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Abstract 

Single-cell analysis based on time-lapse microscopy allows monitoring the behavior of cells 

over time. Due to technical improvements in the last years, more and more time-lapse movies 

are available. At the same time, the number of image processing tools, which analyze 

microscopy data automatically increases. 

Quantification of tracked fluorescence (QTFy) is such a tool and measures cellular 

fluorescence signals of single-cells in time-lapse microscopy movies. Previously to the 

intensity quantification, the tool estimates the background of each image of a movie and 

performs a normalization. To evaluate the error in the quantification of single cell 

fluorescence of QTFy and similar tools, curated test data is necessary. Due to a lack of well-

annotated image data, the use of synthetically created cell images is necessary. 

Here, an existing microscopy image simulating tool was extended so that it is able to generate 

simulated time-lapse microscopy movies. Based on that, a pipeline was implemented, which 

generates movies with specific cell and image properties. On the generated movies, the 

background estimation and fluorescence quantification of QTFy was applied. Finally, the 

signal quantification as well as the quality of the estimated backgrounds are assessed within 

the pipeline. This approach was applied to test scenarios with a variety of parameters and the 

generated data was analyzed. Thereby an examination of the influence of different movie and 

cell properties on the quantification performance of QTFy was carried out. The results of this 

analyzes show that the largest quantification error of the investigated tool emerge from errors 

in the estimation of the background. We assigned our analysis results to real fluorescence 

microscopy movies of differentiating blood stem cells and pluripotent embryonic stem cells 

and estimated an average relative deviation of the measured cell intensity of about 5% due to 

quantification errors. 

The implemented pipeline can serve as basis for further evaluations of QTFy to account for 

further effects like photo bleaching, specific cell shapes or cellular movements. 

  



  



Zusammenfassung 

Einzelzellanalyse mittels zeitaufgelöster Mikroskopie ermöglicht das Verhalten von Zellen zu 

beobachten. Aufgrund der technischen Entwicklungen der letzten Jahre gibt es immer mehr 

solcher Zeitrafferfilme und dementsprechend immer mehr Bildverarbeitungsprogramme, die 

die Mikroskopiedaten automatisiert analysieren. 

QTFy (Quantification of tracked fluorescence) ist ein Programm das Fluoreszenzsignale auf 

Einzelzellebene in Zeitrafferfilmen misst. Bevor die Fluoreszenzintensitäten gemessen 

werden, nimmt das Programm für jedes Bild des Filmes eine Schätzung des Hintergrundes 

vor. Darauf basierend werden die Bilder normalisiert. Um die Quantifizierung von 

Einzelzellen durch QTFy und verwandte Programme zu evaluieren sind adäquate Testdaten 

nötig. Da es zu wenige gut annotierte Mikroskopiedaten gibt, bietet es sich an, simulierte 

Zellbilder für die Beurteilung zu verwenden. 

 

Im Rahmen der vorliegenden Arbeit wurde ein existierendes Programm, das Mikrospiebilder 

simuliert, so erweitert, dass es simulierte Zeitrafferfilme generiert. Darauf basierend wurde 

eine Pipeline implementiert, die Filme mit bestimmten Zell- und Bildeigenschaften generiert. 

Auf die so generierten Filme wurde die Hintergrundschätzung sowie die 

Fluoreszenzsignalmessung von QTFy angewendet. In der Pipeline werden dann die 

Signalmessungen sowie die Qualität der geschätzten Hintergrundbilder bewertet. Die Pipeline 

wurde auf verschiedene Testszenarien angewendet und die gewonnen Daten analysiert. So 

wurde der Einfluss von verschiedenen Bild- und Zelleigenschaften auf die Signalmessung 

untersucht. Die Ergebnisse dieser Analysen zeigen, dass die größten Fehler des untersuchten 

Programms bei der Fluoreszenzmessung meist auf Fehlern bei der Schätzung des 

Hintergrundbildes basieren. Wir ordneten reale Filme differenzierender Blutstammzellen und 

pluripotenter embryonaler Stammzellen unseren Analyseergebnissen zu und schätzten die 

durchschnittliche Abweichung der gemessenen Zellintensitäten aufgrund von 

Quantifizierungsfehlern auf etwa 5%. 

Die implementierte Pipeline kann als Grundlage für weitere Validierungen von QTFy dienen. 

Durch Erweiterungen könnten Filme simuliert werden, die zusätzliche Effekte wie 

Photobleichung, bestimmte Zellformen und Zellbewegungsmuster mit einbeziehen. 
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1 Introduction 

1.1 Biological Background 

1.1.1 Single cell 

The research field of cell populations helps to get a deeper understanding of diseases and 

variations between humans. For a long time cells within the same cell population were 

expected to be equal. In contrast to the earlier assumption cells within one population are not 

homogenous (Nobs & Maerkl, 2014; Spiller, Wood, Rand, & White, 2010). There are 

differences in the characteristics of cells within one population. Methods which focus on the 

averages of heterogeneous populations ignore the properties of single cells (for a comment 

see Schroeder, 2011). To understand the plasticity of cells and the regulation of fate decisions, 

like cell division, differentiation and apoptosis and answer long-standing biological issues 

however it is necessary to observe single cells continuously (Schroeder, 2011; Spiller et al., 

2010). With this approach, several insights have already been gained, as for example by the 

observation of mouse mesodermal cells generating endothelial cell and blood colonies 

(Eilken, Nishikawa, & Schroeder, 2009) or by studying the behavior of human glioblastoma 

cells in vitro (Demuth et al., 2000). Figure 1 shows that an average cell content can be 

distributed to the singles cells in different ways. 

 

 

Figure 1 Heterogeneity of single cells is not detectable in population average studies. 

The content of a specific protein increases over time in a cell population 

(top). But what that means for single cells is obscured. There are different 

possibilities how the increasing protein content could be distributed on the 

single cell. One option is that the protein content increases in all cells 

simultaneous (gray ovals), but it is also possible that there are cells with 

highly upregulated protein (black ovals) and cells, that do not contain the 

specific protein (white ovals) within the population. 
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Snapshot analyses rely on cell measurements of a single time point. Such analyses of cells 

during differentiation do only reveal the result of a number of fate decisions and obscure the 

single steps which have led to this results over a unknown number of generations (Rieger & 

Schroeder, 2008). Figure 2 shows potential scenarios, which could have led to the final 

proportion of heterogeneous cells. In each scenario the resulting amount of cells are two cells 

with slightly upregulated protein (shown as gray ovals) and two cells with strongly 

upregulated protein (shown as black ovals), but the sequence of fate decisions of the 

individual cells (white ovals) differs in each picture and can only be determined by 

continuous single-cell observation (Coutu & Schroeder, 2013). 

Since the importance of single cell analysis has been noticed and the image technology 

improved more and more continuous live-cell long-term studies are performed (Demuth et al., 

2000; Eilken et al., 2009; Nobs & Maerkl, 2014). It is very difficult to observe cells in living 

organisms, particularly in mammals, over more than a few hours. Therefore in vitro imaging 

methods, where cells are studied in a culture medium instead of their normal biological 

environment are practicable alternatives where cells can be observed for up to several weeks 

(Schroeder, 2011). 

 

Figure 2 Snapshot analyses conceal the dynamic processes that lead to specific cell 

characteristics. Each of the five different scenarios (A-E) results in two cells 

with strongly upregulated protein (depicted as black ovals) and two cells 

with mildly upregulated protein (gray ovals). However, the steps leading to 

this result differ in each scenario and can only be discovered by continuous 

single-cell imaging Figure adapted from (Coutu & Schroeder, 2013). 
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1.1.2 Cell fluorescence 

To analyze living cells by time-lapse microscopy, cells have to be visualized non-invasively. 

One technique to do that, is to tag proteins with fluorescent dyes (Lippincott-Schwartz & 

Patterson, 2003). The green fluorescent protein (GFP) was first isolated from the jellyfish 

Aequorea victoria in 1962 (Shimomura, Johnson, & Saiga, 1962). In living organisms this 

fluorescent protein can be used to monitor gene expression. Therefore the promoter of a gene 

of interest has to be attached to the coding region of the GFP gene. In this way the 

simultaneous expression of GFP and the gene of interest can be observed and the fluorescent 

signal can be used to quantify the expression (Andersen et al., 1998; Miyashiro & Goulian, 

2007). Today there are several variants of GFP which have been modified and can exhibit 

fluorescence in different color. Thus proteins with distinct spectral properties can be attached 

to the different cell compartments and the subcellular location of the protein can be visualized 

under the microscope (Coutu & Schroeder, 2013). 

Fundamental problems at the visualization are phototoxicity and photobleaching. These are 

light induced damages of cell components and culture medium respectively. Excited 

fluorophores produce reactive oxygen species, which causes a reduction of fluorescence 

signal (photobleaching) and damages to the cell (phototoxicity) (Hoebe et al., 2007). 

Consequently, the more excitation-light is applied, the better is the visualization of 

fluorescence signals but the higher are the damages to cell components and the bleaching of 

the culture medium. 

