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cardiovascular system in large-scale analysis. We provide 
insights into the physiological divergence of C57BL/6N, 
C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mouse hearts 
and define the expected normal values. Our report high-
lights that compared to the other three strains tested 
C57BL/6N hearts reveal features of heart failure such as 
hypertrophy and reduced contractile function. We found 
several features of the mouse ECG to be under genetic con-
trol and obtained several strain-specific differences in car-
diac structure and function.

Keywords E chocardiography · Electrocardiography · 
Heart · Screening · C57BL/6

Abstract  Mice with genetic alterations are used in heart 
research as model systems of human diseases. In the last 
decade there was a marked increase in the recognition of 
genetic diversity within inbred mouse strains. Increasing 
numbers of inbred mouse strains and substrains and ana-
lytical variation of cardiac phenotyping methods require 
reproducible, high-throughput methods to standardize 
murine cardiovascular physiology. We describe methods 
for non-invasive, reliable, easy and fast to perform echo-
cardiography and electrocardiography on awake mice. This 
method can be used for primary screening of the murine 
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Introduction

The profound influence of genetic background is accepted 
as being part and parcel of the gene  ×  gene interactions 
that underlie complex phenotypes (Kiselycznyk and Hol-
mes 2011). Hence, careful characterization and compari-
son of strain phenotypes are necessary when transgenic or 
knockout mice are to be analyzed. Over the last years not 
only the number of inbred strains used in medical research, 
but also the number of in vitro and in vivo studies report-
ing strain-dependent differences in cardiovascular func-
tion increased progressively (Barnabei et  al. 2010; Stull 
et al. 2006; Appleton et al. 2004). Even less data exist on 
substrains within single strains and their variations. The 
C57BL/6 mouse is one of the most commonly used strain 
in experimental research (Barnabei et  al. 2010; Simon 
et  al. 2013), but little is known about the cardiovascular 
variability within its common substrains C57BL/6N and 
C57BL/6J.

To identify the differences in cardiovascular physiol-
ogy that arise from the genetic diversity, it is necessary to 
develop precise, reproducible, and non-invasive methods. 
Various techniques have been used for the characterization 
of cardiac phenotypes, such as histological analysis, elec-
trocardiography, blood pressure analysis, cardiac imaging 
and determination of circulating biomarker concentrations. 
Different test systems, the fast improvement of instrumen-
tation resulting in more accurate assessment (Collins et al. 
2003) and the use of anesthetic agents (Collins et al. 2003; 
Berthonneche et al. 2009; Schoensiegel et al. 2011; Apple-
ton et al. 2004; Lairez et al. 2013; Roth et al. 2002) led to 
various sets of data making it difficult to find reliable ref-
erence values to define cardiac phenotypes of background 
strains.

Over the last 10  years echocardiography has been 
increasingly applied to identify cardiac phenotypes and 
pathophysiological responses to surgical and pharmaco-
logical interventions (Collins et  al. 2003). This technique 
uses ultrasound for visualization and provides information 
on the heart anatomy, blood flow pattern and function of 
heart muscle, vessels and valves. As a high-quality, non-
invasive, reproducible method echocardiography became 
the most important technique to analyze the physiology 
of the murine heart and is now available in most research 
laboratories (Mitchell et  al. 1998; Fayssoil and Tournoux 
2013).

Yet, largely unknown are the complex mechanisms of 
murine cardiac electrophysiology. By electrocardiography 
(ECG), the electrical activity of the heart’s conduction sys-
tem and myocardial cell membrane currents are measured 
and recorded. Even though ECG differences between mice 
are reported for more than 40 years (Goldbarg et al. 1968), 
the variety of methods used, the inconsistent adjustments 

for analysis parameters and the multiple conditions for 
ECG recording make it difficult to compare the results. In 
2001 Hampton (Chu et al. 2001) developed an ECG system 
to non-invasively obtain and analyze ECGs in large cohorts 
of conscious mice and made it available to the biotechnol-
ogy community.

During the last 2  years we have performed over 8,000 
echocardiograms and 4,000 electrocardiograms on awake 
mice using state-of-the-art ultrasound and ECG technolo-
gies. In our opinion, the combination of both diagnos-
tic tools allows a first characterization of cardiovascular 
function. These studies are important since these genetic 
characteristics of traits interact with multiple pathological 
processes and disease states, such as heart failure and car-
diomyopathy. We are member of the International Mouse 
Phenotyping Consortium (IMPC) that plans over the next 
5  years to generate and carry out broad-based phenotyp-
ing of 5,000 mouse mutant lines as the first step towards a 
comprehensive encyclopedia of mammalian gene function 
(Brown and Moore 2012). To that end, we set up a prac-
tical guide for echocardiography and ECG in conscious 
mice that allows us the screening of the cardiovascular sys-
tem of one mouse in 10  min. We report the phenotyping 
of C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd 
mouse hearts, indicating that various strain-specific car-
diac differences exist, and that compared to the other three 
strains tested, C57BL/6N hearts reveal a heart failure phe-
notype. Collectively, this study reports high-throughput 
screening of murine cardiovascular physiology with state-
of-the-art technology, highlights strain-dependent differ-
ences on cardiovascular physiology between four com-
monly used inbred mice and substrains provide reference 
values.

