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ABSTRACT: In this study, we propose a novel approach to
evaluate virtual screening (VS) experiments based on the
analysis of docking output data. This approach, which we refer
to as docking data feature analysis (DDFA), consists of two
steps. First, a set of features derived from the docking output
data is computed and assigned to each molecule in the virtually
screened library. Second, an artificial neural network (ANN)
analyzes the molecule’s docking features and estimates its
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activity. Given the simple architecture of the ANN, DDFA can be easily adapted to deal with information from several docking
programs simultaneously. We tested our approach on the Directory of Useful Decoys (DUD), a well-established and highly
accepted VS benchmark. Outstanding results were obtained by DDFA not only in comparison with the conventional rankings of
the docking programs used in this work but also with respect to other methods found in the literature. Our approach performs
with similar good results as the best available methods, which, however, also require substantially more computing time,
economic resources, and/or expert intervention. Taken together, DDFA represents an automatic and highly attractive

methodology for VS.

1. INTRODUCTION

In the early stages of the drug discovery process, large chemical
libraries are screened to identify lead molecules that allow the
development of new drugs. The large amount of experimental
resources that are required renders this search highly expensive
and time-consuming.1 In this context, in sillico virtual screening
(VS) has appeared as a fast and economic approach that
increases the efficiency of the lead discovery process.””

There are two main approaches to perform VS: ligand-based
and structure-based.® In the former, previously known active
ligands are used to identify other molecules with similar
characteristics; in the latter, protein and ligand structural
models at atomic resolution are used to evaluate their binding
affinity. Structure-based methods perform generally better than
ligand-based methods in identifying new lead compounds.® In
structured-based methods, the screening is performed by
docking each of the library’s molecules into the receptor’s
active site while optimizing the atomic interactions between the
binding partners.

Docking methods are foremost developed to identify the
ligand’s actual binding mode from the large set of sampled
conformations tested.” In this regard, docking software like
Autodock, AutodockVina, and RosettaLigand have achieved
high performances.®* ' Compared to the discrimination of
correct and incorrect conformations of the same ligand, it is far
more challenging to discriminate active from inactive ligands, as
it is required for structured-based screening. This complication
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arises from the difficulty to evaluate free energy terms of the
unbound ligand state, such as solvent and conformational
entropies. Whereas these terms cancel out when comparing
conformations of the same ligand, they do not cancel out when
treating different molecules. Nevertheless, due to the lack of
better ranking methods, it is common practice to rank ligands
based only on the docking score of their best docked
conformations.

Many attempts have been made to improve the ranking of
ligands beyond the accuracy obtained by using the plain
docking score.''™'® For instance, Garcia-Sosa et al.'* reported
that a better correlation between docking scores and
experimental binding energies can be achieved by dividing
the docking score by the ligand’s size; resulting in a descriptor
often referred to as ligand efficiency (LE). Others have analyzed
several high ranking conformations per ligand, rather than
considering only the best scored conformations. For example,
Seok et al."> augmented the binding energy evaluation by
adding an entropy term that was estimated from the
populations of clusters of high ranked binding modes. To
establish a new ranking, Wallach et al.'® compared scores of
query molecules with that of physically similar (molecular
weight, number of rotational bonds, number of hydrogen
acceptor/donor, etc.) but chemically dissimilar (different
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topology and functional groups) decoys. For each molecule in
the screening library, a set of decoys is generated. The approach
is based on the assumption that an active ligand should obtain a
significantly higher score than the decoys’ score distribution.
Although the method turned out as a success, its main
disadvantage is that the amount of molecules to be docked
increases by 2 orders of magnitude.

The common theme of the methods mentioned above is to
rank the screening library by a modified form of a single scoring
function. An alternative class of approaches attempts to
overcome the deficiencies of individual scoring functions by
employin; two or more docking programs in a consensus
scheme.'” One of the most popular ways to combine multiple
ranked lists is the “rank-by-rank” approach.'® For each molecule
the average of its ranks is computed and used to establish the
final ranking list. A different method would be to average scores
from different scoring functions. It has been shown that both of
these methods rely crucially on the diversity and high quality of
the scoring functions.'”” A more sophisticated analysis was
developed by Jacobsson et al.” In their work, data mining
techniques were used to create “if—then” rules that yielded
upper and lower bounds to seven scoring functions.

Here we describe a novel framework to predict the ligand
activity based on a diverse set of docking features rather than
focusing on a single kind; such as the docking score. This
framework, which we named docking data feature analysis
(DDFA), converts this set of docking features into a feature
score. The signal conversion is performed by an artificial neural
network (ANN) that can be trained to work with data from
either single or several docking programs. In our particular case
we performed the analysis using three programs and five
docking features: (i) best docking score, (ii) ligand efficiency,
(iii) scores from similar molecules, (iv) the position of the
ligand’s poses within the general rank, and (v) structural
consistency of the ligand’s poses. These features were selected
to capture different aspects that are typically employed in a
human expert analysis to identify active binding molecules from
the VS ranking. Bearing this in mind, the docking score feature
represents the traditional approach, which assumes correlation
between score and activity. The ligand efliciency feature
contributes to a size independent comparison among ligands.
Monitoring the performance of chemically similar molecules is
inspired by the structural activity relationship (SAR) central
idea, which is that similar molecules have similar binding
energies. The feature that monitors the ranks of the ligand
poses assumes that poses from an active molecule are not
distributed randomly through the entire rank. The pose
variability feature exploits that active ligands often show better
converged poses. It is important to mention that the DDFA can
be easily extended and/or adapted to include other features.

To test the DDFA approach, we docked the broadly used
Directory of Useful Decoys’ (DUD) using three different
docking 2programs—Autodock4,22 Autodockvina,” and Roset-
taLigand—and predicted ligand activity. DUD is widely
accepted for benchmarking VS protocols. It consists of 40
receptors of pharmaceutical relevance and a screening library of
over 100000 molecules. To predict the ligand activities for a
receptor of DUD benchmark, the DDFA ANN was trained
using 22 receptors from the remaining 39 data sets. The 22
receptors of the training set were randomly selected after
removing receptors with similar biological activity or with
reported positive cross-enrichment, with respect to the receptor
to be evaluated. We repeated this process with a different
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receptor left out of the training set each time to obtain ligand
activity predictions for each receptor in DUD. As a control,
DDFA’s performance was compared to that of the individual
docking scores of the used programs and a consensus ranking;
with the latter generated by the ligand’s best rank in any
program. The performance evaluation was carried out using
well established and broadly accepted metrics, such as
enrichment factor (ef) and the area under the curve (auc)
from the receiver operator characteristic (ROC) curve.