1.1.3 Single cell quantification 

Before the fluorescence intensity and therefore the protein content of single cells can be 

quantified using fluorescence microscopy imaging techniques, further information may be 

used. First of all, the cells to be investigated have to be tracked if it is a time-dependent study 

so that the positions of the cells within the images are known. The next step on the way of cell 

quantification is the segmentation of each cell to be quantified, so that the exact boundary of 

the cell is known. Moreover the background has to be normalized, due to the aforementioned 

microscopy image characteristics, like illumination properties, noise and autofluorescent 

background. With this information the absolute intensity of a cell can be measured by 

summing up the intensity of each pixel within the cell boundaries (Schwarzfischer, 2013). 

1.2 Technical Background 

1.2.1 Time-lapse microscopy 

Time-lapse microscopy is a technique which is known since the late 1890s and yielded the 

first scientific success in 1909, when Jean Comandon observed the movement of syphilis 

bacteria (Landecker, 2005). Applied to fluorescent microscopy it can be used to measure cell 

properties like the content of a specific protein and other cytometric properties (Miyashiro & 

Goulian, 2007; Muzzey & van Oudenaarden, 2009). To observe single cells and their fates 

over a long period a main challenge is to keep the cells alive and not change their original 
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properties (Coutu & Schroeder, 2013). At the same time images in a good quality and 

methods for their storage and analysis are indispensable. 

1.2.2 Image Acquisition 

The technical resources  for time-lapse microscopy have improved over the last years, but 

there is not one single solution that works well for all experiments. The technical equipment 

has to be chosen and adjusted in accordance to the cells to be investigated in their culture 

medium. 

Due to phototoxicity and photobleaching, for long-term imaging a tradeoff between good 

pictures and healthy cells is required (Schroeder, 2011). For low fluorescence signal 

objectives with a large aperture are recommended, whereas for high fluorescent signals 

objectives that can minimize exposure times reduce phototoxicity (Coutu & Schroeder, 2013). 

The type of the used lamps will influence the study results. There are several options for the 

choice of illumination, such as metal halide lamps, mercury lamps, Xenon or LED lamps 

(Lichtman & Conchello, 2005) and the challenge is to take a light source that leads to images 

in good quality but minimize the phototoxicity of cells and culture medium. Currently 

mercury and metal-halide arc lamps are the light source of choice for fluorescence 

microscopy images (Coutu & Schroeder, 2013).  But the progression in the light emitting 

diode (LED) technology makes advantageous lamps available, which are small, energy saving 

and provide adequate intensities at specific wavelength (Carl Zeiss MicroImaging, 2007). If 

compatibility problems to existing microscopy imaging systems will be resolved, the metal-

halide arc lamps might be replaced by LED lamps in future (Coutu & Schroeder, 2013). 

There are different types of suitable cameras. Until now in most cases charge-coupled device 

(CCD) cameras were chosen, due to their sensitivity and low noise. However, nowadays CCD 

cameras are often replaced by complementary metal oxide sensor (CMOS) cameras, because 

they outperform CCDs (Bioimager, n.d.; Faruqi, Henderson, Pryddetch, Allport, & Evans, 

2005). 

Beside the type of camera there are several experimental setup properties like exposure time, 

chip size, resolution,  noise, and many others  which have to be taken into account for time-

lapse microscopy images (Coutu & Schroeder, 2013). 

Despite the technical advancements of devices and refinements that can be achieved by 

excellent adaption to the individual needs, measurement noise in fluorescence microscopy 

images cannot be avoided completely (Coutu & Schroeder, 2013; Lehmussola, Ruusuvuori, 

Selinummi, Huttunen, & Yli-Harja, 2007). This noise as well as uneven illumination and 

autofluorescence of the culture medium are the problems with which the methods that analyze 

these images has to deal with (Lehmussola et al., 2007). 
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1.3 Existing software tools 

1.3.1 Description of QTFy 

Quantification of tracked fluorescence (QTFy) is a tool, written in MATLAB, for the semi-

automated quantification of cellular fluorescence of tracked cells in time-lapse microscopy 

experiments (Schwarzfischer, 2013). 

The first step of QTFy is the normalization of the images. With this process (see Chapter 

2.3.3 for details) uneven illumination and background signal can be corrected, making the cell 

signals at different image positions comparable. 

Prior to the quantification, the cells to be examined need to be tracked and segmented. The 

tracking can be executed by a tracking tool of choice, e.g. by TimeLapseAnalyzer (Huth et al., 

2010, 2011), TLM-Tracker (Klein et al., 2012) or Celltracker (Scherf et al., 2012). The 

segmentation of the tracked cells is performed by QTFy automatically. The user can choose 

which channel(s) should be used for the segmentation. The background correction also 

improves the cell segmentation.  To solve potential segmentation errors, the user has the 

possibility to inspect each cell at each time point and modify the segmentation parameters or 

even draw a cell shape by hand with the graphical user interface provided by QTFy. 

In the next step some segmentation settings, like fluorescence channels, segmentation 

algorithm, threshold and the minimum and maximum of expected cell size need to be made. 

The channels for segmentation and quantification may be the same, but do not have to. When 

the selection of the basic settings is completed, the segmentation runs automatically and the 

quantification based on the segmentation is performed (Schwarzfischer, 2013). In Figure 3 the 

general workflow of QTFy is shown. 

 

Figure 3 QTFy is a tool that quantifies fluorescence intensities of single cells in time-

lapse microscopy movies. The first steps of QTFy are the normalization of 

the fluorescence time-lapse microscopy images (see Chapter 2.1.4 for a 

detailed description) and the segmentation of the cells. Following the cells 

are quantified. Connected to the tracking information, the fluorescence 

intensities are visualized over time (Schwarzfischer, 2013). Figure adapted 

from (Schwarzfischer, 2013) 
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1.3.2 Description of SIMCEP 

Simulating Microscopy Images with Cell Populations (SIMCEP) is a tool for 

generating/simulating synthetic images of fluorescent cell populations. These images with 

realistic properties can be used to evaluate methods which analyze digital fluorescence 

microscopy images. The image simulator is written in MATLAB and freely available for 

scientific use (Lehmussola et al., 2007). 

The tool has several variable parameters which can be controlled by the user and can be 

customized to different image properties/characteristics. 

 

 

Figure 4 Pipeline of the proposed simulation process of SIMCEP. Using input 

parameters from the user, the generation of fluorescence microscopy images 

starts with the simulation of single cells and cell populations. This ideal 

image is then transformed to make it more realistic. Therefore some 

disturbances like uneven illumination and noise, simulating the image 

acquisition are added Figure taken from (Lehmussola et al., 2007). 

 

The pipeline of the simulation process is as follows (compare Figure 4). First, an ideal image 

with the parameters specified by the user is generated. This image does not contain any errors 

from measurement and may serve as reference image. 

The following parameters can be adjusted: 

 The size of the picture 

 The number of cells, which are randomly placed in the image 

 The number of cell clusters in which the cells are placed 

 The probability that a cell is assigned to a cluster 

 Are cell overlaps allowed 

 Should overlaps be measured on nuclei or cytoplasm level 

 Adjustments for the appearance of the cells (size, visualized cell compartments, shape) 

With the given probability each cell is assigned to a cluster and these are distributed 

uniformly over the image. Within the clusters the cells are randomly distributed around the 

cluster center. Cells which are not assigned to a cluster are randomly placed on the. In Figure 

5, we show exemplary spatially dispersed (A) and clustered (B) cell nuclei. 
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A     B     

 

Figure 5 SIMCEP allows simulating fluorescence images with various appearances 

including cell clustering behavior. (A) The cell nuclei are spatially dispersed 

and randomly distributed over the image. (B) The nuclei are clustered 

together and randomly distributed within the cluster. Figure adapted from 

(Lehmussola, 2007). 

 

The cells consist of the three components nucleus, cytoplasm and sub cellular objects. For 

simulated images a subset of these components can be selected. For each of these components 

the user can determine all parameters for the calculation of the cell, such as shape, radius and 

texture components. In addition the number of sub cellular components can be set. 

The next step is to make the image more realistic by adding the following parameters: 

Background signal, due to the autofluorescent culture medium, uneven Illumination, optical 

deviations and noise, reflecting errors due to the measurement system. 

The user can set the energy of illumination and energy of autofluorescence compared to the 

intensity of cells, variance of noise for the CCD detector and the amount of compression 

artifacts. 

As the MATLAB source code for the tool is freely available and customizable, SIMCEP can 

be adaptable to our requirements. The generated synthetic images with known ground truth 

can be used for the validation of different analysis methods, as the analysis results can be 

compared with its ground truth. 

1.4 Aim of this thesis 

The technical improvements in microscopy imaging is accompanied by an increasing number 

of automated image cytometry tools. To assess such tools, curated test data is indispensable. 

Due to a lack of well-annotated natural image data, the use of synthetically created cell 

images allows a thorough evaluation of these tools. 

