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Abstract Mice with genetic alterations are used in heart
research as model systems of human diseases. In the last
decade there was a marked increase in the recognition of
genetic diversity within inbred mouse strains. Increasing
numbers of inbred mouse strains and substrains and ana-
Iytical variation of cardiac phenotyping methods require
reproducible, high-throughput methods to standardize
murine cardiovascular physiology. We describe methods
for non-invasive, reliable, easy and fast to perform echo-
cardiography and electrocardiography on awake mice. This
method can be used for primary screening of the murine
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cardiovascular system in large-scale analysis. We provide
insights into the physiological divergence of C57BL/6N,
C57BL/6]J, C3HeB/FeJ and 129P2/OlaHsd mouse hearts
and define the expected normal values. Our report high-
lights that compared to the other three strains tested
C57BL/6N hearts reveal features of heart failure such as
hypertrophy and reduced contractile function. We found
several features of the mouse ECG to be under genetic con-
trol and obtained several strain-specific differences in car-
diac structure and function.
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Introduction

The profound influence of genetic background is accepted
as being part and parcel of the gene x gene interactions
that underlie complex phenotypes (Kiselycznyk and Hol-
mes 2011). Hence, careful characterization and compari-
son of strain phenotypes are necessary when transgenic or
knockout mice are to be analyzed. Over the last years not
only the number of inbred strains used in medical research,
but also the number of in vitro and in vivo studies report-
ing strain-dependent differences in cardiovascular func-
tion increased progressively (Barnabei et al. 2010; Stull
et al. 2006; Appleton et al. 2004). Even less data exist on
substrains within single strains and their variations. The
C57BL/6 mouse is one of the most commonly used strain
in experimental research (Barnabei et al. 2010; Simon
et al. 2013), but little is known about the cardiovascular
variability within its common substrains C57BL/6N and
C57BL/6].

To identify the differences in cardiovascular physiol-
ogy that arise from the genetic diversity, it is necessary to
develop precise, reproducible, and non-invasive methods.
Various techniques have been used for the characterization
of cardiac phenotypes, such as histological analysis, elec-
trocardiography, blood pressure analysis, cardiac imaging
and determination of circulating biomarker concentrations.
Different test systems, the fast improvement of instrumen-
tation resulting in more accurate assessment (Collins et al.
2003) and the use of anesthetic agents (Collins et al. 2003;
Berthonneche et al. 2009; Schoensiegel et al. 2011; Apple-
ton et al. 2004; Lairez et al. 2013; Roth et al. 2002) led to
various sets of data making it difficult to find reliable ref-
erence values to define cardiac phenotypes of background
strains.

Over the last 10 years echocardiography has been
increasingly applied to identify cardiac phenotypes and
pathophysiological responses to surgical and pharmaco-
logical interventions (Collins et al. 2003). This technique
uses ultrasound for visualization and provides information
on the heart anatomy, blood flow pattern and function of
heart muscle, vessels and valves. As a high-quality, non-
invasive, reproducible method echocardiography became
the most important technique to analyze the physiology
of the murine heart and is now available in most research
laboratories (Mitchell et al. 1998; Fayssoil and Tournoux
2013).

Yet, largely unknown are the complex mechanisms of
murine cardiac electrophysiology. By electrocardiography
(ECQG), the electrical activity of the heart’s conduction sys-
tem and myocardial cell membrane currents are measured
and recorded. Even though ECG differences between mice
are reported for more than 40 years (Goldbarg et al. 1968),
the variety of methods used, the inconsistent adjustments
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for analysis parameters and the multiple conditions for
ECG recording make it difficult to compare the results. In
2001 Hampton (Chu et al. 2001) developed an ECG system
to non-invasively obtain and analyze ECGs in large cohorts
of conscious mice and made it available to the biotechnol-
ogy community.

During the last 2 years we have performed over 8,000
echocardiograms and 4,000 electrocardiograms on awake
mice using state-of-the-art ultrasound and ECG technolo-
gies. In our opinion, the combination of both diagnos-
tic tools allows a first characterization of cardiovascular
function. These studies are important since these genetic
characteristics of traits interact with multiple pathological
processes and disease states, such as heart failure and car-
diomyopathy. We are member of the International Mouse
Phenotyping Consortium (IMPC) that plans over the next
5 years to generate and carry out broad-based phenotyp-
ing of 5,000 mouse mutant lines as the first step towards a
comprehensive encyclopedia of mammalian gene function
(Brown and Moore 2012). To that end, we set up a prac-
tical guide for echocardiography and ECG in conscious
mice that allows us the screening of the cardiovascular sys-
tem of one mouse in 10 min. We report the phenotyping
of C57BL/6N, C57BL/6J, C3HeB/Fel] and 129P2/OlaHsd
mouse hearts, indicating that various strain-specific car-
diac differences exist, and that compared to the other three
strains tested, C57BL/6N hearts reveal a heart failure phe-
notype. Collectively, this study reports high-throughput
screening of murine cardiovascular physiology with state-
of-the-art technology, highlights strain-dependent differ-
ences on cardiovascular physiology between four com-
monly used inbred mice and substrains provide reference
values.

