
1 

© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please 

email: journals.permissions@oup.com 

Novel Genetic Associations with Serum Level Metabolites Identified by 

Phenotype Set Enrichment Analyses 

 

Janina S. Ried1,*, So-Youn Shin2,3, Jan Krumsiek4, Thomas Illig5,6, Fabian J. Theis4,7, 

Tim D. Spector8, Jerzy Adamski9,10,11, H.-Erich Wichmann12,13,14, Konstantin Strauch1,15, 

Nicole Soranzo2, Karsten Suhre16,17 and Christian Gieger1 

1Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center 

for Environmental Health, 85764 Neuherberg, Germany 

2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1HH Hinxton, 

United Kingdom 

3MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, United 

Kingdom 

4Institute of Computational Biology, Helmholtz Zentrum München - German Research Center 

for Environmental Health, 85764 Neuherberg, Germany 

5Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research 

Center for Environmental Health, 85764 Neuherberg, Germany 

6Hannover Unified Biobank, Hannover Medical School, 30625 Hannover, Germany 

7Department of Mathematics, Technische Universität München, 85748 Garching, Germany 

8Department of Twin Research and Genetic Epidemiology, King’s College London School of 

Medicine, St Thomas’ Hospital, SE1 7EH London, United Kingdom 

9Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München - 

German Research Center for Environmental Health, 85764 Neuherberg, Germany 

10Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, 

Technische Universität München, 85354 Freising-Weihenstephan, Germany 

11German Center for Diabetes Research, 85764 Neuherberg, Germany 

 HMG Advance Access published June 13, 2014
 at G

SF-Forschungszentrum
 fuer U

m
w

elt und G
esundheit G

m
bH

 - Z
entralbibliothek on June 15, 2014

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


2 

12Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for 

Environmental Health, 85764 Neuherberg, Germany 

13Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, 

Ludwig-Maximilians-Universität, 85764 Neuherberg, Germany 

14Klinikum Grosshadern, 81377 Munich, Germany 

15Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic 

Epidemiology, Ludwig-Maximilians-Universität, 85764 Neuherberg, Germany 

16Department of Physiology and Biophysics, Weill Cornell Medical College, P.O. Box 24144 

Doha, Qatar 

17Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German 

Research Center for Environmental Health, 85764 Neuherberg, Germany 

*Corresponding author: Dr. Janina S. Ried, Helmholtz Zentrum München - German Research 

Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany, 

Tel: +49 (0) 89-3187-2856, Fax:+49 (0) 89-3187-3380, Email: janina.ried@helmholtz-

muenchen.de 

 

 at G
SF-Forschungszentrum

 fuer U
m

w
elt und G

esundheit G
m

bH
 - Z

entralbibliothek on June 15, 2014
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


3 

ABSTRACT 

Availability of standardized metabolite panels and genome-wide single nucleotide 

polymorphism (SNP) data endorse the comprehensive analysis of gene-metabolite 

association. Currently, many studies use genome-wide association analysis to investigate the 

genetic effects on single metabolites (mGWAS) separately. Such studies have identified 

several loci that are associated not only with one but with multiple metabolites, facilitated by 

the fact that metabolite panels often include metabolites of the same or related pathways. 

Strategies that analyse several phenotypes in a combined way were shown to be able to detect 

additional genetic loci. One of those methods is the phenotype set enrichment analysis 

(PSEA) that tests sets of metabolites for enrichment at genes. Here we applied PSEA on two 

different panels of serum metabolites together with genome-wide data. All analyses were 

performed as a two-step identification-validation approach, using data from the population-

based KORA cohort and the TwinsUK study. In addition to confirming genes that were 

already known from mGWAS, we were able to identify and validate twelve new genes. 

Knowledge about gene function was supported by the enriched metabolite sets. For loci with 

unknown gene functions, the results suggest a function that is interrelated with the 

metabolites, and hint at the underlying pathways.  
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INTRODUCTION 

Metabolites are small molecules of diverse biochemical properties, including for example 

amino acids, lipids and xenobiotics like caffeine, that can be measured in body fluids such as 

blood, serum or urine. They represent endpoints of biological processes and therefore enable a 

direct readout of related pathways (1, 2). Recent studies demonstrate that although 

metabolites are very sensitive to environmental factors, e.g. nutrition, physical activity and 

medication intake (3), metabolite changes due to genetic variation of underlying biochemical 

processes by factors like enzymes or transporters can be identified (4-8). Insights into the so-

called genetically influenced metabotypes (GIM) are important preconditions to analyse 

pathways and processes that can improve the understanding of disease. The knowledge of the 

genetic determination of metabolites can guide the improvement of diagnostics and therapies. 

Moreover, understanding the interrelation of metabolite profiles, genes and environmental 

factors can be used for personalized medicine approaches (1, 4).  