Methods

Inbred mice

Four inbred mouse strains were used in this study: 
C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd. 
Mice were bred in the animal facility of the Helmholtz Zen-
trum München. Experiments were done according to the 
German laws for animal protection and by permission of 
the Regierung von Oberbayern. Echocardiograms and elec-
trocardiograms were recorded on 16-week-old mice. They 
were allowed to adjust to the experimental area at least 
30  min before measurements and all examinations were 
performed in a conditioned quiet room to reduce external 
stimuli that could interfere with mouse physiology. Exami-
nations were performed on conscious animals to prevent 
anesthesia-related impairment of cardiac function (Roth 
et  al. 2002). All echocardiograms and electrocardiograms 
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were recorded and analyzed by the same person, blinded to 
the genotypes of mice.

Echocardiographic phenotyping

Cardiac function was evaluated with transthoracic echocar-
diography in 50 male and female mice of each inbred strain 
using a Vevo2100 Imaging System (VisualSonics Inc., 
Toronto Canada) with a 30  MHz probe. The day before 
the first examination the mouse chests were depilated 
using a topical depilatory agent. Bodyweights were taken 
shortly before transthoracic echocardiography. In order to 
eliminate circadian influences ultrasound was performed 
between 8 am and 11 am.

For echocardiographic examinations the mice were 
firmly held by the nape of the neck (in the supine position) 
in the palm of one hand with the tail held tightly between 
the last two fingers. Pre-warmed ultrasound gel was placed 
on the chest at the image location. For two-dimensional 
(2D) imaging (‘B-mode’) view along the parasternal long 
axis the transducer was placed vertically to the animal body 

on the left side of its sternum with the notch of transducer 
pointing to the animal head. Optimal parasternal views 
were obtained by adjusting gain settings for visualization 
of endocardial and epicardial walls (approximately 45 dB). 
A proper image in this orientation included the left atrium 
and ventricle, a slight portion of the right ventricular wall 
and the output of the aorta, with the heart forming a gourd-
like structure. The beginning ascending aorta and the apex 
of the heart lay on the same horizontal line. The movement 
of the myocardium, valves, and vessel walls were analyzed 
macroscopically. For accurate linear measurements of left 
ventricular internal dimensions and wall thicknesses an 
M-mode image of the heart in parasternal short-axis view 
was acquired (Fig. 1). The transducer was rotated approxi-
mately 90° counterclockwise starting from the parasternal 
long-axis view. The M-mode cursor was placed perpendic-
ularly to the interventricular septum and posterior wall of 
the left ventricle at the level of the papillary muscles. For 
calculation of the respiration rate the transducer was turned 
to a vertical position, moved to the diaphragm and at least 
three respiratory intervals were monitored. At the end of 

Fig. 1   M-mode recordings through a short-axis view at the papillary 
muscle level from representative C57BL/6N, C57BL/6J, C3HeB/FeJ 
and 129P2/OlaHsd males. M-mode images of the left ventricle dis-
play dimensions of the ventricular walls, ventricular cavity, and car-
diac function measurements. Y-axis represents the distance (in mm) 

from the transducer; time (in ms) is on the X-axis. Images show the 
interventricular septum (IVS), left ventricular posterior wall (LVPW), 
and left ventricular internal diameter (LVID) throughout diastole 
(d) and systole (s). a C57BL/6N, b C57BL/6J, c C3HeB/FeJ and d 
129P2/OlaHsd
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an imaging session, ultrasound gel was removed from the 
mouse with water dampened gauze.

Qualitative and quantitative measurements were made 
offline using analytical software (VisualSonics Inc.). Left 
ventricular dimension in systole (LVIDs) and diastole 
(LVIDd), systolic and diastolic interventricular septum 
thickness (IVSs, IVSd) and systolic and diastolic posterior 
wall thickness (LVPWs, LVPWd) were measured in three 
consecutive beats according to the American Society of 
Echocardiography leading edge method (Sahn et al. 1978) 
as a measure of the actual visualized thickness of the ven-
tricular septum and other chamber dimensions as defined 
by the actual tissue–blood interface (Fig. 1). The papillary 
muscles should be excluded from the cavity in the trac-
ing. Fractional shortening (FS) was calculated as FS  % 
=  [(LVIDd  − L VIDs)/LVIDd]  ×  100. Ejection fraction 
(EF) was calculated as EF % = 100 × [(LVvolD − LVvol
S)/LVvolD] with LVvol =  [(7.0/(2.4 + LVID) × LVID3]. 
The corrected left ventricular mass (LV MassCor) was 
calculated as LV MassCor  =  0.8(1.053  ×  [(LVIDd  + 
LVPWd  +  IVSd)3−  L  VIDd3)]. The stroke volume (SV) 
is the volume of blood pumped from one ventricle of the 
heart with each beat. The stroke volume of the left ventricle 
was obtained by subtracting end-systolic volume (LVvolS) 
from end-diastolic volume (LVvolD). Heart rate was deter-
mined from the cardiac cycles recorded on the M-mode 
tracing, using at least three consecutive systolic intervals. 
In addition, respiratory rate was calculated by measuring 
three consecutive respiratory intervals.