The workflow for the evaluation of such tools is as follows. The first step is to generate 

images with known cell properties, like the coordinates of the cells, the cell size, the intensity 

of the cellular fluorescence, the amount of background signal, and the shape of the 
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illumination. These images are referred to as ground truth. In the next step the cytometry 

analysis tool, which shall be evaluated, gets these images as input and performs its 

calculations. Finally, the results can be compared to the ground truth, for example by 

calculating the RMSD (see Chapter 2.5.1). By this means we can assess the performance of an 

analysis tool. 

For the evaluation of QTFy, we extended the image simulation tool SIMCEP, so that movies 

are generated instead of images and adapted the properties to our requirements. Using this 

customized version, we developed a pipeline for the evaluation of QTFy and analyzed the 

measured fluorescent signals on a single-cell basis to quantify the influence of cell intensity, 

illumination, noise and the signal to background ratio on the quantification performance of 

QTFy. 

1.5 Overview of this thesis 

The rest of the thesis is organized as follows. In Chapter 2 we introduce the methods, QTFy 

uses for the estimation of the background, the image normalization, the cell segmentation and 

the cell quantification. Then we explain the methodical background for the simulation of 

fluorescence microscopy images and describe the basic statistical concepts we applied to 

evaluate the analysis results. In Chapter 3 we present the single steps of the pipeline we 

implemented to evaluate the performance of QTFy and describe our test data. The results of 

these test cases are represented and discussed with regard to QTFy in Chapter 4. Chapter 5 

summarizes all meaningful information of this thesis and gives an outlook about possible 

extensions of the evaluation pipeline. 
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Figure 6 Thesis overview. We use a customized version of SIMCEP to simulate 

fluorescence microscopy images with known cell fluorescences (see 

Chapter 1.3.2 for a description and Chapter 2.2 for methodical information). 

The backgrounds of these simulated images are estimated by QTFy or 

median filtering (see Chapter 2.3). After these background were used to 

normalize the simulated images, QTFy measures the cell signals (see 

Chapter 1.3.1 and 2.4). To validate the analysis results we compare them to 

the simulated cell signals and analyzed the influence of different image 

properties on the quantification performance of QTFy (see Chapter 4). 

  

Validation 

Customized  
SIMCEP 

Chapter 
1.3.2 and 2.2 

Background 
estimation 

Chapter 
2.1 

QTFy Chapter 
1 . 3 . 1 and 2 . 3 

Chapter 
4.0 
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2 Methodological background 

In this section, we describe basic methods, which are used within our pipeline to simulate 

images, estimate the backgrounds of the simulated images, quantify cells and evaluate the 

output of the background estimation and cell fluorescence intensity quantification. 

2.1 Image model and definitions 

A typical fluorescence microscopy image is defined as       , where   contains the space 

coordinates             and t is the time point of the image. Such an image consists of the 

following components (illustrated in Figure 7): 

 the time- and space-dependent cell signal        

 the homogenous background signal     , which comes from the autofluorescence  of 

the culture medium 

 the illumination function     , which is pixel specific an represents the uneven 

illumination 

 the camera offset      

 Noise caused by the measurement system is assumed to be constant over time and 

position. Therefore noise can substantially eliminated by robust fitting methods used 

for the normalization and is not considered for the calculation of the background. 

 

Figure 7 A fluorescence microscopy image from a time-lapse microscopy movie consist 

of varying fluorescence intensities (plotted on the z-axis) for each pair of 

coordinates        . Intensity peaks represent cellular signal. Beside the 

cellular signal, the intensities in time-lapse microscopy images are influenced 

by an uneven illumination, a decreasing intensity of autofluorescence of the 

culture medium and the camera offset (Schwarzfischer et al., 2011) (Figure 

adapted from (Schwarzfischer et al., 2011). 

 

The following equation represent how the single image components are related 

                                       (1) 
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Therefore the cell signal        can be expressed by 

        
                       

    
    (2) 

 

due to photo-bleaching of the culture medium, the background signal      decreases over 

time. 

To take this into account the illuminated background signal       , defined as 

                           (3) 

 

is calculated for each image of the time-lapse microscopy movie independently (see Chapter 

2.3). 

2.2 Simulation of fluorescence microscopy images with SIMCEP 

To simulate fluorescence microscopy images, we use the tool SIMCEP (Lehmussola et al., 

2007; Lehmussola, Ruusuvuori, Selinummi, Rajala, & Yli-Harja, 2008) (see Chapter 1.3.2). 

In the following we will discuss the properties and parameters of the simulation framework 

and their methodical application for the generation of synthetic microscopy images 

(Lehmussola et al., 2007, 2008) 

2.2.1 Cells 

The following equations describe the coordinates             of a circle on which the 

random shape of a cell are based 

                 (4) 

                 (5) 

 

with the polar angle           . After creating a regular polygon with   vertices and sampling 

of angle   with equal distance (see Figure 8 A), the coordinates of the vertices are 

randomized. 

These randomized vertices are specified as 

                                     (6) 

 

                                     (7) 
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for             where        is a uniform distribution on the interval      . The last step is 

to apply a cubic spline-interpolation (see Figure 8 B), which connects the vertices resulting in 

a smooth and flexible contour for the random shapes (see Figure 8 C and D). Highly distorted 

shape (for example see Figure 8 D) are more typical for cytoplasm. To simulate the nuclei in 

our movies, we used slightly irregular random shapes similar to Figure 8 C (see Chapter 3.1.1 

and Figure 15). 

 

Figure 8 Generation of random shapes. (A) A regular polygon before the coordinates 

of the vertices are randomized. (B) Resulting shape when the vertices of (A) 

are connected with spline interpolation. (C) Example of a slightly irregular 

random shape. (D) Example of a more distorted shape (Lehmussola et al., 

2007). Figure taken from (Lehmussola et al., 2007) 

 

2.2.2 Illumination 

The next step in simulating fluorescence microscopy images is to add confounding factors, 

which are caused by the measurement systems in the original microscopy image (see Figure 

4). One of these factors is the illumination of the experiment. Due to technical limitations, this 

illumination is unevenly distributed. To simulate this, a second degree parabolic polynomial is 

added to the image with cells. Then a mesh grid is constructed, with the size of the image. In 

this grid the inner coordinates are filled with ones, which stands for white pixels. The farther 

one moves outside the smaller is the content of the coordinates. Around the edges the 

numbers go towards zero. This matrix is than scaled by the illumination factor, which controls 

the energy of illumination. The resulting matrix can be regarded as the position dependent 

background signal        (see Chapter 2.1,Equation (3) and Figure 9 B). 

To adapt the generation of the illuminated image to the used normalization method (see 

Chapter 2.3.3 and Equation (12)), the background signal      is added to the image 

containing the simulated cells     , in the following way. First the image with the cells      

is multiplied with the background signal     . Then the background signal      is added to 

the resulting matrix (see Figure 9 C). 

As equation 

                                 (8) 
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2.2.3 Noise 

Light consist of single particles, which are called photons. These photons are counted by CCD 

detectors. The number of photons, collected by the detector varies and can be described with 

Poisson statistic (Meyer & Kirkland, 2000). This results in a Poisson distributed shot noise in 

images. 

The Poisson distribution is defined as 

   
      

  
      (9) 

 

where   is Euler's number,        is the mean,   is the number of photons and    is the 

factorial of the    (DeGroot & Schervish, 2012). 

The extent of shot noise increases proportionally to increasing light intensity. For large 

numbers of events, which here means high intensities, the normal distribution (with standard 

deviation   ) is a good approximation to the Poisson distribution. 

Therefore the signal to noise ratio (SNR) can be defined as 

     
 

  
      (10) 

 

where   is the number of expected events (Imaging Scientific Volume, 2014). 

Since the noise increases according to the square root of light intensity, the relative proportion 

of noise decreases because the signal to noise ratio (see Equation (10)) increases with the 

intensity of light. The brighter an image is, the less it is influenced by shot noise. 
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Figure 9 Components of simulated fluorescence microscopy images. (A) This image 

contains one simulated cell with a pixel intensity of 0.8 and no background 

signal. (B) Simulation of an uneven illuminated background      (see 

Chapter 2.2.2). (C) Multiplicative and additive merge of the images (A) and 

(B) (see Chapter 2.2.2). (D) Poisson distributed shot noise was added to 

image (C) (see Chapter 2.2.3). 

 

Figure 10 Exemplary simulated fluorescence microscopy image with space 

coordinates        . The z-axis represent the intensity of each pixel. This 

image contains: (i) Inhomogeneous illumination      (see Chapter 2.2.2), 

(ii) Poisson distributed noise (see Chapter 2.2.3) and (iii) 100 cells with a 

pixel intensity of 0.5 (    ) (compare to Figure 7). 

A B

C D
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The MATLAB method imnoise( , 'poisson' ) (Mathworks, 2014b) adds Poisson distributed 

noise to the image     , which constists of the cell signal      and possibly of the illuminated 

background signal     . The input pixels are interpreted as the means of Poisson distribution. 

Each space coordinate   of image   is replaced by sampling from a Poisson distribution with 

the given mean (see Equation (9)). For examples see Figure 9 D and Figure 10. 

2.2.4 Random walk 

To generate movies from the simulated images, we need to simulate the movement of a cell. 