Recent improvements and development of new bioanalytical techniques to measure 

metabolites promote the systematic and simultaneous analysis of hundreds of metabolites. For 

large cohorts, using metabolite panels, which capture a wide range of different pathways, is a 

feasible strategy with respect to time and cost for analysing the metabolome of large numbers 

of participants. The genetic analysis of hundreds of metabolites and millions of single-

nucleotide polymorphisms (SNPs) is computational challenging and demands an appropriate 

strategy. Several studies analyse metabolites gained from metabolite panels with genome-

wide association studies (GWAS) on all metabolite traits (mGWAS) separately (1, 4-12). 

mGWAS have recently been demonstrated to be an effective tool in identifying genes that are 

associated with metabolites. A biomedical and pharmaceutical impact can be described for 

many identified loci (4). Other studies have followed a different approach by analysing 

selected genes that are known from previous studies rather than the whole genome. Such 

studies incorporated metabolites as intermediate phenotypes with the integrative analysis of 
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known candidate genes (13, 14). Although both approaches analyse metabolites separately, 

they have found that many identified genes are associated not only with one metabolite but 

with a group of several metabolites (4, 7, 8, 14). In many cases, these metabolites belong to 

the same pathway or the same biochemical group.  

An approach to account for the dependency structure of metabolite panel data is to 

simultaneously analyse multiple metabolites together rather than separately. Various 

strategies have been developed that analyse multiple phenotypes at a time (e.g. (15-22)). 

Some of these approaches were successfully applied to metabolomics data (e.g. (23)). 

Exploiting the information shared by several metabolites makes it possible to identify 

additional loci, while mGWAS that are focused on single metabolites neglect such 

information. In this study we have applied one of these methods, namely, the phenotype set 

enrichment analysis (PSEA) (22), on two large panels of serum metabolites and genome-wide 

SNP data. The same data were previously analysed in mGWAS (4, 8). PSEA analyses genetic 

association of sets of phenotypes, e.g. metabolites, which can be defined in various ways 

using prior knowledge or the data itself. Those phenotype sets are tested genome-wide for 

gene enrichment with a permutation test that compares the enrichment of the set under 

investigation with enrichment of sets of permuted phenotypes. The PSEA method was 

developed following ideas of gene set enrichment strategies and has been previously 

published (22). It was shown that PSEA could detect loci associated with blood and iron 

phenotypes that were known from large meta-analysis but that could not be detected in 

GWAS using the same sample size. Therefore, we expect that using PSEA will allow us to 

identify additional loci associated with metabolites as compared to mGWAS on the same 

data. The metabolite sets that are found to be associated with a gene might also point to the 

gene function. In the present study, we applied two different strategies to define the 

metabolite sets: i) Gaussian Graphical Modelling (GGM), a data-driven method for 

reconstructing metabolite pathways (24, 25) that is used to identify biologically-meaningful 
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metabolite sets; and ii) a method based on the association of single metabolites at genes. The 

advantages of PSEA are that it can test high numbers of metabolite sets that are freely 

defined, and that it deals with a minimal number of assumptions. Importantly, by applying 

PSEA as a multi-metabolite analysis strategy on two different panels of metabolites, we were 

able to identify twelve new loci associated with metabolites.  

 

RESULTS 

We used PSEA to analyse 151 metabolites measured in blood serum with the BIOCRATES 

AbsoluteIDQTM p150 kit (Supplementary Material, Table S1) and 193 metabolites measured 

with a technique supplied by Metabolon (Supplementary Material, Table S2). Both 

technologies were applied to individuals from the population-based KORA cohorts and the 

TwinsUK study (26).  

 

The basic principles of PSEA are presented in Figure 1A. The metabolite sets, either defined 

by Gaussian Graphical Modelling (GGM sets, Fig. 1B) or single-association defined sets 

(SAD sets, Fig. 1C), were tested for enrichment at genes to identify additional genetic loci 

that determine the metabolic make-up. We applied a two-step identification-validation 

approach: Initially, promising enrichments of phenotype sets at genes were identified in 

KORA F4 (P <10-4). Thereafter, those enrichments were validated in the independent 

TwinsUK study (see Fig. 1D and 1E, and Materials and Methods). PSEA is a gene-based 

method but uses SNP genotype data. Due to the strategy of mapping SNPs to genes (see 

Materials and Methods) proximate genes are often based partially on the same SNPs and are 

therefore not independent. A group of genes that share SNPs are named gene group in the 

following. In our data, 2,319 gene groups were derived from the 20,801 genes. SNPs that are 

shared by several genes can lead to enrichment of the same metabolite set for all these genes. 

Of course, such enrichments are not independent, as they probably represent the effects of the 
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same SNPs. We therefore introduced a number for independent promising enrichments, which 

counts multiple enrichments of the same metabolite set only once per gene group. This 

assured that the number of identified enrichments is not artificially increased by counting the 

same enrichment at one gene multiple times. It is used to correct the significance level in the 

validation step.  