Methods
Inbred mice

Four inbred mouse strains were used in this study:
C57BL/6N, C57BL/6J, C3HeB/Fel and 129P2/OlaHsd.
Mice were bred in the animal facility of the Helmholtz Zen-
trum Miinchen. Experiments were done according to the
German laws for animal protection and by permission of
the Regierung von Oberbayern. Echocardiograms and elec-
trocardiograms were recorded on 16-week-old mice. They
were allowed to adjust to the experimental area at least
30 min before measurements and all examinations were
performed in a conditioned quiet room to reduce external
stimuli that could interfere with mouse physiology. Exami-
nations were performed on conscious animals to prevent
anesthesia-related impairment of cardiac function (Roth
et al. 2002). All echocardiograms and electrocardiograms
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Fig. 1 M-mode recordings through a short-axis view at the papillary
muscle level from representative C57BL/6N, C57BL/6J, C3HeB/Fel
and 129P2/OlaHsd males. M-mode images of the left ventricle dis-
play dimensions of the ventricular walls, ventricular cavity, and car-
diac function measurements. Y-axis represents the distance (in mm)

were recorded and analyzed by the same person, blinded to
the genotypes of mice.

Echocardiographic phenotyping

Cardiac function was evaluated with transthoracic echocar-
diography in 50 male and female mice of each inbred strain
using a Vevo2100 Imaging System (VisualSonics Inc.,
Toronto Canada) with a 30 MHz probe. The day before
the first examination the mouse chests were depilated
using a topical depilatory agent. Bodyweights were taken
shortly before transthoracic echocardiography. In order to
eliminate circadian influences ultrasound was performed
between 8 am and 11 am.

For echocardiographic examinations the mice were
firmly held by the nape of the neck (in the supine position)
in the palm of one hand with the tail held tightly between
the last two fingers. Pre-warmed ultrasound gel was placed
on the chest at the image location. For two-dimensional
(2D) imaging (‘B-mode’) view along the parasternal long
axis the transducer was placed vertically to the animal body
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from the transducer; time (in ms) is on the X-axis. Images show the
interventricular septum (IVS), left ventricular posterior wall (LVPW),
and left ventricular internal diameter (LVID) throughout diastole
(d) and systole (s). a C57BL/6N, b C57BL/6J, ¢ C3HeB/FeJ and d
129P2/0OlaHsd

on the left side of its sternum with the notch of transducer
pointing to the animal head. Optimal parasternal views
were obtained by adjusting gain settings for visualization
of endocardial and epicardial walls (approximately 45 dB).
A proper image in this orientation included the left atrium
and ventricle, a slight portion of the right ventricular wall
and the output of the aorta, with the heart forming a gourd-
like structure. The beginning ascending aorta and the apex
of the heart lay on the same horizontal line. The movement
of the myocardium, valves, and vessel walls were analyzed
macroscopically. For accurate linear measurements of left
ventricular internal dimensions and wall thicknesses an
M-mode image of the heart in parasternal short-axis view
was acquired (Fig. 1). The transducer was rotated approxi-
mately 90° counterclockwise starting from the parasternal
long-axis view. The M-mode cursor was placed perpendic-
ularly to the interventricular septum and posterior wall of
the left ventricle at the level of the papillary muscles. For
calculation of the respiration rate the transducer was turned
to a vertical position, moved to the diaphragm and at least
three respiratory intervals were monitored. At the end of
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an imaging session, ultrasound gel was removed from the
mouse with water dampened gauze.

Qualitative and quantitative measurements were made
offline using analytical software (VisualSonics Inc.). Left
ventricular dimension in systole (LVIDs) and diastole
(LVIDd), systolic and diastolic interventricular septum
thickness (IVSs, IVSd) and systolic and diastolic posterior
wall thickness (LVPWs, LVPWd) were measured in three
consecutive beats according to the American Society of
Echocardiography leading edge method (Sahn et al. 1978)
as a measure of the actual visualized thickness of the ven-
tricular septum and other chamber dimensions as defined
by the actual tissue-blood interface (Fig. 1). The papillary
muscles should be excluded from the cavity in the trac-
ing. Fractional shortening (FS) was calculated as FS %
= [(LVIDd — LVIDs)/LVIDd] x 100. Ejection fraction
(EF) was calculated as EF % = 100 x [(LVvolD — LVvol
S)/LVvolD] with LVvol = [(7.0/(2.4 + LVID) x LVID?].
The corrected left ventricular mass (LV MassCor) was
calculated as LV MassCor = 0.8(1.053 x [(LVIDd +
LVPWd + IVSd)’— LVIDd®)]. The stroke volume (SV)
is the volume of blood pumped from one ventricle of the
heart with each beat. The stroke volume of the left ventricle
was obtained by subtracting end-systolic volume (LVvolS)
from end-diastolic volume (LVvolD). Heart rate was deter-
mined from the cardiac cycles recorded on the M-mode
tracing, using at least three consecutive systolic intervals.
In addition, respiratory rate was calculated by measuring
three consecutive respiratory intervals.