We do that by calculating new space coordinates of a cell for every image in the movie. For 

this purpose, we use the mathematical random walk model, where the single steps occur 

randomly in space. 

This stochastic process is characterized by independent and identically distributed increments 

and is defined as 

           

 

   

      (11) 

 

where         is a sequence of independent random variables, with values from   ,        

and    is a  -dimensional random walk (WolframMathworks, 2014). 

2.3 Background estimation and image normalization 

To be able to quantify fluorescence intensity of cells, their signals need to be made 

comparable. Due to uneven illumination and autofluorescence of the culture medium the 

background of fluorescence time-lapse microscopy images needs to be normalized to reach a 

comparable level. In the following, two methods for background estimation are described 

(Schwarzfischer et al., 2011). 

2.3.1 Background estimation by median filtering 

Median filtering is a nonlinear method, which is commonly used for the suppression of 

impulse noise. At this type of noise only a part of the pixels of an image is noisy and these 

pixels are either very bright or very dark (He et al., 2011). 

In this filtering method, each pixel of an image is replaced by the median value of its 

neighboring pixels (Mathworks, 2014c; Steger, Ulrich, & Wiedemann, 2007). The area of 

considered neighbors is called window. The size and shape of the neighborhood depends on 

the application (Nixon & Aguado, 2012; Petrou & Petrou, 2010). In this thesis we used the 

median filtering to estimate the background of simulated fluorescence microscopy images and 

adapted the window therefore to the approximate cell size. 
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2.3.2 Background estimation by QTFy 

The first step is the division of the image        into small sub-images, with overlapping 

edges (see Figure 10). Next, these so called tiles are grouped into tiles with cell signal and 

tiles without cell signal. The distinction can be made by the moments of the distribution of 

intensities, which differ substantially for the two types of tiles. Based on these statistical 

features and the density-based clustering method DBSCAN (Ester, Kriegel, Sander, & Xu, 

1996), two clusters are formed: one cluster with high density, which contains only tiles 

without any cell signal and one heterogeneous cluster, which contains tiles with cellular signal 

(see Figure 10). From each background tile, stored in the first cluster, the median is used for 

the construction of a first background mesh. The last step for the estimation of the time-

dependent background signal        is the application of a two dimensional natural neighbor 

inter- and extrapolation (see Figure 10). This process is applied to every image independently. 

 

 

Figure 11 The procedure for the estimation of the time-dependent illuminated 

background       . The illustrated steps are applied to each image 

separately. First the images are split into overlapping sub-images. Then the 

moments of distribution of intensities are calculated for all tiles. Next a 

density-based clustering groups the tiles into a cluster with background tiles 

and a cluster with tiles containing cellular signal. A first background grid is 

constructed using the median intensity values of all background tiles. The 

final background        is estimated by applying a two dimensional inter- 

and extrapolation to the initial grid. This process is applied to every image 

of the time-lapse experiment (Schwarzfischer et al., 2011) (Figure taken 

from (Schwarzfischer et al., 2011)). 

 

2.3.3 Normalization of fluorescence microscopy images 

According to different applications and image properties, QTFy provides various image 

normalization approaches. For simplicity, we keep the overall background level b(t) in our 

simulated images constant over time, leading to           . By dividing the image by the 

background all pixels will be distributed around 1. 
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Cellular signal will be normalized after a subtraction of 1 (Schwarzfischer et al., 2011) 

        
      

      
        (12) 

 

 

Figure 12 Image normalization for images with uneven illumination and a constant 

autofluorescence (Figure adapted from (Schwarzfischer, 2013)) 

 

2.4 Segmentation and quantification 

After the simulated images are normalized, the cells are segmented and quantified by QTFy. 

In this section the two segmentation approaches, which are used by QTFy, are introduced 

briefly (Schwarzfischer, 2013) For details see (Otsu, 1979; Petrou & Petrou, 2010). 

The first is a thresholding based method and is used to find the correct cell outline. In this 

process, a intensity threshold is allocated, which divides the image into pixels of foreground 

and pixels of background. Pixels above the allocated threshold are assigned to the foreground 

pixels, all other pixels are assigned to the background pixels. In gray level images, this can 

simply be done with Otsu's thresholding method, which detects the optimal threshold (Otsu, 

1979). 

The second segmentation approach, is the watershed method and is used to distinguish 

clumped objects, which cannot be achieved by thresholding. This method is performed by 

finding a seed pixel for each object and assigning neighboring pixels to the object, until all 

pixels of the image are assigned (Petrou & Petrou, 2010). 

After the cell segmentation is done, the single cell quantification can be performed by 

summing up the intensities of all pixels within the segmented cell boundaries. 
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2.5 Statistical measures 

2.5.1 Root-mean-square deviation (RMSD) 

The differences between predicted or reference values and the values, which are observed can 

be described by the root-mean-square deviation (    ) (Martens & Martens, 2001). 

The      is defined as 

      
             
  
   

  
     (13) 

 

where    is the number of cells,      is the simulated fluorescence intensity of cell c and      is 

the measured fluorescence intensity for cell c. 

As this deviation is scale-dependent and more informative with respect to the total values, the 

     is normalized to the mean of the simulated fluorescence intensities. 

This normalized      (  ) can be calculated as (14) 

    
    

       
  
   

  

     (14) 

 

2.5.2 Peak-signal to noise ratio (PSNR) 

To assess the similarity of two images the peak-signal to noise ratio (PSNR) is a common 

measure (Bovik, 2002; Wang, Bovik, Sheikh, & Simoncelli, 2004). The PSNR is based on the 

mean square error, which is calculated for each pixel of the original image          and the 

corresponding pixel of the comparative image          

     
                         

    
   
    

   
    (15) 

 

On this basis the PSNR is defined as 

                
    

 

   
  

                          
    

    
      (16) 
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where      is the maximum possible intensity of a signal in the image   (Bovik, 2002). The 

resulting value is of range       (Kang et al., 2011). The better the similarity between two 

pictures, the higher is the     . For identical pictures the      is not defined, as the     

is zero in this case. (Burosch, 2014). Figure 13 illustrates the image quality or similarity at a 

high and a middle high     . 

 

Figure 13 PSNR can be used to give a qualitative measure for image comparison. (A) 

Original image. (B) This images shows degradation due to compression 

artifacts. Its PSNR of 30 is commonly regarded as a good value. (C) This 

images represent a compression of the original image with lower quality 

setting, which results in a lower PSNR of 17. 
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3 Pipeline for the evaluation of QTFy 

3.1 Description 

In this Chapter, the created pipeline for the evaluation of the single cell quantification tool 

QTFy is described. Figure 14 represents an overview of the main steps. Details of the applied 

methods are explained in Chapter 2. 

 

 

Figure 14 Workflow of the evaluation pipeline. (A) A customized version of SIMCEP 

is used to generate simulated fluorescence microscopy movies with known 

cell intensities (see Chapter 3.1.1). (B) Either a median filtering method 

(2.3.1) or the background estimation method by QTFy (see Chapter 2.3.2) is 

used to estimate the background of the simulated images (see Chapter 

3.1.2). (C) QTFy normalizes the images and quantifies the cells. (D) The 

measured cell intensities are compared to the input intensities by calculating 

the RMSD (see Chapter 2.5.1 and 3.1.3). (E) The estimated backgrounds are 

compared to the simulated backgrounds by calculating the PSNR (see 

Chapter 2.5.2) 
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3.1.1 Simulation of fluorescence time-lapse microscopy movies 

The first step is the simulation of the fluorescence time-lapse microscopy images. As 

mentioned above we adapted the image simulation tool SIMCEP (described in Chapter 1.3.2 

and Chapter 2.2) to our purposes. 

For the generation of single images, the following input parameters can be set by the user: 

 Cell coordinates   

 Cell intensity   

 Cell radius   resulting in area   

 Number of cells   

 Illumination can be added with the taken illumination factor   

 Poisson noise can be added, its parameter is deduced from the illumination 

 

To simulate synthetic microscopy movies instead of images, we extended the original version 

of SIMCEP to include the possibility to input cellular coordinates. For the generation of a 

movie, the user has to provide a character separated values (CSV) file, in which each line 

contains the semi-colon separated   - and   -coordinate. These coordinates represent the 

movement of the cell to be quantified, as for each entry an image is generated. We set the size 

of the image to 1000x1000 pixel. 

Since the cell's position is already known for each time point, they do not have to be tracked 

anymore. 

The intensity can be entered by the user as an arbitrary function, which is evaluated at every 

time point  . The maximum intensity is scaled to one by dividing every intensity by the 

highest calculated value. 

The cell texture depends on the fluorescent light emitting characteristics of a cell. To simplify 

the evaluation of the quantification procedure, we adjusted the calculation of the texture 

provided by SIMCEP. We exclude any random parameters from the texture calculations and 

synthesize cells with a consistently bright texture. This means, that all pixels of one cell have 

the same grayscale-value based on the intensity function. Originally the nuclei are illustrated 

in blue in SIMCEP. We restricted the simulated images to gray scale values in 16-bit 

unsigned integer format. The brightness of each pixel is between zero which is black and 1, 

which is white. Multiplied by the number of pixel of the cell, we obtain the exact overall cell 

intensity, which can later be compared to the analysis results of QTFy. 