We analysed metabolite sets of three different batches by PSEA. The first batch of metabolite 

sets was defined by GGM, which is a valid tool for reconstruction of metabolite networks by 

using pairwise partial correlation. The GGM-defined metabolite sets (GGM sets) consist of the 

connected components in such networks at a specific partial-correlation threshold (see Fig. 1 

B, and Materials and Methods for details). Two other metabolite sets were defined using the 

single metabolite associations at each gene under two different conditions. Single-

association–defined (SAD) phenotype sets (SAD sets) include all metabolites for which the 

minimum association P-value at this gene is below a specific threshold (see Fig. 1 C, and 

Materials and Methods for details). Our intention was to analyse all single metabolites at a 

specific gene that were associated with the gene at a promising low P-value as a set. With 

this, we aimed to find enrichments at especially those loci, for which the association of the 

gene and each single metabolite was not significant genome-wide. Two P-value levels for the 

promising single association, 10-4 and 10-6, were used to define SAD sets. In contrast to the 

GGM sets that were analysed for all genes, each SAD set is gene dependent and was 

evaluated only at the gene at which it was defined. 

PSEA on metabolite sets confirmed gene-metabolite associations known from mGWAS on 

large metabolite panels but furthermore revealed new genes that have not been previously 

published to be associated with metabolites. Table 1 summarizes the number of independent 

and validated enrichments and the number of loci with promising or validated enrichments of 

one or more metabolite sets. Table 2 gives the details on loci for which at least one metabolite 

set enrichment was validated but which had not been previously identified in a mGWAS.  
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The analysis of 38 Biocrates and 50 Metabolon based GGM sets (Supplementary Material, 

Table S3 and Table S4) revealed seven and eight independent gene groups, respectively, with 

validated enrichments of at least one metabolite set (Table 1 and Supplementary Material, 

Table S5 and Table S6). These findings confirm gene metabolite associations found in 

mGWAS on the same data (4, 8). The elements of the metabolite sets fit well to the known 

metabolite associations (1, 7, 8). For example, at ACADM, the enrichment of one Biocrates 

and two Metabolon GGM sets were validated. The Biocrates set consisted of two carnitines 

with a carbon atom chain length of eight and ten, and the Metabolon GGM sets included both 

carnitines with carbon six, eight and ten carbon atoms and one of those additional 2-

tetradecenoyl carnitine. In mGWAS, SNPs in ACADM were found to be associated with 

acylcarnitines with a medium chain length (4, 8). This association reflects the gene function 

of ACADM, which is a key enzyme in the β-oxidation with its strongest substrate affinity to 

acyl-CoAs with chains of 4-12 carbon atoms.  

 

The analysis of SAD sets with the threshold of 10-6 validated the enrichment of Metabolon 

metabolites sets at 13 gene groups. Genes of all gene groups are known from mGWAS 

(Supplementary Material, Fig. S1 and Table S7). For Biocrates, no metabolite set reached a 

sufficient P-value in the intermediate validation step (see Material and Methods). In total, 

7,942 different Biocrates and 10,951 Metabolon metabolite sets were identified as SAD sets 

for at least one gene with the higher P-value threshold of 10-4. Testing these sets led to 15 and 

23 independent gene groups with validated enrichments of at least one set of Biocrates or 

Metabolon metabolites (Fig. 2 and Fig. 3, and Supplementary Materials, Table S8  and Table 

S9). Eight and 16 of those gene groups with enrichment of Biocrates- and Metabolon-based 

SAD sets, respectively, were already known from previous mGWAS using the same data (4, 

8). One special case is SLC22A1, which was known from mGWAS on Metabolon metabolites 

(associated with isobutyrylcarnitine) (4) but not from mGWAS on Biocrates metabolites; 
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however, it was identified in this study as promisingly enriched in the phenotype set of 

Biocrates metabolites (six carnitines including butyrylcarnitine, five phosphatidylcholines and 

one amino acid) by PSEA. In addition to comparing mGWAS on the same data, we used other 

published mGWAS (1, 4-6, 8-12) on large metabolite panels to investigate our findings. This 

revealed that one additional gene (SLC1A4), identified by both Biocrates- and Metabolon-

based SAD sets, was found to be previously reported with metabolite levels (5). For the 

remaining twelve loci identified with PSEA using SAD sets (threshold 10-4) on Biocrates 

metabolites (six loci) and on Metabolon metabolites (six loci), no association with a 

metabolite had been previously reported in mGWAS on a large metabolite panel (Table 2). 

Therefore, these twelve loci were newly identified for association with metabolites. For eight 

of these twelve novel loci, the corresponding SAD-set of one gene was promisingly enriched 

and validated (DKFZp686O1327, PDCD6IP, IL3, C12orf75, INTS8, DIRAS3, MIR138-1 and 

LINGO2). At the other four loci, SAD-defined phenotype sets showed validated enrichment 

for several genes of a gene group (MFSD2A and MYCL1, UBL3 and LOC440131, several 

genes of the Cytochrome P450 family 4, GCDH and 12 other genes at chromosome 19). The 

promisingly enriched and validated SAD-defined phenotype sets were identical or similar 

within the gene group. For example, the overlapping genes UBL3 and LOC440131 showed 

enrichment of two different SAD sets. The SAD set of LOC440131 includes the same 

metabolites as the SAD set of UBL3 as well as two additional ones.  