Electrocardiographic phenotyping

ECGs were recorded on 20 males and females using the 
ECGenie system (Mouse Specifics, Inc., Boston, MA) 
(Fig.S1). Since even modest handling of mice may induce 
alterations in heart rate (Desai et  al. 1997), each mouse 
was permitted to acclimatize on the ECG recording plat-
form 10  min prior to measurement. Furthermore, cage 
mates were placed on the adjacent platform unit to provide 
company. In order to eliminate circadian influences ECGs 
were recorded between 1 pm and 3 pm. A disposable lead 
plate (Mouse specifics Inc.) was embedded in the floor of 
the platform and spaced to provide contact between the 
electrodes and animals’ paws providing an ECG signal 
equivalent to Einthoven lead II. Only runs where at least 
15 ECG beats could be included in the analysis were cho-
sen. Data were analyzed using standard protocols for ECG 
signal analysis by eMouse™ (Mouse Specifics, Inc.). The 
software uses a peak detection algorithm to find the peak 
of the R-waves and to calculate heart rate (HR). The soft-
ware plots its interpretation of P, Q, R, S, and T for each 
beat so that HR, QRS duration, PQ interval, PR interval, 
QT interval and ST interval are measured and reported 

automatically (Fig.  2). In addition, each trace was exam-
ined for clear P, Q, R, S, T peaks before accepting the auto-
matic calculations. Sensitivity was corrected manually in 
case R peaks were not chosen correctly. Noise and motion 
artifacts are rejected automatically by the software. As in 
mice the T-wave often merges with the final part of the 
QRS complex (Wehrens et al. 2000) the software automati-
cally defines the end of the T-wave of each signal as the 
point where the signal intersects the isoelectric line. Heart 
rate variability (HRV) was calculated as the mean of the 
differences between sequential heart rates for the complete 
set of ECG signals. The QT intervals were rate corrected 
(QTc) by application of the equation recommended by 
Mitchell et al. (1998).

Statistical analysis

Differences between strains were assessed using the Mann–
Whitney rank sum test. Data were analyzed on SigmaPlot 
12.0 analysis software (Systat Software, Inc.). The minimal 
significant probability value was set at 0.05. Note that P 
values are not corrected for multiple testing.

Results

Cardiac function was assessed using the combined proto-
col of echocardiography and electrocardiography in high 
throughput. Multiple statistically significant differences 
were found between inbred strains (Figs. 2, 4; Tables 1, 2).

Echocardiography shows genetic variability

Echocardiography of C57BL/6N hearts revealed signifi-
cantly increased left ventricular mass (median for males 
33 vs. 28  mg; for females 27 vs. 23  mg), left ventricular 
dimensions (median systole for males 1.6 vs. 0.96  mm; 
for females 1.4 vs. 0.81  mm; diastole for males 2.8 vs. 
2.6 mm; for females 2.5 vs. 2.3 mm) and interventricular 
septum width (median systole for males 0.60 vs. 0.51 mm; 
for females 0.58 vs. 0.50 mm; diastole for males 0.57 vs. 
0.51 mm; for females 0.51 vs. 0.51 mm) compared to mice 
of the C57BL/6J strain, although the bodyweight was the 
same (median for males 29 vs. 29  g; for females 23 vs. 
22 g). The cardiac performance was reduced in C57BL/6N 
mice as indicated by significantly decreased fractional 
shortening (median for males 43  %; for females 44  %) 
and ejection fraction (median for males 75 %; for females 
77 %) compared to mice of all other tested strains (Fig. 2). 
In contrast to the marked differences in C57BL/6N hearts, 
differences in heart performance between C57BL/6J, 
C3HeB/FeJ and 129P2/OlaHsd mice were much less pro-
nounced. Hearts of the C57BL/6J strain performed better 
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than C3HeB/FeJ hearts (FS median for males 62 vs. 54 %; 
for females 63 vs. 52 %; EF median for males 92   vs. 87 
%; for females 93 vs. 85  %). Significant differences in 
heart performance between C57BL/6J and 129P2/OlaHsd 
mice could only be obtained in female mice (Fig. 2). The 
calculated stroke volume did not differ much in male 
C57BL/6N (23 µl), C57BL/6J (22 µl), C3HeB/FeJ (24 µl), 
and 129P2/OlaHsd (23  µl) mice. However, statistically 
significant differences were found in between females, 
with the lowest stroke volume observed in C57BL/6 mice 
(C57BL/6N (19 µl) and C57BL/6J (16 µl) vs. C3HeB/FeJ 
(24  µl) and 129P2/OlaHsd (24  µl). The left ventricular 
mass was significantly altered by comparing C57BL/6N 
and C57BL/6J mice. In C57BL/6N mice the left ven-
tricular mass was highly elevated compared to C57BL/6J 
mice (median for male 33 vs. 28  mg; for females 27 vs. 
23  mg). Also differences in left ventricular mass were 
found for C3HeB/FeJ and 129P2/OlaHsd mice, altera-
tions were reflected by differences in body weight and 
might be secondary effects (Table  1). Both C3HeB/FeJ 
and 129P2/OlaHsd mice are much heavier than C57BL/6J 

mice (median for males C3HeB/FeJ 33  g, 129P2/OlaHsd 
33  g, C57BL/6J 29  g; for females C3HeB/FeJ 31  g, 
129P2/OlaHsd 27 g, C57BL/6J 22 g) and show increased 
left ventricular dimension, mass and wall thickness com-
pared to mice of the C57BL/6J strain (Table 1).