To evaluate the performance of QTFy it is sufficient to focus on the cell's nucleus. Therefore 

our images do not include cytoplasm or other cell compartments but the nucleus. In the 

following the word cell is synonymously used for nucleus. 

The size of the cell can be determined by specifying the cell radius. The default value of this 

parameter is five pixels, which is comparable to cells in real images. However, the same 

radius of cells does not lead to the exact same number of pixels within the cell, because the  
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Figure 15 An initial fixed cell radius   does not lead to the same number of pixels   of 

a simulated cell and therefore not to the same total cell intensity. Here we 

see three different cells with         pixels and slightly varying shapes and 

areas  . 

calculation of the shape is done separately for each cell and includes a random component 

(see Chapter 2.2.1). This also leads to differences in the overall intensities of cells with same 

radius and pixel intensity. In our pipeline we fix   and   of Equation ((6) and (7)) to 0.1, 

which results in faintly irregular shapes (see Figure 15). 

To simulate a cell population, the user can set the number of cells to be displayed in the 

images. When no number of cells is entered only the cell with the specified coordinates is 

simulated. Additional cells will be randomly distributed over the image and will not be 

quantified by QTFy within this pipeline. For background simulation, the user can activate the 

simulation of an illumination function and specify the illumination factor  , which is used to 

scale the illumination matrix multiplicatively (see Chapter 2.2.2). The larger   is, the brighter 

the images will be. The illuminated background is adapted to the cell image as described in 

Chapter 2.2.2 and represented in Equation (8). Moreover, the user can include Poisson 

distributed noise in the simulation (see Chapter 2.2.3). Figure 16 exemplary shows an 

illuminated background and the corresponding background with Poisson noise. 

 

With these parameters the synthetic fluorescence microscopy images can be generated 

(compare Figure 14 step A). Additionally, the pure background images, without cells and 

noise are stored and serve as ground truth for the later evaluation. Moreover a CSV file 

containing the coordinates of the cell to be examined, which correspond to the input 

coordinates, and the corresponding overall cell intensity, which is the input intensity 

multiplied by the number of pixels of the cell is generated. 

A = 1227 A= 1259 A = 1243
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Figure 16 Simulated images with uneven illumination. (A) The image is simulated 

with an illumination factor of 10. (B) This image has the same illumination 

as (A) and Poisson noise is added. 

3.1.2 Background calculation and cell quantification 

The next step (compare Figure 14 step B) in the evaluation pipeline is the calculation of the 

background for every image, if required (images without illumination and noise do not need 

any background correction).The user can choose between the background estimation of QTFy 

(see Chapter 2.3.2) and the median filtering method provided by MATLAB (Mathworks, 

2014c) (see Chapter 2.3.1). Both can be used to estimate the illuminated background of a 

fluorescent microscopy image and will be compared later (see Chapter 4.1.6). 

 

For the median filtering a window size of 21 x 21 pixel is used for calculating the background 

image, as we need to remove not only the Poisson noise but also the cells of the image. This 

works well for images containing no bigger cells than the window size. The output of this step 

is a folder containing one background image for each image of the simulated time-lapse 

movie. 

If the backgrounds were calculated in the previous step, either by QTFy itself or by median 

filtering, QTFy normalizes the images using Equation (12) (see Chapter 2.3.3). Afterwards 

QTFy performs the cell segmentation and quantification (see Chapter 2.4) (see Figure 14 step 

C). Finally, QTFy generates a file containing, among other parameters, the measured cell 

intensity for each time point (see Figure 14 step C). 

  

A B
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Figure 17 Exemplary representation of the different Background estimation method. 

(A) Original simulated microscopy image with one cell, uneven illumination 

and noise. (B) Original Background before the cell and noise were added. 

(C) Background estimated by QTFy from image (A) with a PSNR of 27 (see 

Chapter 2.3.2). (D) Background estimated by median filtering from image 

(A) with a PSNR of 40 (see Chapter 2.3.1). 

  

A B

C D
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3.1.3 Output 

For each experiment the user can determine not only one input file with cell coordinates, but a 

set of CSV-files. So we have for each experiment a set of different cell movements, which all 

have a common intensity function. The previous described steps will be executed for each 

inputted file (see Figure 14 steps A to C). This results in a set of intensities for every time 

point measured by QTFy. The next step is to compare the measured intensities to the 

simulated intensities. This is done by calculating the RMSD (see Chapter 2.5.1) for each time 

point. Therefore Equation (13) is used, here    is the number of generated time-lapse movies 

and with Equation (14) the value is normalized by the average cell intensity for all time points 

(compare Figure 14 D). 

 

If background images were estimated, an additional calculation is made within the pipeline 

(see Figure 14 E). To assess the quality of the calculated background images the PSNR (see 

Chapter 2.5.2) is calculated for each estimated background and the corresponding simulated 

background. For this, we used the method 'psnr' provided by MATLAB (Mathworks, 2014e). 

The output of the statistics part is a file, which contains for each time point the calculated 

RMSD score and the average of the PSNR scores of this time point. Moreover these scores 

are automatically plotted using the plot function of MATLAB (Mathworks, 2014d) and stored 

as MATLAB figure and as PNG image. 

3.2 Generation of test data 

For this thesis we analyzed the impact of the following parameters on the quantification 

performance of QTFy: 

 Cell intensity 

 Illumination 

 Noise 

 Cell size 

 Cell density 

 Signal to background ratio 

For each experiment, we started the pipeline with a set of six different cell movements: 

 Movement A and B: The cells move linearly through the image 

 Movement C and D: The cells are randomly distributed in each frame. 

 Movement E and F: The cells movement is based on the random walk processes, 

beginning in the center of the image 

Each generated movie consists of 99 images. 

3.2.1 Simulated movements 

For the generation of movement A we set the starting coordinates to    = 10 and    = 500, 

what is at the middle of the left border, as our image is of size 1000 x 1000 pixels. In each 

step we applied a random walk with a drift to the right (see Chapter 2.2.4), which sets the 
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coordinates of the next time point randomly in a radius of 5 pixels after 10 pixels were added 

to   . 

For the generation of movement B we used the same procedure, but started at the middle of 

the upper border and added 10 pixels to    instead of the    before the random walk (see 

Chapter 2.2.4) was applied. 

For the simulation of movements E and F we set the starting coordinates to    = 500 and    = 

500, which is the middle of the image and applied the random walk as described in Chapter 

2.2.4 with independent random variables in a range of           pixels for the   - and    - 

coordinates. 
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3.2.2 Movie properties 

To evaluate the quantification performance of QTFy we simulated fluorescence time-lapse 

microscopy movies with the properties listed in Table 1. Furthermore we generated movies 

with constant background intensity and noise, to investigate the influence of the signal to 

background ratio on the quantification performance of QTFy (see Table 2). The radius of our 

simulated cells is 5 pixels. This results in cells with an area of about 65 to 85 pixels, which 

corresponds to cells in real movie. 

For the evaluation of the background estimation of QTFy, we calculated for the experiments 2 

to 6 all backgrounds also with the median filtering method (see Chapter 2.3.1) and repeated 

the statistics (see Chapter 4.1.6 for results). 

 

Experiment 

number 

Number 

of 

generated 

movies 

Cell 

intensity 

Illumination 

factor 

Poisson 

Noise 

Cell 

radius 

in 

pixel 

Number 

of cells 

GB of 

generated 

data 

1 10 x 6 0.1 - 1.0 - - 5 1 0.053 

2 1 x 6   - - 5 1 0.005 

3 14 x 6 0.5 1-50 - 5 1 9.15 

4 14 x 6 0.8 1-50 - 5 1 9.15 

5 14 x 6 0.5 1-50 ✓ 5 1 15.9 

6 14 x 6 0.9 1-50 ✓ 5 1 15.9 

Table 1 Overview over the simulated test cases. The experiments 1 to 7 were 

performed with the six different movements (described in 3.2.1). The 

movies for experiments 1 and 2 were simulated without any background 

fluorescence, illumination or noise. The cell intensity increases in 

experiment 1 for each set of movies (six movies with different movements) 

by 0.1. In experiment 2 the cell intensity increases linearly according to time 

point  . (see Chapter 3.1.1 for details, for results see Chapter 4.1.2). For the 

experiments 3 to 6 the illumination factor increases for each set of movies. 

(from 1 to 10 in steps of one, from 10 to 50 in steps of 10) (For results see 

Chapter 4.1.3 and 4.1.4). 

 

Experiment 

number 

 Number 

of 

generated 

movies 

Cell 

intensity 

Background 

intensity 

Noise Cell 

radius 

Number 

of cells 

9  20 0.03 - 0.6 0.3 ✓ 5 1 

10  20 0.04 - 0.8 0.4 ✓ 5 1 

11  20 0.05 - 1.0 0.5 ✓ 5 1 

Table 2 Overview over the test movies for the evaluation of the influence of the 

signal to background ratio. The background intensity for each set of movies 

is constant. The cell intensity increases during each set of movies, so that 

the signal to background ratio is comparative between the three sets of 

movies (see Chapter 4.1.5 for results).  
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4 Evaluation 

In this Chapter, we present and discuss the results of our investigations of the test cases 

described in Chapter 3.2 and two movie from two real data sets. 