2. METHODS

2.1. Docking Programs. In this study three docking
programs Autodock4.2*> (AD4), Autodockvinal.2’ (ADV),
and RosettaLigand?;A23 (RL) were used. Although AD4 and
ADV were developed by the same lab, they differ in the
sampling methods and weights of individual score terms. RL is
part of the Rosetta’s software suite for modeling macro-
molecular structures. We used AD4 and ADV with a rigid
receptor model and RL with flexible side-chains for the
receptor.

2.1.1. Docking Using AD4 and ADV. The receptors and
ligands were prepared followin% the standard setup protocols
using Gasteiger partial charges.”* The grid sizes were set up to
27 A x 27 A X 27 A in both programs, using as grid center the
center of mass of the ligand provided by the DUD to localize
the binding pocket. For AD4, the receptor grid was generated
using autogrid4 with 0.375S A of grid spacing. The docking
parameter file was generated with the prepare_dpf42.py script
in AutoDockTools.”> The Lamarckian genetic algorithm with
default parameters was selected as pose search method.® Ten
output poses were requested. For ADV, a maximum of ten
output poses was kept using a restriction of 3 kcal/mol in the
score difference between the best and worse poses. The global
search exhaustiveness parameter was set to 16 (default value 8).

2.1.2. Docking Using Rosetta Ligand. For Rosetta Ligand
(RL) the receptor side chain conformations were first
optimized with the fixbb application of Rosetta.”* The ligands
were adapted to the RL format using scripts provided in the
Rosetta distribution (molfile to_params.py).** RL searches for
docking poses by cycling through a predetermined library of
intraligand conformations simultaneously to optimizing the
ligand’s rigid body degrees of freedom and receptor sidechain
dihedral angles. Usually the ligand conformational library is
generated with the external program OpenEye’s Omega.”®

In the context of this work, ligand conformations were
already available through the AD4 and ADV docking output,
and thus, all output poses from AD4 and ADV were used for
the ligand conformation library of RL. For every run, the ligand
initial placement was provided by the center of mass of a
randomly selected member of the conformation library.
Docking was performed using the RossetaScripts>® application
with the parameters reported by Davis et al.”” The number of
runs per ligand was set to 50. The top ten structures in interface
score were selected for analysis and comparison with the other
docking software.

2.2. RAW Rankings. The screening library of each DUD
receptor was docked using the docking programs AD4, ADV,
and RL a ranking based exclusively on the docking score was
generated. A fourth ranking (ALL) was created by assigning to
each ligand the best achieved position within any of the
individual rankings. Tied cases were resolved by comparing the
ligand’s standardized docking scores of the individual programs.
Docking scores were standardized by subtracting the average
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and dividing by the standard deviation of the score-distribution.
This standardization procedure is commonly known as Z-Score.
We refer to this set of scores as RAW (RAW-AD4, RAW-ADV,
RAW-RL, and RAW-ALL) since they represent the most
straightforward approach to establish a ranking of a docked
library.

2.3. DDFA Rankings. In the DDFA approach, a feature
vector is assigned to each ligand and used as input layer of a
feed-forward ANN. The term “docking feature” refers to
characteristic information computed from the docking data of
the screened library. Details of the docking features used in this
work are given in section 2.4. The analysis was performed
considering docking data from either a single docking program
(DDFA-AD4, DDFA-ADV, and DDFA-RL) or from analyzing
all three sources simultaneously (DDFA-ALL). ANN'’s
architecture and training procedure is described in section 2.5.

2.4. Docking Features. Docking data is analyzed to derive
features that help to discriminate between active and inactive
ligands. In this work five features are used in the analysis
(DockScore, DockLE, DockSimi, DockPoses, and DockRmsd)
and are described in the following sections.

2.4.1. DockScore. This feature is given by the best docking
score of the ligand poses. It represents the traditional approach,
in which the docking score helps to provide enough
information to discriminate an active molecule from an inactive
one. Prior to analysis the docking scores were standardized as
Z-scores.

2.4.2. DockLE. The ligand efficiency (LE) was computed as
the quotient between the best ligand’s score and the number of
heavy atoms of the ligand.

2.4.3. DockSimi. The DockSimi feature of a ligand is the
weighted average of the best docking scores of the five most
similar ligands in the docked library. The Tanimoto coefficients
(Tc) were used as both similarity measures and weighting
factors in the computation of the average. The FP2 molecular
fingerprints as implemented in OpenBabel*® version 2.3.1 were
used to compute the Tc. Only ligands with Tc > 0.70 were
considered as similar. Whenever no similar ligands existed in
the docked library, DockSimi was set to zero.

2.4.4. DockPoses. This feature is a five-dimensional vector
composed of the number of ligand poses that are within the top
5%, 10%, 15%, 20%, and 25%, respectively, of all pose-scores in
the docked library.

2.4.5. DockRmsd. This feature is a five-dimensional vector
given by the RMSD of the second—sixth ranked poses of a
ligand when superimposed to the first ranked pose.

2.5. Evaluation of Docking Features Using Artificial
Neural Networks. 2.5.1. Architecture of the ANN. Artificial
neural networks (ANNs) are known to perform well on pattern
recognition and classification problems.”® Here we train an
ANN to identify active molecules based on the information
provided by docking features.