Electrocardiographic phenotyping

ECGs were recorded on 20 males and females using the
ECGenie system (Mouse Specifics, Inc., Boston, MA)
(Fig.S1). Since even modest handling of mice may induce
alterations in heart rate (Desai et al. 1997), each mouse
was permitted to acclimatize on the ECG recording plat-
form 10 min prior to measurement. Furthermore, cage
mates were placed on the adjacent platform unit to provide
company. In order to eliminate circadian influences ECGs
were recorded between 1 pm and 3 pm. A disposable lead
plate (Mouse specifics Inc.) was embedded in the floor of
the platform and spaced to provide contact between the
electrodes and animals’ paws providing an ECG signal
equivalent to Einthoven lead II. Only runs where at least
15 ECG beats could be included in the analysis were cho-
sen. Data were analyzed using standard protocols for ECG
signal analysis by eMouse™ (Mouse Specifics, Inc.). The
software uses a peak detection algorithm to find the peak
of the R-waves and to calculate heart rate (HR). The soft-
ware plots its interpretation of P, Q, R, S, and T for each
beat so that HR, QRS duration, PQ interval, PR interval,
QT interval and ST interval are measured and reported
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automatically (Fig. 2). In addition, each trace was exam-
ined for clear P, Q, R, S, T peaks before accepting the auto-
matic calculations. Sensitivity was corrected manually in
case R peaks were not chosen correctly. Noise and motion
artifacts are rejected automatically by the software. As in
mice the T-wave often merges with the final part of the
QRS complex (Wehrens et al. 2000) the software automati-
cally defines the end of the T-wave of each signal as the
point where the signal intersects the isoelectric line. Heart
rate variability (HRV) was calculated as the mean of the
differences between sequential heart rates for the complete
set of ECG signals. The QT intervals were rate corrected
(QTc) by application of the equation recommended by
Mitchell et al. (1998).

Statistical analysis

Differences between strains were assessed using the Mann—
Whitney rank sum test. Data were analyzed on SigmaPlot
12.0 analysis software (Systat Software, Inc.). The minimal
significant probability value was set at 0.05. Note that P
values are not corrected for multiple testing.

Results

Cardiac function was assessed using the combined proto-
col of echocardiography and electrocardiography in high
throughput. Multiple statistically significant differences
were found between inbred strains (Figs. 2, 4; Tables 1, 2).

Echocardiography shows genetic variability

Echocardiography of C57BL/6N hearts revealed signifi-
cantly increased left ventricular mass (median for males
33 vs. 28 mg; for females 27 vs. 23 mg), left ventricular
dimensions (median systole for males 1.6 vs. 0.96 mm,;
for females 1.4 vs. 0.81 mm; diastole for males 2.8 vs.
2.6 mm; for females 2.5 vs. 2.3 mm) and interventricular
septum width (median systole for males 0.60 vs. 0.51 mm,;
for females 0.58 vs. 0.50 mm; diastole for males 0.57 vs.
0.51 mm; for females 0.51 vs. 0.51 mm) compared to mice
of the C57BL/6J strain, although the bodyweight was the
same (median for males 29 vs. 29 g; for females 23 vs.
22 g). The cardiac performance was reduced in C57BL/6N
mice as indicated by significantly decreased fractional
shortening (median for males 43 %; for females 44 %)
and ejection fraction (median for males 75 %; for females
77 %) compared to mice of all other tested strains (Fig. 2).
In contrast to the marked differences in C57BL/6N hearts,
differences in heart performance between C57BL/6J,
C3HeB/Fel] and 129P2/OlaHsd mice were much less pro-
nounced. Hearts of the C57BL/6J strain performed better
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Fig. 2 Strain differences in fractional shortening and ejection frac-
tion. Functional cardiac alterations between C57BL/6N, C57BL/6J,
C3HeB/Fel and 129P2/OlaHsd mice. Fractional shortening males (a)
and females (b) ejection fraction males (c) and females (d). Single

than C3HeB/FeJ hearts (FS median for males 62 vs. 54 %;
for females 63 vs. 52 %; EF median for males 92 vs. 87
%; for females 93 vs. 85 %). Significant differences in
heart performance between C57BL/6J and 129P2/OlaHsd
mice could only be obtained in female mice (Fig. 2). The
calculated stroke volume did not differ much in male
C57BL/6N (23 ul), C57BL/6J (22 pl), C3HeB/Fel (24 ul),
and 129P2/OlaHsd (23 pl) mice. However, statistically
significant differences were found in between females,
with the lowest stroke volume observed in C57BL/6 mice
(C57BL/6N (19 ul) and C57BL/6J (16 ul) vs. C3HeB/Fel
(24 ul) and 129P2/OlaHsd (24 pl). The left ventricular
mass was significantly altered by comparing C57BL/6N
and C57BL/6J mice. In C57BL/6N mice the left ven-
tricular mass was highly elevated compared to C57BL/6J
mice (median for male 33 vs. 28 mg; for females 27 vs.
23 mg). Also differences in left ventricular mass were
found for C3HeB/FeJ and 129P2/OlaHsd mice, altera-
tions were reflected by differences in body weight and
might be secondary effects (Table 1). Both C3HeB/Fel
and 129P2/OlaHsd mice are much heavier than C57BL/6J
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values are presented in boxplots with 10th and 90th percentile whisk-
ers. Each data point outside the 10th and 90th percentiles is plotted.
P values are calculated by Mann—Whitney rank sum test; * P < 0.05;
n=>50

