቀ1 −

ඥ1 + 𝐷 2𝐹⁄ ቁ. Therefore, the distortion of the measured signal due to the surface of the 

detector is only negligible when 𝑓 ≪ 1/Δ𝑡 or 𝐹 ≫ 𝐷, i.e., if the source is generated in the far 

field. Such distortion is in fact the definition of the SIR of the transducer, and can be 

calculated from Eq. (2.13) numerically [26]. For simplicity, we refer to this distortion of a 
Delta-like pulse due to the surface of the sensor as 𝑔ி(𝑡). 

Fig. 21c shows 𝑔ி(𝑡)  for two sensors. Both are cylindrically focused at a distance F = 

25.4 mm. One of them has a lateral size of D = 13 mm, while for the other one has D = 1.88 
mm. The interval Δ𝑡 is almost negligible for the smaller sensor, whereas for the larger 

sensor it has a duration similar to the EIR of the transducers corresponding to Fig. 20.  

The spectra corresponding to 𝑔ி(𝑡)  for both sensor geometries are shown in Fig. 

21d. The calculations show that the geometrical distortion of the measured signals 

significantly degrades the frequency bandwidth that effectively excites the transducer. 

While a similar analysis was done in the context of Ref. [36], the relatively low frequency of 

the transducer characterized therein justified the approximation of Δ𝑡~0. For the EIR 
measurement of arbitrary detectors, however the distortion 𝑔ி(𝑡) limits severely the 

applicability of the indirect method and has to be corrected for. 

Figure 21: Origin of the measured distortion in the EIR determination. a) Acoustic spherical wave 
measured by a transducer of length D = 13 mm. b) Acoustic spherical wave measured by a transducer of length D 
= 1.88 mm. The sketches show a top view of the geometry presented in Fig. 12. c) Geometrical spreading 𝒈𝑭(𝒕)  
and d) corresponding frequency spectra for the 13 mm sensor (blue) and the 1.88 mm sensor (black).  
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Herein it is proposed that the measured signal 𝑠(𝑡) be corrected with 𝑔ி(𝑡) through 

deconvolution before the integration over time (Eq. 3.3) is applied 

 𝑠̂௖௢௥௥(𝑓) =   
𝑠̂(𝑓)
𝑔ොி(𝑓)

  , (3.4) 

where ∙̂ (𝑓) denotes the frequency dependent Fourier-transform of the quantity in 

question. The corrected signals are then obtained as the inverse Fourier-transform of 
𝑠̂௖௢௥௥(𝑓), and the EIR through integration of the signals as per Eq. (3.2).  

Fig. 22 shows the result of applying Eq. (3.4) to the 7.5 MHz transducer. After 

applying the correction for the geometrical spreading, the measured peak frequency is 7 

MHz and the -6 dB bandwidth is 100%, which is in better agreement with the expected 

sensor response than before applying the correction. 

Fig. 23 shows the result of applying Eq. (3.4) to the 15 MHz transducer, which yields 

in a center frequency of 15.1 MHz and a -6 dB bandwidth of 96%, also corresponding to the 

expected values. 

The results show that the correction for the geometrical spreading in combination 

with the sources created on the spray-painted PMMA plate can be used to accurately 
determine the EIR of sensors of arbitrary geometry. 

Figure 22: EIR of a 7.5 MHz transducer corrected for geometrical spreading as per Eq. (3.4). a) EIR 
before correction. b) Frequency response before correction. c) EIR after correction. d) Frequency response after 
correction. See text for details. 
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3.2.7 Conclusion 

An existing method for the determination of EIRs of arbitrary transducer was 

optimized and extended to higher frequencies. The method consists in the generation of 

point-like sources in the surface of an absorbing object. The spectrum of the source is 

corrected by numerical integration of the measured signal. It was shown that a spray-

painted PMMA plate provides a reliable and repeatable target for signal generation. The 
performance of the method was assessed by measuring the responses of several 

transducers and comparing them with the specifications of the manufacturer. It was found 

that the geometry of the detector may distort the measured response if the sensor size is 

comparable to its focal distance. The distortions were corrected by deconvolving the 

geometrical response at the measurement point from the measured signal. Overall, the 

optimized method showed a good performance in the determination of the EIRs of 
ultrasound transducers, as the measured characteristics were in accordance to the sensor 

specifications. 

The method has some limitations that could be improved in future work:  

Regarding the source generation, the illumination could be optimized. Since the 

output of the fiber bundle is not collimated, the spot size on the target that can be achieved 

with the present configuration is larger (tens of microns) than would be with microscopy-

Figure 23: EIR of a 15 MHz transducer corrected for geometrical spreading as per Eq. (3.4). a) EIR 
before correction. b) Frequency response before correction. c) EIR after correction. d) Frequency response after 
correction. See text for details. 
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grade optics (micron to sub-micron). This limits the performance of the method for 

spherically focused transducers at acoustic frequencies higher than 30 MHz, since at such 

frequencies the size of the source becomes comparable to the focal width of the sensor. One 

alternative would be to work with a free, collimated laser beam that is coupled to a 

microscope lens. Conversely, a fiber bundle with coupled optics may be designed with this 

application in mind, but a thorough analysis of the trade-off between the versatility of such 

an approach and the minimum spot size should be made. 

In terms of characterization, the lack of calibrated hydrophones for frequencies 

higher than 20 MHz limits severely the information that can be obtained about the intrinsic 

spectrum of very wideband sources. As a result, there is a degree of uncertainty in the exact 

value for the maximum frequency at which the method is applicable.  

The method herein presented may be further improved by the use of a more 

controlled and thinner paint layer in the manner of [56]. Such targets should result in 

sources of even higher frequencies and broader bandwidth. 

Finally, some interesting consequences for optoacoustic imaging can be extracted 

from the results presented herein. First, in an optoacoustic context the bandwidth of an 
ultrasound transducer can be considered to be approximately two-times wider than in 

ultrasound applications. Second, since the amplitude of an optoacoustic source is directly 

proportional to its size (cf. Chapter 2), whereas the frequency is inversely proportional to 

the source dimensions, the optoacoustic signals of large objects may be measured with high 

amplitude, even by transducers with a relatively high center frequency. 

3.3 Modeling of sensitivity fields 
Having characterized the electrical properties of the transducer, the next important 

step towards a full model of optoacoustic detection is to provide a description of the 

spatially dependent sensor properties. In this section, the spatial properties of the 

transducers are analyzed in terms of their effect on the amplitude of measured signals. 

In conventional ultrasound, transducers are used in pulse-echo mode. As discussed 

previously (3.2.6), this operation principle results in an effective frequency response that is 

relatively narrowband. For this reason, the spatial characteristics of ultrasound transducers 

are typically described in terms of the sensitivity field at the central frequency of the sensor. 

On the other hand, optoacoustics is inherently a broadband modality, owing to the intrinsic 
signal properties (see Chapter 2) and to the relatively broader frequency response of 
ultrasound transducers.  
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In this section, it is proposed that existing models for the description of single-

frequency sensitivity fields of ultrasound sensors may be optimized to take into account the 

transducer’s	
   broadband	
   frequency	
   response.	
   The	
   method	
   proposed	
   herein	
   is	
   based	
   in	
   a	
  

numerical approximation to the Rayleigh-Sommerfeld integral [27], known as the Multi-

Gaussian Beam method (MGB), which describes the sensitivity field of a sensor at a single 

frequency. The broadband field of the transducer is computed as a weighted sum of the 
fields at single frequencies, given in general by the sensor frequency response. The method 

is validated experimentally for a cylindrically focused transducer with known EIR. 

The section is organized as follows: in 3.3.1 the MGB method is briefly described. In 
3.3.2 the proposed extension of the MGB method is presented. In 3.3.3 the experimental 

techniques are described. In 3.3.4 the results of the proposed method and its experimental 

validation are presented and finally in 3.3.5 a discussion on the limitations of the proposed 

method is provided. 

3.3.1 The Multi-Gaussian beam method at single frequencies 

Due to the reciprocity theorem, the description of the acoustic radiation by an 

ultrasound sensor into a medium is equivalent to the description of the detection of waves 

originating inside the medium. Therefore, the MGB method is described in terms of acoustic 
emission. A complete derivation of the method can be found in [27]. 

Figure 24: a) Geometry for the description of the Multi-Gaussian Beam method. b) and c) sensitivity 
fields calculated as per Eq. (3.5) for a spherically focused transducer with F = 25.4 mm, D = 13 mm and central 
frequency 5 MHz. The fields were calculated at the focal distance (b) and along the transducer axis (c). See text 
for details. 
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Briefly, let us assume that a round ultrasound transducer of radius a is located at the 

origin and radiates waves into a medium of density 𝜌 and speed of sound 𝑐, as shown in Fig. 

24a. Under the piston approximation, the surface of the sensor is only displaced along the x 

direction,	
   defined	
   as	
   the	
   “transducer	
   axis”.	
   If	
   the	
   medium	
   is	
   a	
   fluid,	
   said	
   displacement	
  

originates waves that propagate mostly along the x direction, i.e. the propagation of the 

waves can be considered paraxial*. Under these assumptions, the radiated field at a single 

frequency can be described by a sum of complex Gaussian functions of the form [27] 

 𝑝ఠ(𝑥, 𝑦, 𝑧) =෍
𝐴௝𝑒௜௞௫

1 + 𝑖𝐵௝𝑥/𝑥௥

௡

௝

exp ቈ
𝑖𝑘𝐶௝
2

(𝑦ଶ + 𝑧ଶ)቉. (3.5) 

𝐴௝ and 𝐵௝ are some complex coefficients, 𝑥௥ = 𝑘𝑎ଶ/2 is called the Rayleigh distance 

and it holds that:  

 𝐶௝ =
𝑖𝐵௝

𝑥௥ + 𝑖𝐵௝𝑥
. (3.6) 

In general terms, 𝐴௝ and 𝐵௝ are constants determined through an optimization 

process, which minimizes the difference between the field described by Eq. (3.5) and the 
theoretical sensitivity field, which is described by the Rayleigh-Sommerfeld equation [27], 

Eq. (2.14).  

The optimum number of parameters 𝑛 is typically 10 for round transducers and 15 

for square surfaces. The MGB method is in fact very flexible, and focused transducers may 
be considered by substituting 𝐵௝ → 𝐵௝ + 𝑥௥/𝐹. Additionally, rectangular or elliptical 

transducers are described in terms of Rayleigh distances for y and z which are dependent on 

the sides or semi axes of the sensor respectively. Thus the exponential factor is redefined as 

𝐶௝(𝑦ଶ + 𝑧ଶ) → ቀ𝐶௝
௬𝑦ଶ + 𝐶௝௭𝑧ଶቁ. With such modifications, Eq. (3.5) describes the sensitivity 

fields of a wide variety of transducers accurately [27, 57] 

An example of the sensitivity fields calculated with the MGB method can be found in 

Figs. 24b and 24c. The sensitivity field for a round spherically focused transducer with F = 

25.4 mm and D = 13 mm was calculated at the focal spot (24b) and along its axis (24c) for a 

frequency of 5 MHz. The calculations were done in a 81x81 grid and took less than a second 

to perform for 𝑛 = 15 in an average desktop PC. 

                                                             
* The MGB method is valid for distances greater than one transducer radius for most relevant 

frequencies in optoacoustics. 
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The MGB method offers a fast alternative to the Rayleigh-Sommerfeld integral for 

the calculation of sensitivity fields of arbitrary shapes. The method is however limited to 

paraxial conditions, i.e., it is only valid for points located at |𝑟| > 𝑎 and focused transducers 

such that 𝐹/𝐷 ≥ 1 [27]. 

3.3.2 The broadband MGB method 

Herein it is proposed the sensitivity field of a broadband sensor can be computed 

from the fields at single frequencies provided that its frequency response 𝐹𝑅(𝜔) is known. 

The broadband field is calculated as a weighted sum: 

 𝑝(𝑥, 𝑦, 𝑧) = ෍ 𝐹𝑅(𝜔)  𝑝ఠ(𝑥, 𝑦, 𝑧)
ிோ(ఠ)ஹ଴

, (3.7) 

where the summation takes place over the response of the sensor*. 𝐹𝑅(𝜔)  is 

obtained as the amplitude of the Fourier-transform of the EIR, which can be determined 

with the method discussed in Section 3.2. Owing to the computational efficiency of the MGB 

method, the number of individual fields to be computed and summed can be determined by 

the frequency resolution of the EIR measurement. 
                                                             
* The method described by Eq. (3.7) was developed by the author. While searching for independent 

confirmation, the more general concept of the SIR was encountered. Thus, the characterization efforts where 
shifted towards implementing and validating a description of the transducer characteristics based on the SIR in 
combination with the EIR, which ultimately resulted in the work described in Section 3.4. 

Figure 25: Principle for the calculation of the sensitivity field of a broadband transducer from its 
frequency response. a) Frequency response of an arbitrary transducer. b) to d) Fields at several frequencies. The 
individual fields are weighted by the amplitude value of the FR at that frequency and added together. 
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The idea of the proposed method is illustrated in Fig. 25. The frequency response of 

a sensor is measured experimentally (25a). The sensitivity fields at single frequencies are 

calculated by Eq. (3.5) for several frequencies, of which some are shown (25b to 25d). The 

fields are weighted by 𝐹𝑅(𝜔) and summed up to yield a broadband field, as per Eq. (3.7). 

3.3.3 Experimental techniques 

In order to assess the validity of the proposed method, the sensitivity field of one 

element of a 64-channel transducer array was measured experimentally and compared with 
the field calculated with Eq. (3.7). 

 Experimental setup. a)

The experimental setup consisted of a 64-element ultrasound array, mounted on a 

three axis translation system for scanning. The sensor was submerged in deionized water, 

which provides a homogenous medium with tissue-like acoustic properties. The 

illumination was provided by a pulsed laser and the measured signals are digitized by an 
analog-to-digital data acquisition system. The scanning and data acquisition were controlled 

by a computer and synchronized by a trigger signal from the laser. The details of the setup 

components follow. 

The sensor was a custom-made ultrasound array (Imasonic SaS, Voray, France) used 

for video-rate multi-spectral optoacoustic tomography (MSOT) [11], shown in Fig. 26a. The 

sensor consists of 64 elements arranged in a semicircular geometry of 40 mm radius. The 

dimensions of each element are: D = 15 mm in elevation (out-of-plane) and l = 1.88 mm in 

the lateral direction (in-plane). Mechanical focusing at F = 40 mm results in F/D = 2.67, 
enough for the discrimination of out-of-plane signals without loss of radial sensitivity. The 

response of the central element was characterized by the method described in Section 3.2; a 

central frequency of 4.7 MHz and a –6 dB bandwidth of 96% were found. The frequency 

response of the sensor is shown in Fig. 26b*. 

The array as connected to 8 multichannel analog-to-digital acquisition boards 

(Model PXI5105, National Instruments, Austin, Texas). The signals were acquired at a rate of 
60 MS/s and digitally filtered from 50 kHz to 10 MHz. 

                                                             
* The EIR was measured as described in Section 3.2. However, the spray-painted plate had 

not been characterized at the time of the measurement and thus the black-agar phantom was used 
instead. For the frequency range of the transducer measured herein, however, calibrations performed 
with the plate or the black-agar phantom were found to be compatible. 
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The multi-axis positioning system consisted of three translation stages for 3D 

scanning and a rotation stage, for orientation in the horizontal plane (2xMTS50-Z8, NRT150 
and PRM1-MZ7, Thorlabs GmbH, Karlsfeld, Germany). 

The illumination for signal generation was provided by the 532 nm pump-beam of a 

tunable optical parametric oscillator laser (Vibrant, Opotek Inc., Carlsbad, California), at a 

repetition rate of 20 Hz and pulse duration of 8 ns. 

 Measurement of the sensitivity field b)

The experimental sensitivity field was determined by scanning a sub-resolution 

absorber in front of the transducer*. A black, 50 m in diameter polyethylene microsphere 

was used as the optoacoustic source (Cospheric LLC, Santa Barbara, California). In order to 

achieve uniform illumination, the microsphere was embedded in a light-scattering 

cylindrical agar phantom (reduced scattering coefficient 𝜇′௦ = 10  𝑐𝑚ିଵ), 5 mm in diameter. 

The phantom was illuminated with a laser beam of about 3 mm in diameter, and the source  

can be thus considered a point-like emitter of isotropic, broadband optoacoustic signals [5]. 

The transducer was scanned in the x-y axes (see Fig. 26a) within a region of 40 mm 

by 40 mm centered in its focal point. The step size was 800 m in both directions, resulting 

in a square grid of 51 pixels on each side. The microsphere and its illumination were left 

static and the signals at each position were averaged for 50 laser shots and stored for later 

analysis. The total scanning time was about two hours. 

                                                             
* The measurements here presented were obtained in collaboration with A. Bühler for the 

characterization of his sensor. 

Figure 26 a) Sketch of the measurement setup, seen from above the imaging plane XY. The transducer 
array and the dimensions of the region of interest (40 mm by 40 mm) are drawn to scale. b) Frequency response 
of the sensor used for the TIR determination. We observe a center frequency of 4.7 MHz and a receive-mode 
bandwidth of 96% at full-width half-maximum (FWHM). 
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The sensitivity field was computed by taking the maximum amplitude of the filtered 

signals at each scanning point (x, y).  

During the experiments, there were small drifts in the location of the agar phantom, 

which were caused by the transient water flow during the movement of the sensor from one 

measurement point to the next. The uniformity of the illumination was nevertheless 

ensured by the scattering agar phantom where the source was contained. However, these 

drifts resulted in variations in the amount of light absorbed by the source at each sensor 

position. As a consequence, for any two neighboring measurement points the changes in 

amplitude were much higher than expected. For this reason, the experimental amplitude 

map was spatially filtered with a 5x5 pixels median mask. 

Figure 27: Experimentally measured sensitivity fields at single frequencies with the field predicted by 
the MGB method. a) Experiment and b) simulation of the field at 5 MHz. The dotted lines indicate where the 
profiles along the x and y axis are taken. The profile along x is shown in e) (red: experiment, blue: simulation) the 
profila along the y axis is shown in g). The same description applies for the field measured and calculated at 8 
MHz, shown in c), d) respectively and the profiles, shown in f) and h). See text for details. 
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 Computation of the broadband sensitivity field c)

The number of fields to be calculated was determined by analyzing the frequency 

resolution df of the EIR measurement. The acquired signals were 3·103 samples long, with a 

sampling rate of 60 MS/s, thus df = 20 kHz. The fields where calculated for the frequency 

span between 50 kHz and 10 MHz. Therefore, ~500 distinct sensitivity fields were 
computed in a grid with the same characteristics than the measurement grid. The 

broadband field was computed as per Eq. (3.7). 

3.3.4 Results 

First, the performance of the MGB method was assessed by comparing the fields 

calculated at several frequencies with the experimentally measured ones. The experimental 

fields were obtained by filtering the signals with a 20 kHz bandpass filter around the 

frequency of interest. The results are depicted in Fig. 27 for fields at 5 MHz (Figs. 27a, b, e 

and g) and 8 MHz (Figs. 27c, d, f and h). The discrepancies between the MGB method and the 

experiment arise when the sensitivity of the sensor is low: either at 8 MHz or at distances 

away from the focus. Nevertheless the findings showcase the ability of the MGB method to 

accurately describe single frequency sensitivity fields. The MGB method reproduces the 

diffractive features of experimental fields such as sidelobes and a slight shift of the 
maximum sensitivity towards the transducer surface. 

The calculated and measured broadband fields are shown in Fig. 28. The 

experimentally measured field is shown in Fig. 28a and the field calculated with the 

broadband MGB method is shown in Fig. 28b. In both cases it can be seen that the presence 

of lower frequencies broadens the focal zone. It is interesting to note that, as several 
frequencies are combined, the sidelobes smooth out. Figs. 28c and 28d show the profiles of 

the broadband fields along the transducer axis and at the focus, which show a good match 
between the predictions of the method proposed herein and the experimental findings. 

3.3.5 Conclusion 

A method for the modeling of the sensitivity field of broadband ultrasound 

transducers has been shown. The method consists in computing a weighted average of 

different sensitivity fields at single frequencies to obtain a broadband field. The weighting 

factors are extracted from the experimentally measured frequency response of the sensor. 

The method was shown to accurately describe the experimentally determined sensitivity 

field of a broadband transducer. The proposed method can therefore provide a noiseless 
description of the sensitivity field of ultrasound sensors for image formation. 
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The proposed method exhibits however one major limitation with respect to its 

accurate description of optoacoustic detection. The sensitivity field is indeed a good 

representation	
   of	
   “where”	
   signals	
   are	
  mainly	
  measured	
   from,	
   and	
   therefore	
   offers	
   useful	
  

insights, e.g. when designing an experiment or a setup. However the field description of 

“how”	
   the	
  signals are measured is very incomplete. A sensitivity field is a measure of the 
spatial variation in measured signal amplitude, which completely ignores the signal phase 

and frequency content. 

In section 3.2.6 it was shown how the frequency content of a signal may be distorted 
by the SIR of the detector in absolute terms, i.e., not with respect to signals generated at 

neighboring points. Therefore an accurate description of the sensor spatial properties shall 
include the SIR, which describes both the broadband field weighting and the low-pass 

filtering on propagating optoacoustic waves. 

3.4 The Total Impulse Response 
In this section, a full description of the optoacoustic detection process is provided. 

The description is based on the combination of the SIR and the EIR into a global sensor 

response, referred herein as the TIR. A short review of previous efforts to characterize the 
TIR either globally or in terms of its components is provided in the following, to best put the 
method described in its due context. 

Figure 28: Broadband field resulting from a) the measurements at the full sensor bandwidth and b) the  
calculation with the extended MGB method. c) Profile along the y direction at the focus (red: experiment, blue: 
simulation). d) Profile along the x direction. See text for details. 
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There are three main approaches to obtain the TIR of an ultrasound transducer: 

purely experimental measurements, purely theoretical analyses, and hybrid methods that 

make use of an experimental EIR and a numerical SIR.  