 

DISCUSSION 

By applying the multiple phenotype approach PSEA to metabolites, twelve novel associations 

of genes and metabolites were identified that have not been published before in any mGWAS 

of a large metabolite panel. This method additionally confirmed several loci with known 

metabolite associations. For both known and unknown loci, the enriched phenotype sets 

carried information about networks and pathways.  

 at G
SF-Forschungszentrum

 fuer U
m

w
elt und G

esundheit G
m

bH
 - Z

entralbibliothek on June 15, 2014
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


10 

 

The gene function of the genes that were newly found to be associated with metabolites is 

discussed in the Supplementary Text S1. Three genes are exemplarily discussed here: 

IL3: A set of six acylcarnitines, one dicarboxyacylcarnitine, one acyl-alkyl-

phosphatidylcholine and one hydroxysphingomyelin was enriched for interleukin 3 (IL3) on 

Biocrates metabolites. In other words, the enriched metabolite set consists of seven 

acylcarnitines and two phospholipids. IL3 is known to be a hematopoietic growth factor that 

stimulates survival, multiplication and differentiation of hematopoietic cells (27). Other 

studies found that IL3 stimulates phospholipid synthesis (28) and suppresses lipid degradation 

and β-oxidation of fatty acids (29). Acylcarnitines are known to play an important role in β-

oxidation and are needed for transport of activated fatty acids into the mitochondria. Fatty 

acids, which are part of phosphatidylcholines and sphingomyelins, are substrates of β-

oxidation. This shows how the elements of the enriched phenotype set are involved in the β-

oxidation. The two phospholipids also stand for the involvement of IL3 in phospholipid 

synthesis. Therefore it can be stated that the elements of the enriched metabolite set 

underscore the previously reported role of the gene product of IL3 in the β-oxidation. 

Cytochrome P450 family 4: Four genes of the cytochrome P450 family 4 (CYP4B1, 

CYP4A11, CYP4X1 and CYP4Z2P) and one additional gene KIAA0494, which maps to a 

region that overlaps with CYP4B1, were found on Metabolon metabolites with an enrichment 

in four slightly different SAD sets. The sets included three to six metabolites. Two 

glycerolipids as well as one fatty acid and two carnitines were part of several sets . The amino 

acid L-tyrosine and the peptide γ-glutamyltyrosine were part of two enriched phenotype sets. 

The cofactor heme was identified for two genes. The cytochrome P450 monooxygenase 

system is a multigene superfamily of enzymes that are involved in various reactions, e.g. drug 

metabolism and lipid synthesis. Heme is a cofactor in these processes (30). The metabolites 

identified as elements of the metabolite sets reflect the gene product's function, including 
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possible substrates (glycerolipids and fatty acids), cofactors (heme) and related compounds 

(carnitines).  

LINGO2: A large set of 17 Metabolon metabolites was significantly enriched at the gene 

'leucine rich repeat and Ig domain containing 2' (LINGO2). The set included various types of 

metabolites of the lipid metabolism (fatty acids, carnitines, lysolipid, and monoacylglycerol), 

some amino acids, a nucleotide, one peptide and phenylsulfate. The gene function of LINGO2 

is not known yet. A GWAS identified a genome-wide significant association of LINOG2 with 

BMI (31). The elements of the enriched metabolite set hint that an involvement in the 

metabolism of fatty acids. This could explain the effect on BMI. 

 

In general, PSEA emphasises interesting relations between genes and a small set of 

metabolites out of hundreds. These enrichments can reveal two types of knowledge. First, 

novel genetic loci can be identified. The ability of PSEA to identify loci other than those 

identified by GWAS using the same data derives from the consideration of multiple 

metabolites at a time. Our results demonstrate that several loci could be identified with PSEA 

but not GWAS on the same data. Second, information about potential gene functions and 

affected pathways can be extracted from the enriched sets for novel as well as previously 

known genetic loci. For instance, the PSEA results supported the known gene functions for 

IL3 and the cytochrome P450 family 4, while the identified sets suggested previously-

unknown pathways for LINGO2. This knowledge about the association of metabolite sets with 

specific genes can motivate and direct further analysis.  

 

The computational intensity of the algorithm in combination with computational limitations 

determined the minimal possible P-value. With 10,000 permutations, the minimal P-value is 

10-4, which means that a Bonferroni-correction for >20,000 genes can not be applied. 

Therefore, we could not claim statistical significance in the identification step; rather, by 
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terming enrichments with a P-value below the minimal P-value of 10-4 as “promising 

enrichments”, and validating our results in the TwinsUK, we were then able to use a 

Bonferroni-corrected multiple testing threshold. This two-stage design has reduced power as 

compared to an approach that analyses statistical significance in one cohort or from a meta-

analysis of both studies, neither of which was computationally possible with the current data. 

Further studies are needed to replicate our results. 

 

In summary, the present study identified the association of twelve loci with metabolites, 

which had not been published before. This demonstrates the potential of multi-metabolite 

analyses. With PSEA, we successfully screened hundreds of metabolites and metabolite sets. 

