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Choline is a key nutrient with various metabolic roles in 
lipid metabolism and cell membrane structure, and it 

serves as a precursor for the synthesis of the neurotransmitter 
acetylcholine.1–3 Dietary choline is also an important source 
of methyl groups that are required for proper metabolism of 
certain amino acids, such as homocysteine and methionine.3 A 
variety of animal studies have shown that choline deficiency 
adversely affects brain and cognitive development during 
fetal and neonatal life,1,4–6 which has led to specific nutritional 
guidelines recommending adequate intake of choline for 
infants and pregnant or lactating women.7,8

One route for the initial catabolism of dietary choline (in 
the form of phosphotidylcholine) is mediated by intestinal 
microbes and leads to the formation of trimethylamine (TMA). 
TMA is efficiently absorbed from the gastrointestinal tract 

and subsequently oxidized by the liver to form TMA N-oxide 
(TMAO). This latter reaction is catalyzed by one or more of the 
flavin monooxygenase (FMO) enzymes, of which there are 6 
gene family members in higher mammals.9 Interestingly, muta-
tions of FMO3 that result in deficiency of this enzyme are the 
cause of trimethylaminuria, otherwise known as fish malodor 
syndrome.10 This relatively rare recessive disorder is character-
ized by the near absence of plasma TMAO levels and highly 
elevated TMA levels, depending on the functional severity of 
the mutation in FMO3. The pungent odor of rotting fish that 
characterizes trimethylaminuria is because of the release of the 
volatile gas TMA through the breath, skin, and urine.

Recently, we uncovered a novel mechanism through which 
gut microbiota and hepatic-mediated metabolism of dietary 
choline promote atherosclerosis and increase the risk of 
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Objective—Elevated levels of plasma trimethylamine N-oxide (TMAO), the product of gut microbiome and hepatic-mediated 
metabolism of dietary choline and l-carnitine, have recently been identified as a novel risk factor for the development 
of atherosclerosis in mice and humans. The goal of this study was to identify the genetic factors associated with plasma 
TMAO levels.

Approach and Results—We used comparative genome-wide association study approaches to discover loci for plasma TMAO 
levels in mice and humans. A genome-wide association study in the hybrid mouse diversity panel identified a locus for TMAO 
levels on chromosome 3 (P=2.37×10−6) that colocalized with a highly significant (P=1.07×10−20) cis-expression quantitative trait 
locus for solute carrier family 30 member 7. This zinc transporter could thus represent 1 positional candidate gene responsible 
for the association signal at this locus in mice. A genome-wide association study for plasma TMAO levels in 1973 humans 
identified 2 loci with suggestive evidence of association (P=3.0×10−7) on chromosomes 1q23.3 and 2p12. However, genotyping 
of the lead variants at these loci in 1892 additional subjects failed to replicate their association with plasma TMAO levels.

Conclusions—The results of these limited observational studies indicate that, at least in humans, genes play a marginal 
role in determining TMAO levels and that any genetic effects are relatively weak and complex. Variation in diet or the 
repertoire of gut microbiota may be more important determinants of plasma TMAO levels in mice and humans, which 
should be investigated in future studies.    (Arterioscler Thromb Vasc Biol. 2014;34:1307-1313.)
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coronary artery disease (CAD).11,12 These studies demonstrated 
that plasma TMAO levels in humans were positively associ-
ated with the presence of multiple CAD phenotypes, including 
atherosclerotic plaque burden and future risk of myocardial 
infarction, stroke, or death in a dose-dependent fashion. A 
similar relationship was observed between plasma TMAO lev-
els and aortic lesion development among various inbred mouse 
strains.13 More recently, we also demonstrated that l-carnitine, 
a trimethylamine abundant in red meat, is also metabolized by 
intestinal microbiota to produce TMAO in mice and humans 
and that l-carnitine supplementation accelerated atheroscle-
rosis in mice.14 Notably, short-term administration of broad-
spectrum antibiotics eliminated the production of TMAO in 
both mice and humans and decreased atherosclerosis in mice. 
Furthermore, TMAO supplementation in mice, or dietary sup-
plementation of either choline or l-carnitine, in the presence 
of intact gut microbiota led to alterations in cholesterol and 
sterol metabolism in multiple distinct compartments, including 
reduction in reverse cholesterol transport, providing a mecha-
nistic rationale for the association between TMAO levels and 
atherosclerotic cardiovascular phenotypes.14 Taken together, 
these studies provide evidence consistent with the proath-
erogenic role of TMAO in mammals and support the notion 
that gut microbiota plays an obligatory role in the formation 
TMAO from dietary choline and l-carnitine.

It is reasonable to assume that variation in plasma TMAO lev-
els could also be affected by intrinsic genetic factors of the host. 
However, with the exception of FMO3, the genes that control 
plasma TMAO levels are not known. Therefore, the aim of the 
present study was to use comparative genome-wide association 
study (GWAS) approaches in mice and humans to identify novel 
genetic determinants associated with plasma TMAO levels.