The	
  experimental	
  retrieval	
  of	
  the	
  transducer’s	
  TIR	
  can	
  be	
  achieved	
  by	
  optoacoustic	
  

detection of a sub-resolution emitter, in a similar manner to the sensitivity field 
measurement of the previous section. The only requirement to retrieve the TIR is that the 

emission frequency spectrum of the source is known and can be corrected for, as 

demonstrated for the EIR determination. Such a source is not well suited for scanning 

measurements since it does not emit isotropically. On the other hand, wideband isotropic 

sources, such as small absorbing microspheres, emit characteristically weak signals at low 

frequencies. As a consequence, it is difficult to correct for their emission spectra in a reliable 

way [36]. Purely experimental methods are therefore well-suited for the TIR determination 

only within the frequency band where the microsphere signals are strongest [5]. 

 In order to obtain good signal to noise ratio (SNR) in the TIR measurements, it is 
necessary to use signal averaging since the optoacoustic signals of small sources are weak. If 

the sources are outside the focal zone, the measured signal amplitude is even lower, and 

therefore more averages are needed. Signal averaging is however time-consuming, so a 

trade-off between the number of points in which the TIR is measured and the desired SNR 

has to be found. As a consequence, in previous works the TIR has been characterized with 
good SNR only for a few points inside the focal zone [39], [58]. However, strong absorbers 

placed outside the focal zone can be detected and may produce artifacts in the reconstructed 
images [24, 59]. TIR characterization with good SNR, in- and outside the focal zone, and a 
spatial sampling similar to the imaging resolution is therefore important for image 

formation in optoacoustic imaging. 

Alternatively,	
   there	
  exist	
  purely	
  theoretical	
  determinations	
  of	
   the	
  transducer’s	
  TIR.	
  	
  

Recent work by Rosenthal et al. [24] presented a purely theoretical approach for the 

determination of the SIR, with good correspondence between theory and experiment. Since 

the SIR was calculated for every point inside the ROI, even outside the focal zone, the 

application of the calculated SIR to image reconstruction shows an improvement over 

standard image reconstruction methods.  

Kozhushko et al. [58] discussed the determination of the TIR with the convolution 

method, where both the EIR and the SIR were described by theoretical models. The 
predictions of the theory are confirmed by experiments, although within a relatively small 
region close to the focus of the transducer. Furthermore, such a theoretical approach 
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requires	
  that	
  the	
  sensor’s	
  geometry	
  and	
  the	
  parameters	
  of	
  its	
  piezoelectric-plus-backing (or 

acoustic stack) are known exactly. However, most transducer design parameters are 

accessible only to the manufacturer of the transducer, whereas for the end-user, typically 

only a few specifications of the sensor are known. As a result, the theoretical method for the 

determination of the TIR is of limited use in terms of transducer calibration. 

The hybrid approach, using the measured EIR and the analytical SIR of a sensor, has 

been recently applied to image reconstruction in [59]. In this case, both responses are 

implemented in an iterative reconstruction algorithm, improving the images obtained when 

compared to a point-like sensor model. However, the implementation presented was limited 

to flat detector geometries under the far field approximation. More importantly, no 

experimental validation of the TIR was obtained which could suggest favorable performance 

over purely experimental methods. 

To the best of our knowledge, the determination of the TIR of ultrasound sensors in 

optoacoustics has so far been limited to either theoretical approximations, on descriptions 
of the EIR and SIR without a validation of the resulting TIR, or has been performed only 

within the focal zone. With the availability of robust methods for EIR characterization, as the 

one presented in section 3.2, and the variety of accurate SIR models for arbitrary detector 

geometries [24, 26], a more standardized and systematic approach to the TIR determination 

ought to be considered. 

Herein it is demonstrated that the TIR of the transducer in and outside its high-

sensitivity region can be accurately determined by the hybrid method, and that said 
accuracy can be validated experimentally. Specifically, it is proposed that the EIR be 

determined with the method described in section 3.2 and convolved with the numerically 

calculated SIR as per [26]. Both methods separately have proven to have high fidelity and 

may be applied to general detector geometries. The procedure is demonstrated using a 

cylindrically focused transducer and is validated by comparison to a purely experimental 

characterization of the sensor. In section 3.4.1 we provide the description of the 

experimental method for the TIR determination. In Section 3.4.2, a description of the hybrid 

method is presented. Section 3.4.3 describes the experimental setup and the measurements 

performed. Section 3.4.4 presents the results and validation studies and finally section 3.4.5 

discusses the results and their implications to optoacoustic imaging. The contents of this 

section have been submitted for publication to IEEE T-UFFC [60]. 
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3.4.1 Experimental determination: concept 

In order to determine ℎ்(𝑟, 𝑡) experimentally, a point-like absorber 𝐻௥(𝑟) =   𝛿(𝑟)   

can be scanned in the imaging ROI, centered at the focus of the detector (𝑟 = 0). From Eq. 

(2.2) and Eq. (2.8), and due to the associativity of the convolution with respect to the 

derivation, the measured signals will be of the form: 

 𝑠ௗ(𝑟, 𝑡) = ℎ௘௫௣(𝑟, 𝑡) ∗
𝜕𝑖௥(𝑡)
𝜕𝑡 =

𝜕ℎ்
௘௫௣(𝑟, 𝑡)
𝜕𝑡   . (3.8) 

Eq. (3.8) is the basis for the experimental determination of the total impulse 

response of the sensor: an integration of the measured signals over time yields the TIR of 

the detector   ℎ்
௘௫௣(𝑟, 𝑡). The integration process, however, is highly sensitive to the noise at 

low frequencies, a problem exacerbated outside the focal zone of the transducer.  

3.4.2 The hybrid method: concept 

Conversely, herein we propose that the TIR of the sensor ought to be determined in 

and out-side the focal zone with the convolution method described in section I. In particular 

it is proposed that the components of the TIR are first obtained independently, as follows.  

The EIR is obtained at a point 𝑟଴, which may be anywhere inside the ROI, with the 

method described in section 3.2. If necessary, the deconvolution for correcting the SIR at 𝑟଴ 
(section 3.2.6) may be applied. After this deconvolution, the EIR represents the response of 

the sensor which is truly independent of the source position. 

On the other hand, the SIR can be calculated either analytically or numerically for 
every point 𝑟 in the ROI. Finally, the EIR and the SIR at 𝑟 are combined using temporal 

convolution to yield the TIR of the sensor. 

Since the deconvolution operation is defined in the frequency domain, the 

calculation of the TIR with the method just described is expressed mathematically as: 

 ℎ෠்
௛௬௕(𝑟, 𝑓) =

𝚤௥̂(𝑟଴, 𝑓)
ℎ෠௦௜௠(𝑟଴, 𝑓)

∙   ℎ෠௦௜௠(𝑟, 𝑓)  . (3.9) 

𝚤̂௥(𝑟଴, 𝑓), and ℎ෠௦௜௠(𝑟, 𝑓) represent the Fourier-transforms of the measured EIR and 

the simulated SIR respectively. ℎ෠்
௛௬௕(𝑟, 𝑓) is therefore the total frequency response of the 

transducer, from which the TIR can be obtained by performing the inverse Fourier-

transform. We refer to ℎ்
௛௬௕(𝑟, 𝑡) as the hybrid TIR, which describes all of the transducer-

related distortions upon a propagating optoacoustic wave. 
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In practical terms, 𝑟଴ should be a highly sensitive point of the transducer field-of-

view, and the SIR at that point should be as broadband as possible. For focused transducers, 

the obvious choice for  𝑟଴ is therefore the focal point of the transducer, defined here as 

𝑟଴ = 0. 

3.4.3 Experimental and numerical techniques 

The EIR and TIR were determined experimentally as described in sections 3.2 and 

3.4.1. The analysis here presented makes use of the same dataset. A few more details are 
provided with respect to the computation of the TIR and the sensitivity and bandwidth 

fields (called maps herein).  

 Computation of the numerical SIR a)

The SIR was calculated with the ultrasound simulation software FIELD II [37]. The 

program divides the surface of the transducer in small square sub-apertures, and computes 

the analytical solution to Eq. (2.13) for each of them, summing up the resulting responses 
coherently to obtain the final SIR.  

The simulation was computed in a grid with the same dimensions and number of 
pixels as the experimental scanning grid. The parameters of the transducer surface were as 

described in section III a). The time sampling was set to 100 MS/s and the speed of sound in 

water to 1500 m/s. 

 Computation of the hybrid TIR  b)

To compute ℎ்
௛௬௕(𝑟, 𝑡), we first resampled the TIR at 𝑟଴ to the sampling rate of the 

simulated SIR, and then applied Eq. (3.9). In practical terms, the SIR at the focus of the 

transducer is a Dirac-delta, equivalent to a constant function in the frequency-domain. As a 
result, Eq. (3.9) simplifies to the product of the Fourier-transforms of the EIR and SIR. Thus, 

ℎ்
௛௬௕(𝑟, 𝑡) is readily calculated with a convolution operation between the SIR and the EIR, 

performed in the time domain. 

To validate the proposed method, ℎ்
௛௬௕(𝑟, 𝑡)  was compared with ℎ்

௘௫௣(𝑟, 𝑡). The 

experimental measurements were however of the form 𝜕ℎ்
௘௫௣(𝑟, 𝑡) 𝜕𝑡⁄ , and had to be 

corrected for the microsphere spectrum as discussed in section IIc. Such correction can 

enhance low-frequency noise, which can distort the spectrum of ℎ்
௘௫௣(𝑟, 𝑡), making the 

comparison difficult. For this reason, and in order to avoid the spectrum correction of 

𝜕ℎ்
௘௫௣(𝑟, 𝑡) 𝜕𝑡⁄ , a second hybrid TIR, 𝑔்

௛௬௕(𝑟, 𝑡), was calculated.  
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𝑔்
௛௬௕(𝑟, 𝑡)   makes use of the EIR measurement before it has been integrated as per 

Eq. (3.2), i.e., it is calculated by convolving the numerical SIR with the measured signal. Like 

this,  𝑔்
௛௬௕(𝑟, 𝑡)  can be compared with the measured signals 𝜕ℎ்

௘௫௣(𝑟, 𝑡) 𝜕𝑡⁄  directly. 

 Computation of the amplitude and bandwidth maps c)

In order to have a global overview of the TIR properties in the scanned region, we 

computed amplitude and bandwidth maps from all experimental and hybrid TIRs. The 

amplitude map depicts the spatial dependence of the transducer sensitivity, whereas the 

bandwidth map shows the spatial variation of the measured signal frequencies.  

The bandwidth maps were computed by numerically performing the Fourier 

transform of the filtered signals and computing an effective bandwidth as per: 

 𝐵௪(𝑥, 𝑦) = ඩ
∫ หℎ෠்(𝑥, 𝑦, 𝑓)  𝑓ห

ଶ 𝑑𝑓ஶ
଴

∫ หℎ෠்(𝑥, 𝑦, 𝑓)ห
ଶ 𝑑𝑓ஶ

଴

  . (3.10) 

ℎ෠்(𝑥, 𝑦, 𝑓) represents the frequency-dependent Fourier transform of the filtered 

signals at each scanning position ( x , y ). Since in Eq. (3.10) each signal is normalized by its 

total energy, 𝐵௪(𝑥, 𝑦) represents a global property of the signal, independent of its 

amplitude. As a consequence, the experimental bandwidth map is less sensitive than the 

amplitude map to the fluctuations in the illumination. The median mask applied was thus 

2x2 pixels instead of 5x5 as in the case of the amplitude map (recall 3.3.3). 

3.4.4 Validation of the convolution method 

In order to validate the hybrid TIR, 𝑔்
௛௬௕(𝑟, 𝑡)  was compared with 𝜕ℎ்

௘௫௣(𝑟, 𝑡) 𝜕𝑡⁄ , 

first by making use of their amplitude and bandwidth fields, as shown in Fig. 29. The 

amplitude maps shows good correspondence of the shape and size of the focal zone, with 

the discrepancies arising from the illumination fluctuations, as discussed in section 3.3.3. Of 
greater interest are however the bandwidth maps (Figs. 29b and 29d), which also show very 

good agreement. We can see how the experimental map becomes noisier as we approach 
the regions where the SNR is very low. Despite low SNR the sidelobe pattern along the 

lateral direction is confirmed by the hybrid TIR. This pattern implies good spectral 

sensitivity even outside the focal zone. As consequence for signal analysis and imaging, 

strong absorbers in this area cannot be suppressed in the signal through band-pass filtering, 

as this would also filter out signals coming from absorbers in front of the sensor. Overall, the 
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results	
  show	
  that	
  the	
  hybrid	
  TIR	
  accurately	
  describes	
  the	
  global	
  properties	
  of	
  the	
  sensor’s	
  

response to a point source. 

Fig. 30 shows the comparison of 𝑔்
௛௬௕(𝑟, 𝑡)   with 𝜕ℎ்

௘௫௣(𝑟, 𝑡) 𝜕𝑡⁄  at the signal level for 

three microsphere locations of interest. Fig. 30a and 30b show the signals and spectra when 

the microsphere was located at the focus. Here, the agreement between the hybrid TIR and 

the experimental data is very good since the SNR is optimal. Figs. 30c and 30d show the 

results when the source was at the border of the focal zone, defined as the half-amplitude 

boundary in the amplitude map. The hybrid TIR and the experiment match, as we observe a 

slight shift of the spectra to lower frequencies in both cases. Figs. 30e and 30f show the 
results for a point at the first sidelobe in the bandwidth map, where the amplitude of the 

sensitivity field is about 15% (–16 dB) of that in focus. The hybrid TIR still reproduces the 

experimental findings, even though this point is outside the focal zone and its signal has a 

very low SNR. The results demonstrate that signals originated outside the focal zone are not 

only measured with lower amplitude, but also that their spectra are distorted in non-trivial 
manner. The overall good correspondence between the calculated TIR and the experiments 

Figure 29: Validation of the global properties of the hybrid TIR. The top row shows the amplitude maps 
of a), the experimental measurement 𝝏𝒉𝑻𝒆𝒙𝒑(𝒓ሬ⃗ , 𝒕) 𝝏𝒕⁄  and b), 𝒈𝑻

𝒉𝒚𝒃(𝒓ሬ⃗ , 𝒕). The color bars represent relative 
amplitude with respect to the maximum. The bottom row shows the corresponding bandwidth maps as obtained 
from c), the experiment and d), the hybrid TIR. The color bars represent a frequency scale in Megahertz. 
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confirms that the hybrid method provides an accurate description of the response of the 
sensor to a point source.  

The comparison between the amplitude and bandwidth maps of ℎ்
௛௬௕(𝑟, 𝑡)   and 

ℎ்
௘௫௣(𝑟, 𝑡), which have been corrected for the source contribution, is shown in Fig. 31. Figs 

21a and 21c show the amplitude and bandwidth maps of ℎ்
௛௬௕(𝑟, 𝑡)   respectively. The wider 

field-of-view and smoother appearance of the maps, when compared to the ones obtained 

for 𝑔்
௛௬௕(𝑟, 𝑡)  are due to the presence of the low frequencies in the spectrum of ℎ்

௛௬௕(𝑟, 𝑡). In 

comparison, the experimental maps are completely blurred by low-frequency fluctuations. 

The	
   bandwidth	
   map	
   shows	
   a	
   slightly	
   better	
   match	
   to	
   the	
   hybrid	
   TIR’s	
   map	
   than	
   the	
  

sensitivity map. This is to be expected since the effective bandwidth is a global property of 
the signal, and it is therefore more robust against low-frequency fluctuations than the 

Figure 30: Validation of the hybrid TIR at three representative locations in the measurement grid. The 
experimental signals (blue/solid) and the ones calculated with the hybrid method (red/dashed) are shown in the 
left column. Their respective spectra are depicted in the right column. All signals come from points located at x = 
0.0 mm but different y positions. Top row: emitter located at the focal point of the transducer, y = 0 mm. Middle 
row: point located at y = 4 mm, the boundary of the focal zone. Bottom row: point located at y = 8 mm, one of the 
sidelobes of the bandwidth map. See text for details. 
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amplitude. The findings depicted in the figure illustrate the unreliability of the experimental 

method for obtaining the TIR of the sensor. 

 Fig. 32 shows the comparison of ℎ்
௛௬௕(𝑟, 𝑡)   and ℎ்

௘௫௣(𝑟, 𝑡) at the signal level. The 

figure depicts an example of two signals from neighboring points in the measurement grid 

for the experimental and the hybrid TIR. The points are located along the y axis, 0.8 mm 

apart from each other in the x direction. The signals and spectra obtained with ℎ்
௛௬௕(𝑟, 𝑡) are 

very similar to the experimental results, especially at frequencies above 2 MHz.  Such 
agreement is to be expected, since the proposed and the experimental TIRs have been 

shown to match previously. On the other hand, the experiment shows a difference of up to 
50 % in spectral amplitude at low frequencies between the neighboring signals. The 

fluctuations at low frequencies are therefore the origin for the distorted appearance of the 

experimental fields shown in Fig. 31. The findings showcase the fundamental limitation for 

the retrieval of the TIR through purely experimental means. 

Figure 31: Demonstration of the instability of the experimental TIR upon integration. The top row 
shows the amplitude maps of the TIRs, as resulting from a), 𝒉𝑻𝒆𝒙𝒑(𝒓ሬ⃗ , 𝒕), and b), 𝒉𝑻

𝒉𝒚𝒃(𝒓ሬ⃗ , 𝒕). The color bars 
represent relative amplitude with respect to the maximum. The bottom row shows the bandwidth map as 
obtained from c), 𝒉𝑻𝒆𝒙𝒑(𝒓ሬ⃗ , 𝒕) and d), 𝒉𝑻

𝒉𝒚𝒃(𝒓ሬ⃗ , 𝒕). The color bars represent a frequency scale in Megahertz. 
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3.4.5 Conclusion 

The performance of the hybrid method for the determination of the total impulse 
response of optoacoustic transducers was assessed. The method is based on modeling the 

optoacoustic measurement process as a linear system. The response of an ultrasound 
transducer was described in terms of spatially dependent and independent responses. The 

spatially dependent response, the SIR, was numerically computed for points in- and outside 

the focal zone of the transducer. The spatially independent response, the EIR, was 

determined through experiment. The EIR and the SIR were combined through temporal 

convolution to yield the total, spatially dependent response of the sensor, the hybrid TIR.  

The	
   method’s	
   performance	
   was	
   assessed	
   by	
   comparing the modeled transducer 

response to an optoacoustic point source with the experimentally measured one. The spatial 

variation of signal amplitudes and bandwidths predicted by the hybrid TIR showed good 

agreement with the measurements. The results confirm that the hybrid TIR accurately 

Figure 32: Example of the instability of the experimental TIR upon integration. The top row shows a), 
the experimental signals and b), their spectra, for contiguous points in the scanning grid. The blue/solid curves 
correspond to a point located at ( x, y ) = ( -4.0, 0.0 ) mm; the red/dashed curves, to a point at ( x, y ) = ( -4.8, 0.0 ) 
mm. The bottom row shows c) the signals and d) their spectra, as described by the hybrid TIR at the same grid 
points. See text for details. 
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describes	
   the	
   sensor’s	
   response	
   to	
   optoacoustic	
   sources	
   located	
   in- and outside the focal 

zone. 

The hybrid TIR offers several advantages over alternative descriptions of the sensor 

response. 

First, owing to the high SNR of the EIR measurement, the hybrid TIR provides an 

accurate description of the sensor response at low-frequencies. This is in contrast to purely 

experimental methods, which yield a sensor response that is corrupted by low-frequency 

noise. 

Second, the SIR simulation was based on the exact geometry of the sensor and 

provided a noiseless description of its spatial properties. Therefore, the hybrid TIR 

accurately describes the sensor response even outside the focal zone, where the sensitivity 

is low. 

Finally, the TIR provides a unified description of the measured spatial variations in 
phase, amplitude and frequency spectrum of optoacoustic signals. Therefore, sensor 

characteristics such as the sensitivity field or the frequency response are but 

representations of the TIR and can be obtained naturally from it. 

The method has some limitations, which are also separable in the two components 

of the TIR. 

For one part, the measurement of the EIR is in principle suited for a very broad span 

of frequencies (up to 20 MHz), as was discussed in section 3.2. If the EIR characterization at 

these frequencies was available, the hybrid TIR could be easily calculated. However, the 
present work deals with the combination of the EIR and the SIR as a general procedure, and 

the microscopic regime poses challenges of its own that do not relate to the hybrid method. 

The EIR calibration at high-frequencies lies therefore beyond the scope of this work.  

For the other part, the numerical SIR calculated herein would be erroneous if the 
sensor’s	
   response	
  was	
  not	
  uniform	
  along its surface. This effect is called apodization, and 

the calculation of the SIR can be modified to include it [26]. However, in the case of the 

sensor discussed herein, the possibility of an apodized surface is ruled out by the 

experimental validation of the hybrid TIR. Furthermore, the hybrid TIR can be used as a 

standard against which to test the presence of apodization or fabrication defects on the 

sensor surface. 
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In conclusion, the method presented herein enables the determination and 

calibration of the spatio-temporal response of ultrasound sensors with optoacoustic means. 

The obtained response represents an important component in the characterization of 

optoacoustic systems, as it encompasses all of the sensor-related phenomena. More 

importantly,	
   the	
   hybrid	
   method	
   offers	
   the	
   possibility	
   of	
   using	
   the	
   sensor’s	
   response	
   for	
  

imaging applications, knowing that it describes the optoacoustic detection process 

accurately. 
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4. RECONSTRUCTION	
  ALGORITHMS	
  FOR	
  

MICROSCANNING 
In the previous chapter, the effect of the transducer properties on optoacoustic 

signals was assessed and a general framework for their characterization was provided. It 

was shown that the sensitivity and bandwidth of a detector is in general dependent on the 

relative position between source and sensor. In most optoacoustic image reconstruction 
algorithms, however, the assumption is made that the detector behaves as a point-like 

sensor with infinite bandwidth. The aim of this chapter is to illustrate the degraded imaging 

performance that results from such assumptions, and develop image reconstruction 

algorithms that overcome those limitations. This is done within the context of a specific 

optoacoustic modality: microscanning. However, from the results in this chapter some 
general principles about optoacoustic image formation with sensor properties may be 

established. 