Figure 1 shows a schematic representation of the ANN
topology. It consists of 13, 8, and 1 nodes for the input, hidden,
and output layers, respectively (Supporting Information Figure
S1). The network has full-connectivity among the layers, with
linear, sigmoidal, and softmax activation functions for the input,
hidden, and output layers, respectively. The ANN was
constructed using the PyBrain®® package. Given the ligand’s
docking features at the input layer, the returned value at the
ANN’s output node can be interpreted as a confidence
assessment on the ligand’s activity chances. Consequently the
ligands of the screened library are ranked based on the ANN’s
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Input layer
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Figure 1. Schematic representation of the ANN used with single
docking program. The ANN has a feed-forward architecture consisting
of three layers with 13 and 8 nodes in the input and hidden layers,
respectively, and a single output node. There is full connectivity
among the layers using linear, sigmoid, and softmax as activation
functions for the input, hidden, and output nodes, respectively. A
detailed description of the input values taken by each of the input
nodes can be found in the Methods section. In the case where the
information from three docking program is used, the input layer nodes
are triplicated.

output. If DDFA is applied to a single docking program, the
docking features give rise to 13 input nodes as follows: one
node for features DockScore, DockLE, and DockSimi and five
nodes each for the features DockPose and DockRmsd. In the
DDFA-ALL, where DDFA is applied to three docking programs
simultaneously, the number of input nodes is tripled.

2.5.2. Training and Application of the ANN. In order to
apply the DDFA approach to any of the DUD receptor’s, the
docking data was divided into three nonoverlapping sets:
training, validating, and testing (Figure 2). The training set is
used during parameter estimation; the validation set is used to
control hyperparameters and to monitor training progress; the
test set is used to measure the performance of the methodology
as in the reported results. To test the method we use a leave-
one-out approach. Thus, one receptor and it’s DUD ligands are
used as the testing set and remaining receptors and associated
DUD ligands are used for training and validation. However,
because similarities between the receptor used for testing and
the receptors used for training or validation might cause
overestimation of the performance for truly new and unseen
cases, we further remove any receptors similar to the test
receptor from training and validation sets. As similar we
consider receptors in the same biological class (Table 1) and
also receptors for which positive cross-enrichment has been
reported”’ (Table 1, column 2). Because this would cause
varying numbers of receptors in training and validation sets, we
further reduce their number to always get a total of 22
receptors, which reflects the smallest number of nonsimilar
receptors which would ever occur. This final selection is done
randomly. Thus, the analysis on the testing set represents a
realistic evaluation of the DDFA performance and similar
performance would be expected for unknown receptors and
screening ligands.

To generate balanced training and validation sets, all active
molecules are taken together with the same amount of
randomly selected decoys. From this pool with a balanced
active ligand to decoy ratio, 70% was used for training and 30%
for validation (Supporting Information Figure S2). The training
process was conducted under a back-propagation protocol with
a value of 0.001 for all three training parameters: weight decay,
learning rate, and momentum (Supporting Information Figure
S3). The testing set was used to monitor the ANN performance
over the training epochs. Training was terminated when a
plateau for the test-set performance had been reached. This
plateau occurred after 800 epochs for the AD4, ADV, and the
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Figure 2. Flowchart depicting the cross-validation and application
procedures of the DDFA approach. VS data is separated into three
nonoverlapping sets: training, validation, and testing. The receptor to
be analyzed constitutes the testing set; any of its data is considered
during the training and validation processes (enclosed dashed region).
The training and validation sets are formed using 22 receptors. None
of these receptors can be similar to the receptor used for testing
(Table 1). Docking data belonging to all active molecules, together
with same amount of information from random selected decoys, is
partitioned into training and validation sets in a 70:30 ratio. The ANN
is trained under a back-propagation protocol using the training set,
whereas the validation set is used to monitor the ANN performance.
As final step, the trained ANN is applied to the test receptor.

ALL-scheme and after 1200 epochs for DDFA-RL (Supporting
Information Figure S4). After the training process, ligands from
the testing receptor were ranked based on the ANN’s output.
This ANN training procedure was repeated 40 times, each time
with a different set of the 40 receptors of DUD selected as the
testing receptor and thus excluded from the training and
validation sets.

2.6. VS Performance Evaluation. In order to evaluate the
performance of VS experiments, several metrics were computed
on the benchmark receptors based on the generated rankings.
These metrics are the area under the curve (auc) of the receiver
operator characteristic (ROC) curve for sensitivity versus

Table 1. Similarity Relationships between Receptors as
Considered to Build Training and Validation Sets”

class: nuclear hormone receptors

receptor receptors with positive cross-enrichment
AR TK, ADA, ALR2, PARP, PNP, SAHH
ERagonist PNP
ERantagonist none
GR none
MR PARP
PPARg none
PR none
RXRa COX-1
class: kinases
receptor receptors with positive cross-enrichment
CDK2 none
EGFr none
FGFrl none
HSP90 none
P38MAP none
PDGFrb none
SRC PDES
TK ADA, COMT, ALR2, COX-1, GPB, PARP, PNP, SAHH
VEGFr2 none
class: serine proteases
receptor receptors with positive cross-enrichment
FXa DHEFR, GART
thrombin DHEFR, ERantagonist
trypsin PPARg, ADA, DHFR
class: metallo enzymes
receptor receptors with positive cross-enrichment
ACE ALR2
ADA none
COMT RXRa, ALR2, AmpC, PNP
PDES P38MAP
class: folate enzymes
receptor receptors with positive cross-enrichment
GART PPARg
DHFR PPARg
class: other enzymes
receptor receptors with positive cross-enrichment
AChe FXa
ALR2 GART, ACE, RXRa, PPARg, AmpC, COX-1, COX-2
AmpC GART, ACE, RXRa, PPARg, ALR2, COX-1, COX-2
COX-1 ALR2, COX-2
COX-2 HSP90, ALR2, PARP
GPB COMT
HIVPR none
HIVTR PNP
HMGR RXRa, ACE, GART, ARL2,AmpC,COX-1
InhA none
NA PPARg, thrombin, trypsin, ADA
PARP COX-1, PNP
PNP TK, ADA, COMT, COX-1, GPB, PARP, SAHH
SAHH TK, ADA, COMT, COX-1, PARP, GPB, PNP

“The 40 DUD receptors sorted in 6 biological classes. For a given
receptor used as test set, all receptors within the same classification
and in the list of reported cross-enrichment*" are excluded from
training and validation sets.
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specificity [eqs 1 and 2] and enrichment factor (ef) [eq 3].
These metrics were chosen due to their popularity and
acceptance in the field.'

true positives

sensitivty =
total actives (1)
. true negatives
specificiy = ——————
total decoys (2)
¢ actives found at X% total molecules
efyy =
e molecules at X%  total actives (3)

To estimate the significance of the difference AX in a metric
X between a pair of methods, with X being either the auc or ef,
we compute the p-value on the average difference®'

1 N
P= 5{1 B er([(AX) 2Var(AX) ]} (4)

Where erf is the error function, N is the number of receptors in
the DUD benchmark, and Var(AX) denotes the variance of
AX.