Strain differences in ECG characteristics

We recorded differences in HR and ECG time intervals 
of 20 males and females each of C57BL/6N, C57BL/6J, 
C3HeB/FeJ, and 129P2/OlaHsd mice, four commonly used 
inbred strains. Figure 4 and Table 2 show all analyzed ECG 
parameters.

The heart rate was reduced in C57BL/6J (median for 
males 741 bpm; for females 734 bpm) and 129P2/OlaHsd 
(median for males 738  bpm; for females 710  bpm) mice 
compared to C57BL/6N (median for males 765  bpm; for 
females 785) and C3HeB/FeJ (median for males 781 bpm; 
for females 787  bpm) mice (Fig.  4). C57BL/6N mice 
showed reduced HRV compared to all other tested mice 
(median for males 5.0 bpm; for females 8.6 bpm; (Table 2). 

Fig. 2   Strain differences in fractional shortening and ejection frac-
tion. Functional cardiac alterations between C57BL/6N, C57BL/6J, 
C3HeB/FeJ and 129P2/OlaHsd mice. Fractional shortening males (a) 
and females (b) ejection fraction males (c) and females (d). Single 

values are presented in boxplots with 10th and 90th percentile whisk-
ers. Each data point outside the 10th and 90th percentiles is plotted. 
P values are calculated by Mann–Whitney rank sum test; * P ≤ 0.05; 
n = 50

Author's personal copy



	 J Comp Physiol B

1 3

However, HRV did not vary much among mice of the four 
inbred strains analyzed (Table  2). The RR interval dura-
tion, defined as the inverse of heart rate, and the mean dura-
tion between depolarization–repolarization cycles does 
reflect the findings observed by analyzing the heart rate 
(Fig.  3). Male C3HeB/FeJ mice had the highest HR and 
thus the shortest RR interval duration (77 ms). By analyz-
ing females we found the shortest RR interval durations for 
C57BL/6N (77 ms) and C3HeB/FeJ (77 ms) mice.

In C3HeB/FeJ hearts we found the shortest conduction 
between atria and ventricles measured by analyzing the 
duration between peak of P-wave and the beginning of the 
QRS complex (PQ) [median for males 15 ms; for females 
17  ms; (Fig.  4)]. Only slight differences in duration of 
the PQ interval could be found between mice of all other 
strains (Fig.  4). The PR interval (the time from the onset 
of atrial depolarization to the onset of ventricular depo-
larization) was in C3HeB/FeJ hearts the shortest [median 

for males 19  ms; for females 22  ms; (Fig.  4)]. In female 
C57BL/6J hearts the conduction through the AV node took 
the longest [28  ms; (Fig.  4)]. The time necessary for the 
impulse to be distributed over the entire ventricular myo-
cardium was found to be the shortest in C3HeB/FeJ hearts 
(median for males 9 ms; for females 9 ms) and the long-
est in 129P2/OlaHsd hearts [median for males 10 ms; for 
females 10 ms; (Fig. 4)]. ECG interval durations for ST and 
QT intervals were the shortest in C57BL/6N mice (median 
for males 29 and 37 ms; for females 27 and 36 ms, respec-
tively) compared to the other strains tested (Table 2), even 
though not always statistically significant. Mice with the 
lowest heart rate showed the longest QT interval duration 
(Table 2) and after correction of the QT interval [the time 
of ventricular depolarization and repolarization] for heart 
rate main alterations were found between females. For 
C57BL/6N females we obtained the shortest QTc interval 
duration (median 21  ms). By recording ECGs of female 

Table 1   Echocardiographic variables in C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd conscious mice

Echocardiographic characteristics across the analyzed inbred mouse strains

Medians, first and third quartile and P values calculated by a Mann–Whitney Rank sum test

* P < 0.05 age and sex-matched differences versus C57BL/6N mice found

** P < 0.05 age and sex-matched differences versus C57BL/6J mice found

*** P < 0.05 age and sex-matched differences versus C3HeB/FeJ mice found

**** P < 0.05 age and sex-matched differences versus 129P2/OlaHsd mice found; n = 50

Parameter C57BL/6N C57BL/6J C3HeB/FeJ 129P2/OlaHsd

Male Female Male Female Male Female Male Female

LVIDd (mm) 2.8**  
(2.5, 3.1)

2.5**, ****  
(2.4, 2.8)

2.6* (2.4, 2.8) 2.3*, ***, ****  
(2.0, 2.6)

2.8 (2.2, 3.0) 2.7**  
(2.4, 3.0)

2.6 (2.4, 3.3) 2.9*, **  
(2.5, 3.2)

LVIDs (mm) 1.6**, ***, 
****  
(1.4, 1.9)

1.4**  
(1.2, 1.7)

1.0*, ***  
(0.8, 1.2)

0.8*, ***, ****  
(0.7, 1.0)

1.1*, **  
(0.9, 0.5)

1.4**  
(1.0, 1.6)

1.0* (0.7, 1.4) 1.5** (0.9, 1.9)