The chapter starts (Section 4.1) with an introduction to the concept of 

microscanning, its applications and a description of the image reconstruction problem. In 
Section 4.2, microscanning with unfocused detectors is investigated and the effects of the 

sensor spatial properties on the reconstructed images are showcased. Several modifications 

to standard image reconstruction algorithms, based on approximate descriptions of the 

sensor properties, are presented and their imaging performance is assessed with 

experiments. In Section 4.3, microscanning with focused detectors is studied. An algorithm 

for accurate image reconstruction that takes into account the exact sensor properties is 

presented and its performance assessed both in simulations and experiment. The results of 

the chapter are discussed at the end of that Section. 

4.1 Introduction to Microscanning 

4.1.1 The technique 

By microscanning we refer to any optoacoustic imaging modality whereby a sensor 

is scanned in the two directions of a plane (the scanning directions) at a distance from the 

sample, as shown in Fig. 33a. The planar configuration is advantageous with respect to a 

tomographic arrangement for applications where it is not possible to surround the sample 

with detectors. Thus, microscanning is well-suited for the superficial, high-resolution 
imaging of organs, extremities and subcutaneous tumors, and has found applications to 

vasculature imaging [19], functional imaging and hemodynamics [16]. 
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Different applications have different requirements with respect to the resolution and 

the imaging depth. For one part, microscanning setups may achieve submicron resolutions 

at very shallow penetration depths, which effectively qualifies as optoacoustic microscopy 

[16].  On the other part, microscanning at several millimeters deep, with resolutions in the 

tens of microns, may be described as mesoscopic imaging. The present work is aimed 

towards mesoscopic imaging, but some of the techniques developed herein may find 
application on optoacoustic microscopy as well. As both imaging regimes are ultimately 

established by the combination of illumination and detector, a more detailed overview of 
the different design strategies is now presented. 

The illumination may be adjusted to excite either a broad tissue region or a localized 

area. Bulk illumination generates optoacoustic sources within a volume larger than the 

imaging resolution. Thus, signals from different scanning positions may be combined 

numerically to improve image quality or extend the imaging depth up to a few millimeters 

[50]. This approach is therefore suited for mesoscopic applications. Alternatively, 

optoacoustic microscopy setups utilize a spatially confined illumination scanned together 

with the sensor, which may help to achieve optical resolution at the expense of penetration 

depth [18]. Unless stated otherwise, bulk illumination was assumed throughout the present 
chapter. 

Figure 33: a) Concept of microscanning: a sensor is scanned along two perpendicular directions, at a 
fixed distance from the sample. b) Microscanning can be understood as the stacking of line-scans, where each of 
them provides a depth-resolved view of the sample. See text for details. 
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The sensor shape and frequency band are chosen in order to provide the optimal 

resolution at the required imaging depth. Mesoscopic applications have been investigated 

with a variety of sensors. Spherically focused transducers have been used at frequencies 

ranging from 5 MHz, for the imaging of deep seated organs [42, 61], up to 50 MHz, for the 

visualization of superficial vasculature [18, 41, 62]. Such sensors provide good resolution 

and sensitivity in the focal zone, but these properties degrade rapidly away from the focus. 

This potential drawback can be compensated with image reconstruction algorithms, which 

shall be demonstrated in more detail in section 4.3.  

Alternatively, point-like sensors have been generated optically in a Fabry-Perot 

interferometric configuration, resulting in detectors with relatively flat frequency responses 

up to 20 MHz. Such a sensor can achieve a resolution of ~70 µm at the tissue surface and 

imaging depths of a few millimeters. The applications have been mostly to vasculature 

imaging [19, 50].  

Finally, one of the scanning directions may be substituted by an array of detectors to 
shorten acquisition times, which has been reported up to frequencies of 30 MHz and 

resolutions of ~70 µm [17]. Due to current limitations in the fabrication technology of 

transducer arrays at frequencies higher than 30 MHz, such an implementation of 

microscanning is therefore limited to mesoscopic applications. 

For microscopic applications, only spherically focused transducers at frequencies of 

50 MHz or higher have been utilized [18, 63]. By providing localized illumination at the focal 

point of the transducer, optoacoustic microscopy with optical resolution has been achieved. 
However, as discussed previously, this results in a very limited penetration depth and was 

not considered in this work. 

In the first part of this chapter (Section 4.2), microscanning was investigated at 

relatively low frequencies (up to 6 MHz), with the aim to develop an understanding of the 

technique and the challenges related to image reconstruction. In section 4.3, however, the 

frequency of the transducers was increased to 10 and 25 MHz, as the experiments and 

reconstruction methods were gradually scaled-down to actual mesoscopic applications. 

4.1.2 The image reconstruction problem 

Before the image reconstruction problem is stated, it is convenient to define some 
relevant concepts. When performing microscan measurements, the full 2D scan can be 

usually divided into a set of parallel linear scans, as illustrated in Fig. 33b. The figure shows 
that each linear scan provides a depth-resolved sectional view of the sample. This view is 
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typically referred to as B-scan, for historical reasons*. The stacking of several B-scans 

provides a 2D+time dataset which, after signal processing, may yield a 3D representation of 

the sample. Which one of the scanning directions is referred to as B-scan is in general a 

matter of definition for a particular experiment. The image reconstruction algorithms 

reported in the present chapter were applied to the reconstruction of single B-scans, which 

were later stacked to form the final image. Thus, the image reconstruction problem for 

microscanning is stated herein in terms of the image formation problem for B-scans†.  

Let us describe the general problem with a simple model: a set of sources scanned by 

a point-like detector. Fig. 34a shows a sensor that is scanned along the x direction for N 

positions, with a scanning step size Δ𝑥. Several optoacoustic sources are originated in the 

region in front of the sensor at different depths. The optoacoustic waves generated by one 

absorber reach the sensor at time instants t. Due to the different times-of-flight between the 

source and the sensor at positions 1 and 2, there exists a delay Δ𝑡 between the measured 

signals s1 and s2, as shown in Fig. 34b. The delay can be easily deduced from the Pythagorean 

Theorem and is dependent on the angle between sensors 1 and 2 as seen from the absorber. 

Therefore, when the signals measured at all the scanning steps are stacked to form the B-

scan, as shown in Fig. 34c, the signal maxima appear at different depths for each sensor 

position. Additionally, due to the spherical propagation of the waves, the measured signal 
amplitudes depend on the sensor position as well. A signal-processing or image 

reconstruction algorithm shall therefore compensate for such a delay in the signals in order 

to recover the original position and amplitude of the absorbers, Fig. 34d. 

In the previous chapter it was demonstrated that the spatial properties of finite-
sized transducers depend non-trivially on the relative position between sensor and source. 

The spatial impulse response (SIR) of the transducer may alter the features of the B-scan 
described in Fig. 34c in several ways. First, signals measured in front of the transducer may 

be measured with higher amplitude than signals measured at other positions, due to the 

(frequency-dependent) sensitivity field of the sensor. Second, the detected signals may be 

distorted due to the filtering properties of the SIR. Finally, the times at which the signals are 

measured may also differ from the spherical spreading assumed in Fig. 34, since the 

minimum distance between source and sensor depends on the geometry of the detector. As 

a result, standard image reconstruction algorithms, which typically assume point-like 

sensors, have to be modified to include the properties of arbitrary detectors. 
                                                             
* In such a representation, the Brightness in the image is proportional to the signal amplitude, 

hence B-scan. 
† For a discussion of microscanning as a full 3D modality, refer to the conclusions in the last 

section. 
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At this point, it is relevant to outline under which conditions a sensor may be 

considered point-like. 

Due to the diffractive nature of optoacoustic waves, whether a sensor of diameter 𝑎 
(unfocused) may be considered point-like or finite-sized is dependent on its distance to the 

source and the wavelength 𝜆 of the acoustic wave [31].  This can be quantitatively 

determined by recalling the definition of the diffraction regimes (cf. Chapter 2). A point 

located at a distance R from the sensor was considered to be in the far field if 𝑅 ≫ 𝑎ଶ 𝜆⁄  and 

in the near field whenever 𝑅 ≪ 𝑎ଶ 𝜆⁄ , which results in distinct diffraction patterns. It can be 

shown that for points located at 𝑅 ≥ 3𝑎ଶ 𝜆⁄ , the acoustic waves propagate approximately as 

spherical waves and the sensor can be thus considered as a point-like detector for that 

wavelength* [27]. 3𝑎ଶ 𝜆⁄  is	
  defined	
  as	
  the	
  “near	
  field	
  distance”	
  of	
  the	
  transducer,	
  where	
  𝜆 is 

given by its central frequency. For optoacoustic applications, which are inherently 

broadband, we find a more adequate definition  𝑁ி ≡ 3𝑎ଶ 𝜆௠௜௡⁄  where 𝜆௠௜௡ is the lowest 

wavelength (i.e., corresponding to the highest frequency) in the measured signal spectrum. 

Therefore, herein it is considered that a sensor is point-like if the sources are generated at 

distances greater than 𝑁ி . 

The different behavior of point-like and finite-sized unfocused sensors in 
microscanning applications is investigated in the following Section. 

                                                             
* The reciprocity theorem is implied in this discussion.  

Figure 34: the image formation problem for a B-scan. a) Sources scanned by a sensor. b) Delayed 
signals for sensor positions 1 and 2. c) The stacking of the signals measured for each sensor position results in a 
B-scan, where the signals appear delayed with respect to the central position. d) B-scan after image 
reconstruction or signal processing. See text for a detailed description. 
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4.2 Microscanning with unfocused detectors 

4.2.1 Motivation 
Depending on their size, unfocused detectors exhibit different desirable properties 

for microscanning applications. For one part, point-like sensors (as defined above) exhibit a 

wide angle of acceptance for most frequencies. As a result, the signals measured at several 

sensor positions may be used to reconstruct for the spherical spreading of the optoacoustic 

wave.  Conversely, sensors with large diameters have a limited angle of acceptance but offer 

good sensitivity for sources originating at relatively narrow detection angles [27]. In this 

Section, it is investigated whether the limited field-of-view of unfocused sensors may be 

compensated with signal processing and image reconstruction.  

In section 4.2.2 two standard reconstruction algorithms for B-scans are described: 

synthetic aperture and Back-projection. In section 4.2.3 a description of the experimental 

setup and the sensors is provided. In section 4.2.4 B-scan reconstructions with the standard 

methods are presented. In section 4.2.5 the limitations of the standard Back-projection 

technique are explained in terms of the sensor properties. In sections 4.2.6 and 4.2.7 two 

distinct modifications of the conventional back-projection algorithm are presented and its 

performance assessed under the same experimental conditions. Finally, in section 4.2.8 the 

results of the section reviewed and the suitability of using unfocused transducers for 

microscanning is discussed. 

4.2.2 Synthetic aperture and Back-projection 

The synthetic aperture algorithm (SA), also known as delay-and-sum, provides an 
intuitive solution to the problem of B-scan image formation. An illustration of the method is 

provided in Fig. 35a (top row). The SA algorithm can be described as follows: for each 
sensor position i, the depth-dependent delays Δ𝑡௜௝ for the neighboring sensors j are 

computed and their signals are delayed accordingly. Afterwards, the j time-shifted signals 

are added to the signal of interest i. The reconstructed B-Scan is thus formed by stacking the 

corrected signals. Since the time-shifts effectively compensate for the phase-difference 

between the signals at different sensor positions, this process is commonly referred to as a 

“coherent	
  summation”	
  of	
  the	
  signals	
  [31].  

In echographic ultrasound, the sensor positions are typically given by the location of 

the the elements of a transducer array. In such applications, the SA algorithm is used not 
only to coherently sum the measured signals in the receive mode, but also to focus the 

ultrasound wave sent into the tissue at a given depth. By a clever choice of the delay for each 

sensor, the emission direction can be steered at a given angle or focusing can be adapted to 
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the distance and resolution desired. These procedures effectively determine the shape of the 

ultrasound beam and for this	
  reason	
  SA	
  is	
  also	
  sometimes	
  called	
  “beamforming”	
  [31].  

The SA processing for each scan line may thus be expressed as 

 𝑠௜(𝑡) = ෍ 𝑤(𝑡, 𝑗)𝑠௝൫𝑡 − Δ𝑡௜௝൯
௜ା௡

௝ୀ௜ି௡

. (4.1) 

where Δ𝑡௝ represents the time delay for each time instant and each pair of signals ij. 

The summation takes place over 2n individual sensor positions; in general 2𝑛 is at most 
equal to the total number of signals. 𝑤(𝑡, 𝑗) represents a weighting function, called 

“apodization	
  factor”	
  or	
  “window	
  function”	
  and	
  may	
  be	
  used	
  to	
  give	
  more	
  weight	
  to	
  signals	
  j 

that are closer to the signal of interest i. From Eq. (4.1) it follows that the SA algorithm 

improves the signal-to-noise ratio (SNR) of the B-scan by effectively averaging neighboring 

signals. 

Back-projection was described in Chapter 2, but a short reminder is provided herein. 

The general Back-projection formula (Eq. (2.16)) can be discretized for a scanning geometry 

and a discrete set of sensor positions. This is achieved by substituting the integral over the 
detection surface with a summation over individual sensor positions: 

Figure 35: a) Equivalence between the Synthetic Aperture (SA) and the standard Back-projection 
algorithms. The top row represents the SA processing of two signals and the bottom row the intermediate steps of 
an image reconstruction with the Back-projection algorithm. The dashed-boxes in the top row represent the signal 
samples that are used to reconstruct the highlighted pixel in the bottom row, and are related by a delay dependent 
on the pixel position and the distance between the sensors, as shown in b). 
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 𝑝଴(𝑟) =෍Ω(𝑟, 𝑖) ቈ  𝑝(𝑟௜, 𝑡) − 𝑡
𝜕𝑝(𝑟௜, 𝑡)

𝜕𝑡 ቉
ே

௜ୀଵ

อ
௧ୀ|௥⃗ି௥⃗೔| ௖⁄

. (4.2) 

where 𝑟 = (𝑥, 𝑦) are points on the reconstructed image and the solid-angle 

weighting factor has been rewritten as  Ω(𝑟, 𝑖). For each pixel in the image, thus, Eq. (4.2) 

expresses a delayed sum of the measured signal at time and its derivative, weighted by a 

factor Ω(𝑟, 𝑖). 

Herein it is proposed that the SA method is equivalent to the first term of Eq. (4.2). 
Likewise, the derivative term of Eq. (4.2) can be understood as a SA algorithm applied to 

𝑡 𝜕𝑝(𝑟௜, 𝑡) 𝜕𝑡⁄ . In order to explain this assertion, let us analyze the direct term of Back-

projection together with the SA method as represented in Fig. 35. 

For one part, the top row of Fig. 35a shows the signals for two different sensor 

positions; the arrows mark different time instants. As described previously, in the SA 

method the first signal is corrected by the second by computing the time delays between 

them for each depth and summing up coherently. For the other part, the bottom row of the 

figure shows the process of image formation with Back-projection: for each sensor position 

𝑟௜, pixels located at a distance |𝑟 − 𝑟௜| from the sensor are assigned a value 𝑝(𝑟௜, |𝑟 − 𝑟௜|/c) 
i.e., the signal sample that corresponds to the time-of-flight between sensor and pixel. This is 

referred	
   to	
   as	
   “back-propagation”	
   of	
   the	
   signal.	
   The	
   sub-images obtained for the back-

propagation at each sensor position are then summed up to obtain the final image. 

Therefore, the value of the highlighted pixel in the bottom row is actually calculated with the 

signal samples highlighted in the top row. This demonstrates that the Back-projection 

algorithm and the SA procedure are in principle equivalent. In the results section this 

assertion will be verified experimentally and therefore, from this point on, all proposed 

modifications are applied to the Back-projection algorithm. 

In practical terms, of course, SA yields corrected signals, which are then stacked to 

form the reconstructed B-scan. Therefore, the resulting image has a maximum of N pixels 

along x and a number of pixels T along y, where N represents the total number of scan 

positions and T the number of samples in the signals. For Back-projection images, the ROI 

may be defined with a number of pixels determined by the desired resolution. Therefore, 

images reconstructed with both methods will be identical only if the Back-projection image 

is calculated in a grid of N by T pixels.  

The reconstruction methods described herein have been developed under the 
assumption that the detector is point-like [20, 31]. In the following sections, it will be shown 
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that such an approximation may result in the breakdown of the Back-projection method if a 

different sensor is used. In particular, a flat detector of large area (compared to the imaged 

object) results in severely distorted images [23, 24]. Several corrections for these artifacts 

are proposed, and their performance was assessed with experimental measurements. The 

modifications to Back-projection are discussed after the preliminary results with standard 

Back-projection have been presented. This heterodox layout was chosen exceptionally to 

better develop an intuition of the problem faced and the solutions proposed, without having 

to turn back to the present section for reference. 

4.2.3 Materials and methods 

a) Source and excitation 

In order to assess the imaging performance of the different reconstruction methods, 

a simple phantom with a point-like source was built. A graphite rod, 0.3 mm in diameter, 

was cut to a length of about 0.5 mm and was subsequently encrusted in white plastiline, to 

provide a surrounding medium scattering to light. The graphite dot was illuminated by the 

532 nm pump-beam of a tunable optical parametric oscillator laser (Vibrant, Opotek Inc., 

Carlsbad, California), at a repetition rate of 20 Hz and pulse duration of 8 ns. This resulted in 

a strong isotropic source of optoacoustic waves. The source and the illumination were left 
static for all measurements and only the transducers were scanned. 

b) Detectors and processing 

The signals were measured by two sensors of different diameters. The first sensor 

was an unfocused transducer, 6 mm in diameter, with a center frequency of 2.25 MHz and a 
-6 dB bandwidth of 120% (model V323, Panametrics-NDT, Waltam, MA). The second sensor 

was the custom-made PVDF hydrophone used for the plate characterization in the previous 

chapter. It had 1 mm in diameter and was calibrated by the manufacturer from 1 to 20 MHz 

(Precision Acoustics, Dorset, United Kingdom). Its frequency response can be assumed flat 

to within 10% from 1 to 10 MHz. However, in order to compare the measurements under 

similar conditions, the signals acquired with both sensors were band-pass filtered between 

50 kHz and 5 MHz. Within this bandwidth, the near field distances result in 𝑁ி௛ = 10  mm 

for the hydrophone and 𝑁ி଺ = 30  mm for the 6 mm transducer. The sources where scanned 

at three different depths d, chosen so that the hydrophone could be considered a point-like 

sensor whereas the 6 mm sensor cannot, i.e. 𝑁ி௛ <   𝑑   < 𝑁ி଺. The signals were digitized by a 

DAQ-card at a sampling rate of 100 MS/s (GageScope, Lockport, IL). 
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The sensors were mounted on a 3-axis translation system for positioning (Thorlabs 

GmbH, Karlsfeld, Germany). The measurements were done by scanning the sensors for 61 

positions over a range of 30 mm on the plane where the source was contained. Such a scan 

was repeated three times for each sensor, each time at a different axial distance from the 
source. The three scans are always represented in the same image for convenience. 

In the previous chapter, it was also argued that the spatial properties of the detector 

are affected by its electrical impulse response (EIR). Since the EIR represents a global 

filtering on the measured signal, the EIR was in general corrected before image 

reconstruction, when available. Such a correction was done with a Wiener filter applied to 

each signal [64]. 

c) Image reconstruction 

The SA algorithm was implemented as per Eq. (4.1). The Back-projection algorithm 

was implemented according to Eq. (4.2). In both cases the reconstruction resulted in images 
with the following size: 30 mm in 61 pixels (columns) along the scan direction x and 25 mm 

in 200 pixels (rows) along the depth y. This asymmetric ROI was chosen to make the 

comparison between SA and Back-projection possible, as discussed in the previous section. 

Finally, the images are represented as the norm of the Hilbert transform (i.e., envelope) for 

each processed signal (or image row) [31].  

4.2.4 Results with Standard Back-projection and Synthetic Aperture 

reconstructions 

In Fig. 36, the unprocessed B-scans for both detectors are shown. The B-scan of the 

point-like detector (Fig. 36a) shows the expected spreading of the signals due to the wide 

angle isotropy of a point-like sensor. The B-scan taken with the 6 mm sensor (Fig. 36b) 
shows a different behavior due to the limited angle of acceptance of the transducer. The 

Figure 36: a) B-scan of three sources taken with a sensor with 1 mm diameter. b) B-scan of three 
sources taken with a 6 mm transducer. The images are shown in a linear color scale and are normalized to their 
respective maxima. See text for details. 
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consequences of these very different behaviors can be observed in the reconstructed 

images, as shown in the following. 

In Fig. 37, the B-scan taken with the 1 mm transducer and the resulting SA and Back-

projection reconstructions are shown. Fig. 37a shows the unprocessed B-scan for reference. 

Figs. 37b and 37c show the SA and Back-projection (direct term) reconstructions 
respectively. The results demonstrate that SA and Back-projection are essentially the same 

algorithm, one expressed as signal-processing method (SA) and the other as an image 

reconstruction procedure (Back-projection).  

Fig. 37d shows the Back-projection reconstruction including the derivative term. 

The image shows better resolved absorbers with respect to the previous images. This is due 

to the multiplication by t in the derivative term of Eq. (4.2), with results and a ramp-filter in 

the frequency domain and thus enhanced higher frequencies [21].  

Fig. 37e shows the profile of the reconstructions, taken along the depth direction (as 

shown in Fig. 37c). The profile actually shows all 3 reconstructions, but the SA (blue) and 

direct Back-projection (red) are completely undistinguishable. There is a 90% difference in 

the reconstructed amplitudes between the source at 15 mm and the source at 25 mm, due to 
the actual size of the sensor, which is only approximately point-like. 

 Fig. 37f shows the profile of the reconstructions along the scanning direction. The 
full-width at half-maximum (FWHM) of the full Back-projection is ~1 mm, i.e., the diameter 

of the sensor, as expected from the theory [23]. Overall, the results demonstrate the 

accuracy of standard Back-projection and SA when reconstructing B-scans with a point-like 

sensor. 