3. RESULTS AND DISCUSSION

We have developed a novel method for improving virtual
screening (VS) results called docking data feature analysis
(DDFA). In this approach, all ligands are docked several times
with different docking programs. Features derived from the full
library of docked poses and scores are assessed by an artificial
neural network (ANN) to identify potential active molecules.
To test our approach, we used the Directory of Useful
Decoy’s21 (DUD), which is an established VS benchmark
consisting of 40 receptors, each of them having its own
screening library with a 1:36 active to decoy ratio. The DUD is
a challenging test for receptor-based VS algorithms since the
decoys were selected specifically to be similar to the active
molecules of each receptor.”’ Each of the 40 DUD libraries
were docked using three different programs: Autodock4.2**
(AD4), Autodockvina’ (ADV), and RosettaLigand3.4>* (RL).
Docking was conducted with a rigid receptor molecule in AD4
and ADV and with flexible receptor sidechains in RL. Two
rankings were generated from each of the three data sets: (i)
based on the docking score (RAW) and (ii) based on the novel
feature score (DDFA). Additionally, RAW and DDFA rankings
were generated by combining all three docking data sets
(denoted as RAW-ALL and DDFA-ALL). In the following we
compare the VS performance between the two ranking
approaches (RAW and DDFA) applied to the four docking
data sets (AD4, ADV, RL, ALL). To evaluate docking
performance, we computed the area under the curve (auc) of
the receiver operator characteristic (ROC) curve given by the
various rankings. An AUC of 0.5 reflects a random selection,
whereas a value of 1.0 reflects the perfect identification of active
compounds. As a second performance measure, we computed
the enrichment factor (ef), which compares the active-to-decoy
ratio computed at a given cutoff rank.

Compared to all three individual docking programs, DDFA-
ALL significantly improves the auc (Figure 3A, C, and E).
Notably, DDFA-ALL vyields performances above the random
level (auc > 0.5) for all the receptors, with 30 of them
registering auc values above 0.7 (Table 2). In contrast, RAW-
AD4, RAW-ADV, and RAW-RL, yield good performance (auc
> 0.7) only in 11, 15, and 15 cases, respectively (Table 3). Even
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Figure 3. DDFA-ALL vs individual RAW rankings. DDFA-ALL is
compared against RAW-AD4 (A, B), RAW-ADV (C, D), and RAW-
RL (E, F). In plots comparing the auc (A, C, and E) the circles
represent each of the 40 DUD receptors. Plots comparing ef (B, D,
and F) show the DDFA-ALL to individual RAW average ratio. In all
the plots, the dashed line indicates the limit where both methods
perform equally.

more striking differences are observed in the number of
receptors performing poorly (auc < 0.5); with 13, 7, 7, and 0 for
RAW-AD4, RAW-ADV, RAW-RL, and DDFA-ALL, respec-
tively. In line with these results, DDFA-ALL obtains an average
auc of 0.77, which exceeds the corresponding values of RAW-
AD4, RAW-ADV, and RAW-RL by 28%, 20%, and 18%.
DDFA-ALL not only clearly outperformed the individual
scoring programs in the auc metric but also in the enrichment
factor (ef) (Figure 3B, D, and F). Within the first 20% of the
ranking, DDFA-ALL'’s ef is around 50% larger than the efs of
the conventionally obtained rankings. Taken together, these
findings indicate that the DDFA-ALL is a robust method for
evaluating VS experiments, not only because it effectively yields
higher average performance in terms of auc and ef but also due
to its strong reduction of poor performing receptors.

Next we asked whether the remarkable gain in performance
of DDFA-ALL stems from the feature-based analysis of the
docking data or from the combination of complementary
docking programs. With this objective, we applied the DDFA
approach to the data from single docking programs.
Interestingly, these individual versions of DDFA still outper-
form the RAW approach (Figure 4) yielding 28, 27, and 28
receptors with auc > 0.7 for DDFA-AD4, DDFA-ADV, and
DDEFA-RL, respectively, which has to be compared to the 11,
15, and 15 cases of good performance for RAW approaches
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Table 2. DDFA Rankings Metrics®