Materials and Methods
Materials and Methods are available in the online-only Supplement.

Results
Association of the FMO Cluster With FMO3  
Gene Expression, Plasma TMAO Levels,  
and CAD in Humans
In previous studies, we reported that Fmo3 expression var-
ied significantly among inbred strains from the hybrid mouse 
diversity panel (HMDP) and that a major locus regulating its 

expression mapped directly over Fmo3, suggesting cis-acting 
regulation in mice.13 Furthermore, Fmo3 expression was posi-
tively correlated with both plasma TMAO levels and athero-
sclerosis in mice. Based on these observations, we first used 
a targeted approach to evaluate whether genetic associations 
could specifically be observed with the human FMO locus 
on chromosome 1q24.3. To evaluate the association of the 
FMO cluster with hepatic FMO3 mRNA levels, we used a 
previously published liver gene expression data set.15 These 
analyses were performed in a subset of 151 white subjects 
for whom complete gene expression and genotype data were 
publicly available. Fifty-seven single nucleotide polymor-
phisms (SNPs) were available for analysis in a specified 
≈451-kb region containing FMO3, FMO6P, FMO2, FMO1, 
and FMO4, including 200 kb of flanking sequence (100 kb 
from each end). As shown in Figure 1A, 1 SNP (rs2075988) 
yielded age- and sex-adjusted association with FMO3 mRNA 
levels (P=4.5×10−4) that remained significant after correc-
tion for multiple testing (0.05/57; Bonferroni-corrected 
P=8.8×10−4). Cis-expression quantitative trait loci (QTL) 
were not observed for any other members of the FMO gene 
family at this locus (data not shown).

We next determined whether variation in the FMO cluster 
influenced plasma TMAO levels using the GWAS results from 
the GeneBank study, a cohort of patients undergoing elective 
cardiac evaluation at the Cleveland Clinic. Table 1 describes 
the clinical characteristics of the 3865 individuals used in the 
present study. As expected for a patient population undergo-
ing coronary angiography as part of their clinical evaluation, 
a majority of these subjects were men, had prevalent CAD, 
and were taking lipid-lowering medication (Table  1). In 
this analysis, 471 SNPs were available, but none were sig-
nificantly associated with plasma TMAO levels (Figure 1B). 
Finally, we evaluated whether the FMO locus was associated 
with risk of CAD in the Coronary Artery Disease Genome-
wide Replication And Meta-Analysis (CARDIoGRAM) 
consortium, which represents a meta-analysis of GWAS data 
from a discovery set of ≈22 000 CAD cases and ≈65 000 
controls.16 In CARDIoGRAM, 388 SNPs were available for 
analyses, of which 21 yielded values of P<0.05 for associa-
tion with CAD (Figure 1C). However, none of these associa-
tions were significant at the Bonferroni-corrected significance 
threshold (P=1.3×10−4; 0.05/388). Furthermore, the SNP that 
exhibited the strongest association with FMO3 mRNA lev-
els (rs2075988) did not demonstrate evidence for association 
with either plasma TMAO levels or risk of CAD (Figure 1).

GWAS for Plasma TMAO Levels in Mice
To identify novel genetic factors associated with plasma 
TMAO levels in mammals, we next used the HMDP to per-
form an unbiased GWAS in mice. This newly developed 
genetic platform consists of ≈100 classic inbred and recombi-
nant inbred mouse strains that are maximally informative for 
association analysis and have been used to perform GWAS 
for other quantitative traits relevant to human diseases, 
including atherosclerosis, metabolites, and hepatic mRNA 
levels.17–20 For the present study, we performed a GWAS 
for plasma TMAO levels in male mice on a chow diet and 
identified 1 locus on mouse chromosome 3 between 110 and 

Nonstandard Abbreviations and Acronyms

CAD	 coronary artery disease

CARDIoGRAM	 Coronary Artery Disease Genome-wide Replication And 
Meta-Analysis

FMO	 flavin monooxygenase

GWAS	 genome-wide association study

HMDP	 hybrid mouse diversity panel

QTL	 quantitative trait loci

SNPs	 single nucleotide polymorphisms

Slc30a7	 solute carrier family 30 member 7

TMA	 trimethylamine

TMAO	 trimethylamine N-oxide
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115 Mb that exceeded the genome-wide significance thresh-
old for association in the HMDP (P=2.37×10−6; Figure  2A 
and 2B). The 10-Mb region centered around the lead SNP 
on chromosome 3 contained several genes and exhibited a 
highly significant cis-expression QTL (P=1.07×10−20) for the 
gene encoding solute carrier family 30 member 7 (Slc30a7; 
Figure 2C). The colocalization of QTLs for plasma TMAO 
and Slc30a7 mRNA levels suggests that this zinc transporter 
could represent 1 positional candidate gene responsible for 
the association signal at this locus. Suggestive evidence for 
association of plasma TMAO levels (P=7.62×10−6) was also 
observed with a region on mouse chromosome 1 at 184 Mb 
(Figure 2A), although this locus did not achieve genome-wide 

significance. The lead SNP on chromosome 1 maps to within 
40 kb of the lamin β-receptor gene but ≈20 Mb distal from the 
Fmo gene cluster (162–163 Mb).