The reconstruction results for the 6 mm transducer are shown in Fig. 38. The 

unprocessed B-scan is shown in Fig. 38a, and Figs. 38b to 38d show the image 
reconstructions with SA, direct Back-projection and full Back-projection respectively. The 

reconstructed images show only a slight improvement of the lateral resolution with respect 

to the unprocessed B-scan. In particular, it is interesting to note that even the full Back-

projection reconstruction (Fig. 38d), which is biased towards higher frequencies, does not 

improve the lateral resolution notably. Fig. 38e shows the reconstruction profile along the 
depth (as indicated in Fig. 38c). The source amplitudes reconstructed with SA and direct 

Back-projection increase with their distance to the transducer, whereas for full Back-

projection they decrease. While this effect was already observed for the 1 mm detector, it is 
actually exacerbated for the 6 mm sensor, which confirms that such a reconstruction artifact 
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is dependent on the size of the sensor. Fig. 38f shows the lateral profile for the middle 
absorber with a FWHM of ~6 mm as opposed to the ~0.5 mm source size. 

The results demonstrate the breakdown of the Back-projection method when 

directly applied to a B-scan, if the sensor is unfocused and its diameter is larger than the 

source. These results can be understood by analyzing the spatial properties of the sensors 

and their divergence with respect to a point-like behavior, which is presented in the 

following section.  

4.2.5 Analysis of transducer properties 

The TIRs of two round transducers with diameters D = 1 mm  and D = 6 mm were 
calculated with the method described in the previous chapter [26]. Briefly, a numerical 

Figure 37: B-scan reconstructions with the 1 mm sensor. a) B-scan of the three sources, unprocessed. 
b) SA reconstruction. c) Back-projection reconstruction (direct term). d) Back-projection reconstruction (direct 
and derivative terms). e) Profile of the reconstructions taken along the vertical direction as shown in c). Black: 
Back-projection with both terms. Red (and blue, but it is undistinguishable): Back-projection with the direct term 
(and SA). f) Profile along the scan direction, same colors as e). 
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computation of the SIR of the sensors is convolved with the EIR of the sensor to yield the 
TIR. This results in a time-dependent function for points in front of the sensor, and said 

function defines the distortion of optoacoustic signals due to the sensor properties. The first 

sensor property to be analyzed was the time of arrival of the optoacoustic waves, as a 

function of the lateral position and depth of the source. We refer herein to this property as 

the	
  “delay	
  field”	
  of	
  the	
  sensor. 

In Fig. 39a, the delay fields for the 1 mm and 6 mm sensors are represented as a 

contour plot. The black dotted lines represent the contours of the delay field of the 1 mm 

sensor. That is, for each scanning position, the lines represent the time of arrival of the 

signal to the sensor. The red lines, on the other hand, represent the delay field of the 6 mm 
sensor. In this case, the behavior is different from that of a point-like source, and the delay 

Figure 38: B-scan reconstructions with the 6 mm sensor. a) B-scan of the three sources, unprocessed. 
b) SA reconstruction. c) Back-projection reconstruction (direct term). d) Back-projection reconstruction (direct 
and derivative terms). e) Profile of the reconstructions taken along the vertical direction as shown in c). Black: 
Back-projection with both terms. Red (and blue, but it is undistinguishable): Back-projection with the direct term 
(and SA). f) Profile along the scan direction, same colors as e).  
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field shows a constant time of arrival for some scanning positions. The reason is that, 

whenever the source is at a lateral distance |𝑥| ≤ 𝐷/2 with respect to the transducer axis, 

the shortest distance between source and sensor (i.e., the signal delay) is constant. The 

results show that the time-delay assumed by standard Back-projection, based on point-like 
transducers, does not correspond to the actual signal delay measured by a large flat 

detector. 

As shown previously (Fig. 35), Back-projection operates by back-propagating the 

signal measured at one sensor position onto the pixels in the ROI that fulfill 𝑡 = |𝑟 − 𝑟௜| 𝑐⁄ , 

i.e., onto circles centered on the sensor. Intuitively, the Back-projection algorithm may be 

modified by back-propagating onto	
  pixels	
  that	
  correspond	
  to	
  the	
  actual	
  sensor’s	
  delays.	
  The	
  
principle behind such a modification is illustrated in Fig. 39b. The back-propagation 

isochrones t for a point-like detector (black dashed lines) are superimposed on the imaging 
ROI. The isochrones t’ that would correspond to a sensor with D = 6 mm are shown in red. 

However it can be easily understood that back-propagating the signals onto t’ would 

effectively spread the signal over a wider extent of the ROI than in the case of standard 

back-propagation. 

Let us now analyze the sensitivity and bandwidth fields that result from the TIR of 

the sensors. Fig. 40a shows the sensitivity field of the 1 mm sensor and Fig. 40b its 

bandwidth field. The fields are not exactly as isotropic as those of a point-like sensor* the 
approximation did not result in significantly degraded imaging performance. The fields of 

                                                             
* The fields corresponding to an ideal point-like sensor are not shown as they are somewhat 

trivial. The sensitivity field is the 1/𝑟 amplitude decay of spherical waves. The bandwidth field would 
be a constant function equal to the sampling frequency used in the calculation (i.e., virtually infinite 
bandwidth for all points in space). 

Figure 39: a) Contours of the delay fields of the 1 mm sensor (black dashed) and the 6 mm sensor. b) 
Back-propagation isochrones superposed with the ROI for the same sensors.  
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the 6 mm sensor are shown in Figs. 40c and 40d, and they exhibit a completely different 

behavior. For one part, the sensitivity field indicates that only sources located in front of the 
sensor, (i.e., |𝑥| ≤ 𝐷/2) are measured with optimal amplitude. Conversely, the bandwidth 

field shows that signals from such sources are measured with at least 75% bandwidth with 

respect to the full bandwidth of the sensor (~2.7 MHz). We refer in the following to this 
region	
  of	
  the	
  sensor’s	
  field	
  of	
  view	
  as	
  “the	
  main	
  lobe”. 

These analyses demonstrate that the signals that play a significant role for Back-
projection reconstructions are those generated in the main lobe. In the following sections it 

is assessed whether the Back-projection algorithm may be modified to enhance the lateral 
resolution by weighting the relative amplitudes of the signals within the main lobe. 

4.2.6 Weighted Back-projection 

In this section, a modification of standard Back-projection is proposed in order to 

take into account the sensitivity field of the sensors. In a few words, the approach presented 

herein consists on applying a weighting mask to the back-propagation sub-images 
generated for each sensor position. By doing so, the signals back-propagated onto the ROI 

are	
  limited	
  to	
  the	
  main	
  lobe	
  of	
  the	
  sensor’s field-of-view. A more detailed description of the 

method follows. 

Figure 40: Simulations of the SIR of the sensors. a) Sensitivity field of the 1 mm sensor. b) 
Bandwidth field of the 1 mm sensor. c) Sensitivity field of the 6 mm sensor. d) Bandwidth field of the 6 
mm sensor. All fields calculated within the measurement frequency band (50 kHz to 5 MHz). 
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The standard Back-projection formula (Eq. (4.2)) expresses each of the sub-images 

𝑝଴(𝑟, 𝑖) as the weighted difference between signal and derivative, back-propagated to the 

ROI: 

 𝑝଴(𝑟, 𝑖) = 𝛺(𝑟, 𝑖) ቈ  𝑝(𝑟௜, 𝑡) − 𝑡
𝜕𝑝(𝑟௜, 𝑡)

𝜕𝑡 ቉ቤ
௧ୀ|௥⃗ି௥⃗೔| ௖⁄

, (4.3) 

where 𝛺(𝑟, 𝑖) can be understood as a weighting mask applied to the to the back-
propagation term, which we define as 𝑃[𝑟௜, 𝑡] = [  𝑝(𝑟௜, 𝑡) − 𝑡𝜕𝑝(𝑟௜, 𝑡)/𝜕𝑡]. Herein it is 

proposed to substitute 𝛺(𝑟, 𝑖) by the sensitivity field of the transducer at the sensor 

position, defined as 𝛹(𝑟, 𝑖). However, since the width of the main lobe is in general inversely 

proportional to the frequency ([27], cf. Chapter 3), weighting the sub-images with the global 

sensitivity field would result in a mask that is too wide for the highest frequencies, and too 

narrow for the lowest frequencies in the signal.  

Instead, the 𝑃[𝑟௜, 𝑡] term is first divided into its Fourier components, which are back-

propagated individually onto the ROI. Since we deal with discrete quantities, a given signal 

𝑠[𝑡]may be expressed as the discrete summation over its frequency components [64], i.e. the 
inverse Discrete Fourier Transform of the signal spectrum 𝑠̂[𝑓] 

 𝑠[𝑡] = ℜቐ෍𝑠̂[𝑓]𝑒ି௜ఝ(௙,௧)
௙

ቑ, (4.4) 

where ℜ{  ⋯ } represents the real-part of the quantity between brackets and 𝜑(𝑓, 𝑡) 

is the phase of the signal. In this manner, we can back-propagate each frequency component 
of 𝑃[𝑟௜, 𝑡], and weight it with the sensitivity field at the relevant frequency,  𝜓(𝑟, 𝑓):  

 𝑝଴(𝑟, 𝑖, 𝑓) = 𝜓(𝑟, 𝑓)  ℜ൛𝑃෠[𝑟௜, 𝑓]𝑒௜ఝ(௙,௧)ൟห௧ୀ|௥⃗ି௥⃗೔| ௖⁄ , (4.5) 

where 𝑃෠[𝑟௜, 𝑓] represents the spectrum of the back-propagation term 𝑃[𝑟௜, 𝑡]. The 

summation takes place for all the frequencies within the band of interest, which we define 

as the limiting frequencies of the band-pass filter applied to the signals (cf. section 4.2.3 b).  

 The procedure described is illustrated in Fig. 41 for two frequencies (1 MHz in the 

top row and 3 MHz in the bottom row)* and two sensor positions. In Fig. 41a, the first sensor 
position is shown. In the top image, the frequency component 𝑓ଵ is back-propagated from 

sensor position i and the resulting sub-image is multiplied pixel by pixel by the sensitivity 
field at that frequency. In the bottom image, the same is done for a frequency 𝑓ଶ > 𝑓ଵ. 

                                                             
* As computed with the Multi-Gaussian Beam method, see Chapter 3. 
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Likewise, Fig. 41b shows the procedure for sensor position j and the same frequencies. After 

back-propagation and weighting, the sub images for every sensor position and frequency 
are summed to yield the final image. 

The result of applying this modified Back-projection to the measured B-scans is 

shown in Fig. 42. The standard Back-projection reconstruction is shown in Fig. 42a for 

reference. Fig. 42b shows the weighted Back-projection image, where almost no difference 
can be noticed with respect to the standard case. In the profile along the depth (Fig. 42c) it 

can be seen that the axial resolution is improved with respect to standard Back-projection, 
whereas along the scanning direction (Fig. 42d) the resolution is marginally degraded. 

The results in this section show that masking the back-propagated terms does not 

improve resolution along the scan direction for a flat round detector. The mask applied does 

not change the pixel values inside the main lobe significantly and thus no improvement is 

obtained from this procedure. It might be tempting to propose a mask that is either wider or 

narrower than the main lobe. However, it can be easily understood that a narrower mask 

effectively limits the number of signals used to reconstruct one pixel, which is equivalent to 

assume a sensor with an angle of acceptance even more limited. On the other part, a wider 

Figure 41: Concept of the weighted Back-projection algorithm. a) For sensor position i, the 
frequency components of the signals are back-propagated individually (two are shown: 𝒇𝟏 =  1 MHz, 𝒇𝟐 = 
3 MHz). The sensitivity fields for those frequencies  are applied to the ROI as a weighing mask, by 
multiplying the back-propagated value with the field amplitude at that pixel. The same is repeated for each 
sensor position j (shown in b) for the middle scanning position).  All sub-images thus obtained are summed 
to form the final image.  
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mask would result in a reconstruction inside the main lobe approximately equal to standard 
Back-projection, i.e., no mask applied. 

The failure of the proposed method is understandable in terms of the delay field of 

the sensor, as discussed in the previous section. The width of the reconstructed object arises 
from the indistinguishable times of arrival of the signals. Thus, such an effect may not be 

corrected by a masking of the reconstructed image, as this does not change the constant 

detection times within the main lobe. 

4.2.7 Point Spread Function-corrected Back-projection 

In this section, it is proposed that the resolution of the B-scan along the lateral 
direction may be improved with a Point-Spread-Function (PSF) deconvolution approach. 

The principle behind the proposed algorithm follows from the analogy between 

optical and acoustical diffraction presented in Chapter 2. Therein, it was argued that some 

optical systems have an acoustic counterpart, which results in similar diffraction patterns 
for both systems. The diffraction pattern of an optical system is however closely related (if 

not completely identical in some cases) to the resolving power of the system, i.e., the image 

of a point source produced by the system — its PSF [33]. Herein, the PSF of the system at a 
given depth y is defined as the profile of the sensitivity field at y. 

Figure 42: B-scan reconstructions with the weighted Back-projection method. a) Standard Back-
projection reconstruction. b) Weighted back-projection reconstruction c) Profile of the reconstructions taken 
along the vertical direction at x = 0 mm. Blue: weighted Back-projection. Red: standard Back-projection. d) 
Profile of the middle absorber, same colors as c). See text for a detailed discussion. 



99 
 

The image formation method proposed herein is illustrated in Fig. 43. The starting 

point of the method is the decomposition in single frequencies of the back-propagation term 
𝑃[𝑟௜, 𝑡], as presented in the previous section (Eq. (4.4)). For each frequency component of 

𝑃[𝑟௜, 𝑡], one image is reconstructed with the Back-projection algorithm. Afterwards, the rows 
in the image are deconvolved along x with a PSF that is dependent on the depth, using the 

Wiener-deconvolution algorithm [65]. The resulting corrected images for single frequencies 

are then added to form the final image. 

The result of applying the proposed method to the experimental measurements is 

presented in Fig. 44. The image obtained with standard Back-projection is presented in Fig. 
44a as a reference. Fig. 44b shows the B-scan reconstructed with the proposed method. The 

results show the deconvolution approach does improve the resolution of the image along 

the scanning direction when compared with standard Back-projection. The images of the 

three absorbers are similar, but they are reconstructed with different amplitudes. This can 

be observed in more detail in Fig. 44c, where the profiles of the standard and proposed 
reconstructions along y are shown in blue and red respectively. Since the proposed method 

only operates along the scanning direction, the true amplitude of the absorbers along the 

transducer axis cannot be recovered. Fig. 44d shows the profile of the reconstructions along 
the scanning direction x. The absorber size resulting from the proposed reconstruction 

Figure 43: Concept of the PSF-corrected Back-projection algorithm.  The full Back-projection algorithm is 
applied for each frequency component of the signals. The sensitivity field for that frequency (shown here for 3 MHz) 
is understood as set of PSFs at each row y in the B-scan. The rows of the single-frequency image are then 
deconvolved with these PSFs resulting in a corrected image for that frequency. The images for each frequency are 
then summed to generate the final image. 
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method is approximately 1 mm, in accordance with the results obtained with the small-

diameter sensor. The findings demonstrate that the proposed deconvolution method can 
improve the resolution of B-scan images with a detector of diameter larger than the source. 

In realistic situations, however, absorbers with different sizes may be present in the 

sample. In order to assess the performance of the proposed deconvolution method in the 
presence of larger objects, the B-scan of an absorber with 2 mm in diameter, located at three 

different depths, was simulated. The simulation was based on the exact optoacoustic 
forward solution for a spherical absorber (cf. Chapter 2, Eqs. (2.4) and (2.11)). The effect of 

the	
  transducer’s	
  SIR	
  was	
  taken	
  into	
  account	
  by	
  numerically	
  integrating	
  the	
  signals	
  over the 
surface of the detector (cf. Chapter 2, Eq. (2.13)). 

The results of applying standard Back-projection to the simulated signals are shown 

in Fig. 45a. The image shows depth dependent reconstructed amplitude that enhances 

objects closest to the sensor as well as absorber diameters of approximately 5 mm. The 

amplitude bias towards the surface of the transducer is in contrast to the reconstructions of 

smaller objects. This is to be expected due to the shape of the sensitivity fields at different 

frequencies, in which the main lobe has a maximum at a depth inversely proportional to the 

frequency (see e.g., Fig. 41 where the sensitivity fields for 1 and 3 MHz are shown). 

Figure 44: B-scan reconstructions with the PSF-corrected Back-projection method. a) Standard Back-
projection reconstruction. b) PSF-corrected Back-projection reconstruction c) Profile of the reconstructions taken 
along the vertical direction at x = 0 mm. Red: PSF-corrected Back-projection. Blue: standard Back-projection. d) 
Profile of the middle absorber, same colors as c). See text for a detailed discussion. 
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Fig. 45b shows the B-scan reconstructed with the proposed deconvolution method. 

The figure shows that the proposed method improves the resolution of the reconstructed 
image along the scanning direction. However, the reconstructed absorber size and 

amplitude are depth-dependent, which represents a drawback for the method. Fig. 45c 
shows the profiles of the standard (blue) and proposed reconstructions (red) along y. While 

the resolution along the transducer axis is improved by the proposed method, there are 

some image artifacts related to the deconvolution process such as the peaks close to the 

absorbers. In Fig. 45d, the profile along the scanning direction for the absorber located at 20 

mm from the sensor is shown for the standard and the proposed reconstructions (blue and 

red respectively). The FWHM obtained with standard Back-projection is ~5 mm whereas in 
the case of the proposed method is approximately 1 mm, which is erroneous in both cases as 

the real absorber diameter was defined as 2 mm. Thus, the proposed reconstruction method 
may result in an underestimation of the absorber size when the source is located near the 

sensor. As a result, the PSF-corrected Back-projection method is not consistent for all 

absorber sizes and its application is therefore limited to the particular case of small 
absorbers.  

Figure 45: B-scan reconstructions with the PSF-corrected Back-projection method of a numerical 
phantom with three absorbers 2 mm in diameter . a) Standard Back-projection reconstruction. b) PSF-corrected 
Back-projection reconstruction c) Profile of the reconstructions taken along the vertical direction at x = 0 mm. 
Red: PSF-corrected Back-projection. Blue: standard Back-projection. d) Profile of the middle absorber, same 
colors as c). See text for a detailed discussion. 
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4.2.8 Conclusion 

In the previous sections, the standard Back-projection algorithm was applied to the 

reconstruction of B-scans obtained with flat unfocused detectors, resulting in poor 

resolution along the scanning direction. This effect is due to the SIR of the transducer: 

signals measured with optimal sensitivity and bandwidth are mainly generated in front of 

the sensor. However, such signals are mostly indistinguishable from one another, be it in 

terms of their amplitude, their bandwidth or their measurement time. Therefore, it can be 

argued that the number of distinct signals effectively available for image reconstruction is 

very limited. 

Several modifications of standard Back-projection that make use of the spatial 

properties of the sensor were proposed, with the aim to compensate for the limited 

resolution of the sensor. Weighted Back-projection was based on the masking of the back-
propagated signals with the sensor sensitivity field. Conversely, PSF-corrected Back-

propagation was applied as a post-processing step for the images obtained at single 

frequencies, whereby the PSF was defined based on the properties of the sensor. The 
proposed methods produced generally inconsistent results, such as image artifacts, over- or 

underestimated absorber sizes and erroneous absorber amplitudes. The reason behind the 

failure of the different reconstruction methods can be attributed to their implicit description 

of the ultrasound detection process. The weighted and PSF-corrected Back-projection 

methods assume that the effect of the transducer on the measured signals can be described 

in terms of the frequency-dependent sensitivity fields. Such a description is indeed valid 
with respect to the measured frequency spectrum and signal amplitude as a function of the 

absorber location. However, sensitivity fields describe the SIR effects only in terms of 

amplitude weighting and thus fail to properly account for the phase distortion due to the 

SIR. Therefore, an accurate image reconstruction algorithm shall include the SIR of the 

sensor both in terms of its amplitude per frequency and its phase. This approach presented 

in the next Section, 4.3. 

From the findings in this section several conclusions with respect to the utilization of 

flat unfocused detectors for microscanning may be established. It has to be reminded that 

microscanning ought to work at mesoscopic scales, i.e. at optoacoustic frequencies of about 
25 MHz. Additionally, it was discussed that a flat transducer may be considered point-like or 

finite-sized depending on its near field distance 𝑁ி . Therefore, an unfocused sensor working 
at mesoscopic frequencies may be considered point-like if its size is much smaller than 60 
µm or if it is placed far from the sample. On one part, such sensor sizes are at the boundary 
of what is nowadays technically possible in ultrasound transducer fabrication. On the other 
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part, placing the sensor far from the sample is in general disadvantageous, as a long 

propagation path through tissue-like media strongly attenuates high acoustic frequencies [7, 

31]. 

 In the light of the results in this section, if follows that unfocused transducers do not 

fulfill the requirements for microscanning in mesoscopic applications. In the next section, 
microscanning with spherically focused sensors is investigated. 

4.3 Microscanning with focused detectors 

4.3.1 Motivation 

At their focal point, spherically focused detectors generally exhibit good lateral 

resolution and better sensitivity than an unfocused detector of comparable size and central 

frequency [27]. As a result, sources located out of the focus yield distinct signals for 

neighboring scanning positions, which can be exploited during image formation for 
improved imaging performance.  

Standard image reconstruction with focused detectors is based on delay-and-sum 

techniques, mainly the Synthetic Aperture method described in previous sections. The 

spatial properties of the sensor are taken into account by approximating the focal spot of the 
detector as a point-like sensor, in which is called the Virtual Detector approximation (VD) 

[66]. Such an approximation represents an accurate description of the measured signal 

delays, but fails to acknowledge other sensor properties, such as the sensitivity field or the 

low-pass filtering properties of the SIR. Herein, a method to take into account all of the 

signal distortions due to the SIR of focused detectors during image reconstruction is 

presented. The proposed method makes use of the model-based reconstruction described in 

Chapter 2, the Interpolated Model-Matrix Inversion (IMMI), for the description of 

optoacoustic signal generation and propagation [21, 53]. The properties of the detector are 
taken into account by convolving the SIR with the model-matrix in a manner similar to the 

one proposed by Rosenthal et al. [24]. The implementation of the method presented herein, 
however, differs in some crucial aspects with respect to [24] and will be consequently 

detailed in following sections. The performance of the proposed method was assessed with 

simulations and experiments in simple phantoms and biological tissue. 