The enriched sets carry information on the possible pathways, and the findings hinted at the 

gene function. Altogether, this knowledge can help to design biological experiments and 

guide further research on the genetic determination of metabolites.  

 

MATERIALS AND METHODS 

Study description and genotyping 

Analyses were performed in a two-stage approach consisting of an identification and a 

validation step. We analysed data of the KORA F4 study from the KORA cohorts 

(cooperative health research in the region of Augsburg) (32). KORA F4 participants (n = 

1,814) were genotyped on the Affymetrix 6.0 SNParray. Imputation was performed with 

Impute v 0.4.2 (reference HapMap phase 2, release 22) (33). Findings identified in the 

analysis of KOA F4 were validated for data of the TwinsUK study, a British adult twin-

registry. Participants of the TwinsUK study were genotyped with a combination of different 

Illumina arrays (HumanHap300, HumanHap510Q, 1M-Duo and 1.2MDuo 1M) and imputed 

with Impute v2. More details on study description and genotyping are given in the 

Supplementary Text S2. 
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Ethics statement 

Written informed consent was given all participants of KORA and TwinsUK. The KORA 

study, including the protocols for subject recruitment, assessment and the informed consent, 

was approved by the ethics committee of the Bayerische Landesärztekammer. Ethics approval 

for the TwinsUK was obtained from the Guy's and St. Thomas' Hospital Ethics Committee.  

Genes 

PSEA is a gene-based approach, i.e. it is necessary that SNPs are mapped to genes. Only 

autosomal SNPs were used that had a minor allele frequency > 5%, call rate > 95% and 

imputation quality > 0.4. SNPs were mapped to genes when they were in the transcribed 

region of a gene or in the flanking region of 110 kb upstream or 40 kb downstream. These 

thresholds were chosen as it has been previously shown that 99% of the expected cis-eQTLs 

are located within this interval (34). This leads to a good coverage of SNPs that possibly 

affect the gene product. The same mapping of SNPs to genes was also used for gene set 

enrichment approaches based on GWAS data (35). A SNP was mapped to multiple genes 

when it was in the transcribed or flanking region of more than one gene. Gene information 

was downloaded from the UCSC (University of California Santa Cruz) genome browser 

(http://genome.ucsc.edu/). The SNP gene mapping has been described in detail previously 

(22). In total, 20,801 genes were analysed. As described above, due to the broad assignment 

of SNPs to genes proximate genes often overlap in SNPs. Such overlapping genes are named 

gene group. In our data the 20,801 genes led to 2,319 gene groups.   

Metabolite measurement 

Metabolites were measured with two technologies, Biocrates and Metabolon, in the same 

individuals in both the KORA F4 and the TwinsUK studies . Slight differences in final 

numbers were caused by quality control exclusions.  
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Biocrates Metabolites: 

 A panel of 163 metabolites was measured for individuals of KORA F4 using electro spray 

ionization tandem mass spectrometry with the AbsoluteIDQTM p150 kit (BIOCRATES Life 

Sciences AG, Innsbruck, Austria). Details of the measurement methods and quality control 

were described in previous publications (7, 8, 14). After quality control 151 metabolites 

remained for further analyses. These 151 metabolites can be grouped in 10 metabolite classes 

and include 14 amino acids, 1 hexose, carnitine species (1 free carnitine, 22 acylcarnitines and 

12 hydroxy- and dicarboxyacylcarnitines), 9 sphingomyelins, 5 hydroxysphingomyelins and 

different forms of phosphatidylcholines (36 diacyl-phosphatidylcholines, 38 acyl-alkyl-

phosphatidylcholines and 13 lyso-phosphatidiylcholines). A full list of all metabolites is 

available in Supplementary Table S1. For 1,809 individuals in KORA F4, Biocrates 

metabolites and genome-wide genotypes were available.  

Samples from the TwinsUK cohort that had measurements for metabolites with the same 

AbsoluteIDQTM p150 kit was used for replication. The metabolites underwent the same 

quality control as described for KORA F4. All 151 metabolites passed the quality control in 

TwinsUK as well. 843 unrelated individuals with genotypes and valid Biocrates metabolites 

measurements were used for further analysis.  

Metabolon Metabolites: 

A different panel of 295 metabolites was measured with a technique supplied by Metabolon 

(Metabolon, Inc., Durham, USA). It used ultrahigh-performance liquid-phase chromatography 

and gas-chromatography separation with tandem mass spectrometry (36, 37). The 

measurement method was described in detail in a previous publication (4). 102 metabolites 

had more than 10% missing values and were excluded from the analyses. Missing values for 

the remaining metabolites were imputed with the MICE algorithm (http://cran.r-

project.org/web/packages/mice/index.html) that was implemented in R (http://www.r-

project.org/). The remaining 193 metabolites spanned different super pathways including 
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amino acids (52), carbohydrates (10), cofactors and vitamins (7), energy (3) and lipid (90) 

pathway–relevant compounds, nucleotides (9), peptides (11) and xenobiotics (11). The full 

list of all 193 metabolites together with additional information about the pathways they 

belong to is given in the Supplementary Table S2. In total, 1,768 KORA F4 individuals with 

valid Metabolon metabolites measurements and genotypes were used for further analysis.  