AD4 ADV RL ALL

(S efyo efy00 auc ef efye, e auc ef efyo efy0 auc (S efho efy00 auc
average 129 9.6 2.8 0.74 13.7 10.3 2.8 0.75 13.1 9.7 3.0 0.76 13.5 10.3 3.0 0.77
conf 95% 3.0 2.2 0.3 0.04 3.0 22 0.3 0.03 2.4 2.0 0.3 0.03 2.6 2.0 0.3 0.03
ACE 1.8 0.0 1.7 0.57 4.3 2.1 2.0 0.63 2.9 0.0 2.7 0.70 2.3 0.0 1.9 0.57
AChE 19.3 11.9 2.6 0.71 213 18.1 3.8 0.88 20.1 12.8 2.2 0.67 4.7 33 22 0.73
ADA 1.0 0.0 0.4 0.40 83 6.5 1.7 0.60 13.7 9.1 2.1 0.70 S.5 2.6 1.7 0.64
ALR2 20.4 16.3 34 0.81 314 27.5 4.0 0.87 23.5 17.7 33 0.74 19.6 18.7 39 0.85
AmpC 4.8 4.8 12 0.56 4.8 24 0.7 0.55 4.8 2.4 12 0.57 4.8 24 0.7 0.51
AR 7.3 5.8 2.7 0.78 23.3 17.5 4.0 0.88 S.1 32 14 0.54 9.7 9.7 3.9 0.82
CDK2 14.4 10.8 3.4 0.83 219 16.8 3.1 0.81 11.7 8.0 29 0.72 13.1 10.2 32 0.80
COMT 7.6 0.0 3.2 0.80 43.5 29.0 3.7 0.88 4.8 4.8 2.3 0.66 23.9 10.6 4.0 0.87
COX-1 8.7 8.7 29 0.75 29.1 16.6 3.8 0.83 12.5 10.4 32 0.71 249 14.5 3.6 0.82
COX-2 10.6 9.8 3.0 0.78 24.7 20.2 3.7 0.84 4.8 4.2 33 0.80 13.5 13.0 3.9 0.86
DHFR 17.2 12.8 4.0 0.89 12.1 9.4 3.0 0.79 19.5 18.6 4.6 0.95 19.5 15.9 4.2 091
EGFr 2.0 1.7 1.8 0.67 7.3 7.3 2.4 0.75 13.7 11.7 3.5 0.84 11.8 8.9 3.1 0.80
ERagonist 15.1 14.4 34 0.71 12.5 12.1 3.4 0.84 15.1 9.1 3.7 0.84 18.2 182 4.3 0.92
ERantagonist 272 21.0 33 0.84 6.9 6.6 32 0.77 19.1 15.8 32 0.84 8.2 6.6 33 0.79
FGFrl 7.5 7.5 2.0 0.62 5.9 5.0 2.5 0.73 2.1 13 1.6 0.61 4.2 2.9 1.6 0.57
FXa 9.2 5.6 1.6 0.58 5.6 4.5 1.9 0.62 11.2 6.9 23 0.65 7.1 S.0 1.6 0.61
GART 2.5 0.0 2.4 0.74 2.6 2.6 1.8 0.68 12.8 11.5 3.5 0.84 153 7.7 3.4 0.76
GPB 8.2 S.0 1.4 0.60 8.0 5.9 3.2 0.81 18.1 14.7 3.9 0.83 22.5 19.0 4.3 0.89
GR 14.2 11.6 2.8 0.76 10.5 7.2 13 0.65 2.6 13 12 0.55 4.5 3.9 1.5 0.61
HIVPR 20.3 14.0 2.6 0.72 18.6 14.9 2.9 0.74 169 13.2 3.4 0.80 18.5 10.9 2.6 0.76
HIVRT 8.4 8.4 2.1 0.57 16.9 10.5 2.1 0.66 12.1 59 1.8 0.61 9.7 9.4 2.3 0.66
HMGR 7.2 5.8 3.6 0.80 8.7 7.2 1.7 0.64 20.2 11.5 32 0.86 11.5 5.8 3.6 0.82
HSP90 1.1 0.0 0.8 0.47 3.3 1.4 2.7 0.68 S.5 2.7 1.8 0.67 14 0.0 1.4 0.62
InhA 25.1 18.2 3.6 0.80 34.6 212 3.5 0.81 29.5 17.3 32 0.76 234 17.5 3.8 0.84
MR 38.7 214 3.9 0.88 16.0 10.0 4.3 0.87 21.7 20.0 4.0 0.82 38.7 214 3.6 0.84
NA 8.0 8.0 2.4 0.71 8.3 7.2 2.6 0.68 5.2 5.2 3.7 0.80 16.0 11.5 2.5 0.74
P38MAP 2.8 2.8 1.7 0.62 8.0 7.2 3.1 0.77 3.1 24 2.0 0.67 4.5 3.7 2.5 0.71
PARP 40.7 28.7 4.7 0.95 9.4 7.5 44 0.89 33.5 26.4 4.9 0.96 31.3 28.7 4.6 0.95
PDES 15.3 14.3 3.7 0.83 223 16.0 3.6 0.83 20.0 16.0 4.3 0.89 214 18.5 4.1 0.90
PDGFrb 11.9 9.8 34 0.81 S5.3 4.2 1.6 0.66 12.5 9.5 3.3 0.80 S4 S.1 24 0.68
PNP 8.8 7.2 32 0.75 13.0 9.3 3.4 0.75 10.9 9.3 2.8 0.81 10.9 9.3 3.1 0.77
PPARg 7.8 7.0 22 0.72 7.1 7.1 2.6 0.70 9.4 8.9 3.5 0.82 5.2 3.8 22 0.76
PR 133 6.3 4.6 0.90 2.6 1.9 2.0 0.67 11.3 11.3 3.0 0.77 19.0 19.0 4.0 0.85
RXRa 33.0 25.6 5.0 0.96 17.9 17.9 4.8 0.94 16.5 10.3 4.8 0.93 20.5 20.5 4.3 091
SAHH 2.0 0.0 1.5 0.53 3.8 1.6 2.3 0.72 25.7 24.7 43 0.90 16.1 18.5 3.8 0.80
SRC 20.4 18.0 4.0 0.87 12.1 11.1 3.4 0.82 7.0 S.1 29 0.77 9.6 8.8 3.0 0.83
thrombin 12.6 12.6 34 0.82 23.9 14.7 3.3 0.85 15.4 10.5 3.3 0.82 14.0 112 34 0.84
TK 2.9 0.0 2.5 0.66 1.8 0.0 0.7 0.62 3.0 0.0 1.6 0.54 4.6 2.3 2.3 0.61
trypsin 17.8 13.4 4.0 0.88 10.3 8.2 2.5 0.72 4.1 2.1 2.7 0.74 134 11.1 33 0.76
VEGFr2 19.2 13.6 29 0.77 22.5 14.0 29 0.76 214 14.0 3.2 0.79 16.8 11.8 29 0.77

“Enrichment factor (ef) at 2%, 20%, and maximal reached, in addition to the ROC auc. The bold values indicate the highest auc value achieved in the

given receptor.

reported above. Also the number of receptors with auc < 0.5
remains low; the only two observed cases are angiotensin
converting enzyme (ACE) and heat shock protein 90 (HSP90),
for which auc of 0.40 and 0.47, respectively, are obtained with
DDFA-AD4 (Table 2). The average auc values, for DDFA-
AD4, ADDF-ADV, and ADDEF-RL, are 0.74, 0.75, and 0.76,
respectively. These results still correspond to improvements of
23%, 17%, and 17% with respect to their RAW counterparts.
Also the ef improves with the DDFA individual versions
(Figure 4B, D, and F). For DDFA-AD4 and DDFA-RL, the ef
is around 50% larger than that of the corresponding RAW
version over the first 10% of the ranking, whereas for DDFA-
ADV this degree of improvement is just observed at the starting
point of the ranking. This analysis confirms the robustness of
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the DDFA approach, since a significant enhancement in
performance is already obtained even when information from
a single docking program only is used.