In section 4.3.2 a definition of coordinates, sensor properties and relevant concepts 

for microscanning with focused detectors is provided. In section 4.3.3 the standard image 

reconstruction method for such sensors, the Virtual Detector method, is presented. In 

section 4.3.4 the IMMI method including the SIR of the detector is presented. In section 4.3.5 

a description of the measurement setup and the sensors used is provided. In section 4.3.6  
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the results of the simulation study and experiments are presented. Finally, in section 4.3.7 

the performance of the proposed method and its applications to optoacoustic imaging at the 

mesoscopic scale are discussed. The results of this Section can be also found in Ref. [67]. 

4.3.2 Principles and definitions 

Optoacoustic microscanning with spherically focused transducers may be used to 

obtain a 3D image of the sample in two different ways, depicted in Fig. 46. One alternative is 

to simply scan the sensor along the two scanning directions, generating one image by time-
windowing the signals originated within a given interval of the focus. Afterwards, the 

imaging plane may be translated to a different depth by moving the sensor closer to or 

further away from the sample. A new image may be performed as described above, and the 

full 3D dataset is then rendered by stacking the images measured at each depth. This 

procedure is shown schematically in Fig. 46a.  

If the scanning steps along x and y are small enough, each image has a minimum 

resolution 𝛿 dependent on the sensor characteristics and the optoacoustic frequency f  (cf. 

section 2.3.5) 

 𝛿 ≈
𝐹𝑐
𝐷𝑓 = 𝜆

𝐹
𝐷  , (4.6) 

where F is the focal length of the sensor, D its diameter and c the speed of sound in 

the medium. Since optoacoustic sources are inherently broadband, the resolution of the 

image may be adapted to a desired source size by filtering the measured signals within a 

given frequency band. Ultimately, it is the interplay between the sensor frequency response 

and	
   the	
  object’s	
   spectrum	
  which	
  will	
  determine	
   the	
   frequency	
  band	
   that	
  may	
  be	
  used	
   for	
  

image formation, and hence the image resolution. In the previous chapter (section 3.2.5), a 

single 2D scan was used to assess the lateral size of the optoacoustic source used for EIR 
characterization, showing a clear example of the relationship between resolution and 

frequency. Along the sensor axis, on the other hand, the resolution is determined by the 
wavelength of the maximum frequency	
  within	
  the	
  sensor’s	
  bandwidth	
  [31]. This resolution 

defines the minimum distance at which the 2D images may be taken.  

The second method for the generation of a 3D representation of the sample relies on 

the B-scan approach discussed throughout this chapter. The stacking of several B-scans can 

be used to yield a 2D+time dataset and, through image reconstruction, a 3D rendering of the 

sample. In Fig. 46b, a single B-scan is shown in relation to the stacking of 2D scans described 
in the previous paragraph. If the degradation in axial and lateral resolution can be correctly 
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compensated for during image reconstruction, the B-scan approach is in principle capable of 
producing a 3D dataset with equivalent resolution to the stacking method. As a result, the 

imaging performance of a microscanning system may greatly benefit from the B-scan 

method as the measurement time is significantly reduced. In the next section, the standard 

algorithm for B-scan image formation is presented. 

4.3.3 The Virtual Detector method 

Now that the reader is familiar with the B-scans of small sources taken with point-

like and unfocused sensors, the B-scan measured with a spherically focused transducer can 

be best demonstrated with an experiment. The source was an absorbing microsphere, 100 

µm in diameter, and the sensor a spherically focused transducer with F = 25.4 mm, D = 13 

mm and 10 MHz center frequency*. In Fig. 47a, the geometry of the measurement is 

illustrated, and Figs. 47b to 47d show the B-scans taken when the source is located closer to 
the transducer, at the focus and deeper than the focus, respectively. Several features of the 

B-scan may be pointed out. For one part, the time of arrival of the signals when the source is 

further away than the focus is similar to the expected from a point-like transducer: the 

signal arrives at a later time when the source is located off-axis. This is in contrast to the 

source located closer to the focus, in which the signals off-axis actually reach the transducer 

                                                             
* The full details of the experimental setup can be found in section 4.3.5. 

Figure 46: Microscanning with spherically focused detectors: two methods for obtaining a 3D 
dataset. a) Several microscans are performed at different distances from the sample, producing one 
image at the focal plane of the sensor for each vertical position. The 3D dataset is rendered by stacking 
the images. b) One single microscan is performed and the images at several planes are obtained by 
reconstructing and stacking the individual B-scans, as described at the beginning of the chapter. Due to 
the properties of the sensor (of focal length F and diameter D), resolution and sensitivity degrade for 
planes parallel to the focal plane.  This shall be taken into account during B-scan reconstruction for 
optimal performance. See text for more details. 



106 
 

surface at an earlier time. Such effect can be understood with the help of Fig. 47a, where the 

shortest distance between source and sensor is marked by arrows for two scanning 
positions*. The resolution and sensitivity variation with depth can be also observed, as the 

source in focus is measured with optimal amplitude and resolution while the sources out of 
the focus are not. 

The time-shift between signals measured with the source located on-axis and off-

axis forms the basis of the Virtual Detector (VD) method. VD is based on the assumption that 
the optoacoustic waves are measured by a point detector located at the focus of the actual 

sensor [66, 68]. Thus, the image formation problem for the half-spaces to either side of the 
focus is similar to the one described for point-like detectors at the beginning of the chapter. 

The VD method may be thus expressed in a similar manner to the SA or Back-projection 

algorithms for each half-space, with three modifications. First, as observed in Fig. 47, the 

time shifts should be applied in opposite directions, whether the signal to correct (or pixel 

to reconstruct) is at a distance shallower or deeper than the focus. Second, it is assumed that 
the point-like detector at the focus has an angle of acceptance that is = 𝑎𝑟𝑐  𝑠𝑖𝑛(𝐷 2𝐹⁄ ) , so 

                                                             
* It is actually slightly more subtle: the arrows mark the shortest distance regardless of the 

depth. However, at distances deeper than the focus, the sources enter the far-field regime and the 
detector is seen as a point. 

Figure 47: Experimental basis for the Virtual Detector approximation. a) Three absorbers are imaged 
by a spherically focused sensor scanned along a line. The sensor has an angle of aperture θ. The arrows mark the 
shortest distances between the source and the sensor at the two scanning positions. b) B-scan of the source 
located closer to the sensor. c) B-scan of the source located at the focus. d) B-scan of the source located deeper 
than the focus. See text for a detailed discussion and the characteristics of the detector. 
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that no signals outside this angle are used in image formation. As a result, sources located 

near the focus are reconstructed with fewer signals than sources located away from the 

focus. In order to maintain a SNR as uniform as possible throughout the corrected image, 

each pixel is weighted with the number of signals it has been corrected with, which 

constitutes the third and last modification of VD with respect to standard delay-and-sum.  

In order to illustrate the concept and operation of the VD method, the B-scan of a 

small absorber imaged with a spherically focused sensor was simulated. The sensor had a 
focal length F = 12 mm and diameter D = 12 mm. The absorber was a sphere with a 

paraboloidal absorption profile and diameter 100 µm, located at 10.7 from the sensor (on-
axis) and was assumed to be uniformly illuminated. A lateral scan (off-axis) was performed 

with a width of 2 mm and a step size of 50 µm. The acoustic fields at each point in space 

were calculated using an analytical solution, which is a generalization of the solution 
provided in [21]. The analytical signals were then numerically integrated over the surface of 

the transducer, in order to take into account its geometry. The speed of sound was set to 
1490 m/s and the time resolution to 170 MS/s. 

Figure 48: Operation of the VD method at the signal level. a) Geometry for the simulated B-Scan with a 
sensor of focal distance F = D = 12 mm.  b) Result of the B-scan for absorber 1. The color scale is linear, and the 
image is normalized to its maximum. c), d) Virtual detector processing of two simulated signals for absorber 1, 
taken at the locations marked in b). The amplitude of the signals is normalized to the signal amplitude of the 
absorber at focus. c) The signal of interest is on-axis (blue/solid), and is to be corrected with the aid of signals 
acquired at other sensor positions, of which one of them is shown (red/dotted). The time-shift on the off-axis 
signal is corrected for, as per the VD method, generating the delayed auxiliary signal (black/dashed). d) The 
delayed auxiliary signal is added to the signal of interest (blue/solid), resulting in the VD-processed signal 
(black/dashed). 
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Fig. 48b shows the simulated B-scan for reference, where the signals for two sensor 

positions are highlighted with arrows. Figs. 48c and 48d illustrate the VD operation at the 

signal level for those positions. The figure shows that the VD method is indeed a valid 

description for the time shift on the optoacoustic signal that is due to the surface of the 

detector. VD can therefore be applied for coherent summation, enhancing the amplitude of 

the signal of interest. It can be noted, however, that the slowly-varying, negative part of the 

signal remains for the most part unchanged by VD. In following sections, it will be shown 

that the failure to correct for this signal distortion severely limits the performance of the VD 

in terms of accurate B-scan reconstructions. For this reason, a reconstruction algorithm that 
includes a more accurate description of the detection process was developed and is 

discussed in the following section. 

4.3.4 Model-based image reconstruction for focused detectors 
It was discussed in Chapter 2 that model-based algorithms, mainly the Interpolated 

Model-Matrix Inversion (IMMI) developed in our group, offer several advantages over 

standard reconstruction techniques such as Back-projection. For one part, IMMI has been 
shown to yield images without nonphysical artifacts such as negative absorption values or 

artificially enhanced boundaries [21, 44]. More importantly for the discussion herein, IMMI 

can be adapted to account for processes that may take place in actual experiments, such as 

varying illumination patterns [28] or tomographic detection geometries that do not fully 

enclose the object [55]. In particular, Rosenthal et al. [24] showed recently that the spatial 

properties of a finite-sized sensor can be combined with the model-matrix and 
demonstrated enhanced imaging performance in a tomographic configuration as a result. 

Despite the advantages of IMMI reconstruction algorithms over standard techniques, 
they have so far been limited to tomographic detection geometries in which either point-like 

or flat detectors are assumed. In this section, an IMMI algorithm for spherically focused 
transducers in a microscanning geometry is developed. The proposed algorithm is based on 

the combination of IMMI with the SIR of the detector through temporal convolution similar 
to [24]. The implementation of the SIR of the sensor differs with respect to [24] in one 

crucial aspect: instead of the semi-analytical solution proposed therein, the exact solution of 

the SIR for spherically focused transducers was used [69]. Due to the mathematical 
properties of the SIR in the vicinity of the focus, the combination of the model and SIR 

proved a non-trivial task. 

In the following paragraphs, the proposed reconstruction algorithm is described. 
Afterwards the possible errors due to an incorrect calculation of the SIR are explained and 
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the proposed solution is presented. Finally, the reconstruction method with the final model 
is briefly discussed. 

a) Combination of the Model-matrix and the SIR 

Let us start the discussion with a reminder of the IMMI description of the 

optoacoustic problem, with the aid of Fig. 49a. IMMI expresses the optoacoustic signals p 

measured at sensor positions 𝑟௜ as a linear combination of the elementary optoacoustic 

signals from absorbers within the discretized region of interest (ROI). The absorbers are 

located at positions 𝑟௞ and have an absorption 𝑧௞. The linear combination is expressed in 
matrix form as  

Figure 49: Model-based algorithm (IMMI) including the SIR of a sensor. a) The elements of 
the model-matrix can be understood as optoacoustic signals generated by elementary absorbers 
within the ROI, i.e., the pixels. On the other hand, the SIR expresses the distortion of an impulse-signal 
due to the surface of the sensor. The proposed model-matrix is generated by convolving the signal 
and the SIR at each pixel in the ROI, for all sensor positions. b) In general, the SIR is calculated only 
once within the same grid as the ROI, and for each scanning position only the pixels that overlap are 
convolved.  
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 𝑝 = 𝑀𝑧  ,   (4.7) 

where M is the point-like model matrix. 

On the other hand, it has been shown in Chapter 3, that the optoacoustic signal of a 

small absorber located at 𝑟௞ measured by a finite-sized transducer may be expressed as a 
convolution of the signal with the SIR of the sensor ℎ(𝑟௜, 𝑟௞, 𝑡) 

 𝑠ௗ(𝑟, 𝑡) = ℎ(𝑟௜, 𝑟௞, 𝑡) ∗ 𝑝(𝑟௜ − 𝑟௞, 𝑡)  . (4.8) 

Figure 50: The problem with the SIR discretization in the vicinity of the focus. a) Example of the SIR at 
one pixel close to the focus. Such function h has to be discretized to the model-matrix time instants for that pixel. 
b) Geometry of the sensor and the ROI for reference in the next sub figures. c) SIRs at the pixels, computed with 
the sampling rate and at the time instants of the model-matrix. Note the strong variations in amplitude along the 
sensor axis and along the scanning directions. The latter are expected, as they are due to the strong focusing of 
the sensor. The variations along the axis, however, arise from an inefficient sampling of the SIR.  d) SIRs at the 
pixels, computed with the proposed oversampling/downsampling scheme. e) Energies of the SIRs h shown in c) 
(blue) and d) (red). The energy is defined as  𝑬 = ∫𝒉𝟐(𝒕)𝒅𝒕.  f) Forward signal resulting from a model with an 
incorrectly discretized SIR (blue) and a correctly discretized one (red) compared with the analytical solution 
(black-dashed). 
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From these definitions, it follows that the SIR of the detector may be included in the 

model matrix M by convolving the signals 𝑝௜௞  for each pixel and each sensor position with 

the corresponding SIR ℎ(𝑟௜, 𝑟௞, 𝑡), which yields a finite-sized model-matrix 𝐻. 

The steps of the proposed algorithm may be then described as follows: 

1. Compute the model matrix M for the point-like case for the ROI and 

scan parameters desired. 

2. Compute  ℎ(𝑟௜, 𝑟௞, 𝑡) for the central scanning position for every pixel 

inside the ROI. 

3. For each sensor position, find the pixels to be convolved as per Fig. 

49b, apply Eq. (4.8) to them and repeat for the whole scan*. 

b) Correct computation of the SIR in the vicinity of the focus 

The SIR is a mathematical singularity at the focal point, which results in fast 

variations of the SIR amplitude for points close to the focus [69]. These variations take place 

at scales typically much smaller than the temporal and spatial resolutions of IMMI and the 
SIR may be discretized incorrectly even though an analytical solution is provided (Fig. 50). 

As a consequence, significant image artifacts may arise if the SIR is not represented 
correctly near the focus. The problem was solved here in two steps. First, the SIR was 

calculated with a time sampling rate two orders of magnitude higher than the IMMI 

sampling, to yield smoothly varying amplitudes. Afterwards, the SIR was downsampled in 

several steps to the IMMI sampling while keeping its energy constant at each pixel. This was 

achieved by the use of Finite Impulse Response filters at each downsampling step [64]. The 
procedure is a time-intensive operation but ensures the correct convolution of the model 

and the SIR for every point in the ROI. The procedure is illustrated in Figs. 50b to 50f. 

c) Image reconstruction 

Once the complete model matrix has been built, the image is reconstructed with 

iterative inversion. In the context of microscanning, there is a so-called limited-view 

situation due to the linear scanning geometry and the limited angle of acceptance of the 
sensor. Limited-view is a non-negligible issue in IMMI when the angle covered by the 

sensors	
   is	
   ≤180°,	
   as	
   the	
   inversion	
   problem becomes ill-conditioned [55]. In the case 
discussed herein, the effective detection angle is given by the angle of acceptance of the 

                                                             
* In Chapter 5, the possibility of using sensors located far away from the imaging ROI is 

demonstrated.  
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sensor, i.e. 60°. Therefore, we used a regularized matrix inversion. Specifically, the 

truncation of the LSQR method discussed in [55] was chosen, as it yielded the optimal 

reconstruction of numerical phantoms. 

4.3.5 Experimental techniques* 

The performance of the different reconstruction methods (VD and IMMI 

incorporating the SIR) was assessed for experimental measurements of increasing 

complexity. First, a description of the measurement setup is provided, and afterwards the 
different experiments are briefly described. 

In all experiments, the excitation was provided by a tunable optical parametric 

oscillator laser (Opotek Inc., Carlsbad, California), with a pulse width of 6 ns and a repetition 

rate of 10 Hz. The illumination was coupled through a fiber bundle (CeramOptec GmbH, 

Bonn, Germany) at a wavelength of 740 nm and it was left static throughout the 

experiments. The signals were acquired by a 14-bit, 250 MS/s data-acquisition board 

(Spectrum GmbH, Grosshansdorf, Germany) and band-pass filtered from 50 kHz to 40 MHz 

for noise removal. The sensor was mounted on a 3-axis translation system (Thorlabs GmbH, 

Karlsfeld, Germany).  

a) Measurement 1: single source 

The purpose of this measurement was to showcase the operation of the VD and 

IMMI methods experimentally, but under less demanding conditions than an actual 

biological experiment. The source was therefore a single absorbing microsphere, 100 µm in 

diameter. The sensor was a spherically focused transducer with F = 25.4 mm, D = 13 mm 
and 10 MHz center frequency with over 100% bandwidth (model V311, Panametrics-NDT, 

Waltam, MA).	
   In	
  the	
  results	
  section,	
   this	
  sensor	
   is	
  referred	
  to	
  as	
  “the	
  10	
  MHz	
  transducer”.	
  

Three B-scans with the sensor located at approximately 21, 25 and 29 mm from the source 

were taken, each with a 100 µm scanning step size over a length of 10 mm (although they 

are represented within the central 4 mm). In this case, each of the signals was averaged for 

100 laser shots for optimal SNR. The total measurement time was approximately 1 hour. 

b) Measurement 2: multiple sources in a plane 

As an intermediate step from B-scans to full microscanning images, a simple 

phantom was measured to assess the performance of the transducer later used for 

biological measurements. The sample was a scattering agar phantom of cylindrical shape. 

                                                             
* Measurements taken in collaboration with J. Gâteau. 
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On its top surface, 100 and 50 µm black microspheres were deposited. The phantom was 

measured by a spherically focused transducer with F = 12 mm and D = 12 mm, specified 

central frequency of 25 MHz and over 100% pulse-echo -6dB bandwidth (InSensor®, 

Kvistgaard, Denmark). This	
   sensor	
   is	
   referred	
   to	
   as	
   “the	
   25	
   MHz	
   transducer”.	
   The	
  

measurements were only taken with the microspheres lying in the focal plane. A 2D scan 

was performed in a region 4 mm by 3 mm with a step size of 100 µm in both directions. The 

scan is represented as the maximum amplitude projection (MAP) along the transducer axis, 

300 µm around the focal point. The total measurement time was approximately 30 minutes. 

c) Measurement 3: stacking of reconstructions 

 From the previous scan, one isolated microsphere was selected and a finer scan was 

performed around it with the 25 MHz sensor. Afterwards, the sensor was moved away from 

the microsphere, perpendicularly to the scanning plane. Two more scans were thus 

performed, at 0.25 and 0.5 mm from the original scanning position. The purpose of this 

measurement was twofold: first, to showcase the performance of the different 
reconstruction methods in a more complex environment than in the first experiment; and 

second, to demonstrate the formation of a 3D dataset from a stack of B-scans. Each B-scan 

had a length of 0.5 mm and was comprised of 51 scanning positions. 31 B-scans were 

obtained over a length of 0.3 mm at each depth. The step size was 10 µm in each direction. 

The 31 B-scans were reconstructed with the VD method and the proposed IMMI method. 
The resulting reconstructions at each depth were stacked together and are represented as 

the MAP taken within 300 µm of the expected source position. The total measurement time 
was approximately 1 hour. 

d) Measurement 4: imaging of real tissue 

Finally, the head vasculature of a 9 days-old mouse was measured ex vivo without 

removing the scalp. The mouse was 9 days old, shaved CD1® specimen, (Charles River 
Laboratories, Research Models and Services, Germany GmbH). It was euthanized with an 

intraperitoneal overdose of ketamine/Xylacin. The measurements were performed with the 
25 MHz sensor. Each B-scan had a length of 4 mm and was comprised of 81 scanning 

positions.  141 B-scans were obtained over a length of 7 mm. The step size was 50 µm in 

both directions. Each individual signal was averaged for 5 laser shots. The 141 B-Scans were 
reconstructed with the VD method and the proposed IMMI method. The resulting 

reconstructions were stacked together and are represented as the MAP taken between 10.5 
and 13.5 mm along the sensor axis. The total measurement time was approximately 5 hours. 
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4.3.6 Results 

a) Measurement 1: single source 

The experimental B-scan of a 100 µm microsphere, performed with the 10 MHz 

sensor and reconstructed with VD and the proposed IMMI method is shown in Fig. 51. The 

raw data (Fig. 51a) is the same as already presented in Fig. 47, but it is shown here with the 

source at the three positions in the same image for convenience. The figure shows the 

relative amplitude of the sources as well as the SIR distortion of the wavefronts inherent to 

a spherically focused sensor. In Fig. 51b, the reconstruction with the VD method is shown. 
The reconstructed amplitude of the out-of-focus absorbers is lower than at the focus, since 

the low-frequency components of the signals remain partially spread around the real 
location of the absorbers and do not contribute to the reconstructed amplitude. The results 

demonstrate the inability of the VD method to accurately recover the absorber amplitude 

and shape when the source is out of focus. 

Fig. 51c shows the result of VD after applying a 5 to 20 MHz band-pass filter on the 

signals, in order to improve the lateral resolution (Eq. 4.6). While the lateral size of all 

absorbers has indeed been improved, the reconstructed amplitude is still lower than 
expected. These results show that, even with signal filtering, the VD method cannot provide 

an accurate image reconstruction.  