mice (median for males C3HeB/FeJ 33 g, 129P2/OlaHsd
33 g, C57BL/6] 29 g; for females C3HeB/Fel 31 g,
129P2/OlaHsd 27 g, C57BL/6J 22 g) and show increased
left ventricular dimension, mass and wall thickness com-
pared to mice of the C57BL/6J strain (Table 1).

Strain differences in ECG characteristics

We recorded differences in HR and ECG time intervals
of 20 males and females each of C57BL/6N, C57BL/6J,
C3HeB/Fel, and 129P2/0OlaHsd mice, four commonly used
inbred strains. Figure 4 and Table 2 show all analyzed ECG
parameters.

The heart rate was reduced in C57BL/6J (median for
males 741 bpm; for females 734 bpm) and 129P2/OlaHsd
(median for males 738 bpm; for females 710 bpm) mice
compared to C57BL/6N (median for males 765 bpm; for
females 785) and C3HeB/FeJ (median for males 781 bpm;
for females 787 bpm) mice (Fig. 4). C57BL/6N mice
showed reduced HRV compared to all other tested mice
(median for males 5.0 bpm; for females 8.6 bpm; (Table 2).
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Table 1 Echocardiographic variables in C57BL/6N, C57BL/6J, C3HeB/Fel and 129P2/OlaHsd conscious mice

Parameter C57BL/6N C57BL/6J C3HeB/Fel 129P2/OlaHsd
Male Female Male Female Male Female Male Female
LVIDd (mm) 2.8%* Q.5%% ek 2.6%(2.4,2.8)  2.3% dkx wkxk 9 Q22 3.0) 2.7%* 2.6(2.4,3.3) 2.9%,
(2.5,3.1) (24,2.8) (2.0,2.6) 24,3.0) (2.5,3.2)
LVIDs (mm) 1.6%%* H*E 1.4%* 1.0%, *** (.8%, Hokak ook ] ok ok 1.4%* 1.0%(0.7,1.4) 1.5%**%(0.9,1.9)
A (1.2,1.7) (0.8,1.2) 0.7, 1.0) 0.9,0.5) (1.0, 1.6)
(14,1.9)
(0.5,0.7) ok 0.6,0.7) 0.5,0.7) 0.6,0.7) (0.6, 0.6) (0.6, 0.7) 0.6,0.7)
(0.5,0.6)
0.5,0.7) (0.5,0.7) 0.6,0.7) (0.5, 0.6) 0.7) (0.6, 0.7) (0.6,0.7) 0.6,0.7)
(0.5, 0.6) (0.5, 0.6) (0.5, 0.6) 0.4,0.5) (0.5, 0.6) (0.5, 0.6) (0.5, 0.6) (0.5,0.6)
IVSs (mm) 0.6%* 0.6%* (. 5%%*  dokakok 0.5%, #Hk ekak () GH* 0.6%* 0.6%* 0.6** (0.5, 0.7)
(0.6, 0.7) (0.5, 0.6) (0.5, 0.6) (0.6,0.6) (0.6, 0.6) (0.6, 0.6) (0.5,0.7)
Stroke volume 23 (16, 27) 19k ko 22 (18, 26) 1@*H* | HkEE 24 (14,30) 24 * ok 23 (20, 29) Q4% A
(ul) (15, 20) (12,21) (18, 28) (19, 32)
LVmassCorr 33%% (27, 45) D7k sk D@k ek ek D3 skl okl 33k (D4 43) 33k ek ik 32%% (26, 45) 4%, o s
(mg) Hokdeok (23, 33) (18, 26) (27, 37) (29, 49)
(23, 32)
Hea.rt rate 710***, kekckok 71 1***’ skokokok 709***, kekckok 699*><*’ skekokok 662*, **, 633 *, **, 646*’ **’ 584_><7 **7 kekck
(bpm) (646, 750) (667, 751) (675, 738) (659, 720) (593, 715) HkokE (543, 709) (451, 684)
(494, 692)
Respiration 258**, ****’ 241*>.< 310*’ ***, 2’79*, skskeoskosk 268**’ skekskok 258**** 225*, **, skesksk 216**’ sksksk
rate (I/min) (224, 312) (200, 291) ko (241, 330) (243,316)  (222,299) (198, 264) (184, 289)
(273, 343)
Bodyweight 29 (27, 31) PR 29 (28, 31) QoA HAAE 33 (30, 35) ]k wk | kEE 33 (31, 35) 2Tk, ok kEE
(2) (21,24) (21,24) (28, 35) (24, 30.)

