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Abstract

Polyclonal Epstein-Barr virus (EBV)-infected B cell line (lymphoblastoid cell lines; LCL)-stimulated T-cell preparations have
been successfully used to treat EBV-positive post-transplant lymphoproliferative disorders (PTLD) in transplant recipients,
but function and specificity of the CD4+ component are still poorly defined. Here, we assessed the tumor-protective
potential of different CD4+ T-cell specificities in a PTLD-SCID mouse model. Injection of different virus-specific CD4+ T-cell
clones showed that single specificities were capable of prolonging mouse survival and that the degree of tumor protection
directly correlated with recognition of target cells in vitro. Surprisingly, some CD4+ T-cell clones promoted tumor
development, suggesting that besides antigen recognition, still elusive functional differences exist among virus-specific T
cells. Of several EBV-specific CD4+ T-cell clones tested, those directed against virion antigens proved most tumor-protective.
However, enriching these specificities in LCL-stimulated preparations conferred no additional survival benefit. Instead, CD4+
T cells specific for unknown, probably self-antigens were identified as principal antitumoral effectors in LCL-stimulated T-cell
lines. These results indicate that virion and still unidentified cellular antigens are crucial targets of the CD4+ T-cell response
in this preclinical PTLD-model and that enriching the corresponding T-cell specificities in therapeutic preparations may
enhance their clinical efficacy. Moreover, the expression in several EBV-negative B-cell lymphoma cell lines implies that
these putative autoantigen(s) might also qualify as targets for T-cell-based immunotherapy of virus-negative B cell
malignancies.

Citation: Linnerbauer S, Behrends U, Adhikary D, Witter K, Bornkamm GW, et al. (2014) Virus and Autoantigen-Specific CD4+ T Cells Are Key Effectors in a SCID
Mouse Model of EBV-Associated Post-Transplant Lymphoproliferative Disorders. PLoS Pathog 10(5): e1004068. doi:10.1371/journal.ppat.1004068

Editor: Cliona M. Rooney, Baylor College of Medicine, United States of America

Received August 7, 2013; Accepted February 28, 2014; Published May 22, 2014

Copyright: � 2014 Linnerbauer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Deutsche Forschungsgemeinschaft (SFB455) (http://www.dfg.de/). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mautner@helmholtz-muenchen.de

.

Introduction

About 20% of all human cancers are caused by pathogens

and of these 80% by viruses [1]. The viral proteins expressed in

these tumors represent neo-antigens and potential targets for

immunotherapeutic approaches [2]. The oncogenic Epstein-

Barr virus (EBV), a member of the gamma-herpes virus family,

has been implicated in the pathogenesis of several human

malignancies of lymphoid and epithelial origin [3]. Acquired

orally, EBV persists lifelong in the human host by establishing

latency in B cells but is normally contained as an asymptomatic

infection by T-cell surveillance. Consequently, patients with T-

cell immunodeficiency are at heightened risk of developing

EBV-associated malignancies [3]. In immunosuppressed hema-

topoietic stem cell transplant (HSCT) recipients, such EBV-

positive post-transplant lymphoproliferative disorders have been

successfully treated by the infusion of polyclonal EBV-specific

T-cell preparations that are generated by repeated stimulation

of peripheral blood T cells with autologous EBV-infected B cells

(LCL) in vitro and contain CD8+ and CD4+ T-cell components

[4–6].

Despite its proven safety and remarkable efficacy, adoptive T-

cell therapy still has a limited role in the management of virus-

associated complications in transplant recipients, mainly because

of the logistical and financial implications that are associated with

extensive in vitro T-cell culture, as well as the time required to

generate virus-specific T-cell lines when the clinical need is urgent.

To expedite the preparation procedure, various protocols have

been designed that aim at isolating effector populations directly

from stem cell donors, including ex vivo selection of defined EBV

antigen-specific T cells with pentamers [7], or cytokine secretion

and capture technology [8,9]. Moreover, the recently established

repository of cryopreserved virus-specific T-cell lines from healthy

seropositive donors provides partially HLA-matched, off-the-shelf

products for adoptive transfer [10]. Given the difficulty of

generating virus-specific T-cell lines from EBV-naive donors in

vitro, recipients of stem cells from cord blood might particularly

benefit from such allogeneic effectors [3,5,6]. Of note, the success

of immunotherapy seen in HSCT recipients has not been matched

in solid organ transplant (SOT) patients, most likely because the

continuous immunosuppressive environment limits proliferation

and persistence of adoptively transferred cells. Response rates in
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SOT recipients with refractory PTLD that were treated with

autologous or allogeneic LCL-stimulated T-cell preparations were

reported to range around 50% [5,6]. Importantly, better clinical

responses were observed when the infused T cells expressed a

broad T-cell receptor repertoire [11], suggestive of a broadly

targeted T-cell response, and when they contained higher

proportions of CD4+ T cells [10,11]. For unknown reasons, the

CD4/CD8 T-cell ratio in LCL-stimulated T-cell lines can vary

greatly [12,13]. These findings imply that the clinical efficacy of T-

cell preparations may be increased by tailoring its cellular

composition and, in extension, antigen specificity. However, in

contrast to the well-characterized EBV-specific cytotoxic CD8+ T-

cell response [3,14], relatively little is known about function and

specificity of virus-specific CD4+ T cells. Ex vivo analyses of latent

antigen-specific CD4+ T-cell memory has led to the identification

of multiple epitopes, and virus carriers usually exhibit memory

responses to several epitopes that are derived from more than one

antigen [15–17]. For the few lytic cycle antigens examined to date,

again multiple reactivities were detected per donor [18–20],

indicating that the EBV-specific CD4+ T-cell response is broadly

distributed across different latent and lytic cycle antigens. A similar

pattern of antigen specificity was detected in LCL-stimulated T-

cell preparations. Besides viral antigen-specific T cells, these lines

also contain CD4+ T cells specific for cellular antigens, whose

expression is probably up-regulated by EBV infection [20,21]. The

remarkable breadth of the virus-specific CD4+ T-cell response and

the fact that classical PTLD, like LCL, express all latent antigens

of EBV and contain lytically infected cells expressing ,80 lytic

cycle proteins [3,22], raises the question, whether the different

CD4+ T-cell specificities are equally tumor-protective or whether

some have non-redundant functions in tumor control and,

therefore, should be enriched in T-cell preparations for adoptive

therapy.