4.1 Simulated data 

 

4.1.1 Application of the pipeline 

In general our experiments consist of several sets of simulated movies, where one set includes 

six movies with similar cell intensities but different movements (see Chapter 3.2). For each of 

these simulated movies QTFy performs its single cell quantification (see Chapter 1.3.1 and 

3.1). Figure 18 A exemplarily illustrates the quantification results of one set of movies from 

Experiment 1 (see Table 1), where the intensity of each cell pixel is 0.5. Within our pipeline, 

the percentage    score for each time point is calculated for the six quantification results to 

the real cell intensity (see Chapter 3.1.3 and Figure 14 D). Figure 18 B shows the percentage 

   plot, which was automatically generated and stored within the pipeline (see Chapter 3.1.3). 

The analyses in the following subchapters are based on these normalized RMSD scores (see 

Equation (13) and (14)), generated within the pipeline. 

 

 

Figure 18 (A) Quantification results (intensity vs. time) of QTFy for one experiment. 

Most of our experiments (see Table 1) consist of several sets of simulated 

movies, where each set includes six movies with similar cell intensities and 

varying movements. These are the results of one set of movies from 

Experiment 1, with different movements and a constant cell intensity of 0.5. 

(B) Output of our pipeline and foundation of the following analyzes. Based 

on the quantification results of (A), these percentage    scores were 

calculated (see Equation (13) and (14)) and plotted within the pipeline (see 

A

B

rn
 in

 %
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Chapter 3.1.3). The cell intensity per pixel is 0.5 and the movies do not 

include simulated illumination or noise. The small deviations of about 

0.00152 % in average are probably caused by rounding errors during the 

quantification process. 

 

Figure 19 Quantification result of a movie with a constant cell intensity of 0.5 and a 

constant cell size of 80 pixels. This plot shows that the unsteady 

quantification results of other time courses, shown in this section (see 

Figure 18 for example) are not caused by quantification errors, but by the 

varying cell size of our simulated movies (see Chapter 3.1.1 Figure 15). 

 

Figure 19 illustrates the quantification result of a movie, for that simulation, the random 

portion in the shape calculation was excluded. The cell has a constant intensity of 0.5 and a 

constant size of 80 pixels. As the movie was simulated without any background signal or 

noise, QTFy measured a constant and error free cell intensity of 40. Thus unsteady 

quantification results in Figure 18 and other, in this section presented, quantification results 

do not arise from quantification errors. They are caused by the varying cell size in our movies, 

due to a random portion in the calculation of the cell's shape (see Chapter 2.2.1 and Chapter 

3.1.1, Figure 15). 
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4.1.2 Cellular intensity 

To evaluate the quantification performance of QTFy with respect to cellular intensity we 

applied the tool to simulated movies without any background fluorescence, illumination or 

noise (see table 1 Experiment number 1), but varying cell intensities. The results are presented 

in Figure 20 and Figure 21 and were calculated as described in Chapter 3.1.3. 

 

 

Figure 20 Influence of the cell intensity on the quantification performance of QTFy. 

Each box represents the percentage normalized RMSD scores    for one set 

of movies with constant cell intensities and without background signal. For 

each time point, one    score (see Equation (14)) was calculated (see 

Chapter 3.1.3 and Table 1). The red line on the boxes is the median and the 

lower and upper bound represent the 25 and the 75 percentiles, respectively. 

The vertical lines the box at cell intensity 1.0 extends to the most extreme 

data points. Additionally, outliers are marked by a red cross (Mathworks, 

2014a). The images above the boxplot illustrate exemplarily the intensity of 

the cells in the corresponding movies.  

 

 

Figure 21 Influence of the cell intensity on the quantification performance of QTFy. 

This plot represents    scores for each time point for a set of movies with 

increasing cell signal. The cell intensity increases linearly according to the 

time points. 
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In this simple scenario QTFy seems to make almost no errors (         ). For higher cell 

intensities (0.9 and 1.0) the RMSD scores increase, which implies that there are some 

measurement errors in the quantification. The results represented in Figure 21 confirm that the 

quantification works properly up to a value of 0.9. 

The reason for the increasing RMSD scores for cells with intensities above 0.9 is that the cell 

segmentation misses single pixles that are located at the edge of the cell. Figure 22 shows the 

RMSD scores for the test movies with a cell intensity of 1. Three segmentation images from 

the cell inspector of QTFy are shown exemplary and demonstrate the reason for the 

deviations. This error stems from the internal segmentation process of QTFy. Images get 

blurred before thresholding by Otsu (see Chapter 2.4) resulting in less sharp edges of the 

cells. This blurring process normally helps to eliminate noise artifacts in real images but is 

counter productive in this artificial scenario. 

 

 

Figure 22 Quantification errors in movies with high cell signals are caused by a 

smoothing step in the segmentation process. The    score for each time 

point of the test movies without background signal and with a cell intensity 

of 1.0 is plotted. For three time points the segmentation images illustrate the 

non-zero RMSD scores: Single pixels, that are located at the edge of the cell 

were missed in the segmentation. 
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4.1.3 Illumination brightness 

For the evaluation of the influence of illumination brightness we simulated movies with 

varying brightness (see Table 1, Experiment number 3 ). These were generated with a 

constant cell signal of 0.5 and an increasing illumination factor and do not include noise. For 

the illumination factors 1 - 10 the movies are simulated with increments of one. For 

illumination factors 10 - 50, we simulated movies in steps of ten. Before the cells of these 

movies were quantified, the background of each image was estimated using the method of 

QTFy. 

For movies including background signal the mean of the percentage    is higher than for 

movies that do not include any background signal and image normalization (Figure 23). 

Except of a few outliers the RMSD scores are relatively constant up to a mean background 

signal of 0.42. For brighter illuminated images the RMSD score increase, meaning the 

quantification gets more inexact. 

 

 

Figure 23 Influence of the illumination brightness on the quantification performance 

of QTFy. The boxes contain the    scores calculated for each time point of 

the movies of experiment number 3 (see Table 1 and Chapter 3.1.3). Above 

the boxplot, representative images of the corresponding background images 

are shown. Figure 24 represents the corresponding cell to the outlier marked 

with the orange arrow. 

 

We did this experiment once more with a different cell intensity (see Table 1, experiment 

number 4) and got similar results. 

A big proportion of errors in the quantification of illuminated movies is caused by errors in 

the background estimation. Figure 24 shows a simulated image of one movie from 

Experiment 3, with a mean background signal of 0.67, and the corresponding background 

estimated by QTFy. These images are responsible for the largest outlier in the boxplot of 

Figure 23. At the edges of the background image considerable differences are visible due to 

the extrapolation step in the background estimation process (see Chapter 2.3.2). When a cell 

Mean of background intensity
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is, like in this example, located in such an inaccurate area the normalization fails and wrong 

cell intensities are measured. 

Figure 25 presents that for this example a very high quantification value is calculated. Due to 

the much too low estimated background in the area where the cell is located, the cell signal 

was divided by a very small value during the normalization (see Chapter 2.3.3) resulting in 

this high measured cell intensity. 

 

Figure 24 Exemplary illustration of the source of quantification errors in movies with 

illumination. (A) Simulated image with a cell intensity of 0.5 and a mean 

background intensity of 0.67 (illumination factor = 20). (B) Estimated 

background of the QTFy procedure based on (A). The cell of image (A) is 

located in a corner area (marked by the orange oval) of the background 

where estimation is false due to the extrapolation step. The resulting wrong 

image normalization leads to false fluorescence quantifications. 

 

Figure 25 Quantification result for one movie of experiment 3 (see Table 1) with a 

mean background signal of 0.67 (see Figure 23). The marked peak is the 

value for the cell shown in Figure 24 (A). Above the peak, the 

corresponding segmentation image is shown. Errors in the background 

estimation (see Figure 24 (B)), result in a much too high quantification 

result with a percentage    score of over 3000 % of the real cell intensity 

for this time point (see Figure 23).  
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4.1.4 Poisson Noise 

In Experiment 5 we left all parameters of the simulated movies unchanged, compared to the 

movies in Experiment 3, but we added Poisson noise to the images (see Table 1 and Chapter 

3.2 for details). In this way we want to assess the impact of noise on the quantification 

performance of QTFy. 

Figure 26 illustrates the resulting percentage    scores. In comparison to the results for 

illuminated movies without noise (see Figure 23), it can be seen that the mean values for all 

presented mean background intensities are at similar levels. But up to a mean background 

intensities of 0.42, there are in average one to two outliers with high percentage    scores 

more than in the results for the illuminated movies without noise. However, the extreme high 

values for the brightest movies are absent. 