Figure 51: Experimental B-scan with the 10 MHz sensor (F = 25.4 mm and D = 13 mm), and 
reconstruction methods. The detector is scanned along the top of the image. The images are represented in a 
linear color scale and normalized to their respective maxima. See text for the simulation details. a) Simulated B-
scan before any reconstruction is applied. b) Reconstruction with the VD method. c) Reconstruction with the 
filtered VD method. d) Reconstruction with IMMI. 
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Fig. 51d shows the performance of the generalization to IMMI developed in this 

work. The results show that by including the SIR of the transducer, IMMI is able to recover 

the amplitude of the absorbers more accurately. At the same time it yields uniform lateral 

dimensions, and therefore resolution, along the sensor axis, without the need for signal 

filtering. It is important to stress that neither in this case nor in the following the signals 
reconstructed with IMMI were treated with a filter other than the high-pass at 0.05 MHz for 

the removal of parasitic signals and signal offset.  

The reconstructed source absorption and size can be analyzed more closely with the 
aid of Fig. 52, where the axial and transversal profiles of the reconstructed B-scans are 

shown. Fig. 52a shows that the amplitudes reconstructed with IMMI are uniform to within 
5% of the maximum. Figs. 52b to 52d show the reconstructed profiles taken along the 

scanning direction for all three absorbers. The FWHM of the filtered VD reconstructions at 

the focus is 475 µm and similar for the absorbers out of focus.  The FWHM of the IMMI 

reconstructions, however, is ~400 µm for all three absorbers which, taking into account the 

intrinsic resolution of the sensor, results in an estimated object size of ~100 µm, as 
expected. The results show that the proposed IMMI method provides accurate and well-

resolved reconstructions of experimental B-scans in simple phantoms. 

As the 25 MHz transducer has a tighter focus than the previous sensor, it is worth to 

illustrate the effect of a tighter focus on the B-scan of a point absorber and the reconstructed 

Figure 52: Profiles along the reconstructions shown in Fig. 51. a) Profile along the depth for the middle 
of the reconstructions. b) to d) profiles along the scanning direction for the sources located at different depths as 
shown in a). Blue: VD reconstruction. Black-dashed: filtered VD. Red: IMMI. 
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images. For that, the B-scan of a 100 µm absorber measured with a sensor of F = D =12 mm 

(i.e., the geometry of the 25 MHz sensor) was simulated for three absorbers located along 

the axis. The unreconstructed B-scan is depicted in Fig. 53a. The figure shows that the 
amplitudes of the out-of-focus signals are 25% of the amplitude in focus, even though the 

sources are located only 1 mm away from it. This is in contrast to the 10 MHz transducer, 

where the sources were measured with 25% amplitude at 4 mm from the focus. The results 

demonstrate the trade-off to be made between lateral resolution at the focus and axial 

sensitivity when working when focused sensors. 

In Fig. 53b, the unfiltered VD reconstruction is shown. In this case, the effect of the 
transducer surface is also more significant than for the 10 MHz transducer: the low 

frequencies in the signals pose a serious limitation to the attainment of a uniform lateral 

resolution along the transducer axis. Of course, a good resolution may be partially restored 

by the use of signal filtering, as shown in Fig. 53c (high-pass filter at 4 MHz). However, the 

amplitude of the absorbers is not correctly recovered. The reconstruction for the proposed 

IMMI method is shown in Fig. 53d. In this case, the sources are reconstructed with uniform 

amplitude and resolution along the axis. The FWHMs correspond to the expected object size 

in all three cases, 100 µm*. 

                                                             
* The reconstruction profiles are qualitatively similar to the ones shown in Fig. 52; therefore 

they do not add to the discussion and were omitted. 

Figure 53: Simulation of a B-scan with a spherically focused detector (F = D = 12 mm),, and 
reconstruction methods. The detector is scanned along the top of the image. The images are represented in a 
linear color scale and normalized to their respective maxima. See text for the simulation details. a) Simulated 
B-scan before any reconstruction is applied. b) Reconstruction with the VD method. c) Reconstruction with the 
filtered VD method. d) Reconstruction with IMMI. 
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b) Measurement 2: multiple sources on a plane. 

A photograph of the multiple-microsphere phantom is shown in Fig. 54a and the 

coarse 2D scan of the full phantom is shown in Fig. 54b, where some of the structures can be 

recognized. The microsphere marked with an arrow was chosen for Measurement 3. The 

areas marked in red correspond to the finer scans shown in the bottom rows. For each row, 

the columns show the same scan filtered within different frequency bands, normalized to its 

maximum m. The figure shows several results worth noting. 

Fig. 54c shows that the definition sensor resolution as 𝛿 = 𝐹𝑐/𝐷𝑓 must be 

interpreted carefully in an optoacoustic context. Indeed, from such definition one would 
expect a resolution in focus of 100 µm as corresponds to the 15 MHz in the frequency band 

and therefore well-resolved sources. This is however not the case for the image shown. It 

Figure 54: 2D scan of a 100 and 50 m microspheres lying on a plane. a) Photograph of the phantom 
with delineated regions where a finer scan was performed. b) Coarse scan of the full phantom. c) to e) finer scan 
of the square region. Each image results from filtering the signals with a band-pass filter which frequencies are 
shown in the bottom of the column. Each image its normalized to its maximum m. f) to h) Same for the 
rectangular region. See text for a detailed discussion. 
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can be therefore concluded that the resolution is ultimately determined by the lowest 

frequencies in the source spectrum. If no image reconstruction is applied, the only way of 

improving the resolution is thus by high-pass filtering the signals, as shown in Figs. 54d and 

54e. 

Figs. 54f to 54h show that the lowest frequencies in the phantom are measured with 
higher amplitude that the higher frequencies (as shown by the m values). Since the phantom 

is only comprised of 100 and 50 µm sources, it can be understood that the low frequencies 

arise from the mutual interference of the individual microsphere optoacoustic waves and as 

a result, the whole phantom emits as a bulk for those frequencies. Additionally, it has to be 

noted that the frequency range from 0.5 to 15 MHz lies (for the most part) outside the 

optimal bandwidth of the detector. This finding shows that low frequencies compared to the 

central frequency of the detector may be measured with high amplitude if they are 

generated by objects that are absorbing or large enough (in this case, the bulk of the 

phantom), i.e. if they emit optoacoustic waves with high amplitude.  

c) Measurement 3: stacking of reconstructions 

From the phantom shown in Fig. 54a, the microsphere selected with an arrow was 
chosen and three 2D scans were performed with the source located at three different 

distances from the sensor. The scans along the x direction were chosen as the B-scans to 

reconstruct with filtered VD and IMMI. The reconstructed images were stacked and the 

resulting 3D datasets are represented as MAPs along the transducer axis in Fig. 55. 

Figs. 55a to 55c show the filtered measurement data and the reconstructions when 

the microsphere is in focus. In that case, it can be observed that the IMMI method improves 

the resolution along the scanning direction when compared with the VD method. VD 

however only results in better contrast of the image, which is to be expected since VD does 

not modify signals at the focus significantly. From these findings it can be concluded that the 
IMMI method provides superior imaging performance over signal filtering or the VD method 

in the vicinity of the focus for noisy signals. 

Figs. 55d to 55f show the measurement data and reconstructions with the source 

located at 0.25 mm from the previous location. In the case of the measured data, no object 
may be recognized. The filtered VD method (Fig. 55e) results in improved resolution and 

amplitude over the raw data, but results in a reconstructed object shape different from that 

in focus. Conversely, the reconstruction with IMMI (Fig. 55f) is similar to the reconstruction 
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in focus, which implies constant lateral resolution within 0.5 mm of the focus (0.25 µm to 

either side), as expected from the simulations. 

Figs. 55g to 55i show the measurement data and reconstructions with the source 

located at 0.5 mm from the first position. As expected, the measured data shows no 

resemblance to the expected object, but more importantly, the reconstruction filtered VD 

(Fig. 55h) provides little improvement in this case. This is in contrast to the IMMI 

reconstruction, in which the resolution along the scan direction x is kept constant when 

compared with the previous reconstructions. However, since the correction is only applied 

to one of the scanning directions, the reconstructed object shape is distorted. The results 

show that, despite this limitation, IMMI provides better imaging performance than the 
standard VD method for greater depths. Moreover, the IMMI method results in superior 

Figure 55: Microscanning of a microsphere at different distances from the sensor focus, reconstructed 
with the methods indicated. The reconstructions were applied to the scans at along the x direction. The left column 
represents the MAP of the filtered signals. The middle column represents the reconstructions with the filtered VD 
method. The rightmost column represents the reconstructions with the proposed IMMI method. See text for 
details. 
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performance even with very noisy data, in spite of the signal-averaging properties inherent 

to delay-and-sum algorithms such as VD. 

d) Measurement 4: imaging of real tissue 

Fig. 56a shows a photograph of the sample after optoacoustic imaging, with the scalp 
removed to reveal the head vasculature. Fig. 56b shows the reconstruction results of the VD 

method without additional signal filtering. Some blood vessels cannot be resolved (hint 1) 
and the shape of others does not match with the validation photograph (hints 2 and 3). This 

shows the failure of the unfiltered VD method to yield an image of the sample.  

Fig. 56c shows the VD method after an extra high-pass filter at 5 MHz was applied on 

the signals. Significant improvement in reconstruction quality is observed owing to the 
filtering procedure. Now different structures can be recognized and matched to the 

validation image in Fig. 56a (e. g., hints 1 and 2). However, there are some inconsistencies of 

the VD reconstruction with respect to the validation photograph.  Indeed, as seen in Fig. 56a, 

vessel 3 broadens and acquires a darker tone towards the ear, which should result in higher 

reconstructed amplitude in that region. In Fig. 56c, however, the reconstructed width and 
amplitude of the vessel remain relatively constant throughout its length.  

Figure 56: Performance of the different reconstruction methods for an ex-vivo biological measurement. The head 
vasculature of a 9 days-old mouse was measured. The reconstruction images are normalized to their respective maxima and 
represented in a linear color scale. a) Picture of the imaged region after the experiment, with the scalp removed. One of the 
ears is visible to the right of the picture, with the snout outside of the lower part of the image and the body above. b) VD 
reconstruction. c) filtered-VD reconstruction. d) Reconstruction with IMMI. See text for further details. 
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Fig. 56d shows the image obtained with IMMI. The proposed method yields a more 

accurate image than both VD reconstructions as the features of the blood vessels are more 

consistent with the validation photograph than in the VD cases. IMMI is able to correctly 

reconstruct the change in shape of vessel 3, and resolves the vessels in 1 more clearly. The 

reconstructed size of vessel 2 is slightly larger than the filtered VD reconstruction shows, 

which is expected from the validation image. The results show the overall superior 

performance of the proposed method over standard techniques in biological samples. 

4.3.7 Conclusion 

An image reconstruction method for scanning optoacoustics with spherically 

focused sensors has been presented. It is based on the model-based optoacoustic 

reconstruction algorithm IMMI for which the spatio-temporal response of the sensor was 

included. The reconstruction was applied to simulated and measured B-scans of point 
sources, and to the stacking of experimental B-scans of a biological sample. The IMMI 

reconstructions of the numerical and experimental data yielded uniform amplitude and 

lateral resolution along the sensor axis, in contrast to the standard image reconstruction 
method. As a result, in the biological application, the IMMI reconstructions of the 

experimental data were more consistent with the validation image than standard methods. 

The method proposed herein provides accurate images for scanning optoacoustics and can 

be readily applied to anatomical, functional and multi-spectral imaging at meso- and 

microscopic scales.  

There are several aspects in which both microscanning with focused detectors and 

the IMMI method described herein may be modified for improved performance. In the 

following paragraphs, changes to the current hardware and reconstruction method are 
discussed. Afterwards, the fundamental limits of the technique as a full 3D modality are 

analyzed. 

a) Practical considerations 

Currently, a microscan experiment such as the ex vivo measurement shown in the 

previous section takes approximately 5 hours to complete. Even the measurements of 

simple phantoms, like the 2D microsphere sample of Fig. 54, are time-consuming and 

laborious. Due to the small dimensions of the focal spot of the sensor and the long time it 

takes to obtain one single B-scan, the initial alignment and the choice of the scanning 

parameters usually take as long as the definitive measurement itself. As a result, in vivo 
studies in this system are not feasible and the applicability of the technique is thus limited. 
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There are two main bottlenecks in the current implementation, which may be 

alleviated for improved performance and acquisition times. First, the pulse repetition rate of 

the laser is 10 Hz. With the use of kHz repetition rate lasers, for example, acquisition times 

could be reduced at least tenfold*. Second, the translation stages are part of a setup intended 

for proof-of-principle studies in a variety of geometries, and were thus chosen for their 

versatility and carrying capacity, not for their speed or submicron accuracy. Thus, a setup 

specifically designed for microscanning and the choice of faster and more accurate stages 

should result in improved overall performance. Additionally, substituting the single element 

sensor by a multi-element array should result in shorter acquisition times as well. 
Ultrasound arrays, however, open the door to different measurement strategies, which are 

discussed in the next chapter. 

 With respect to the proposed IMMI method, the current implementation combines a 

2D propagation model with a 3D SIR. In a full 3D implementation, the complete 2D set of 

signals could be used during image formation and the scanned volume would be 

reconstructed simultaneously. This should result in isotropically enhanced resolution, and 

not mainly along the scanning direction, as seen in Fig. 55. There are two main reasons why 

this approach was not pursued on the present work. First, as discussed in the previous 

paragraph, the current microscanning implementation is not practical and has not gone 
beyond the proof-of-principle stage as a consequence. Therefore, the efforts were shifted 

towards a more practical modality for 3D imaging, as presented in the next chapter. The 

second reason relates to the planar acquisition geometry inherent to microscanning and is 

discussed in more detail in the following.  

b) Fundamental limits 

A planar measurement geometry is indeed practical for the imaging of murine 

anatomical regions with restricted access (e.g. joints or the neck area), and for superficial 

and microscopic applications. However, in terms of the efficient acquisition of signals from 

the object, planar scanning is far from the performance of a geometry that partially or totally 

surrounds the object (i.e., a tomographic geometry). 

This was discussed in the context of the model-matrix inversion but it is a limitation 

more fundamental than just numerical. The reason is that microscanning with focused 
detectors may be understood as a particular case of tomography with a very limited-angle of 

view, i.e., the angle of acceptance of the sensor, θ. In the case of the 25 MHz transducer, θ = 
60°, which is far from being considered tomographic in the traditional sense. While a 

                                                             
* See dissertation by R. Ma for an implementation of scanning microscopy along these lines. 
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broader angle of acceptance can be obtained only by a tighter focusing of the sensor (F/D  <

  1), this in turn results in degraded axial sensitivity, limits the penetration depth and thus 

the 3D performance of the technique. 

The use of transducer arrays, however, allows for certain flexibility in the choice of 

the focusing parameters and the arrangement with respect to the sample. This takes us to 
the final chapter, outlining image formation with ultrasound arrays in a 3D tomographic 

geometry, and the corresponding reconstruction algorithms that take into account sensor 

properties. 
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5. RECONSTRUCTION	
  ALGORITHMS	
  FOR	
  NON	
  -

CIRCULAR	
  TOMOGRAPHIC	
  GEOMETRIES 
In the previous chapter, it was demonstrated that making use of the transducer 

properties during image reconstruction results in improved image quality and resolution in 

a microscan geometry. However, it was also argued that this geometry was somewhat 

limited in terms of 3D imaging. In the present chapter, the knowledge of transducer 
properties and the image formation methods are adapted to the reconstruction of 

volumetric images in a truly 3D imaging geometry*. 

In contrast to the previous chapter, the work reported herein deals with a 

tomographic measurement geometry that encloses the object. In optoacoustics, tomography 

has been traditionally applied to the imaging of biological tissue at macroscopic scales, i.e., 

for whole-body anatomical imaging of small animals.  In combination with multi-spectral 

techniques, it has resulted in a variety of applications, such as functional imaging of the 

brain [13], time-resolved imaging of physiological processes such as kidney perfusion [11] 

and the imaging of exogenous contrast agents coupled to biomarkers of disease 
development [10, 12]. By the use of confined a illumination and high-frequency (>10 MHz) 

transducers, some results towards the imaging at mesoscopic scales have been also 

demonstrated [14, 32]. Tomography is therefore a powerful approach to image formation in 

optoacoustics, as it can provide well-resolved images at depths of up to a few centimeters. 

Traditionally, optoacoustic tomography in 3D has been performed by the stacking of 

2D cross-sectional images, each 2D image being acquired by surrounding the sample with 

detectors cylindrically focused to the imaging plane. Only in recent years has optoacoustic 

tomography been genuinely demonstrated in 3D with good performance [15, 49], where the 

sensors have been arranged on the surface of a sphere. However, rotationally- (or 

spherically-) symmetric tomography may exhibit degraded lateral resolution and contrast 

for sources away from the center of rotation. This effect is due to the sub-optimal spatial 

sampling of points in the periphery of the ROI [30]. As a result, the system achieves optimal 

performance only in a region close to the center of rotation, which effectively constraints the 

characteristics and dimensions of the samples that can be investigated with a given setup. 

It has been demonstrated that the loss of resolution and sensitivity may be 

exacerbated in part by the spatial properties of the detector and in part by the failure to 

acknowledge them during image formation. Rosenthal et al. [24] have shown in a 2D proof-
                                                             
* At the time of writing, the results in this chapter are under consideration for publication to 

Medical Physics. 
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of-principle study that the loss of resolution can be compensated by taking into account the 

shape of the detector in the image reconstruction procedure. However, in actual biological 

measurements, the signal-to-noise ratio (SNR) for objects away from the focus may not be 

sufficient to restore image quality by computational means alone. 

 In order to circumvent the limitations of conventional tomographic arrangements, 
Jérôme Gâteau, post-doc in our group, and the author have proposed a solution based both 

on a different measurement geometry and the use of a realistic image reconstruction 

algorithm*. The aim of this chapter is to present a description of the reconstruction 

algorithm and showcase its performance with respect to standard reconstruction 

algorithms in simulations and experiment. A brief description and motivation of the non-

conventional measurement geometry is provided for reference.  

The chapter starts (Section 5.1) with a short background on conventional 

optoacoustic tomography and its proposed nonconventional counterpart. In Section 5.2, the 

proposed reconstruction algorithm is described in detail. In Section 5.3, the experimental 
and numerical techniques used to test the performance of the method are provided. In 

Section 5.4 the results of simulation and experiments are shown, and finally in Section 5.5 

the results of the chapter are discussed. The novel measurement geometry is, at the time of 

writing, in press at Med. Phys. [43], and the proposed reconstruction algorithm is under 

consideration for publication in the same journal.  

5.1 Conventional vs. nonconventional optoacoustic tomography 
In this section, the characteristics of conventional tomography and its limitations are 

briefly described; a detailed discussion of the concepts outlined herein can be found in the 

literature [23, 24]. Afterwards, the proposed geometry is described and the relevant 
parameters are given. 

Let us introduce tomography with a simplified case of a circular detection geometry. 

Fig. 1a shows an schematic of the geometry: the region of interest (ROI), that contains the 

sample, is measured by sensors located at different positions along a circle of radius 𝑅଴. The 

individual sensor positions are referred throughout this chapter as projections. Whether the 

sensor is actually translated from one position to the next or is part of a circular array of 

identical sensors makes no different for the present discussion. Additionally, the 

phenomena described herein are equally applicable to the case of sensors cylindrically 

focused onto the plane, and to the case of an array with symmetry along the z axis. 
                                                             
* At the time of writing, the development of the measurement geometry, by J. Gâteau, and the 

work on the corresponding image reconstruction algorithms, by the author, are still work in progress. 
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In the particular case of point-like sensors*, each source in the ROI is measured 

isotropically: the measured amplitude for each projection depends only on the source 

distance to the sensor. In the general case of a sensor with a finite lateral size d (focused or 

not), it can be understood from the results of previous chapters that this will not be the case. 

Due to the finite size of the sensor, sources located outside the main lobe of its sensitivity 

field will be measured with less amplitude than sources located in front of the detector. This 

is depicted in Fig. 57a as the -6 dB contour of the sensitivity field of a focused or finite-sized 

transducer. It can be observed that the fields corresponding to different projections will 

overlap only on a region whose radius is approximately determined by the width of the 
main lobe. As a result, sources outside the overlapping region (marked in red in Fig. 57a) 

will be reconstructed inaccurately unless the sensor properties are taken into account 

during image formation. However, the SNR of those sources may not be sufficient for an 

accurate reconstruction, depending on the robustness of the algorithm. 

The concept of the nonconventional geometry is shown in Fig. 57b. The proposition 

is that, by linearly scanning the sensor at each angular position, the sensitivity fields overlap 

with one another in a larger region and signals generated at every point in the ROI are 

efficiently measured. An additional advantage of the scan+rotation geometry is its flexibility. 

By adjusting the number of scanning positions at each angle and the distance between them, 
the scanned area can be chosen to fully cover of the object under study. Thus, the 

application at hand defines the scan parameters, instead of the opposite. For the case 

presented in this work, the details on the scanning parameters can be found in Section 5.3. 

Let us now discuss the measurement geometry in the 3D case. As discussed 
previously, one of the most common implementations of 3D imaging in a tomographic 

environment makes use of sensors cylindrically focused to the ROI, as shown in Fig. 57c. The 
volumetric image is generated by scanning the sensors vertically and stacking of the 2D 

images taken on each plane. As discussed in the previous chapter, the fixed focus F and 

diameter D of the sensor results in a resolution along the scan direction (the z axis in this 
chapter) which is dependent on the frequency f as 𝛿 ≈ 𝐹𝑐/𝐷𝑓 = 𝜆  𝐹/𝐷 where c is the speed 

of sound in the medium and 𝜆 the wavelength for that frequency. However, this resolution is 

only attained at the focal point of the sensor and, together with the sensitivity, degrades 

rapidly away from it. 

                                                             
* The definition of point-like sensor within this context is equivalent to the one discussed in 

Chapter 4, section 4.1.2. 
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In the work presented herein, a linear transducer array was used instead, as shown 
in Fig. 57d. The main advantage of using a linear array as opposed to a focused detector is 

the possibility of attaining a uniform vertical resolution without the need to mechanically 

scan the sensor. A uniform resolution 𝛿 is achieved by reconstructing the image with the 

sufficient number of array elements, which is explained in the following.  