The above-mentioned observation suggests that some part of
the performance gain in DDFA-ALL stems from the
combination of different docking programs. To assess this
influence, the RAW rankings of the docking programs were
combined in to a single list, RAW-ALL. Indeed, the RAW-ALL
ranking also outperforms individual RAW rankings (Figure SA,
C, and E), although to a lesser extent than the DDFA-ALL
(Figure SG). In the RAW-ALL approach, 21 proteins reported
auc values above 0.70; which exceeds the 11, 15, and 15 of
these cases for RAW-AD4, RAW-ADV, and RAW-RL,
respectively; but, it is still inferior to the 30 cases for DDFA-
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Table 3. RAW rankings metrics®

AD4 ADV RL ALL

ef oy efyy S auc ef v efyo S5 auc (S . efyo S5 auc ef oy efyy [S ™ auc
average 7.8 5.6 2.0 0.60 9.7 7.1 2.1 0.64 7.7 6.2 2.1 0.65 9.3 7.4 2.6 0.70
conf 95% 22 19 0.4 0.06 2.7 2.3 0.3 0.05 1.7 1.6 0.3 0.04 2.1 2.0 0.4 0.05
ACE 2.1 0.0 1.0 0.38 1.3 0.0 0.8 0.36 1.0 0.0 0.5 0.33 1.2 0.0 12 0.35
AChE 1.9 1.9 1.3 0.52 54 4.8 2.8 0.68 1.0 0.0 0.7 0.45 29 2.4 2.3 0.61
ADA 1.0 0.0 0.0 0.36 1.2 0.0 0.9 0.50 2.3 0.0 1.3 0.67 1.5 0.0 0.6 0.57
ALR2 2.9 0.0 2.6 0.62 9.8 3.9 2.7 0.72 5.9 5.9 1.5 0.53 6.2 2.0 2.7 0.73
AmpC 1.1 0.0 0.2 0.39 1.0 0.0 0.2 0.25 1.0 0.0 0.5 0.43 1.0 0.0 0.2 0.30
AR 9.0 7.0 2.7 0.70 194 18.8 3.7 0.80 5.1 3.2 1.5 0.48 154 14.7 3.9 0.84
CDK2 8.6 4.3 2.1 0.56 13.1 10.9 2.1 0.62 4.4 29 1.6 0.60 8.6 6.5 2.5 0.63
COMT 1.4 0.0 1.4 0.48 32.6 14.5 1.4 0.49 4.8 4.8 0.9 0.58 109 9.7 1.8 0.55
COX-1 2.2 2.2 0.8 0.52 16.6 104 3.8 0.84 6.2 6.2 1.6 0.67 12.5 12.5 3.6 0.83
COX-2 7.8 7.3 2.8 0.75 25.6 23.0 4.0 0.87 4.0 33 2.6 0.74 18.8 17.3 43 0.90
DHFR 17.7 14.7 4.8 0.95 11.1 8.9 3.5 0.86 17.5 174 4.7 0.95 14.5 12.5 4.7 0.94
EGFr 1.7 1.5 12 0.55 2.5 1.1 1.7 0.61 7.0 6.0 2.6 0.74 4.9 3.6 2.2 0.72
ERagonist 212 18.2 3.1 0.79 18.2 18.2 33 0.80 16.7 12.1 3.6 0.82 18.2 159 4.6 0.93
ERantagonist 21.8 19.7 3.5 0.82 13.6 9.2 22 0.67 13.6 11.8 2.3 0.67 13.2 13.2 33 0.77
FGFil 1.0 0.8 0.7 0.42 1.2 0.4 0.9 0.50 1.0 0.0 0.8 0.46 1.0 0.0 0.7 0.46
FXa 2.1 1.8 1.2 0.57 2.4 2.4 1.8 0.67 9.1 6.6 1.9 0.64 S.5 S.5 1.8 0.66
GART 4.4 13 4.0 0.88 29 0.0 2.6 0.77 5.6 S.1 3.5 0.82 3.9 13 39 0.85
GPB 1.0 0.0 0.1 0.19 29 29 1.2 0.51 10.4 9.8 3.5 0.78 6.3 2.9 32 0.82
GR 6.5 5.8 2.1 0.60 79 52 14 0.59 1.3 0.7 0.6 0.42 9.1 6.5 1.6 0.57
HIVPR S.1 4.1 2.5 0.66 5.8 5.8 2.7 0.73 6.8 5.8 23 0.63 6.5 4.8 2.6 0.73
HIVRT 2.5 2.4 0.7 0.38 12.1 7.0 1.9 0.65 7.3 5.9 1.9 0.57 9.7 7.0 2.0 0.63
HMGR 39 29 1.7 0.63 12 0.0 0.7 0.45 29 1.4 0.9 0.72 19 1.4 14 0.62
HSP90 1.2 0.0 0.4 0.47 1.7 0.0 1.2 0.63 2.4 0.0 2.4 0.72 1.6 0.0 1.0 0.64
InhA 22.7 13.5 19 0.47 19.1 12.4 1.8 0.56 10.3 S.1 1.6 0.53 154 11.1 22 0.53
MR 15.5 10.7 4.6 0.88 23.3 233 4.0 0.84 16.7 16.7 33 0.81 21.7 16.7 4.0 0.84
NA 2.3 1.2 0.9 0.56 1.1 0.0 0.4 0.41 4.1 3.1 1.6 0.57 2.1 2.1 0.8 0.49
P38MAP 1.6 1.2 0.7 0.42 3.1 2.0 2.3 0.62 3.6 2.0 1.9 0.65 2.4 2.3 2.0 0.63
PARP 25.1 21.1 2.7 0.71 9.4 4.5 2.8 0.73 15.2 13.2 3.1 0.77 15.2 14.7 4.3 0.91
PDES 11.7 6.9 23 0.63 11.7 8.0 2.0 0.64 10.6 9.2 2.6 0.76 15.3 9.7 2.9 0.75
PDGFrb 7.7 4.7 0.9 0.32 5.3 3.0 0.6 0.37 4.2 3.6 1.7 0.59 6.5 3.5 1.3 0.50
PNP 6.1 3.1 24 0.63 4.8 4.1 2.6 0.73 5.6 3.1 19 0.59 42 2.1 3.1 0.79
PPARg 1.2 0.0 1.1 0.48 4.7 3.5 1.8 0.66 7.1 5.9 2.7 0.75 3.5 1.8 1.9 0.63
PR 13.3 8.4 1.7 0.57 1.9 0.0 1.1 0.45 19.7 15.0 19 0.66 15.8 9.4 32 0.81
RXRa 16.5 154 5.0 0.97 33.0 28.2 4.3 0.93 17.9 179 4.0 0.85 28.2 28.2 5.0 0.98
SAHH 2.6 0.0 2.1 0.67 22.5 20.1 3.5 0.86 17.0 17.0 3.5 0.83 13.3 12.4 3.3 0.81
SRC 14.0 10.7 2.8 0.70 5.0 4.1 2.4 0.72 7.6 4.4 2.0 0.65 12.1 10.1 39 0.85
thrombin 8.4 7.0 2.8 0.74 11.2 8.4 3.0 0.71 7.0 7.0 2.4 0.65 11.2 9.1 3.1 0.79
TK 1.5 0.0 0.9 0.47 1.6 0.0 0.7 0.56 4.6 2.3 1.1 0.47 2.3 2.3 1.1 0.57
trypsin 17.8 14.5 3.7 0.85 8.2 4.1 2.5 0.67 3.1 3.1 1.7 0.56 8.2 6.2 3.5 0.83
VEGFr2 15.6 8.9 1.9 0.57 142 8.7 2.1 0.60 16.6 9.9 2.7 0.72 20.2 13.4 2.8 0.70