Similar to the previous Section, we simulated this experiment for the impact of noise once 

again with a different cell intensity (see Table 1, Experiment number 6) and got similar 

results. 

 

 

Figure 26 Influence of the noise on the quantification performance of QTFy. The 

boxes contain the percentage    scores calculated for each time point of the 

movies of Experiment number 5 (see Table 1 and Chapter 3.1.3). Above the 

boxplot, miniature images of the correspond images, including the Poisson 

distributed noise are shown. 
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Figure 27 Illustration of the reason for the absence of the highest outlier of the boxplot 

in Figure 23. (A) Simulated image with a cell intensity of 0.5 and a mean 

background intensity of 0.67 (illumination factor = 20). These are the same 

parameter like in the image of Figure 24 (A), but this image contains noise. 

(B) Estimated background of the QTFy procedure based on (A). Compared 

to the cell in Figure 24, the cell of image (A) is here located in a area 

(marked by the orange oval) of the background where the estimation is less 

faulty. 

4.1.5 Signal to background 

To evaluate the influence of the cell signal to background ratio on the quantification 

performance, we created movies with different background intensities and increasing cell 

intensities adapted to the respective background signal. The background intensity is in each 

image constant and evenly distributed. Moreover all this movies contain simulated noise (see 

Table 2). 

In general, Figure 28 shows that the RMSD decreases with higher signal to background ratios. 

Furthermore, the RMSD for each signal to background ratio decreases also with higher 

background intensities. The brighter a background signal is the lower is the corresponding 

RMSD compared to images with the same signal to background ratio. This can be explained 

by the fact that for higher background signal, the effect of the Poisson distributed noise is 

indeed rising, but the signal to noise ratio increases anyway (see Chapter 2.2.3 for details). 

 

A B
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Figure 28 Influence of the signal to background ratio on the quantification 

performance of QTFy. Each line represent the median percentage    scores 

for a movie with constant evenly distributed background signal, Poisson 

distributed noise and an increasing cell signal resulting in increasing signal 

to background ratios (see Table 2, Experiments 9 to 11). Above the plot 

exemplary images, with raising signal to background ratios, from 

Experiment 10 with a background intensity of 0.4 are shown. 

 

4.1.6 Background estimation method 

4.1.6.1 Comparison of quantification performance 

To assess the performance of the background estimation of QTFy we repeated the 

Experiments 3 to 10 and replaced the calculation of the background from QTFy by the 

median filtering method from Matlab (see Chapter 2.3.1). 

Figure 29 illustrates the resulting RMSD scores for the repeated Experiment 3 with the other 

background estimation method (compare to Chapter 4.1.3 and Figure 23). Compared to the 

results with the background estimation of QTFy, the mean RMSD is much lower for all mean 

background intensities and there are no extreme high outliers. From a mean background 

intensity of 0.42 the RMSD scores start to increase with the mean background intensity. For 

lower background intensities  the scores are almost constant with one outlier per mean 

background intensity. 
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Figure 29 Influence of the illumination brightness on the quantification performance 

of QTFy. The parameters for the simulation of the movies are the same as 

described in Chapter 4.1.3. But for the normalization of the simulated 

images we used background images, which were calculated by the median 

filtering method (see Chapter 2.3.1) instead of the method of QTFy (see 

Chapter 2.3.2). 

 

The outliers in Figure 29 are caused by a cell which is located in the left lower corner of the 

image, in one time point of one of the six movies. The corners of the images remain almost 

unaffected by illumination. Therefore the error is relatively constant over the different mean 

background intensities. 

Figure 30 shows the segmentation image of this cell and is the reason for the quantification 

error. The cell was not correctly segmented which covered the cell only partly resulting in a 

very low quantification value (Figure 31). Figure 31 also illustrates that this is the only outlier 

of this simulated movie. 

 

 

Figure 30 Illustration of the reason for the quantification errors in illuminated movies 

with background images calculated by median filtering. This cell is located 

in the left lower corner close to the edges of the image and was covered only 

partly during segmentation. This effect is probably also caused by an artifact 

of the normalization, due to estimation problems of median filtering in areas 

close to edges. 
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Figure 31 Quantification results for the movie containing the cell described in Figure 

30. The result for the wrong segmented cell is marked by the orange circle 

and is the only outlier in the quantification results of this movie. 

 

We did the same investigations with a cell signal of 0.8 instead of 0.5 and got similar results 

(data not shown). 

For the same movies but with noise, we get a similar schema of RMSD scores as without 

noise. The scores starts to rise from a mean background intensity of 0.42.Images with lower 

mean intensity values have one outlier and rather homogeneously distributed RMSDs (see 

Figure 32). The Outliers are caused by the same images as the outliers in the Experiment 

without noise. 

Compared to the corresponding results of the quantification based on backgrounds estimated 

with the QTFy method (see Chapter 4.1.4 and Figure 26) the mean RMSD scores of all mean 

background intensities are on a similar level, but the numerous outliers are absent, which 

indicates, that the median filtering is more steady in its performance for this simulated movie 

scenario. 

 

 

Figure 32 Influence of Poisson noise on the quantification performance of QTFy. The 

parameters for the simulation of the movies are the same as described in 

Chapter 4.1.4. But for the normalization of the simulated images we used 

background images, which were calculated by the median filtering method 

(see Chapter 2.3.1) instead of the method of QTFy (see Chapter 2.3.2). 
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As for the other experiments for the influence of noise or illumination we repeated this 

experiment with a cell intensity of 0.8 instead of 0.5 and got similar results. 

Figure 33 summarizes the results of the influence of illumination and noise on the 

quantification performance of QTFy for both background estimation methods. Compared to 

the percentage    scores for the backgrounds estimated by median filtering, the scores for the 

backgrounds of the QTFy method are higher. On average the quantification based on the 

backgrounds estimated by QTFy are lower for noisy movies, which can be explained by the 

fact that this background estimation works better for noisy images (see Chapter 4.1.6.2 and 

Figure 38). 

 

 

Figure 33 Overview over the influence of illumination and noise on quantification 

performance of QTFy. The boxes contain the percentage    scores 

calculated for each time point of the movies of Experiments 3 and 5 (see 

Table 1). The backgrounds where once estimated by median filtering and 

once by QTFy. (see Figure 23, Figure 26, Figure 29 and Figure 32 for the 

detailed distributions of the scores of the Experiments). 

 

4.1.6.2 Comparison of image similarity 

We compared the estimated background images to the simulated background images by 

calculating the PSNR (see Chapter 2.5.2). We quantified the PSNR for both methods, the 

median filtering as well as the QTFy method for all Experiments to investigate the impact of 

illumination or noise. 

Figure 34 and Figure 35 represent the results for the PSNR calculations for the Experiments 

with backgrounds estimated by the median filtering method. In both plots the PSNR scores 

decreases according to an increasing mean background intensity. The higher the PSNR score 

is the more similar are the compared images (for details see Chapter 2.5.2). That means the 

median filtering method performs better, the darker the image is. All boxes in the two plots 

are very narrow, which comes from the fact, that all estimated backgrounds of this method are 

very similar. 

Median filtering
- without noise

Median filtering
- with noise

QTFy method
- without noise

QTFy method
- with noise
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By comparing Figure 34 and Figure 35 it is obvious that the method works for noisy images 

worse than for less noisy images. For images without noise the method reaches scores 

between about 80 and 60. For noisy images however scores between about 52 and 42 (see 

also Figure 38), what still implies a high similarity of the compared images (see Figure 13). 

 

 

Figure 34 Similarity between simulated background images and by median filtering 

estimated backgrounds for movies with illumination and without noise. The 

PSNR scores were calculated (see Chapter 3.1.3) and plotted for each time 

point of the six movies in the Experiment 3 (see Table 1). The single boxes 

are very narrow, what shows, that the median filtering is very constant in its 

performance. The higher the mean background intensity is, the lower is the 

corresponding PSNR, what implicates that the method works more reliable 

for images with low mean background intensities. 

 

 

Figure 35 Similarity between simulated background images and by median filtering 

estimated backgrounds for movies with illumination and noise. The PSNR 

scores were calculated (see Chapter 3.1.3) and plotted for each time point of 

the six movies in the Experiment 5 (see Table 1).Compared to the scores of 

similar movies but without noise (Figure 34), the boxes are slightly less 

narrow and overall lower, what indicates, that the median filtering works 

less reliable for noisy images. 
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Figure 36 and Figure 37 show the PSNR scores for the Experiments that are based on the 

estimated backgrounds from QTFy. 

For the movies with illumination but without noise (see Figure 36) the PSNR score also 

decreases according to an increasing mean background intensity. Just the score for the highest 

mean background intensity constitutes an exception. This PSNR score is higher than the 

scores for the previous three mean background intensities. Moreover, in contrast to the other 

results, the box for this intensity is much more compressed, which shows that the estimated 

backgrounds for these images are more similar to each other. 

The PSNR score for the noisy movies (see Figure 37) are much more widespread for the 

single mean background intensities compared with the scores for illuminated images without 

noise (see Figure 38). But the mean is more constant and on average the scores are higher 

than the scores for the illuminated images without noise (see Figure 38). This means, that the 

background estimation method of QTFy works, in contrast to the median filtering, better for 

noisy images than for images without noise. 