LVPWd (mm) 0.6***, ****  
(0.5, 0.7)

0.6**, ***, 
****  
(0.5, 0.6)

0.6***, ****  
(0.6, 0.7)

0.6*, ****  
(0.5, 0.7)

0.7*, **  
(0.6, 0.7)

0.6*, **** 
(0.6, 0.6)

0.6*, **  
(0.6, 0.7)

0.7*, **, ***  
(0.6, 0.7)

LVPWs (mm) 0.6***, ****  
(0.5, 0.7)

0.6***, ****  
(0.5, 0.7)

0.6***, ****  
(0.6, 0.7)

0.6***, ****  
(0.5, 0.6)

0.7*, ** (0.6, 
0.7)

0.7*, **, **** 
(0.6, 0.7)

0.6*, **  
(0.6, 0.7)

0.7*, **, *** 
(0.6, 0.7)

IVSd (mm) 0.6**  
(0.5, 0.6)

0.5****  
(0.5, 0.6)

0.5*, ***, ****  
(0.5, 0.6)

0.5***, ****  
(0.4, 0.5)

0.6**  
(0.5, 0.6)

0.5**  
(0.5, 0.6)

0.5**  
(0.5, 0.6)

0.6*, **  
(0.5, 0.6)

IVSs (mm) 0.6**  
(0.6, 0.7)

0.6**  
(0.5, 0.6)

0.5***, ****  
(0.5, 0.6)

0.5*, ***, **** 
(0.6,0.6)

0.6**  
(0.6, 0.6)

0.6**  
(0.6, 0.6)

0.6**  
(0.5, 0.7)

0.6** (0.5, 0.7)

Stroke volume 
(µl)

23 (16, 27) 19***, ****  
(15, 20)

22 (18, 26) 16***, ****  
(12, 21)

24 (14,30) 24 *, **  
(18, 28)

23 (20, 29) 24*, ***,  
(19, 32)

LVmassCorr 
(mg)

33** (27, 45) 27**, ***, 
****  
(23, 32)

28*, ***, ****  
(23, 33)

23*, ***, ****  
(18, 26)

33** (24, 43) 33*, **, ****  
(27, 37)

32** (26, 45) 41*, **, ***  
(29, 49)

Heart rate 
(bpm)

710***, ****  
(646, 750)

711***, ****  
(667, 751)

709***, ****  
(675, 738)

699***, ****  
(659, 720)

662*, **, 
(593, 715)

633 *, **, 
****  
(494, 692)

646*, **,  
(543, 709)

584*, **, ***  
(451, 684)

Respiration 
rate (1/min)

258**, ****,  
(224, 312)

241**  
(200, 291)

310*, ***, 
****  
(273, 343)

279*, ****  
(241, 330)

268**, ****  
(243, 316)

258****  
(222, 299)

225*, **, ***  
(198, 264)

216**, ***  
(184, 289)

Bodyweight 
(g)

29 (27, 31) 23***, ****  
(21, 24)

29 (28, 31) 22***, **** 
(21, 24)

33 (30, 35) 31* **, ****  
(28, 35)

33 (31, 35) 27*, **, ***  
(24, 30.)
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C57BL/6N, C3HeB/FeJ, and 129P2/OlaHsd mice median 
QTc interval durations of 44, 43, and 44 ms were obtained, 
respectively.

Discussion

In the present study, we evaluated the cardiac physiology 
of four inbred mouse strains by awake echocardiography 
and electrocardiography in high-throughput testing. Our 
findings of significant differences between C57BL/6N, 
C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd inbred mouse 
hearts show the impact of genetic divergence between 
strains and substrains. The principle finding of this study 
is that C57BL/6N hearts reveal a heart failure phenotype as 
indicated by a higher muscle mass and a poorer left ventric-
ular function as compared to the other three strains tested.

On the one hand, strain-dependent differences in physi-
ological function can be challenging when comparing find-
ings of studies in which different inbred strains have been 
used as shown by Lygate et  al. (2012) and others (Arber 
et  al. 1997; Dansky et  al. 1999); but on the other hand, 
their complex variation can help us to understand disease 
processes. For example, inbred strains have been used to 
identify loci responsible for resistance to infectious disease, 
cancer, behavior, and metabolism (Hoit et  al. 2002). Sin-
gle-nucleotide base substitutions (SNPs) at certain gene or 
genomic position represent the major part of inter-individ-
ual variability. Common genetic variants have been shown 
to increase the risk of cardiomyopathy (Ivandic et al. 2012), 
cardiac arrhythmias, and SNPs can alter cardiac electrical 