Here, we used the well-established PTLD-SCID mouse model

[23,24], that permits to assess efficacy of T-cell preparations in a

preclinical setting [25], to comparatively evaluate the tumor-

protective potential of different CD4+ T-cell specificities in vivo.

Results

Induction of CD20+ EBV+ PTLD-like tumors in SCID mice
by different cell types

To assess the tumor-protective potential of different T-cell

populations in the PTLD-SCID mouse model [24,26–28], mice

were i.p. injected with 16107 LCL or 56107 PBMC from EBV-

positive donors and tumor incidence, latency and localization

analyzed. After injection of LCL, PTLD-like tumors developed

with 100% incidence in three out of four cases (Figure 1A) with a

latency of 20 to 46 days. Tumors usually developed with slightly

delayed kinetics when LCL Z(-) of the same donor were injected

(Figure 1B). Tumor latency was also extended when reduced

numbers of LCL were injected (Figure 1C). Injection of PBMC

from EBV-seropositive donors also led to tumor development but

with much slower kinetics (Figure 1B). Tumors either formed

below the liver and were then often connected with the porta

hepatis, or were located at the injection site. Human origin and

PTLD-like histology of the tumors was verified by measuring

huIgG in mouse serum (data not shown) and by immunohisto-

chemical analysis of tumor sections [29]. Although PBMC-

induced tumors were more heterogeneous in their cellular

composition, all tumors expressed human CD20 and the EBV-

proteins EBNA1 and EBNA2 (Figure 1D).

The CD4+ and CD8+ component of LCL-stimulated T-cell
preparations have similar tumor-protective potential in
vivo

To compare the tumor-protective efficacy of CD4+ versus

CD8+ T cells in vivo, T-cell lines were generated from several

donors by four rounds of in vitro stimulation with autologous LCL

and then separated into CD4+ and CD8+ subsets by MACS. Mice

that had received 16107 LCL were i.p. injected on the same day

with an equal number of the separated (n = 4–7), or, as control, the

unseparated T cells (n = 6) on the opposite flank. Although T-cell

preparations from different donors proved differently effective,

mouse survival was consistently prolonged to the same extent by

the CD4+ and CD8+ components (Figure 2A), indicating that

both T-cell subsets possess similar tumor-protective capacity.

Because the single components were not as efficacious as the

parental T-cell line, and because T-cell preparations with higher

CD4+ numbers had shown better clinical responses [10], CD4+
and CD8+ T-cell subsets were recombined at different ratios

ranging from 0–100% CD4+ T cells, and tested in the same way.

None of the combinations, including reconstituted CD4/CD8

ratios of the parental T-cell lines (group size n = 4), showed

enhanced tumor protection (Figure 2B). These results suggested

that the T-cell subsets have additive but not synergistic effects on

mouse survival and that the comparatively lower tumor-protective

effect of the subset combinations might have been due to an

impaired fitness or vitality of the T cells following the separation

procedure.

Different EBV-specific CD4+ T-cell clones can have
opposing effects on mouse survival in vivo

Given the remarkable breadth of the EBV-specific CD4+ T-cell

response, we sought to investigate whether and to which extent

single CD4+ T-cell clones were able to delay tumor growth, and

whether tumor protection in vivo correlated with target cell

recognition and inhibition of proliferation in vitro [19]. To this

Author Summary

The c-herpesvirus Epstein-Barr virus (EBV) is associated
with several human malignancies, including post-trans-
plant lymphoproliferative disorders (PTLD) in immuno-
compromised patients. The successful treatment of EBV-
positive PTLD by the infusion of EBV-specific T-cell lines
has provided an important proof of principle for immu-
notherapy of EBV-associated tumors and for cancer
immunotherapy in general. EBV-specific T-cell preparations
for clinical application are generated by repeated stimu-
lation with autologous LCL in vitro. These lines contain
CD4+ and CD8+ components but the specificity of the
infused CD4+ T cells is still poorly defined. Using a mouse
model of PTLD, we assessed the antitumoral potential of
single virus-specific CD4+ T-cell clones. While T cells
specific for a virion antigen of the virus prolonged mouse
survival, other virus-specific clones had no effect or,
unexpectedly, even promoted tumor growth. Moreover,
the principal antitumoral effectors in LCL-stimulated T-cell
preparations were CD4+ T cells specific for non-virus
antigens. The definition of virion- and potentially autoan-
tigen-specific CD4+ T cells as key effectors against PTLD
may contribute to the design of generic and standardized
protocols for the generation of T-cell lines with improved
clinical efficacy. In addition, the observed tumor-promot-
ing propensity of some CD4+ T cells may have implications
for adoptive T-cell therapy in general.
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aim, different latent and lytic cycle antigen-specific CD4+ T-cell

clones, that recognize and growth-inhibit unmanipulated LCL to

various degrees in vitro [19,30], were injected together with

autologous LCL or PBMC and tumor latency analyzed.