 

 

Figure 36 Similarity between simulated background images and estimated 

backgrounds by QTFy for movies with illumination and without noise. The 

PSNR scores were calculated (see Chapter 3.1.3) and plotted for each time 

point of the six movies in the Experiment 3 (see Table 1). The single boxes 

are not very narrow what shows that the background estimation is not 

constant in its performance. The higher the mean background intensity is, 

the lower is the corresponding PSNR, what implies that the method works 

more reliable for images with low mean background intensities. The box for 

the highest mean background intensity represent an exception. It is higher 

than the previous boxes and very narrow. 
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Figure 37 Similarity between simulated background images and by QTFy estimated 

backgrounds for movies with illumination and noise. The PSNR scores were 

calculated (see Chapter 3.1.3) and plotted for each time point of the six 

movies in the Experiment 5 (see Table 1). The PSNR scores for each mean 

background intensity in this experiment are very widespread, but in the 

mean they are constant over the different background intensities. 

 

Figure 38 clearly shows that the median filtering method leads, in these test scenarios, to 

estimated backgrounds with higher similarity to the simulated images, than the used 

estimation method of QTFy. This effect can probably be explained by the falsely extrapolated 

regions of the estimated background images and could be reduced by optimizing the features 

and parameters used in the clustering algorithm (see Chapter 2.3.2) 

 

 

Figure 38 Overview over the similarity between simulated and estimated backgrounds. 

The boxes represent the calculated PSNR scores for illuminated movies 

with and without noise (see Table 1, Experiment 3 and 5). For each time 

point of these movies, the background was compared to the estimated 

background by median filtering and QTFy, respectively. For both test 

scenarios, the median filtering reveal higher image similarity than the 

method of QTFy. In contrast to the median filtering, the method of QTFy 

reveals higher PSNR scores for noisy images, than for illuminated images 

without noise. 

Median filtering
- without noise

Median filtering
- with noise

QTFy method
- without noise

QTFy method
- with noise
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4.2 Real data 

With our analyses we have the possibility to assign a real fluorescence microscopy movie to a 

certain percentage     , which is normalized to the simulated cell intensity (  ) (see 

Chapter 2.5.1, equation (13) and (14)) range, based on the respective movie properties. We 

exemplary quantified the intensities of cells in two different fluorescence microscopy movies.  

Both data sets have been generated in the lab of Timm Schroeder (BSSE Basel, ETH Zurich) 

and quantified at the ICB, Helmholtz Zentrum München. 

 

4.2.1 Time-lapse microscopy movies of hematopoietic stem and progenitor cells 

The first movie consist of ten frames of differentiating blood stem cells (Orkin & Zon, 2008) 

with a fluorescently tagged PU.1 transcription factor protein (Krumsiek, Marr, Schroeder, & 

Theis, 2011). The sizes of the cell in the different time points are comparable to the cell sizes 

in our previously described experiments (see Chapter 3.2.2). Furthermore the movie is 

unevenly illuminated and includes noise (see Figure 39 (A)). Using QTFy, we estimated the 

background for each of the ten frames and executed the fluorescence intensity quantification 

for one of the cells (see Figure 39 (B)). The estimated backgrounds have a mean pixel 

intensity of 0.39. Considering the analysis results of the influence of noise to the performance 

of QTFy (shown in Figure 26) and the present movie properties, we can assign an average    

of             to the quantification of nuclear fluorescent protein intensity (see Figure 

39 (C)). 
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Figure 39 Exemplary fluorescence intensity quantification for a real movie with blood 

stem cells. (A) Fluorescence time-lapse microscopy movie with uneven 

illumination, noise and a mean background intensity of 0.39. (B) 

Corresponding quantification result of QTFy for the yellow marked cell in 

(A). (C) Analysis results for simulated movies with uneven illumination and 

Poisson noise (see Chapter 4.1.4). The yellow box marks the approximate 

position where the movie (A) can be assigned according to its 

characteristics. 

 

4.2.2 Time-lapse microscopy movies of pluripotent embryonic stem cells 

The second movie shows embryonic stem cells (Chambers et al., 2007) in LIF serum, where 

the pluripotency transcription factor Nanog has been tagged with yellow fluorescent protein 

(Filipczyk et al., 2013). The mean intensity of estimated backgrounds is 0.17. The other 

movie properties are similar to the first investigated movie and we can also assign an average 

   of about          . Figure 40 represent the second movies with its quantification 

results and the corresponding analysis results. 
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Figure 40 Exemplary fluorescence intensity quantification for a real movie with 

embryonic stem cells. (A) Fluorescence time-lapse microscopy movie with 

uneven illumination, noise and a mean background intensity of 0.17. (B) 

Corresponding quantification result of QTFy for the yellow marked cell in 

(A). (C) Analysis results for simulated movies with uneven illumination and 

Poisson noise. The yellow box marks the approximate position where the 

movie (A) can be assigned according to its characteristics. 
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5 Summary and outlook 

Within this thesis we created a pipeline for the evaluation of the single cell quantification tool 

QTFy. In the pipeline fluorescence time-lapse microscopy movies are simulated, using a 

customized version of the simulation tool SIMCEP. Subsequently, QTFy performs its 

quantification and the results are compared to the simulated cell intensities. The results were 

assessed by calculating the percentage      normalized to the simulated cell intensity (  ). 

We applied the pipeline to seven different test scenarios with a total number of 462 movies to 

investigate the influence of these seven factors on the quantification performance of QTFy. 

Moreover, we have examined the performance of QTFy's background estimation method, by 

calculating the background of 336 of the 462 simulated movies with the median filtering 

method. We used these estimated backgrounds to normalize the movie images, repeated the 

quantification and compared the results to the previously obtained ones. In addition we 

evaluated the similarity between the estimated background images of both methods and the 

simulated backgrounds and compared these results. 

On movies without any background signal or noise QTFy performs very well. The only 

quantification errors have occurred for cells from a pixel intensity above 0.9, which have 

single pixels on the edge of the cell. These single pixels were missed during the segmentation 

step of QTFy, leading to small deviations in the quantification results. Typically noise occurs 

in real microscopy images. To eliminate the noise, the images get blurred during the 

segmentation, resulting in less sharp edges. In this artificial test scenario, this process leads to 

the mentioned segmentation errors. 

For experiments based on backgrounds, estimated by QTFy, we found out that there are only 

small differences between the quantification performance for movies with illuminated 

background with and without noise. For noisy images the average    is actually slightly 

lower, than for illuminated movies without simulated noise. Which means that the 

quantification performs slightly better for illuminated movies, which contain noise, than for 

illuminated movies without noise. In both scenarios (illuminated movies with and without 

noise), the brightness of illumination has only a negative effect on the quantification results 

from a mean background intensity above 0.42. The mean    increases rapidly above this 

mean background intensity. The noisy movies have many outliers with high RMSD scores up 

to the limit value of 0.42, whereas the movies without noise have more of such outliers for the 

movies with high mean background intensity. In all tested scenarios, the high percentage    

outliers are caused by wrongly estimated background areas. 

For the same two scenarios, we performed the quantification based on backgrounds estimated 

by a median filtering method. We got comparable results, but the high outliers of percentage 

   scores were absent and in contrast to the results based on the backgrounds estimated by 

QTFy, the quantification performed better for the movies without noise. 

We investigated also the influence of the signal to background ratio on the quantification 

performance and found out, that the higher the signal to background ratio, the better is the 
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quantification performance. Moreover, the brighter the background is, the better is the 

quantification performance compared to images with similar signal to background ratios. This 

effect is caused by the decreasing impact of the Poisson distributed noise for increasing 

background intensities. 

All in all the median filtering method leaded to better quantification results, than the 

background estimation method of QTFy, which we confirmed by demonstrating, that the 

backgrounds estimated with this methods have a higher similarity to the simulated 

backgrounds than the estimated backgrounds of QTFy. This effect can probably be explained  

by the false extrapolated regions of the estimated background images and might be reduced by 

optimizing the features and parameters used in the clustering algorithm. However, the 

background estimation method by QTFy is developed for real microscopy movies, which 

normally contain a larger number of cell. We assume, that for such movies the median 

filtering do not perform adequate, and the QTFy method outperforms it. 

To confirm this assumption, the pipeline can be used to generate movies with an increasing 

number of cells within the movies. The runtime for the generation of the movies scale up 

according to number of cells within the images. Therefore the distributed SIMCEP version is 

unsuitable for a large number of experiments or long movies with many cells. To investigate 

movies, that contain many cells, the runtime should be reduced, by implementing a more 

efficient solution. 

Moreover the following modifications could be performed to simulate more realistic 

fluorescence time-lapse microscopy movies. 

 

 simulate gene expression (in the cell intensity) 

 adapt the texture to realistic cells (not every pixel has the same intensity) 

 simulate more detailed cells (not only the nucleus but cytoplasm and sub cellular 

components) 

 simulate photo bleaching 

 simulate cell cycle 
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