The same technology was applied to measure metabolites from the TwinsUK data. Only 

metabolites that passed quality control in KORA F4 were regarded. Individuals with more 

than 50% missing values were excluded. Four metabolites that were present in KORA F4 had 

less than 300 valid measurements in TwinsUK data. According to Suhre et al. (2011) (4), 300 

is the critical limit of non-missing values to avoid false positive findings due to small sample 

size. Therefore, these four metabolites were excluded from further analysis. In the remaining 

189 metabolites, the maximal missing rate per metabolite was 65.59%, which is equivalent to 

362 valid measurements. To assure that most metabolite sets could be analysed in the 

replication, no further exclusion criteria for metabolites were applied. No imputation of 

missing data was performed. After reduction to unrelated and genotyped individuals, 705 

individuals remained in the analysis. 

For both Metabolon and Biocrates metabolites, outliers that differed more than five standard 

deviation from the mean were excluded. The residuals of log-transformed metabolites with 

adjustment for sex and age were calculated and taken as phenotypic input for PSEA. For 

Biocrates metabolites, additional adjustments for an internal batch variable accounting for 

possible measurement differences was applied. After log-transformation, most (146) Biocrates 

metabolites were closer to the normal distribution than the untransformed metabolite 

concentrations. For Metabolon metabolites, the same was previously shown with log10-

transformation (4). For simplicity per panel, the same transformation was applied to all 

metabolites. 
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PSEA 

The basic strategy of PSEA is shown in Figure 1. The details of the algorithm were described 

in a previous publication (22). In general, PSEA is a gene-based approach to identify 

association of phenotype sets with a gene by a permutation test. For each permutation, the 

phenotypes are permuted over individuals, whereat all phenotypes of a set are permuted in the 

same way to conserve the correlation structure of phenotypes. The genotypes are not changed. 

PSEA was applied to Biocrates and Metabolon metabolites separately. To define the 

phenotype sets, two strategies were used: Gaussian Graphical Modelling (GGM) and single 

phenotype association, as described below. 

GGM-defined metabolite sets (GGM sets): 

To define phenotype sets, GGM was applied as a statistical method that estimates the 

conditional dependence between variables (24). For each pair of metabolites, we estimated the 

partial correlation coefficient, which represent the pairwise (regular) Pearson correlation 

coefficient conditioned for the correlation with all other metabolites in the data set. This 

completely data-driven approach was shown to be a valuable tool to identify metabolite 

networks, which is able to distinguish direct from indirect associations (24, 25). Another 

advantage is that this estimation of metabolite sets is independent from further information 

like availability of database information. The analysis strategy was applied to the panel of all 

metabolite measurements in KORA F4 that passed quality control and to all individuals with 

metabolite measurements and genotypes. Two partial correlation coefficient threshold levels 

(0.3 and 0.45) were used, both of which gave a different range of metabolite sets. The sets 

were not overlapping for each threshold, but sets gained from the higher threshold level were 

subsets of the sets gained with the lower threshold level.  

Single association–defined metabolite sets (SAD sets):  

A SAD set is defined per gene with the use of a P-value criterion for the association of single 

metabolites. The gene association is calculated in the same way as in PSEA and is the 
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minimal association P-value of all SNPs mapped to this gene and the metabolite. All 

phenotypes for which the P-value for association with the gene was below this P-value 

criterion are taken in a SAD set. At most, one metabolite set can be identified for each gene. 

Two runs were made using different P-value levels: 10-4 and 10-6. The specification of SAD 

sets was based on the discovery cohort KORA F4. 

Two-step identification validation strategy: 

As described in the Results section, we performed our analyses with a two-step approach, 

with an initial identification of “promising enrichments” in KORA F4, and a subsequent 

validation of those in the TwinsUK study. A phenotype set that showed enrichment at a gene 

with a permutation P lower than 10-4 was named promisingly enriched and was taken forward 

for validation in the TwinsUK study. As described above, genes in the so-called gene groups 

are not independent as the share SNPs. We observed that, within a gene group, the same 

phenotype sets are often promisingly enriched for several genes. Therefore, the number of 

independent promising enrichments was introduced. This counts independent gene group 

enrichments of the same set only once. It was used to correct for multiple testing in the 

validation stage, and the corrected validation P-value level is 0.05/number of independent 

promising enrichments. 

Permutation strategy: 

Identification and validation were based on a permutation test with a of total 10,000 

permutations. For computational reasons, the permutations were performed in a graded 

process. In contrast to performing the maximal number of permutations in KORA F4, for all 

genes the number of permutations was increased in steps. After each step, only those genes 

are taken forward to the round of permutations with a promising P-value. Initially 100 

permutations were calculated. Only those genes for which at least one phenotype set had P-

value ≤ 0.03 were analysed with 1,000 permutations. The genes that had P-value ≤ 0.003 were 

taken for the 10,000 permutations step. The enrichments with P-value < 0.0001 were 
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validated in the TwinsUK study (compare Fig. 1D). The graded permutation strategy 

considerably reduced the computational effort. As a consequence, the strategy has a reduced 

statistical power but does not cause more false positive results.  