As shown for the EBNA1- and EBNA3B-specific T-cell clones

1C3 and B9 [30], T cells that failed to recognize unmanipulated

LCL in vitro had no effect on mouse survival (Figure 3A). A possible

correlation of in vitro and in vivo effector functions was also

suggested by a slight, but statistically not yet significant prolon-

gation of mouse survival by the EBNA3C-specific T-cell clone

3H10, which moderately recognized LCL in vitro. Consistent with

these findings, tumor development was significantly delayed when

the BLLF1-specific T-cell clone 1D6 was transferred, which

recognized and growth-inhibited LCL very efficiently in vitro [19]

(Figure 3A). BLLF1-1D6-treated mice showed a median survival

benefit of 9.5 days, which is similar to mice that had received

tenfold less LCL (16106) without T cells (Figure 1C). Moreover,

similar results were obtained with this clone in the PBMC-SCID

mouse model, but these experiments have not yet reached

statistical significance due to the limited availability of large

numbers of PBMC from individual donors (data not shown).

These results indicated that single CD4+ T-cell specificities can

significantly prolong mouse survival and that tumor-protection

might correlate with target cell recognition and growth-inhibition

in vitro. This notion was further supported by experiments in

which 16107 CFSE-labeled BLLF1-specific or, as a control,

Figure 1. Induction of human PTLD-like tumors in immunodeficient mice. (A) Intraperitoneal injection of SCID mice with 16107 LCL of four
different donors led to tumor development with an incidence of 75 – 100% and a latency of 20 and 46 days (group sizes: LCL FL and LCL MF n = 4; LCL
GB n = 11; LCL JM n = 20; days p.i.: days post injection). (B) Injection of 16107 LCL, 16107 LCL Z(-), or 56107 PBMC from the same donor led to tumor
development in all animals but with different latency (group sizes: LCL JM n = 20; PBMC JM n = 6; LCL Z(-) JM n = 6). All survival curves and donor
dependent incidences and latencies were reproduced in several independent experiments. (C) Different numbers of LCL from the same donor were
injected in mice and the survival determined. Results are depicted in a Kaplan-Meier curve (group sizes: 16107 n = 20; 56106 n = 4; 16106 n = 6;
median survival 28, 30, and 38 days). (D) Developing tumors were confirmed as PTLD-like lymphomas. Formalin-fixed, paraffin-embedded tumor
slides (3–8 mm) were stained with H&E (first row) and with antibodies against the human B cell marker CD20 (second row), as well as antibodies
against the EBV latent proteins EBNA1 (third row) and EBNA2 (fourth row), whose co-expression is characteristic of PTLD.
doi:10.1371/journal.ppat.1004068.g001
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EBNA1-specific cells were i.p. injected into animals that had

received 16107 autologous LCL 25 days before and started

forming tumors. Both groups of mice were sacrificed 24, 48, or 72

hours after T-cell injection and the tumors analyzed by FACS

(Figure 3B) and immunohistochemistry (Figure 3C) for T-cell

infiltration. BLLF1- but not EBNA1-specific T cells accumulated

in tumors over time. Concomitantly, a reduction in the pro-

portion of human CD20+ cells was observed (Figure 3B). Some

BLLF1-specific T cells were even detected in direct contact with

BLLF1-positive cells (Figure 3C), lending further support to a

potential correlation of T-cell effector functions in vitro and in vivo.

However, infusion of the EBNA1-specific clone 3E10, that

failed to recognize unmanipulated LCL in vitro [30], and the

BNRF1-specific T-cell clone 1H7 (group size n = 10 and n = 4),

that efficiently recognized and growth-inhibited LCL in vitro [20],

accelerated tumor development (Figure 3D). When compared to

Figure 2. Analysis of the tumor-protective efficacy of CD4+ and CD8+ T cells in vivo. (A) Mouse survival after adoptive transfer of
autologous LCL-stimulated T cells. Mice were i.p. injected with 16107 LCL followed by a separate injection of an equal number of the indicated T cells
on the opposite side of the body. CD4+ and CD8+ T-cell populations prolonged mouse survival to a similar extent (LCL n = 20, LCL + T-cell line n = 6;
LCL + CD4+ T-cell line n = 4; LCL + CD8+ T-cell line n = 7). (B) Tumor-protective potential of different CD4/CD8 T-cell combinations. Separated CD4+
and CD8+ T-cell populations were recombined at different ratios and tested as described in (A). No significant increase in efficacy was observed
(group sizes: n = 4; p = 0.4457). Representative results from one out of three different donors are shown.
doi:10.1371/journal.ppat.1004068.g002
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Figure 3. EBV-specific CD4+ T cells differ in their tumor-protective potential. (A) Survival of mice after adoptive transfer of different EBV-
specific CD4+ T-cell clones. 16107 LCL and 16107 T cells were consecutively i.p. injected and mouse survival analyzed. As exemplified by the EBNA1-
specific T-cell clone 1C3 and the EBNA3B-specific clone B9, injection of latent antigen-specific T cells had no effect on mouse survival, except for
EBNA3C-specific CD4+ T cells that showed a trend towards delaying tumor growth (group sizes: EBNA1-1C3: LCL n = 20, LCL + T cells n = 11; EBNA3B-
B9: LCL n = 20, LCL + T cells n = 7; EBNA3C-3H10: LCL n = 11, LCL + T cells n = 4). Adoptive transfer of the BLLF1-specific CD4+ T-cell clone 1D6
prolonged mouse survival (group sizes: LCL n = 10; LCL + T cells n = 10; summarized results of 2 independently performed experiments). (B) CFSE-
labeled BLLF1- and EBNA1-specific T cells were i.p. injected into mice that had received autologous LCL 25 days before. Single cell suspensions of
tumors were analyzed 24, 48, or 72 hours post injection by FACS for the presence of CFSE-labeled T cells as well as human CD20-expressing tumor
cells. BLLF1- but not EBNA1-specific T cells infiltrated tumors and led to a decrease in the percentage of CD20+ cells. (C) Immunostaining of tumor
sections from mice described in (B). Cryo-embedded tumor sections were double-stained with FITC- and BLLF1-specific antibodies to detect tumor
infiltrated CFSE-labeled T cells (brown) and BLLF1-expressing tumor cells (blue). BLLF1-specific T cells infiltrated tumors and were found in proximity
to antigen expressing cells while no EBNA1-specific T cells were found to infiltrate the tumors. Two immunostainings of two separate tumor sections
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the tumor-protective clone BLLF1-1D6, these T cells responded to