The vertical resolution achieved by the array can be described in analogy to the 

focused sensor (see Fig. 57d): in the case of the array, F represents the distance from the 

middle of the array to the point being imaged. D is determined by the number of sensors 

used to reconstruct and the distance between the individual array elements 𝑑௘ , which sets 
an upper limit for D, which we define as 𝐷௠௔௫ = 𝑁௘௟௘௠ · 𝑑௘ . Thus, the vertical resolution for 

Figure 57: a) Conventional tomography with a finite sized sensor. The sensitivity field, represented 
as the -6 dB contour, overlaps in a region in general smaller than the ROI. b) Proposed nonconventional 
tomography: the sensor is scanned laterally at each angular position. By adjusting the spacing and number of 
scanning positions, the overlapping region can be adapted to the size of the ROI. c) Lateral view of the ROI 
with a focused transducer. d) Lateral view of the ROI with an ultrasound array. The colored array elements 
are used to attain the desired resolution at the corresponding distance. See text for details. 
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any two points in the ROI will be equal if 𝐹ଵ/𝐷ଵ   = 𝐹ଶ/𝐷ଶ. However, for an arbitrarily large D 

the maximum resolution achievable by this technique is limited to 𝛿 =   𝜆/2 [31] and 

therefore no resolution is gained if 𝐹/𝐷 < 0.5. This implies that, by placing the array at a 

distance 𝐹ଵ ≤ 𝐷௠௔௫/2 from the ROI, the full array can be used during image formation*. In 

the work presented herein, the full array was used in the reconstructions, thus ensuring a 

constant vertical resolution throughout the ROI. 

In spite of the clear advantages of the proposed non-conventional geometry over 

standard tomography, it will be shown that the use of reconstruction algorithms based on a 

point-like approximation may still result in degraded imaging performance. In order to 

optimally reconstruct a volumetric image of the object, an advanced imaging algorithm was 

developed and is discussed in the following. 

5.2 Model-based image reconstruction in 3D with sensor properties 
In this section, the proposed reconstruction method is described. The algorithm is 

based on the 3D Interpolated Model-Matrix Inversion (IMMI) presented in Chapter 2. A brief 

overview is provided to set the basis of the modifications implemented in the following 

sections. However, since the modifications are based on the structure of the model-matrix, 

and not on the underlying semi-analytical solution to the optoacoustic forward problem, 

what follows is a qualitative exposition of the IMMI algorithm. For a more detailed review, 

refer to Chapter 2 and the cited literature. 

The IMMI algorithm expresses the optoacoustic signals detected at each sensor 

position as a linear combination of the elementary absorbers within the ROI 

 𝑝 = 𝑀𝑢  .   (5.1) 

where p is a vector representing the signals for every sensor position and u 

represents the absorption of the elementary sources within the ROI. M is the model matrix, 

that describes the generation and propagation of the optoacoustic signal from every 

absorber to every sensor position.  

In Chapter 2 (section 2.4.2) 𝑝௜௞(𝑡) was defined as the wave generated by the source 

𝑢௞ and measured at sensor position 𝑟௜, as can be seen in Fig. 58a 

 𝑝௜௞(𝑡) ∝ 𝑢௞ ቈ
𝛿(𝑐𝑡 − |𝑟௜ − 𝑟௞|)

|𝑟௜ − 𝑟௞|
቉  . (5.2) 

                                                             
* Due to the tomographic geometry in the plane, points at distances further than 𝐹ଵ for one 

array position will be located closer for the opposite array position. 
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The	
   term	
   in	
   brackets	
   is	
   the	
   Green’s	
   function	
   between	
   source	
   and	
   sensor	
   and	
  

corresponds to the elements in the model matrix, whereas 𝑢௞ is the absorption of the 

elementary source k *. 

In the following, the combination of the model-matrix with the sensor properties is 

explained. Afterwards, the details on the computation of the matrix are described.  

5.2.1 Model-based in 3D with transducer characteristics 

The implementation of the transducer properties presented herein is different than 

the convolution method of the previous chapter. The reason is that the convolution method 

requires an explicit analytical solution for the SIR, which does not exist for the geometry of 

the array elements in this work (cylindrically focused detectors). The proposed method is 

based on the computation of the SIR with the model-matrix itself, as follows. 

Let us recall the definition of the SIR of a detector i at a point 𝑟௞ 

 ℎ௜(𝑟௞, 𝑡) = න
𝛿(𝑐𝑡 − |𝑟௦ − 𝑟௞|)

|𝑟௦ − 𝑟௞|
𝑑S    ,

ୗ
 (5.3) 

where 𝑟௦ spans the surface S of the detector. Eq. (5.3) can be discretized dividing the 
surface of the detector into point-like sensors, and the integral in Eq. (5.3) can be thus 

performed numerically. From Eq. (5.2) and the discretization of Eq. (5.3), it follows that the 

model-matrix for a sensor of finite size can be computed by summing up model-matrices for 

point detectors. Such matrices are calculated for point-like sensors located on the surface of 

the finite-sized sensor. 

Fig. 58b shows a top-view of the relative arrangement of the ROI and one finite-sized 

sensor of surface S to illustrate this concept. The center of the finite-sized sensor i is located 

at 𝑟௜ with respect to the center of the ROI. Its surface is comprised of elementary sub-

sensors s located at  𝑟௦. The signal generated at voxel k and measured by sensor i is defined 

as 𝑝௜௞
௙௜௡௜௧௘(𝑡).  By applying Eq. (5.3), such signal can be synthetized from the signals measured 

by the sub-sensors s, 𝑝௦௞
௣௢௜௡௧(𝑡), which have the form of Eq. (5.2). Thus,  𝑝௜௞

௙௜௡௜௧௘(𝑡)  can be 

calculated in the following manner 

 𝑝௜௞
௙௜௡௜௧௘(𝑡) =෍𝑝௦௞

௣௢௜௡௧(𝑡)Δ𝑆
௦ఢௌ

= 𝑢௞෍ቈ
𝛿(𝑐𝑡 − |𝑟௦ − 𝑟௞|)

|𝑟௦ − 𝑟௞|
቉ Δ𝑆  

௦ఢௌ

 (5.4) 

                                                             
* The multiplicative factor 𝑚௟௞  has been omitted for simplicity. 
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Eq. (5.4) shows that a discrete computation of the SIR can be done by summing 

elements of the model-matrix, which are shown in brackets. 

In terms of SIR calculation, the spacing 𝛿𝑠 between the sensors is typically chosen 

such that it can be considered infinitesimally small compared with a given wavelength, i.e. 

𝛿𝑠 ≤ 𝜆/10 . 𝜆 typically represents the wavelength at the central frequency of the sensor. 
However, for the implementation in the model-matrix, it was found in a simulation study 

that a spacing close to the voxel size is usually enough for an accurate representation of the 
SIR on the measurement geometry. Therefore for the present study, the spacing was chosen 

as  𝛿𝑠 = 𝜆/4. The exact quantities used for the calculation of the matrix are provided in 

section 5.3.3. 

In conclusion, the SIR of a finite-sized sensor can be included in the IMMI algorithm 

following these steps: 

1. For each sensor position of the actual scan i, the sensor surface is divided 
into point-like sensors s spaced by 𝛿𝑠. 

2. For each of the sensors s, the corresponding model-matrix  𝑀[𝑠] is computed. 

3. A new model-matrix for the sensor i is computed, by summing up the matrix 
elements of 𝑀[𝑠] for all s corresponding to the same voxel k. 

The details of the matrix computation and inversion are provided in the following 

Section. 

Figure 58 a) Schematic of the discrete ROI and one point-like sensor to illustrate the 
structure of the model-matrix elements. b) Schematic of the discrete ROI and one finite-sized sensor 
to illustrate the principle of matrix summation for the SIR implementation into the model-matrix. See 
text for details. 
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5.3 Experimental and numerical techinques 
The performance of the proposed IMMI method was assessed in simulations and 

experiment. Since the parameters of the measurement geometry and the model-matrix are 
determined by the sample measured, a description of the measured samples and the 

experimental setup is provided first (sections 5.3.1 and 5.3.2). In section 5.3.3 the 

computation of the model matrix is detailed. In section 5.3.4 the computation of the 

theoretical signals for the simulation study is briefly discussed. Finally, the Back-projection 

algorithm in 3D used for comparison is described in section 5.3.5. 

5.3.1 Samples and experimental setup 

a) Sample 1: absorbing microspheres 

A phantom was built that consisted on three absorbing polyethylene microspheres 

(Cospheric LLC, Santa Barbara, California), 50 µm in diameter. The microspheres were 
placed 1 cm below the surface of a transparent agar block, and the phantom was positioned 

so that the three microspheres lay approximately on the x-y plane, defined as the middle of 
the array. 

b) Sample 2: knotted suture 

In this case, the phantom consisted of a suture thread, 300 µm in diameter 

(RESORBA Wundversorgung GmbH & Co. KG, Nürnberg, Germany), tied to a loose knot and 

inserted in a scattering agar matrix. Such a phantom provides a complex structure with high 

amplitude signals. 

c) Sample 3: mouse paw 

The biological sample was the hind left paw of a mouse, measured ex vivo*. The 

sample was chosen for two reasons. First, its recognizable features and vascularization 

offered an interesting and challenging imaging environment. Second, the mouse paw fits a 
relatively small ROI, such that the corresponding model-matrix was of a manageable size for 

this proof-of-principle study. 

d) Detector and acquisition system 

The detector used in this study was a medical ultrasound linear array of 128 

elements (Acuson L7 probe, Siemens AG, Erlangen, Germany). The array was placed 

vertically as shown in Fig. 59a. Each of the elements was focused in the rotation plane at a 
                                                             
* A CD1 (r) specimen, Charles River Laboratories, Research Models and Services, Germany 

GmbH. The mouse was euthanized with an intraperitoneal overdose of ketamine/Xylacin. 
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distance of 𝐹 = 19 mm (which was determined experimentally) and had lateral dimensions 

of 𝑑 = 4 mm in-plane and 𝐿 = 300  µm out-of-plane. The electrical impulse response of the 

transducer was characterized as described in Chapter 3, yielding a central frequency of 5 

MHz and over 100% -6dB bandwidth. For this reason, the computation of the model matrix, 

the discretization of the ROI and the choice of the scanning parameters were done 

considering the wavelength at 5 MHz, 𝜆 = 300 µm. 

Unless stated otherwise, the signals were averaged over 10 laser shots and acquired 

in parallel for all 128 elements by 8 custom-made acquisition boards, with 16 channels each, 

12-bit resolution (over a 16 mV range) and a sampling rate of 40 MS/s (Falkenstein 

Mikroelektronik, Baldham, Germany). Before image reconstruction, the signals were 

corrected with the experimentally determined electrical impulse response with a Weiner 

deconvolution procedure [65]. Afterwards, a band-pass filter from 50 kHz to 9 MHz was 

applied to for noise removal and to delimit the reconstruction bandwidth. 

e) Illumination 

 The excitation was provided by a tunable optical parametric oscillator laser (Opotek 

Inc., Carlsbad, California), with a pulse width of 6 ns and a repetition rate of 10 Hz. The 
illumination was coupled through a four-arm fiber bundle (CeramOptec GmbH, Bonn, 

Germany) at a wavelength of 760 nm. 

f)  Sensor movement 

The array was mounted on a positioning system with three linear translation stages 

and one rotational stage (Thorlabs GmbH, Karlsfeld, Germany). The movement of the stages, 

the laser excitation and the data acquisition were synchronized by a trigger signal from the 
laser. 

The transducer, illumination and the mouse were held inside deionized water in 

order to achieve optimal acoustic coupling. The water temperature was maintained at room 

temperature (19°), which resulted in a speed of sound of 1475 m/s. This value was used for 

both for image reconstruction and simulations. 

The measurement time was 20 minutes for each sample. 

5.3.2 Measurement parameters 

For the proof-of-principle presented herein, the dimensions of the ROI were set to: 6 
mm by 6 mm in the x-y plane and 13 mm along the vertical direction z. These parameters 

where chosen to fully enclose the samples described previously. The discretization of the 
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ROI into voxels is discussed later in this section, where the parameters of the model-matrix 

used for image reconstruction are explained. 

The ROI was scanned using the 128-element transducer array, whose elements were 

positioned parallel to the z axis, as was shown in Fig. 59a. Fig. 59b shows a top-view of the 

measurement geometry with respect to the ROI. The sensor was arranged tomographically 

around the ROI at 72 angular positions, spanning 180°. Within each angle, the sensor was 

scanned linearly, alternating between 2 and 3 positions per angle. The spacing between 
linear positions was set to  2 𝜆𝐹 𝑑⁄ = 2.7  mm, where the quantities are as defined in 5.3.1. 

The total translation span was therefore 6.75 mm and the scan spacing corresponds to the 

sensor’s	
   beam-width, defined as the full-width at half-maximum (FWHM)	
   of	
   the	
   sensor’s	
  

sensitivity field at 5 MHz. With such a spacing value, the 3-2 overlapping pattern of the scan 

ensures a thorough sampling of the ROI. 

5.3.3 Computation of the model-matrix 

The model-matrix was calculated for the ROI and the measurement geometry 

described in the previous section.  

a) Discretization of the ROI 

We recall that the dimensions of the ROI where 6 mm x 6 mm in-plane and 13 mm 
out-of-plane. Since the detection geometry is tomographic in the x-y plane and linear along 

Figure 59: a) Perspective view of the relative position of the ROI and the array. Note that the 
elements of the array are positioned vertically, resulting effectively in a cylindrical detection geometry. 
(The illumination was omitted from this graph for simplicity) b) Top-view of the relative position of the 
ROI, the illumination and the array positions. At each rotation angle, the transducer array is translated 
linearly. 
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the z-direction, the maximum resolutions achievable in each direction are a priori different 

[23]. The ROI was discretized based on this constraint. Furthermore, the discretization was 

done in fractions of the wavelength at 5 MHz, in order to fulfill the Shannon criterion in 

terms of spatial sampling [31]. Specifically, the resolution in-plane was set to  𝛿𝑥𝑦 = 𝜆/4 =

75  µμm, corresponding to half the Shannon frequency, which resulted in n = 81 voxels in the x 

and y directions. 

The voxel size out-of-plane was based on the maximum resolution that can be 

achieved through beamforming, as explained in Fig. 57d. A constant F/D = 0.5 out-of-plane 

was chosen so that  𝛿 = 𝛿𝑧 =   𝜆/2 = 150  µμm. 𝛿𝑧 and the height of the ROI, 13 mm, determine 

the number of voxels in the z-direction, 𝑛௭ =   88.  

b) Discretization of the sensors 

The discretization of the sensors was done based on 𝛿𝑠 = 𝜆/4 = 75  µμm. Given the 
dimensions of each sensor in the array (0.3 mm by 4 mm), this resulted in 4 point-like 

detectors along the vertical direction and 53 in-plane, for a total of 212 sub-sensors per 

individual projection. From this point on, the discussion of the matrix computation is done 

based on the final matrices that result from summing the matrices for the sub-sensors. 

c) Dimensions of the matrix 

The dimensions of the model matrix are determined by the ROI discretization and 

the measurement geometry, as described previously: 72 angles with a 3-2 scanning pattern, 
for a total of 𝑁ఝ = 180 detection positions. Vertically, the transducer has 𝑁௘ = 128 

elements. This results in a total of P = 23,040 distinct sensor positions to be computed. Each 
of the signals is discretized in a time T. 

While N and P are determined by the ROI and the measurement geometry, the exact 

value that T can take is constrained by N, P and the dimensions of the ROI. In order to fully 

enclose the ROI, the model must sample the time-of-flight from the closest distance between 

any sensor position and any voxel, up to the furthest. The sampling interval, defined as  𝛿𝑡, 

should fulfill the Shannon criterion, and thus be chosen as a fraction of the time it takes for 

the optoacoustic wave to traverse one voxel [21]. As a result,  𝛿𝑡 = 𝛿𝑥𝑦 2𝑐⁄ ~  50.85  ns and T 

= 784 time samples per sensor position. 

With these parameters, the model-matrix would have approximately 18 million rows 

and 0.6 million columns. Such a number of matrix elements is equivalent to 0.6 TB of data, 
even considering that the matrix is sparse. The processing and storing of such a matrix is 
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indeed possible with a cluster or a Teraflop-capable supercomputer, but such computational 

power was not readily available to our group. Therefore, in order to reduce the size of the 
matrix to be computed, we exploited the symmetries of the measurement geometry. 

d) Symmetries in the ROI and the matrix 

We consider two groups of symmetries separately: out-of-plane translations* and in-

plane reflections. 

Fig. 60a illustrates the principle behind the out-of-plane translational symmetry of 

the scan. The ROI, labeled A, is shown on a side view with respect to the position of two 

sensors of the array. Sensor 1 is closest to the x-y plane and sensor 2 is at a distance d from 
sensor 1. Let us assume that A is extended symmetrically along the vertical direction, as 

shown by the dotted line, resulting in the auxiliary volume labeled B, wherein A is 

contained. 

Let us also assume that a matrix is calculated for the ROI B. Thus, the values for such 
a matrix at a given time 𝑡௝ (i.e., for the voxels located at a distance 𝑐𝑡௝), would be the same 

for both sensors 1 and 2.  Thus, the matrix would have stored exactly the same values at two 

different locations: the sub-matrix for the voxels within A that are detected by sensor 2, can 

                                                             
* The general concept of vertical symmetry for 3D model-based reconstructions was 

conceived by Andreas Bühler. The more general implementation of the method, discussed here, was 
done by the author. 

Figure 60 a) Illustration of the vertical symmetry of the measurement geometry and hence the 
model-matrix. b) Illustration of the in-plane symmetries of the measurement geometry with respect to the 
ROI. See text for details 
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be obtained by the sub-matrix of voxels within B that are detected by sensor 1. The only 

operation needed is a reordering of the matrix elements. 

In this manner, a matrix 𝑀஺ calculated for each element of the array in the ROI A, and 

a matrix 𝑀஻ calculated only for sensor 1 in the ROI B, contain both all the information 

needed to reconstruct the volume A. 

The benefit of this approach can be understood by computing the total number of 

elements for both matrices, defined as 𝑁்஺ and 𝑁்஻  for 𝑀஺ and 𝑀஻ respectively. If all other 

parameters of the matrices are equal, the ratio between 𝑁்஺ and  𝑁்஻  results in: 

 
𝑁்஺

𝑁்஻
=
𝑁௘ ∙ 𝑁ఝ ∙ 𝑇 ∙ 𝑛ଶ ∙ 𝑛௭஺
1 ∙ 𝑁ఝ ∙ 𝑇 ∙ 𝑛ଶ ∙ 𝑛௭஻

=
𝑁௘ ∙ 𝑛௭஺
𝑛௭஻

. (5.5) 

Given the resolution along the vertical direction 𝛿𝑧 and the height of ROI A, 𝑛௭஺ is 
given and 𝑛௭஻ is thus determined by the distance d between sensor 1 and sensor 2. In order 

to reconstruct the volume A with an F-number of 0.5 at every voxel, all 128 elements of the 

array have to be used in the reconstruction, which in turns determines d. The result is an 

extended ROI B of 57.6 mm in height and 𝑛௭஻ = 385 voxels. With these values and Eq. (5.5) 

it follows that, by exploiting the vertical symmetry of the measurement geometry, 𝑀஻ is 29 
times smaller than 𝑀஺ would be, or ~21 GB. The load times and RAM memory requirements 

for computing and inverting such a matrix are still very demanding. The size of the actual 

matrix to be computed was further reduced by making use of the in-plane symmetries of the 

measurement geometry. 

Fig. 60b shows a top view of the ROI with the in-plane sensor positions. Since the 

measurement geometry is not circular, two contiguous sensor positions are not related by a 

rotation around the z axis. However, the measurement geometry was chosen to be 

symmetric with respect to four of the eight symmetries of a square: the null symmetry, two 

reflections and a 90° rotation. 

In Fig. 60b, the sensor positions symmetric to sensor 1 are shown and labeled 2 to 4. 

Sensor 1 yields: sensor 2 under reflection with respect to the I axis; sensor 3 under a clock- 

wise 90° rotation around the z axis; and sensor 4 under reflection with respect to the x axis. 

If similar symmetries are applied to voxel k, it is evident than the sub-matrices for sensors 1 
to 4 are the same for every k, except for a reordering of the voxel indexes. 

Therefore, by computing the model-matrix for the first ¼ of the sensor positions, the 
other 3𝑁ఝ/4 individual projections can be found transforming the voxel indexes 
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accordingly. The application of the in-plane symmetries just described further reduces the 
size of the calculated matrix to ~10 GB*. 

e) Final parameters of the model-matrix 

The final matrix was computed with the parameters shown in Table 4.1. The 

computation was performed on a workstation with 16 X5650 Intel Xeon cores, at 2.67 GHz 

each, running in parallel. The algorithm was programmed and executed in MATLAB ( . The 

total computing time was about 35 hours, at 45 minutes per projection. The matrix was 

stored and used for both the simulation study and the reconstruction of the experimental 

data.  

In order to demonstrate the effect of including the SIR in the model, a second matrix 

with the same parameters was computed. This matrix, however, was calculated only for one 
sensor per projection, i.e., is the model-matrix corresponding to point-like sensors. 

The inversion of the matrix was performed with an unregularized LSQR algorithm. 

The optimal inversion parameters were assessed by reconstructing the signals from a 
numerical phantom and comparing with the expected image. The minimization of the 

reconstruction error was achieved after 6 iterations. Due to the re-indexing of the matrix 
associated to the symmetries, the time needed to compute one iteration of the 

reconstruction is about 5 hours. 

5.3.4 Calculation of theoretical signals 

In order to avoid the inverse crime, whereby the forward signals are computed with the 

same model that is used for inversion, the theoretical signals for the simulation study were 

calculated analytically. 

                                                             
* As a result of the transducer response and its location with respect to the ROI, the number 

of nonzero matrix elements is different for each projection. Therefore, the matrix computed with both 
sets of symmetries is not half the size of the matrix computed with only the vertical symmetries. 

𝑛 𝑛௭ P T Sub-sensors 𝛿𝑠 

81 88 45 784 4 x 53 75 µm 

𝛿𝑥𝑦 𝛿𝑧 ROI B width ROI B height ROI A width ROI A height 

75 µm 150 µm 6 mm 56.7 mm 6 mm 13 mm 

Table 1: Parameters for the final model-matrix and the imaging ROI. 
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The sources were a grid of 7 by 7 spherical absorbers with a paraboloidal absorption 

profile, generalized to 3D from [21]. They were placed on the median plane of the ROI and 
had  diameter of 3𝛿𝑥𝑦 =  225 µm. 