GWAS for Plasma TMAO Levels in Humans
To complement the mouse studies, we performed a 2-stage 
GWAS in GeneBank. In the first stage, ≈2.4 million genotyped 
and imputed autosomal SNPs were evaluated for association 
with plasma TMAO levels in 1973 subjects with adjustment 
for age and sex. The quantile-quantile plot for these analy-
ses is shown in Figure 3A, and the observed genomic infla-
tion factor (λ) was 1.007, indicating that the GWAS results 
are not confounded by underlying population stratification. As 
shown by the Manhattan plot in Figure 3B, 2 loci with sugges-
tive evidence of association were identified on chromosomes 
1q23.3 and 2p12. The lead SNP at the chromosome 1 locus 
(rs17359359; P=2.8×10−7) is located ≈47 kb telomeric of 
NUF2, which is a component of the kinetochore complex that 
is required for chromosome segregation but, to our knowl-
edge, has no known relationship to TMAO metabolism. This 
locus is also located ≈8 Mb telomeric to the FMO gene cluster 
and is clearly distinct because there is no apparent long-range 
linkage disequilibrium between these 2 loci. By compari-
son, the lead SNP at the chromosome 2p12 locus (rs885187; 
P=2.8×10−7) does not map near any known gene. Based on 
previously observed sex differences in plasma TMAO levels, 
we also performed a GWAS in men and women separately. 
However, these analyses did not reveal sex-specific effects on 
chromosomes 1q23.3 and 2p12 or identify other loci (Figure I 
in the online-only Data Supplement).

In stage 2, we evaluated the chromosome 1 locus further by 
genotyping rs17359359 in 1892 additional GeneBank subjects 
for whom plasma TMAO levels were available. These analyses 
failed to replicate the association of rs17359359 with plasma 
TMAO levels in stage 2 (P=0.85), and a combined analysis 
with all subjects attenuated the overall association (P=1.8×10–

4; Table 2). Based on the chromosome 3 locus identified in the 

Figure 1. Association of the flavin monooxygenase (FMO) locus with FMO3 mRNA levels, plasma trimethylamine N-oxide (TMAO) levels, and 
risk of coronary artery disease (CAD) in humans. Using a publicly available expression quantitative trait loci liver data set, 57 single nucleo-
tide polymorphisms (SNPs) were tested for association with hepatic FMO3 mRNA levels, one of which (rs2075988) yielded a significant P 
value (4.5×10−4) after Bonferroni correction for multiple testing (A). In the GeneBank cohort, none of the 471 SNPs tested in the FMO locus 
yielded significant association with plasma TMAO levels (B). Evaluation of the FMO locus with risk of CAD using 388 SNPs available from the 
results of the Coronary Artery Disease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) consortium did not reveal any signifi-
cant associations (C). The same genomic interval spanning ≈451 kb across the FMO cluster on chromosome 1q24.3 is shown for all 3 plots, 
and the variant most strongly associated with FMO3 mRNA levels is given as the reference SNP (rs2075988). Chr indicates chromosome.

Table 1.  Clinical Characteristics of the Study Population

Trait  n=3865

Age, y 64±11

Male/female 6372/2789

Number with CAD at baseline, % 6776 (76)

CAD severity

   0 vessels, % 2766 (30)

   1 or 2 vessels, % 3392 (37)

   ≥3 vessels, % 3003 (33)

No. of MACE, % 1285 (14)

BMI, kg/m2 29.6±6.2

Total cholesterol, mg/dL 170±41.1

HDL cholesterol, mg/dL 40.0±13.5

LDL cholesterol, mg/dL 99.0±33.5

Triglycerides, mg/dL 151.5±110.1

TMAO, μmol/L 6.2±13.0

Taking lipid-lowering medication (%) 5751 (63)

Data are shown as mean±SD or numbers of individuals (%). BMI indicates 
body mass index; CAD, coronary artery disease; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; MACE, major adverse cardiac events; and TMAO, 
trimethylamine N-oxide. 
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HMDP (Figure  2A and 2B), we used synteny mapping and 
evaluated the association of plasma TMAO levels with SNPs 
in the 1-Mb genomic region centered on the human SLC30A7 
ortholog located on chromosome 1p21.2. In the GWAS data 
set (n=1973), 1 SNP located ≈225 kb telomeric to SLC30A7 
(rs12402441) demonstrated nominal association (P=0.006) 
with plasma TMAO levels (Table  2). However, the associa-
tion of rs12402441 with plasma TMAO levels did not replicate 
in the stage 2 samples, and a combined analysis with all sub-
jects was not significant (Table 2). In the combined data set, 
there was also no evidence for an interaction between sex and 
either SNP on plasma TMAO levels (rs17359359, P

int
=0.33; 

rs12402441, P
int

=0.11). The sex-specific effects of rs17359359 
and rs12402441 when men and women were analyzed sepa-
rately are shown in Table I in the online-only Data Supplement.