Echocardiographic characteristics across the analyzed inbred mouse strains

Medians, first and third quartile and P values calculated by a Mann—Whitney Rank sum test

* P <0.05 age and sex-matched differences versus C57BL/6N mice found
** P < 0.05 age and sex-matched differences versus C57BL/6J mice found

**% P < (.05 age and sex-matched differences versus C3HeB/FeJ mice found
*##%% P <0.05 age and sex-matched differences versus 129P2/OlaHsd mice found; n = 50

However, HRV did not vary much among mice of the four
inbred strains analyzed (Table 2). The RR interval dura-
tion, defined as the inverse of heart rate, and the mean dura-
tion between depolarization—repolarization cycles does
reflect the findings observed by analyzing the heart rate
(Fig. 3). Male C3HeB/Fel] mice had the highest HR and
thus the shortest RR interval duration (77 ms). By analyz-
ing females we found the shortest RR interval durations for
C57BL/6N (77 ms) and C3HeB/Fel (77 ms) mice.

In C3HeB/Fel hearts we found the shortest conduction
between atria and ventricles measured by analyzing the
duration between peak of P-wave and the beginning of the
QRS complex (PQ) [median for males 15 ms; for females
17 ms; (Fig. 4)]. Only slight differences in duration of
the PQ interval could be found between mice of all other
strains (Fig. 4). The PR interval (the time from the onset
of atrial depolarization to the onset of ventricular depo-
larization) was in C3HeB/Fel hearts the shortest [median
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for males 19 ms; for females 22 ms; (Fig. 4)]. In female
C57BL/6] hearts the conduction through the AV node took
the longest [28 ms; (Fig. 4)]. The time necessary for the
impulse to be distributed over the entire ventricular myo-
cardium was found to be the shortest in C3HeB/Fel hearts
(median for males 9 ms; for females 9 ms) and the long-
est in 129P2/OlaHsd hearts [median for males 10 ms; for
females 10 ms; (Fig. 4)]. ECG interval durations for ST and
QT intervals were the shortest in C57BL/6N mice (median
for males 29 and 37 ms; for females 27 and 36 ms, respec-
tively) compared to the other strains tested (Table 2), even
though not always statistically significant. Mice with the
lowest heart rate showed the longest QT interval duration
(Table 2) and after correction of the QT interval [the time
of ventricular depolarization and repolarization] for heart
rate main alterations were found between females. For
C57BL/6N females we obtained the shortest QTc interval
duration (median 21 ms). By recording ECGs of female
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Table 2 Electrocardiographic variables in C57BL/6N C57BL/6J C3HeB/FelJ and 129P2/OlaHsd conscious mice

Parameter C57BL/6N C57BL/6J C3Heb/Fel 129P2/0OlaHsd
Male Female Male Female Male Female Male Female
HRV (bpm)  5.0%%*, #skekek 8.6%HHk 9.4*%(8.1,19) 19(8.8,30) 7.1(5.2,14)  7.8%%% 13* (6.8, 28) 2% ek
(2.8, 10) (6.0, 20) (5.1, 16) (11,78)

RR (ms) 79%% (77, 80)  TTk, ks 81k, ik 83k, otk TPk Tk 8k 85k, ok
(75, 82) (79, 83) (80, 85) (75,79) (76, 81) (79, 84) (81, 87)

QT (ms) 37 (36, 41) 3@He, ks 39k (37, 403, sk 38 (35, 40) 3@k kksik 41%% (38,43)  40%*, ***
(35, 33) 40) (39, 42) (34, 40) (38, 44)

ST (ms) 29 (27,33) Q7 kk 30 (29, 31) 31%(29,32) 29(27,32) 29 (26, 32) 32 (28, 34) 31* (28, 34)
(26, 29)

QTc (ms) 43 (41, 47) 4k etk 43 (42, 45) 44% (42, 46) 43k 43 (39, 44) 45k 44%* (42, 46)
(40, 43) (40, 45) (43, 48)

Heart rate variability (HRV) and ECG time intervals across the analyzed inbred mouse strains

Medians, first and third quartile and P values calculated by a Mann—Whitney rank sum test

* P <0.05 age and sex-matched differences versus C57BL/6N mice
** P < (.05 age and sex-matched differences versus C57BL/6] mice

*#% P < (.05 age and sex-matched differences versus C3HeB/FelJ mice

*#%% P < 0.05 age and sex-matched differences versus 129P2/OlaHsd mice; n = 20

C57BL/6N, C3HeB/Fel, and 129P2/0OlaHsd mice median
QTc interval durations of 44, 43, and 44 ms were obtained,
respectively.