“Enrichment factor (ef) at 2%, 20%, and maximal reached, in addition to the ROC auc. The bold values indicate the highest auc value achieved in the

given receptor.

ALL. On the side of poor-performing receptors (auc < 0.5),
their number is reduced to four, which certainly improves with
respect to the individual RAW rankings, but not in comparison
with DDFA-ALL, with its zero cases with auc < 0.5. An
equivalent picture is observed with the ef metrics. RAW-ALL
outperforms the individual rankings (Figure SB, D, and F), but
not DDAF-ALL where RAW-ALL is at least 20% smaller over
the initial 10% of the ranking (Figure SH). These results
provide evidence on the beneficial effect that is obtained from
the combination of three docking data sources.

To evaluate the significance of the observed differences
between methods in the performance metrics auc and ef,y, we
computed their p-value®' (Methods). The comparison of the
four different versions of RAW and DDFA yields remarkably
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low p-values (<1 X 107%; Table4A). The further improvement
in auc achieved by DDFA-ALL with respect to DDFA-AD4,
DDFA-ADV, and DDFA-RL is confirmed by the low p-values,
0.02, 0.04, and 0.07, respectively (Table 4B). In contrast,
DDFA-ALL does not yield significantly better ef,,, than the
individual versions of DDFA (Table 4B). Taken together,
DDFA is significantly better than RAW in both metrics,
whereas DDFA-ALL outperforms the individual versions of
DDFA only in the auc metric.

After confirming the significance of the results yielded by
DDFA, we wanted to assess their stability with respect to the
number of receptors used during the training and validation
process. The systematic reductions of receptors used for
training causes a gradual decay in performance for all four

dx.doi.org/10.1021/ci500028u | J. Chem. Inf. Model. 2014, 54, 1401—1411
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Figure 4. Individual DDFA vs individual RAW rankings. Individual
versions of both, DDFA and RAW, are compared for AD4 (A, B),
ADV (C, D), and RL (E, F). In plots comparing the auc (A, C, and E)
the circles represent each of the 40 DUD receptors. Plots comparing ef
(B, D, and F) show the individual DDFA to individual RAW average
ratio. In all the plots, the dashed line indicates the limit where both
methods perform equally.

DDFA cases (Figure 6), as expected when using less training
data. Nevertheless, DDFA performance is always at least as
good as the RAW performance (Figure 6; Table 3), such that
one can say with confidence that DDFA is robust in the sense,
that it never hurts average performance to use it. Moreover, we
should note that in this test we did not reoptimize the hyper-
parameters that control training for each number of receptors
such that one might be able to improve performance by hyper-
parameter tuning (Supporting Information Figure S5). The
result in Figure 6 also shows that the method has potential to
achieve an even better performance than demonstrated here, if
more receptors than 22 were available for training.

In addition to benchmarking the DDFA approach on DUD,
our study also provides valuable insight into the VS
performance of the individual docking programs (Table 3).
On average, RAW-ADV yielded better results than RAW-AD4
and RAW-RL. The superior performance of RAW-ADV over
RAW-AD4 in not surprising, since it matches with previously
reported observations. 3233 Thjs is the first time, however, that
results for RL obtained on the DUD benchmark were
published. RL obtained averages values of 0.65 and 6.19 in
auc and ef,y, respectively, thereby yielding similar results to
ADV and better than AD4 (Table 3). This result is in line with
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comparing the auc (A, C, E, and G) the circles represent each of the
40 DUD receptors. Plots comparing ef show the RAW-ALL to
individual RAW average ratio (B, D, and F), and the RAW-ALL to
DDFA-ALL average ratio. In all the plots, the dashed line indicates the
limit where both methods perform equally.

the outstanding performances that RAW-RL obtained in pose
recovery benchmarks.'®*”** Table 3 shows that for three
receptors none of the docking programs reached auc values
above the random level: (i) angiotensin converting enzyme
(ACE), (ii) Amp-C beta lactamase (AmpC), and (iii) fibroblast
growth factor receptor 1 (FGFrl). These are the three
receptors for which DDFA-ALL yielded also the poorest
results with auc of 0.57, 0.51, and 0.57 for ACE, AmpC, and
FGFrl, respectively. This observation suggest that the
improvement produced by DDFA-ALL is somewhat limited
by the quality of the individual docking results. Another
interesting example is the platelet derived growth factor
receptor (PDGFrb), a receptor for which another seven
different scoring functions report auc values under 0.5.>° In
our hands, the aucs yielded by RAW-AD4 and RAW-ADV for
PDGFrb are also below 0.5, whereas RAW-RL obtains an auc of
0.59. In contrast, the performances of the individual version of
DDFA are undoubtedly better; 0.81, 0.66, and 0.80 for DFFA-
AD4, DDFA-ADV, and DDFA-RL, respectively.