The effect of the transducer SIR on the forward signals was taken into account by 

dividing the sensor surface into points and summing up each individual signal. The distance 
between the elemental sensors was taken as  𝜆/10, which represents a finer spacing than in 

the model implementation. This resulted in 10 x 134 sub-sensors for every projection. The 
signals were calculated for every projection. 

5.3.5 Back-projection reconstructions 

In order to assess the performance of the proposed model against conventional 

reconstruction methods, the simulated and experimentally measured signals were 

processed with the Back-projection method as discussed in Chapter 2. 

The parameters of the ROI were the same as for the model-matrix. The sensors were 

assumed to be point-like, located at the center of the actual sensors. The reconstruction of 

the whole volume took approximately 4 minutes on an average desktop PC. 

Figure 61: Reconstructions of a plane full of point absorbers. a) Back-projection. b) Point-like IMMI. c) 
Proposed finite-sized IMMI. d) Profiles through the absorber row marked with 1 in c). Black-dashed: Back-
projection. Blue: point-like IMMI. Red: Proposed finite-sized IMMI. e) Profiles through the absorber column 
marked with 2 in c). Colors as in d). See text for discussion. 
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5.4 Results 

5.4.1 Simulation results 
The reconstruction results of the numerical phantom are shown in Figs. 61 and 62. 

Fig. 61 shows the results in the median plane of the ROI and Fig. 62 shows the same results 
from a side-view of the ROI, in order to illustrate the in-plane and out-of-plane performance 

of the reconstruction algorithms. 

a) In-plane 

Fig. 61a shows the reconstruction of the numerical phantom that was obtained with 

the full Back-projection method as a cut through the median plane of the ROI. The results 
show that the objects are reconstructed in a square grid, as expected, but the reconstructed 

amplitudes show a gradient towards the positive y direction (the sensor positions surround 
the ROI as shown in Fig. 59). Additionally, the reconstruction shows the presence of 

negative values, which degrades the contrast in the image. The results shows the failure of 

conventional Back-projection to achieve a uniform reconstruction in the plane. 

The results for the point-like model-matrix are shown in Fig. 61b. The figure shows 

an slight improvement with respect to Back-projection, in the form of better contrast. 
However, the variation in reconstructed amplitudes along the y axis can still be observed 

Figure 62: Reconstructions of a plane full of point absorbers, side view. a) Back-projection. b) Point-
like IMMI. c) Proposed finite-sized IMMI. d) Profiles through the absorber row marked with 1 in c). Black-dashed: 
Back-projection. Blue: point-like IMMI. Red: Proposed finite-sized IMMI. e) Profiles through the absorber column 
marked with 2 in c). Colors as in d). See text for discussion. 
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(for a clearer view refer to Fig. 61e). We may conclude that such an effect is due to the 

sensitivity field of the sensor, which is not completely uniform along the transducer axis. 

On the other hand, the reconstruction with the model-matrix including the sensor 

properties, shown in Fig. 61c, exhibits not only improved contrast but also a uniform 

reconstructed amplitude throughout the plane. The results demonstrate the importance of 
taking into account the sensor properties during image reconstruction. 

Fig. 61d shows the profiles of the reconstructions for the three different methods, 

taken along the x axes for the furthermost row of absorbers. The figure shows a twofold 

increase of the reconstructed amplitude with the finite-sized model as opposed to Back-

projection or the point-like model. Additionally, the object sizes reconstructed with the 

proposed method correspond to the expected object size: the full-width at half-maximum 

(FWHM) is approximately 3 voxels for each source. The results show the improved in-plane 

resolution that results from the inclusion of the transducer properties in the image 

reconstruction process. 

Fig. 61e shows the profile taken along the row of absorbers located near the right 

edge of the ROI. Both of the reconstruction methods based on point-like detectors fail to 
compensate for the gradient in amplitudes that result from the properties of the sensor. The 

reconstructed amplitudes with the proposed model, on the other hand, are approximately 

constant. From these results, it can be concluded that the combination of the 

nonconventional geometry with an accurate image formation algorithm achieves an 

accurate and uniform reconstruction on the planes of the ROI. 

b) Out-of-plane 

The same reconstructed volume is shown as a cut through x = 0 in Fig. 62, where the 

sensor is located left to the image. Like in the previous figure, Figs. 62a to 62c show the 
results for the Back-projection, point-like model and finite-sized model respectively. The 

Back-projection reconstruction (Fig. 62a) shows the same artifacts as for the in-plane case, 

namely the gradient in amplitudes and low contrast. Additionally, the shape of the objects is 

slightly distorted, as can be noted by the ripples above and below the median plane of the 

ROI.  

The image reconstructed with the point-like model is shown in Fig. 62b. In this case, 

the contrast in the image is better than in the Back-projection case, but the absorber 
amplitudes are not reconstructed uniformly and the shapes are also slightly distorted. Fig. 
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62c shows the results for the finite-sized model, which results in uniform reconstructed 

amplitude and shape for all absorbers and optimal contrast of the image.  

The profiles of the middle and furthermost absorbers are shown in Figs. 62d and 62e 

to illustrate the vertical resolution attained by the different reconstruction methods. The 

profiles show that all three methods achieve a similar resolution along the vertical direction. 

This is to be expected since array elements can be considered almost point-like along z and 
therefore the Back-projection or the point-like model are valid approximations in this 

respect. 

Overall, the results demonstrate that the proposed algorithm provides accurate 

volumetric images of numerical phantoms. This is in contrast to standard techniques, such 

as Back-projection or IMMI for point-like detectors, which exhibit degraded contrast and 

resolution. 

5.4.2 Experimental results 1: small absorbers 

Since the absorbers were placed approximately on the median plane of the ROI, the 

analysis of the results is done along the lines of the previous section: first, the 

reconstruction in the median plane is presented and afterwards the out-of-plane behavior is 
analyzed. Having showcased the importance of taking into account the properties of the 

Figure 63 Reconstructions of an experimental phantom with three microspheres. a) Back-projection. 
b) Proposed finite-sized IMMI. c) Horizontal profiles through the line marked in b). Blue: Back-projection. Red: 
Proposed finite-sized IMMI. d) Vertical profiles through the line marked in b). Colors as in c). See text for 
discussion. 
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sensor in the reconstruction procedure, from this point on the performance of the proposed 

method was assessed only against standard Back-projection.  

a) In-plane 

The images obtained with Back-projection and the proposed method are shown in 

Fig. 63. The results show the maximum amplitude projection (MAP) taken along the z axis 

and the corresponding profiles. 

In Fig. 63a, the Back-projection image is shown. The reconstructed amplitude of the 

spheres is similar since they are located close to the center of the ROI. However, they are not 

well resolved. In contrast, the image obtained with the proposed method (Fig. 63b) shows 

three sources resolved as precisely as the discretization of the ROI allows. The resolutions of 

the reconstructions can be better investigated with the profiles taken through the 

absorbers. In Fig. 63c, the profile along the middle absorber for both reconstructions is 
depicted. The results demonstrate a twofold increase in the resolution of the proposed 

method with respect to Back-projection, as expected from the simulations. This finding can 

be also observed in Fig. 63d, where the profile along y for the two microspheres in the 

middle of the images is shown. The difference in amplitude is due to the fact that, in the 
Back-projection image, the two absorbers do not lie along the same line.  

These results demonstrate experimentally the improvement of in-plane resolution 
achieved by the proposed method over a standard reconstruction method. 

b) Out of plane 

The same volumetric images are shown in Fig. 64 as a MAP taken along the y axis. 
Fig. 64a shows the Back-projection reconstruction, with object shapes that are distorted due 

to the limited view of the detection geometry along the vertical axis. In contrast, the 

reconstruction with the proposed method (Fig. 64b) shows absorbers more localized in the 

median plane although with slightly distorted shapes. 

The profiles for two of the absorbers are shown in Figs. 64c and 64d. In both cases, 

the FWHM of the reconstructed Back-projection is approximately 600 µm whereas in the 

case of the proposed method the FWHMs are ~300 µm. Considering that the voxel size along 

the vertical direction is 150 µm, we may conclude that the performance of the proposed 

model is at the limit attainable in a noisy measurement. The findings in this section 

demonstrate that the proposed method is able to achieve uniform resolution both in-plane 

and out of the plane, up to the discretization of the ROI. 
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5.4.3 Experimental results 2: complex source 

The reconstructions of the knotted suture are shown in Fig. 65. The top half of the 

image shows the MAPs taken along each of the image axes for the Back-projection 

reconstructions. The lower half of the image, on the other hand, shows the projections for 

the image obtained by the proposed method. 

The Back-projection reconstructions show a clear shape of the object with good 

contrast, owing to the use of a MAP, which eliminates the negative values from the image. 

However, the boundaries of the knot are blurry, which degrades the contrast where the 

suture overlaps (see e.g. Fig. 65a, top, or Fig. 65c, bottom-left).  

On the other hand, the IMMI reconstructions show a better contrast with respect to 
the background and a less blurry image. In particular, it is worth noting that the points 

where the suture overlaps are in general better resolved than in the Back-projection images 

(see, e.g. Fig. 65d top or Fig. 65f bottom-left). Additionally, the reconstructed amplitude is 

more uniform throughout the extension of the object. The main differences arise for sections 

of the knot mainly along a vertical direction, when compared with sections mainly lying in a 
plane, and are thus originated by the directivity of the source. 

Figure 64: Reconstructions of an experimental phantom with three microspheres, side view. a) Back-
projection. b) Proposed finite-sized IMMI. c) Vertical profiles through the line marked 1 in b). Blue: Back-
projection. Red: Proposed finite-sized IMMI. d) Vertical profiles through the line marked 2 in b). Colors as in c). 
See text for discussion. 
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The results demonstrate the ability of the proposed method to resolve complex 

structures and to tell apart objects close to each other.  

5.4.4 Experimental results 3: real tissue 

The reconstructions of the biological sample are shown in Fig. 66. Like in the 

previous figure, the top half of the image shows the Back-projection reconstructions and the 

lower half the images obtained with the proposed method. In this case, the MAPs are taken 

along the x and y axis to represent the side views of the sample. However, taking the MAP 

along the z axis would project the approximately 12 mm length of the sample into one plane, 

which is devoid of meaning. Instead, two MAPs taken within a 1.5 mm region at two 

different distances from the fingertips are presented. 

Figure 65: Reconstructions of an experimental phantom with a knotted 300 µm suture. All figures 
represent the MAP of the volumetric image through one of the axis. They are normalized to their respective 
maxima and represented in a linear color scale. a) to c) Back-projection reconstructions. d) to f) reconstructions 
with the proposed finite-sized IMMI method. See text for discussion. 
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In general, the Back-projection images show a clear shape of the paw and the 

vasculature therein. However, there are some spots where the contrast is poor or some 

structural information has been lost. This can be seen, for example, when comparing Figs. 

66a and 66e along the x = -1.5 mm line, where a group of (presumably) vessels is lost from 

the back-projection image. The improved resolution of the images resulting from the 
proposed method can be analyzed when observing Figs. 66d and 66e in particular (and the 

corresponding segments in the other projections). The figures show a better separation of 

the structures that stem from the fingertips in the case of the proposed method.  

Overall, the results show the superior resolution and imaging performance achieved 

by the proposed method when compared with standard techniques. This was achieved by 

Figure 66. Reconstructions of the hind paw of a mouse. All figures represent the MAP of the volumetric 
image through one of the axis. The figures on the rightmost column represent the MAPs along the z axis within 
the dotted region in b). a) to d) Back-projection reconstructions. e) to h) reconstructions with the proposed 
finite-sized IMMI method. See text for discussion. 
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including the characteristics of the sensor on an accurate model for the propagation and 

measurement of optoacoustic signals. 

5.5 Conclusion and Outlook 
In this chapter, an accurate three-dimensional image reconstruction algorithm for a 

nonconventional tomographic geometry was proposed. The method was based on an 

algebraic image reconstruction procedure, IMMI, that was modified to include the spatio-

temporal properties of an ultrasound transducer. This was done through numerical 

integration of the model over the surface of the sensor. The method also made use of a 

symmetry-based computation strategy that greatly reduced the calculation times and size of 
the model-matrices, enabling us to reconstruct images with 75 µm resolution using a 

dataset with over 20,000 distinct projections. 

The performance of the method was assessed in comparison with standard 

reconstruction techniques, such as Back-projection and IMMI for a point detector. This was 

done by reconstructing volumetric images of numerical phantoms and in experiment. The 

results obtained with point sources showcased the ability of the proposed method to 

reconstruct with isotropic amplitude and resolution in the ROI, both in simulations and in 

experiment. This was in contrast to standard methods which showed poor contrast and 

resolution in comparison. The results with a complex phantom demonstrated the superior 

performance of the proposed method when reconstructing a truly three-dimensional 

structure, yielding in less blurred images and better contrast than the Back-projection 
method. Finally, the performance was assessed in an ex vivo measurement of the hind paw 

of a mouse. The proposed image reconstruction method was able to form an image with 

improved resolution and contrast than a standard technique. The method presented herein 

may be thus applied to the imaging of biological data in 3D imaging scenarios.  

The proposed method has two drawbacks that should be overcome in order for the 
technique to reach its full potential. First, the method is computationally very intensive. 

With the use of the symmetries and the optimization of the ROI dimensions to fit the objects 

imaged the technique was made feasible. However, achieving an isotropic pixel size and 

resolution in the order of ~40 µm, while feasible with the hardware and nonconventional 

geometry presented herein, is still a very challenging goal with the present implementation 
of the proposed method. Possible solutions to this drawback include a shift towards 

Graphics Processing Unit (GPU)-based computations or further parallelization of the 

algorithm. 
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The second caveat has to do with the image reconstruction procedure. At the 

moment, image reconstruction takes place with an unregularized iterative algorithm that 

has been optimized and yields consistent results and, as has been shown, good imaging 

performance. However, it has been shown that measurement geometries that do not fully 

enclose the object may result in degraded performance. For the case presented herein, the 

cylindrical symmetry of the measurement geometry leaves two open spaces below and 

above the object. With the utilization of an ultrasound array and thanks to the tomographic 

geometry in the plane, the effective solid angle covered by the sensor can be considered 

180° (for the F/D = 0.5 used herein), which is more than would be achievable by a focused 
sensor. However, even taking into account the SIR of the sensor during image formation, 

which partially compensates for the missing projections, this is still far from the 360° of a 

completely spherical detection. Thus, regularization procedures tailored to the cylindrical 

detection geometry should result in an optimal imaging performance. 
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6. CONCLUSION	
  AND	
  OUTLOOK 
In the present work, the development of optoacoustic image reconstruction 

algorithms that take into account the properties of ultrasound detectors was reported. The 

proposed algorithms were based on the combination of optoacoustic propagation models 

with accurate, experimentally validated descriptions of the sensor properties. The 

performance of the proposed methods was assessed both in simulations and experiment, 

showing improved image quality over standard reconstruction techniques, which typically 

ignore the properties of real sensors. Moreover, the proposed methods were successfully 
applied to the imaging of mouse anatomy ex vivo, which, to the best of the	
   author’s	
  

knowledge, represents the first application of realistic sensor models to optoacoustic image 

formation in biological tissue*. 

In order to develop the proposed algorithms, the properties of ultrasound sensors 

were first characterized in terms of their spatially dependent and independent properties. 

The spatially independent properties were described in terms of the electrical impulse 

response (EIR), which acts as a band-pass filter on the measured optoacoustic signals. The 

characterization of the EIR was performed by exciting the sensor with a source of known 

spectrum and compensating for it. The spatially dependent properties of the sensor were 
first characterized in terms of the frequency-dependent sensitivity fields, which describe the 

variation in measured signal amplitude as a function of the sensor geometry and source 

location. However, such a description did not account for the phase and frequency distortion 

of measured optoacoustic signals. Such a distortion, termed spatial impulse response (SIR), 

effectively acts as a spatially-dependent low-pass filter on the measured signal. Therefore, a 

global response of the sensor, the total impulse response (TIR), was obtained as a temporal 
convolution of the EIR and the SIR. It was experimentally demonstrated that the TIR 

describes all of the sensor-related distortions upon a measured optoacoustic signal. This 

description resulted in several insights: first, it was shown that the sensitivity field of a 

sensor is a particular feature of the TIR. Second, it was demonstrated that the sensor spatial 
properties are a complex function of the acoustic frequency and the source location and are 

optimally described by a broad-band, time-domain entity such as the TIR. 

The knowledge of the sensor properties was applied to the development of image 

reconstruction algorithms for two different detection geometries: microscanning and 

nonconventional tomography in 3D.  

                                                             
* Before the official submission of this dissertation, Wang et al. presented an implementation 

of a three-dimensional model-based reconstruction method incorporating sensor properties. 
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In the microscanning geometry, algorithms based on the frequency-dependent 

sensitivity field of a transducer were developed as a first approximation to the image 

formation problem. Due to the underlying incomplete description of the sensor properties, 

these algorithms failed to reliably improve imaging performance over conventional 

techniques. Instead, an algorithm based on the combination of the SIR with the optoacoustic 

propagation model IMMI was adapted to the particulars of microscanning. The performance 

of the proposed method was assessed by simple phantoms and a complex biological sample. 

By including the SIR in the reconstruction process, the properties of the sensor for all 

acoustic frequencies were taken into account during image formation. As a result, the 
proposed method was able to provide well-resolved images without the need to adapt the 

resolution of the sensor by signal filtering, which typically results in degraded accuracy of 

the images reconstructed with standard techniques. However, due to the limited view of the 

sensors, the microscanning concept proved lacking in terms of 3D imaging. 

A nonconventional tomographic geometry in 3D was developed, with the aim to 

overcome some limitations of conventional geometries and provide a methodology towards 

mesoscopic applications. Within this context, the SIR was taken into account summing up 

IMMI matrices for point-like sensors located on the surface of the actual sensor. Due to the 

computational demands of 3D propagation and detection models, new strategies for the 
calculation of IMMI matrices had to be developed. These were based on the symmetries of 

the measurement geometry and resulted in manageable matrices and feasible computation 

times. The performance of the method was assessed in simulations and experiment, both in 

simple phantoms and biological tissue. The combination of nonconventional geometry and 

the proposed reconstruction method consistently resulted in images with improved 

resolution and contrast with respect to the ones obtained with standard techniques. 

Overall, the present work provides image reconstruction algorithms that are 

consistent with the realities of the optoacoustic imaging, namely the broadband nature of 

optoacoustic signals and sensors and the diffractive features of ultrasound detection. 

Finally, several non-trivial conclusions and consequences with respect to 

optoacoustic imaging may be extracted from the present work. 

The first finding has to do with the frequency response of ultrasound sensors and 
can be concluded from two observations. For one part, it was demonstrated in Chapter 3 

that an ultrasound sensor used for optoacoustics has an effective bandwidth which is two 
times broader than when used in conventional pulse-echo mode. For the other part, the 
interdependence of size, amplitude and acoustic frequency of optoacoustic sources means 
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that large objects (and collections of small objects) emit characteristically strong signals at 

low frequencies. As a result, optoacoustic signals with a frequency content much lower than 

the central frequency of the transducer may be measured. This was demonstrated in 

Chapter 4, as the low-frequency (<10 MHz) components of optoacoustic signals were 

measured with high amplitude by a high-frequency sensor (25 MHz). The results 

demonstrate that low acoustic frequencies may influence non-trivially the image formation 

process, even when imaging at high-frequencies, i.e., at meso- and microscopic scales. 

Therefore, image reconstruction algorithms as the IMMI algorithm proposed in Chapter 4 

need to be used to discriminate between the low-frequencies inherent to a large source and 
the low-frequencies that arise from a small collection of absorbers. 

The second finding is derived from the previous discussion and relates to the 

assessment of the properties of a sensor. The maximum resolution theoretically achievable 

by a focused sensor can be determined by the highest frequency on the frequency response 

of the sensor. In practical terms, however, the actual resolution in a given application is 

determined by the optoacoustic signal in the manner discussed in the previous paragraph. 

Therefore, when deciding upon the optimal sensor for a given application, the study of its 

inherent resolution should be done for several frequencies or, ideally, with a full model of 

propagation and detection that includes the (known or expected) properties of the sensor, 
such as IMMI including the SIR. 

The third finding is related to image formation in optoacoustics. The results in this 

work have demonstrated the need to take into account the full sensor properties during 
image formation in order to compensate for sensor-related distortions. Even in a 
measurement geometry like the one presented in Chapter 5, which was specifically designed 

to minimize such distortions, accurate image reconstruction methods provide qualitatively 
better images than conventional reconstruction techniques. Therefore, herein it is proposed 

that image formation taking into account the sensor properties should be standard practice 

for image formation in optoacoustics. 

The fourth finding relates to the previous one and deals with the design of next-

generation optoacoustic setups. Accurate reconstruction algorithms with sensor properties 

effectively minimize the effect of the sensor characteristics on the final image. The 

algorithms achieve this by compensating for the sensor distortions independently of the 

source location and frequency spectrum. As a result, the design of a new optoacoustic setup 

does not have to be constrained to traditional designs, which are either based on single-
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frequency descriptions of the sensor properties* or try to minimize the sensor size to attain 

point-like behavior†. By mutually adapting the setup parameters and the reconstruction 

method, the cost, performance and versatility of the setup may be significantly optimized. 

In conclusion, the knowledge of ultrasound sensor characteristics in optoacoustics, 

and the use of that knowledge in realistic image formation algorithms results in improved 
image quality in existing systems and can provide new design principles for future setups. In 

following years the optimization of the proposed algorithms through parallelization and 

GPU-based computation will allow for real-time, three-dimensional accurate optoacoustic 

image formation. 

  

                                                             
* For example, the use of focused sensors to define the imaging plane in a tomographic setup, 

as seen above, may result in an ill-defined imaging plane due to the low acoustic frequencies inherent 
to optoacoustic signals. 

† This multiplies the number of sensors needed for an efficient reconstruction, with added 
cost and complexity. 
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