In the analysis of SAD sets, the number of sets tested for enrichment was much higher than in 

the analysis of GGM sets. To reduce the computational effort, we introduced an intermediate 

validation step to the graded permutation scheme (compare Fig. 1E). All genes at which a 

SAD set had a P-value ≤ 0.003 after 1,000 permutations in KORA F4 were validated in the 

TwinsUK study with 1,000 permutations. Only those genes for which a SAD set gained a P-

value ≤ 0.003 in PSEA on TwinsUK with 1,000 permutations (intermediate validation) were 

analysed in KORA F4 with 10,000 permutations.  
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Figure 1. Schematic overview of the general method of PSEA (A), the definition of 

metabolite sets in this study (B, C) and the applied permutation schemes (D, E).  

In part (A), different shapes represent different phenotypes, different colours represent 

different genes and the intensity of the colour represents the association strength.  

(P: phenotype, p: P-value, P.set: phenotype set, ES: enrichment score, ESperm: enrichment score for 

permuted phenotypes, Nperm: number of permutations) 

 

Figure 2. PSEA results on single association–defined metabolite sets (SAD set; threshold: 10-

4) on Biocrates metabolites. All metabolite sets that were promisingly enriched in KORA F4 

and validated in TwinsUK are presented along with the genes at which they were identified. 

Gene groups are separated by horizontal space. Details of the presentation are explained in the 

legend below. 

 

Figure 3. PSEA results on single association–defined metabolite sets (SAD set; threshold: 10-

4) on Metabolon metabolites. All metabolite sets that were promisingly enriched in KORA F4 

and validated in TwinsUK are presented along with their respective genes. Gene groups are 

separated by a horizontal space. Details of the presentation are explained in the legend below. 
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Table 1. Result counts for PSEA on Biocrates and Metabolon metabolite sets. This table 

summarises the number of analysed metabolite sets, the number of enrichments that were 

found to be promising in KORA and the number of those that were validated  in TwinsUK. 

Moreover, the number of gene groups is given at which the metabolite sets were enriched. 

The number of independent promising enrichments counts the enrichment of the same 

metabolite only once per gene group (GG). This number was used to correct P-value in the 

replication stage. Enrichments that could not be analysed for replication in the TwinsUK due 

unavailable metabolite sets are not included in these numbers.  

  

number of 
metabolite 
sets 

number of  promising  
enrichments, (independent 
promising enrichments) and 
number of gene groups 
(GG) 

number of validated 
enrichments with 
number of gene 
groups (GG) 

number of novel 
enrichments with 
number of gene 
groups (GG) 

GGM defined metabolite sets (GGM sets) 
Biocrates 38 354 (92) at 61 GG 123 at 7 GG 0 

Metabolon 50 344 (78) at 58 GG 75   at 8 GG 0 

Single association–defined phenotype sets (SAD sets; threshold 10-6) 

Biocrates 71 0 0 0 

Metabolon 86 96 (20) at 13 GG 96 at 13 GG 0 

Single association–defined phenotype sets (SAD sets; threshold 10-4) 

Biocrates 7,942 62 (45) at 22 GG 46   at 15 GG 7 at 6 GG 

Metabolon 10,951 203(107) at 47 GG 131 at 23 GG 23 at 6 GG 
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Table 2. Validated enrichments of metabolite sets for the twelve novel loci. This table 

specifies the composition of all validated metabolite set enrichments at genes that were not 

previously found in mGWAS on large metabolite panels. Part 1 of the table shows all novel 

genes found with Biocrates metabolite sets. Analogously, part 2 refers to all corresponding 

genes on Metabolon metabolites. Results for gene groups are separated by background colour. 

Further details on metabolites are given in the Supplementary Material, Table S1 and Table 

S2.  

 genes   elements of the phenotype set* 
(1) GGM sets of Biocrates metabolites 

MFSD2A, 
MYCL1  

lysophosphatidylcholines: acyl C16:0,acyl C17:0, acyl C18:1, acyl C20:4, acyl 
C18:0,  

DKFZp686O132
7  

carnitine, hydroxyhexadecadienylcarnitine, octadecanoylcarnitine, arginine, 
threonine, phosphatidylcholines: diacyl C36:5, diacyl C36:6, diacyl C40:3, acyl-
alkyl C36:5,  
lysophosphatidylcholines: acyl C18:1, acyl C20:4 

PDCD6IP  decanoylcarnitine(C10), decanoylcarnitine (C10:1), decadienylcarnitine, 
tetradecenoylcarnitine (C14:1), hydroxyhexadecenoylcarnitine, 
octadecenoylcarnitine (C18:1), hexanoylcarnitine, pimeloylcarnitine, 
octanoylcarnitine, lysophosphatidylcholines: acyl C16:0, acyl C18:0, acyl C18:2 