their cognate antigen with similar affinity, secreted similar

amounts and patterns of cytokines, and displayed similar cytolytic

activity (Figure S1 in Text S1). These findings suggested that

besides target cell recognition and lytic activity, still unknown

functional differences among virus-specific CD4+ T cells may

impact on antitumoral efficacy.

Enriching virion antigen-specific CD4+ cells in T-cell
preparations confers no additional survival benefit in vivo

This tumor-promoting effect of some CD4+ T cells notwith-

standing, the above described experiments suggested that tumor-

protection in vivo correlates with T-cell recognition of target cells in

vitro. Since virion antigen-specific CD4+ T cells efficiently

recognize LCL in vitro, these results implicated CD4+ T cells

specific for structural antigens of the virus as particularly tumor-

protective. As demonstrated previously, the frequency of such T-

cell specificities is usually low in early passage T-cell lines, but

increases with further rounds of stimulation in vitro [20].

Accordingly, later passage LCL-stimulated T-cell lines might

exhibit a higher tumor-protective potential. As expected, T cells

from the same donor stimulated four or ten times in vitro both

recognized autologous LCL in vitro, but responses against virus-

pulsed LCL were more pronounced after ten rounds of

stimulation. These results indicated that the proportion of T cells

with virion antigen specificity had increased (Figure 4A and Figure

S2 in Text S1). When tested in vivo, both T-cell lines prolonged

median survival of LCL-injected animals to a similar extent; 50

days in the case of p4 (n = 13) and 46 days in the case of p10

(n = 13). Thus, despite an increased response against virus-pulsed

target cells, later passage T-cell lines were not more efficacious in

vivo (Figure 4B). In fact, the tumor-protective potential of these

LCL-stimulated T-cell lines seemed to decline with the number of

passages, either because extended in vitro culture impaired their

antitumoral activity in vivo, as demonstrated for CD8+ T cells [31],

and/or relevant specificities were lost.

The tumor-protective effect of LCL-stimulated T-cell lines
is mostly mediated by non-virion antigen-specific T cells

To investigate the antigen-specificity of protective T-cell lines in

more detail, we generated T-cell lines by repeated stimulation with

three different stimulator cells, (i) LCL cultured in media

containing FCS (LCL-FCS), (ii) LCL cultured in media containing

FCS and acyclovir (LCL-FCS-ACV), and (iii) LCL cultured in

media containing human serum (LCL-HS) instead of FCS. ACV

inhibits EBV late lytic gene expression and is used for safety

reasons in clinical T-cell stimulation protocols to prevent virus

production [32]. As verified in T-cell recognition assays, T-cell

lines stimulated with LCL-FCS-ACV were devoid of virion

antigen-specific T cells (Figure S3 in Text S1). LCL-HS were

used as stimulators to investigate whether recognition of FCS-

derived antigens presented on injected LCL by FCS-specific T

cells contributed to tumor protection [13].

Irrespective of the stimulator cells used, all three T-cell lines

recognized autologous LCL in vitro, but failed to respond to

autologous PBMC pulsed with recombinant EBV latent proteins

(Figure 5A). Efficient processing and presentation of peptides

derived from these recombinant proteins was confirmed using

latent antigen-specific CD4+ T-cell clones (Figure S4A in Text

S1). LCL-FCS and LCL-HS-stimulated T cells potentially

recognized EBV lytic cycle antigens and/or autoantigens, whereas

LCL-FCS-ACV-stimulated T cells might have been directed

against cellular antigens and possibly immediate early and early

lytic cycle antigens.

Surprisingly, in vivo all three T-cell lines significantly prolonged

median mouse survival to approximately 50 days (group sizes

n = 9-12) (Figure 5B). Thus, LCL-stimulated T-cell preparations

that lacked virion antigen-specific T cells were not compromised in

their antitumoral efficacy, indicating that tumor-protection was

mediated by T cells specific for non-virion antigens.

To further substantiate this notion, 8 mice were co-injected with

tumor-inducing cells that are unable to express lytic cycle antigens

(LCL Z(-)) and T cells stimulated with LCL-HS as effectors.

Although lytic cycle antigen-specific T cells, including virion

are shown in each case. (D) Injection of the EBNA1-specific T-cell clone 3E10 and the BNRF1-specific T-cell clone 1H7 led to faster tumor development
and shortened mouse survival (group sizes: EBNA1-3E10: LCL n = 20, LCL + T cells n = 10; BNRF1-1H7: LCL n = 20, LCL + T cells n = 4).
doi:10.1371/journal.ppat.1004068.g003