As shown above DDFA represents a highly attractive
alternative to traditional ranking approaches for analyzing VS
experiments. This finding is also supported by comparing
DDFA performances with those found in the literature (Table

dx.doi.org/10.1021/ci500028u | J. Chem. Inf. Model. 2014, 54, 1401—1411
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Table 4. p-Values of the Difference in Metrics (auc, ef,,) between Each Pair of Methods®

(A) Significance of the Difference in Performance between RAW and DDFA

AD4 ADV RL ALL
RAW DDFA RAW DDFA RAW DDFA RAW DDFA
(0.60, 5.6) (0.74, 9.5) (0.64, 7.1) (0.75, 10.3) (0,65, 6.2) (0.76, 9.7) (0.70, 7.4) (0.77, 10.3)
p-value in auc <1x107° <1x107° <1x107° <1x107°
p-value in efy <1 x107° 3x 107 <1 x 1078 3x 107
(B) Significance of the Difference in Performance between DDFA-ALL and the Individual Versions of DDFA
DDFA DDFA DDFA
AD4 ALL ADV ALL RL ALL
(0.74, 9.5) (0.77, 10.3) (0.75, 10.3) (0.77, 10.3) (0.76, 9.7) (0.77, 10.3)
p-value in auc 0.02 0.04 0.07
p-value in efyy 0.27 0.59 0.42
“The lower the p-value, the more significant the differences in performance.
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Figure 6. Average auc on the DUD benchmark yielded by (A) DDFA-AD4, (B) DDFA-ADV, (C) DDFA-RL, and (D) DDFA-ALL, with a different
number of training receptors. The plotted values correspond to the average over five independent runs using a different subset of receptors. Error

bars correspond to the associated standard deviations.

5). Considering structured-based methodologies tested on the
DUD benchmark, the different versions of the DDFA approach
(ALL, AD4, ADV, and RL) obtained performances that situate
them among the best methods available. Certainly, the
commercial docking software, ICM and Glide SP, achieve the
top performances in the auc and ef,y metrics, respectively.
Nonetheless, their corresponding performances fall within the
95% confidence limits of DDFA-ALL; auc 0.77 + 0.03 and ef
10.3 + 2.0 (Table 2). One of the best methods we also found is
the methodology developed by Durrant et al.*’ in which
NNScore®® is used. This methodology resembles ours in the
sense that it combines academic docking software with an
artificial neutral network. However, while NNScore is trained
on the characteristic interactions of protein—ligand complexes,
thus proposing an interaction rescoring scheme, our DDFA is
trained on the characteristic features of the docking data
associated with active molecules, thereby representing a
reranking scheme. Additionally our DDFA approach also yields
high ef values at 2%, which, together with the averaged ef
curves presented previously (for example Figure 3), provide
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confidence on the performance stability that our approach has
on this metric. These findings, together with the inherent
flexibility of DDFA (easily extended to combine several
docking programs and docking features), render our novel
approach as highly attractive for analyzing VS experiments.

3. CONCLUSION

The DDFA approach introduced in this work was able to
improve considerably the selection of active compounds from
the output of popular docking programs. This was achieved by
extending the analysis of the docking data beyond the
traditional docking score. Although the usefulness of rescoring,
consensus rankings, and machine learning methods has already
been noted,” *" what distinguishes our study is that we could
convincingly show a possible way to combine all these elements
together synergistically. It must be emphasized, however, that
the success on combining several docking features and/or
scoring programs resides in their diversity."”*> Each element
should account for different characteristics that contribute to
the active-decoy discrimination. Although establishing the

dx.doi.org/10.1021/ci500028u | J. Chem. Inf. Model. 2014, 54, 1401—1411
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Table S. Reported Performances on DUD*

methodologies auc efyo
ICM [ref 36]° 0.79
AutodockVina-NNT1 [ref 37] 0.78
Glide SP [ref 35]” 0.77 122
DDFA-ALL 0.77 10.3
DDFA-RL 0.76 9.7
AutodockVina-NN2 [ref 37] 0.76
DDFA-ADV 0.78 10.3
normalization score [ref 16]9%¢ 0.75
DDFA-AD4 0.74 9.5
Glide HTVS [ref 37] 0.73
Surflex [ref 35] 0.72 12.0
Glide HTVS [ref 35] 0.72 10.7
ICM [ref 36] 0.71
RAW-ALL 0.70 7.4
Autodock Vina [ref 37] 0.70
eHiTS [ref 16]%¢ 0.70
Glide SP [ref 16]%* 0.70
Surflex [ref 35]° 0.66 7.9
RosettaLigand 0.65 6.2
AutodockVina 0.64 7.1
NNScore 1.0 [ref 38]¢ 0.64
ICM [ref 35] 0.63 8.0
FlexX [ref 35] 0.61 7.2
Autodock4.2 0.60 5.6
PhDock [ref 35] 0.59 7.7
NNScore 2.0 [ref 32]¢ 0.59
AutodockVina [ref 32]7 0.58
Dock [ref 35] 0.55 82
Autodockg,,, [ref 32]¢ 0.51
Autodock,; [ref 32]¢ 0.50

rigorous
“Methodologies reported in this work are highlighted in bold letters.
“Tuned by expert knowledge. “Computational expensive. 9Subset of
the DUD receptors. “Subset of decoys used.

optimal docking feature selection for a given set of scoring
programs is a challenging task, it certainly opens a pathway to
possible further improvements.

In terms of the well-established virtual screening metrics, auc
and ef, DDFA performance is statistically similar to that
reported by commercial software under expert intervention®>>°
or by methods that increase the computational cost by 2 orders
of magnitude.'® Additionally, DDFA shows an excellent
stability in its results and, in strong contrast to simple ranking
schemes, performs better than random selection for every
single receptor in the DUD benchmark. Overall DDFA
represents a new, simple, and automatic reranking treatment
that not only is easy to implement and extend to other docking
software or docking data features but also provides high VS
performance with minimal extra computing time.

B ASSOCIATED CONTENT

© Supporting Information

Benchmark of the parameters used to setup the ANN of
DDFA. This material is available free of charge via the Internet
at http://pubs.acs.org. The scripts used to evaluate the ligands
with DDFA are available upon request.
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