manifestations in certain populations (Kaab and Schulze-
Bahr 2005). Mekada et al. demonstrated genetic differences 
between the C57BL/6J substrains and C57BL/6N sub-
strains at 12 SNP loci, indicating genetic diversity in 0.8 % 
of SNP loci (Mekada et  al. 2009). One of the differences 
found is associated with the gene locus Lims1. The protein 
encoded by this gene is PINCH1 which is ubiquitously 
expressed and provides physical linkage between integrin 
receptors and the actin cytoskeleton and serves as a signal-
ing mediator for downstream effectors (Meder et al. 2011; 
Liang et  al. 2009). The specific deletion of Lims1 results 
in various cardiovascular phenotypes like abnormal arter-
ies, defective cardiac outflow tract septation (Arnold et al. 
2013), dilated cardiomyopathy (Liang et  al. 2009). There 
is strong evidence that PINCH1 plays a role in processes 
leading to hypertrophy (Chen et  al. 2005). Our finding 
that C57BL/6N hearts are hypertrophic may be partially 
caused by the genetic divergence of Lims1 found for the 
C57BL/6N substrains. This would need to be addressed in 
further studies. Furthermore, we explored the hypertrophic 
phenotype of C57BL/6N hearts, but did not define why this 
phenotype has developed. As such echocardiographic anal-
ysis of the contractile parameter are incomplete without 
knowledge of the afterload against which the heart must 
work. One could define the hypertrophic phenotype by sec-
ondary screening, i.e., using blood pressure measurements 
and evaluating circulating disease marker.

Future work has to aim at associating the rich phe-
notypic data of this study and other reports with genetic 
markers. Excellent studies following this issue were done 
by Simon et  al. (2013) and Auerbach et  al. (2010). In 

Table 2   Electrocardiographic variables in C57BL/6N C57BL/6J C3HeB/FeJ and 129P2/OlaHsd conscious mice

Heart rate variability (HRV) and ECG time intervals across the analyzed inbred mouse strains

Medians, first and third quartile and P values calculated by a Mann–Whitney rank sum test

* P < 0.05 age and sex-matched differences versus C57BL/6N mice

** P < 0.05 age and sex-matched differences versus C57BL/6J mice

*** P < 0.05 age and sex-matched differences versus C3HeB/FeJ mice

**** P < 0.05 age and sex-matched differences versus 129P2/OlaHsd mice; n = 20

Parameter C57BL/6N C57BL/6J C3Heb/FeJ 129P2/OlaHsd

Male Female Male Female Male Female Male Female

HRV (bpm) 5.0**, ****  
(2.8, 10)

8.6****  
(6.0, 20)

9.4* (8.1, 19) 19 (8.8, 30) 7.1 (5.2, 14) 7.8****  
(5.1, 16)

13* (6.8, 28) 22*, ***  
(11, 78)

RR (ms) 79** (77, 80) 77**, **** 
(75, 82)

81*, ***  
(79, 83)

83*, ***  
(80, 85)

77**, ****  
(75, 79)

77**, **** 
(76, 81)

82***  
(79, 84)

85*, ***  
(81, 87)

QT (ms) 37 (36, 41) 36**, **** 
(35, 38)

39**** (37, 
40)

40*, ***  
(39, 42)

38 (35, 40) 38**, **** 
(34, 40)

41** (38, 43) 40*, ***  
(38, 44)

ST (ms) 29 (27,33) 27**, **** 
(26, 29)

30 (29, 31) 31* (29, 32) 29 (27, 32) 29 (26, 32) 32 (28, 34) 31* (28, 34)

QTc (ms) 43 (41, 47) 42**, **** 
(40, 43)

43 (42, 45) 44* (42, 46) 43****  
(40, 45)

43 (39, 44) 45***  
(43, 48)

44* (42, 46)
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the latter genetic composition and basic physiology of 
C57BL/6J and C3H/HeJ hearts were analyzed and genes 
identified that were populated in pathways associated with 
metabolic disease or cardiomyopathy, respectively. In line 
with this is the study of Lerman et  al. (2002) in which 
hearts of C3H/HeJ and C57BL/6J mice were compared 

and greater diastolic and systolic ventricular wall thick-
ness and reduced fractional shortening for C3H/HeJ hearts 
were found. We obtained comparable data by analyzing 
C57BL/6J and C3HeB/FeJ mice, even though they per-
formed echocardiography under light sedation and ana-
lyzed only males. Considering the last aspect we found in 

Fig. 3   Representative electrocardiograms from conscious male and female C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mice with 
indication of ECG parameters and interval durations, as presented by Mouse Specific Software. Interval durations are given in milliseconds
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addition that no gender differences exist. By contrast, Bar-
nabei et al. (2010) used for their analysis an isolated heart 
model and reported a greater ejection fraction for C3H/HeJ 
mice than for C57BL/6J mice. This might be explained by 
the existing discrepancies in cardiac function between ex 
vivo and in vivo analysis. It is to mention that, we chose 
the C3HeB/FeJ substrain as this was used in large-scale 
systematic phenotypic analysis of N-ethyl-N-nitrosourea 
(ENU)-induced mouse mutants (Hrabe de Angelis et  al. 
2000; Soewarto et  al. 2000), which resulted in generation 
of hundreds of new mouse lines on this background avail-
able for the research community.

Studies have shown that different strains of mice repre-
sent characteristic variations in cardiac physiology (Hoit 
et  al. 2002; Shah et  al. 2010; Berthonneche et  al. 2009). 
Our finding of a relative hypertrophy and reduced contrac-
tile performance of the hearts of C57BL/6N vs. C57BL/6J 

mice is in agreement with a study by Roth et  al. (2002), 
even though they sedated the mice for analysis which 
might have influenced cardiac physiology. Our characteri-
zation of cardiac performance revealed that in relation to 
the other three strains the tested hearts of C57BL/6N mice 
performed the worst. Reported FS % has not been consist-
ent in the published data. The cutoff in fractional shorten-
ing for conscious or light sedated mice displaying cardiac 
phenotypes is reported in the range of 40  % (Messaoudi 
et al. 2009)–60 % (Schoensiegel et al. 2011). Given that EF 
and FS are often used as indicators for contractile dysfunc-
tion in animal models of disease, our findings further high-
light the need to better define “normality” and to consider 
genetic variability in animal studies.