Discussion

In the present study, we evaluated the cardiac physiology
of four inbred mouse strains by awake echocardiography
and electrocardiography in high-throughput testing. Our
findings of significant differences between CS57BL/6N,
C57BL/6J, C3HeB/Fel and 129P2/OlaHsd inbred mouse
hearts show the impact of genetic divergence between
strains and substrains. The principle finding of this study
is that CS7BL/6N hearts reveal a heart failure phenotype as
indicated by a higher muscle mass and a poorer left ventric-
ular function as compared to the other three strains tested.
On the one hand, strain-dependent differences in physi-
ological function can be challenging when comparing find-
ings of studies in which different inbred strains have been
used as shown by Lygate et al. (2012) and others (Arber
et al. 1997; Dansky et al. 1999); but on the other hand,
their complex variation can help us to understand disease
processes. For example, inbred strains have been used to
identify loci responsible for resistance to infectious disease,
cancer, behavior, and metabolism (Hoit et al. 2002). Sin-
gle-nucleotide base substitutions (SNPs) at certain gene or
genomic position represent the major part of inter-individ-
ual variability. Common genetic variants have been shown
to increase the risk of cardiomyopathy (Ivandic et al. 2012),
cardiac arrhythmias, and SNPs can alter cardiac electrical

manifestations in certain populations (Kaab and Schulze-
Bahr 2005). Mekada et al. demonstrated genetic differences
between the CS57BL/6J substrains and C57BL/6N sub-
strains at 12 SNP loci, indicating genetic diversity in 0.8 %
of SNP loci (Mekada et al. 2009). One of the differences
found is associated with the gene locus Limsi. The protein
encoded by this gene is PINCH1 which is ubiquitously
expressed and provides physical linkage between integrin
receptors and the actin cytoskeleton and serves as a signal-
ing mediator for downstream effectors (Meder et al. 2011;
Liang et al. 2009). The specific deletion of LimsI results
in various cardiovascular phenotypes like abnormal arter-
ies, defective cardiac outflow tract septation (Arnold et al.
2013), dilated cardiomyopathy (Liang et al. 2009). There
is strong evidence that PINCHI1 plays a role in processes
leading to hypertrophy (Chen et al. 2005). Our finding
that C57BL/6N hearts are hypertrophic may be partially
caused by the genetic divergence of Limsl found for the
C57BL/6N substrains. This would need to be addressed in
further studies. Furthermore, we explored the hypertrophic
phenotype of C57TBL/6N hearts, but did not define why this
phenotype has developed. As such echocardiographic anal-
ysis of the contractile parameter are incomplete without
knowledge of the afterload against which the heart must
work. One could define the hypertrophic phenotype by sec-
ondary screening, i.e., using blood pressure measurements
and evaluating circulating disease marker.

Future work has to aim at associating the rich phe-
notypic data of this study and other reports with genetic
markers. Excellent studies following this issue were done
by Simon et al. (2013) and Auerbach et al. (2010). In
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Fig. 3 Representative electrocardiograms from conscious male and female C57BL/6N, C57BL/6J, C3HeB/Fel and 129P2/OlaHsd mice with
indication of ECG parameters and interval durations, as presented by Mouse Specific Software. Interval durations are given in milliseconds

the latter genetic composition and basic physiology of
C57BL/6J and C3H/HeJ hearts were analyzed and genes
identified that were populated in pathways associated with
metabolic disease or cardiomyopathy, respectively. In line
with this is the study of Lerman et al. (2002) in which
hearts of C3H/He] and C57BL/6J mice were compared

@ Springer

and greater diastolic and systolic ventricular wall thick-
ness and reduced fractional shortening for C3H/HelJ hearts
were found. We obtained comparable data by analyzing
C57BL/6] and C3HeB/Fel] mice, even though they per-
formed echocardiography under light sedation and ana-
lyzed only males. Considering the last aspect we found in
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Fig. 4 Strain differences in heart rate [in beats/min (bpm)] between
male (a) and female (b), in PQ intervals between male (¢) and
female (d), in PR intervals between male (e) and female (f), and in
QRS interval duration between male (g) and female (h) C57BL/6N
(BL/6N), C57BL/6J (BL/6J), C3HeB/Fel (C3H) and 129P2/OlaHsd
(129) mice. Single values are presented in boxplots with 10th and
90th percentile whiskers. Each data point outside the 10th and 90th
percentiles is plotted. P values are calculated by Mann—Whitney rank
sum test; *P < 0.05; n =20

addition that no gender differences exist. By contrast, Bar-
nabei et al. (2010) used for their analysis an isolated heart
model and reported a greater ejection fraction for C3H/HeJ
mice than for C57BL/6J mice. This might be explained by
the existing discrepancies in cardiac function between ex
vivo and in vivo analysis. It is to mention that, we chose
the C3HeB/FelJ substrain as this was used in large-scale
systematic phenotypic analysis of N-ethyl-N-nitrosourea
(ENU)-induced mouse mutants (Hrabe de Angelis et al.
2000; Soewarto et al. 2000), which resulted in generation
of hundreds of new mouse lines on this background avail-
able for the research community.