Discussion
Using a combined mouse–human GWAS approach, we sought 
to identify the genetic determinants of plasma TMAO levels 
in mammals. Several factors served as the motivation for these 
studies, including recent studies demonstrating that TMAO 
can be generated from gut microbiota–mediated metabo-
lism of either dietary choline or l-carnitine and that elevated 
plasma levels are strongly proatherogenic in both mice and 
humans.11,12,14 Subsequent reports further showed that plasma 

TMAO levels in mice are regulated by both sex hormones, 
which could account, in part, for the observed dimorphism 
between male and female mice and increased Fmo3 gene 
expression via bile acid–mediated activation of the farnesoid 
X receptor.13 Of note, in humans, no differences in plasma 
TMAO levels were observed between men and women.12 
The collective results of these comprehensive, albeit limited, 
observational studies indicate that genes play a marginal role 
in determining TMAO levels and that any genetic effects are 
either complex or relatively weak. This is particularly true 
in humans and raises the possibility that variation in dietary 
composition or the repertoire of gut microbiota may be more 
important determinants of plasma TMAO levels.

Using the HMDP, we identified 1 locus on chromosome 
3, which contains Slc30A7 and was associated with plasma 
TMAO levels in male mice at the genome-wide significance 
threshold. This locus also exhibited evidence for cis gene regu-
lation of Slc30a7, which is a subfamily member of the cation 
diffusion facilitator family of transporters and has essential 
functions in dietary zinc absorption.21 Although a biological 
mechanism for how Slc30a7 would regulate plasma TMAO 
levels is not directly evident, it has been reported that the 
zinc finger protein, YY1, regulates the expression of both rab-
bit and human FMO1.22 Interestingly, the activity of certain 
bacterial monoooxygenases has also been shown to use zinc 

Figure 2. Manhattan plot for genome-wide association study (GWAS) of plasma trimethylamine N-oxide (TMAO) levels in mice. A GWAS 
for plasma TMAO levels in the hybrid mouse diversity panel (HMDP) identifies a significant locus over the solute carrier family 30 mem-
ber 7 (Slc30a7) gene (red dot) at 110 to 115 Mb on chromosome 3 and a suggestive locus on chromosome 1 ≈40 kb away from the Lbr 
gene (A). A regional plot for chromosome 3 shows the location and transcriptional orientation of Slc30a7 (indicated by red arrow) in rela-
tion to the peak single nucleotide polymorphisms (SNPs) in this region (B). Of the genes in this locus, a highly significant (P=1.07×10−20) 
cis-acting expression quantitative trait loci is observed for Slc30a7 (C). The red line indicates the genome-wide threshold for significance 
in the HMDP (P=4.1×10−6). Plasma TMAO and hepatic mRNA levels were quantified in male mice from ≈100 HMDP strains (n=3–8 mice 
per strain) and analyzed for association with ≈107 000 SNPs, after correcting for population structure using the EMMA algorithm.
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as a cofactor.23 However, more detailed functional studies 
will be required to determine whether Slc30a7 could affect 
TMAO levels by influencing zinc-mediated activity of ≥1 of 
the FMOs in mice. We also note that although this locus on 
mouse chromosome 3 also yielded a highly significant cis-
expression QTL for Slc30a7, we cannot exclude the possibility 
that another gene in this interval harboring functional coding 
variation is the causal genetic factor for plasma TMAO levels. 
Because our GWAS with the HMDP was only with male mice, 
it is also possible that inclusion of females would provide addi-
tional support for the association of the Slc30a7 locus, as well 
as identify other genomic regions controlling plasma TMAO 
levels that are potentially specific to females. For example, 
we previously reported that plasma TMAO levels are several-
fold higher in female mice compared with males, a portion of 
which is attributable to differences in sex hormones.13