Figure 4. Later passage T-cell preparations show increased
virion antigen specificity but are less tumor-protective. (A)
Reactivity of the T-cell lines against virion antigens. With increasing
numbers of stimulation, the T-cell lines progressively responded against
virion antigens transferred by viral particles. T-cell specificity was tested
by cytokine secretion upon stimulation with autologous LCL Z(-). The
target cells were either left untreated or loaded with virus particles for
presentation of structural antigens (mainly late lytic antigens). (B)
Tumor protection by early and late passage T-cell lines. 16107 LCL and
16107 T cells stimulated with autologous LCL four (p4) or ten (p10)
times in vitro were simultaneously injected into SCID mice (group sizes:
LCL n = 20; LCL + T cells p4 n = 13; LCL + T cells p10 n = 13; depicted
results are combined from two independently performed experiments).
Later passage T-cell lines prolonged mouse survival less efficiently.
doi:10.1371/journal.ppat.1004068.g004
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antigen-specific T cells, were a priori ineffective in this experimental

setting, mouse survival was significantly prolonged with three out

of eight animals never developing any tumors (Figure 5C). No

human IgG was detected in the serum of these mice (data not

shown). Mice in this experiments survived on average for 86 days,

compared to 32 days without T cells (n = 7) (Figure 5C). Although

this remarkable protective efficacy might have been partly due to

the slightly less aggressive nature of LCL Z(-) as compared to LCL-

induced tumors (Figure 1B and [33-35]), these results clearly

demonstrated a considerable therapeutic potential of LCL-

stimulated T-cell lines independent of EBV latent or lytic cycle

antigen recognition.

CD4+ T cells specific for potential autoantigens prolong
mouse survival

To more directly evaluate the antitumoral efficacy of non-viral

antigen-specific T cells in vivo, T-cell lines were generated by

stimulation with LCL Z(-) or miniLCL, thereby precluding the

expansion of T cells that recognize EBV lytic cycle antigens.

Following more than 30 rounds of stimulation, these T cells

usually expressed one or few Vb chains, suggesting that these lines

were directed against one or few antigens (data not shown).

The miniLCL-stimulated T-cell line JM-W3 recognized

autologous LCL and LCL Z(-), as well as the HLA-matched

EBV-negative Burkitt’s lymphoma cell line BL30. Recognition was

not due to alloreactivity, because these T cells failed to recognize

the EBV-positive convertants (BL30-B95.8 and BL30-P3HR1).

Thus, this T-cell line recognized a differentially expressed cellular

antigen(s), but not viral antigens (Figure 6A and Figure S4C-D in

Text S1). In the case of the miniLCL-stimulated T-cell line GB-

W3, reactivity against EBV latent antigens was excluded by

assessing recognition of the HLA-matched, EBV-negative Hodg-

kin’s lymphoma cell line L428 that had been pulsed with single

recombinant EBV latent antigens (Figure 6A and Figure S4B in

Text S1). Co-injection of 16107 JM-W3 or GB-W3 T cells

together with 16107 autologous LCL Z(-) or miniLCL into

SCID mice prolonged median mouse survival from 30 to 36 days

in the case of JM-W3 T cells (group sizes LCL Z(-) n = 6; LCL Z(-)

+ T cells n = 4), and from 24 to 29 days in the case of GB-W3

(group sizes miniLCL n = 4; miniLCL + T cells n = 10),

demonstrating that autoantigen-specific T cells were tumor-

protective in this preclinical PTLD model (Figure 6B and Table

S1 in Text S1).

Similar to virus-specific effectors, these putative autoreactive T

cells displayed a differentiated effector/effector-memory Th1

phenotype [36,37] (CD62L2, CCR72, CD272, CD28+,

CXCR3+) (Figure 6C), that was confirmed by the expression of

the cytotoxins granzyme A and B in these T cells (Figure 6D).

Figure 5. Mouse survival is mediated by non-virus-specific T cells. T-cell lines were generated by four rounds of stimulation in vitro with LCL
cultivated in media containing human serum (HS), fetal calf serum (FCS), or fetal calf serum plus acyclovir (FCS-ACV) to prevent the expression and
presentation of virion antigens. (A) Specificity analysis of the generated T-cell lines. Autologous PBMC were pulsed with recombinant EBV latent
proteins [20] for 24 h and then probed with the T cells. Whereas all T-cell lines recognized LCL, none specifically responded against PBMC pulsed with
any of the latent proteins of EBV. (B) Following i.p. injection with autologous LCL as tumor inducing cells, all three T-cell lines prolonged mouse
survival significantly (*** p,0.0001). Group sizes: LCL n = 20; LCL + T-cell line HS n = 9; LCL + T-cell line FCS n = 12; LCL + T-cell line FCS-ACV n = 10
(summarized results of two independent experiments). (C) Injection of T-cell line HS together with LCL Z(-) significantly prolonged mouse survival,
demonstrating that virion antigen-specific T cells are not required for the tumor protective effect. Group sizes: LCL Z(-) n = 7; LCL Z(-) + T-cell line HS
n = 8 (*** p,0.0001).
doi:10.1371/journal.ppat.1004068.g005
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Discussion

The identification of low endogenous CD4+ T-cell numbers as

important risk factor for the development of EBV-associated

diseases in immunosuppressed patients [38], and of better clinical

responses in patients with PTLD receiving EBV-specific T-cell

lines that contained higher proportions of CD4+ T cells [10], have

implied an important role for CD4+ T cells in the control of EBV-

driven lymphoproliferation. Thus, elucidating the role of CD4+ T

cells in tumor defense may facilitate to generate T-cell prepara-

tions with enhanced clinical efficacy and to reduce the logistic

complexity of this form of immunotherapy that still precludes its

application outside specialized academic centers [3]. The EBV-

specific CD4+ T-cell response, albeit one to two orders lower in

magnitude, appears to target a much broader set of viral antigens

than the corresponding CD8+ T-cell response [6,14,20]. To

investigate whether these numerous CD4+ T-cell specificities are

functional redundant or fulfill complementary roles in tumor

defense, we assessed their tumor-protective potential in a

preclinical PTLD model.