Studies have shown that different strains of mice repre-
sent characteristic variations in cardiac physiology (Hoit
et al. 2002; Shah et al. 2010; Berthonneche et al. 2009).
Our finding of a relative hypertrophy and reduced contrac-
tile performance of the hearts of C57BL/6N vs. C57BL/6J

mice is in agreement with a study by Roth et al. (2002),
even though they sedated the mice for analysis which
might have influenced cardiac physiology. Our characteri-
zation of cardiac performance revealed that in relation to
the other three strains the tested hearts of C57BL/6N mice
performed the worst. Reported FS % has not been consist-
ent in the published data. The cutoff in fractional shorten-
ing for conscious or light sedated mice displaying cardiac
phenotypes is reported in the range of 40 % (Messaoudi
et al. 2009)-60 % (Schoensiegel et al. 2011). Given that EF
and FS are often used as indicators for contractile dysfunc-
tion in animal models of disease, our findings further high-
light the need to better define “normality” and to consider
genetic variability in animal studies.

Gender differences could only be obtained among
female and male C57BL/6 in bodyweight, wall width and
chamber dimensions. This agrees with a study by Hoit
et al. (2002), although their measures of left ventricular
dimension in sedated mice are more than one-third higher
than ours. Anesthetic agents can significantly affect car-
diovascular parameters and may have influenced echocar-
diographic measurements in that study. Inter-observer vari-
ability among studies could also have an impact, as one of
the most prominent causes of inter-observer variability in
echocardiographic evaluations is defining border limits.
Ultrasound signals are reinforced where surface change
density, allowing definition of limits between surface lay-
ers. The inclusion or exclusion of these echoes from inter-
faces of the left ventricular cavity or myocardial wall can
cause significant discrepancies in the overall measurements
(Foppa et al. 2005).

The genetic background influences the cardiac conduc-
tion system, and duration of action potentials of myocar-
dial cells as indicated by QT intervals as shown by signifi-
cant differences in HRs and ECG interval durations among
inbred strains (Figs. 3, 4; Table 2). Our study showed that
C3HeB/Fe] mice have higher HRs and reduced PR and
QRS interval durations compared to C57BL/6J mice, which
agrees with other reports (Auerbach et al. 2010; Xing et al.
2009), even though they analyzed the C3H/HeJ substrain.
The lowest heart rates and highest HRV were recorded in
129P2/OlaHsd mice with a median of 738 bpm in males
and 710 bpm in females, and 13 and 22 bpm, respectively.
However, distribution of HR values and HRV was found for
all strains studied which suggests that their regulation is a
complex trait and influenced by multiple genes. In line with
this is a study from Howden et al. (2008) which reports
about some quantitative trait loci for basal HR and HRV
phenotypes in quiescent mice.

The QRS complex duration represents ventricle exci-
tation time and marks the time required to depolarize the
entire contractile myocardium. In 16-week-old mice, the
main difference in QRS duration was found for C3H/Fel
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mice, which had the shortest QRS durations. That QRS
durations vary among inbred strains is known (Xing et al.
2009; Appleton et al. 2004). It has been suggested that the
distribution pattern of the Purkinje fiber network in the
myocardium and ventricular wall thickness play an impor-
tant role in ventricle excitation time and thus interstrain
differences in the QRS complex duration may reflect dif-
ferences in ventricular wall thickness (Jay et al. 2004; Oost-
hoek et al. 1993; Xing et al. 2009). Indeed, we found that
C3H/Fel] males had the thickest ventricular walls among
the tested inbred strains. However, among females only
129P2/0OlaHsd mice showed an equal distribution through-
out the echocardiographic analysis of wall width, with a
relative thickening compared to the other female inbred
mice. Unfortunately, no data for distribution of Purkinje
fibers in these mice were available for us to explore the
remaining assumption.

Overall, no strong influence of sex on HRs and ECG
time intervals were found. This agrees with the study by
Mitchell et al. (1998), but not with Chu et al. (2001) who
reported intersex differences in 2-month-old mice of strains
different from the ones we analyzed. Studies show that
sex differences can be observed in some but not all strains
(Xing et al. 2009; Appleton et al. 2004). In addition, age-
related ECG changes could modulate the result. In order to
limit the number of variables, we used fully grown mice at
the age of 16 weeks in this study. Nevertheless, we cannot
exclude that the results might be different when mice with
other characteristics are used.

There exists a scarcity of T-wave and the resulting T
interval duration measures of mice in the literature. The
repolarization in the mouse heart is characterized by a large
rapidly activating and inactivating transient outward potas-
sium current, which in effect causes repolarization to start
before depolarization ends (Appleton et al. 2004). As a
result a clear and separate T-wave cannot always be reliably
distinguished in the mouse ECG. QT and ST intervals were
measured in all mice and both correspond with changes in
QRS duration in several instances in our study, even after
correction for heart rate. We found that ECG interval dura-
tions for ST, QT and QTc intervals were the shortest in
C57BL/6 mice compared to the other strains tested.