As a comparative analysis to our studies with the HMDP, 
we also performed a GWAS for plasma TMAO levels in the 
GeneBank cohort. This analysis identified 2 suggestive loci 
in the discovery phase, but our attempt to replicate the NUF2 
locus on chromosome 1 was unsuccessful. Based on the 
Slc30a7 locus identified in the mouse GWAS, we also evalu-
ated the syntenic region on human chromosome 1p21.2 for 
association with plasma TMAO levels. Although 1 SNP in this 

region yielded nominal association with plasma TMAO lev-
els in humans, this signal also did not replicate in the stage 2 
samples. Given the high concordance rate (>98.8%) for geno-
types of the same DNA samples used in stages 1 and 2, we do 
not think technical variability to have been a factor for the lack 
of replication in stage 2 and conclude that these loci likely 
represent false-positive signals. However, despite the lack of 
genetic variation around the human SLC30A7 ortholog being 
associated with plasma TMAO levels, it is possible that this 
transporter still plays a biological role in regulating TMAO 
levels in both species. Furthermore, we did not obtain any 
evidence for sex-specific effects at these loci or identify any 
others when the GWAS was performed in men and women 
separately. Taken together, these results suggest that variation 
in plasma TMAO levels in humans may be because of weak 
genetic effects and that larger sample sizes will be required to 
identify the underlying regulatory factors.

To date, FMO3 is the only genetic factor known to affect 
plasma TMAO levels in humans. FMO3 is composed of 10 
exons spanning 26.9 kb on chromosome 1q24.3 and encodes 
a 532-residue enzyme. At the amino acid level, FMO3 shares 
≥79% homology with the mouse Fmo3 protein and other 
members of the human FMO family. Interestingly, we previ-
ously demonstrated that FMO1, FMO2, and FMO3 were able 

Figure 3. Results of a genome-wide asso-
ciation study (GWAS) for plasma trimeth-
ylamine N-oxide (TMAO) levels in humans. 
The quantile-quantile plot of the GWAS 
results for plasma TMAO levels in humans 
(n=1973) shows slight deviation of the 
observed P values from the expected distri-
bution under the null hypothesis of no asso-
ciation (A). The observed genomic control 
factor in these analyses was 1.007, indicat-
ing that the results are not confounded 
by underlying population stratification. A 
GWAS analysis in humans identifies 2 loci 
on chromosomes 1 and 2 exhibiting sug-
gestive evidence of association with plasma 
TMAO levels but no locus that exceeds the 
genome-wide threshold for significance 
(indicated by the horizontal red line; B).
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to generate TMAO from TMA but that FMO3 was by far the 
most active family member.13 Because the Mendelian disease 
trimethylaminuria is caused by rare mutations that lead to 
FMO3 deficiency, we leveraged our own data in GeneBank 
and those from public sources to evaluate whether common 
variants at the FMO locus were associated with FMO3 gene 
expression, plasma TMAO levels, and risk of CAD. However, 
these analyses in humans did not reveal any strong associa-
tions with SNPs surrounding FMO3. It is possible that the 
imputed genotypes from the GWAS data we used did not pro-
vide sufficient coverage of the variation around FMO3 (or the 
entire FMO locus). Based on data for subjects of European 
ancestry from the 1000 Genomes Project, 59 tagging SNPs 
with minor allele frequencies ≥1% would cover FMO3 at an 
r2≥0.8. However, only 15 tagging SNPs across FMO3 were 
present in our analyses of plasma TMAO levels in GeneBank. 
In addition, rare variants in FMO3 that could influence gene 
expression, TMAO production, and risk of CAD would also 
not necessarily be represented by our imputed GWAS data. By 
comparison, our previous studies in mice revealed a relatively 
strong cis-expression QTL for Fmo3 expression over the Fmo 
locus. However, the present analyses for plasma TMAO levels 
in the HMDP did not yield association with the Fmo locus at 
the genome-wide level (data not shown). These observations 
suggest that the relationship between FMO3 gene expression 
and plasma TMAO levels in both mice and humans is complex 
and that other regulatory mechanisms, including post-tran-
scriptional and post-translational modifications, may exist.

The discordance between rare mutations in FMO3 that dra-
matically reduce plasma TMAO levels and the lack of common 
genetic determinants associated with this metabolite implies 
that variation in TMAO levels in humans and mice may be 
influenced by other factors, such as gut microbial and dietary 
composition. For example, we previously defined the relative 
abundances of bacteria at each taxonomic level in relation to 
the production of TMAO through pyrosequencing of 16S rRNA 
genes in both mice and humans. One notable difference in these 
analyses was the source of gut bacteria because the contents of 
the cecum were used for mice, whereas stool samples were used 
for the human analyses. This may explain, at least in part, why 
a direct comparison of bacterial taxa associated with plasma 
TMAO concentrations did not identify any genre common 
to both species. This observation is consistent with previous 
reports indicating that microbes identified from the distal gut of 

the mouse do not necessarily represent those typically detected 
in humans.24,25 Thus, although sharing many taxa, the microbial 
composition observed in mice is architecturally and globally 
different than in humans. Despite these differences, we were 
still able to demonstrate associations between dietary patterns 
(eg, vegan/vegetarian versus omnivore or normal chow versus 
choline/carnitine supplemented) and both plasma TMAO levels 
and proportions of specific taxa of fecal microbes in humans 
and cecal microbes in mice.14 These observations suggest that 
high dietary intake of l-carnitine or choline would lead to 
increased plasma TMAO levels, particularly if specific bacte-
rial taxa that metabolize these nutrients to TMA are present 
in the gut. It is possible that the effects of host genetic factors 
would also manifest under such dietary conditions. However, 
compared with mice housed under standardized environmental 
conditions, the diet in free-ranging humans is far more hetero-
geneous, which would add further complexity and diversity to 
any potential interactions with the gut microbiome.