In contrast to earlier [39], but in accordance with recently

published data [40], CD4+ T cells in our LCL-stimulated

preparations delayed tumor growth as effectively as the CD8+
components. Contrary to the above mentioned clinical experience,

however, antitumoral efficacy was not affected by the CD4/CD8

ratio of the injected T-cell preparations. This functional redun-

dancy implied that both components recognized PTLD-like

tumors with similar efficiency. In patients, CD4+ T cells probably

also exert indirect ‘‘helper’’ functions that remained undetected in

this xenogenic model, where human T cells fail to persist long-

term and complex immune networks are unlikely to form.

To assess functional differences among virus-specific CD4+ T

cells we injected T-cell clones with defined specificities together

with autologous LCL or PBMC from EBV-seropositive donors

into SCID mice. Unexpectedly, the T-cell clones had divergent

effects on mouse survival, ranging from tumor-protective in the

case of BLLF1-specific T cells, to ineffective in the case of most

latent antigen-specific T cells, to tumor growth-promoting in the

case of EBNA1-3E10 and BNRF1-1H7. The correlation of tumor-

protective but not tumor-promoting propensity of T cells in vivo

with target cell recognition and inhibition of proliferation in vitro

suggested that still unknown phenotypic differences may exist

between these populations. Neither the pattern nor the amount of

secreted cytokines, including paracrine growth factors like IL-6

that are known to shorten tumor latency in SCID mice [34,35,41],

differed consistently among tumor-promoting and tumor-protec-

tive T cells (Figure S1 in Text S1, and data not shown). How

certain CD4+ T cells promote tumor growth is still unknown, but

given the potential clinical implications, warrants further investi-

gation. This dichotomous function of CD4+ T cells may also

provide an explanation for the contrasting effects of LCL-

stimulated CD4+ T-cell lines on tumor growth in different studies

[39,40], and for the baffling observation that tumor development

in SCID mice injected with primary B cells from EBV-positive

donors depends on the presence of T cells [33].

Unexpectedly, EBNA1-specific CD4+ T cells had no or a tumor

growth-promoting effect in vivo. This was surprising because

EBNA1 peptide-selected T-cell preparations were successfully used

in the clinic to treat PTLD [42]. The reasons for these discrepant

results are currently not known. The clinically used T-cell

preparations, however, contained CD4+ and CD8+ T-cell

components and only about 60% of the adoptively transferred T

cells were EBNA1-specific. Therefore, it cannot be excluded that

tumor regression was mediated by EBNA1-specific CD8+ T cells

and/or T cells with undefined specificities. An important role of

CD8+ T cells in the control of PTLD has been implicated by

clinical studies using peptide or MHC class I pentamer-selected T-

cell preparations [7,8]. The infused T cells were predominantly

CD8+ and were directed against different viral antigens.

Collectively, these studies point towards a redundant function of

different latent or lytic antigen-specific T cells in the control of

PTLD in stem cell transplant recipients. However, in solid organ

transplant recipients, response rates are generally lower (around

50%) and positively correlate with the CD4+ T-cell content of the

infused T-cell preparations [10], suggesting that in these patients,

CD4+ and CD8+ T cells do not have completely redundant

antitumoral functions. Whether virus-specific CD4+ T cells,

including those directed against EBNA1 as well as other viral

antigens, that had no effect on tumor growth in the SCID mouse

model, are of therapeutic importance in this cohort, e.g. by

providing help to endogenous immune cells, remains to be

determined.

The efficient recognition of LCL by virion antigen-specific T

cells [19] and the correlation of target cell recognition and

prolongation of mouse survival implied that increasing virion

antigen-specific CD4+ T cells in T-cell preparations might

increase their tumor-protective potential. This notion was

supported by immunohistochemical analyses of tumor sections

which revealed that approximately 1–3% of the tumor cells

expressed BZLF1 (data not shown). A similar percentage of

BZLF1-positive cells was detected in the corresponding LCL

cultures, suggesting that spontaneous induction of the lytic cycle

and expression of lytic cycle antigens was not altered in vivo.

However, LCL-stimulated T-cell lines were not more tumor-

protective at later than at earlier passage. This was either because

(i) functionality of the T cells in vivo declined with longer in vitro

culture [31], or (ii) tumor-protective T-cell specificities were lost

and only partially compensated for by the increase in virion

antigen-specific T cells, and/or (iii) tumor-promoting T cells were

enriched. To further analyze antigen-specificity and antitumoral

efficacy of early passage T-cell preparations, we compared the

tumor-protective potential of T-cell lines stimulated with LCL that

had been cultured under different conditions, including those used

in clinical protocols [43]. These experiments revealed that

potentially autoantigen-specific, but not FCS-reactive or virus-

specific T cells, were the principal effectors against PTLD in early

Figure 6. LCL Z(-)- as well as miniLCL-stimulated T-cell lines recognize autoantigens and prolong mouse survival. (A) Recognition of
autoantigens by LCL Z(-) or miniLCL-stimulated T cells. Specificity analysis of the T-cell line JM-W3 was performed using autologous LCL and LCL Z(-)
as well as HLA-matched EBV-negative and EBV-positive BL30 cell lines. T-cell recognition of the EBV-negative BL30 cell line, but barely of BL30 cells
that had been infected with the B95.8 or the P3HR1 EBV strains, demonstrated that these T cells recognized a non-viral antigen(s). Recognition of viral
antigens by the GB-W3 T cells was excluded by probing the cells with the HLA-matched, EBV-negative Hodgkin lymphoma cell line L428 pulsed with
recombinant latent proteins of EBV. (B) Analysis of the tumor-protective potential of these autoreactive T-cell lines in vivo. 16107 LCL Z(-) or miniLCL
were i.p. injected in combination with 16107 autologous T cells and tumor development assessed (LCL Z(-) n = 6; LCL Z(-) + T cells JM-W3 n = 4;
miniLCL n = 4; miniLCL + T cells GB-W3 n = 10; * p,0.05; *** p,0.001) (C) Phenotypic characterization of the autoreactive T cells GB-W3 by FACS.
Autoreactive T cells displayed a CD3+CD4+ effector T-cell phenotype (CD62L-CCR7-) of differentiated T cells (CD27-CD28+CXCR3+CCR4-CCR6+/-), and
produced granzyme A (black line) and B (grey line) (D).
doi:10.1371/journal.ppat.1004068.g006
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passage LCL-stimulated CD4+ T-cell lines. These T cells