Both genetic and environmental factors influence HR
which may consequently affect measurements (Seed et al.
1987). To obtain comparable and reliable data, we con-
trolled possible extraneous variables by the following strat-
egies: (1) the environment (light, temperature, noise, etc.)
was carefully controlled; (2) to eliminate circadian influ-
ences, ECHOs and ECGs were measured at fixed times;
and (3) analyses were performed in conscious mice accli-
mated to the instrument. As the number of experimental
mice continues to increase, there is the need to identify
differences in cardiovascular physiology and conduction
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system that arise from the genetic diversity within mouse
strains with little effort, low costs and reproducible for the
research community. Combination of echocardiography
and electrocardiography in awake mice made it possible
to identify strain-specific differences. Using our system,
phenotypic variances were generally smaller within than
between strains, indicating elevated trait heritabilities.
Multiple methods for cardiac imaging have been devel-
oped over the years for the visualization and assessment
of cardiac function. Among these cardiac micro-CT, PET
scan, and cardiac MRI might be limited by expense, fre-
quent need for contrast material and availability (Collins
et al. 2003). Although, high potential for assessing murine
cardiac physiology is offered by three-dimensional (Pistner
et al. 2010) Doppler echocardiography and transesopha-
geal imaging (Steudel et al. 1998), these techniques are
still technically too challenging for broad application
under high throughput. By echocardiography, both systolic
and diastolic cardiac function can be measured with high
precision and reproducibility to allow for the monitoring
of cardiac pathophysiology, and the analysis of interven-
tion. Thus, echocardiography remains the most frequently
used modality for the routine evaluation of cardiac func-
tion in mice (Collins et al. 2003). A matter of debate in the
research community is if or if not to sedate the mice during
echocardiography. Most available narcotics have an impact
on the cardiac function of the mouse (Stypmann et al.
2009) particular on HR, FS %, and end-diastolic diameter
(Lairez et al. 2013; Roth et al. 2002), and might mask left
ventricular dysfunction and cardiomyopathy (Lairez et al.
2013). Furthermore, strain-dependent cardiodepressive
effects have been shown (Barnabei et al. 2010; Berthonne-
che et al. 2009). Few groups have performed echocardiog-
raphy in awake mice (Schoensiegel et al. 2011; Messaoudi
et al. 2009) but this technique might enhance sympathetic
tone and heart rate (Gao et al. 2011), and heart rate in mice
correlate well with cardiac contractility (Palakodeti et al.
1997). The physiological heart rate for a conscious mouse
is near 550-620 bpm, while maximal rates are near 720—
800 bpm (Stull et al. 2006). We obtained median heart rates
between 682 (620; 732) bpm for males and 679 (563; 716)
bpm for females, still in the physiological range. As shown
by us and others (Schoensiegel et al. 2011; Semeniuk et al.
2002; Esposito et al. 2000) performing echocardiography
in the conscious state allows phenotypic characterization
with sufficiently high sensitivity and specificity. In addi-
tion, we have shown that the method is reliable, reproduc-
ible and with low intra-observer variability (Schoensiegel
et al. 2011). Despite the above-mentioned possible adverse
effects of narcotics there are further disadvantages which
led us to convert our protocol from performing echocardi-
ography in nonconscious to conscious mice. In our hands
echocardiography of a conscious mouse takes <2 min, of a
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nonconscious mouse 10 min. The fast data acquisition not
only saves time, but also reduces the stress level of mice
and increases the probability of finishing the examina-
tion without too many movements of the mouse. Further,
for echocardiography and the accurate monitoring of body
temperature and sedation status two observer are needed.
However, one examiner can perform echocardiography in a
conscious mouse. Further, once people are used in handling
mice there is not much training needed to switch from per-
forming echocardiography on a fixed unconscious mouse to
a conscious one held in the own hand. Therefore, for high-
throughput phenotyping we recommend to use the fast and
reliable method with conscious mice, particularly when
done frequently (in our case daily). In case a more precise
and then time-intensive analysis, e.g., valve function analy-
sis is needed, the method needs further adjustment.

Because mice differ in their cardiovascular physiology
already in between substrains, it is not possible to define
normal lab values for the species mouse as commonly used
in human diagnostics. We present a fast, easy and repro-
ducible protocol for non-invasive echocardiography and
electrocardiography in conscious mice. Using this system,
we demonstrate significant strain-dependent differences in
echocardiograms and electrocardiograms in C57BL/6N,
C57BL/6J, C3HeB/FeJ and 129P2/0OlaHsd mice. The pre-
sented normal values of 16-week-old commonly used
inbred mice and the detailed methodological report may
increase the quantity of data collected from mouse models
and improve the quality of data.

Conclusion

Combination of awake echocardiography and electrocardi-
ography allows high-quality phenotyping of cardiac physi-
ology in a high-throughput setting. Using this system, we
demonstrated significant differences between inbred mice
even among substrains. Here, we identified C57BL/6N
mice to have a hypertrophic heart and a reduced heart
performance compared to C57BL/6J, C3HeB/Fel and
129P2/OlaHsd mice.
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