Despite our comprehensive efforts to identify loci associated 
with plasma TMAO levels, we also note several potential limi-
tations of our study. First, we used GWAS approaches in mice 
and humans that mostly test association with common genetic 
variation, which would not necessarily detect the effects of rare 
variants on plasma TMAO levels. Second, our human GWAS 
was performed in subjects of European ancestry, and it is pos-
sible that genetic variants that are either specific to or present 
at higher frequency in other ethnicities could influence TMAO 
levels. Third, although including ≈100 inbred strains, it is still 
possible that the HMDP does provide sufficient genetic varia-
tion to capture all of the effects on plasma TMAO levels in 
mice compared with the substantially greater genetic diversity 
present in outbred human populations. In addition, the path-
ways leading to variation in TMAO levels in mice and humans 
may not be entirely similar. Finally, as discussed above, vari-
ability in dietary composition, particularly in humans, and 
the gut microbiome clearly factor into plasma TMAO levels 
and are thus likely to be strong confounding variables that our 
study did not take into consideration.

Conclusions
Our results indicate that Slc30a7 may represent a novel gene 
for TMAO levels in mice but that the contribution of genetic 
factors in humans is more complex. These observations 

Table 2.  Effect of Single Nucleotide Polymorphisms Identified Through GWAS in Humans and Mice on 
Plasma TMAO Levels in the GeneBank Cohort

Stage

rs17359359 rs12402441

GG AG AA P Value* AA AG GG P Value*

GWAS 5.3±8.0
(n=1727)

8.2±20.3
(n=238)

9.9±8.1
(n=8)

2.8×10–7 5.8±10.8
(n=1773)

4.5±4.7
(n=186)

4.5±3.7
(n=14)

0.006

Replication 6.6±14.5
(n=1495)

8.3±23.2
(n=186)

4.0±2.9
(n=9)

0.71 6.6±13.3
(n=1598)

8.8±31.2
(n=158)

4.5±1.5
(n=10)

0.68

Combined 5.9±11.5
(n=3222)

8.3±21.6
(n=424)

6.8±6.5
(n=17)

1.1×10–4 6.2±12.1
(n=3371)

6.5±21.5
(n=344)

4.5±2.9
(n=24)

0.14

Mean (±SD) plasma TMAO levels (μmol/L) are shown as a function of genotype. GWAS indicates genome-wide association study; and 
TMAO, trimethylamine N-oxide.

*P values obtained using linear regression with natural log-transformed values after adjustment for age and sex.
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suggest that the inter-relationships between dietary choline 
and l-carnitine levels with the composition of gut microbes 
are perhaps more likely determinants of variation in plasma 
TMAO levels. Exploring such interactions as part of future 
studies may help to identify the intrinsic genetic factors that 
influence plasma TMAO levels and their influence on the 
development of atherosclerosis.
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Materials and Methods 

 
Study Population. The Cleveland Clinic GeneBank study is a single site sample repository 

generated from consecutive patients undergoing elective diagnostic coronary angiography or 

elective cardiac computed tomographic angiography with extensive clinical and laboratory 

characterization and longitudinal observation.  Subject recruitment occurred between 2001 and 

2006.  Ethnicity was self-reported and information regarding demographics, medical history, and 

medication use was obtained by patient interviews and confirmed by chart reviews.  All clinical 

outcome data were verified by source documentation.  CAD was defined as adjudicated 

diagnoses of stable or unstable angina, MI (adjudicated definition based on defined 

electrocardiographic changes or elevated cardiac enzymes), angiographic evidence of ≥ 50% 

stenosis of one or more major epicardial vessel, and/or a history of known CAD (documented 

MI, CAD, or history of revascularization).  Prospective cardiovascular risk was assessed by the 

incidence of major adverse cardiac events (MACE) during three years of follow-up from the time 

of enrollment, which included nonfatal MI, nonfatal stroke, and all-cause mortality.  Nonfatal 

events were defined as MI or stroke in patients who survived at least 48 hours following the 

onset of symptoms.  Adjudicated outcomes ascertained over the ensuing 3 years for all subjects 

following enrollment were confirmed using source documentation.  The GeneBank Study has 

been used previously for discovery and replication of novel genes and risk factors for 

atherosclerotic disease 1-6. 