prolonged mouse survival as effectively as a virion antigen-specific

T-cell clone, implicating these two specificities as critical CD4+
effectors against PTLD in this preclinical model. However, one

has to keep in mind that only a limited number of T-cell clones

directed against a subset of all viral antigens was included in this

analysis. Thus, additional T-cell specificities with protective

efficacy may exist.

That autoantigen-specific CD4+ T cells are a major component

of early passage LCL-stimulated T-cell preparations, has already

been demonstrated in earlier studies [20]. Furthermore, when the

expansion of lytic cycle antigen-specific T cells was prevented by

using LCL Z(-) cells as stimulators, the resulting CD4+ T-cell lines

targeted cellular but not viral antigens [21].

Although the antigens recognized by these T cells have yet to be

defined molecularly, their expression appears to be restricted to

transformed B-cell lines and was not detected in primary

hematopoietic cells (Figure S4 in Text S1). In accordance with

this, Long et al recently isolated CD4+ T-cell clones from LCL-

stimulated lines that recognize cellular antigens expressed in EBV-

transformed, but not in mitogen-activated B lymphoblasts [21].

These findings may provide an explanation for the proven clinical

safety of LCL-stimulated T-cell preparations [5,6,44]. In addition,

these findings raise the intriguing possibility that EBV-positive

lymphomas that fail to express immunodominant antigens of EBV,

e.g. Hodgkin’s and Burkitt’s lymphoma, and even EBV-negative B

cell malignancies, might respond to LCL-stimulated T-cell

preparations.

Circumstantial evidence for a protective role of autoreactive

CD4+ T cells has already been obtained in preclinical lymphoma

models and lymphoma patients: CD4+ T cells that recognize non-

viral antigens can prevent B cell lymphomas in mice transgenic for

the EBV latent membrane protein LMP1 [45], and five of six

patients with Hodgkin’s-like and Burkitt’s-like post-transplant

lymphoproliferative disease responded to treatment with alloge-

neic T-cell preparations, although in some cases the tumor cells

did not express the viral antigens recognized by the infused T cells

[11]. Moreover, complete remissions were achieved in several

patients with LMP2A-positive Hodgkin’s lymphoma by the

adoptive transfer of autologous LCL-stimulated T-cell lines. Since

the infused T cells contained only low amounts of LMP2A-specific

CD8+ T cells and their frequencies failed to correlate with clinical

responses [5,46], additional and still unknown specificities might

have contributed to tumor rejection.

Taken together, these results implicate virion and non-viral

antigens as important targets of the CD4+ T-cell response against

PTLD, and LCL-stimulated T-cell lines, although increasingly

replaced by antigen-specific preparations [8,9,47], as more potent

than previously recognized. Defining the antigens recognized by

these non-viral antigen-specific CD4+ T cells and incorporating

such specificities in clinically used T-cell preparations may not

only increase their antitumoral activity against PTLD, but possibly

also against EBV-negative B cell malignancies.

Materials and Methods

Ethics statement
All animal experiments were performed in strict accordance

with German animal protection law (TierSchG) and approved by

the responsible state office Regierung von Oberbayern (ROB)

under protocol number 55.2-1-54-2531-131-07. The mice were

housed and handled in accordance with good animal practice and

all efforts were made to minimize suffering as defined by

Federation of European Laboratory Animal Science Associations

(FELASA) and the national animal welfare body Gesellschaft für

Versuchstierkunde - Society for Laboratory Animal Science

(GV-SOLAS).

Generation and cultivation of LCL
LCL were established by infection of primary B cells with wild-

type (wt)-EBV produced by the B95.8 marmoset cell line.

MiniLCL and LCL Z(-) were generated by infection of B cells

with the genetically engineered virus mutants miniEBV [48] and

DBZLF1-EBV [49] that are incapable of lytic replication, as

previously described [19]. B cells were obtained from peripheral

blood mononuclear cells (PBMC) of healthy adult volunteers after

informed consent. LCL were cultured as described [20]. In some

experiments, FCS was replaced by pooled human serum (HS) to

avoid the expansion of FCS-reactive T cells. Where indicated,

LCL treated with 200 mM acyclovir (ACV) (Hexal) for at least two

weeks were used as T-cell targets.

Generation and cultivation of T cells
PBMC were repeatedly stimulated with autologous, irradiated

(80 Gy) LCL, miniLCL, or LCL Z(-) as antigen presenting cells

(APC) as described [20]. Where indicated, T-cell lines were

separated into CD4+ and CD8+ fractions by using aCD4+ and

aCD8+ MicroBeads, LS-MACS columns and MidiMACS sepa-

rator as recommended by the manufacturer (Miltenyi Biotec).