Gender differences could only be obtained among 
female and male C57BL/6 in bodyweight, wall width and 
chamber dimensions. This agrees with a study by Hoit 
et  al. (2002), although their measures of left ventricular 
dimension in sedated mice are more than one-third higher 
than ours. Anesthetic agents can significantly affect car-
diovascular parameters and may have influenced echocar-
diographic measurements in that study. Inter-observer vari-
ability among studies could also have an impact, as one of 
the most prominent causes of inter-observer variability in 
echocardiographic evaluations is defining border limits. 
Ultrasound signals are reinforced where surface change 
density, allowing definition of limits between surface lay-
ers. The inclusion or exclusion of these echoes from inter-
faces of the left ventricular cavity or myocardial wall can 
cause significant discrepancies in the overall measurements 
(Foppa et al. 2005).

The genetic background influences the cardiac conduc-
tion system, and duration of action potentials of myocar-
dial cells as indicated by QT intervals as shown by signifi-
cant differences in HRs and ECG interval durations among 
inbred strains (Figs. 3, 4; Table 2). Our study showed that 
C3HeB/FeJ mice have higher HRs and reduced PR and 
QRS interval durations compared to C57BL/6J mice, which 
agrees with other reports (Auerbach et al. 2010; Xing et al. 
2009), even though they analyzed the C3H/HeJ substrain. 
The lowest heart rates and highest HRV were recorded in 
129P2/OlaHsd mice with a median of 738  bpm in males 
and 710 bpm in females, and 13 and 22 bpm, respectively. 
However, distribution of HR values and HRV was found for 
all strains studied which suggests that their regulation is a 
complex trait and influenced by multiple genes. In line with 
this is a study from Howden et  al. (2008) which reports 
about some quantitative trait loci for basal HR and HRV 
phenotypes in quiescent mice.

The QRS complex duration represents ventricle exci-
tation time and marks the time required to depolarize the 
entire contractile myocardium. In 16-week-old mice, the 
main difference in QRS duration was found for C3H/FeJ 

Fig. 4   Strain differences in heart rate [in beats/min (bpm)] between 
male (a) and female (b), in PQ intervals between male (c) and 
female (d), in PR intervals between male (e) and female (f), and in 
QRS interval duration between male (g) and female (h) C57BL/6N 
(BL/6N), C57BL/6J (BL/6J), C3HeB/FeJ (C3H) and 129P2/OlaHsd 
(129) mice. Single values are presented in boxplots with 10th and 
90th percentile whiskers. Each data point outside the 10th and 90th 
percentiles is plotted. P values are calculated by Mann–Whitney rank 
sum test; *P ≤ 0.05; n = 20
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mice, which had the shortest QRS durations. That QRS 
durations vary among inbred strains is known (Xing et al. 
2009; Appleton et al. 2004). It has been suggested that the 
distribution pattern of the Purkinje fiber network in the 
myocardium and ventricular wall thickness play an impor-
tant role in ventricle excitation time and thus interstrain 
differences in the QRS complex duration may reflect dif-
ferences in ventricular wall thickness (Jay et al. 2004; Oost-
hoek et al. 1993; Xing et al. 2009). Indeed, we found that 
C3H/FeJ males had the thickest ventricular walls among 
the tested inbred strains. However, among females only 
129P2/OlaHsd mice showed an equal distribution through-
out the echocardiographic analysis of wall width, with a 
relative thickening compared to the other female inbred 
mice. Unfortunately, no data for distribution of Purkinje 
fibers in these mice were available for us to explore the 
remaining assumption.

Overall, no strong influence of sex on HRs and ECG 
time intervals were found. This agrees with the study by 
Mitchell et al. (1998), but not with Chu et al. (2001) who 
reported intersex differences in 2-month-old mice of strains 
different from the ones we analyzed. Studies show that 
sex differences can be observed in some but not all strains 
(Xing et al. 2009; Appleton et al. 2004). In addition, age-
related ECG changes could modulate the result. In order to 
limit the number of variables, we used fully grown mice at 
the age of 16 weeks in this study. Nevertheless, we cannot 
exclude that the results might be different when mice with 
other characteristics are used.

There exists a scarcity of T-wave and the resulting T 
interval duration measures of mice in the literature. The 
repolarization in the mouse heart is characterized by a large 
rapidly activating and inactivating transient outward potas-
sium current, which in effect causes repolarization to start 
before depolarization ends (Appleton et  al. 2004). As a 
result a clear and separate T-wave cannot always be reliably 
distinguished in the mouse ECG. QT and ST intervals were 
measured in all mice and both correspond with changes in 
QRS duration in several instances in our study, even after 
correction for heart rate. We found that ECG interval dura-
tions for ST, QT and QTc intervals were the shortest in 
C57BL/6 mice compared to the other strains tested.