IL3  hexadecanoylcarnitine (C16), octadecenoylcarnitine (C18:1), 
octadecadienylcarnitine, propionylcarnitine, valerylcarnitine, pimeloylcarnitine, 
phosphatidylcholine acyl-alkyl C40:5, hydroxysphingomyeline C14:1 

C12orf75  decadienylcarnitine, hydroxytetradecadienylcarnitine, hydroxybutyrylcarnitine, 
hexanoylcarnitine, valerylcarnitine,  
phosphatidylcholines: diacyl C36:2, acyl-alkyl C40:2,  
hydroxysphingomyeline: C14:1, C16:1, C22:1, C22:2, C24:1 

INTS8  decadienylcarnitine, phosphatidylcholines: diacyl C36:1, diacyl C42:2 

(2) GGM sets of Metabolon metabolites 

CYP4B1  tyrosine, heme, carnitine C3:0, glutaroyl carnitine, fatty acid C11:1(10Z), gamma-
glutamyl-tyrosine 

KIAA0494  tyrosine, heme, carnitine 3:0, fatty acid C11:1(10Z), gamma-glutamyl-tyrosine 

CYP4A11, 
CYP4X1  

fatty acid C11:1(10Z), phosphatidylcholines: diacyl C16:1(9Z)/C0:0, diacyl 
C14:0/C0:0 

CYP4Z2P  fatty acid C11:1(10Z), phosphatidylcholine: diacyl C16:1(9Z)/C0:0, glutaroyl 
carnitine 

DIRAS3  3-methyl-2-oxopentanoate, glycerate, glycerol, phosphatidylcholine: acyl-alkyl 
C18:1(9Z) 

MIR138-1  creatinine, phosphatidylcholines: diacyl C20:3(8Z,11Z,14Z)/C0:0, diacyl 
C18:2(9Z,12Z)/C0:0, diacyl C0:0/C18:1(9Z), gamma-glutamyl-tyrosine 

LINGO2  aspartate, betaine, creatine, S-glutathionyl-L-cysteine, glutamate, methionine, 
pyroglutamine, 2 -tetradecenoyl carnitine, isovalerylcarnitine, glycerol 
(C18:2(9Z,12Z)/C0:0/C0:0), glycerol (C18:1(9Z)/C0:0/C0:0), 
phosphatidylcholine: acyl-alkyl C18:2(9Z,12Z)/C0:0, fatty acid C11:1(10Z), fatty 

 at G
SF-Forschungszentrum

 fuer U
m

w
elt und G

esundheit G
m

bH
 - Z

entralbibliothek on June 15, 2014
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


28 

acid C20:4(5Z,8Z,11Z,14Z), fatty acid C20:3(n-3/n-6), xanthine, 
DSGEGDFXAEGGGVR, phenylsulfate 

UBL3  indolepropionate, N-acetylornithine, p-cresol, lactate, cortisone, 
dehydroepiandrosterone sulfate, 3-dehydrocarnitine,hydroxy fatty acid C16:0, 
hydroxy fatty acid C18:0, fatty acid C20:4(5Z,8Z,11Z,14Z) 

LOC440131  indolepropionate, N-acetylornithine, p-cresol, lactate, cortisone, 
dehydroepiandrosterone sulfate,3-dehydrocarnitine, hydroxy fatty acid C16:0, 
hydroxy fatty acid C18:0, fatty acid C20:4(5Z,8Z,11Z,14Z), phosphatidylcholine: 
diacyl C20:4(5Z,8Z,11Z,14Z)/C0:0, theophylline 

CALR, DNASE2 , 
GCDH, MAST1, 
PRDX2, RTBDN   

glutaroyl carnitine, glycerophosphorylcholine, erythritol 

DAND5, FARSA, 
KLF1, RAD23A, 
SYCE2   

arabitol, glutaroyl carnitine, glycerophosphorylcholine, oleamide C18:2(9Z), 
erythritol 

GADD45GIP1  arabitol, fructose, glutaroyl carnitine, oleamide C18:2(9Z), erythritol 

NFIX  arabitol, fructose, glutaroyl carnitine, glycerophosphorylcholine, oleamide 
C18:2(9Z) , erythritol 

* Ca:b indicates a chain of "a" carbon atoms, including "b" double bounds. For phosphatidylcholines 
measured by Biocrates, the accumulated number of carbon atoms and double bounds of both ligated 
fatty acid chains is given. For Metabolon phosphatidylcholines and glycerol, the number of carbon 
atoms in each ligated fatty acid is given separated by a "/" and the position of double bounds is given 
in brackets. 
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ABBREVIATIONS 

GIM genetically-influenced metabotypes 

GGM Gaussian graphical modelling 

GWAS genome-wide association studies 

KORA cooperative health research in the region of Augsburg 

mGWAS genome-wide association studies (GWAS) on metabolite traits 

PSEA phenotype set enrichment analysis 

SNP single-nucleotide polymorphism 
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