Purity of the cells was confirmed by FACS analysis using CD3,

CD4, and CD8-specific antibodies (Becton Dickinson). Generation

and cultivation of CD4+ T-cell clones has been described

previously [19,30]. Clonality of the T cells was assessed by PCR

using Vb chain-specific primers as described, and T-cell epitopes

as well as the restricting HLA-molecules were identified using

published methods [13,50]. To exclude that prolonged culture

caused loss of specificity of the T cells and, consequently, that their

anti-tumor effect in vivo would not reflect their initial anti-tumor

activity in vitro, antigen-specificity of all clones was verified prior to

injection (data not shown and Fig S4 in Text S1).

The T-cell lines were generated by stimulation with autologous

LCL or miniLCL. The T-cell lines were 100% CD3+ with varying

proportions of CD4+ and CD8+ components. No NK or B cells

were detected by FACS. Target cell recognition and lytic activity

of all T cells was tested prior to injection (data not shown).

Cytokine secretion by the T cells was measured by ELISA (R&D

Systems). Plotted data represent the mean plus standard deviation

(SD) of triplicates. Dendritic cells and PHA blasts were generated

as described [51]. Cytolytic activity was measured after 3 h of co-

culture of T cells with labeled target cells by quantitating calcein

AM (Invitrogen) released into the culture supernatant. Virus

concentrate was prepared by ultracentrifugation of B95.8 cell

culture supernatant. Functionality was tested using BLLF1-specific

T cells (Figure S3 in Text S1) and viral copy numbers determined

by qPCR as described [13].

In vivo studies
To assess the antitumoral potential of T cells in vivo, 16107 LCL

(LCL-SCID mouse model) or 56107 PBMC (PBMC-SCID mouse

model) from EBV-positive donors were injected intraperitoneally

(i.p.) into 6 to 14-weeks-old C.B.17-SCID mice (Taconic). 16107

T cells in PBS, or PBS only, were i.p. injected separately on the

same day before down-regulation of HLA class-II on injected LCL

occurs [40,52]. All cells injected in mice were tested negative for

mycoplasma using a commercial detection kit (Lonza). For T-cell

tracking experiments, LCL were injected on day 0 and T cells on

day 25. Experimental groups consisting of 4–6 mice were

evaluated for tumor growth and survival. Mice were sacrificed
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when they had ruffled hair, showed food refusal, bulky abdomen

or palpable tumors. To verify the presence of human B cells in

these mice, human IgG (huIgG)-ELISA was performed. 96-well

plates were coated with a-human IgG mAb (2.5 mg/ml; Abcam) in

PBS overnight and then incubated with mouse serum at different

dilutions in RPMI-1640 for 1 h. Subsequently, the biotin-labeled

detection antibody a-huIgG (Dianova) was added for 1 h followed

by horseradish-peroxidase (HRP)-coupled streptavidin for 20 min.

HuIgG was visualized by adding TMB-substrate.

Where indicated, T cells were labeled with CFSE according to

the guidelines of the manufacturer (Invitrogen). For the FACS-

analysis of tumor infiltration by CFSE-labeled T cells, single cell

suspensions of tumors were prepared by mechanical disruption

and lysis of erythrocytes.

FACS
For FACS analysis, fluorochrome-conjugated monoclonal

antibodies against human CD3, CD4, CD8, CD25, CD28,

CD57, CD62L, CXCR3, CCR4, CCR6, CCR7, CTLA-4,

MHC II, PD-1 (Becton Dickinson), CD20, CD27 and MHC I

(ImmunoTools) were used. TIM-3 antibody (kindly provided by

Dr. Kuchroo, Boston) was visualized using a fluorochrome-

conjugated secondary antibody (Jackson ImmunoResearch labo-

ratories). Granzyme A and B stainings were performed on a-CD3-

activated T cells. Dead cells were excluded with 7-AAD (Becton

Dickinson), cells fixed with paraformaldehyde, permeabilized with

saponine and stained for granzyme A and B. FoxP3 staining was

performed following the manufacturers protocol using the Fix/

Perm FoxP3 buffer set (BioLegend). CD4+ cells were stained prior

to fixation, CD25+ cells were stained simultaneously with FoxP3.

CD107a antibody (BioLegend) was added during T-cell stimula-

tion and surface expression analyzed after 4 h. Flow cytometric

analysis was performed in a FACSCalibur flow cytometer and

data analyzed with the CellQuest software (Becton Dickinson).

Immunohistochemistry
Immunohistochemical analyses were performed on cryo-

embedded or formalin-fixed, paraffin-embedded (FFPE) tumor

samples. FFPE-sections of all tumors were stained with

hematoxylin and eosin (H&E), or with antibodies against human

CD20, EBNA1, EBNA2, BZLF1, BLLF1, and FITC (from

Argene, Dako, or kindly provided by Dr. E. Kremmer,

Helmholtz Zentrum München). For H&E staining, FFPE

sections were stained with mayers hematoxylin solution and

eosin Y (both Roth). Single stain immunohistochemistry was

performed on FFPE sections using the Vectastain ABC

Detection System for horseradish peroxidase according to the

manufacturers protocol (Vector Laboratories). Cryo-embedded

sections were used for double-stainings with antibodies against

FITC, to detect CFSE-labeled T cells, and BLLF1, to detect

lytically infected tumor cells. In addition to the horseradish

peroxidase detection system, the Vectastain ABC Detection

System for alkaline phosphatase in combination with the

alkaline phosphate substrate kit III (both from Vectastain) was

used.

Statistical analysis
Mouse survival was analyzed using Kaplan-Meier curves.

Significances of the in vivo-experiments were calculated by using

the log-rank or the Kruskal-Wallis test. p-values of 0.05 or less

were considered significant. The statistical analyses were carried

out with the GraphPad Prism 5 program.

Supporting Information

Text S1 Supporting information. This file contains Figures S1-

S5 and Table S1.

(DOC)
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