 

Animal Husbandry.  Male mice were purchased from The Jackson Laboratory and housed in 

vivaria accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care.  Animals were on a 12hr light–dark cycle and maintained on a chow diet with 6% fat by 



 2

weight (Ralston-Purina Co.) until sacrifice at 16 weeks of age.  Following a 16hr fast, mice were 

bled retro-orbitally under isoflurane anesthesia and plasma TMAO levels were determined as 

described below.  All procedures were approved by the UCLA Institutional Animal Care and 

Use Committee. 

 

Measurement of Plasma TMAO Levels.  TMAO levels in human and mouse plasma was 

quantitated using stable isotope dilution high performance liquid chromatography (HPLC) with 

on line electrospray ionization tandem mass spectrometry on an API 5000 triple quadrupole mass 

spectrometer (AB SCIEX, Foster City, CA) interfaced with a Cohesive HPLC (Franklin, MA) 

equipped with a phenyl column (4.6 × 2505mm, 5μm RexChrom Phenyl; Regis, Morton Grove, 

IL).  Separation was performed using a gradient starting from 10mM ammonium formate over 

0.5 min, then to 5mM ammonium formate, 25 % methanol and 0.1 % formic acid over 3min, 

held for 8min, followed by 100% methanol and water washing for 3min.  TMAO was monitored 

in multiple reaction monitoring (MRM) mode using characteristic parent-daughter ion transitions 

at m/z 76→58.  The internal standards TMAO-trimethyl-d9 and choline-trimethyl-d9, were 

added to plasma samples prior to protein precipitation and similarly monitored in MRM mode at 

m/z 85→68 and m/z 113→69.  Various concentrations of TMAO standards and a fixed amount 

of internal standards were spiked into control plasma to prepare the calibration curves for 

quantification of plasma analytes. 

 

Genome-wide Association Mapping and Significance Threshold in Mice.  A GWAS for 

plasma TMAO levels in mice was carried out using the Hybrid Mouse Diversity Panel (HMDP).  

The HMDP is comprised of ~100 inbred and recombinant inbred (RI) strains that have 
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previously been assembled for high-resolution association mapping and subjected to extensive 

metabolic, transcriptional, and proteomic profiling 7.  Genotypes of single nucleotide 

polymorphisms (SNPs) for the inbred strains in the HMDP were obtained from the Broad 

Institute (www.broadinstitute.org/mouse/hapmap) and combined with the genotypes from the 

Wellcome Trust Center for Human Genetics (WTCHG).  Genotypes of RI strains at the Broad 

SNPs were inferred from the WTCHG genotypes by imputing alleles at polymorphic SNPs 

among parental strains, with ambiguous genotypes labeled as “missing.”  Of the 140,000 SNPs 

available, 107,145 were informative with an allele frequency greater than 5% and used in the 

present GWAS analysis. 

  We applied the following linear mixed model to account for the population structure and 

genetic relatedness among strains: y=μ+xβ+u+e where μ represents mean TMAO levels, x 

represents the SNP effect, u represents random effects due to genetic relatedness with Var(u) = 

σg2K and Var(e) = σe2I, where K represents an identity-by-descent kinship matrix across all 

genotypes.  A restricted maximum likelihood estimate of σg2 and σe2 were computed using an 

efficient mixed model association algorithm (EMMA) 8, and the association mapping was 

performed based on the estimated variance component with a standard F test to test β≠0.   

Genome-wide significance threshold in the HMDP was determined by the family-wise 

error rate as the probability of observing one or more false positives across all SNPs per 

phenotype.  We ran 100 different sets of permutation tests and parametric bootstrapping of size 

1,000 and observed that the mean and standard error of the genome-wide significance threshold 

at FWER of 0.05 were 3.9 × 10−6 ± 0.3 × 10−6 and 4.0 × 10−6 ± 0.3 × 10−6, respectively.  This is 

approximately an order of magnitude larger than the threshold obtained by Bonferroni correction 
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(4.6 × 10−7), which would be an overly conservative estimate of significance since nearby SNPs 

among inbred mouse strains are highly correlated with each other. 

 

Genotyping.  Genome-wide genotyping of SNPs in humans was performed on the Affymetrix 

Genome-Wide Human Array 6.0 chip.  Using these data and those from 120 phased 

chromosomes from the HapMap CEU samples (HapMap r22 release, NCBI build 36), genotypes 

were imputed for untyped autosomal SNPs across the genome using MACH 1.0 software.  All 

imputations were done on the forward (+) strand using 562,554 genotyped SNPS that had passed 

quality control (QC) filters.  QC filters for the imputed dataset excluded SNPs with HWE p-

values < 0.0001, call rate less than 97% or minor allele frequencies < 1%, and individuals with 

less than 90% call rates.  This resulted in 2,421,770 autosomal SNPs that were available for a 

GWAS analysis in 1973 GeneBank subjects.  Genotyping of the two SNPs selected for 

replication in stage 2 was performed using the TaqMan Allelic Discrimination system from 

Applied Biosystems, Inc. (Foster City, CA).  In control samples from the GWAS dataset that 

were also genotyped by Taqman, the concordance rate with genotypes obtained from the 

Affymetrix chip was >98.8% for the two replication SNPs. 