Both genetic and environmental factors influence HR 
which may consequently affect measurements (Seed et al. 
1987). To obtain comparable and reliable data, we con-
trolled possible extraneous variables by the following strat-
egies: (1) the environment (light, temperature, noise, etc.) 
was carefully controlled; (2) to eliminate circadian influ-
ences, ECHOs and ECGs were measured at fixed times; 
and (3) analyses were performed in conscious mice accli-
mated to the instrument. As the number of experimental 
mice continues to increase, there is the need to identify 
differences in cardiovascular physiology and conduction 

system that arise from the genetic diversity within mouse 
strains with little effort, low costs and reproducible for the 
research community. Combination of echocardiography 
and electrocardiography in awake mice made it possible 
to identify strain-specific differences. Using our system, 
phenotypic variances were generally smaller within than 
between strains, indicating elevated trait heritabilities.

Multiple methods for cardiac imaging have been devel-
oped over the years for the visualization and assessment 
of cardiac function. Among these cardiac micro-CT, PET 
scan, and cardiac MRI might be limited by expense, fre-
quent need for contrast material and availability (Collins 
et al. 2003). Although, high potential for assessing murine 
cardiac physiology is offered by three-dimensional (Pistner 
et  al. 2010) Doppler echocardiography and transesopha-
geal imaging (Steudel et  al. 1998), these techniques are 
still technically too challenging for broad application 
under high throughput. By echocardiography, both systolic 
and diastolic cardiac function can be measured with high 
precision and reproducibility to allow for the monitoring 
of cardiac pathophysiology, and the analysis of interven-
tion. Thus, echocardiography remains the most frequently 
used modality for the routine evaluation of cardiac func-
tion in mice (Collins et al. 2003). A matter of debate in the 
research community is if or if not to sedate the mice during 
echocardiography. Most available narcotics have an impact 
on the cardiac function of the mouse (Stypmann et  al. 
2009) particular on HR, FS %, and end-diastolic diameter 
(Lairez et al. 2013; Roth et al. 2002), and might mask left 
ventricular dysfunction and cardiomyopathy (Lairez et  al. 
2013). Furthermore, strain-dependent cardiodepressive 
effects have been shown (Barnabei et al. 2010; Berthonne-
che et al. 2009). Few groups have performed echocardiog-
raphy in awake mice (Schoensiegel et al. 2011; Messaoudi 
et al. 2009) but this technique might enhance sympathetic 
tone and heart rate (Gao et al. 2011), and heart rate in mice 
correlate well with cardiac contractility (Palakodeti et  al. 
1997). The physiological heart rate for a conscious mouse 
is near 550–620 bpm, while maximal rates are near 720–
800 bpm (Stull et al. 2006). We obtained median heart rates 
between 682 (620; 732) bpm for males and 679 (563; 716) 
bpm for females, still in the physiological range. As shown 
by us and others (Schoensiegel et al. 2011; Semeniuk et al. 
2002; Esposito et  al. 2000) performing echocardiography 
in the conscious state allows phenotypic characterization 
with sufficiently high sensitivity and specificity. In addi-
tion, we have shown that the method is reliable, reproduc-
ible and with low intra-observer variability (Schoensiegel 
et al. 2011). Despite the above-mentioned possible adverse 
effects of narcotics there are further disadvantages which 
led us to convert our protocol from performing echocardi-
ography in nonconscious to conscious mice. In our hands 
echocardiography of a conscious mouse takes <2 min, of a 
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nonconscious mouse 10 min. The fast data acquisition not 
only saves time, but also reduces the stress level of mice 
and increases the probability of finishing the examina-
tion without too many movements of the mouse. Further, 
for echocardiography and the accurate monitoring of body 
temperature and sedation status two observer are needed. 
However, one examiner can perform echocardiography in a 
conscious mouse. Further, once people are used in handling 
mice there is not much training needed to switch from per-
forming echocardiography on a fixed unconscious mouse to 
a conscious one held in the own hand. Therefore, for high-
throughput phenotyping we recommend to use the fast and 
reliable method with conscious mice, particularly when 
done frequently (in our case daily). In case a more precise 
and then time-intensive analysis, e.g., valve function analy-
sis is needed, the method needs further adjustment.

Because mice differ in their cardiovascular physiology 
already in between substrains, it is not possible to define 
normal lab values for the species mouse as commonly used 
in human diagnostics. We present a fast, easy and repro-
ducible protocol for non-invasive echocardiography and 
electrocardiography in conscious mice. Using this system, 
we demonstrate significant strain-dependent differences in 
echocardiograms and electrocardiograms in C57BL/6N, 
C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mice. The pre-
sented normal values of 16-week-old commonly used 
inbred mice and the detailed methodological report may 
increase the quantity of data collected from mouse models 
and improve the quality of data.

Conclusion

Combination of awake echocardiography and electrocardi-
ography allows high-quality phenotyping of cardiac physi-
ology in a high-throughput setting. Using this system, we 
demonstrated significant differences between inbred mice 
even among substrains. Here, we identified C57BL/6N 
mice to have a hypertrophic heart and a reduced heart 
performance compared to C57BL/6J, C3HeB/FeJ and 
129P2/OlaHsd mice.
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