 

Statistical Analyses.  A GWAS for plasma TMAO levels in humans was carried out with 

adjustment for age and sex.  Linear regression analyses were performed using natural log 

transformed values under an additive genetic model.  A publicly available liver expression 

dataset 9 was used to evaluate the association of SNPs in the region containing the FMO gene 

cluster for cis expression quantitative trait loci (eQTL).  Seventy nine SNPs were available in 

this dataset for the FMO region, of which 22 were excluded due to missing genotypes.  Linear 
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regression was carried out with the remaining 57 SNPs under an additive genetic model with 

adjustment for age and sex to identify eQTLs for hepatic FMO3 mRNA levels.  The results of 

the Coronary Artery Disease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) 

Consortium were used to determine whether variants at the FMO locus were associated with 

CAD.  CARDIoGRAM represents a GWAS meta-analysis of CAD comprising a discovery set of 

~22,000 cases and ~65,000 controls, in which logistic regression was first used in each cohort to 

test for association with CAD using a log-additive model with adjustment for age and gender and 

taking into account the uncertainty of possibly imputed genotypes.  Subsequently, a meta-

analysis was performed separately for every SNP from each study that passed the quality control 

criteria using a fixed effect model with inverse variance weighting 10.  The results of this default 

meta-analysis were used to determine whether SNPs spanning the FMO cluster on chromosome 

1 were associated with CAD.  All genetic analyses were performed using PLINK 1.07 11 or SAS 

9.3 (SAS Institute Inc, Cary, NC). 
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Supplemental Table I.  Sex-stratified Association of SNPs Identified in Human and Mouse GWAS for Plasma TMAO Levels. 

Males rs17359359 rs12402441 

Stage GG AG AA ap-value AA AG GG ap-value 

GWAS 

 

5.0 ± 6.5 

(n=1231) 

8.9 ± 24.9 

(n=154) 

7.7 ± 5.8 

(n=5) 
0.0002 

5.6 ± 10.9 

(n=1238) 

4.2 ± 4.7 

(n=147) 

4.4 ± 2.6 

(n=5) 
0.008 

Replication 

 

6.3 ± 11.8 

(n=836) 

9.9 ± 30.0 

(n=108) 

3.1 ± 2.2 

(n=7) 
0.73 

7.0 ± 15.8 

(n=950) 

5.5 ± 7.7 

(n=93) 

4.9 ± 1.0 

(n=7) 
0.65 

Combined 

 

5.6 ± 9.1 

(n=2094) 

9.3 ± 27.0 

(n=262) 

5.0 ± 4.5 

(n=12) 
0.02 

6.2 ± 13.2 

(n=2188) 

4.7 ± 6.1 

(n=240) 

4.7 ± 1.7 

(n=12) 
0.02 

 
 
 

Females rs17359359 rs12402441 

Stage GG AG AA ap-value AA AG GG ap-value 

GWAS 

 

6.1 ± 10.8 

(n=496) 

6.8 ± 5.6 

(n=84) 

13.6 ± 11.5 

(n=3) 
0.0003 

6.4 ± 10.7 

(n=531) 

5.0 ± 3.7 

(n=50) 

1.5 ± 0.7 

(n=2) 
0.31 

Replication 

 

6.9 ± 17.7 

(n=612) 

6.3 ± 5.8 

(n=71) 

5.0 ± 1.1 

(n=3) 
0.47 

6.1 ± 8.4 

(n=648) 

13.6 ± 47.6 

(n=65) 

3.6 ± 2.8 

(n=3) 
0.22 

Combined 

 

6.6 ± 15.0 

(n=1108) 

6.6 ± 5.6 

(n=155) 

9.3 ± 8.7 

(n=6) 
0.003 

6.2 ± 9.5 

(n=1179) 

9.8 ± 36.0 

(n=115) 

2.7 ± 2.0 

(n=5) 
0.74 

Mean (± SD) plasma TMAO levels (M) are shown as a function of genotype.   
aP-values obtained using linear regression with natural log transformed values after adjustment for age. 
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Supplemental Figure I 
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Supplemental Figure I.  Sex-stratified GWAS results for plasma TMAO levels.  Manhattan plots derived from GWAS analyses 

performed in males (A) and females (B) separately did not reveal sex-specific effects on chromosomes 1q23.3 and 2p12 or identify 

other loci that exceed the genome-wide threshold for significance (indicated by the horizontal red line). 

 


